WorldWideScience

Sample records for biomagnetic source imaging

  1. Biomagnetic source localization and image fusion as a tool for functional diagnosis

    International Nuclear Information System (INIS)

    This paper reports on functional diagnosis of electric activity in the body by measurement of the minute extracorporeal magnetic fields, combining the results with three-dimensional MR images. A multichannel biomagnetic system in a shielded room simultaneously measures the coherent magnetic signals in 37 channels. A special bite piece for head measurements and localization coils with watermarks for chest measurements are used. Pass marks are defined in the reference frames for biomagnetism and MR. Acquisition of data for the heart or the brain is completed within a few minutes without repositioning of the patient. Localization of focal electric sources is calculated on the basis of appropriate models

  2. TOPICAL REVIEW: SQUID systems for biomagnetic imaging

    Science.gov (United States)

    Pizzella, Vittorio; Della Penna, Stefania; DelGratta, Cosimo; Luca Romani, Gian

    2001-07-01

    This review paper illustrates the different SQUID based systems used for biomagnetic imaging. The review is divided into nine sections. The first three sections are introductory: section 1 is a short overview of the topic; section 2 summarizes how the biomagnetic fields are generated and what are the basic mathematical models for the field sources; section 3 illustrates the principles of operation of the SQUID device. Sections 4-8 are specifically devoted to the description of the different systems used for biomagnetic measurements: section 4 discusses the different types of detection coils; section 5 illustrates the SQUID sensors specifically designed for biomagnetic applications together with the necessary driving electronics, with special emphasis on high-temperature superconductivity (HTS) SQUIDs, since HTS devices are still in a developing stage; section 6 illustrates the different noise reduction techniques; section 7 describes the different multichannel sensors presently operating; and, finally, section 8 gives a hint of what kind of physiological and/or clinical information may be gathered by the biomagnetic technique. Section 9 suggests some future trends for the biomagnetic technique.

  3. Algorithms for biomagnetic source imaging with prior anatomical and physiological information

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, P W [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1995-12-01

    This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.

  4. Performances of compact integrated superconducting magnetometers for biomagnetic imaging

    Science.gov (United States)

    Granata, C.; Vettoliere, A.; Rombetto, S.; Nappi, C.; Russo, M.

    2008-10-01

    In the present paper, performances of compact fully integrated superconducting quantum interference device (SQUID) magnetometers, recently developed, have been investigated in view of their employment in large multichannel systems for biomagnetic imaging. The analysis has been focused on SQUID sensors having a pickup loop side length of 3 and 4 mm based on a design aimed to maximize the magnetic flux transferred from the detection coil to the SQUID in comparison with a magnetometer with 9 mm side length having a suitable sensitivity for biomagnetic applications. The performance study has been consisted in the computation of the magnetic responses to a current dipole which is the most fundamental approach used in biomagnetism. The results have shown that the dipole current sensitivity of 4 mm long side compact magnetometers is suitable for application in multichannel systems for magnetoencephalography and magnetocardiography.

  5. Interpretation of the MEG-MUSIC scan in biomagnetic source localization

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1993-09-01

    MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak at unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.

  6. Multichannel instrumentation for biomagnetism

    International Nuclear Information System (INIS)

    A review of recent developments of multichannel instrumentation for Biomagnetism is presented. The main factors affecting the design, with different source configuration, is examined. Problems related to the SQUID sensors, the detection coils and the cryogenic aspects are examined. The existing large array multichannel systems and of those one that will be ready in the near future are described. (orig.)

  7. Biomagnetism using SQUIDs: status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sternickel, Karsten [CardioMag Imaging, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Braginski, Alex I [Research Center Juelich, ISG-2, D-52425 Juelich (Germany)

    2006-03-15

    Biomagnetism involves the measurement and analysis of very weak local magnetic fields of living organisms and various organs in humans. Such fields can be of physiological origin or due to magnetic impurities or markers. This paper reviews existing and prospective applications of biomagnetism in clinical research and medical diagnostics. Currently, such applications require sensitive magnetic SQUID sensors and amplifiers. The practicality of biomagnetic methods depends especially on techniques for suppressing the dominant environmental electromagnetic noise, and on suitable nearly real-time data processing and interpretation methods. Of the many biomagnetic methods and applications, only the functional studies of the human brain (magnetoencephalography) and liver susceptometry are in clinical use, while functional diagnostics of the human heart (magnetocardiography) approaches the threshold of clinical acceptance. Particularly promising for the future is the ongoing research into low-field magnetic resonance anatomical imaging using SQUIDs.

  8. Biomagnetism an interdisciplinary approach

    CERN Document Server

    Romani, Gian-Luca; Kaufman, Lloyd; Modena, Ivo

    1983-01-01

    Biomagnetism is the study of magnetic fields that originate in biological systems. This is a relatively new discipline that has attracted considerable interest throughout the scientific commu- ty. The study of biomagnetic fields requires the use of techniques and concepts drawn from widely disparate scientific disciplines. To make these techniques and concepts available to a wide spectrum of the scientific community, a NATO Advanced study Institute on B- magnetism was held near Frascati at Grottaferrata, Italy, in S- tember 1982. This volume is based on the lectures delivered by scholars representing many different scientific areas, ranging from solid state physics to psychology. It attempts to preserve the - herent development of concepts drawn from physiology, psychology, biology, physics, medicine, occupational health and geology that was evident during the Institute. The reader will quickly become aware that the progress in biomagnetism over the past decade was due principally to the efforts of interdisci...

  9. Biomagnetics and bioimaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Shoogo [Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: ueno@medes.m.u-tokyo.ac.jp; Sekino, Masaki [Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2006-09-15

    This paper reviews medical applications of the recently developed techniques in biomagnetics and bioimaging such as transcranial magnetic stimulation, magnetoencephalography, magnetic resonance imaging, cancer therapy based on magnetic stimulation, and magnetic control of cell orientation and cell growth. These techniques are leading medicine and biology into a new horizon through the novel applications of magnetism.

  10. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    Science.gov (United States)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  11. SQUIDs in biomagnetism: a roadmap towards improved healthcare

    Science.gov (United States)

    Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka

    2016-11-01

    neuroscientific and clinical use of magnetoencephalography (MEG), by far the most widespread application of biomagnetism with systems containing typically 300 sensors cooled to liquid-helium temperature, 4.2 K. Two important clinical applications are presurgical mapping of focal epilepsy and of eloquent cortex in brain-tumor patients. Reducing the sensor-to-brain separation and the system noise level would both improve spatial resolution. The very recent commercial innovation that replaces the need for frequent manual transfer of liquid helium with an automated system that collects and liquefies the gas and transfers the liquid to the dewar will make MEG systems more accessible. A highly promising means of placing the sensors substantially closer to the scalp for MEG is to use high-transition-temperature (high-T c) SQUID sensors and flux transformers (chapter 3). Operation of these devices at liquid-nitrogen temperature, 77 K, enables one to minimize or even omit metallic thermal insulation between the sensors and the dewar. Noise levels of a few fT Hz‑1/2 have already been achieved, and lower values are likely. The dewars can be made relatively flexible, and thus able to be placed close to the skull irrespective of the size of the head, potentially providing higher spatial resolution than liquid-helium based systems. The successful realization of a commercial high-T c MEG system would have a major commercial impact. Chapter 4 introduces the concept of SQUID-based ultra-low-field magnetic resonance imaging (ULF MRI) operating at typically several kHz, some four orders of magnitude lower than conventional, clinical MRI machines. Potential advantages of ULF MRI include higher image contrast than for conventional MRI, enabling methodologies not currently available. Examples include screening for cancer without a contrast agent, imaging traumatic brain injury (TBI) and degenerative diseases such as Alzheimer’s, and determining the elapsed time since a stroke. The major current

  12. Experience with a multichannel system for biomagnetic study.

    Science.gov (United States)

    Schneider, S; Abraham-Fuchs, K; Reichenberger, H; Seifert, H; Hoenig, H E; Röhrlein, G

    1993-11-01

    The components of the biomagnetic multichannel system Krenikon are described. The combination of biomagnetically yielded localizations with anatomic images gained from MR or CT is discussed as well as the enhancement of the signal-to-noise ratio by using a correlation technique. The overall localization accuracy is tested with technical phantoms. With volunteers measurements of auditory, visual and somatosensory evoked fields are performed to evaluate the system performance in vivo. Clinical studies were performed mainly with partners from the Universities of Erlangen-Nünberg and Ulm. The data acquisition time typically is 2-10 min which is tolerable both for the patient and the clinical staff. Electric potentials even with invasive electrodes can be recorded simultaneously with the magnetic fields. MEG gives important information for the presurgical diagnosis of epileptic patients and for the understanding of the epilepsy genesis. With MCG, centres of biologic excitation such as ventricular ectopies or accessory bundles in WPW syndrome have been successfully localized. PMID:8274986

  13. Multichannel biomagnetic system for study of electrical activity in the brain and heart.

    Science.gov (United States)

    Schneider, S; Hoenig, E; Reichenberger, H; Abraham-Fuchs, K; Moshage, W; Oppelt, A; Stefan, H; Weikl, A; Wirth, A

    1990-09-01

    The authors designed a multichannel system for noninvasive measurement of the extremely weak magnetic fields generated by the brain and the heart. It uses a flat array of 37 superconducting magnetic field-sensing coils connected to sophisticated superconducting quantum interference devices. To prevent interference from external electromagnetic fields, the system is operated inside a shielded room. Complete sets of coherent data, even from spontaneous events, can be recorded. System performance was evaluated with phantom measurements and evoked-response studies. A spatial resolution of a few millimeters and a temporal resolution of a millisecond were obtained. First results in patients with partial epilepsy and investigations of the cardiac conductive pathway indicate that biomagnetism is now ready for a systematic clinical evaluation. Interpretation of measurements was facilitated by highlighting biomagnetically localized electrical activity in three-dimensional digital magnetic resonance images. PMID:2389043

  14. Magnetoresistive-superconducting mixed sensors for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier-Lecoeur, M. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Fermon, C., E-mail: claude.fermon@cea.f [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Dyvorne, H.; Jacquinot, J.F.; Polovy, H.; Walliang, A.L. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France)

    2010-05-15

    When coupled to a giant magnetoresistive (GMR) sensor, a superconducting loop containing a constriction can be a very sensitive magnetometer. It has thermal noise levels of few fT/sqrt(Hz), comparable to low-T{sub c} SQUID noise, with a flat frequency response. These mixed sensors are good candidates for detection of weak biomagnetic signals, like a cardiac or neuronal signature. Furthermore, being sensitive to the flux, mixed sensors can be used for nuclear magnetic resonance (NMR) detection and Magnetic Resonance Imaging (MRI) especially at low fields. They are very robust and accept strong RF pulses with a very short recovery time compared to tuned RF coils, which allow measurements of broad signals (short relaxation time or multiple resonances). We will first present the last generation sensors having a noise level of 3 fT/sqrt(Hz) and we will show signals measured at low frequency (magnetocardiography-magnetoencephalography range) and at higher frequency (NMR signals). The use of additional flux transformers for improving the signal-to-noise will be discussed. Finally, we will present perspectives for low-field MRI, which can be combined with neural signal detection (MEG), especially for brain anatomy and temporal response on the same experimental setup.

  15. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  16. Proceedings of the biomagnetic effects workshop. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S. (ed.)

    1978-01-01

    Separate abstracts were prepared for six of the eight chapters contained in these proceedings. The other two chapters contain introductory material (Chapter 1) dealing with the rationale for the work shop, and a summary (Chapter 8) of the major objectives that were accomplished at the workshop relative to the current status of awareness in the field of biomagnetic effects. (ERB)

  17. Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements

    Science.gov (United States)

    Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.

    2016-06-01

    Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.

  18. Ultrasound Current Source Density Imaging

    OpenAIRE

    Olafsson, Ragnar; Witte, Russell S.; Huang, Sheng-Wen; O’Donnell, Matthew

    2008-01-01

    Surgery to correct severe heart arrhythmias usually requires detailed maps of the cardiac activation wave prior to ablation. The pinpoint electrical mapping procedure is laborious and limited by its spatial resolution (5–10 mm). We propose ultrasound current source density imaging (UCSDI), a direct 3-D imaging technique that potentially facilitates existing mapping procedures with superior spatial resolution. The technique is based on a pressure-induced change in resistivity known as the acou...

  19. Study of the Gastric Emptying in Humans: Biomagnetic Assessments

    Science.gov (United States)

    Hernández, E.; Córdova, T.; Huerta-Franco, R.; Sosa, M.; Vargas-Luna, M.

    2006-09-01

    Biomagnetic studies of the gastrointestinal system can be carried out in two ways. Recording the magnetic field produced by the myenteric nervous system or created by any oral contrast mean as magnetic tracers or markers. In the first case, a SQUID magnetometer is demanded while a fluxgate magnetometer is enough in the second case. In this work, a magnetic marker was ingested by 8 healthy volunteers, in three gastric volume conditions, to measure the luminal content volume effect in the gastric emptying and to perform the quantification of the peristaltic frequencies in gastric and duodenum tract segments. The average emptying times for low luminal content, relative to the emptying time when the intake was the highest, were 43.6 ± 15.6 % and 77.3 ± 47.0 %. These results show that the biomagnetic technique is a powerful modality to estimate the effects of the gastric volume in the gastric emptying and a way to record the peristaltic frequencies.

  20. Interpreting Biomagnetic Fields of Planar Wave Fronts in Cardiac Muscle

    OpenAIRE

    dos Santos, Rodrigo Weber; Koch, Hans

    2005-01-01

    The recent results of Holzer and co-workers reveal the existence of net currents that flow along the front of a planar wave propagating through cardiac tissue. This is an important contribution toward the better understanding of the physics of biomagnetic fields. However, although the authors claim their results reveal particular bidomain properties, we show in this short letter that the results allow multiple interpretations. For instance, cardiac anisotropy by itself may also explain the ex...

  1. 11-channel multipurpose biomagnetic system for operation in unshielded environment

    International Nuclear Information System (INIS)

    Progress toward the realization of a medium size multipurpose biomagnetic system is described. Eleven second-order gradiometers are coupled with as many dc-SQUIDs manifactured in our laboratory. The geometry of the detecting coils consists of seven sensors arranged in a straight line and four sensors placed around the center. By means of this configuration it is possible to scan the chest or the abdomen with the seven aligned sensors, to measure the head with the seven central sensors whereas the whole system can provide significant information for ''single shot'' cardiomagnetic measurements in clinical studies. (orig.)

  2. Numerical investigation of biomagnetic fluids in circular ducts.

    Science.gov (United States)

    Tzirakis, K; Papaharilaou, Y; Giordano, D; Ekaterinaris, J

    2014-03-01

    A mathematical model for the description of biomagnetic fluid flow exposed to a magnetic field that accounts for both electric and magnetic properties of the biofluid is presented. This is achieved by adding the Lorentz and magnetization forces in the Navier-Stokes equations. To demonstrate the effects of magnetic fields, we consider the case of laminar, incompressible, viscous, the steady flow of a Newtonian biomagnetic fluid (i) between two parallel plates; and (ii) through a straight rigid tube with a 60% in diameter, 84% on area, axisymmetric stenosis. Two external magnetic fields were investigated: one produced by an infinite wire carrying constant current, and a dipole-like field. We show, numerically and analytically, that the wire produces an irrotational force that, independent of its intensity, only alters the pressure leaving the velocity field unaffected. In contrast, when the fluid is exposed to the dipole-like field, which generates a rotational force, then both pressure and velocity can be strongly influenced even at moderate field strengths. Similar trends were obtained when a time varying flow is simulated through the axisymmetric stenosis in the presence of the dipole-like rotational magnetic field. It is expected that our findings could have important applications in blood flow control. PMID:24123947

  3. The atomic magnetometer: A new era in biomagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Ronald T., E-mail: rtwakai@wisc.edu [1005 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-11-07

    The high cost and impracticality of SQUID (Superconducting QUantum Interference Device) magnetometers has limited the expansion of magnetoencephalography (MEG) and magnetocardiography (MCG), especially in countries where the cost of liquid helium is high. A recent breakthrough, however, has the potential to radically change this situation. In 2003, a group at Princeton University demonstrated an atomic magnetometer, known as the SERF (spin-exchange free relaxation) magnetometer, with unprecedented sensitivity. Since then, several research groups have utilized SERF magnetometers to record MEG, MCG, and fetal MCG signals. Despite some modest drawbacks, it now seems almost certain that SERF magnetometers can replace SQUIDs for many applications. With a price tag that is likely to be far less than that of SQUIDs, SERF magnetometers can propel the next wave of growth in biomagnetism.

  4. Detecting Diffuse Sources in Astronomical Images

    CERN Document Server

    Butler-Yeoman, T; Hollitt, C P; Hogg, D W; Johnston-Hollitt, M

    2016-01-01

    We present an algorithm capable of detecting diffuse, dim sources of any size in an astronomical image. These sources often defeat traditional methods for source finding, which expand regions around points of high intensity. Extended sources often have no bright points and are only detectable when viewed as a whole, so a more sophisticated approach is required. Our algorithm operates at all scales simultaneously by considering a tree of nested candidate bounding boxes, and inverts a hierarchical Bayesian generative model to obtain the probability of sources existing at given locations and sizes. This model naturally accommodates the detection of nested sources, and no prior knowledge of the distribution of a source, or even the background, is required. The algorithm scales nearly linear with the number of pixels making it feasible to run on large images, and requires minimal parameter tweaking to be effective. We demonstrate the algorithm on several types of astronomical and artificial images.

  5. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  6. Source coding model for repeated snapshot imaging

    CERN Document Server

    Li, Junhui; Yang, Dongyue; wu, Guohua; Yin, Longfei; Guo, Hong

    2016-01-01

    Imaging based on successive repeated snapshot measurement is modeled as a source coding process in information theory. The necessary number of measurement to maintain a certain level of error rate is depicted as the rate-distortion function of the source coding. Quantitative formula of the error rate versus measurement number relation is derived, based on the information capacity of imaging system. Second order fluctuation correlation imaging (SFCI) experiment with pseudo-thermal light verifies this formula, which paves the way for introducing information theory into the study of ghost imaging (GI), both conventional and computational.

  7. A Light Source for Testing CMOS Imagers

    OpenAIRE

    Hancock, Jed J.; Baker, Doran

    2003-01-01

    Testing the optical properties of complementary metal oxide (CMOS) imagers requires a light source. The light source must produce stable uniform light with calibrated wavelength and intensity. Available commercial light source units are costly and often unalterable to a custom test setup. The proposed light source is designed to be affordable and adaptable while maintaining the necessary optical quality. The design consists of an array of light emitting diodes (LED), an infrared (IR) cut-off ...

  8. Source-space ICA for MEG source imaging

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D.

    2016-02-01

    Objective. One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. Approach. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Main Results. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. Significance. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  9. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    Science.gov (United States)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  10. Multiphoton imaging with a nanosecond supercontinuum source

    Science.gov (United States)

    Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.

  11. LED light source for hyperspectral fluorescence imaging

    OpenAIRE

    Tendenes, Nils Ove

    2012-01-01

    This report deals with the possibility of creating a LED light source, to be used withhyperspectral fluorescence imaging. There are commercially available light sources thatcould be used, but they are expensive, they do not necessarily emit the right wavelength, the uniformity of the field is questionable and they are difficult to modify.First a batch of Light emitting diodes were acquired, these were subjected to a seriesof tests to classify their limitations and determine which diodes were ...

  12. XNAT Central: Open sourcing imaging research data.

    Science.gov (United States)

    Herrick, Rick; Horton, William; Olsen, Timothy; McKay, Michael; Archie, Kevin A; Marcus, Daniel S

    2016-01-01

    XNAT Central is a publicly accessible medical imaging data repository based on the XNAT open-source imaging informatics platform. It hosts a wide variety of research imaging data sets. The primary motivation for creating XNAT Central was to provide a central repository to host and provide access to a wide variety of neuroimaging data. In this capacity, XNAT Central hosts a number of data sets from research labs and investigative efforts from around the world, including the OASIS Brains imaging studies, the NUSDAST study of schizophrenia, and more. Over time, XNAT Central has expanded to include imaging data from many different fields of research, including oncology, orthopedics, cardiology, and animal studies, but continues to emphasize neuroimaging data. Through the use of XNAT's DICOM metadata extraction capabilities, XNAT Central provides a searchable repository of imaging data that can be referenced by groups, labs, or individuals working in many different areas of research. The future development of XNAT Central will be geared towards greater ease of use as a reference library of heterogeneous neuroimaging data and associated synthetic data. It will also become a tool for making data available supporting published research and academic articles.

  13. Imaging of small radioactive point source displacement

    International Nuclear Information System (INIS)

    A new technique for three dimensional recording of a patient mandibular movement is described. A small and harmless radioactive source is fixed at the point of interest. Using proper collimation, the motion of the point source is recorded via a gamma camera and minicomputer. Image enhancement techniques are used and physiological displacement is reproduced. We measured the vertical, lateral and protrusive envelopes of motion of a point on a tooth from a full denture set mounted on a semiadjustable articulator. All displacements were calibrated. Multiple sources in a single experiment may be recorded to describe the displacement of several points of interest. First experiments were run on patients. This method, derived from Nuclear Medicine techniques, offers a powerful tool of general interest for the tracking of dynamic events in many fields of Dental Medicine, for instance temporo-mandibular joint disfunction as well as Prosthetics. (author)

  14. Real-time Measurement of Biomagnetic Vector Fields in Functional Syncytium Using Amorphous Metal

    Science.gov (United States)

    Nakayama, Shinsuke; Uchiyama, Tusyoshi

    2015-03-01

    Magnetic field detection of biological electric activities would provide a non-invasive and aseptic estimate of the functional state of cellular organization, namely a syncytium constructed with cell-to-cell electric coupling. In this study, we investigated the properties of biomagnetic waves which occur spontaneously in gut musculature as a typical functional syncytium, by applying an amorphous metal-based gradio-magneto sensor operated at ambient temperature without a magnetic shield. The performance of differentiation was improved by using a single amorphous wire with a pair of transducer coils. Biomagnetic waves of up to several nT were recorded ~1 mm below the sample in a real-time manner. Tetraethyl ammonium (TEA) facilitated magnetic waves reflected electric activity in smooth muscle. The direction of magnetic waves altered depending on the relative angle of the muscle layer and magneto sensor, indicating the existence of propagating intercellular currents. The magnitude of magnetic waves rapidly decreased to ~30% by the initial and subsequent 1 mm separations between sample and sensor. The large distance effect was attributed to the feature of bioelectric circuits constructed by two reverse currents separated by a small distance. This study provides a method for detecting characteristic features of biomagnetic fields arising from a syncytial current.

  15. Imaging of granular sources in high energy heavy ion collisions

    OpenAIRE

    Yang, Zhi-Tao; Zhang, Wei-Ning; Huo, Lei; Zhang, Jing-Bo

    2008-01-01

    We investigate the source imaging for a granular pion-emitting source model in high energy heavy ion collisions. The two-pion source functions of the granular sources exhibit a two-tiered structure. Using a parametrized formula of granular two-pion source function, we examine the two-tiered structure of the source functions for the imaging data of Au+Au collisions at Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC). We find that the imaging technique introduce...

  16. Imaging of Sources in Heavy-Ion Reactions

    OpenAIRE

    Danielewicz, P.; Brown, D A

    1997-01-01

    We discuss imaging sources from low relative-velocity correlations in heavy-ion reactions. When the correlation is dominated by interference, we can obtain the images by Fourier transforming the correlation function. In the general case, we may use the method of optimized discretization. This method stabilizes the inversion by adapting the resolution of the source to the experimental error and to the measured velocities. The imaged sources contain information on freeze-out density, phase-spac...

  17. Optimized Discretization of Sources Imaged in Heavy-Ion Reactions

    OpenAIRE

    Brown, David A.; Danielewicz, Pawel

    1997-01-01

    We develop the new method of optimized discretization for imaging the relative source from two particle correlation functions. In this method, the source resolution depends on the relative particle separation and is adjusted to available data and their errors. We test the method by restoring assumed pp sources and then apply the method to pp and IMF data. In reactions below 100 MeV/nucleon, significant portions of the sources extend to large distances (r > 20 fm). The results from the imaging...

  18. Robust laser sources for ultrafast imaging systems

    OpenAIRE

    Wei, Xiaoming; 韦小明

    2015-01-01

    Optical imaging has not unleashed its full potential for a better temporal resolution, which is in great demand for the studies of high-speed dynamical phenomena. Traditional imagers incorporated with CCD/CMOS electronic sensors are fundamentally limited by their on-chip storage and readout speed. Time-stretch imaging, on the other hand, has been proved to be a promising imaging modality for high throughput screening and transient dynamics observation. However, it has suffered greatly from th...

  19. Imaging source with Gaussian proper time distribution

    Institute of Scientific and Technical Information of China (English)

    CHEN Li-Zhu; KE Hong-Wei; WU Yuan-Fang

    2009-01-01

    Making use of the maximum entropy method, we study the most probable source function in heavy ion collisions. An anisotropic Gaussian source is deduced by simply assuming that the particles are emitted within a finite proper-time. The general relations between the most probable source function and the minimal assumptions are discussed, which are instructive in constructing a self-consistent source function from observed Hanbury-Brown/Twiss(HBT) correlations.

  20. Coherent Lensless imaging with Ultra-Broadband Light Sources

    Directory of Open Access Journals (Sweden)

    Eikema K. S. E.

    2013-03-01

    Full Text Available We demonstrate a method for efficient lensless imaging using ultra-broadband light sources. By using a pair of time-delayed, coherent pulses in a Fourier-transform scheme, spectrally resolved diffraction patterns are obtained throughout the entire spectrum of the incident light source. We perform a proof-of-principle experiment using an octave-spanning visible light source, and obtain images of a holographic test sample with near-diffraction limited resolution. Our approach provides a promising route towards efficient high-resolution imaging using table-top high-harmonic soft-X-ray sources.

  1. Geoacoustic characterization by the image source method: a sensitivity study

    OpenAIRE

    PINSON, Samuel; Guillon, Laurent; Cervenka, Pierre

    2012-01-01

    International audience; A new method for measuring the sound speed profile of the seafloor has been recently proposed (JASA, vol. 128, pp. 1685-1693): the image source method. This method is based on a physical model of the acoustic field generated by a point source and reflected by a layered media. Under the Born approximation, the reflected signal can be modeled as a sum of contributions coming from image sources relative to the seabed layers. Consequently, the seabed geometry and sound spe...

  2. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    Institute of Scientific and Technical Information of China (English)

    Teodoro Cordova-Fraga; Modesto Sosa; Cados Wiechers; Jose Maria De la Roca-Chiapas; Alejandro Maldonado Moreles; Jesus BernaI-Alvarado; Raquel Huerta-Franco

    2008-01-01

    AIM: To study the esophageal transit time (ETT)and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI).METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright,fowler,and supine positions; 90°,45° and 0°,respectively).RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions.The ETT means were 5.2 ±1.1 s,6.1±1.5 s,and 23.6 ± 9.2 s for 90°,45° and 0°,respectively.Pearson correlation results were r = -0.716 and P < 0.001 by subjects' anatomical position,and r =-0.024 and P > 0.05 according the subject's BHI.CONCLUSION: We demonstrated that using this biomagnetic technique,it is possible to measure the ETT and the effects of the anatomical position on the ETT.

  3. [Development of a nonmagnetic angle encoder for active shielding during biomagnetic measurements].

    Science.gov (United States)

    Giessler, F; Witt, C; Haueisen, J; Bellemann, M E

    2002-04-01

    Biomagnetic fields--in particular in the low-frequency range--are subject to environmental interference, which cannot be adequately reduced by most passive shielding methods. However, the signal-to-noise ratio can be increased by active compensation. For this purpose, the interference is detected by reference sensors and fed back through integrated compensation coils. To establish deviation of normal directions between reference sensors and compensation coils, an angle encoder was developed. The rotation of the reference sensors about two axes at right angles to each other, is converted into voltage pulses by means of codewheels and photoelectric beams. The pulses are counted by incremental encoders, and represent a measure of the angles. A cardanic suspension and a plumb-line act as a reference system. The pulses counted are converted into binary angle values, which are used for coordinate transformation of the interfering fields. The angle encoder can determine the tilt of the reference sensors with an accuracy of 1 degree within a range between -45 and +45 degrees. The noise level of the system remains unaffected during a biomagnetic measurement. Magnetic signals of up to 5 pT arising during the oscillation of the plumb-line can be neglected because of the static nature of the angular measurement. PMID:12051137

  4. Random laser illumination: an ideal source for biomedical polarization imaging?

    Science.gov (United States)

    Carvalho, Mariana T.; Lotay, Amrit S.; Kenny, Fiona M.; Girkin, John M.; Gomes, Anderson S. L.

    2016-03-01

    Imaging applications increasingly require light sources with high spectral density (power over spectral bandwidth. This has led in many cases to the replacement of conventional thermal light sources with bright light-emitting diodes (LEDs), lasers and superluminescent diodes. Although lasers and superluminescent diodes appear to be ideal light sources due to their narrow bandwidth and power, however, in the case of full-field imaging, their spatial coherence leads to coherent artefacts, such as speckle, that corrupt the image. LEDs, in contrast, have lower spatial coherence and thus seem the natural choice, but they have low spectral density. Random Lasers are an unconventional type of laser that can be engineered to provide low spatial coherence with high spectral density. These characteristics makes them potential sources for biological imaging applications where specific absorption and reflection are the characteristics required for state of the art imaging. In this work, a Random Laser (RL) is used to demonstrate speckle-free full-field imaging for polarization-dependent imaging in an epi-illumination configuration. We compare LED and RL illumination analysing the resulting images demonstrating that the RL illumination produces an imaging system with higher performance (image quality and spectral density) than that provided by LEDs.

  5. Filter selection based on light source for multispectral imaging

    Science.gov (United States)

    Xu, Peng; Xu, Haisong

    2016-07-01

    In multispectral imaging, it is necessary to select a reduced number of filters to balance the imaging efficiency and spectral reflectance recovery accuracy. Due to the combined effect of filters and light source on reflectance recovery, the optimal filters are influenced by the employed light source in the multispectral imaging system. By casting the filter selection as an optimization issue, the selection of optimal filters corresponding to the employed light source proceeds with respect to a set of target samples utilizing one kind of genetic algorithms, regardless of the detailed spectral characteristics of the light source, filters, and sensor. Under three light sources with distinct spectral power distributions, the proposed filter selection method was evaluated on a filter-wheel based multispectral device with a set of interference filters. It was verified that the filters derived by the proposed method achieve better spectral and colorimetric accuracy of reflectance recovery than the conventional one under different light sources.

  6. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    OpenAIRE

    Yu, Lifeng; Christner, Jodie A.; Leng, Shuai; Wang, Jia; Fletcher, Joel G.; McCollough, Cynthia H.

    2011-01-01

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose.

  7. Application of SQUIDs for registration of biomagnetic signals

    Science.gov (United States)

    Voitovych, I. D.; Primin, M. A.; Sosnytskyy, V. N.

    2012-04-01

    Supersensitive magnetometric systems based on low-temperature SQUIDs have been designed to conduct research in cardiology (magnetocardiography) and to examine distribution of magnetic nanoparticles in biologic objects. Such SQUID magnetometric systems are distinguished by their noise immunity enabling research in nonscreened rooms. High repeatability of research outcomes has been confirmed. The use of magnetocardiographic systems has permitted a new screening information technology to be developed to diagnose heart diseases at early stages. Magnetic imaging of heart's action currents is an ideal way to test local electrical heterogeneity of myocardium. It is shown that magnetocardiography has a significant potential for both basic science of analysis of heart's biosignals and clinical cardiologic practice. A SQUID magnetometric system measuring magnetic signals radiated by the organs of laboratory animals is described. Information technology for automatic recording and transforming magnetometric data has been developed; the measurement of signals over rats' livers while injecting intravenously the nanoparticles of iron oxides and lead solutions are presented.

  8. An evolution of image source camera attribution approaches.

    Science.gov (United States)

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics

  9. An evolution of image source camera attribution approaches.

    Science.gov (United States)

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics

  10. The linac coherent light source single particle imaging road map

    OpenAIRE

    Aquila, A.; Barty, A.; Bostedt, C; Boutet, S.; Carini, G.; DePonte, D.; Drell, P.; Doniach, S; Downing, K H; Earnest, T.; H. Elmlund; Elser, V.; Gühr, M.; Hajdu, J.; Hastings, J.

    2015-01-01

    Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss ...

  11. Upconversion imaging using an all-fiber supercontinuum source

    DEFF Research Database (Denmark)

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter;

    2016-01-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 mu m with upconversion detection. The...

  12. Propulsion Velocity and ETT on Biomagnetic Assessment of the Human Esophagus

    International Nuclear Information System (INIS)

    Esophagus transit time measurement is a common clinical practical. Biomagnetic techniques and modern instrumentation can perform non invasive and functional assessments of the gastrointestinal tract. This study presents the evaluation of the esophagus transit time and propulsion velocity of a magnetic marker from the mouth to stomach using water vs. a swallow easy substance recently patented. A group of ten healthy subjects from 45 to 55 years, were evaluated in identical conditions for two times, they ingested randomly a magnetic marker in an anatomical body position of 45 deg., one times with water and the other one with a patented substance developed in order to help the subjects to swallow pills. The esophagus transit time was shorter when the subjects ingested the magnetic marker with the swallow easy substance than they ingested the magnetic marker with same quantity of water

  13. Sparse Source EEG Imaging with the Variational Garrote

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  14. Transport of intensity phase imaging using Bessel sources

    Science.gov (United States)

    Petruccelli, Jonathan C.; Chakraborty, Tonmoy

    2016-05-01

    Propagation-based phase contrast using the transport of intensity equation (TIE) allows rapid, deterministic phase retrieval from defocused images. For weakly attenuating objects, phase can be retrieved from a single image. However, the TIE suffers from significant low frequency artifacts due to enhancement of noise during phase retrieval. We demonstrate that by patterning the illumination source as approximately a modified Bessel function of the 2nd kind of zero order, quantitative phase can be imaged directly at the detector within a spatial frequency band. Outside of that band, Bessel sources still improve low frequency performance in phase retrieval.

  15. Flash imaging in dual source CT (DSCT)

    Science.gov (United States)

    Bruder, H.; Petersilka, M.; Mehldau, H.; Heidinger, W.; Allmendinger, T.; Schmidt, B.,; Raupach, R.; Thierfelder, C.,; Stierstorfer, K.; Flohr, T.

    2009-02-01

    We present new acquisition modes of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of typically 90°. Due to the simultaneous acquisition of complementary data, the minimum exposure time is reduced by a factor of two compared to a single-source CT system (SSCT). The correspondingly improved temporal resolution is beneficial for cardiac CT. Also, maximum table feed per rotation in a spiral mode can be increased by a factor of 2 compared to SSCT, which provides benefits both for cardiac CT and non-cardiac CT. In an ECG-triggered mode the entire cardiac volume can be scanned within a fraction of one cardiac RR-cycle. At a rotation time of 0.28s using a detector with 64×0.6 mm beam collimation, the scan time of the entire heart is less than 0.3s at a temporal resolution of 75 ms. It will be shown, that the extremely fast cardiac scan reduces the patient dose to a theoretical lowest limit: for a 120 kV scan the dose level for a typical cardiac CT scan is well below 2 mSv. Using further protocol optimization (scan range adaptation, 100kV), the radiation dose can be reduced below 1mSv.

  16. The linac coherent light source single particle imaging road map

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2015-07-01

    Full Text Available Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  17. Penumbral imaging and numerical evaluation of large area source neutron imaging system

    Institute of Scientific and Technical Information of China (English)

    WU YueLei; HU HuaSi; ZHANG BoPing; LI LinBo; CHEN Da; SHAN Qing; ZHU Jie

    2009-01-01

    The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer func-tions of the two discrete units in the neutron source were obtained in two situations: Imaging in geo-metrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation, the neutron pen-umbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.

  18. Penumbral imaging and numerical evaluation of large area source neutron imaging system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer functions of the two discrete units in the neutron source were obtained in two situations:Imaging in geometrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation,the neutron penumbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.

  19. Studies of EGRET sources with a novel image restoration technique

    CERN Document Server

    Tajima, Hiroyasu; Cohen-Tanugi, Johann; Chiang, James; Kamae, Tuneyoshi

    2007-01-01

    We have developed an image restoration technique based on the Richardson-Lucy algorithm optimized for GLAST-LAT image analysis. Our algorithm is original since it utilizes the PSF (point spread function) that is calculated for each event. This is critical for EGRET and GLAST-LAT image analysis since the PSF depends on the energy and angle of incident gamma-rays and varies by more than one order of magnitude. EGRET and GLAST-LAT image analysis also faces Poisson noise due to low photon statistics. Our technique incorporates wavelet filtering to minimize noise effects. We present studies of EGRET sources using this novel image restoration technique for possible identification of extended gamma-ray sources.

  20. Influential sources affecting Bangkok adolescent body image perceptions.

    Science.gov (United States)

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society. PMID:17340854

  1. Center determination for trailed sources in astronomical observation images

    Science.gov (United States)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  2. Relative elastic interferometric imaging for microseismic source location

    Science.gov (United States)

    Li, Lei; Chen, Hao; Wang, Xiuming

    2016-10-01

    Combining a relative location method and seismic interferometric imaging, a relative elastic interferometric imaging method for microseismic source location is proposed. In the method, the information of a known event (the main event) is fully used to improve the location precision of the unknown events (the target events). First, the principles of both conventional and the relative interferometric imaging methods are analyzed. Traveltime differences from the position of the same potential event to different receivers are used in direct interferometric imaging, while relative interferometric imaging utilizes those of different events to the same receiver. Second, 2D and 3D numerical experiments demonstrate the feasibility of this newly proposed method in locating a single microseismic event. Envelopes of cross-correlation traces are utilized to eliminate the effects of changing polarities resulting from the source mechanism and receiver configuration. Finally, the location precision of the relative and conventional interferometric imaging methods are compared, and it indicates that the former hold both advantages of the relative method and interferometric imaging. Namely, it can adapt to comparatively high velocity error and low signal-to-noise ratio (SNR) microseismic data. Moreover, since there is no arrival time picking and fewer cross-correlograms are imaged, the method also significantly saves computational expense.

  3. Photoacoustic imaging driven by an interstitial irradiation source

    Directory of Open Access Journals (Sweden)

    Trevor Mitcham

    2015-06-01

    Full Text Available Photoacoustic (PA imaging has shown tremendous promise in providing valuable diagnostic and therapy-monitoring information in select clinical procedures. Many of these pursued applications, however, have been relatively superficial due to difficulties with delivering light deep into tissue. To address this limitation, this work investigates generating a PA image using an interstitial irradiation source with a clinical ultrasound (US system, which was shown to yield improved PA signal quality at distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional radiology procedures.

  4. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  5. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA. PMID:27408827

  6. Incorporating priors for EEG source imaging and connectivity analysis

    Directory of Open Access Journals (Sweden)

    Xu eLei

    2015-08-01

    Full Text Available Electroencephalography source imaging (ESI is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors from such techniques as magnetic resonance imaging (MRI, functional MRI (fMRI, and positron emission tomography (PET. The modality's specific contribution is analyzed from the perspective of source reconstruction. For spatial priors, such as EEG-correlated fMRI, temporally coherent networks and resting-state fMRI are systematically introduced in the ESI. Moreover, the fiber tracking (diffusion tensor imaging, DTI and neuro-stimulation techniques (transcranial magnetic stimulation, TMS are also introduced as the potential priors, which can help to draw inferences about the neuroelectric connectivity in the source space. We conclude that combining EEG source imaging with other complementary modalities is a promising approach towards the study of brain networks in cognitive and clinical neurosciences.

  7. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    International Nuclear Information System (INIS)

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements

  8. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    Science.gov (United States)

    Golosio, Bruno; Delogu, Pasquale; Zanette, Irene; Carpinelli, Massimo; Masala, Giovanni Luca; Oliva, Piernicola; Stefanini, Arnaldo; Stumbo, Simone

    2008-11-01

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.

  9. Auto-focused virtual source imaging with arbitrarily shaped interfaces.

    Science.gov (United States)

    Camacho, Jorge; Cruza, Jorge F

    2015-11-01

    This work presents a new method, named auto-focused virtual source imaging (AVSI), for synthetic aperture focusing through arbitrarily shaped interfaces with arrays. First, the shape of the component surface is obtained by time-of-flight (TOF) measurements. Then, a set of virtual source/receivers is created by focusing several array subapertures at the interface normal incidence points. Finally, the synthetic aperture focusing technique (SAFT) is applied to the received signals to generate a high-resolution image. The AVSI method provides several advantages for ultrasonic imaging in a two-media scenario. First, knowledge of the probe-part geometry is not required, because all information needed for image formation is obtained from a set of ultrasonic measurements. Second, refraction complications in TOF calculations are avoided, because foci at the interface can be considered as virtual source/ receivers, and SAFT can be performed in the second medium only. Third, the signal-to-noise ratio is higher than with synthetic aperture techniques that use a single element as emitter, and fourth, resolution is higher than that obtained by phased-array imaging with the same number of active elements, which reduces hardware complexity. The theoretical bases of the method are given, and its performance is evaluated by simulation. Finally, experimental results showing good agreement with theory are presented. PMID:26559624

  10. New source of random telegraph signal in CMOS image sensors

    OpenAIRE

    Goiffon, Vincent; Magnan, Pierre; Martin-Gonthier, Philippe; Virmontois, Cédric; Gaillardin, Marc

    2012-01-01

    We report a new source of dark current random telegraph signal in CMOS image sensors due to meta-stable Shockley-Read-Hall generation mechanism at oxide interfaces. The role of oxide defects is discriminated thanks to the use of ionizing radiations.

  11. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...

  12. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    Science.gov (United States)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  13. Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources

    Science.gov (United States)

    Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin

    Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.

  14. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  15. Introducing djatoka: a reuse friendly, open source JPEG image server

    Energy Technology Data Exchange (ETDEWEB)

    Chute, Ryan M [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory

    2008-01-01

    The ISO-standardized JPEG 2000 image format has started to attract significant attention. Support for the format is emerging in major consumer applications, and the cultural heritage community seriously considers it a viable format for digital preservation. So far, only commercial image servers with JPEG 2000 support have been available. They come with significant license fees and typically provide the customers with limited extensibility capabilities. Here, we introduce djatoka, an open source JPEG 2000 image server with an attractive basic feature set, and extensibility under control of the community of implementers. We describe djatoka, and point at demonstrations that feature digitized images of marvelous historical manuscripts from the collections of the British Library and the University of Ghent. We also caIl upon the community to engage in further development of djatoka.

  16. Passive synthetic aperture imaging with limited noise sources

    Science.gov (United States)

    Garnier, Josselin

    2016-09-01

    We consider a passive synthetic aperture imaging problem. A single moving receiver antenna records random signals generated by one or several distant noise sources and backscattered by one or several reflectors. The sources emit noise signals modeled by stationary random processes. The reflectors can be imaged by summing the autocorrelation functions of the received signals computed over successive time windows, corrected for Doppler factors and migrated by appropriate travel times. In particular, the Doppler effect plays an important role and it can be used for resolution enhancement. When the noise source positions are not known, the reflector can be localized with an accuracy proportional to the reciprocal of the noise bandwidth, even when only a very small number of sources are available. When the noise source positions are known, the reflector can be localized with a cross range resolution proportional to the carrier wavelength and inversely proportional to the length of the receiver trajectory (i.e. the synthetic aperture), and with a range resolution proportional to the reciprocal of the bandwidth, even with only one noise source.

  17. Testing SPI imaging of high-energy and extended sources

    Energy Technology Data Exchange (ETDEWEB)

    Vunderer, C.B.; Schonfelder, V.; Strong, A.W. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Connell, P. [Birmingham Univ. (United Kingdom); Hammer, J.W. [Stuttgart Univ. (Germany). Inst. fuer Strahlenphysik

    2003-11-01

    INTEGRAL's main instruments employ coded apertures to obtain directional information on the incoming radiation. In order to experimentally better determine the imaging capabilities of the spectrometer SPI, the SPI Imaging Test Setup (SPITS) has been built at MPE. It consists of the SPI coded mask and two SPI-identical Ge detectors on an XY-table which allows us to move them to cover the 19 Ge detector positions. The SPI flight model imaging calibration only covered the energy range up to 2.7 MeV and did not include extended emission. SPITS was used to explore the performance of such a coded aperture system - combined with the SPI image analysis software - for higher-energy point sources and extended sources. We find that a 2.4 degrees diameter disk emitting 511 keV emission is reconstructed well. For the high signal-to-noise ratios of laboratory measurements, positions of point sources above 4 MeV could be reconstructed to better than 0.1 degrees. (authors)

  18. MEG-based imaging of focal neuronal current sources

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.W.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)

    1996-07-01

    We describe a new approach to imaging neuronal current sources from measurements of the magnetoencephalogram (MEG) associated with sensory, motor, or cognitive brain activation. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they do not introduce information specific to the MEG inverse problem, often producing overly smoothed solutions and exhibiting severe sensitivity to noise. We describe a Bayesian formulation of the inverse problem in which a Gibbs prior is constructed to reflect the sparse focal nature of neuronal current sources associated with evoked response data. The prior involves a binary process indicating active sources and a continuous Gaussian process designating associated amplitudes. An estimate of the primary current source distribution for a specific data set is formed by maximizing over the posterior probability with respect to the binary and continuous variables.

  19. Coherent Electron Source for Ultrafast Electron Diffraction and Imaging

    Directory of Open Access Journals (Sweden)

    Xu C.

    2013-03-01

    Full Text Available We numerically investigate the suitability of photoexcited nanotips as a source of coherent femtosecond single electron pulses for ultrafast surface-sensitive electron diffraction and non-destructive imaging with low-energy electrons. The experimental parameters for realizing hundred femtosecond time resolution are identified by evaluating the effects of vacuum dispersion and beam divergence on the temporal broadening of the electron wave packet during its propagation to the sample.

  20. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics

  1. Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Barni Mauro

    2007-01-01

    Full Text Available This paper deals with the application of distributed source coding (DSC theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the complexity of the onboard encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems.

  2. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  3. An overview of joint inversion in earthquake source imaging

    Science.gov (United States)

    Koketsu, Kazuki

    2016-06-01

    We reviewed joint inversion studies of the rupture processes of significant earthquakes, using the definition of a joint inversion in earthquake source imaging as a source inversion of multiple kinds of datasets (waveform, geodetic, or tsunami). Yoshida and Koketsu (Geophys J Int 103:355-362, 1990), and Wald and Heaton (Bull Seismol Soc Am 84:668-691, 1994) independently initiated joint inversion methods, finding that joint inversion provides more reliable rupture process models than single-dataset inversion, leading to an increase of joint inversion studies. A list of these studies was made using the finite-source rupture model database (Mai and Thingbaijam in Seismol Res Lett 85:1348-1357, 2014). Outstanding issues regarding joint inversion were also discussed.

  4. A DIGITAL COLOR IMAGE WATERMARKING SYSTEM USING BLIND SOURCE SEPARATION

    Directory of Open Access Journals (Sweden)

    Sangeeta D. Jadhav

    2013-12-01

    Full Text Available An attempt is made to implement a digital color image-adaptive watermarking scheme in spatial domain and hybrid domain i.e host image in wavelet domain and watermark in spatial domain. Blind Source Separation (BSS is used to extract the watermark The novelty of the presented scheme lies in determining the mixing matrix for BSS model using BFGS (Broyden– Fletcher–Goldfarb–Shanno optimization technique. This method is based on the smooth and textured portions of the image. Texture analysis is carried based on energy content of the image (using GLCM which makes the method image adaptive to embed color watermark. The performance evaluation is carried for hybrid domain of various color spaces like YIQ, HSI and YCbCr and the feasibility of optimization algorithm for finding mixing matrix is also checked for these color spaces. Three ICA (Independent Component Analysis/BSS algorithms are used in extraction procedure ,through which the watermark can be retrieved efficiently . An effort is taken to find out the best suited color space to embed the watermark which satisfies the condition of imperceptibility and robustness against various attacks.

  5. Gadgetron: an open source framework for medical image reconstruction.

    Science.gov (United States)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-06-01

    This work presents a new open source framework for medical image reconstruction called the "Gadgetron." The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or "Gadgets" from raw data to reconstructed images. The data processing pipeline is configured dynamically at run-time based on an extensible markup language configuration description. The framework promotes reuse and sharing of reconstruction modules and new Gadgets can be added to the Gadgetron framework through a plugin-like architecture without recompiling the basic framework infrastructure. Gadgets are typically implemented in C/C++, but the framework includes wrapper Gadgets that allow the user to implement new modules in the Python scripting language for rapid prototyping. In addition to the streaming framework infrastructure, the Gadgetron comes with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its application to Cartesian and non-Cartesian parallel magnetic resonance imaging.

  6. New imaging using pulsed neutron sources imaging of crystalline structural information by Bragg edge transmission spectroscopy

    International Nuclear Information System (INIS)

    Neutron imaging at a pulsed neutron source can simultaneously give position-dependent neutron transmission spectra of a material. 'Bragg edge' transmission pattern appears at low energy region of the spectrum. Since the Bragg edge transmission spectrum includes various crystalline structural information, e.g., crystal structure, crystalline phase, crystallographic texture, crystallite size and strain, the pulsed neutron imaging using a two-dimensional area detector can non-destructively visualize such the information over the wide area of a material. In this article, principles, features and experimental examples of the Bragg edge transmission imaging that is expected as a new analysis tool for materials science are presented. (author)

  7. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  8. Open source database of images DEIMOS: extension for large-scale subjective image quality assessment

    Science.gov (United States)

    Vítek, Stanislav

    2014-09-01

    DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.

  9. Cardiac magnetic source imaging based on current multipole model

    Institute of Scientific and Technical Information of China (English)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution.Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseuDOInverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides,two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.

  10. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  11. Sound speed profile characterization by the image source method

    OpenAIRE

    PINSON, Samuel; Guillon, Laurent

    2010-01-01

    This paper presents the first results of an imaging technique that measures the geoacoustic structure of a seafloor in shallow water areas. The devices used were a broadband 100 Hz–6 kHz acoustic source towed by a ship and a vertical array. Among all the acoustic paths existing in the water column, two are used: the direct one and the seabed-reflected one, the latter being composed of the reflections from the seafloor’s surface as well as that from each buried layer. Due to the good time re...

  12. Combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho;

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The...... model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy....

  13. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    International Nuclear Information System (INIS)

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose. Methods: In dual-energy CT, besides the material-specific information, one may also synthesize monochromatic images at different energies, which can be used for routine diagnosis similar to conventional polychromatic single-energy images. In this work, the authors assessed whether virtual monochromatic images generated from dual-source CT scanners had an image quality similar to that of polychromatic single-energy images for the same radiation dose. First, the authors provided a theoretical analysis of the optimal monochromatic energy for either the minimum noise level or the highest iodine contrast to noise ratio (CNR) for a given patient size and dose partitioning between the low- and high-energy scans. Second, the authors performed an experimental study on a dual-source CT scanner to evaluate the noise and iodine CNR in monochromatic images. A thoracic phantom with three sizes of attenuating rings was used to represent four adult sizes. For each phantom size, three dose partitionings between the low-energy (80 kV) and the high-energy (140 kV) scans were used in the dual-energy scan. Monochromatic images at eight energies (40 to 110 keV) were generated for each scan. Phantoms were also scanned at each of the four polychromatic single energy (80, 100, 120, and 140 kV) with the same radiation dose. Results: The optimal virtual monochromatic energy depends on several factors: phantom size, partitioning of the radiation dose between low- and high-energy scans, and the image quality metrics to be optimized. With the increase of phantom size, the optimal monochromatic energy increased. With the increased percentage of radiation dose on the low energy scan, the optimal monochromatic energy decreased. When maximizing the iodine CNR in

  14. Magnetic resonance imaging in entomology: a critical review

    OpenAIRE

    Hart, A.G.; Bowtell, R W; Köckenberger, W; Wenseleers, T.; Ratnieks, F.L.W.

    2005-01-01

    Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging technique...

  15. First Results for a Superconducting Imaging-Surface Sensor Array for Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlachov, A.; Overton, W.; Wood, C.C.; Peters, M.V.; Ruminer, P.

    1998-08-28

    The authors have completed fabrication and preliminary testing of a 12-channel SQUID array using the superconducting image-surface gradiometer concept. Sensor response to point dipole magnetic sources, and uniform fields used to simulate ambient magnetic fields followed predicted values to high precision. Edge effects were not observed for sources, within 5cm of the center of the imaging surface independent of whether the source is close or far from the surface. The superconducting imaging-surface also reduced uniform ambient fields at the SQUID sensors by approximately a factor of ten. Finally, a high degree of symmetry was observed between sides of the imaging surface for uniform fields. This symmetry, together with the very small sensitivity of sensors on the back side of the imaging surface to sources close to the front side provides an excellent circumstance for implementing either digital or analog background rejection. Their goal is to implement a higher density array with the superconducting imaging surface, together with background rejection, and utilize this system for MCG and other biomagnetic studies.

  16. How to coadd images? I. Optimal source detection and photometry using ensembles of images

    CERN Document Server

    Zackay, Barak

    2015-01-01

    Stacks of digital astronomical images are combined in order to increase image depth. The variable seeing conditions, sky background and transparency of ground-based observations make the coaddition process non-trivial. We present image coaddition methods optimized for source detection and flux measurement, that maximize the signal-to-noise ratio (S/N). We show that for these purposes the best way to combine images is to apply a matched filter to each image using its own point spread function (PSF) and only then to sum the images with the appropriate weights. Methods that either match filter after coaddition, or perform PSF homogenization prior to coaddition will result in loss of sensitivity. We argue that our method provides an increase of between a few and 25 percent in the survey speed of deep ground-based imaging surveys compared with weighted coaddition techniques. We demonstrate this claim using simulated data as well as data from the Palomar Transient Factory data release 2. We present a variant of thi...

  17. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    Energy Technology Data Exchange (ETDEWEB)

    Bastarrika, Gorka; Arraiza, Maria; Pueyo, Jesus C. [Clinica Universitaria, Universidad de Navarra, Department of Radiology, Pamplona (Spain); Cecco, Carlo N. de [Universita' di Roma ' ' Sapienza' ' -Ospedale Sant' Andrea, Department of Radiology, Rome (Italy); Ubilla, Matias; Mastrobuoni, Stefano; Rabago, Gregorio [Clinica Universitaria, Universidad de Navarra, Department of Cardiovascular Surgery, Pamplona (Spain)

    2008-09-15

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1{+-}10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1{+-}10.4 bpm. At the best reconstruction interval, diagnostic image quality (score {>=}2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04{+-} 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03{+-}1.06 and 2.73{+-}1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  18. Noise sources and noise suppression in CMOS imagers

    Science.gov (United States)

    Pain, Bedabrata; Cunningham, Thomas J.; Hancock, Bruce R.

    2004-01-01

    Mechanisms for noise coupling in CMOS imagers are complex, since unlike a CCD, a CMOS imager has to be considered as a full digital-system-on-a-chip, with a highly sensitive front-end. In this paper, we analyze the noise sources in a photodiode CMOS imager, and model their propagation through the signal chain to determine the nature and magnitude of noise coupling. We present methods for reduction of noise, and present measured data to show their viability. For temporal read noise reduction, we present pixel signal chain design techniques to achieve near 2 electrons read noise. We model the front-end reset noise both for conventional photodiode and CTIA type of pixels. For the suppression of reset noise, we present a column feedback-reset method to reduce reset noise below 6 electrons. For spatial noise reduction, we present the design of column signal chain that suppresses both spatial noise and power supply coupling noise. We conclude by identifying problems in low-noise design caused by dark current spatial distribution.

  19. Electrical Conductivity Imaging Using Controlled Source Electromagnetics for Subsurface Characterization

    Science.gov (United States)

    Miller, C. R.; Routh, P. S.; Donaldson, P. R.

    2004-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.

  20. Toward seismic source imaging using seismo-ionospheric data

    Science.gov (United States)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  1. $\\mathtt{ComEst}$: a Completeness Estimator of Source Extraction on Astronomical Imaging

    CERN Document Server

    Chiu, I-Non; Liu, Jiayi

    2016-01-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package $\\mathtt{ComEst}$, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator $\\mathtt{ComEst}$ is designed for the source finder $\\mathtt{SExtractor}$ used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, $\\mathtt{ComEst}$ estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, $\\mathtt{ComEst}$ directly carries out the detection of simulated sources on the observed images. Given an observed CCD ...

  2. An Ultraviolet imager to study bright UV sources

    CERN Document Server

    Mathew, Joice; Sarpotdar, Mayuresh; Sreejith, A G; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    We have designed and developed a compact ultraviolet imaging payload to fly on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and e...

  3. Matrix kernels for MEG and EEG source localization and imaging

    International Nuclear Information System (INIS)

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell's equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ''gain'' or ''transfer'' matrices used in multiple dipole and source imaging models

  4. Caractérisation des fonds marins par la méthode des sources images

    OpenAIRE

    PINSON, Samuel

    2011-01-01

    The work presented in this thesis deals with a new seafloor characterization method: the image source method. It is based on a physical model of the reflected waves from a point source by a layered media under the Born approximation. Thus, the reflected signal can be modeled as a sum of contributions coming from image sources relative to the seabed layers. The seabed geometry and sound speed profile can then be recovered with the localization of these image sources. The image source localization ...

  5. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    Science.gov (United States)

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  6. Uncertainty in Earthquake Source Imaging Due to Variations in Source Time Function and Earth Structure

    KAUST Repository

    Razafindrakoto, H. N. T.

    2014-03-25

    One way to improve the accuracy and reliability of kinematic earthquake source imaging is to investigate the origin of uncertainty and to minimize their effects. The difficulties in kinematic source inversion arise from the nonlinearity of the problem, nonunique choices in the parameterization, and observational errors. We analyze particularly the uncertainty related to the choice of the source time function (STF) and the variability in Earth structure. We consider a synthetic data set generated from a spontaneous dynamic rupture calculation. Using Bayesian inference, we map the solution space of peak slip rate, rupture time, and rise time to characterize the kinematic rupture in terms of posterior density functions. Our test to investigate the effect of the choice of STF reveals that all three tested STFs (isosceles triangle, regularized Yoffe with acceleration time of 0.1 and 0.3 s) retrieve the patch of high slip and slip rate around the hypocenter. However, the use of an isosceles triangle as STF artificially accelerates the rupture to propagate faster than the target solution. It additionally generates an artificial linear correlation between rupture onset time and rise time. These appear to compensate for the dynamic source effects that are not included in the symmetric triangular STF. The exact rise time for the tested STFs is difficult to resolve due to the small amount of radiated seismic moment in the tail of STF. To highlight the effect of Earth structure variability, we perform inversions including the uncertainty in the wavespeed only, and variability in both wavespeed and layer depth. We find that little difference is noticeable between the resulting rupture model uncertainties from these two parameterizations. Both significantly broaden the posterior densities and cause faster rupture propagation particularly near the hypocenter due to the major velocity change at the depth where the fault is located.

  7. Computer vision for detecting and quantifying gamma-ray sources in coded-aperture images

    Energy Technology Data Exchange (ETDEWEB)

    Schaich, P.C.; Clark, G.A.; Sengupta, S.K.; Ziock, K.P.

    1994-11-02

    The authors report the development of an automatic image analysis system that detects gamma-ray source regions in images obtained from a coded aperture, gamma-ray imager. The number of gamma sources in the image is not known prior to analysis. The system counts the number (K) of gamma sources detected in the image and estimates the lower bound for the probability that the number of sources in the image is K. The system consists of a two-stage pattern classification scheme in which the Probabilistic Neural Network is used in the supervised learning mode. The algorithms were developed and tested using real gamma-ray images from controlled experiments in which the number and location of depleted uranium source disks in the scene are known.

  8. View-Aware Image Object Compositing and Synthesis from Multiple Sources

    Institute of Scientific and Technical Information of China (English)

    Xiang Chen; Wei-Wei Xu; Sai-Kit Yeung; Kun Zhou

    2016-01-01

    Image compositing is widely used to combine visual elements from separate source images into a single image. Although recent image compositing techniques are capable of achieving smooth blending of the visual elements from different sources, most of them implicitly assume the source images are taken in the same viewpoint. In this paper, we present an approach to compositing novel image objects from multiple source images which have different viewpoints. Our key idea is to construct 3D proxies for meaningful components of the source image objects, and use these 3D component proxies to warp and seamlessly merge components together in the same viewpoint. To realize this idea, we introduce a coordinate-frame based single-view camera calibration algorithm to handle general types of image objects, a structure-aware cuboid optimization algorithm to get the cuboid proxies for image object components with correct structure relationship, and finally a 3D-proxy transformation guided image warping algorithm to stitch object components. We further describe a novel application based on this compositing approach to automatically synthesize a large number of image objects from a set of exemplars. Experimental results show that our compositing approach can be applied to a variety of image objects, such as chairs, cups, lamps, and robots, and the synthesis application can create novel image objects with significant shape and style variations from a small set of exemplars.

  9. Functional Cortical Source Imaging from Simultaneously Recorded ERP and fMRI

    OpenAIRE

    Im, Chang-Hwan; Liu, Zhongming; Zhang, Nanyin; Chen, Wei; He, Bin

    2006-01-01

    Feasibility of continuously and simultaneously recording visual evoked potentials (VEPs) with fMRI was assessed by quantitatively comparing cortical source images by means of receiver operating characteristic (ROC) curve analysis. The averaged EEG source images coincided well with simultaneously acquired fMRI activations. Strong correlation was found between the cortical source images of VEPs recorded inside and outside the scanner, despite slight difference in latencies and amplitudes of P1 ...

  10. Infrared Images and Millimeter Data from Cold Southern IRAS Sources

    Science.gov (United States)

    Osterloh, M.; Henning, Th.; Launhardt, R.

    1997-05-01

    We present near-infrared (H, K'), CO (2-1), CS (2-1), and 1.3 mm continuum data for 31 southern objects [δ(1950) Fν(60 μm) > Fν(25 μm) > 20 × Fν(12 μm)]. The data are meant to help reveal new, very young stellar objects. K'-band near-infrared counterparts to the IRAS point sources are detected in 22 of 25 good K' images. Most K' counterparts are multiples. Eighteen of 21 objects were detected in CS, implying the presence of dense gas. Completing the set of CS (2-1) spectra by including the data of Bronfman, Nyman, & Ray, we still find only three nondetections among all 31 objects; these three were also not detected in K'. Wings indicative of outflows are found in a large fraction (20/30) of CO spectra. Twenty-six of 31 observations in the millimeter continuum were detections and point to the presence of large amounts of circumstellar matter. Most of the objects have 103-105 times solar luminosity; we speculate that most contain at least one massive star capable of producing a compact/ultracompact H II region. Based on observations performed at the European Southern Observatory.

  11. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array

    Science.gov (United States)

    Leyva, Juan A.; Carneiro, Antonio A. O.; Murta, Luís O.; Baffa, O.

    2006-09-01

    The aim of this work was to study the feasibility to obtain images from a distribution of ferromagnetic tracers using a magnetoresistive multichannel sensor array (MRA). A magnetic imaging system formed by a linear array composed of 12 magnetoresistive sensors (Honeywell HMC 1001) was constructed covering a scanning area of (16×18) cm2. The signal was pre-processed for off-set correction and interpolation to generate a matrix of (256×256). The point spread function of the MRA was evaluated and the sensors were spaced accordingly. The magnetic images were generated by mapping the response of the MRA at short distances from the presence of a magnetite powder dispersed in planar phantoms with different shapes. The phantoms were magnetized by a pulse field of approximately 80 mT produced by a Helmholtz coil. Using the Wiener filtering, the magnetic source images were obtained. We conclude that this biomagnetic method can be successfully used to generate planar functional images of the gastrointestinal tract using magnetic markers in the near field.

  12. BOOTSTRAP-BASED STATISTICAL THRESHOLDING FOR MEG SOURCE RECONSTRUCTION IMAGES

    OpenAIRE

    Sekihara, Kensuke; Sahani, Maneesh; Nagarajan, Srikantan S.

    2004-01-01

    This paper proposes a bootstrap-based statistical method for extracting target source activities from MEG/EEG source reconstruction results. The method requires measurements in a control condition, which contains only non-target source activities. The method derives, at each pixel location, an empirical probability distribution of the non-target source activity using bootstrapped reconstruction obtained from the control period. The statistical threshold that can extract the target source acti...

  13. Localization of the human language cortex by magnetic source imaging

    Institute of Scientific and Technical Information of China (English)

    孙吉林; 吴杰; 李素敏; 吴育锦; 刘连祥

    2003-01-01

    Objective To localize the language cortex associated with Chinese word processing by magnetic source imaging (MSI). Methods Eight right-handed and one left-handed healthy native Chinese subjects were examined by magnetoencephalography (MEG) and a 1.5T magnetic resonance imaging (MRI) unit. All subjects were given pure tone stimuli 50 times, 150 pairs of Chinese words (meaning related or unrelated) auditory stimuli, and pure tone stimuli subsequently 50 times. Evoked response fields time locked to the pure tone and Chinese words were recorded using a whole-head neuromagnetometer in real-time. The acquired data were averaged by the acquisition computer according to the response to the pure tone, related pairs of words and unrelated pairs of words. The data obtained by MEG were superimposed on MRI, using a GE Signa 1.5T system. Results MEG, showed there were two obviously higher magnetic waves named M50 and M100, which were localized in the bilateral transverse temporal gyri in all subjects. The responses to the pairs of Chinese words (meaning related or unrelated) were similar in the same hemisphere of the same subjects. There was a higher peak during 300-600 ms in the right hemisphere of one left handed subject, but no peak in the left hemisphere, indicating that the language dominant hemisphere was localized in the right hemisphere. Superimposing the MEG data on MRI, the language area was localized in the Wernicke's areas. A 300-600 ms response peak was obsarved in each hemisphere (the amplitude of the 300-600 ms response peak in each hemisphere was almost the same) in two right-handed subjects, showing that the language area was localized in the 2 hemispheres in the two subjects. There was one peak in each hemisphere (300-600 ms response) in 6 subjects, but the amplitude of the wave in the left hemisphere in the 6 subjects was much higher than that in the right hemisphere. By choosing randomly from the later component (300-600 ms response) several time points and

  14. Neutron gamma fraction imaging: Detection, location and identification of neutron sources

    International Nuclear Information System (INIS)

    In this paper imaging of neutron sources and identification and separation of a neutron source from another neutron source is described. The system is based upon organic liquid scintillator detector, tungsten collimator, bespoke fast digitiser and adjustable equatorial mount. Three environments have been investigated with this setup corresponding to an AmBe neutron source, a 252Cf neutron source and both sources together separated in space. In each case, events are detected, digitised, discriminated and radiation images plotted corresponding to the area investigated. The visualised neutron count distributions clearly locate the neutron source and, relative gamma to neutron (or neutron to gamma) fraction images aid in discriminating AmBe sources from 252Cf source. The measurements were performed in the low scatter facility of the National Physical Laboratory, Teddington, UK

  15. ComEst: A completeness estimator of source extraction on astronomical imaging

    Science.gov (United States)

    Chiu, I.; Desai, S.; Liu, J.

    2016-07-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package ComEst, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator ComEst is designed for the source finder SExtractor used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, ComEst estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, ComEst directly carries out the detection of simulated sources on the observed images. Given an observed CCD image saved in FITS format, ComEst derives the completeness of the source detection from end to end as a function of source flux (or magnitude) and CCD position. In addition, ComEst can also estimate the purity of the source detection by comparing the catalog of the detected sources to the input catalogs of the simulated sources. We run ComEst on the images from Blanco Cosmology Survey (BCS) and compare the derived completeness as a function of magnitude to the limiting magnitudes derived by using the Signal-to-Noise ratio (SNR) and number count histogram of the detected sources. ComEst is released as a Python package with an easy-to-use syntax and is publicly available at https://github.com/inonchiu/ComEst.

  16. Constrained source space imaging: application to fast, region-based functional MRI.

    Science.gov (United States)

    Chiew, Mark; Graham, Simon J

    2013-10-01

    A new technique called constrained source space imaging is introduced that holds promise for ultrafast acquisition of functional magnetic resonance imaging data. A sparse set of arbitrarily positioned, coarse voxels is first localized using radiofrequency selective excitation, from which magnetization signals are separated using only the spatial sensitivities of multichannel receiver coils, without the need for k-space encoding using imaging gradients. This method permits very fast acquisitions of targeted magnetization without complex or time-consuming image reconstruction techniques. Furthermore, because the data acquisition is performed without imaging gradients, T2* decays can be densely sampled and processed for contrast enhancement to improve functional magnetic resonance imaging data quality. Here, the constrained source space imaging technique is validated in proof-of-concept form, for a simple functional magnetic resonance imaging motor task using a prototype dual-band stimulated echo acquisition mode excitation to image four voxels at TR = 250 ms. Results demonstrate good voxel signal separation and good characterization of hemodynamic responses in primary motor cortices (M1) and supplementary motor areas through T2* fitting of the measured signals. With further refinement, the constrained source space imaging method has potential utility in a priori ROI-based functional magnetic resonance imaging experiments with TR values under 100 ms. Rapid, multivoxel measurements of other sources of MR signal contrast are also possible. PMID:23225605

  17. Synthetically Evaluation System for Multi-source Image Fusion and Experimental Analysis

    Institute of Scientific and Technical Information of China (English)

    XIAO Gang; JING Zhong-liang; WU Jian-min; LIU Cong-yi

    2006-01-01

    Study on the evaluation system for multi-source image fusion is an important and necessary part of image fusion. Qualitative evaluation indexes and quantitative evaluation indexes were studied. A series of new concepts,such as independent single evaluation index, union single evaluation index, synthetic evaluation index were proposed. Based on these concepts, synthetic evaluation system for digital image fusion was formed. The experiments with the wavelet fusion method, which was applied to fuse the multi-spectral image and panchromatic remote sensing image, the IR image and visible image, the CT and MRI image, and the multi-focus images show that it is an objective, uniform and effective quantitative method for image fusion evaluation.

  18. Advanced Calibration Source for Planetary and Earth Observing Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiometric calibration is critical to many NASA activities.  At NASA SSC, imaging cameras have been used in-situ to monitor propulsion test stand...

  19. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentationwith special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior any analysis...

  20. Development of an LED reference light source for calibration of radiographic imaging detectors

    OpenAIRE

    Weierganz, M.; Bar, D.; Bromberger, B.; Dangendorf, V.; Feldman, G.; Goldberg, M B; Lindemann, M.; Mor, I.; Tittelmeier, K.; Vartsky, D.

    2010-01-01

    A stable reference light source based on an LED (Light Emission Diode) is presented for stabilizing the conversion gain of the opto-electronic system of a gamma- and fast-neutron radiographic and tomographic imaging device. A constant fraction of the LED light is transported to the image plane of the camera and provides a stable reference exposure. This is used to normalize the images during off-line image processing. We have investigated parameters influencing the stability of LEDs and devel...

  1. Nonuniformity correction of imaging systems with a spatially nonhomogeneous radiation source.

    Science.gov (United States)

    Gutschwager, Berndt; Hollandt, Jörg

    2015-12-20

    We present a novel method of nonuniformity correction of imaging systems in a wide optical spectral range by applying a radiation source with an unknown and spatially nonhomogeneous radiance or radiance temperature distribution. The benefit of this method is that it can be applied with radiation sources of arbitrary spatial radiance or radiance temperature distribution and only requires the sufficient temporal stability of this distribution during the measurement process. The method is based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogenous radiance distribution and a thermal imager of a predefined nonuniform focal plane array responsivity is presented. PMID:26837023

  2. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Danhui; Chen, Juhong; Sela, David A; Nugen, Sam R

    2016-02-01

    The application of bacteriophage combined with the use of magnetic separation techniques has emerged as a valuable tool for the sensitive identification and detection of bacteria. In this study, bacteriophage T7 labelled magnetic beads were developed for the detection of viable bacterial cells. Fusion of the biotin acceptor peptide (BAP) with the phage capsid protein gene and the insertion of the biotin ligase (BirA) gene enabled the display of the BAP ligand and the expression protein BirA during the replication cycle of phage infection. The replicated Escherichia coli specific bacteriophage was biotinylated in vivo and coated on magnetic beads via streptavidin-biotin interaction. Immobilization efficiency of the recombinant phage was investigated on magnetic beads and the phage-bead complex was evaluated by detecting E. coli from inoculated broth. When compared to the wild type phage, the recombinant phage T7birA-bap had a high immobilization density on streptavidin-coated magnetic beads and could capture 86.2% of E. coli cells from broth within 20 min. As this phage-based biomagnetic detection approach provided a low detection limit of 10(2) CFU mL(-1) without pre-enrichment, we believe this assay could be further developed to detect other bacteria of interest by applying host-specific phages. This would be of particular use in detecting bacteria which are difficult to grow or replicate slowly in culture.

  3. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    International Nuclear Information System (INIS)

    Research highlights: → Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. → The inter-grating distance is not limited by the polychromaticity of the X-ray source. → Sensitivity for phase measurements can be further improved. → Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  4. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhili [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao Kun [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Zhu Peiping; Yuan Qingxi; Huang Wanxia; Zhang Kai; Hong Youli [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Ge Xin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu, E-mail: wuzy@ustc.edu.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2011-04-15

    Research highlights: {yields} Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. {yields} The inter-grating distance is not limited by the polychromaticity of the X-ray source. {yields} Sensitivity for phase measurements can be further improved. {yields} Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  5. Unlensing multiple arcs in 0024+1654 reconstruction of the source image

    CERN Document Server

    Colley, W N; Labs, B; Hill, M; Turner, E L; Colley, Wesley N; Tyson, J Anthony; Labs, Bell; Hill, Murray; Turner, Edwin L

    1995-01-01

    A unique reconstruction of the image of a high redshift source galaxy responsible for multiple long arcs in the z = 0.4 cluster 0024+1654 is obtained by inverse lensing. Deep B and I imaging with the Hubble Space Telescope (Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, under NASA contract NAS 5-26555) enables high resolution of the arcs due to strong gravitational lensing of the background source. The gravitational lens in the foreground cluster is thus used to obtain a magnified view of the distant source. Four strongly lensed images of the source lead to a unique reconstruction. Each of the long arcs, when unlensed, leads to the same reconstructed source image exhibiting a beaded ring-like morphology. The U luminosity of the ring alone is equivalent to a normal galaxy. This is likely a galaxy in formation.

  6. Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging

    Science.gov (United States)

    Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.

    2016-06-01

    We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.

  7. Imaging spectroscopic analysis at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  8. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  9. A Multimodal Data Mining Framework for Revealing Common Sources of Spam Images

    Directory of Open Access Journals (Sweden)

    Chengcui Zhang

    2009-10-01

    Full Text Available This paper proposes a multimodal framework that clusters spam images so that ones from the same spam source/cluster are grouped together. By identifying the common sources of spam images, we can provide evidence in tracking spam gangs. For this purpose, text recognition and visual feature extraction are performed. Subsequently, a two-level clustering method is applied where images with visually similar illustrations are first grouped together. Then the clustering result from the first level is further refined using the textual clues (if applicable contained in spam images. Our experimental results show the effectiveness of the proposed framework.

  10. Vector Velocity Imaging Using Cross-Correlation and Virtual Sources

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-01-01

    /s. During the experiments fixed beam-to-flow angles at $\\{60^{\\circ}, 75^{\\circ}, 90^{\\circ}\\}$ have been applied. The images are obtained using a pulse repetition frequency of 15~kHz, and the images contain 33~lines with 60~emissions for each line. Corresponding to the three fixed beam-to-flow angles, the...... range $[0^{\\circ}; 180^{\\circ}[$ and identifying the direction that produces the largest correlation across emissions. An estimate of the velocity magnitude is obtained from the spatial shift between signals beamformed along the estimated direction. This paper expands these investigations to include...

  11. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  12. Lithography imaging control by enhanced monitoring of light source performance

    Science.gov (United States)

    Alagna, Paolo; Zurita, Omar; Lalovic, Ivan; Seong, Nakgeuon; Rechsteiner, Gregory; Thornes, Joshua; D'havé, Koen; Van Look, Lieve; Bekaert, Joost

    2013-04-01

    Reducing lithography pattern variability has become a critical enabler of ArF immersion scaling and is required to ensure consistent lithography process yield for sub-30nm device technologies. As DUV multi-patterning requirements continue to shrink, it is imperative that all sources of lithography variability are controlled throughout the product life-cycle, from technology development to high volume manufacturing. Recent developments of new ArF light-source metrology and monitoring capabilities have been introduced in order to improve lithography patterning control.[1] These technologies enable performance monitoring of new light-source properties, relating to illumination stability, and enable new reporting and analysis of in-line performance.

  13. Interferometry imaging for the evolving source in heavy ion collisions at HIRFL-CSR energy

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-Jie; M. J. Efaaf; ZHANG Wei-Ning

    2012-01-01

    Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in heavy ion collisions at HIRFL-CSR energy.The source evolution is described by the relativistic hydrodynamics in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and compared with the interferometry results obtained by the usual Gaussian formula fit.It is found that the firstorder source function moments can describe the source sizes.The ratio of the normalized standard deviation (O) to the first-order moment (R),(O)/(R),is sensitive to the shape of the source function.

  14. Interferometry imaging for the evolving source in heavy ion collisions at HIRFL-CSR energy

    International Nuclear Information System (INIS)

    Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in heavy ion collisions at HIRFL-CSR energy. The source evolution is described by the relativistic hydrodynamics in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and compared with the interferometry results obtained by the usual Gaussian formula fit. It is found that the first- order source function moments can describe the source sizes. The ratio of the normalized standard deviation a to the first-order moment R-tilde, σ-tilde/R-tilde, is sensitive to the shape of the source function. (authors)

  15. Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia,a therapeutic procedure for cancer treatment

    Institute of Scientific and Technical Information of China (English)

    J.C.MISRA; A.SINHA; G.C.SHIT

    2010-01-01

    The paper deals with the theoretical investigation of a fundamental problem of biomagnetic fluid flow through a porous medium subject to a magnetic field by using the principles of biomagnetic fluid dynamics(BFD).The study pertains to a situation where magnetization of the fluid varies with temperature.The fluid is considered to be non-Newtonian,whose flow is governed by the equation of a second-grade viscoelastic fluid.The walls of the channel are assumed to be stretchable,where the surface velocity is proportional to the longitudinal distance from the origin of coordinates.The problem is first reduced to solving a system of coupled nonlinear differential equations involving seven parameters.Considering blood as a biomagnetic fluid and using the present analysis,an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropriate finite difference scheme.The computational results are presented in graphical form,and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field.The results clearly indicate that the presence of a magnetic dipole bears the potential so as to affect the characteristics of the blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia.The study will attract the attention of clinicians,to whom the results would be useful in the treatment of cancer patients by the method of electromagnetic hyperthermia.

  16. Point source detection performance of Hard X-ray Modulation Telescope imaging observation

    CERN Document Server

    Huo, Zhuoxi; Li, Xiaobo; Zhou, Jianfeng

    2015-01-01

    The Hard X-ray Modulation Telescope (HXMT) will perform an all-sky survey in hard X-ray band as well as deep imaging of a series of small sky regions. We expect various compact objects to be detected in these imaging observations. Point source detection performance of HXMT imaging observation depends not only on the instrument but also on its data analysis since images are reconstructed from HXMT observed data with numeric methods. Denoising technique plays an import part in HXMT imaging data analysis pipeline alongside with demodulation and source detection. In this paper we have implemented several methods for denoising HXMT data and evaluated the point source detection performances in terms of sensitivities and location accuracies. The results show that direct demodulation with 1-fold cross correlation should be the default reconstruction and regularization methods, although both sensitivity and location accuracy could be further imporved by selecting and tuning numerical methods in data analysis of HXMT i...

  17. A Fieldable-Prototype Large-Area Gamma-ray Imager for Orphan Source Search

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [ORNL; Fabris, Lorenzo [ORNL; Carr, Dennis [Lawrence Livermore National Laboratory (LLNL); Collins, Jeff [Lawrence Livermore National Laboratory (LLNL); Cunningham, Mark F [Lawrence Livermore National Laboratory (LLNL); Habte Ghebretatios, Frezghi [ORNL; Karnowski, Thomas Paul [ORNL; Marchant, William [University of California, Berkeley

    2008-01-01

    We have constructed a unique instrument for use in the search for orphan sources. The system uses gamma-ray imaging to "see through" the natural background variations that effectively limit the search range of normal devices to ~10 m. The imager is mounted in a 4.9- m-long trailer and can be towed by a large personal vehicle. Source locations are determined both in range and along the direction of travel as the vehicle moves. A fully inertial platform coupled to a Global Positioning System receiver is used to map the gamma-ray images onto overhead geospatial imagery. The resulting images provide precise source locations, allowing rapid follow-up work. The instrument simultaneously searches both sides of the street to a distance of 50 m (100-m swath) for milliCurieclass sources with near-perfect performance.

  18. Construction of source positioning system in RALS with using I.I.-DR image

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Takahiro; Oda, Masahiko; Nakae, Yasuo [Hyogo Coll. of Medicine, Nishinomiya (Japan). Hospital; Kamikonya, Norihiko; Nakao, Norio [Hyogo Coll. of Medicine, Nishinomiya (Japan)

    2003-03-01

    In the Remote After Loading System (RALS), the source position is reconstructed as a 3 dimensional position by X-ray catheter points on bi-plane X-ray films. There are several reconstruction methods. However, the geometrical accuracy of the source coordinate position is important to evaluate dose distribution in any case. Many institutions adopted a C-arm X-ray fluoroscopic system with a rotational mechanism due to the simplicity of handling. However, the image intensifier (I.I.)-digital radiography (DR) image by the C-arm system has image distortion that results from mechanical accuracy and fluorescence plane of I.I., and films are used to confirm the source position in RALS. Therefore, the RALS positioning system that corrected I.I. DR image distortion was reconstructed. RALS positioning system kept reconstruction accuracy of the source coordinate position within 1 mm and this system also realized simplification of work and shortening in treatment time. (author)

  19. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  20. Source camera identification for low resolution heavily compressed images

    NARCIS (Netherlands)

    E.J. Alles; Z.J.M.H. Geradts; C.J. Veenman

    2008-01-01

    In this paper, we propose a method to exploit photo response non-uniformity (PRNU) to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 times 480 pixels. Similarly to research reported previously, we extract the PRNU patterns from both reference and question

  1. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  2. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  3. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  4. 28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging

    OpenAIRE

    Wei, Xiaoming; Lau, Andy K. S.; Xu, Yiqing; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2015-01-01

    Emerging high-throughput optical imaging modalities, in particular those providing phase information, necessitate a demanding speed regime (e.g. megahertz sweep rate) for those conventional swept sources; while an effective solution is yet to be demonstrated. We demonstrate a stable breathing laser as inertia-free swept source (BLISS) operating at a wavelength sweep rate of 28 MHz, particularly for the ultrafast interferometric imaging modality at 1.0 μm. Leveraging a tunable dispersion compe...

  5. Young stars and dust in AFGL437: NICMOS/HST polarimetric imaging of an outflow source

    OpenAIRE

    Meakin, Casey A.; Hines, Dean C.; Thompson, Roger I.

    2005-01-01

    We present near infrared broad band and polarimetric images of the compact star forming cluster AFGL437 obtained with the NICMOS instrument aboard HST. Our high resolution images reveal a well collimated bipolar reflection nebulosity in the cluster and allow us to identify WK34 as the illuminating source. The scattered light in the bipolar nebulosity centered on this source is very highly polarized (up to 79%). Such high levels of polarization implies a distribution of dust grains lacking lar...

  6. Image reconstruction from limited angle projections collected by multi-source interior x-ray imaging systems

    OpenAIRE

    Liu, Baodong; Wang, Ge; Ritman, Erik L.; Cao, Guohua; Lu, Jianping; Zhou, Otto; Zeng, Li; Yu, Hengyong

    2011-01-01

    A multi-source x-ray interior imaging system with limited angle scanning is investigated to study the possibility of building an ultra-fast micro-CT for dynamic small animal imaging. And two methods are employed to perform interior reconstruction from a limited number of projections collected by the multi-source interior x-ray system. The first is total variation minimization with the steepest descent search (TVM-SD) and the second is total difference minimization with soft-threshold filterin...

  7. Use of single- and multi-source image fusion for statistical decision-making

    NARCIS (Netherlands)

    Stein, A.

    2005-01-01

    In this paper, we explore the use of single- and multi-source image fusion for statistical decision-making. On the basis of usability and loss functions, two image fusion procedures are formulated. For each of these, an optimality criterion is defined. First, attention focuses on fusion of different

  8. Modelling of an imaging beamline at the ISIS pulsed neutron source

    OpenAIRE

    Burca, G.; Kockelmann, W.; James, J A; Fitzpatrick, M. E.

    2013-01-01

    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and charac...

  9. Four-dimensional ultrasound current source density imaging of a dipole field

    OpenAIRE

    Z. H. Wang; Olafsson, R.; P Ingram; Q. Li; Qin, Y.; Witte, R. S.

    2011-01-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was sca...

  10. Energy source perceptions and policy support: Image associations, emotional evaluations, and cognitive beliefs

    International Nuclear Information System (INIS)

    This paper represents the most in-depth effort conducted to date to assess affective, emotional and cognitive perceptions of coal, natural gas, nuclear, and wind energy and the relationship between these perceptions and support for the energy sources. U.S. residents, recruited from a consumer panel, completed surveys assessing image associations, emotional reactions, and cognitive beliefs about energy sources and support for increased reliance on energy sources and local siting of energy facilities. The content of images produced by participants when evaluating energy sources revealed several interesting findings. Additionally, analysis of the image evaluations, emotions, and beliefs about each energy source showed that coal and nuclear energy were viewed most negatively, with natural gas in the middle, and wind viewed most positively. Importantly, these affective, emotional, and cognitive perceptions explained significant amounts of variance in support for each of the energy sources. Implications for future researchers and policy makers are discussed. - Highlights: ► Image associations, emotions, and beliefs about energy sources were measured. ► A dual-process model of energy support was proposed and tested. ► Coal and nuclear were viewed most negatively and wind was viewed most positively. ► The cognitive-affective model predicted support for each energy source.

  11. Temporal Coherence Effects on Coherent Diffractive Imaging of a Binary Sample by a High Harmonic Source

    Directory of Open Access Journals (Sweden)

    Frey J.G.

    2013-03-01

    Full Text Available Coherent Diffractive Imaging (CDI is performed with single and multiple harmonics from an ultrafast HHG source. The effect of HHG source bandwidth on the effectiveness of the reconstruction algorithms is compared. A low quality reconstruction from broadband data is achieved assuming full coherence in the algorithm.

  12. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    International Nuclear Information System (INIS)

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 μJy beam–1 rms noise. The images (centered at R.A. 00h35m00s, decl. –67°00'00'' and R.A. 00h59m17s, decl. –67°00'00'', J2000 epoch) cover 8.42 deg2 sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists—as opposed to component lists—and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  13. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    Science.gov (United States)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (benefit from longer deployment times to also record teleseismic sources.

  14. Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging

    International Nuclear Information System (INIS)

    Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the 10 μm range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of 1 μm or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

  15. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  16. Superresolving Imaging of Irregular Arrays of Thermal Light Sources using Multiphoton Interferences

    CERN Document Server

    Classen, Anton; Giebel, Sebastian; Schneider, Raimund; Bhatti, Daniel; Mehringer, Thomas; von Zanthier, Joachim

    2016-01-01

    We propose to use multiphoton interferences of photons emitted from statistically independent thermal light sources in combination with linear optical detection techniques to reconstruct, i.e., image, arbitrary source geometries in one dimension with subclassical resolution. The scheme is an extension of earlier work [Phys. Rev. Lett. 109, 233603 (2012)] where N regularly spaced sources in one dimension were imaged by use of the Nth-order intensity correlation function. Here, we generalize the scheme to reconstruct any number of independent thermal light sources at arbitrary separations in one dimension exploiting intensity correlation functions of order $m \\geq 3$. We present experimental results confirming the imaging protocol and provide a rigorous mathematical proof for the obtained subclassical resolution.

  17. Reconstruction algorithm for point source neutron imaging through finite thickness scintillator

    International Nuclear Information System (INIS)

    A new inversion algorithm based on the maximum entropy method (MEM) is proposed to remove unwanted effects in fast neutron imaging which result from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as an input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). The inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. Algorithm details as well as numerical results using MCNP simulated images are presented. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique should also be applicable to high energy gamma or x-ray radiography using thick scintillators.

  18. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  19. Development of an LED reference light source for calibration of radiographic imaging detectors

    CERN Document Server

    Weierganz, M; Bromberger, B; Dangendorf, V; Feldman, G; Goldberg, M B; Lindemann, M; Mor, I; Tittelmeier, K; Vartsky, D

    2010-01-01

    A stable reference light source based on an LED (Light Emission Diode) is presented for stabilizing the conversion gain of the opto-electronic system of a gamma- and fast-neutron radiographic and tomographic imaging device. A constant fraction of the LED light is transported to the image plane of the camera and provides a stable reference exposure. This is used to normalize the images during off-line image processing. We have investigated parameters influencing the stability of LEDs and developed procedures and criteria to prepare and select LEDs suitable for delivering stable light outputs for several 100 h of operation.

  20. A method for MREIT-based source imaging: simulation studies

    Science.gov (United States)

    Song, Yizhuang; Jeong, Woo Chul; Woo, Eung Je; Seo, Jin Keun

    2016-08-01

    This paper aims to provide a method for using magnetic resonance electrical impedance tomography (MREIT) to visualize local conductivity changes associated with evoked neuronal activities in the brain. MREIT is an MRI-based technique for conductivity mapping by probing the magnetic flux density induced by an externally injected current through surface electrodes. Since local conductivity changes resulting from evoked neural activities are very small (less than a few %), a major challenge is to acquire exogenous magnetic flux density data exceeding a certain noise level. Noting that the signal-to-noise ratio is proportional to the square root of the number of averages, it is important to reduce the data acquisition time to get more averages within a given total data collection time. The proposed method uses a sub-sampled k-space data set in the phase-encoding direction to significantly reduce the data acquisition time. Since the sub-sampled data violates the Nyquist criteria, we only get a nonlinearly wrapped version of the exogenous magnetic flux density data, which is insufficient for conductivity imaging. Taking advantage of the sparseness of the conductivity change, the proposed method detects local conductivity changes by estimating the time-change of the Laplacian of the nonlinearly wrapped data.

  1. Compact laser sources for laser designation, ranging and active imaging

    Science.gov (United States)

    Goldberg, Lew; Nettleton, John; Schilling, Brad; Trussel, Ward; Hays, Alan

    2007-04-01

    Recent advances in compact solid sate lasers for laser designation, eye-safe range finding and active imaging are described. Wide temperature operation of a compact Nd:YAG laser was achieved by end pumping and the use of multi-λ diode stacks. Such lasers enabled construction of fully operational 4.7 lb laser designator prototypes generating over 50 mJ at 10-20 Hz PRF. Output pulse energy in excess of 100 mJ was demonstrated in a breadboard version of the end-pumped laser. Eye-safe 1.5 μm lasers based on flash-pumped, low PRF, Monoblock lasers have enabled compact STORM laser range finders that have recently been put into production. To achieve higher optical and electrical efficiency needed for higher PRF operation, Monoblock lasers were end-pumped by a laser diode stack. Laser diode end-pumped Monoblock lasers were operated at 10-20 Hz PRF over a wide temperature range (-20 to +50 °C). Compared with bulk compact solid state lasers, fiber lasers are characterized by lower pulse energy, higher PRF's, shorter pulses and higher electrical efficiency. An example of fiber lasers suitable for LIDAR, and atmospheric measurement applications is described. Eye-safe, low intensity diode pumped solid state green warning laser developed for US Army checkpoint and convoy applications is also described.

  2. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    Energy Technology Data Exchange (ETDEWEB)

    Kilburn-Toppin, Fleur; Arthurs, Owen J.; Tasker, Angela D.; Set, Patricia A.K. [Addenbrooke' s Hospital, Cambridge University Teaching Hospitals NHS Foundation Trust, Department of Radiology, Box 219, Cambridge (United Kingdom)

    2013-07-15

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 {+-} 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 {+-} 43.7 s vs. 92.9 {+-} 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  3. Optimal Magnetic Sensor Vests for Cardiac Source Imaging.

    Science.gov (United States)

    Lau, Stephan; Petković, Bojana; Haueisen, Jens

    2016-01-01

    Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910

  4. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    Directory of Open Access Journals (Sweden)

    Stephan Lau

    2016-05-01

    Full Text Available Magnetocardiography (MCG non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics.

  5. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  6. Low-spatial-coherence broadband fiber source for speckle free imaging

    CERN Document Server

    Redding, Brandon; Mokan, Vadim; Seifert, Martin; Choma, Michael A; Cao, Hui

    2015-01-01

    We designed and demonstrate a fiber-based amplified spontaneous emission (ASE) source with low spatial coherence, low temporal coherence, and high power per mode. ASE is produced by optically pumping a large gain core multimode fiber while minimizing optical feedback to avoid lasing. The fiber ASE source provides 270 mW of continuous wave emission, centered at {\\lambda}=1055 nm with a full-width half-maximum bandwidth of 74 nm. The emission is distributed among as many as ~70 spatial modes, enabling efficient speckle suppression when combined with spectral compounding. Finally, we demonstrate speckle-free full field imaging using the fiber ASE source. The fiber ASE source provides a unique combination of high power per mode with both low spatial and low temporal coherence, making it an ideal source for full-field imaging and ranging applications.

  7. A study of equivalent source techniques for high-resolution EEG imaging

    International Nuclear Information System (INIS)

    High-resolution EEG imaging has been an important topic in recent EEG research, and much work has been done on the two equivalent source imaging techniques: the equivalent distributed dipole-layer source imaging technique (EST) and the equivalent multipole source imaging technique (SAT). In this paper we first develop a forward density formula for a spherical equivalent distributed dipole layer of an arbitrary dipole in a three-concentric-sphere head model. It is clarified using the derived forward formula that the equivalent dipole-layer source and equivalent multipole source are interrelated in theory. Finally, simulation comparisons are conducted, the results of which suggest that EST has a higher spatial resolution than SAT when both of them are implemented by a truncated singular value decomposition algorithm. This is due to the different singularities of the inversion equations involved in the two techniques. An empirical VEP data study also shows that EST is better than SAT in providing higher spatial resolution EEG imaging. (author)

  8. Comparison of two x-ray phase-contrast imaging methods with a microfocus source.

    Science.gov (United States)

    Zhou, T; Lundström, U; Thüring, T; Rutishauser, S; Larsson, D H; Stampanoni, M; David, C; Hertz, H M; Burvall, A

    2013-12-16

    We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent. PMID:24514597

  9. Observation of image pair creation and annihilation from superluminal scattering sources

    CERN Document Server

    Clerici, Matteo; Warburton, Ryan E; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2015-01-01

    The invariance of the speed of light implies a series of consequences related to our perception of simultaneity and of time itself. Whilst these consequences are experimentally well studied for subluminal speeds, the kinematics of superluminal motion lack direct evidence. Using high temporal resolution imaging techniques, we demonstrate that if a source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backwards. If the source changes its speed, crossing the interface between sub- and super-luminal propagation, we observe image pair annihilation and creation. These results show that it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone.

  10. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  11. Phase-Contrast Imaging of Nanostructures with Incoherent Femtosecond Laser Driven Soft X-Ray Source

    International Nuclear Information System (INIS)

    Application of polychromatic (1.5-15 nm) soft X-ray emission of a spatially large (>0.1 mm) bright femtosecond laser driven plasma source for propagation based phase contrast imaging of nanometer thick foils and biological samples is considered. Diffraction and phase contrast effects increased quality and contrast of the experimental images, registered by LiF crystal X-ray detector with submicron resolution.

  12. SPIM-fluid: open source light-sheet based platform for high-throughput imaging.

    Science.gov (United States)

    Gualda, Emilio J; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-11-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  13. X-ray phase imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2013-04-22

    A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

  14. Spectral-Domain and Swept-Source OCT Imaging of Asteroid Hyalosis: A Case Report

    OpenAIRE

    Alasil, Tarek; Adhi, Mehreen; Jonathan J Liu; Fujimoto, James G.; Duker, Jay S.; Baumal, Caroline R.

    2014-01-01

    A 72-year-old man with diabetes was referred to the retina clinic for diabetic retinopathy. Detailed funduscopic examination of the left eye was limited by prominent asteroid hyalosis. Spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) were utilized to examine the vitreous, vitreoretinal interface, and the morphology of the retina. Asteroid hyalosis induced artifacts of the OCT images, which resolved when the appropriate imaging protocols were applied. SS-OCT may sh...

  15. Range dependent sediment sound speed profile measurements using the image source method

    OpenAIRE

    PINSON, Samuel; Guillon, Laurent; Holland, Charles

    2013-01-01

    This paper presents a range dependent sediment sound speed profile measurement obtained using the image source method. This technique is based on the analysis of the seafloor reflected acoustic wave as a collection of image sources which positions are linked with the thick-nesses and the sound speed of the sediment stack. The data used were acquired by the NURC in 2009 during the Clutter09 experiment. The equipment used was an autonomous undersea vehicle towing a 1600–3500 Hz frequency band s...

  16. Spot size measurement of flash-radiography source utilizing the pinhole imaging method

    OpenAIRE

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jinming; Xie, Yutong; Liu, Yulong; Long, Quanhong

    2015-01-01

    The spot size of the x-ray source is a key parameter of a flash-radiography facility, which is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam is tuned by adjusting the curr...

  17. A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations.

    Science.gov (United States)

    Diekmann, V; Becker, W; Grözinger, B; Jürgens, R; Kornhuber, C

    1991-01-01

    Because of the way most available hardware gradiometers are designed and in view of the prediction, by theory, that the normal magnetic field component provides all available information on the intrinsic current source, MEG and MCG measurements generally consider only the field vector normal to the head or truck surface. However, when looking for single events, the information contained in the normal component often cannot be fully sampled, because the sensor array has limited dimensions and therefore covers only a fraction of the field's spatial extension. Simulation of a current dipole in a sphere using realistic parameters shows that there is a considerable area where the amplitude of the tangential field components is larger than that of the normal one. Measurements using a 28-channel magnetometer system with normal and tangential pick-up coils and a current dipole in a phantom model confirm this prediction; depending on dipole orientation, the signal-to-noise ratio (SNR) could improve by a factor of up to 20 if the total field was considered instead of only the normal component. MCG recordings with the same instrument demonstrated a broad area above the heart where the tangential SNR was clearly better than the normal one. Preliminary measurements indicate that tangential components can also be recorded in the MEG; it is suggested that they may help source localisation. PMID:1778055

  18. Visibility in differential phase-contrast imaging with partial coherence source

    Institute of Scientific and Technical Information of China (English)

    Liu Xin; Guo Jin-Chuan; Peng Xiang; Niu Han-Ben

    2007-01-01

    This paper gives theoretical analysis of visibility of fringes, which is influenced by distances, temporal and spatial coherence of source, in hard x-ray differential phase-contrast imaging with microfocus x-ray source. According to the character of longitudinal periodicity of the interferogram, the setup is insensitive to mechanical drift and vibrations. The effect of temporal coherence of x-ray source is investigated and its related bandwidth is derived. Based on the theory of partially coherent light, it shows that the requirement for the spatial coherence of x-ray source is not strict and can be met by the general microfocus x-ray tube for x-ray differential phase-contrast imaging.

  19. Quantification of bioluminescence images of point source objects using diffusion theory models

    International Nuclear Information System (INIS)

    A simple approach for estimating the location and power of a bioluminescent point source inside tissue is reported. The strategy consists of using a diffuse reflectance image at the emission wavelength to determine the optical properties of the tissue. Following this, bioluminescence images are modelled using a single point source and the optical properties from the reflectance image, and the depth and power are iteratively adjusted to find the best agreement with the experimental image. The forward models for light propagation are based on the diffusion approximation, with appropriate boundary conditions. The method was tested using Monte Carlo simulations, Intralipid tissue-simulating phantoms and ex vivo chicken muscle. Monte Carlo data showed that depth could be recovered within 6% for depth 4-12 mm, and the corresponding relative source power within 12%. In Intralipid, the depth could be estimated within 8% for depth 4-12 mm, and the relative source power, within 20%. For ex vivo tissue samples, source depths of 4.5 and 10 mm and their relative powers were correctly identified

  20. Change Detection with Multi-Source Defective Remote Sensing Images Based on Evidential Fusion

    Science.gov (United States)

    Chen, Xi; Li, Jing; Zhang, Yunfei; Tao, Liangliang

    2016-06-01

    Remote sensing images with clouds, shadows or stripes are usually considered as defective data which limit their application for change detection. This paper proposes a method to fuse a series of defective images as evidences for change detection. In the proposed method, post-classification comparison process is firstly performed on multi-source defective images. Then, the classification results of all the images, together with their corresponding confusion matrixes are used to calculate the Basic Belief Assignment (BBA) of each pixel. Further, based on the principle of Dempster-Shafer evidence theory, a BBA redistribution process is introduced to deal with the defective parts of multi-source data. At last, evidential fusion and decision making rules are applied on the pixel level, and the final map of change detection can be derived. The proposed method can finish change detection with data fusion and image completion in one integrated process, which makes use of the complementary and redundant information from the input images. The method is applied to a case study of landslide barrier lake formed in Aug. 3rd, 2014, with a series of multispectral images from different sensors of GF-1 satellite. Result shows that the proposed method can not only complete the defective parts of the input images, but also provide better change detection accuracy than post-classification comparison method with single pair of pre- and post-change images. Subsequent analysis indicates that high conflict degree between evidences is the main source of errors in the result. Finally, some possible reasons that result in evidence conflict on the pixel level are analysed.

  1. Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source

    International Nuclear Information System (INIS)

    A new approach to diffractive imaging using polychromatic diffraction data is described. The method is tested using simulated and experimental data and is shown to yield high-quality reconstructions. Diffraction data produced using a high-harmonic generation source are considered explicitly here. The formalism can be readily adapted, however, to any short-wavelength source producing a discrete spectrum and possessing sufficient spatial coherence.

  2. Shape from Two Images under Point Light Source Illumination and Perspective Projection

    OpenAIRE

    岩堀, 祐之||イワホリ, ユウジ||Iwahori, Yuji; 藤吉, 弘亘||フジヨシ, ヒロノブ||Fujiyoshi, Hironobu; 福井, 真二 ||フクイ, シンジ||Shinji, Fukui; 河中, 治樹||カワナカ, ハルキ||Kawanaka, Haruki

    2011-01-01

    This paper introduces one of the advanced researches of the research project 53-(b) in Information Science Research Institute, Chubu University. As a method to recover 3-D shape from shading images, Light Fall-off Stereo (LFS) has been proposed using the inverse square law for illuminance with point light source illumination. This paper extends the principle of light fall-off stereo and proposes a new approach under the assumption of both point light source illumination and perspective projec...

  3. Evidence of a novel source of random telegraph signal in CMOS image sensors

    OpenAIRE

    Goiffon, Vincent; Magnan, Pierre; Martin-Gonthier, Philippe; Virmontois, Cédric; Gaillardin, Marc

    2011-01-01

    This letter reports a new source of dark current random telegraph signal in CMOS image sensors due to meta-stable Shockley-Read-Hall generation mechanism at oxide interfaces. The role of oxide defects is discriminated thanks to the use of ionizing radiations. A dedicated RTS detection technique and several test conditions (radiation dose, temperature, integration time, photodiode bias) reveal the particularities of this novel source of RTS.

  4. Subwavelength imaging of sparse broadband sources surrounded by an open disordered medium from a single antenna

    CERN Document Server

    Li, Lianlin; Cui, Tie Jun

    2014-01-01

    In this letter we study the subwavelength imaging of sparse broadband sources inside a disordered medium by processing the data acquired by a single antenna. A mathematical model has been developed for solving such problem based on the idea of sparse reconstruction. We show that the strongly disordered medium can serves as an efficient apparatus for compressive measurement, which shifts the complexity of devising compressive sensing (CS) hardware from the design, fabrication and electronic control. The proposed method and associated results can find applications in several imaging disciplines, such as optics, THz, RF or ultrasound imaging.

  5. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    Science.gov (United States)

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  6. A framework for evaluating the data-hiding capacity of image sources.

    Science.gov (United States)

    Moulin, Pierre; Mihçak, M Kivanç

    2002-01-01

    An information-theoretic model for image watermarking and data hiding is presented in this paper. Previous theoretical results are used to characterize the fundamental capacity limits of image watermarking and data-hiding systems. Capacity is determined by the statistical model used for the host image, by the distortion constraints on the data hider and the attacker, and by the information available to the data hider, to the attacker, and to the decoder. We consider autoregressive, block-DCT, and wavelet statistical models for images and compute data-hiding capacity for compressed and uncompressed host-image sources. Closed-form expressions are obtained under sparse-model approximations. Models for geometric attacks and distortion measures that are invariant to such attacks are considered.

  7. Modelling of an imaging beamline at the ISIS pulsed neutron source

    International Nuclear Information System (INIS)

    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and characterisation of the resulting beam characteristics, including the homogeneity of the flux distribution in space and energy and the average and peak neutron fluxes. These investigations take into account some main design criteria: to maximise the neutron flux, to minimise geometrical artefacts in the open beam image at the sample position and to obtain a good energy resolution whilst retaining a large neutron bandwidth. All of these are desirable beam characteristics for the proposed imaging and diffraction analysis modes of IMAT

  8. The Pearson-Readhead Survey of Compact Extragalactic Radio Sources From Space. I. The Images

    CERN Document Server

    Lister, M L; Murphy, D W; Piner, B G; Jones, D L; Preston, R A

    2001-01-01

    We present images from a space-VLBI survey using the facilities of the VLBI Space Observatory Programme (VSOP), drawing our sample from the well-studied Pearson-Readhead survey of extragalactic radio sources. Our survey has taken advantage of long space-VLBI baselines and large arrays of ground antennas, such as the Very Long Baseline Array and European VLBI Network, to obtain high resolution images of 27 active galactic nuclei, and to measure the core brightness temperatures of these sources more accurately than is possible from the ground. A detailed analysis of the source properties is given in accompanying papers. We have also performed an extensive series of simulations to investigate the errors in VSOP images caused by the relatively large holes in the (u,v) plane when sources are observed near the orbit normal direction. We find that while the nominal dynamic range (defined as the ratio of map peak to off-source error) often exceeds 1000:1, the true dynamic range (map peak to on-source error) is only a...

  9. MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine (SVM), using highspatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4. Firstly, the new method is established bybuilding a model of remote sensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classification fusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1 ) From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4. And it is clearly that the texture of thefused image is distinctive. 2) From quantitative analysis, the effect of classification fusion is better. As a whole, the result shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for application in remote sensing image fusion processes.

  10. MULTI—SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    ZHAOShu-he; FENGXue-zhi; 等

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine(SVM),using high spatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4.Firstly,the new method is established by building a model of remote sensing image fusion based on SVM.Then by using SPIN-2 data and SPOT-4 data ,image classify-cation fusion in tested.Finally,and evaluation of the fusion result is made in two ways.1)From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4.And it is clearly that the texture of the fused image is distinctive.2)From quantitative analysis,the effect of classification fusion is better.As a whole ,the re-sult shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for applica-tion in remote sensing image fusion processes.

  11. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    OpenAIRE

    QUIET Collaboration; Huffenberger, K. M.; Araujo, D.; Bischoff, C; I. Buder; Y. Chinone; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R; Ruud, T. M.; Wehus, I. K.; Zwart, J.T.L.

    2014-01-01

    We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $\\sim$480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median...

  12. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    OpenAIRE

    Huffenberger, K. M.; Cleary, K.; Radford, S. J. E.; A. C. S. Readhead()

    2015-01-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ~480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error ...

  13. Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

    International Nuclear Information System (INIS)

    Purpose: Previously, we described our implementation of a brain-image database (braid), based on the proprietary object-relational database-management system (ORDBMS). In conjunction with our collaborators, we have used this database to manage and analyze image and clinical data from what we call image-based clinical trials (IBCTs). Herein we describe the results of redesigning braid using open-source components, and integrating support for mining image and clinical data from braids user interface. Material and Methods: We re-designed and re-implemented BRAID using open-source components, including PostgreSQL, gcc, and PHP. We integrated data-mining algorithms into braid, based on PL/R, a PostgreSQL package to support efficient communication between R and PostgreSQL. Results: We present a sample clinical study to demonstrate how clinicians can perform queries for visualization, statistical analysis, and data mining, using a web-based interface. Conclusion: We have developed a database system with data-mining capabilities for managing, querying, analyzing and visualizing brain-MR images. We implemented this system using open-source components, with the express goal of wide dissemination throughout the neuroimaging research community. (authors)

  14. A device for generating coded images, in particular radiographs, from a nuclear source

    International Nuclear Information System (INIS)

    The invention relates to a device for generating coded images. That devices comprises a plate with Fresnel zones, mounted between a source of nuclear radiation in a living-tissue and a position-detector adapted to move synchroneously with a screen provided with opaque stripes, placed at the detector outlet. This can be applied to medical exploration

  15. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas;

    2014-01-01

    furthermore describes how a pressure impulse response is obtained from the energy based radios- ity model. Validation of the image source model with real-valued boundary conditions is done by comparison with the analytical Green’s function in an enclosure. The full model is compared with measurements done in...... a rectangular room with a highly absorbing ceilings...

  16. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ

    Science.gov (United States)

    Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas

    2016-03-01

    Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses.

  17. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  18. Cancellation technique of external noise inside a magnetically shielded room used for biomagnetic measurements

    Science.gov (United States)

    Kandori, Akihiko; Miyashita, Tsuyoshi; Tsukada, Keiji

    2000-05-01

    First-order gradiometers inside a magnetically shielded room (MSR) were used to cancel magnetic-field noise. However, the magnetic field inside a MSR is distorted when the amount of external noise is large. This distortion is caused by the low-pass filter property of the MSR. Therefore, the time constants of the frequency-dependent attenuation of the MSR vary spatially and this variation must be taken into account. To investigate noise cancellation, we used a multichannel superconducting quantum interference device consisting of four gradiometers measuring a source signal and two gradiometers as a reference. To compensate for the different magnitudes of the gradiometer wave forms, which differed because of slight differences in their pickup-coil cancel rates, we calculated a fitting parameter. The noise-cancellation method consisted of two processes: reduction of ambient noise caused by the differences in the cancel rate of the gradiometers and a gradient magnetic field inside the MSR, and cancellation of wave-form distortion caused by the spatial variation of the time constants inside the MSR. This cancellation method provides additional attenuation of over 20-30 dB in addition to the balance (>46 dB) of a first-order gradiometer. However, the remaining noise, especially a spike (<2 pT) at the beginning of a large ambient noise step, could not be completely canceled. This noise was caused by the slight difference between the time constants at the reference sensor position and at the signal sensor position. Except for this noise spike, however, the noise cancellation enabled clear magnetocardiogram wave forms to be measured without being affected by strong external noise.

  19. Imaging an Event Horizon: Mitigation of Source Variability of Sagittarius A*

    CERN Document Server

    Lu, Ru-Sen; Fish, Vincent L; Shiokawa, Hotaka; Doeleman, Sheperd S; Gammie, Charles F; Falcke, Heino; Krichbaum, Thomas P; Zensus, J Anton

    2015-01-01

    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits vari- ability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we d...

  20. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    Science.gov (United States)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-12-01

    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  1. Application of synchrotron source based DEI method in guinea pig cochleae imaging

    Institute of Scientific and Technical Information of China (English)

    YIN Hongxia; LIU Bo; GAO Xin; GAO Xiulai; LUO Shuqian

    2007-01-01

    Hard X-ray diffraction enhanced imaging (DEI), which is based on a synchrotron source and monochromator-analyzercrystal system, is an effective method for imaging X-ray phase shift. Utilizing an analyzer crystal with high angular sensitivity of micro-radian, DEI can measure the transmitted, refracted and scattered X-rays when projecting onto a sample. It dramatically improves the contrast and spatial resolution of the resultant images. At the topography station of Beijing Synchrotron Radiation Facilities (BSRF), we implemented DEI method in guinea pig cochleae imaging and acquired a series of DEI images. Based on these images, the apparent absorption and refraction images were calculated. The DEI images revealed the holistic spiral structures and inner details of guinea pig cochleae clearly, even including the structures at the cellular level, such as the static cilia of hairy cells and the limbus of Hansen cell. Due to the advanrages of high contrast, high spatial resolution and distinct edge-enhanced effect, DEI method promises extensive applications in biology,medicine and clinic in the near future.

  2. Spitzer MIPS 24 and 70 micron Imaging near the South Ecliptic Pole: Maps and Source Catalogs

    CERN Document Server

    Scott, Kimberly S; Braglia, Filiberto G; Borys, Colin; Chapin, Edward L; Devlin, Mark J; Marsden, Gaelen; Scott, Douglas; Truch, Matthew D P; Valiante, Elisabetta; Viero, Marco P

    2010-01-01

    We have imaged an 11.5 sq. deg. region of sky towards the South Ecliptic Pole (RA = 04h43m, Dec = -53d40m, J2000) at 24 and 70 microns with MIPS, the Multiband Imaging Photometer for Spitzer. This region is coincident with a field mapped at longer wavelengths by the Balloon-borne Large Aperture Submillimeter Telescope. We discuss our data reduction and source extraction procedures. The median depths of the maps are 47 microJy/beam at 24 micron and 4.3 mJy/beam at 70 micron. At 24 micron, we identify 93098 point sources with signal-to-noise ratio (SNR) >5, and an additional 63 resolved galaxies; at 70 micron, we identify 891 point sources with SNR >6. From simulations, we determine a false detection rate of 1.8% (1.1%) for the 24 micron (70 micron) catalog. The 24 and 70 micron point-source catalogs are 80% complete at 230 microJy and 11 mJy, respectively. These mosaic images and source catalogs will be available to the public through the NASA/IPAC Infrared Science Archive.

  3. 23 kHz MEMS based swept source for optical coherence tomography imaging.

    Science.gov (United States)

    Vuong, Barry; Sun, Cuiru; Harduar, Mark K; Mariampillai, Adrian; Isamoto, Keiji; Chong, Changho; Standish, Beau A; Yang, Victor X D

    2011-01-01

    The transition from benchtop to clinical system often requires the medical technology to be robust, portable and accurate. This poses a challenge to current swept source optical coherence tomography imaging systems, as the bulk of the systems footprint is due to laser components. With the recent advancement of micromachining technology, we demonstrate the characterization of a microelectromechanical system (MEMS) swept source laser for optical coherence tomography imaging (OCT). This laser utilizes a 2 degree of freedom MEMS scanning mirror and a diffraction grating, which are arranged in a Littrow configuration. This resulted in a swept source laser that was capable of scanning at 23.165 kHz (bidirectional) or 11.582 kHz (unidirectional). The free spectral range of the laser was ≈ 100 nm with a central wavelength of ≈ 1330 nm. The 6 dB roll off depth was measured to be at 2.5 mm. Furthermore, the structural morphology of a human finger and tadpole (Xenopus laevis) were evaluated. The overall volumetric footprint of the laser source was measured to be 70 times less than non-MEMS swept sources. Continued work on the miniaturization of OCT system is on going. It is hypothesized that the overall laser size can be reduced for suitable OCT imaging for a point of care application. PMID:22255739

  4. IMAGING AN EVENT HORIZON: MITIGATION OF SOURCE VARIABILITY OF SAGITTARIUS A*

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Roelofs, Freek; Falcke, Heino [Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Shiokawa, Hotaka; Gammie, Charles F. [Astronomy Department, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Krichbaum, Thomas P.; Zensus, J. Anton, E-mail: rslu@mpifr-bonn.mpg.de [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2016-02-01

    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity (GR) in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits variability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by GR, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.

  5. Coherent source imaging and dynamic support tracking for inverse scattering using compressive MUSIC

    Science.gov (United States)

    Lee, Okkyun; Kim, Jong Min; Yoo, Jaejoon; Jin, Kyunghwan; Ye, Jong Chul

    2011-09-01

    The goal of this paper is to develop novel algorithms for inverse scattering problems such as EEG/MEG, microwave imaging, and/or diffuse optical tomograpahy, and etc. One of the main contributions of this paper is a class of novel non-iterative exact nonlinear inverse scattering theory for coherent source imaging and moving targets. Specifically, the new algorithms guarantee the exact recovery under a very relaxed constraint on the number of source and receivers, under which the conventional methods fail. Such breakthrough was possible thanks to the recent theory of compressive MUSIC and its extension using support correction criterion, where partial support are estimated using the conventional compressed sensing approaches, then the remaining supports are estimated using a novel generalized MUSIC criterion. Numerical results using coherent sources in EEG/MEG and dynamic targets confirm that the new algorithms outperform the conventional ones.

  6. Achieving accurate radiochromic optical-CT imaging when using a polychromatic light source

    International Nuclear Information System (INIS)

    Optical-CT performed with a broad spectrum light source can lead to inaccurate reconstructed attenuation coefficients (and hence dose) due to 'spectral warping' as the beam passes through the dosimeter. Some wavelengths will be attenuated more strongly than others depending on the absorption spectrum of the radiochromic dosimeter. A simulation was run to characterize the error introduced by the spectrum warping phenomena. Simulations of a typical dosimeter and delivered dose (6cm diameter, 2 Gy irradiation) showed reconstructed attenuation coefficients can be in error by >12% when compared to those obtained from a monochromatic scan. A method to correct for these errors is presented and preliminary data suggests that with the correction, polychromatic imaging can yield imaging results equal in accuracy to those of monochromatic imaging. The advantage is that polychromatic imaging may be less sensitive to prominent schlerring artefacts that are often observed in telecentric optical-CT scanning systems with tight bandwidth filters applied.

  7. A Novel Light Source Design for Spectral Tuning in Biomedical Imaging

    CERN Document Server

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01

    We propose a novel architecture with a remote phosphor based modular and compact light source in a non-contact dermoscope prototype for skin cancer screening. The spectrum and color temperature of the output light can easily and significantly be changed depending on spectral absorption characteristics of the tissues being imaged. The new system has several advantages compared to state-of-the-art phosphor converted ultra-bright white LEDs, used in a wide range of medical imaging devices, which have a fixed spectrum and color temperature at a given operating point. In particular, the system can more easily be adapted to the requirements originating from different tissues in the human body which have wavelength dependent absorption and reflectivity. This leads to improved contrast for different kinds of imaged tissue components. The concept of such a lighting architecture can be vastly utilized in many other medical imaging devices including endoscopic systems.

  8. Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion

    Institute of Scientific and Technical Information of China (English)

    Liu Xing; Hu Guangdao; Qiu Yubao

    2003-01-01

    The geological data are constructed in vector format in geographical information system(GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.

  9. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  10. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    . However, the resolution in the elevation plane is determined by the fixed mechanical elevation focus. This paper suggests to post-focus the RF lines from several adjacent planes in the elevation direction using the elevation focal point of the transducer as a virtual source element, in order to obtain......The conventional scanning techniques are not directly extendable for 3D real-time imaging because of the time necessary to acquire one volume. Using a linear array and synthetic transmit aperture, the volume can be scanned plane by plane. Up to 1000 planes per second can be scanned for a typical...... scan depth of 15 cm and speed of sound of 1540 m/s. Only 70 to 90 planes must be acquired per volume, making this method suitable for real-time 3D imaging without compromising the image quality. The resolution in the azimuthal plane has the quality of a dynamically focused image in transmit and receive...

  11. On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging.

    Science.gov (United States)

    Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2016-03-01

    Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected. PMID:26886980

  12. Ultrahigh resolution optical coherence tomography imaging of lung structure using Gaussian shaped super continuum sources

    Science.gov (United States)

    Nishizawa, N.; Ishida, S.; Ohta, T.; Itoh, K.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.

    2011-03-01

    Optical coherence tomography (OCT) is an emerging technology for non-invasive cross-sectional imaging of biological tissue and material with um resolution. In the field of pulmonary medicine, non-invasive high resolution cross-sectional imaging is desired for investigation of diseases in lung. So far, a few works have been reported about OCT imaging of lung. Since the lung consists of alveoli separated by thin wall, ultrahigh resolution (UHR) OCT is supposed to be effective for the imaging of fine structure in lung tissue. In this work, ex vivo cross-sectional imaging of isolated rat and hamster lungs was demonstrated using UHR-OCT. A 120 nm-wide, high-power, Gaussian-like supercontinuum (SC) was generated at wavelength of 0.8 um region. The generated SC was used in a time-domain OCT system, and UHR-OCT imaging was demonstrated. An ultrahigh resolution of 2.9 um in air and 2.1 um in tissue was obtained. The achieved sensitivity was 105 dB. Using this system, ex vivo UHR-OCT imaging of isolated rat and hamster lungs was demonstrated for the first time. The structures of the trachea, visceral pleura, and alveoli were observed clearly. When saline was instilled into the lung, the penetration depth was improved, and clear images of the fine structure of the lung, including alveoli, were observed owing to the index matching effect. We have also demonstrated the UHR-OCT imaging of lung tissue using 1.3 um and 1.7 um SC sources. As the results, owing to the precise structures of lung tissues and index matching by saline, the finest images were observed with 0.8 um UHR-OCT system.

  13. 28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging.

    Science.gov (United States)

    Wei, Xiaoming; Lau, Andy K S; Xu, Yiqing; Tsia, Kevin K; Wong, Kenneth K Y

    2015-10-01

    Emerging high-throughput optical imaging modalities, in particular those providing phase information, necessitate a demanding speed regime (e.g. megahertz sweep rate) for those conventional swept sources; while an effective solution is yet to be demonstrated. We demonstrate a stable breathing laser as inertia-free swept source (BLISS) operating at a wavelength sweep rate of 28 MHz, particularly for the ultrafast interferometric imaging modality at 1.0 μm. Leveraging a tunable dispersion compensation element inside the laser cavity, the wavelength sweep range of BLISS can be tuned from ~10 nm to ~63 nm. It exhibits a good intensity stability, which is quantified by the ratio of standard deviation to the mean of the pulse intensity, i.e. 1.6%. Its excellent wavelength repeatability, <0.05% per sweep, enables the single-shot imaging at an ultrafast line-scan rate without averaging. To showcase its potential applications, it is applied to the ultrafast (28-MHz line-scan rate) interferometric time-stretch (iTS) microscope to provide quantitative morphological information on a biological specimen at a lateral resolution of 1.2 μm. This fiber-based inertia-free swept source is demonstrated to be robust and broadband, and can be applied to other established imaging modalities, such as optical coherence tomography (OCT), of which an axial resolution better than 12 μm can be achieved. PMID:26504636

  14. Observation of image pair creation and annihilation from superluminal scattering sources.

    Science.gov (United States)

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  15. Temporal Unmixing of Dynamic Fluorescent Images by Blind Source Separation Method with a Convex Framework

    Directory of Open Access Journals (Sweden)

    Duofang Chen

    2015-01-01

    Full Text Available By recording a time series of tomographic images, dynamic fluorescence molecular tomography (FMT allows exploring perfusion, biodistribution, and pharmacokinetics of labeled substances in vivo. Usually, dynamic tomographic images are first reconstructed frame by frame, and then unmixing based on principle component analysis (PCA or independent component analysis (ICA is performed to detect and visualize functional structures with different kinetic patterns. PCA and ICA assume sources are statistically uncorrelated or independent and don’t perform well when correlated sources are present. In this paper, we deduce the relationship between the measured imaging data and the kinetic patterns and present a temporal unmixing approach, which is based on nonnegative blind source separation (BSS method with a convex analysis framework to separate the measured data. The presented method requires no assumption on source independence or zero correlations. Several numerical simulations and phantom experiments are conducted to investigate the performance of the proposed temporal unmixing method. The results indicate that it is feasible to unmix the measured data before the tomographic reconstruction and the BSS based method provides better unmixing quality compared with PCA and ICA.

  16. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  17. A MST algorithm for source detection in gamma-ray images

    CERN Document Server

    Campana, Riccardo; Gasparrini, Dario; Cutini, Sara; Tramacere, Andrea

    2007-01-01

    We developed a source detection algorithm based on the Minimal Spanning Tree (MST), that is a graph-theoretical method useful for finding clusters in a given set of points. This algorithm is applied to gamma-ray bidimensional images where the points correspond to the arrival direction of photons, and the possible sources are associated with the regions where they clusterize. Some filters to select these clusters and to reduce the spurious detections are introduced. An empirical study of the statistical properties of MST on random fields is carried in order to derive some criteria to estimate the best filter values. We introduce also two parameters useful to verify the goodness of candidate sources. To show how the MST algorithm works in the practice, we present an application to an EGRET observation of the Virgo field, at high galactic latitude and with a low and rather uniform background, in which several sources are detected.

  18. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  19. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-12-01

    Seismic waves are used to study the Earth, exploit its hydrocarbon resources, and understand its hazards. Extracting information from seismic waves about the Earth’s subsurface, however, is becoming more challenging as our questions become more complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full-waveform inversion. In the first part of this dissertation, I describe a method where the recorded seismic data are used to image subsurface heterogeneities like fault planes. This method, denoted as natural migration of backscattered surface waves, provides higher resolution images for near-surface faults that is complementary to surface-wave tomography images. Our proposed method differ from contemporary methods in that it does not (1) require a velocity model of the earth, (2) assumes weak scattering, or (3) have a high computational cost. This method is applied to ambient noise recorded by the US-Array to map regional faults across the American continent. Natural migration can be formulated as a least-squares inversion to furtherer enhance the resolution and the quality of the fault images. This inversion is applied to ambient noise recorded in Long Beach, California to reveal a matrix of shallow subsurface faults. The second part of this dissertation describes a convergent full waveform inversion method for controlled source data. A controlled source excites waves that scatter from subsurface reflectors. The scattered waves are recorded by a large array of geophones. These recorded waves can be inverted for a high-resolution image of the subsurface by FWI, which is typically convergent for transmitted arrivals but often does not converge for deep reflected events. I propose a preconditioning approach that extends the ability of FWI to image deep parts of the velocity model, which

  20. Ultrahigh resolution optical coherence tomography imaging of diseased rat lung using Gaussian shaped super continuum sources

    Science.gov (United States)

    Nishizawa, N.; Ishida, S.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.

    2012-02-01

    We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) imaging of lung tissues using fiber super continuum sources. The high power, low-noise, Gaussian shaped supercontinuum generated with ultrashort pulses and optical fibers at several wavelengths were used as the broadband light sources for UHR-OCT. For the 800 nm wavelength region, the axial resolution was 3.0 um in air and 2.0 um in tissue. Since the lung consists of tiny alveoli which are separated by thin wall, the UHR-OCT is supposed to be effective for lung imaging. The clear images of alveoli of rat were observed with and without index matching effects by saline. In this work, we investigated the UHR-OCT imaging of lung disease model. The lipopolysaccharide (LPS) induced acute lung injury / acute respiratory distress syndrome (ALI/ARDS) model of rat was prepared as the sample with disease and the UHR-OCT imaging of the disease part was demonstrated. The increment of signal intensity by pleural thickening was observed. The accumulation of exudative fluid in alveoli was also observed for two samples. By the comparison with normal lung images, we can obviously show the difference in the ALI/ARDS models. Since the lung consists of alveolar surrounded by capillary vessels, the effect of red-blood cells (RBC) is considered to be important. In this work, ex-vivo UHR-OCT imaging of RBC was demonstrated. Each RBC was able to be observed individually using UHR-OCT. The effect of RBC was estimated with the rat lung perfused with PBS.

  1. Dual-source computed tomography in patients with acute chest pain: feasibility and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schertler, Thomas; Scheffel, Hans; Frauenfelder, Thomas; Desbiolles, Lotus; Leschka, Sebastian; Stolzmann, Paul; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Department of Medical Radiology, Institute of Diagnostic Radiology, Zurich (Switzerland); Seifert, Burkhardt [University of Zurich, Department of Biostatistics, Zurich (Switzerland); Flohr, Thomas G. [Computed Tomography CTE PA, Siemens Medical Solutions, Forchheim (Germany)

    2007-12-15

    The aim of this study was to determine the feasibility and image quality of dual-source computed tomography angiography (DSCTA) in patients with acute chest pain for the assessment of the lung, thoracic aorta, and for pulmonary and coronary arteries. Sixty consecutive patients (32 female, 28 male, mean age 58.1{+-}16.3 years) with acute chest pain underwent contrast-enhanced electrocardiography-gated DSCTA without prior beta-blocker administration. Vessel attenuation of different thoracic vascular territories was measured, and image quality was semi-quantitatively analyzed by two independent readers. Image quality of the thoracic aorta was diagnostic in all 60 patients, image quality of pulmonary arteries was diagnostic in 59, and image quality of coronary arteries was diagnostic in 58 patients. Pairwise intraindividual comparisons of attenuation values were small and ranged between 1{+-}6 HU comparing right and left coronary artery and 56{+-}9 HU comparing the pulmonary trunk and left ventricle. Mean attenuation was 291{+-}65 HU in the ascending aorta, 334{+-}93 HU in the pulmonary trunk, and 285{+-}66 HU and 268{+-}67 HU in the right and left coronary artery, respectively. DSCTA is feasible and provides diagnostic image quality of the thoracic aorta, pulmonary and coronary arteries in patients with acute chest pain. (orig.)

  2. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  3. Progressive Source Channel Embedded Coding of Image Over Static (Memory Less Channel

    Directory of Open Access Journals (Sweden)

    Anil L.Wanare

    2009-06-01

    Full Text Available In this paper, we proposed a progressive time varying source channel coding system for transmitting image over wireless channels. Transmission of compressed image data over noisy channel is an important problem and has been investigated in a variety of scenarios. the core results obtained by a systematic method of instantaneous rate allocation between the progressive source coder and progressive channel coder .It is developed by closed form ofexpression for end-to-end distortion , rate allocation respectively in static channels. It is extended the static result to an algorithm for fading channels. It is introduced set DCT (blocks approach is adapted to perform sub band decomposition followed by SPIHT (Setpartitioning in Hierarchical tree

  4. Installation of spectrally selective imaging system in RF negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K., E-mail: ikeda.katsunori@lhd.nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Nakano, H.; Osakabe, M.; Tsumori, K.; Kaneko, O.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Wünderlich, D.; Fantz, U.; Heinemann, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Geng, S. [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi, Toki 509-5292 (Japan)

    2016-02-15

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (H{sub α}) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of H{sub α} emission near the bias plate has been clearly observed. The same time trend on H{sub α} intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed.

  5. Spot size measurement of flash-radiography source utilizing the pinhole imaging method

    CERN Document Server

    Wang, Yi; Chen, Nan; Cheng, Jinming; Xie, Yutong; Liu, Yulong; Long, Quanhong

    2015-01-01

    The spot size of the x-ray source is a key parameter of a flash-radiography facility, which is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam is tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  6. High resolution coherent diffractive imaging with a table-top extreme ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Vu Le, Hoang, E-mail: vuhoangle@swin.edu.au; Ba Dinh, Khuong; Hannaford, Peter; Van Dao, Lap [Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122 (Australia)

    2014-11-07

    We demonstrate a resolution of 45 nm with a sample size down to 3 μm × 3 μm is achieved in a short exposure time of 2 s, from the diffraction pattern generated by a table-top high harmonic source at around 30 nm. By using a narrow-bandwidth focusing mirror, the diffraction pattern's quality is improved and the required exposure time is significantly reduced. In order to obtain a high quality of the reconstructed image, the ratio of the beam size to the sample size and the curvature of the focused beam need to be considered in the reconstruction process. This new experimental scheme is very promising for imaging sub-10 nm scale objects with a table-top source based on a small inexpensive femtosecond laser system.

  7. Spot size measurement of a flash-radiography source using the pinhole imaging method

    Science.gov (United States)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong

    2016-07-01

    The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  8. Noninterferometric phase-contrast images obtained with incoherent x-ray sources

    International Nuclear Information System (INIS)

    We report on what are believed to be the first full-scale images obtained with the coded aperture concept, which uses conventional x-ray sources without the need to collimate/aperture their output. We discuss the differences in the underpinning physical principles with respect to other methods, and explain why these might lead to a more efficient use of the source. In particular, we discuss how the evaluation of the first imaging system provided promising indications on the method's potential to detect details invisible to conventional absorption methods, use an increased average x-ray energy, and reduce exposure times--all important aspects with regards to real-world implementations.

  9. Comparison of seafloor sound-speed profile measurement between the image source and reflection seismology techniques

    OpenAIRE

    PINSON, Samuel

    2015-01-01

    In the context of sediment characterization, the image source method provides a fast and automated sound-speed profile measurement of the seafloor. In this letter, this method is compared to reflection seismology methods. The comparison highlights similarities in the signal processing and a difference in the basic equations of the wave reflection travel time analysis. Understanding the links between the two methods helps sheds additional light on each method.

  10. Fiber delivered two-color picosecond source through nonlinear spectral transformation for coherent Raman scattering imaging

    OpenAIRE

    Wang, Ke; Xu, Chris

    2012-01-01

    We demonstrate a two-color, fiber-delivered picosecond source for coherent Raman scattering (CRS) imaging through nonlinear spectral transformation. The wavelength tunable picosecond pump is generated by nonlinear spectral compression of a prechirped femtosecond pulse in a fiber wavelength division multiplexer (WDM). The 1064-nm synchronized picosecond Stokes pulse is generated through pulse carving of a continuous wave laser, nonlinear spectral broadening in 100-m standard single-mode fiber,...

  11. Dental image source sex cyst%牙源性囊肿的影像表现

    Institute of Scientific and Technical Information of China (English)

    李时光

    2015-01-01

    目的 探讨牙源性囊肿的影像表现,对牙源性囊肿的影像表现的临床鉴别诊断价值.方法 选取我院2011~2014年收治的牙源性囊肿患者55例,并且对牙源性囊肿的影像进行回顾性分析,并与手术病理结果对比.结果 24例颌骨牙源性囊性病变中,牙源性角化囊肿6例,特点是单房囊性病变,囊内的密度呈不均匀状呈现;非角化囊肿14例,表现呈现为颌骨内出现囊肿,且边界清晰,密度均匀;造釉细胞瘤4例,表现为囊内密度分布不那么均匀,而且会对周围的组织造成侵害.结论 颌骨牙源性囊性的CT颌骨牙源性囊肿病症不同的CT呈现形式,效果比X线明显要好,是检测颌骨牙源性囊肿的重要依据.%ObjectiveDental image source sex cyst, images of tooth source sex cyst clinical value in differential diagnosis.methods In our hospital from 2011 to 2014, to select the independent of 55 patients with tooth source sex cyst, and images of tooth source sex cyst were retrospectively analyzed, and compared with surgical pathology results.Results 24 cases of jaw teeth source sex cystic lesion, the teeth of source sex keratocysts, 6 cases of these teeth source sex keratocysts features a single room with a cystic lesion, the density is uneven in the sac present; 14 cases of non keratocysts, not the performance of the keratin cysts appear to occur within a jaw cyst, and the boundary is clear, uniform density; Ameloblastoma 4 cases, the symptoms of ameloblastoma is experience less uniform density distribution inside the capsule, and will cause infringement to the surrounding tissue.Conclusion Jaw cystic CT jaw teeth tooth origin source sex cyst disease different CT presentation styles, it is better than X-ray effect, is the important basis of source sex cyst jaw teeth.

  12. Faint Radio Sources in the NOAO Bootes Field. VLBA Imaging And Optical Identifications

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, J.M.; /NRAO, Socorro; Taylor, Greg B.; /NRAO, Socorro /KIPAC, Menlo Park; Rector, T.A.; /NRAO, Socorro /Alaska U.; Myers, S.T.; /NRAO, Socorro; Fassnacht, C.D.; /UC,

    2005-06-13

    As a step toward investigating the parsec-scale properties of faint extragalactic radio sources, the Very Long Baseline Array (VLBA) was used at 5.0 GHz to obtain phase-referenced images of 76 sources in the NOAO Booetes field. These 76 sources were selected from the FIRST catalog to have peak flux densities above 10 mJy at 5'' resolution and deconvolved major diameters of less than 3'' at 1.4 GHz. Fifty-five of these faint radio sources were identified with accretion-powered radio galaxies and quasars brighter than 25.5 mag in the optical I band. On VLA scales at 1.4 GHz, a measure of the compactness of the faint sources (the ratio of the peak flux density from FIRST to the integrated flux density from the NVSS catalog) spans the full range of possibilities arising from source-resolution effects. Thirty of the faint radio sources, or 39{sub -7}{sup +9}%, were detected with the VLBA at 5.0 GHz with peak flux densities above 6 {sigma} {approx} 2 mJy at 2 mas resolution. The VLBA detections occur through the full range of compactness ratios. The stronger VLBA detections can themselves serve as phase-reference calibrators, boding well for opening up much of the radio sky to VLBA imaging. For the adopted cosmology, the VLBA resolution corresponds to 17 pc or finer. Most VLBA detections are unresolved or slightly resolved but one is diffuse and five show either double or core-jet structures; the properties of these latter six are discussed in detail. Eight VLBA detections are unidentified and fainter than 25.5 mag in the optical I band; their properties are highlighted because they likely mark optically-obscured active nuclei at high redshift.

  13. 4D in vivo imaging of subpleural lung parenchyma by swept source optical coherence tomography

    Science.gov (United States)

    Meissner, S.; Tabuchi, A.; Mertens, M.; Homann, H.; Walther, J.; Kuebler, W. M.; Koch, E.

    2009-07-01

    In this feasibility study we present a method for 4D imaging of healthy and injured subpleural lung tissue in a mouse model. We used triggered swept source optical coherence tomography with an A-scan frequency of 20 kHz to image murine subpleural alveoli during the ventilation cycle. The data acquisition was gated to the pulmonary airway pressure to take one B-scan in each ventilation cycle for different pressure levels. The acquired B-scans were combined offline to one C-scan for each pressure level. Due to the high acquisition rate of the used optical coherence tomography system, we are also able to perform OCT Doppler imaging of the alveolar arterioles. We demonstrated that OCT is a useful tool to investigate the alveolar dynamics in spatial dimensions and to analyze the alveolar blood flow by using Doppler OCT.

  14. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Directory of Open Access Journals (Sweden)

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  15. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    CERN Document Server

    Men'shchikov, Alexander

    2016-01-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. The major source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, such mass estimates are uncertain. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow us to assess the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting image intensities gives more accurate masses for more resolved objects than the method o...

  16. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source

    CERN Document Server

    Rupp, Daniela; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; Vrakking, Marc J J; Fennel, Thomas; Rouzée, Arnaud

    2016-01-01

    Coherent diffractive imaging of individual free nanoparticles has opened novel routes for the in-situ analysis of their transient structural, optical, and electronic properties. So far, single-particle diffraction was assumed to be feasible only at extreme ultraviolet (XUV) and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using XUV pulses from a femtosecond-laser driven high harmonic source. We obtain bright scattering patterns that provide access to the nanostructure's optical parameters. Moreover, the wide-angle scattering data enable us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.

  17. High-resolution X-ray imaging for microbiology at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria (∼1 microm x 4 microm in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies

  18. Comparison of Open Source Compression Algorithms on Vhr Remote Sensing Images for Efficient Storage Hierarchy

    Science.gov (United States)

    Akoguz, A.; Bozkurt, S.; Gozutok, A. A.; Alp, G.; Turan, E. G.; Bogaz, M.; Kent, S.

    2016-06-01

    High resolution level in satellite imagery came with its fundamental problem as big amount of telemetry data which is to be stored after the downlink operation. Moreover, later the post-processing and image enhancement steps after the image is acquired, the file sizes increase even more and then it gets a lot harder to store and consume much more time to transmit the data from one source to another; hence, it should be taken into account that to save even more space with file compression of the raw and various levels of processed data is a necessity for archiving stations to save more space. Lossless data compression algorithms that will be examined in this study aim to provide compression without any loss of data holding spectral information. Within this objective, well-known open source programs supporting related compression algorithms have been implemented on processed GeoTIFF images of Airbus Defence & Spaces SPOT 6 & 7 satellites having 1.5 m. of GSD, which were acquired and stored by ITU Center for Satellite Communications and Remote Sensing (ITU CSCRS), with the algorithms Lempel-Ziv-Welch (LZW), Lempel-Ziv-Markov chain Algorithm (LZMA & LZMA2), Lempel-Ziv-Oberhumer (LZO), Deflate & Deflate 64, Prediction by Partial Matching (PPMd or PPM2), Burrows-Wheeler Transform (BWT) in order to observe compression performances of these algorithms over sample datasets in terms of how much of the image data can be compressed by ensuring lossless compression.

  19. OsiriX: an open-source software for navigating in multidimensional DICOM images.

    Science.gov (United States)

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-09-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix.

  20. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  1. OsiriX: an open-source software for navigating in multidimensional DICOM images.

    Science.gov (United States)

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-09-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix. PMID:15534753

  2. Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object

    CERN Document Server

    Pursiainen, Sampsa

    2016-01-01

    This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...

  3. Thermal imager sources of non-uniformities: modeling of static and dynamic contributions during operations

    Science.gov (United States)

    Sozzi, B.; Olivieri, M.; Mariani, P.; Giunti, C.; Zatti, S.; Porta, A.

    2014-05-01

    Due to the fast-growing of cooled detector sensitivity in the last years, on the image 10-20 mK temperature difference between adjacent objects can theoretically be discerned if the calibration algorithm (NUC) is capable to take into account and compensate every spatial noise source. To predict how the NUC algorithm is strong in all working condition, the modeling of the flux impinging on the detector becomes a challenge to control and improve the quality of a properly calibrated image in all scene/ambient conditions including every source of spurious signal. In literature there are just available papers dealing with NU caused by pixel-to-pixel differences of detector parameters and by the difference between the reflection of the detector cold part and the housing at the operative temperature. These models don't explain the effects on the NUC results due to vignetting, dynamic sources out and inside the FOV, reflected contributions from hot spots inside the housing (for example thermal reference far of the optical path). We propose a mathematical model in which: 1) detector and system (opto-mechanical configuration and scene) are considered separated and represented by two independent transfer functions 2) on every pixel of the array the amount of photonic signal coming from different spurious sources are considered to evaluate the effect on residual spatial noise due to dynamic operative conditions. This article also contains simulation results showing how this model can be used to predict the amount of spatial noise.

  4. Nanoscale displacement of the image of an atomic source of radiation

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Jie Shu; Henk F. Arnoldus

    2009-01-01

    Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.

  5. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    CERN Document Server

    Huffenberger, K M; Bischoff, C; Buder, I; Chinone, Y; Cleary, K; Kusaka, A; Monsalve, R; Næss, S K; Newburgh, L B; Reeves, R; Ruud, T M; Wehus, I K; Zwart, J T L; Dickinson, C; Eriksen, H K; Gaier, T; Gundersen, J O; Hasegawa, M; Hazumi, M; Miller, A D; Radford, S J E; Readhead, A C S; Staggs, S T; Tajima, O; Thompson, K L

    2014-01-01

    We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $\\sim$480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30--40 mJy per Stokes parameter. At S/N $> 3$ significance, we detect linear polarization for seven sources in Q-band and six in W-band; only $1.3 \\pm 1.1$ detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization meas...

  6. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Science.gov (United States)

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  7. The first VLBI image of an Infrared-Faint Radio Source

    CERN Document Server

    Middelberg, E; Tingay, S; Mao, M Y; Phillips, C J; Hotan, A W

    2008-01-01

    Context: To investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  8. Design of Programmable LED Controller with a Variable Current Source for 3D Image Display

    Directory of Open Access Journals (Sweden)

    Kyung-Ryang Lee

    2014-12-01

    Full Text Available Conventional fluorescent light sources, as well as incandescent light sources are gradually being replaced by Light Emitting Diodes (LEDs for reducing power consumption in the image display area for multimedia application. An LED light source requires a controller with a low-power operation. In this paper, a low-power technique using adiabatic operation is applied for the implementation of LED controller with a stable constant-current, a low-power and low-heat function. From the simulation result, the power consumption of the proposed LED controller using adiabatic operation was reduced to about 87% in comparison with conventional operation with a constant VDD. The proposed circuit is expected to be an alternative LED controller which is sensitive to external conditions such as heat.

  9. Coherent diffractive imaging microscope with a high-order harmonic source.

    Science.gov (United States)

    Dinh, Khuong Ba; Le, Hoang Vu; Hannaford, Peter; Dao, Lap Van

    2015-06-10

    We report the generation of highly coherent extreme ultraviolet sources with wavelengths around 30 and 10 nm by phase-matched high-order harmonic generation (HHG) in a gas cell filled with argon and helium, respectively. We then perform coherent diffractive imaging (CDI) by using a focused narrow-bandwidth HHG source with wavelength around 30 nm as an illumination beam for two kinds of samples. The first is a transmission sample and the second is a absorption sample. In addition, we report the successful reconstruction of a complex absorption sample using a tabletop high-harmonic source. This will open the path to the realization of a compact soft x-ray microscope to investigate biological samples such as membrane proteins. PMID:26192827

  10. Separation of image-distortion sources and magnetic-field measurement in scanning electron microscope (SEM).

    Science.gov (United States)

    Płuska, Mariusz; Czerwinski, Andrzej; Ratajczak, Jacek; Katcki, Jerzy; Oskwarek, Lukasz; Rak, Remigiusz

    2009-01-01

    The electron-microscope image distortion generated by electromagnetic interference (EMI) is an important problem for accurate imaging in scanning electron microscopy (SEM). Available commercial solutions to this problem utilize sophisticated hardware for EMI detection and compensation. Their efficiency depends on the complexity of distortions influence on SEM system. Selection of a proper method for reduction of the distortions is crucial. The current investigations allowed for a separation of the distortions impact on several components of SEM system. A sum of signals from distortion sources causes wavy deformations of specimen shapes in SEM images. The separation of various reasons of the distortion is based on measurements of the periodic deformations of the images for different electron beam energies and working distances between the microscope final aperture and the specimen. Using the SEM images, a direct influence of alternating magnetic field on the electron beam was distinguished. Distortions of electric signals in the scanning block of SEM were also separated. The presented method separates the direct magnetic field influence on the electron beam below the SEM final aperture (in the chamber) from its influence above this aperture (in the electron column). It also allows for the measurement of magnetic field present inside the SEM chamber. The current investigations gave practical guidelines for selecting the most efficient solution for reduction of the distortions.

  11. The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.

    Science.gov (United States)

    Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin

    2007-11-01

    This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences. PMID:17703338

  12. Self characterization of a coded aperture array for neutron source imaging

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF

  13. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  14. High speed imaging of dynamic processes with a switched source x-ray CT system

    International Nuclear Information System (INIS)

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data. (paper)

  15. Detection of point sources on two-dimensional images based on peaks

    CERN Document Server

    Lopez-Caniego, M; Sanz, J L; Barreiro, R B

    2005-01-01

    This article considers the detection of point sources in two dimensional astronomical images. The detection scheme we propose is based on peak statistics. We discuss the example of the detection of far galaxies in Cosmic Microwave Background experiments throughout the paper, although the method we present is totally general and can be used in many other fields of data analysis. We assume sources with a Gaussian profile --that is a fair approximation of the profile of a point source convolved with the detector beam in microwave experiments-- on a background modeled by a homogeneous and isotropic Gaussian random field characterized by a scale-free power spectrum. Point sources are enhanced with respect to the background by means of linear filters. After filtering, we identify local maxima and apply our detection scheme, a Neyman-Pearson detector that defines our region of acceptance based on the a priori pdf of the sources and the ratio of number densities. We study the different performances of some linear fil...

  16. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    Science.gov (United States)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  17. Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry

    Science.gov (United States)

    Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.

    2011-12-01

    Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.

  18. A potential X-pinch based point X-ray source for phase contrast imaging of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Phase contrast X-ray imaging is necessary to monitor and validate the DT ice layer inside a cryo-ignition target. Presently available sources require a minute long exposure for imaging, thus contributing to blurring of images at the edges. An X-pinch is a bright, pulsed X-ray source that produces pulses of X-rays duration < 1 ns thus eliminating such blurring. Our preliminary results show that with an optimized detection system an X-pinch generated image could be used to locate the ice layer with the accuracy demanded by the NIF (national ignition facility) specifications. (authors)

  19. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    International Nuclear Information System (INIS)

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging

  20. Two-mode squeezed light source for quantum illumination and quantum imaging

    Science.gov (United States)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  1. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation

    Science.gov (United States)

    Chambers, J. E.; Wilkinson, P. B.; Wealthall, G. P.; Loke, M. H.; Dearden, R.; Wilson, R.; Allen, D.; Ogilvy, R. D.

    2010-10-01

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents.

  2. Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, D.; Werner, M.K.; Thomas, C.; Tsiflikas, I.; Reimann, A.; Claussen, C.D.; Heuschmid, M. [Tuebingen Univ. (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Koitschev, A. [Tuebingen Univ. (Germany). Abt. fuer Hals-Nasen-Ohrenheilkunde

    2009-01-15

    Purpose: Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Materials and Methods: Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). Results: In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 {+-} 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 {+-} 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). Conclusion: MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential. (orig.)

  3. Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography

    International Nuclear Information System (INIS)

    Purpose: Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Materials and Methods: Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). Results: In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 ± 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 ± 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). Conclusion: MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential. (orig.)

  4. Bioluminescence imaging of point sources implanted in small animals post mortem: evaluation of a method for estimating source strength and depth

    International Nuclear Information System (INIS)

    The performance of a simple approach for the in vivo reconstruction of bioluminescent point sources in small animals was evaluated. The method uses the diffusion approximation as a forward model of light propagation from a point source in a homogeneous tissue to find the source depth and power. The optical properties of the tissue are estimated from reflectance images obtained at the same location on the animal. It was possible to localize point sources implanted in mice, 2-8 mm deep, to within 1 mm. The same performance was achieved for sources implanted in rat abdomens when the effects of tissue surface curvature were eliminated. The source power was reconstructed within a factor of 2 of the true power for the given range of depths, even though the apparent brightness of the source varied by several orders of magnitude. The study also showed that reconstructions using optical properties measured in situ were superior to those based on data in the literature

  5. Imaging source process of earthquakes from back-projection of high frequency seismograms

    Science.gov (United States)

    Pulido, N.

    2007-12-01

    Standard methodologies for calculation of the earthquakes source process, are based on inversion procedures which require the calculation of complete source-stations Greens functions. On the other hand alternative procedures have been developed in order to directly retrieve an image of the rupture process from high frequency seismograms (Spudich et. al. 1984, Kao and Shan 2004, Ishii et. al. 2005). In this study we extend the Isochron- Backprojection methodology (Festa et al., 2006), to image the source process of earthquakes, by incorporating the use of high frequency seismograms around the source area. We take full advantage of the dense strong motion networks available in Japan to model the source process of recent Japanese earthquakes. The IBM method differs from conventional earthquake source inversion approaches, in that the calculation of Green's functions is not required. The idea of the procedure is to directly back-project amplitudes of seismograms envelopes around the source into a space image of the earthquake rupture (Pulido et al. 2007). The method requires the calculation of theoretical travel times between a set of grids points distributed across the fault plane, and every station. For this purpose and for simplicity we assume a multi-layered 1D model. All travel times are adjusted by a station correction factor, calculated by taking the difference between observed and theoretical travel times at each station. Next we calculate the rupture time of every grid within the fault plane by assuming some arbitrary constant rupture velocity value, and obtain the isochrones distribution across the fault plane by adding subfaults rupture times and the corresponding travel times for every station. We select waveforms that have clear P and S wavelets, which means stations located approximately between 40 km and 100km from the epicenter. We extract P-wave windows between the origin time of the earthquake and the theoretical arrival of the S-wave, and taper 1s of

  6. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-03-01

    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  7. OPEN SOURCE IMAGE-PROCESSING TOOLS FOR LOW-COST UAV-BASED LANDSLIDE INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    U. Niethammer

    2012-09-01

    Full Text Available In recent years, the application of unmanned aerial vehicles (UAVs has become more common and the availability of lightweight digital cameras has enabled UAV-systems to represent affordable and practical remote sensing platforms, allowing flexible and high- resolution remote sensing investigations. In the course of numerous UAV-based remote sensing campaigns significant numbers of airborne photographs of two different landslides have been acquired. These images were used for ortho-mosaic and digital terrain model (DTM generation, thus allowing for high-resolution landslide monitoring. Several new open source image- and DTM- processing tools are now providing a complete remote sensing working cycle with the use of no commercial hard- or software.

  8. Equivalent physical models and formulation of equivalent source layer in high-resolution EEG imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yao Dezhong [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu City, 610054, Sichuan Province (China); He Bin [The University of Illinois at Chicago, IL (United States)

    2003-11-07

    In high-resolution EEG imaging, both equivalent dipole layer (EDL) and equivalent charge layer (ECL) assumed to be located just above the cortical surface have been proposed as high-resolution imaging modalities or as intermediate steps to estimate the epicortical potential. Presented here are the equivalent physical models of these two equivalent source layers (ESL) which show that the strength of EDL is proportional to the surface potential of the layer when the outside of the layer is filled with an insulator, and that the strength of ECL is the normal current of the layer when the outside is filled with a perfect conductor. Based on these equivalent physical models, closed solutions of ECL and EDL corresponding to a dipole enclosed by a spherical layer are given. These results provide the theoretical basis of ESL applications in high-resolution EEG mapping.

  9. Imaging of local temperature distributions in mesas of high-Tc superconducting terahertz sources

    Science.gov (United States)

    Tsujimoto, M.; Kambara, H.; Maeda, Y.; Yoshioka, Y.; Nakagawa, Y.; Kakeya, I.

    2014-12-01

    Stacks of intrinsic Josephson junctions in high-Tc superconductors are a promising source of intense, continuous, and monochromatic terahertz waves. In this paer, we establish a fluorescence-based temperature imaging system to directly image the surface temperature on a Bi2Sr2CaCu2O8+δ mesa sample. Intense terahertz emissions are observed in both high- and low-bias regimes, where the mesa voltage satisfies the cavity resonance condition. In the high- bias regime, the temperature distributions are shown to be inhomogeneous with a considerable temperature rise. In contrast, in the low-bias regime, the distributions are rather uniform and the local temperature is close to the bath temperature over the entire sample.

  10. Open Source software and social networks: Disruptive alternatives for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratib, Osman, E-mail: osman.ratib@hcuge.ch [Department of Medical Imaging and Information Sciences, University Hospital of Geneva, 24, rue Micheli-du-Crest, 1205 Geneva (Switzerland); Rosset, Antoine; Heuberger, Joris [Department of Medical Imaging and Information Sciences, University Hospital of Geneva, 24, rue Micheli-du-Crest, 1205 Geneva (Switzerland)

    2011-05-15

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. Methods: This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Observations: Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily

  11. Open Source software and social networks: Disruptive alternatives for medical imaging

    International Nuclear Information System (INIS)

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. Methods: This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Observations: Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate

  12. Smartphones Get Emotional: Mind Reading Images and Reconstructing the Neural Sources

    DEFF Research Database (Denmark)

    Petersen, Michael Kai; Stahlhut, Carsten; Stopczynski, Arkadiusz;

    2011-01-01

    but may also provide an intuitive interface for interacting with a 3D rendered model of brain activity. Integrating a wireless EEG set with a smartphone thus offers completely new opportunities for modeling the mental state of users as well as providing a basis for novel bio-feedback applications.......Combining a 14 channel neuroheadset with a smartphone to capture and process brain imaging data, we demonstrate the ability to distinguish among emotional responses re ected in dierent scalp potentials when viewing pleasant and unpleasant pictures compared to neutral content. Clustering independent...... components across subjects we are able to remove artifacts and identify common sources of synchronous brain activity, consistent with earlier ndings based on conventional EEG equipment. Applying a Bayesian approach to reconstruct the neural sources not only facilitates dierentiation of emotional responses...

  13. Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury

    Science.gov (United States)

    Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael

    2008-01-01

    Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.

  14. Strategies for Imaging Faint Extended Sources in the Near-Infrared

    CERN Document Server

    Vaduvescu, O; Vaduvescu, Ovidiu; Call, Marshall L. Mc

    2004-01-01

    Quantitative information about variations in the background at J and K' are presented and used to develop guidelines for the acquisition and reduction of ground-based images of faint extended sources in the near-infrared, especially those which occupy a significant fraction of the field of view of a detector or which are located in areas crowded with foreground or background sources. Findings are based primarily upon data acquired over three photometric nights with the 3.6x3.6 arcmin CFHT-IR array on the Canada-France-Hawaii Telescope atop Mauna Kea. Although some results are specific to CFHT, overall conclusions should be useful in guiding observing and reduction strategies of extended objects elsewhere.

  15. Identification of radiation induced dark current sources in pinned photodiode CMOS image sensors

    International Nuclear Information System (INIS)

    This paper presents an investigation of Total Ionizing Dose (TID) induced dark current sources in Pinned Photodiodes (PPD) CMOS Image Sensors based on pixel design variations. The influence of several layout parameters is studied. Only one parameter is changed at a time enabling the direct evaluation of its contribution to the observed device degradation. By this approach, the origin of radiation induced dark current in PPD is localized on the pixel layout. The PPD peripheral shallow trench isolation does not seem to play a role in the degradation. The PPD area and a transfer gate contribution independent of the pixel dimensions appear to be the main sources of the TID induced dark current increase. This study also demonstrates that applying a negative voltage on the transfer gate during integration strongly reduces the radiation induced dark current. (authors)

  16. Multiple source associated particle imaging for simultaneous capture of multiple projections

    Science.gov (United States)

    Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A

    2013-11-19

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.

  17. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    Science.gov (United States)

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  18. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  19. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  20. Design, development and first experiments on the X-ray imaging beamline at Indus-2 synchrotron source RRCAT, India.

    Science.gov (United States)

    Agrawal, A K; Singh, B; Kashyap, Y S; Shukla, M; Sarkar, P S; Sinha, Amar

    2015-11-01

    A full-field hard X-ray imaging beamline (BL-4) was designed, developed, installed and commissioned recently at the Indus-2 synchrotron radiation source at RRCAT, Indore, India. The bending-magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high-resolution radiography, propagation- and analyzer-based phase contrast imaging, real-time imaging, absorption and phase contrast tomography etc. First experiments on propagation-based phase contrast imaging and micro-tomography are reported. PMID:26524319

  1. Experimental observation of spatial jitters of a triple-pulse x-ray source based on the pinhole imaging technique

    OpenAIRE

    Wang, Yi; Yang, Zhiyong; Jing, Xiaobing; Li, Qin; Ding, Hengsong; Dai, Zhiyong

    2015-01-01

    In high-energy flash radiography, scattered photons will degrade the acquiring image, which limits the resolving power of the interface and density of the dense object. The application of large anti-scatter grid is capable of remarkably decreasing scattered photons, whereas requires a very stable source position in order to reduce the loss of signal photons in the grid structure. The pinhole imaging technique is applied to observe spatial jitters of a triple-pulse radiographic source produced...

  2. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Science.gov (United States)

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  3. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  4. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization.

    Science.gov (United States)

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  5. Imaging of SO2 emissions from anthropogenic sources as part of AROMAT campaign

    Science.gov (United States)

    Brenot, H. H.; Merlaud, A.; Meier, A.; Ruhtz, T.; Van Roozendael, M.; Stebel, K.; Constantin, D.; Belegante, L.; Dekemper, E.; Theys, N.; Campion, R.; Schuettemeyer, D.

    2015-12-01

    This study presents field campaign measurements of SO2 emissions from pollution source in Romania. Three types of instruments (SO2 camera, whisk and push broom imager) proceeded ground-based and airborne data acquisition as part of the AROMAT ESA project (monitoring of SO2 plume from a large thermoelectric plant). The SO2 camera used is an imaging system composed of two UV cameras (synchronised in space and time) allowing fast acquisitions of intensity. Each camera is equipped with the same lens and a specific narrow band-pass filter (one at the wavelength at which SO2 absorbs and one at an off-band wavelength). The combination of two UV cameras provides a 2D image of the integrated content of SO2. The Small Whisk broom Imager for trace gases monitoriNG (SWING) used in this study and developed at the Belgian Institute for Space Aeronomy (BIRA), is based on a compact ultra-violet visible spectrometer and a scanning mirror. The Airborne imaging instrument for Measurements of Atmospheric Pollution (AirMAP) constructed at the Institute of Environmental Physics of the University of Bremen (IUP), performed SO2 measurements in the UV-visible spectral range. Both whisk and push broom scanner use the DOAS technique, that is based on the relationship between the quantity of light absorbed and the number of SO2 molecules in the light path. SWING and AirMAP instruments provide scans of SO2 column density. Quantification of 2D field contents and fluxes of anthropogenic SO2 emissions from Turceni power station (Romania) are shown. Preparatory results from data acquisition in the harbour of Antwerp (monitoring of SO2 emissions from refinery and chemical industry) are also presented.

  6. Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization

    Science.gov (United States)

    Tuia, Devis; Marcos, Diego; Camps-Valls, Gustau

    2016-10-01

    Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon manifold alignment. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through kernelization. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.

  7. X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation

    International Nuclear Information System (INIS)

    A novel X-ray source based on parametric X-ray radiation (PXR) has been employed for X-ray imaging at the Laboratory for Electron Beam Research and Application (LEBRA), Nihon University. Notable features of PXR are tunable energy, monochromaticity with spatial chirp, narrow local bandwidth and spatial coherence. Since the X-ray beam from the PXR system has a large irradiation area with uniform flux density, the PXR-based source is suited for X-ray imaging, especially for application to phase-contrast imaging. Despite the cone-like X-ray beam, diffraction-enhanced imaging (DEI) can be employed as a phase contrast imaging technique. DEI experiments were performed using 14- to 34-keV X-rays and the phase-gradient images were obtained. The results demonstrated the capability of PXR as an X-ray source for phase-contrast imaging with a large irradiation field attributed to the cone-beam effect. Given the significant properties of the LEBRA-PXR source, the result suggests the possible construction of a compact linac-driven PXR-Imaging instrument and its application to medical diagnoses

  8. Improvement of dem Generation from Aster Images Using Satellite Jitter Estimation and Open Source Implementation

    Science.gov (United States)

    Girod, L.; Nuth, C.; Kääb, A.

    2015-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.

  9. An adaptive source-channel coding with feedback for progressive transmission of medical images.

    Science.gov (United States)

    Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush

    2009-01-01

    A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design.

  10. An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images

    Directory of Open Access Journals (Sweden)

    Jen-Lung Lo

    2009-01-01

    Full Text Available A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI. The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician. In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC and Rayleigh channel. The experimental results verify the effectiveness of the design.

  11. MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog

    CERN Document Server

    Kajisawa, Masaru; Tanaka, Ichi; Yamada, Toru; Akiyama, Masayuki; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Konishi, Masahiro; Yoshikawa, Tomohiro; Nishimura, Tetsuo; Omata, Koji; Ouchi, Masami; Iwata, Ikuru; Hamana, Takashi; Onodera, Masato

    2010-01-01

    We present deep J-, H-, and Ks-band imaging data of the MOIRCS Deep Survey (MODS), which was carried out with Multi-Object Infrared Camera and Spectrograph (MOIRCS) mounted on the Subaru telescope in the GOODS-North region. The data reach 5sigma total limiting magnitudes for point sources of J=23.9, H=22.8, and Ks=22.8 (Vega magnitude) over 103 arcmin^2 (wide field). In 28 arcmin^2 of the survey area, which is ultra deep field of the MODS (deep field), the data reach the 5sigma depths of J=24.8, H=23.4, and Ks=23.8. The spatial resolutions of the combined images are FWHM ~ 0.6 arcsec and ~ 0.5 arcsec for the wide and deep fields in all bands, respectively. Combining the MODS data with the multi-wavelength public data taken with the HST, Spitzer, and other ground-based telescopes in the GOODS field, we construct a multi-wavelength photometric catalog of Ks-selected sources. Using the catalog, we present Ks-band number counts and near-infrared color distribution of the detected objects, and demonstrate some sel...

  12. Towards Complete, Geo-Referenced 3d Models from Crowd-Sourced Amateur Images

    Science.gov (United States)

    Hartmann, W.; Havlena, M.; Schindler, K.

    2016-06-01

    Despite a lot of recent research, photogrammetric reconstruction from crowd-sourced imagery is plagued by a number of recurrent problems. (i) The resulting models are chronically incomplete, because even touristic landmarks are photographed mostly from a few "canonical" viewpoints. (ii) Man-made constructions tend to exhibit repetitive structure and rotational symmetries, which lead to gross errors in the 3D reconstruction and aggravate the problem of incomplete reconstruction. (iii) The models are normally not geo-referenced. In this paper, we investigate the possibility of using sparse GNSS geo-tags from digital cameras to address these issues and push the boundaries of crowd-sourced photogrammetry. A small proportion of the images in Internet collections (≍ 10 %) do possess geo-tags. While the individual geo-tags are very inaccurate, they nevertheless can help to address the problems above. By providing approximate geo-reference for partial reconstructions they make it possible to fuse those pieces into more complete models; the capability to fuse partial reconstruction opens up the possibility to be more restrictive in the matching phase and avoid errors due to repetitive structure; and collectively, the redundant set of low-quality geo-tags can provide reasonably accurate absolute geo-reference. We show that even few, noisy geo-tags can help to improve architectural models, compared to puristic structure-from-motion only based on image correspondence.

  13. Exploring three faint source detections methods for aperture synthesis radio images

    Science.gov (United States)

    Peracaula, M.; Torrent, A.; Masias, M.; Lladó, X.; Freixenet, J.; Martí, J.; Sánchez-Sutil, J. R.; Muñoz-Arjonilla, A. J.; Paredes, J. M.

    2015-04-01

    Wide-field radio interferometric images often contain a large population of faint compact sources. Due to their low intensity/noise ratio, these objects can be easily missed by automated detection methods, which have been classically based on thresholding techniques after local noise estimation. The aim of this paper is to present and analyse the performance of several alternative or complementary techniques to thresholding. We compare three different algorithms to increase the detection rate of faint objects. The first technique consists of combining wavelet decomposition with local thresholding. The second technique is based on the structural behaviour of the neighbourhood of each pixel. Finally, the third algorithm uses local features extracted from a bank of filters and a boosting classifier to perform the detections. The methods' performances are evaluated using simulations and radio mosaics from the Giant Metrewave Radio Telescope and the Australia Telescope Compact Array. We show that the new methods perform better than well-known state of the art methods such as SEXTRACTOR, SAD and DUCHAMP at detecting faint sources of radio interferometric images.

  14. Multimodal Imaging Using a 11B(d,nγ)12C Source

    Science.gov (United States)

    Nattress, Jason; Rose, Paul; Mayer, Michal; Wonders, Marc; Wilhelm, Kyle; Erickson, Anna; Jovanovic, Igor; Multimodal Imaging; Nuclear Detection (MIND) in Active Interrogation Collaboration

    2016-03-01

    Detection of shielded special nuclear material (SNM) still remains one of the greatest challenges facing nuclear security, where small signal-to-background ratios result from complex, challenging configurations of practical objects. Passive detection relies on the spontaneous radioactive decay, whereas active interrogation (AI) uses external probing radiation to identify and characterize the material. AI provides higher signal intensity, providing a more viable method for SNM detection. New and innovative approaches are needed to overcome specific application constraints, such as limited scanning time. We report on a new AI approach that integrates both neutron and gamma transmission signatures to deduce specific material properties that can be utilized to aid SNM identification. The approach uses a single AI source, single detector type imaging system based on the 11B(d,nγ)12C reaction and an array of eight EJ-309 liquid scintillators, respectively. An integral transmission imaging approach has been employed initially for both neutrons and photons, exploiting the detectors' particle discrimination properties. Representative object images using neutrons and photons will be presented.

  15. An open-source engine for the processing of electron backscatter patterns: EBSD-image.

    Science.gov (United States)

    Pinard, Philippe T; Lagacé, Marin; Hovington, Pierre; Thibault, Denis; Gauvin, Raynald

    2011-06-01

    An open source software package dedicated to processing stored electron backscatter patterns is presented. The package gives users full control over the type and order of operations that are performed on electron backscatter diffraction (EBSD) patterns as well as the results obtained. The current version of EBSD-Image (www.ebsd-image.org) offers a flexible and structured interface to calculate various quality metrics over large datasets. It includes unique features such as practical file formats for storing diffraction patterns and analysis results, stitching of mappings with automatic reorganization of their diffraction patterns, and routines for processing data on a distributed computer grid. Implementations of the algorithms used in the software are described and benchmarked using simulated diffraction patterns. Using those simulated EBSD patterns, the detection of Kikuchi bands in EBSD-Image was found to be comparable to commercially available EBSD systems. In addition, 24 quality metrics were evaluated based on the ability to assess the level of deformation in two samples (copper and iron) deformed using 220 grit SiC grinding paper. Fourteen metrics were able to properly measure the deformation gradient of the samples.

  16. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  17. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    Science.gov (United States)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  18. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    Science.gov (United States)

    Men'shchikov, A.

    2016-09-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. These mass estimates, which are the main source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, are uncertain. It is important to clearly understand sources of statistical and systematic errors stemming from the methods and minimize the errors. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow assessment of the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting intensities gives more accurate masses for more resolved objects than the method of fitting fluxes. With the latter, a fitting model that assumes optically thin emission gives much better results than the one allowing substantial optical depths. Temperature excesses within the objects above the mass-averaged values skew their spectral shapes towards shorter wavelengths, leading to masses underestimated typically by factors 2-5. With a fixed opacity slope deviating from the true value by a factor of 1.2, masses are inaccurate within a factor of 2. The most accurate masses are estimated by fitting just two or three of the longest wavelength measurements. Conventional algorithm of background subtraction is a likely source of large systematic errors. The absolute values of masses of the unresolved or poorly resolved objects in star-forming regions are uncertain to within at least a factor of 2-3.

  19. EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis.

    Science.gov (United States)

    Valdés-Sosa, Pedro A; Vega-Hernández, Mayrim; Sánchez-Bornot, José Miguel; Martínez-Montes, Eduardo; Bobes, María Antonieta

    2009-06-01

    This article describes a spatio-temporal EEG/MEG source imaging (ESI) that extracts a parsimonious set of "atoms" or components, each the outer product of both a spatial and a temporal signature. The sources estimated are localized as smooth, minimally overlapping patches of cortical activation that are obtained by constraining spatial signatures to be nonnegative (NN), orthogonal, sparse, and smooth-in effect integrating ESI with NN-ICA. This constitutes a generalization of work by this group on the use of multiple penalties for ESI. A multiplicative update algorithm is derived being stable, fast and converging within seconds near the optimal solution. This procedure, spatio-temporal tomographic NN ICA (STTONNICA), is equally able to recover superficial or deep sources without additional weighting constraints as tested with simulations. STTONNICA analysis of ERPs to familiar and unfamiliar faces yields an occipital-fusiform atom activated by all faces and a more frontal atom that only is active with familiar faces. The temporal signatures are at present unconstrained but can be required to be smooth, complex, or following a multivariate autoregressive model.

  20. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    Science.gov (United States)

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice. PMID:27478927

  1. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    CERN Document Server

    Cool, Adrienne M; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2012-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10'x10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray ...

  2. Experimental observation of spatial jitters of a triple-pulse x-ray source based on the pinhole imaging technique

    CERN Document Server

    Wang, Yi; Jing, Xiaobing; Li, Qin; Ding, Hengsong; Dai, Zhiyong

    2015-01-01

    In high-energy flash radiography, scattered photons will degrade the acquiring image, which limits the resolving power of the interface and density of the dense object. The application of large anti-scatter grid is capable of remarkably decreasing scattered photons, whereas requires a very stable source position in order to reduce the loss of signal photons in the grid structure. The pinhole imaging technique is applied to observe spatial jitters of a triple-pulse radiographic source produced by a linear induction accelerator. Numerical simulations are taken to analyze the performance of the imaging technique with same or close parameters of the pinhole object and experimental alignment Experiments are carried out to observe spatial jitters of the source between different measurements. Deviations of the source position between different pulses are also measured in each experiment.

  3. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  4. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  5. Tailoring a plasma focus as hard x-ray source for imaging

    Science.gov (United States)

    Hussain, S.; Shafiq, M.; Zakaullah, M.

    2010-01-01

    An investigation on temporal and spatial properties of hard x-rays (15-88 keV) emitted in a 5.3 kJ plasma focus using Si pin diodes and a pinhole camera is reported. The maximum yield of hard x-rays of 15-88 keV range is estimated about 4.7 J and corresponding efficiency for x-ray generation is 0.09%. The x-rays with energy >15 keV have 15-20 ns pulse duration and ˜1 mm source size. This radiation is used for contact x-ray imaging of biological and compound objects and spatial resolution of ˜50 μm is demonstrated.

  6. Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging.

    Science.gov (United States)

    Patel, Anjla C; Thornton, Rachel C; Mitchell, Tejal N; Michell, Andrew W

    2016-10-01

    Over the last two decades, technological advances in electroencephalography (EEG) have allowed us to extend its clinical utility for the evaluation of patients with epilepsy. This article reviews three main areas in which substantial advances have been made in the diagnosis and pre-surgical planning of patients with epilepsy. Firstly, the development of small portable video-EEG systems have allowed some patients to record their attacks at home, thereby improving diagnosis, with consequent substantial healthcare and economic implications. Secondly, in specialist centres carrying out epilepsy surgery, there has been considerable interest in whether bursts of very high frequency EEG activity can help to determine the regions of the brain likely to be generating the seizures. Identification of these discharges, initially only recorded from intracranial electrodes, may thus allow better surgical planning and improve surgical outcomes. Finally we discuss the contribution of electrical source imaging in the pre-surgical evaluation of patients with focal epilepsy, and its prospects for the future.

  7. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  8. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation.

    Science.gov (United States)

    Mazurenka, M; Jelzow, A; Wabnitz, H; Contini, D; Spinelli, L; Pifferi, A; Cubeddu, R; Mora, A Dalla; Tosi, A; Zappa, F; Macdonald, R

    2012-01-01

    We report results of the proof-of-principle tests of a novel non-contact tissue imaging system. The system utilizes a quasi-null source-detector separation approach for time-domain near-infrared spectroscopy, taking advantage of an innovative state-of-the-art fast-gated single photon counting detector. Measurements on phantoms demonstrate the feasibility of the non-contact approach for the detection of optically absorbing perturbations buried up to a few centimeters beneath the surface of a tissue-like turbid medium. The measured depth sensitivity and spatial resolution of the new system are close to the values predicted by Monte Carlo simulations for the inhomogeneous medium and an ideal fast-gated detector, thus proving the feasibility of the non-contact approach for high density diffuse reflectance measurements on tissue. Potential applications of the system are also discussed. PMID:22274351

  9. APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES

    Directory of Open Access Journals (Sweden)

    M. Pierrot Deseilligny

    2012-09-01

    Full Text Available IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  10. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Science.gov (United States)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  11. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Directory of Open Access Journals (Sweden)

    Martin Krenkel

    2016-03-01

    Full Text Available We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  12. Low Dose X-Ray Sources and High Quantum Efficiency Sensors: The Next Challenge in Dental Digital Imaging?

    International Nuclear Information System (INIS)

    Objective(s). The major challenge encountered to decrease the milliamperes (mA) level in X-ray imaging systems is the quantum noise phenomena. This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI) prototype comprising a low mA X-ray source and a novel microlens-based sensor relative to current imaging technologies. Study Design. A LDXI in static (group 1) and dynamic (group 2) modes was compared to medical fluoroscopy (group 3), digital intraoral radiography (group 4), and CBCT scan (group 5) using a dental phantom. Results. The Mann-Whitney test showed no statistical significance (α = 0.01) in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds) between groups 1 and 5 and 2 and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5. Conclusions. The LDXI proved the concept for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector level principles with microlens could be applied to current imaging technologies to considerably reduce dose exposure without compromising image resolution in the near future

  13. X-ray imaging and imaging spectroscopy of fusion plasmas and light-source experiments with spherical optics and pixel array detectors

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Beiersdorfer, P.; Sanchez del Rio, M.; Zhang, L.

    2012-10-01

    High resolution (λ/Δλ ~10,000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixelarray detector (PAD) is used world wide for Doppler measurements of ion-temperature (Ti) and plasma flow-velocityprofiles in magnetic confinement fusion (MCF) plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion (ICF) plasmas and targets on x-ray light source beam lines, with spatial resolution of microns. A new concept of using matched pairs of spherically bent crystals for monochromatic stigmatic 2D x-ray imaging of mm sized sources offers the possibility of spatial resolution of microns and large solid angle, relative to that achieved with pinhole imaging. Other potential applications of the 2D imaging schemes include x-ray lithography and x-ray microscopy for biological and materials science research. Measurements from MFE plasmas, as well as laboratory experiments and ray tracing computations validating the 1D imaging spectroscopy and 2D x-ray imaging techniques will be presented.

  14. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    Science.gov (United States)

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings. PMID:26936594

  15. Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources

    Science.gov (United States)

    Wachulak, P. W.; Bartnik, A.; Kostecki, J.; Wegrzynski, L.; Fok, T.; Jarocki, R.; Szczurek, M.; Fiedorowicz, H.

    2015-12-01

    We present a few examples of imaging experiments, which were possible using a compact laser-plasma extreme ultraviolet (EUV) and soft X-ray (SXR) source, based on a double stream gas puff target. This debris-free source was used in full-field EUV imaging to obtain magnified images of test samples, ZnO nanofibers and images of the membranes coated with salt crystals. The source was also employed for SXR microscopy in the "water-window" spectral range using grazing incidence Wolter type-I objective to image test samples and to perform the initial studies of biological objects. Gas puff target EUV source, spectrally tuned for 13.5 nm wavelength with multilayer mirror and thin film filters, was also used in variety of shadowgraphy experiments to study the density of newly developed modulated density gas puff targets. Finally, the source was also employed in EUV tomography experiments of low density objects with the goal to measure and optimize the density of the targets dedicated to high harmonic generation.

  16. Novel source follower transistor structure without lightly doped drain for high performance CMOS image sensor

    Science.gov (United States)

    Song, Hyeong-Sub; Kwon, Sung-Kyu; Jeon, So-Ra; Oh, Dong-Jun; Lee, Ga-Won; Lee, Hi-Deok

    2016-08-01

    To realize high-resolution pixels in the CMOS image sensor, it is necessary to reduce low-frequency noise, particularly random telegraph signal (RTS) noise of the source-follower transistor (SFT). To achieve less relative variation of drain noise current, ΔI D/I D, a metal–oxide–semiconductor field-effect transistor structure without the lightly doped drain (LDD) for the SFT transistor is proposed. Then, a comparison of RTS noise characteristics between the proposed SFT structure without LDD and the conventional SFT structure with LDD was conducted. Although the RTS noise occurrence probability of the proposed SFT structure without LDD is somewhat greater than that of the conventional SFT structure with LDD, the amplitude of relative variation of drain noise current of the proposed SFT structure is significantly less than that of the conventional SFT. Despite changes in several factors in the proposed SFT, such as effective channel length, trap depth profile in gate oxide, and random dopant fluctuation (RDF), it is believed that the change of trap depth profile is a primary factor for the improved RTS characteristic. Therefore, the proposed SFT is highly desirable for the high-resolution CMOS image sensor.

  17. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  18. Study of phase contrast imaging for carbon fiber, polystyrene and lung tissue using monochromatic and polychromatic X-ray sources

    International Nuclear Information System (INIS)

    Phase contrast imaging is a new method of radiography in which the information of change in phase of the X-rays as it passes through the object gets reflected in the intensity. This leads to a better sensitivity and contrast than the conventional absorption radiography. In this paper we discuss the simulation studies of phase contrast imaging using monochromatic and polychromatic X-ray point source for simple two- and three-dimensional objects like circular and spherical objects (made up of carbon-fiber, polystyrene and lung tissue). The advantages of refraction contrast images are discussed in terms of contrast and resolution, and a comparison is made with absorption images. The result obtained shows considerable improvement in contrast with phase contrast imaging as compared to conventional absorption radiography. These results also guide us in proper selection of source to object distance, object to detector distance, etc. These results are proposed to be used in our experiment on phase contrast imaging with microfocus X-rays. The technique is going to be very useful in improving the resolution in the X-ray imaging for the composites, and in detection of cracks at micron level resolution. Moreover, if the doses can be controlled by proper selection of the detector or the source, it can have clinical application in the mammography

  19. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  20. Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging

    Science.gov (United States)

    Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.

    2016-05-01

    Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.

  1. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  2. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Marc Fossorier

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M=2k. Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  3. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. PMID:27484945

  4. Flux calibrated emission line imaging of extended sources using GTC/OSIRIS Tunable Filters

    CERN Document Server

    Mayya, Y D; Vega, O; Mendez-Abreu, J; Terlevich, R; Terlevich, E; Bertone, E; Rodriguez-Merino, L H; Munoz-Tunon, C; Rodriguez-Espinosa, J M; Almeida, J Sanchez; Aguerri, J A L

    2012-01-01

    We investigate the utility of the Tunable Filters (TFs) for obtaining flux calibrated emission line maps of extended objects such as galactic nebulae and nearby galaxies, using the OSIRIS instrument at the 10.4-m GTC. Despite a relatively large field of view of OSIRIS (8'x8'), the change in the wavelength across the field (~80 Ang) and the long-tail of Tunable Filter (TF) spectral response function, are hindrances for obtaining accurate flux calibrated emission-line maps of extended sources. The purpose of this article is to demonstrate that emission-line maps useful for diagnostics of nebula can be generated over the entire field of view of OSIRIS, if we make use of theoretically well-understood characteristics of TFs. We have successfully generated the flux-calibrated images of the nearby, large late-type spiral galaxy M101 in the emission lines of Halpha, [NII]6583, [SII]6716 and [SII]6731. We find that the present uncertainty in setting the central wavelength of TFs (~1 Ang), is the biggest source of erro...

  5. An Open Source Agenda for Research Linking Text and Image Content Features.

    Science.gov (United States)

    Goodrum, Abby A.; Rorvig, Mark E.; Jeong, Ki-Tai; Suresh, Chitturi

    2001-01-01

    Proposes methods to utilize image primitives to support term assignment for image classification. Proposes to release code for image analysis in a common tool set for other researchers to use. Of particular focus is the expansion of work by researchers in image indexing to include image content-based feature extraction capabilities in their work.…

  6. Simulation-based validation for four- dimensional multi-channel ultrasound current source density imaging.

    Science.gov (United States)

    Wang, Zhaohui; Witte, Russell S

    2014-03-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and

  7. Sources

    OpenAIRE

    2015-01-01

    Sources Fondation Pablo Iglesias. Alcala de Henares. Sections : Archives privées de Manuel ArijaArchives extérieuresArchives FNJS de EspañaPrensa Archives Générales de l’Administration. Alcala de Henares. Sections : Opposition au franquismeSig. 653 Sig TOP 82/68.103-68.602.Índice de las cartas colectivas, Relaciones, Cartas al Ministro de Información de Marzo de 1965. c.662. Sources cinématographiques Filmothèque Nationale d’Espagne.NO.DO. N° 1157C. 08/03/1965.aguirre Javier, Blanco vertical....

  8. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  9. Country of origin image attributes as a source of competitive advantage: study in international brazilian fashion industry

    Directory of Open Access Journals (Sweden)

    Mariana Bassi Sutter

    2014-08-01

    Full Text Available The study sought to understand which attributes of the country of origin image are source of international competitive advantage in the context of Brazilian fashion. From the theoretical framework related to competitive advantage, country of origin image, Brazilianness and their attributes in fashion, we conducted exploratory research with a qualitative approach. The results suggest that the image of Brazil is understood by the international fashion market in accordance with the attributes of the literature. However (i in fashion, market still does not have a steady concept on the image of Brazil, (ii Brazilianness attributes in fashion can be a source of competitive advantage in international trades if they are communicated, promoted and understood by the international market; finally, (iii among the eight Brazilianness trendy attributes identified in the literature, four were highlighted as differentiators: shape and volumes, colors, prints and lifestyle.

  10. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany)], E-mail: paola.coan@esrf.fr; Gruener, F. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany); Glaser, C.; Schneider, T. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany); Reiser, M. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Habs, D. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany)

    2009-09-01

    In this paper, the excellence cluster 'Munich-Centre for Advance Photonics' (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  11. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography

    OpenAIRE

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.

    2009-01-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded imag...

  12. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia [Helmholtz-Zentrum Geesthacht, 21502 Geesthacht (Germany); Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching (Germany); Donath, Tilman [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Dectris AG, 5400 Baden (Switzerland); Beckmann, Felix; Ogurreck, Malte; Schreyer, Andreas [Helmholtz-Zentrum Geesthacht, 21502 Geesthacht (Germany); David, Christian [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Mohr, Juergen [Institute of Microstructure Technology, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Pfeiffer, Franz [Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2011-11-15

    X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects with high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.

  13. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Haris, K. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Singh, Param Jeet [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Shastri, Aparna, E-mail: ashastri@barc.gov.in [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sunanda, K.; Babita, K.; Rao, S.V.N. Bhaskara [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ahmad, Shabbir; Tauheed, A. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2014-12-11

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu{sup 2+} phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O{sub 2}, N{sub 2}O and SO{sub 2} are carried out to evaluate the performance of the IP detection system. An FWHM of ∼0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible. - Highlights: • Incorporation of an image plate detection system on HRVUV beamline at Indus-1. • Design and fabrication of mounting mechanisms, performance evaluation of new system. • Photoabsorption spectra of Xe, O{sub 2}, SO{sub 2} and N{sub 2}O recorded in the region 1150–2300 Å. • Sensitivity, wavelength coverage, reproducibility and resolution of IP demonstrated. • First report of IP detector for VUV photoabsorption using synchrotron radiation.

  14. Imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA

    CERN Document Server

    Ghara, Raghunath; Datta, Kanan K; Choudhuri, Samir

    2016-01-01

    Understanding properties of the first sources in the Universe using the redshifted \\HI ~21-cm signal is one of the major aims of present and upcoming low-frequency experiments. We investigate the possibility of imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA1-low. We model the \\HI ~21-cm image maps, appropriate for the SKA1-low, around the first sources consisting of stars and X-ray sources within galaxies. In addition to the system noise, we account also for the astrophysical foregrounds by adding them to the signal maps. We find that after subtracting the foregrounds using a polynomial fit and suppressing the noise by smoothing the maps over $10^{'} - 30^{'}$ angular scale, the isolated sources at $z \\sim 15$ are detectable with $\\sim 4 - 9 \\, \\sigma$ confidence level in 2000 h of observation with the SKA1-low. Although the 21-cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the so...

  15. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States)], E-mail: wbolch@ufl.edu

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  16. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  17. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging

    Directory of Open Access Journals (Sweden)

    Henning U. Voss

    2014-07-01

    Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation

  18. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Jonathan J Liu

    Full Text Available To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT. The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.Observational prospective cross-sectional study.Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2 were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1 standard logarithmic scale display, enhanced vitreous imaging using (2 vitreous window display and (3 HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.Features observed included the bursa premacularis (BPM, area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s, and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%-81.1% using standard logarithmic scale display, 80.6% (95%CI: 73.8%-86.0% using HDR display, and 91.9% (95%CI: 86.6%-95.2% using vitreous window display.SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The

  19. Measuring the acoustoelectric interaction constant using ultrasound current source density imaging

    International Nuclear Information System (INIS)

    Ultrasound current source density imaging (UCSDI) exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity, to map electrical conduction in the heart. The conversion efficiency for UCSDI is determined by the AE interaction constant K, a fundamental property of all materials; K directly affects the magnitude of the detected voltage signal in UCSDI. This paper describes a technique for measuring K in biological tissue, and reports its value for the first time in cadaver hearts. A custom chamber was designed and fabricated to control the geometry for estimating K, which was measured in different ionic salt solutions and seven cadaver rabbit hearts. We found K to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart, K was determined to be 0.041±0.012%/MPa, similar to the measurement of K in physiological saline (0.034±0.003%/MPa). This study provides a baseline estimate of K for modeling and experimental studies that involve UCSDI to map cardiac conduction and reentry currents associated with arrhythmias. (paper)

  20. Imaging of cardiovascular dynamics in early mouse embryos with swept source optical coherence tomography

    Science.gov (United States)

    Larina, Irina V.; Liebling, Michael; Dickinson, Mary E.; Larin, Kirill V.

    2009-02-01

    Congenital cardiovascular defects are very common, occurring in 1% of live births, and cardiovascular failures are the leading cause of birth defect-related deaths in infants. To improve diagnostics, prevention and treatment of cardiovascular abnormalities, we need to understand not only how cells form the heart and vessels but also how physical factors such as heart contraction and blood flow influence heart development and changes in the circulatory network. Mouse models are an excellent resource for studying cardiovascular development and disease because of the resemblance to humans, rapid generation time, and availability of mutants with cardiovascular defects linked to human diseases. In this work, we present results on development and application of Doppler Swept Source Optical Coherence Tomography (DSS-OCT) for imaging of cardiovascular dynamics and blood flow in the mouse embryonic heart and vessels. Our studies demonstrated that the spatial and temporal resolution of the DSS-OCT makes it possible to perform sensitive measurements of heart and vessel wall movements and to investigate how contractile waves facilitate the movement of blood through the circulatory system.

  1. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    CERN Document Server

    Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

  2. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    Science.gov (United States)

    Li, Qian

    Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation

  3. Thermographic imaging of material loss in boiler water-wall tubing by application of scanning line source

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2000-06-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a 'spot check' approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  4. Forward model with space-variant of source size for reconstruction on x-ray radiographic image

    CERN Document Server

    Liu, Jin; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan

    2016-01-01

    Forward imaging technique is the base of combined method on density reconstruction with the forward calculation and inverse problem solution. In the paper, we introduced the projection equation for the radiographic system with areal source blur and detector blur, gained the projecting matrix from any point source to any detector pixel with x-ray trace technique, proposed the ideal on gridding the areal source as many point sources with different weights, and used the blurring window as the effect of the detector blur. We used the forward projection equation to gain the same deviation information about the object edge as the experimental image. Our forward projection equation is combined with Constrained Conjugate Gradient method to form a new method for density reconstruction, XTRACE-CCG. The new method worked on the simulated image of French Test Object and experimental image. The same results have been concluded the affecting range of the blur is decreased and can be controlled to one or two pixels. The met...

  5. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    Science.gov (United States)

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict…

  6. Near-Infrared Image Reconstruction of Newborns' Brains: Robustness to Perturbations of the Source/Detector Location.

    Science.gov (United States)

    Ahnen, L; Wolf, M; Hagmann, C; Sanchez, S

    2016-01-01

    The brain of preterm infants is the most vulnerable organ and can be severely injured by cerebral ischemia. We are working on a near-infrared imager to early detect cerebral ischemia. During imaging of the brain, movements of the newborn infants are inevitable and the near-infrared sensor has to be able to function on irregular geometries. Our aim is to determine the robustness of the near-infrared image reconstruction to small variations of the source and detector locations. In analytical and numerical simulations, the error estimations for a homogeneous medium agree well. The worst case estimates of errors in reduced scattering and absorption coefficient for distances of r=40 mm are acceptable for a single source-detector pair. The optical properties of an inhomogeneity representing an ischemia are reconstructed correctly within a homogeneous medium, if the error in placement is random.

  7. Discovery of new objects in the Orion nebula on HST images - Shocks, compact sources, and protoplanetary disks

    Science.gov (United States)

    O'Dell, C. R.; Wen, Zheng; Hu, Xihai

    1993-01-01

    We have reduced and analyzed a set of narrow-band HST images of a portion of M42 south of the Trapezium. Many new emission-line sources were found, some quite long but so narrow that they are not seen on ground-based images. These include thin shells which are high-ionization shocks. The structure around Orion HH 3 is resolved into multiple components. Slit spectroscopy data establish the high expansion velocities of all these regions. The other objects seen are compact sources. Although some had been detected in VLA surveys and several had been seen from the ground optically, the new images show previously undetected structure and clearly establish that most are protoplanetary disks, which are neutral disks surrounding low-mass pre-main-sequence stars and are ionized from the outside by Theta sup 1 C and Theta sup 2 A Ori.

  8. Performance Analysis of GPU-Accelerated Filter-Based Source Finding for HI Spectral Line Image Data

    CERN Document Server

    Westerlund, Stefan

    2015-01-01

    Searching for sources of electromagnetic emission in spectral-line radio astronomy interferometric data is a computationally intensive process. Parallel programming techniques and High Performance Computing hardware may be used to improve the computational performance of a source finding program. However, it is desirable to further reduce the processing time of source finding in order to decrease the computational resources required for the task. GPU acceleration is a method that may achieve significant increases in performance for some source finding algorithms, particularly for filtering image data. This work considers the application of GPU acceleration to the task of source finding and the techniques used to achieve the best performance, such as memory management. We also examine the changes in performance, where the algorithms that were GPU accelerated achieved a speedup of around 3.2 times the 12 core per node CPU-only performance, while the program as a whole experienced a speedup of 2.0 times.

  9. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  10. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    International Nuclear Information System (INIS)

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  11. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao, E-mail: sunhao_robert@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Hou, Xin-Yi, E-mail: hxy_pumc@126.com [Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Xue, Hua-Dan, E-mail: bjdanna95@hotmail.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Li, Xiao-Guang, E-mail: xglee88@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Jin, Zheng-Yu, E-mail: zhengyu_jin@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Qian, Jia-Ming, E-mail: qjiaming57@gmail.com [Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Yu, Jian-Chun, E-mail: yu-jch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Zhu, Hua-Dong, E-mail: huadongzhu@hotmail.com [Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China)

    2015-05-15

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  12. Model-independent source imaging using two-pion correlations in 2 to 8A GeV Au + Au collisions

    CERN Document Server

    Panitkin, S Y; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J; Chung, P; Cole, B; Crowe, K M; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A; Hjort, E; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J; Klay, J L; Krofcheck, D; Lacey, R A; Lauret, J; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D; Pinkenburg, C H; Porile, N; Rai, G; Ritter, H G; Romero, J; Scharenberg, R P; Schröder, L S; Srivastava, B; Stone, N T B; Symons, T J M; Wang, S; Wells, R; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang Wei Ning; Zhang, Y

    2001-01-01

    We report a particle source imaging analysis based on two-pion correlations in high multiplicity Au + Au collisions at beam energies between 2 and 8A GeV. We apply the imaging technique introduced by Brown and Danielewicz, which allows a model-independent extraction of source functions with useful accuracy out to relative pion separations of about 20 fm. The extracted source functions have Gaussian shapes. Values of source functions at zero separation are almost constant across the energy range under study. Imaging results are found to be consistent with conventional source parameters obtained from a multidimensional HBT analysis.

  13. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  14. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  15. Ultrahigh phase-stable swept-source optical coherence tomography as a cardiac imaging platform (Conference Presentation)

    Science.gov (United States)

    Ling, Yuye; Hendon, Christine P.

    2016-02-01

    Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.

  16. The high temperature superconductor YBa(2)Cu(3)O(7-delta): Symmetry of the order parameter, and gradiometers for biomagnetic applications

    Science.gov (United States)

    Kouznetsov, Konstantin Alexander

    biomagnetic systems in an unshielded environment. We demonstrate a practical multichannel SQUID system for MagnetoCardioGraphy. Using this system, we are able to detect magnetic signals from the human heart in an unshielded environment, thereby demonstrating the applicability of our technology to practical applications. Our gradiometers are readily manufacturable devices that could be used in clinical applications in the near future.

  17. The high temperature superconductor YBa2Cu3O7-δ: symmetry of the order parameter, and gradiometers for biomagnetic applications

    International Nuclear Information System (INIS)

    The cuprate YBa2Cu3O7-δ is the material that drives the majority of the technological applications of high transition temperature (Tc) superconductors, particularly in the area of superconducting electronics. Despite the widespread use of high-Tc superconducting materials in a variety of applications, the nature of the superconducting state in these materials remains unknown since their discovery more than a decade ago. Many properties of the high-Tc superconductors are determined by their order parameter, which is a wavefunction describing the superconducting condensate. The symmetry of the order parameter in cuprates has been the subject of intensive investigation, leading to conflicting sets of results. Some experiments supported conventional, s-wave symmetry of the order parameter, while others indicated an unconventional, d-wave symmetry. The first part of this thesis is an experimental study of the symmetry of the order parameter in YBa2Cu3O7-δ. A new class of phase sensitive experiments is described that involve Josephson tunneling along the c-axis of twinned crystals of YBa2Cu3O7-δ. These experiments showed that an s-wave component must reverse sign across the twin boundary, providing direct evidence for a mixed, s+d symmetry of the order parameter in YBa2Cu3O7-δ, and thereby reconciling two conflicting sets of previous findings and establishing the dominant d-wave pairing symmetry. The second part of the thesis focuses on practical applications of YBa2Cu3O7-δ in superconducting electronics. The authors introduce a novel Superconducting Quantum Interference Device (SQUID) gradiometer. The principle of operation of these long baseline high-Tc SQUID gradiometers is based on the inductive coupling of the input coil of a planar flux transformer to the pickup up loop of a directly coupled magnetometer. The long baseline of the gradiometer, 48 mm, and the intrinsic. Balance of better than 1 part in 100 make it an ideal candidate for operation in biomagnetic

  18. A game-based platform for crowd-sourcing biomedical image diagnosis and standardized remote training and education of diagnosticians

    Science.gov (United States)

    Feng, Steve; Woo, Minjae; Chandramouli, Krithika; Ozcan, Aydogan

    2015-03-01

    Over the past decade, crowd-sourcing complex image analysis tasks to a human crowd has emerged as an alternative to energy-inefficient and difficult-to-implement computational approaches. Following this trend, we have developed a mathematical framework for statistically combining human crowd-sourcing of biomedical image analysis and diagnosis through games. Using a web-based smart game (BioGames), we demonstrated this platform's effectiveness for telediagnosis of malaria from microscopic images of individual red blood cells (RBCs). After public release in early 2012 (http://biogames.ee.ucla.edu), more than 3000 gamers (experts and non-experts) used this BioGames platform to diagnose over 2800 distinct RBC images, marking them as positive (infected) or negative (non-infected). Furthermore, we asked expert diagnosticians to tag the same set of cells with labels of positive, negative, or questionable (insufficient information for a reliable diagnosis) and statistically combined their decisions to generate a gold standard malaria image library. Our framework utilized minimally trained gamers' diagnoses to generate a set of statistical labels with an accuracy that is within 98% of our gold standard image library, demonstrating the "wisdom of the crowd". Using the same image library, we have recently launched a web-based malaria training and educational game allowing diagnosticians to compare their performance with their peers. After diagnosing a set of ~500 cells per game, diagnosticians can compare their quantified scores against a leaderboard and view their misdiagnosed cells. Using this platform, we aim to expand our gold standard library with new RBC images and provide a quantified digital tool for measuring and improving diagnostician training globally.

  19. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects—a correlation study

    International Nuclear Information System (INIS)

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between the mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between the mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with the application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in the MGG and in mucosal electrodes (r = 0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes. (paper)

  20. Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography

    OpenAIRE

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-01-01

    Recently the effects of reduced bit-depth acquisition on swept-source optical coherence tomography (SS-OCT) image quality have been evaluated by using simulations and empirical studies, showing that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. However, in these studies the 8-bit data is actually 12- or 14-bit ADC data numerically truncated to 8 bits. In practice, a native 8-bit ADC c...

  1. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2014-04-01

    Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.

  2. A simple non-parametric statistical thresholding for MEG spatial-filter source reconstruction images

    OpenAIRE

    Sekihara, Kensuke; Sahani, Maneesh; Nagarajan, Srikantan S.

    2005-01-01

    This paper proposes a simple statistical method for extracting target source activities from spatio-temporal source activities reconstructed from MEG measurements. The method requires measurements in a control condition, which contains only non-target source activities. The method derives, at each pixel location, an empirical probability distribution of the non-target source activity using the time-course reconstruction obtained from the control period. The statistical threshold that can extr...

  3. Magnetic resonance imaging of the shoulder: a review of potential sources of diagnostic errors

    International Nuclear Information System (INIS)

    Shoulder magnetic resonance (MR) imaging and MR arthrography are frequently utilized in the evaluation of shoulder pain and instability. The clinical scenario and imaging findings may be confusing to clinicians and radiologists and may present diagnostic challenges for those involved in evaluating and treating shoulder pathology. Often rotator cuff and labral abnormalities may be coexistent, clinical manifestations of denervation syndromes may be confusing to clinicians, and normal anatomic variations, imaging pitfalls, and various artifacts may cause dilemmas for the radiologist. This article will review the most frequently encountered mimickers and pitfalls of MR imaging of the shoulder. (orig.)

  4. Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography.

    Science.gov (United States)

    Lu, Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    Recently the effects of reduced bit-depth acquisition on swept-source optical coherence tomography (SS-OCT) image quality have been evaluated by using simulations and empirical studies, showing that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. However, in these studies the 8-bit data is actually 12- or 14-bit ADC data numerically truncated to 8 bits. In practice, a native 8-bit ADC could actually possess a true bit resolution lower than this due to the electronic jitter in the converter etc. We compare true 8- and 14-bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of equine tendon indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artifacts due to strong Fresnel reflection. PMID:21483604

  5. The effect of stimulus bandwidth and subject position on horizontal-plane localization with virtual source images

    Science.gov (United States)

    Grantham, D. Wesley; Ashmead, Daniel H.; Wall, Robert S.; Frampton, Kenneth D.; Willhite, J. Andrew

    2003-04-01

    In an anechoic chamber normal-hearing subjects performed a localization task in the frontal horizontal plane. The stimulus was a 200-ms burst of filtered noise. Within a block of trials, half of the presentations (randomly determined) were ``real''-presented from single loudspeakers-and the other half were ``phantoms''-produced by the simultaneous activation of two loudspeakers at +/-30° using a virtual source imaging technique [Takeuchi et al., J. Acoust. Soc. Am. 109, 958-971 (2001)]. Both phantom and real sources spanned the azimuthal range +/-80°. When the stimulus was a 4 kHz low-pass filtered noise, rms error was only slighly higher for phantom (D=7.1°) than for real (D=5.5°) sources. For 8 kHz low-pass filtered noise, performance remained about the same for real sources, but increased for phantom sources (D=11.5°). Data will also be reported for conditions in which the subject's position is systematically varied outside the ``sweet spot.'' Results will be discussed in terms of robustness of the virtual imaging technique to stimulus and position factors and its potential usefulness as a tool for the investigation of human auditory spatial perception in static and dynamic environments. [Work supported by NIDCD.

  6. The ascending aortic image quality and the whole aortic radiation dose of high-pitch dual-source CT angiography

    OpenAIRE

    Liu, Ying; Xu, Jian; Jian LI; Ren, Jing; LIU, HONGTAO; Xu, Junqing; Wei, Mengqi; Hao, Yuewen; Zheng, Minwen

    2013-01-01

    Background Aortic dissection is a lift-threatening medical emergency associated with high rates of morbidity and mortality. The incidence rate of aortic dissection is estimated at 5 to 30 per 1 million people per year. The prompt and correct diagnosis of aortic dissection is critical. This study was to compare the ascending aortic image quality and the whole aortic radiation dose of high-pitch dual-source CT angiography and conventional dual-source CT angiography. Methods A total of 110 conse...

  7. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR)

  8. Method for single illumination source combined optical coherence tomography and fluorescence imaging of fluorescently labeled ocular structures in transgenic mice.

    Science.gov (United States)

    McNabb, Ryan P; Blanco, Tomas; Bomze, Howard M; Tseng, Henry C; Saban, Daniel R; Izatt, Joseph A; Kuo, Anthony N

    2016-10-01

    In vivo imaging permits longitudinal study of ocular disease processes in the same animal over time. Two different in vivo optical imaging modalities - optical coherence tomography (OCT) and fluorescence - provide important structural and cellular data respectively about disease processes. In this Methods in Eye Research article, we describe and demonstrate the combination of these two modalities producing a truly simultaneous OCT and fluorescence imaging system for imaging of fluorescently labeled animal models. This system uses only a single light source to illuminate both modalities, and both share the same field of view. This allows simultaneous acquisition of OCT and fluorescence images, and the benefits of both techniques are realized without incurring increased costs in variability, light exposure, time, and post-processing effort as would occur when the modalities are used separately. We then utilized this system to demonstrate multi-modal imaging in a progression of samples exhibiting both fluorescence and OCT scattering beginning with resolution targets, ex vivo thy1-YFP labeled neurons in mouse eyes, and finally an in vivo longitudinal time course of GFP labeled myeloid cells in a mouse model of ocular allergy. PMID:27519152

  9. New open source medical imaging tools released by CERN and University of Bath collaboration

    CERN Multimedia

    Anaïs Rassat, KT group

    2016-01-01

    New toolbox has applications in medical imaging and cancer diagnosis.   3D X-ray imaging of a patient’s lungs and thorax. The TIGRE toolbox provides a high resolution image with only 1/30th of the radiation for the patient. (Image: Ander Biguri) CERN and the University of Bath have released a new toolbox for fast, accurate 3D X-ray image reconstruction with applications in medical imaging and cancer diagnosis. The software offers a very simple and affordable way to improve imaging and potentially reduce radiation doses for patients. The toolbox is based on Cone Beam Computed Tomography (CBCT), a type of scanning process that takes a series of 2D X-ray pictures and that then processes them into a 3D image. As part of the collaborative project between CERN and the University of Bath, Ander Biguri, a PhD student at Bath, has reviewed a broad range of published CBCT algorithms and adapted them to be faster. Ander Biguri modified the algorithms to run on a laptop fitted with a GPU &ndash...

  10. Mapping landslide source and transport areas in VHR images with Object-Based Analysis and Support Vector Machines

    Science.gov (United States)

    Heleno, Sandra; Matias, Magda; Pina, Pedro

    2015-04-01

    Visual interpretation of satellite imagery remains extremely demanding in terms of resources and time, especially when dealing with numerous multi-scale landslides affecting wide areas, such as is the case of rainfall-induced shallow landslides. Applying automated methods can contribute to more efficient landslide mapping and updating of existing inventories, and in recent years the number and variety of approaches is rapidly increasing. Very High Resolution (VHR) images, acquired by space-borne sensors with sub-metric precision, such as Ikonos, Quickbird, Geoeye and Worldview, are increasingly being considered as the best option for landslide mapping, but these new levels of spatial detail also present new challenges to state of the art image analysis tools, asking for automated methods specifically suited to map landslide events on VHR optical images. In this work we develop and test a methodology for semi-automatic landslide recognition and mapping of landslide source and transport areas. The method combines object-based image analysis and a Support Vector Machine supervised learning algorithm, and was tested using a GeoEye-1 multispectral image, sensed 3 days after a damaging landslide event in Madeira Island, together with a pre-event LiDAR DEM. Our approach has proved successful in the recognition of landslides on a 15 Km2-wide study area, with 81 out of 85 landslides detected in its validation regions. The classifier also showed reasonable performance (false positive rate 60% and false positive rate below 36% in both validation regions) in the internal mapping of landslide source and transport areas, in particular in the sunnier east-facing slopes. In the less illuminated areas the classifier is still able to accurately map the source areas, but performs poorly in the mapping of landslide transport areas.

  11. Instability of Solution of Phase Retrieval in Direct Diffraction Phase-Contrast Imaging with Partially Coherent X-Ray Source

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; HAN Shen-Sheng

    2006-01-01

    The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressedby an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phaseretrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution ofthe phase retrieval is unstable. The numerical simulation is performed and the result validates that the solutionof the phase retrieval is unstable.

  12. Femtosecond-laser-driven cluster-based debris-free soft x-ray source for nanostructure imaging

    International Nuclear Information System (INIS)

    Intense soft X-ray emission was obtained from the plasma produced by the irradiation of the clusters (10% CO2 +90% He gas mixture) by femtosecond laser pulses. Soft X-ray flux of the strongest Oxygen spectral lines (∼1.9 nm) reaches 2.8x1010 photons/(sr·pulse) (∼ 3 μJ) and corresponds to the brightness 1.6x1023 ph/s/mm2/mrad2/0.1%BW. Modeling of the radiation spectrum shows that the total X-ray flux of this polychromatic source in the 1-30 nm spectral regions is 2 - 3 orders of magnitude higher than the flux of the single Oxygen spectral line. Absorption images of the samples with micro- and nanoscale features illuminated by the developed source were recorded by the LiF crystal soft X-ray detector. Radiography experiments show that this debris-free plasma source could be particularly useful for the imaging of the ultrathin (nanoscale) foils or biological structures. Even if the foil is essentially transparent for the soft X-ray radiation (like 100 nm thick Zr foil) image contrast could be significantly increased due to the influence of phase-contrast effect by placing the detector at the proper distance from the sample. (author)

  13. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  14. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  15. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    International Nuclear Information System (INIS)

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  16. Development of a high-speed camera system for neutron imaging at a pulsed neutron source

    International Nuclear Information System (INIS)

    A neutron energy resolved imaging system with a time-of-flight technique has been newly developed and installed at Japan Proton Accelerator Research Complex (J-PARC) with the aim to investigate more preciously and rapidly a spatial distribution of several elements and crystals in various kinds of materials or substances. A high-speed video camera (CMOS, 1300 k frame/s) equipped system allows to obtain TOF images consecutively resolved into narrow energy ranges with a single pulsed neutrons while conventional CCD camera imaging system could obtain only one TOF image in an arbitral neutron energy region in the pulsed neutron energy region from 0.01 eV to a few keV. Qualities of the images obtained with the system, such as spatial resolution (defined by modulation transfer function, 0.8 line-pairs/mm at En∼0.01 eV), dependence of the brightness on the neutron energy and measurement errors (∼2%) of the system were examined experimentally and evaluated by comparison with those of conventional imaging system. The results obtained in the experiments show that the system can visualize the neutron energy resolved images within a small error even at high speed.

  17. Seismic imaging and analysis of source and migration within an integrated hydrocarbon system study: Northern Gulf of Mexico Basin

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Oliver P.; Hood, Kenneth C.; Harrison, Stanley C. [Exxon Exploration Co., Houston, TX (United States); Wenger, Lloyd M. [Exxon Production Research Co., Houston, TX (United States)

    1995-12-31

    The sources for hydrocarbons in young Tertiary reservoirs of the offshore Gulf of Mexico have been enigmatic in the past due to the lack of source rock penetration in offshore drilling. Exxon formed a multidisciplinary team to address source, maturation, and migration in the northern Gulf of Mexico. The study was initiated in a pilot area east of the Mississippi River Delta where the complete hydrocarbon system can be seismically imaged, then expanded to the west across much of the shelf and slope. Hydrocarbons from seeps and reservoirs were geochemically characterized across the entire northern Gulf of Mexico Basin, and direct oil to source rock correlations were made both offshore (in pilot area) and onshore. Modern 2-D and 3-D seismic was used to develop a geologic framework and to map potential offshore source intervals. The major sources identified offshore are centered on the Eocene, Turonian, Tithonian, and Oxfordian, and correspond to second-order sequence stratigraphic transgressions. (author). 1 fig., 1 tab

  18. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  19. OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images

    OpenAIRE

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-01-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking...

  20. Source-optimized irregular repeat accumulate codes with inherent unequal error protection capabilities and their application to scalable image transmission.

    Science.gov (United States)

    Lan, Ching-Fu; Xiong, Zixiang; Narayanan, Krishna R

    2006-07-01

    The common practice for achieving unequal error protection (UEP) in scalable multimedia communication systems is to design rate-compatible punctured channel codes before computing the UEP rate assignments. This paper proposes a new approach to designing powerful irregular repeat accumulate (IRA) codes that are optimized for the multimedia source and to exploiting the inherent irregularity in IRA codes for UEP. Using the end-to-end distortion due to the first error bit in channel decoding as the cost function, which is readily given by the operational distortion-rate function of embedded source codes, we incorporate this cost function into the channel code design process via density evolution and obtain IRA codes that minimize the average cost function instead of the usual probability of error. Because the resulting IRA codes have inherent UEP capabilities due to irregularity, the new IRA code design effectively integrates channel code optimization and UEP rate assignments, resulting in source-optimized channel coding or joint source-channel coding. We simulate our source-optimized IRA codes for transporting SPIHT-coded images over a binary symmetric channel with crossover probability p. When p = 0.03 and the channel code length is long (e.g., with one codeword for the whole 512 x 512 image), we are able to operate at only 9.38% away from the channel capacity with code length 132380 bits, achieving the best published results in terms of average peak signal-to-noise ratio (PSNR). Compared to conventional IRA code design (that minimizes the probability of error) with the same code rate, the performance gain in average PSNR from using our proposed source-optimized IRA code design is 0.8759 dB when p = 0.1 and the code length is 12800 bits. As predicted by Shannon's separation principle, we observe that this performance gain diminishes as the code length increases. PMID:16830898

  1. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22Na source placed in the experimental setup.

  2. Evaluating emissions of HCHO, HONO, NO2, and SO2 from point sources using portable Imaging DOAS

    Science.gov (United States)

    Pikelnaya, O.; Tsai, C.; Herndon, S. C.; Wood, E. C.; Fu, D.; Lefer, B. L.; Flynn, J. H.; Stutz, J.

    2011-12-01

    Our ability to quantitatively describe urban air pollution to a large extent depends on an accurate understanding of anthropogenic emissions. In areas with a high density of individual point sources of pollution, such as petrochemical facilities with multiple flares or regions with active commercial ship traffic, this is particularly challenging as access to facilities and ships is often restricted. Direct formaldehyde emissions from flares may play an important role for ozone chemistry, acting as an initial radical precursor and enhancing the degradation of co-emitted hydrocarbons. HONO is also recognized as an important OH source throughout the day. However, very little is known about direct HCHO and HONO emissions. Imaging Differential Optical Absorption Spectroscopy (I-DOAS), a relatively new remote sensing technique, provides an opportunity to investigate emissions from these sources from a distance, making this technique attractive for fence-line monitoring. In this presentation, we will describe I-DOAS measurements during the FLAIR campaign in the spring/summer of 2009. We performed measurements outside of various industrial facilities in the larger Houston area as well as in the Houston Ship Channel to visualize and quantify the emissions of HCHO, NO2, HONO, and SO2 from flares of petrochemical facilities and ship smoke stacks. We will present the column density images of pollutant plumes as well as fluxes from individual flares calculated from I-DOAS observations. Fluxes from individual flares and smoke stacks determined from the I-DOAS measurements vary widely in time and by the emission sources. We will also present HONO/NOx ratios in ship smoke stacks derived from the combination of I-DOAS and in-situ measurements, and discuss other trace gas ratios in plumes derived from the I-DOAS observations. Finally, we will show images of HCHO, NO2 and SO2 plumes from control burn forest fires observed in November of 2009 at Vandenberg Air Force Base, Santa Maria

  3. Detection of potential mosquito breeding sites based on community sourced geotagged images

    Science.gov (United States)

    Agarwal, Ankit; Chaudhuri, Usashi; Chaudhuri, Subhasis; Seetharaman, Guna

    2014-06-01

    Various initiatives have been taken all over the world to involve the citizens in the collection and reporting of data to make better and informed data-driven decisions. Our work shows how the geotagged images collected through the general population can be used to combat Malaria and Dengue by identifying and visualizing localities that contain potential mosquito breeding sites. Our method first employs image quality assessment on the client side to reject the images with distortions like blur and artifacts. Each geotagged image received on the server is converted into a feature vector using the bag of visual words model. We train an SVM classifier on a histogram-based feature vector obtained after the vector quantization of SIFT features to discriminate images containing either a small stagnant water body like puddle, or open containers and tires, bushes etc. from those that contain flowing water, manicured lawns, tires attached to a vehicle etc. A geographical heat map is generated by assigning a specific location a probability value of it being a potential mosquito breeding ground of mosquito using feature level fusion or the max approach presented in the paper. The heat map thus generated can be used by concerned health authorities to take appropriate action and to promote civic awareness.

  4. The spatial distribution of dust sources in Iraq by using satellite images

    Directory of Open Access Journals (Sweden)

    Kamal H.Lateef, Azhaar K.Mishaal, Ahmed M.Abud

    2015-01-01

    Full Text Available Dust storms phenomenon occurs in the most regions of Iraq during the year, this paper is study this phenomenon by using the technique of satellite images, it has been used satellite images (Meteosat-9 with the sensor (SEVERI and selected different dates of dust storms in 2012, geographic information system programs (ERDAS-GIS has been used to discrimination the regions that cause this phenomena within the study area to prepare the images to read the real geographic coordinates and determines the regions that caused the occurrence of the dust storms represented by geographical location (Lon/Lat and making Iraqi map describes these regions for year 2012 and compared with maps for previous years.

  5. Collimating lens for light-emitting-diode light source based on non-imaging optics.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Zhang, Gongjian

    2012-04-10

    A collimating lens for a light-emitting-diode (LED) light source is an essential device widely used in lighting engineering. Lens surfaces are calculated by geometrical optics and nonimaging optics. This design progress does not rely on any software optimization and any complex iterative process. This method can be used for any type of light source not only Lambertian. The theoretical model is based on point source. But the practical LED source has a certain size. So in the simulation, an LED chip whose size is 1 mm*1 mm is used to verify the feasibility of the model. The mean results show that the lenses have a very compact structure and good collimating performance. Efficiency is defined as the ratio of the flux in the illuminated plane to the flux from LED source without considering the lens material transmission. Just investigating the loss in the designed lens surfaces, the two types of lenses have high efficiencies of more than 90% and 99%, respectively. Most lighting area (possessing 80% flux) radii are no more than 5 m when the illuminated plane is 200 m away from the light source. PMID:22505154

  6. Development of a prototype apparatus visualizing on a screen the gamma sources superimposed on the image of the vision field

    Energy Technology Data Exchange (ETDEWEB)

    Imbard, G.; Lemaire, J.E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Carcreff, H.; Marchand, L.; Thellier, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux

    1994-12-31

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for {sup 60} Co and 0.8 deg. for {sup 137} Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h{sup -1}. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs.

  7. Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Bamberg, Fabian; Becker, Christoph R.; Wintersperger, Bernd J.; Reiser, Maximilian F. [Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); Klotz, Ernst; Flohr, Thomas; Schmidt, Bernhard [Siemens Healthcare, Forchheim (Germany); Becker, Alexander [Ludwig Maximilians University, Department of Cardiology, Munich (Germany); Nikolaou, Konstantin [Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); University of Munich - Grosshadern Campus, Department of Clinical Radiology, Munich (Germany)

    2010-05-15

    To detail the principles of using model-based determination of regional myocardial blood flow (MBF) by computed tomography (CT) and demonstrate its in vivo applicability. Dual-source CT was performed with a dynamic protocol comprising acquisition with alternating table positions in ECG-triggered end-systolic timing every second for 30 s. The results of two reconstructions were merged into one final image stack (coverage 73 mm), with low spatial frequency components from a 360 reconstruction and high spatial frequency components from a dual-source cardiac partial image reconstruction. A parametric deconvolution technique was used to fit the time-attenuation curves (TAC), the maximum slope of which was used to derive MBF. One study participant underwent dynamic myocardial stress perfusion imaging (9.6 mSv) followed by invasive coronary angiography and measurement of fractional flow reserve as the gold standard. MBF was 159 ml/100 ml/min in the non-ischaemic anterolateral and 86 ml/100 ml/min in the inferoseptal ischaemic wall. This first evaluation indicates that mathematical modelling of voxel TACs can potentially be used to quantify differences in MBF in a clinical setting. If confirmed in feasibility studies, cardiac CT may allow for parallel assessment of morphology and haemodynamic relevance of coronary artery disease. (orig.)

  8. Development and Evaluation of an Open-Source Software Package “CGITA” for Quantifying Tumor Heterogeneity with Molecular Images

    Directory of Open Access Journals (Sweden)

    Yu-Hua Dean Fang

    2014-01-01

    Full Text Available Background. The quantification of tumor heterogeneity with molecular images, by analyzing the local or global variation in the spatial arrangements of pixel intensity with texture analysis, possesses a great clinical potential for treatment planning and prognosis. To address the lack of available software for computing the tumor heterogeneity on the public domain, we develop a software package, namely, Chang-Gung Image Texture Analysis (CGITA toolbox, and provide it to the research community as a free, open-source project. Methods. With a user-friendly graphical interface, CGITA provides users with an easy way to compute more than seventy heterogeneity indices. To test and demonstrate the usefulness of CGITA, we used a small cohort of eighteen locally advanced oral cavity (ORC cancer patients treated with definitive radiotherapies. Results. In our case study of ORC data, we found that more than ten of the current implemented heterogeneity indices outperformed SUVmean for outcome prediction in the ROC analysis with a higher area under curve (AUC. Heterogeneity indices provide a better area under the curve up to 0.9 than the SUVmean and TLG (0.6 and 0.52, resp.. Conclusions. CGITA is a free and open-source software package to quantify tumor heterogeneity from molecular images. CGITA is available for free for academic use at http://code.google.com/p/cgita.

  9. Experimental validation of a kV source model and dose computation method for CBCT imaging in an anthropomorphic phantom.

    Science.gov (United States)

    Poirier, Yannick; Tambasco, Mauro

    2016-01-01

    We present an experimental validation of a kilovoltage (kV) X-ray source characterization model in an anthropomorphic phantom to estimate patient-specific absorbed dose from kV cone-beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT-dose index (CTDIw) dose estimates. We simulated the default Varian on-board imager 1.4 (OBI) default CBCT imaging protocols (i.e., standard-dose head, low-dose thorax, pelvis, and pelvis spotlight) using our previously developed and easy to implement X-ray point-source model and source characterization approach. We used this characterized source model to compute absorbed dose in homogeneous and anthropomorphic phantoms using our previously validated in-house kV dose computation software (kVDoseCalc). We compared these computed absorbed doses to doses derived from ionization chamber measurements acquired at several points in a homogeneous cylindrical phantom and from thermoluminescent detectors (TLDs) placed in the anthropomorphic phantom. In the homogeneous cylindrical phantom, computed values of absorbed dose relative to the center of the phantom agreed with measured values within ≤2% of local dose, except in regions of high-dose gradient where the distance to agreement (DTA) was 2 mm. The computed absorbed dose in the anthropomorphic phantom generally agreed with TLD measurements, with an average percent dose difference ranging from 2.4% ± 6.0% to 5.7% ± 10.3%, depending on the characterized CBCT imaging protocol. The low-dose thorax and the standard dose scans showed the best and worst agreement, respectively. Our results also broadly agree with published values, which are approximately twice as high as the nominal CTDIw would suggest. The results demonstrate that our previously developed method for modeling and characterizing a kV X-ray source could be used to accurately assess patient-specific absorbed dose from kV CBCT procedures within reasonable accuracy, and serve as further

  10. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array

    International Nuclear Information System (INIS)

    Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors. (paper)

  11. Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Hansen, Sofie Therese; Stahlhut, Carsten

    2013-01-01

    EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring...

  12. Alternative technique using dual source CT imaging for assessment of myocardial perfusion

    Directory of Open Access Journals (Sweden)

    Amgad S. Abdel-Rahman

    2015-06-01

    Conclusion: We propose that comprehensive evaluation of coronary artery morphology and myocardial perfusion in patients with CAD could be achieved by single reproducible non-invasive contrast enhanced CT acquisition using DSCT scanners while operated in single energy mode with high sensitivity, specificity and diagnostic accuracy, it also has the potential to be the first, independent and stand out imaging choice in such field.

  13. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn;

    2016-01-01

    BACKGROUND: Clinical application of deformable registration (DIR) of medical images remains limited due to sparse validation of DIR methods in specific situations, e. g. in case of cancer recurrences. In this study the accuracy of DIR for registration of planning CT (pCT) and recurrence CT (rCT) ...

  14. First evidence of phase-contrast imaging with laboratory sources and active pixel sensors

    International Nuclear Information System (INIS)

    The aim of the present work is to achieve a first step towards combining the advantages of an innovative X-ray imaging technique-phase-contrast imaging (XPCi)-with those of a new class of sensors, i.e. CMOS-based active pixel sensors (APSs). The advantages of XPCi are well known and include increased image quality and detection of details invisible to conventional techniques, with potential application fields encompassing the medical, biological, industrial and security areas. Vanilla, one of the APSs developed by the MI-3 collaboration (see (http://mi3.shef.ac.uk)), was thoroughly characterised and an appropriate scintillator was selected to provide X-ray sensitivity. During this process, a set of phase-contrast images of different biological samples was acquired by means of the well-established free-space propagation XPCi technique. The obtained results are very encouraging and are in optimum agreement with the predictions of a simulation recently developed by some of the authors thus further supporting its reliability. This paper presents these preliminary results in detail and discusses in brief both the background to this work and its future developments

  15. Images as representations : Visual sources on education and childhood in the past

    NARCIS (Netherlands)

    Dekker, Jeroen J.H.

    2015-01-01

    The challenge of using images for the history of education and childhood will be addressed in this article by looking at them as representations. Central is the relationship between representations and reality. The focus is on the power of paintings as representations of aspects of realities. First

  16. Three-dimensional localization of in vivo bioluminescent source based on multispectral imaging

    Science.gov (United States)

    Feng, Jinchao; Jia, Kebin; Tian, Jie; Yan, Guorui; Zhu, Shouping

    2009-02-01

    Bioluminescence tomography (BLT) is a novel in vivo technique in small animal studies, which can reveal the molecular and cellular information at the whole-body small animal level. At present, there is an increasing interest in multispectral bioluminescence tomography, since multispectral data acquisition could improve the BLT performance significantly. In view to the ill-posedness of BLT problem, we develop an optimal permissible source region strategy to constrain the possible solution of the source by utilizing spectrum character of bioluminescent source. Then a linear system to link the measured data with the unknown light source variables is established by utilizing the optimal permissible region strategy based on adaptive finite element analysis. Furthermore, singular value decomposition analysis is used for data dimensionality reduction and improving computational efficiency in multispectral case. The reconstructed speed and stability benefit from adaptive finite element, the permissible region strategy and singular value decomposition. In the numerical simulation, the heterogeneous phantom experiment has been used to evaluate the performance of the proposed algorithm with the Monte Carlo based synthetic data. The reconstruction results demonstrate the merits and potential of our methodology for localizing bioluminescent source.

  17. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography.

    Science.gov (United States)

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N; Braun, Natalie N; Saba, Osama; Williamson, Eric E; Harmsen, W Scott; Mandrekar, Jayawant N; McCollough, Cynthia H

    2009-12-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664

  18. Pancreatic dual-source dual-energy CT: Is it time to discard unenhanced imaging?

    International Nuclear Information System (INIS)

    Aim: To compare pancreatic virtual unenhanced (VUE) and true unenhanced (TUE) images and to calculate the potential dose reduction by omitting the conventional unenhanced scan. Materials and methods: Fifty-one patients with known or suspected pancreatic masses underwent contrast-enhanced computed-tomography (CT) during unenhanced and portal venous phases acquired in single-energy (SE) mode, and pancreatic parenchymal phase acquired in dual-energy (DE) mode. The image quality (IQ) and image noise (IN) of TUE and VUE images were evaluated. The effective dose of a combined DE/SE dual-phase protocol was compared with that of a theoretical standard SE triple-phase protocol. The results were tested for statistical significance using the Cohen’s k, the Wilcoxon’s signed rank test, and the paired t-test; p-values of less than 0.05 were considered significant. Results: Mean TUE and VUE IQ were 1.5 ± 0.6 and 1.6 ± 0.6 (k = 0.891), with no significant difference (p > 0.05). Mean TUE and VUE IN were 12.3 ± 1.6 and 10.3 ± 1.5 HU, and resulted significantly different (p < 0.001). Mean effective doses for a combined DE/SE dual-phase protocol and SE triple-phase protocol were 8.9 ± 2.4 mSv (range 4.8–16.2 mSv) and 12.1 ± 3.1 mSv (range 6.4–21.1 mSv). The calculated mean dose reduction achievable by omitting the unenhanced scan was 26.7 ± 9.7% (range 10–46.1; p < 0.001). Conclusion: VUE images are feasible for pancreatic abdominal CT. A combined DE/SE dual-phase protocol permits a significant reduction in dose exposure to patients.

  19. Energy-Efficient Packet Relaying in Wireless Image Sensor Networks Exploiting the Sensing Relevancies of Source Nodes and DWT Coding

    Directory of Open Access Journals (Sweden)

    Paulo Portugal

    2013-07-01

    Full Text Available When camera-enabled sensors are deployed for visual monitoring, a new set of innovative applications is allowed, enriching the use of wireless sensor network technologies. In these networks, energy-efficiency is a highly desired optimization issue, mainly because transmission of images and video streams over resource-constrained sensor networks is more stringent than transmission of conventional scalar data. Due to the nature of visual monitoring, that follows a directional sensing model, camera-enabled sensors may have different relevancies for the application, according to the desired monitoring tasks and the current sensors’ poses and fields of view. Exploiting this concept, each data packet may be associated with a priority level related to the packet’s origins, which may be in turn mapped to an energy threshold level. In such way, we propose an energy-efficient relaying mechanism where data packets are only forwarded to the next hop if the associated energy threshold level is below the current energy level of the relaying node. Thus, packets from low-relevant source nodes will be silently dropped when the current energy level of intermediate nodes run below the pre-defined thresholds. Doing so, energy is saved potentially prolonging the network lifetime. Besides the sensing relevancies of source nodes, the relevance of DWT subbands for reconstruction of original images is also considered. This allows the creation of a second level of packet prioritization, assuring a minimal level of image quality even for the least relevant source nodes. We performed simulations for the proposed relaying mechanism, assessing the expected performance over a traditional relaying paradigm.

  20. Mapping Woody Plant Encroachment in Grassland Using Multiple Source Remote Sensing images: Case Study in Oklahoma

    Science.gov (United States)

    Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Zhang, Y.; Zou, Z.; Zhou, Y.; Wu, X.; Bajgain, R.

    2015-12-01

    Woody plant encroachment (mainly Juniperus virginiana, a coniferous evergreen tree) in the native grassland has been rapidly increasing in the U.S. Southern Great Plains, largely triggered by overgrazing domestic livestock, fire suppression, and changing rainfall regimes. Increasing dense woody plants have significant implications for local grassland ecosystem dynamics, such as carbon storage, soil nutrient availability, herbaceous forage production, livestock, watershed hydrology and wildlife habitats. However, very limited data are available about the spatio-temporal dynamics of woody plant encroachment to the native grassland at regional scale. Data from remotes sensing could potentially provide relevant information and improve the conversion of native grassland to woody plant encroachment. Previous studies on woody detection in grassland mainly conducted at rangeland scale using airborne or high resolution images, which is sufficient to monitor the dynamics of woody plant encroachment in local grassland. This study examined the potential of medium resolution images to detect the woody encroachment in tallgrass prairie. We selected Cleveland county, Oklahoma, US. as case study area, where eastern area has higher woody coverage than does the western area. A 25-m Phased Array Type L-band Synthetic Aperture Radar (PALSAR, N36W98) image was used to map the trees distributed in the grassland. Then, maximum enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the winter calculated from time-series Landsat images was used to identify the invaded woody species (Juniperus virginiana) through phenology-based algorithm. The resulting woody plant encroachment map was compared with the results extracted from the high resolution images provided by the National Agriculture Imagery Program (NAIP). Field photos were also used to validate the accuracy. These results showed that integrating PALSAR and Landsat had good performance to identify the

  1. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.

    Science.gov (United States)

    Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs

    2013-06-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications.

  2. Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

    Directory of Open Access Journals (Sweden)

    Yen-Chun Chou

    2010-01-01

    Full Text Available Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV, relative cerebral blood flow (rCBF, and mean transit time (MTT. The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature.

  3. A new method for imaging faint objects nearby a bright source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In astronomical observation, it is difficult to obtain the image of faint objects in the peripheral area around a bright celestial body. In order to solve the problem, a new method is designed and experimented, which is called the separation readout technique (SRT). SRT is different from either the traditional coronagraphy or the newly-developed anti-blooming CCD technique, and allows an enough-long exposure to the faint objects in the area around a bright celestial body with the well-preserved bright body's image in one frame. This paper describes in detail the principle of SRT, the computer simulation, the experimental devising and result of SRT observation on a telescope.

  4. Images of innovation in discourses of free and open source software

    NARCIS (Netherlands)

    Dafermos, G.; Van Eeten, M.J.G.

    2014-01-01

    In this study, we examine the relationship between innovation and free/open source software (FOSS) based on the views of contributors to FOSS projects, using Q methodology as a method of discourse analysis to make visible the positions held by FOSS contributors and identify the discourses encountere

  5. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  6. Identifying constituent spectra sources in multispectral images to quantify and locate cervical neoplasia

    Science.gov (United States)

    Baker, Kevin C.; Bambot, Shabbir

    2011-02-01

    Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.

  7. Source camera identification for heavily JPEG compressed low resolution still images

    NARCIS (Netherlands)

    E.J. Alles; Z.J.M.H. Geradts; C.J. Veenman

    2009-01-01

    In this research, we examined whether fixed pattern noise or more specifically Photo Response Non-Uniformity (PRNU) can be used to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 × 480 pixels. We extracted PRNU patterns from both reference and questioned i

  8. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tohme, Michel S; Qi Jinyi [Department of Biomedical Engineering, University of California, Davis, CA 95616 (United States)], E-mail: qi@ucdavis.edu

    2009-06-21

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a {sup 22}Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  9. Iterative Image Reconstruction for Positron Emission Tomography Based on Detector Response Function Estimated from Point Source Measurements

    Science.gov (United States)

    Tohme, Michel S.; Qi, Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can be easily applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3-by-3 line phantom, an ultra-micro resolution phantom, and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  10. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    Science.gov (United States)

    Tohme, Michel S.; Qi, Jinyi

    2009-06-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 × 3 line phantom, an ultra-micro resolution phantom and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  11. Quantitative time resolved neutron imaging methods at the high flux neutron source FRM-II

    OpenAIRE

    Brunner, Johannes

    2007-01-01

    In the current work various new experimental methods and computation procedures in the field of neutron imaging are presented. These methods have a significant technical importance in non-destructive material investigations. With stroboscopic neutron radiography periodic processes can be investigated on a sub-millisecond time scale. This opens great opportunities for the study and the development of combustion engines. Energy selective time of flight neutron radiography at neutron spallation ...

  12. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  13. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  14. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2015-12-01

    Francis turbines operating at part-load experience the development of a precessing cavitation vortex rope at the runner outlet, which acts as an excitation source for the hydraulic system. In case of resonance, the resulting pressure pulsations seriously compromise the stability of the machine and of the electrical grid to which it is connected. As such off-design conditions are increasingly required for the integration of unsteady renewable energy sources into the existing power system, an accurate assessment of the hydropower plant stability is crucial. However, the physical mechanisms driving this excitation source remain largely unclear. It is for instance essential to establish the link between the draft tube flow characteristics and the intensity of the excitation source. In this study, a two-component particle image velocimetry system is used to investigate the flow field at the runner outlet of a reduced-scale physical model of a Francis turbine. The discharge value is varied from 55 to 81 % of the value at the best efficiency point. A particular set-up is designed to guarantee a proper optical access across the complex geometry of the draft tube elbow. Based on phase-averaged velocity fields, the evolution of the vortex parameters with the discharge, such as the trajectory and the circulation, is determined for the first time. It is shown that the rise in the excitation source intensity is induced by an enlargement of the vortex trajectory and a simultaneous increase in the precession frequency, as well as the vortex circulation. Below a certain value of discharge, the structure of the vortex abruptly changes and loses its coherence, leading to a drastic reduction in the intensity of the induced excitation source.

  15. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  16. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo

    2008-08-08

    We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4 alpha) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 muA D/T ion beam current accelerated to 80 kV. The generator utilizes a RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively-coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80percent can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results, such as the current density, atomic ion fraction, electron temperature, and electron density, from ion source testing will be discussed.

  17. Comparison of Source Images for protons, $\\pi^-$'s and $\\Lambda$'s in 6 AGeV Au+Au collisions

    CERN Document Server

    Chung, P; Alexander, J M; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J L; Cole, B; Crowe, K; Das, A C; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J; Krofcheck, D; Lacey, R A; Lauret, J; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S; Porile, N T; Rai, G; Ritter, H G; Romero, J L; Scharenberg, R P; Srivastava, B; Stone, N T B; Symons, T J M; Whitfield, J; Witt, R; Wood, L; Zhang Wei Ning; Brown, D; Pratt, S; Wang, F; Danielewicz, P

    2003-01-01

    Source images are extracted from two-particle correlations constructed from strange and non-strange hadrons produced in 6 AGeV Au + Au collisions. Very different source images result from pp vs p$\\Lambda$ vs $\\pi^-\\pi^-$ correlations. These observations suggest important differences in the space-time emission histories for protons, pions and neutral strange baryons produced in the same events.

  18. Point Source Scatter Contributions From Finite Size Objects In Radioisotope Imaging

    Science.gov (United States)

    Bieszk, J. A.; Lim, C. B.

    1982-11-01

    A Monte Carlo simulation was developed to study scatter contributions from a 140 keV point source at various depths and for different energy windows in finite water phantoms. Photoelectric and Compton interactions were considered. Scatter fractions, energy spectra, and radial spread functions of three approximately patientsized phantoms (rectangular prism, elliptical cylinder, and a sphere) were examined as a function of point-source depth and detector energy-window width. For a 100% energy window, energy spectra are characterized by a high energy region, a backscatter peak region, and a low energy, multi-scatter region. Depth dependent spatial limitations to the radial spread functions occur with decreasing window width. Scatter fractions for the sphere are much smaller than those of the other two phantoms, but approach their values as the size of the energy window decreases.

  19. Construction and testing of wavefront reference sources for interferometry of ultra-precise imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M A; Phillion, D W; Sommargren, G E; Decker, T A; Taylor, J S; Gomei, Y; Kakuchi, O; Takeuchi, S

    2005-07-01

    We have built and calibrated a set of 532-nm wavelength wavefront reference sources that fill a numerical aperture of 0.3. Early data show that they have a measured departure from sphericity of less than 0.2 nm RMS (0.4 milliwaves) and a reproducibility of better than 0.05 nm rms. These devices are compact, portable, fiber-fed, and are intended as sources of measurement and reference waves in wavefront measuring interferometers used for metrology of EUVL optical elements and systems. Keys to wave front accuracy include fabrication of an 800-nm pinhole in a smooth reflecting surface as well as a calibration procedure capable of measuring axisymmetric and non-axisymmetric errors.

  20. Images of innovation in discourses of free and open source software

    OpenAIRE

    Dafermos, George; van Eeten, Michel J.G.

    2014-01-01

    In this study, we examine the relationship between innovation and free/open source software (FOSS) based on the views of contributors to FOSS projects, using Q methodology as a method of discourse analysis to make visible the positions held by FOSS contributors and identify the discourses encountered in the FOSS community. In specific, our analysis reveals four discourses: four ways of expressing oneself used by FOSS contributors, which, aside from certain commonalities, postulate fundamental...

  1. Outflow Structure and Velocity Field of Orion Source I: ALMA Imaging of SiO Isotopologue Maser and Thermal Emission

    CERN Document Server

    Niederhofer, Florian; Goddi, Ciriaco

    2012-01-01

    Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J=5-4 and J=6-5) of the three silicon monoxide isotopologues 28SiO v=0, 1, 2 and 29SiO v=0 and 28Si18O v=0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow (~18 km/s, P.A. ~50deg, ~5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of ...

  2. Minimal spanning tree algorithm for gamma-ray source detection in sparse photon images: cluster parameters and selection strategies

    CERN Document Server

    Campana, R; Massaro, E; Tinebra, F; Tosti, G

    2013-01-01

    The minimal spanning tree (MST) algorithm is a graph-theoretical cluster-finding method. We previously applied it to gamma-ray bidimensional images, showing that it is quite sensitive in finding faint sources. Possible sources are associated with the regions where the photon arrival directions clusterize. MST selects clusters starting from a particular "tree" connecting all the point of the image and performing a cut based on the angular distance between photons, with a number of events higher than a given threshold. In this paper, we show how a further filtering, based on some parameters linked to the cluster properties, can be applied to reduce spurious detections. We find that the most efficient parameter for this secondary selection is the magnitude M of a cluster, defined as the product of its number of events by its clustering degree. We test the sensitivity of the method by means of simulated and real Fermi-Large Area Telescope (LAT) fields. Our results show that sqrt(M) is strongly correlated with oth...

  3. A Boosting Approach for the Detection of Faint Compact Sources in Wide Field Aperture Synthesis Radio Images

    Science.gov (United States)

    Torrent, A.; Peracaula, M.; Lladó, X.; Freixenet, J.; Sánchez-Sutil, J. R.; Paredes, J. M.; Martí, J.

    2010-12-01

    Several thresholding techniques have been proposed so far in order to perform faint compact source detection in wide field interferometric radio images. Due to their low intensity/noise ratio, some objects can be easily missed by these automatic detection methods. In this paper we present a novel approach to overcome this problem. Our proposal is based on using local features extracted from a bank of filters. These features provide a description of different types of faint source structures. Our approach performs an initial training step in order to automatically learn and select the most salient features, which are then used in a Boosting classifier to perform the detection. The validity of our method is demonstrated using 19 images that compose a 2.5°×2.5° radio mosaic, obtained with the Giant Metrewave Radio Telescope, centered on the MGRO J2019+37 peak of gamma emission at the Cygnus region. A comparison with two previously published radio catalogues of this region (task SAD of AIPS and SExtractor) is also provided.

  4. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA Utilizing Raster Attribute Tables

    Directory of Open Access Journals (Sweden)

    Daniel Clewley

    2014-06-01

    Full Text Available A modular system for performing Geographic Object-Based Image Analysis (GEOBIA, using entirely open source (General Public License compatible software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT. The system utilizes a number of libraries, developed by the authors: The Remote Sensing and GIS Library (RSGISLib, the Raster I/O Simplification (RIOS Python Library, the KEA image format and TuiView image viewer. All libraries are accessed through Python, providing a common interface on which to build processing chains. Three examples are presented, to demonstrate the capabilities of the system: (1 classification of mangrove extent and change in French Guiana; (2 a generic scheme for the classification of the UN-FAO land cover classification system (LCCS and their subsequent translation to habitat categories; and (3 a national-scale segmentation for Australia. The system presented provides similar functionality to existing GEOBIA packages, but is more flexible, due to its modular environment, capable of handling complex classification processes and applying them to larger datasets.

  5. AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    CERN Document Server

    Ita, Y; Tanabe, T; Matsunaga, N; Matsuura, M; Yamamura, I; Nakada, Y; Izumiura, H; Ueta, T; Mito, H; Fukushi, H; Kato, D

    2010-01-01

    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.

  6. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  7. Multi-slice and dual-source CT in cardiac imaging. Principles - protocols - indications - outlook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ohnesorge, B.M. [Siemens Medical Solutions Group China, Beijing (China); Flohr, T.G. [Siemens Medical Solutions, Forchheim (Germany). Div. CT Physics and Applications Development; Becker, C.R.; Reiser, M.F. [Muenchen Univ. Klinikum Grosshadern (Germany). Dept. of Clinical Radiology; Knez, A [Muenchen Univ. Klinikum Grosshadern (Germany). Section Head Imaging

    2007-07-01

    Cardiac diseases, and in particular coronary artery disease, are the leading cause of death and morbidity in industrialized countries. The development of non-invasive imaging techniques for the heart and the coronary arteries has been considered a key element in improving patient care. A breakthrough in cardiac imaging using CT occurred in 1998, with the introduction of multi-slice computed tomography (CT). Since then, amazing advances in performance have taken place with scanners that acquire up to 64 slices per rotation. This book discusses the state-of-the-art developments in multi-slice CT for cardiac imaging as well as those that can be anticipated in the future. It serves as a comprehensive work that covers all aspects of this technology, from the technical fundamentals and image evaluation all the way to clinical indications and protocol recommendations. This fully reworked second edition draws on the most recent clinical experience obtained with 16- and 64-slice CT scanners by world-leading experts from Europe and the United States. It also includes 'hands-on' experience in the form of 10 representative clinical case studies, which are included on the accompanying CD. As a further highlight, the latest results of the very recently introduced dual-source CT, which may soon represent the CT technology of choice for cardiac applications, are presented. This book will not only convince the reader that multi-slice cardiac CT has arrived in clinical practice, it will also make a significant contribution to the education of radiologists, cardiologists, technologists, and physicists-whether newcomers, experienced users, or researchers. (orig.)

  8. Recent wetland land loss due to hurricanes: improved estimates based upon multiple source images

    Science.gov (United States)

    Kranenburg, Christine J.; Palaseanu-Lovejoy, Monica; Barras, John A.; Brock, John C.; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    The objective of this study was to provide a moderate resolution 30-m fractional water map of the Chenier Plain for 2003, 2006 and 2009 by using information contained in high-resolution satellite imagery of a subset of the study area. Indices and transforms pertaining to vegetation and water were created using the high-resolution imagery, and a threshold was applied to obtain a categorical land/water map. The high-resolution data was used to train a decision-tree classifier to estimate percent water in a lower resolution (Landsat) image. Two new water indices based on the tasseled cap transformation were proposed for IKONOS imagery in wetland environments and more than 700 input parameter combinations were considered for each Landsat image classified. Final selection and thresholding of the resulting percent water maps involved over 5,000 unambiguous classified random points using corresponding 1-m resolution aerial photographs, and a statistical optimization procedure to determine the threshold at which the maximum Kappa coefficient occurs. Each selected dataset has a Kappa coefficient, percent correctly classified (PCC) water, land and total greater than 90%. An accuracy assessment using 1,000 independent random points was performed. Using the validation points, the PCC values decreased to around 90%. The time series change analysis indicated that due to Hurricane Rita, the study area lost 6.5% of marsh area, and transient changes were less than 3% for either land or water. Hurricane Ike resulted in an additional 8% land loss, although not enough time has passed to discriminate between persistent and transient changes.

  9. Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Imaging Source Coupled to a FT-ICR Mass Spectrometer

    Science.gov (United States)

    Robichaud, Guillaume; Barry, Jeremy A.; Garrard, Kenneth P.; Muddiman, David C.

    2013-01-01

    Mass spectrometry imaging (MSI) allows for the direct monitoring of the abundance and spatial distribution of chemical compounds over the surface of a tissue sample. This technology has opened the field of mass spectrometry to numerous innovative applications over the past 15 years. First used with SIMS and MALDI MS that operate under vacuum, interest has grown for mass spectrometry ionization sources that allow for effective imaging but where the analysis can be performed at ambient pressure with minimal or no sample preparation. We introduce here a versatile source for MALDESI imaging analysis coupled to a hybrid LTQ-FT-ICR mass spectrometer. The imaging source offers single shot or multi-shot capability per pixel with full control over the laser repetition rate and mass spectrometer scanning cycle. Scanning rates can be as fast as 1 pixel/second and a spatial resolution of 45 μm was achieved with oversampling.

  10. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  11. Distributed medical image analysis and diagnosis through crowd-sourced games: a malaria case study.

    Directory of Open Access Journals (Sweden)

    Sam Mavandadi

    Full Text Available In this work we investigate whether the innate visual recognition and learning capabilities of untrained humans can be used in conducting reliable microscopic analysis of biomedical samples toward diagnosis. For this purpose, we designed entertaining digital games that are interfaced with artificial learning and processing back-ends to demonstrate that in the case of binary medical diagnostics decisions (e.g., infected vs. uninfected, with the use of crowd-sourced games it is possible to approach the accuracy of medical experts in making such diagnoses. Specifically, using non-expert gamers we report diagnosis of malaria infected red blood cells with an accuracy that is within 1.25% of the diagnostics decisions made by a trained medical professional.

  12. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    Science.gov (United States)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  13. The study on dual-energy lung perfusion imaging in the diagnosis of pulmonary embolism using dual-source CT

    International Nuclear Information System (INIS)

    Objective: To explore the diagnostic values of dual energy lung perfusion in the diagnosis of pulmonary embolism by using dual-source CT (DSCT). Methods: Thirty patients with clinically suspected pulmonary embolism underwent dual-energy scanning with dual-source CT. The scanned data were integrated into three groups including 140, 80 kV and coefficient of 0.3. According to the CT pulmonary angiography (CTPA) of the fusion data, the patients were divided into pulmonary embolism group and normal group. The thin-slice reconstruction of data was analyzed using dual-energy perfusion imaging analysis software. The lung field was divided into upper, middle and lower part to make quantitative analysis of lung tissue perfusion. Paired t-tests were used in the normal patients to compare bilateral lungs, and, independent samples t-tests were applied to compare the embolism group and normal group, while minimum intensity projection images (MinIP) were utilized in the assessment of lung ventilation. Results: Dual energy CT showed symmetrical homogeneous perfusion in 16 normal cases, without significant perfusion defects. Quantitative analysis showed that left and right lung perfusion were (27±7) and (28±8) HU respectively, and no significant difference was found between the two sides (t=-1.73, P>0.05). Perfusion of the left upper, middle and lower lung was (23±6), (24±6), and (28±8) HU respectively, while the perfusion of right upper, middle and lower lung was (26±8), (27±8), and (28±9) HU respectively, showing no statistical significant difference between the two sides (t=-1.91, -1.96, -1.73, P>0.05). Angiography of pulmonary embolism group (14 cases) showed filling defects in the pulmonary trunk, segments and sub-segments. Pulmonary perfusion imaging showed low perfusion or defects in lung field that dominated by embolic vessels. Quantitative analysis showed that the perfusion of the whole lung and the middle and lower lung were (22±5), (22±8), and (21±8) HU in the

  14. San Francisco Bay Area Velocity Structure From Controlled-Source Seismic Refraction Imaging

    Science.gov (United States)

    Goldman, M. R.; Catchings, R. D.; Steedman, C. E.; Gandhok, G.; Boatwright, J.; Rymer, M. J.

    2004-12-01

    To better understand the velocities and structures of the crust and upper mantle in the San Francisco Bay area, we developed 2-D tomographic velocity models along four seismic refraction profiles acquired along and across the bay area in the early 1990's. The four profiles extended from (1) Hollister to Inverness along the San Francisco and Marin Peninsulas (~200 km long), (2) Hollister to Santa Rosa along the East Bay (~220 km long), (3) the Pacific Ocean to Livermore crossing the bay (~100 km long), and (4) the Pacific Ocean to the western Santa Clara Valley (~25 km long), centered on the epicenter of the1989 M. 6.9 Loma Prieta earthquake. Velocity models were not previously developed for three of the seismic profiles, and the previously developed model for the fourth profile (Catchings and Kohler, 1996) did not include some of the currently available seismic data. The profiles along the bay image structures from the near surface to about 25 km depth, and they show velocity anomalies associated with the major faults (San Andreas, Hayward, Rodgers Creek, Calaveras) and basins along the profile. Velocities range from about 2 km/s in the basins to about 7 km/s at the Moho, which dips southward along both sides of the bay. The cross bay profile shows velocity anomalies associated with six fault zones between the Pacific Ocean and the Livermore Valley and higher upper-crustal velocities (~6.2 km/s) between the San Andreas and Hayward faults than to the southwest (~5 km/s) or northeast (~4 km/s) of those faults. The Loma Prieta profile shows velocities ranging from 2 km/s to 6 km/s in the upper 5 km, with the highest velocities in the epicentral region of the 1989 Loma Prieta earthquake. A pronounced, northeast-dipping, low-velocity zone is located beneath the surface expression of the San Andreas fault zone, but other fault zones along the profile show high-velocity anomalies beneath their surface expressions. Collectively, the velocity images show the complexity of

  15. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  16. Effects of shallow trench isolation on low frequency noise characteristics of source-follower transistors in CMOS image sensors

    Science.gov (United States)

    Kwon, Sung-Kyu; Kwon, Hyuk-Min; Choi, Woon-Il; Song, Hyeong-Sub; Lee, Hi-Deok

    2016-05-01

    The effects of the shallow trench isolation (STI) edge on low frequency noise characteristics of source-follower (SF) transistors in CMOS image sensors (CIS) were investigated. Random telegraph signal (RTS) noise and 1/f noise were measured in a CIS operating voltage region for a realistic assessment. SF transistor with STI edge in contact with channel shows a lower probability of generating RTS noise but greater RTS amplitude due to the enhanced trap density induced by STI-induced damage. SF MOSFETs without STI exhibit a much lower 1/f noise power spectral density in spite of the greater RTS generation probability, which is due to the decreased trap density. Therefore, SF transistors without STI edge in contact with channel are promising candidates for low noise CIS applications.

  17. Seismic reflection imaging of underground cavities using open-source software

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J

    2011-12-20

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.

  18. Terms and terminological combinations as a source of image in M. Sholokhov’s works

    Directory of Open Access Journals (Sweden)

    Mukhamedganova Alina Mikhailovna

    2015-12-01

    Full Text Available The article researches the sources of imagery and expressiveness in the works of M. Sholokhov, as the terms and terminological combinations. The texts of the writer shaped the function of terminological linguistic units in its implementation, as a rule, when they are used as a comparison, as well as their figurative metaphorical and metonymic use. However, M. Sholokhov as a true master of literary work uses non- traditional methods of realization of terminological linguistic unit in the art-works of pictorial means, giving it a completely new meaning, which, however, is not portable because acquired value of terminological linguistic unit does not depend on the direct meaning of the defining reality of a special sphere of human activity. So, the new meaning of the terms may not be motivated to direct meaning, and the phonetic structure of the units. In other words, these meanings are motivated by individual associations of the hero of the novel, which cause a phonetic structure of terminological units. Also it is analyzed example, when the term of the military sector in the speech of a character realized the function, however, in this example, the term itself is not important, only the essential fact that the unit is a military term.

  19. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    Science.gov (United States)

    Miller, John J.; von Huene, Roland; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  20. Imaging of the elbow in children with wrist fracture: an unnecessary source of radiation and use of resources?

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Lauren P. [Wake Forest University Baptist Health, Department of Radiology, Winston-Salem, NC (United States); Triad Radiology Associates, Winston-Salem, NC (United States); Yasin, Yousef; Singh, Jasmeet; Anthony, Evelyn [Wake Forest University Baptist Health, Department of Radiology, Winston-Salem, NC (United States); Gyr, Bettina M. [Wake Forest University Baptist Health, Department of Orthopedic Surgery, Winston-Salem, NC (United States); Gardner, Alison [Wake Forest University Baptist Health, Department of Pediatric Emergency Medicine, Winston-Salem, NC (United States)

    2015-08-15

    Anecdotally accepted practice for evaluation of children with clinically suspected or radiographically proven wrist fracture in many urgent care and primary care settings is concurrent imaging of the forearm and elbow, despite the lack of evidence to support additional images. These additional radiographs may be an unnecessary source of radiation and use of health care resources. Our study assesses the necessity of additional radiographs of the forearm and elbow in children with wrist injury. We reviewed electronic medical records of children 17 and younger in whom wrist fracture was diagnosed in the emergency department. We identified the frequency with which additional radiographs of the proximal forearm and distal humerus demonstrated another site of acute injury. We identified 214 children with wrist fracture. Of those, 129 received additional radiographs of the elbow. Physical examination findings proximal to the wrist were documented in only 16 (12%) of these 129 children. A second injury proximal to the wrist fracture was present in 4 (3%) of these 129 children, all of whom exhibited physical examination findings at the elbow. No fractures were documented in children with a negative physical examination of the elbow. Although elbow fractures occasionally complicate distal forearm fractures in children, our findings indicate that a careful physical evaluation of the elbow is sufficient to guide further radiographic investigation. Routine radiographs of both the wrist and elbow in children with distal forearm fracture appear to be unnecessary when an appropriate physical examination is performed. (orig.)

  1. Imaging of the elbow in children with wrist fracture: an unnecessary source of radiation and use of resources?

    International Nuclear Information System (INIS)

    Anecdotally accepted practice for evaluation of children with clinically suspected or radiographically proven wrist fracture in many urgent care and primary care settings is concurrent imaging of the forearm and elbow, despite the lack of evidence to support additional images. These additional radiographs may be an unnecessary source of radiation and use of health care resources. Our study assesses the necessity of additional radiographs of the forearm and elbow in children with wrist injury. We reviewed electronic medical records of children 17 and younger in whom wrist fracture was diagnosed in the emergency department. We identified the frequency with which additional radiographs of the proximal forearm and distal humerus demonstrated another site of acute injury. We identified 214 children with wrist fracture. Of those, 129 received additional radiographs of the elbow. Physical examination findings proximal to the wrist were documented in only 16 (12%) of these 129 children. A second injury proximal to the wrist fracture was present in 4 (3%) of these 129 children, all of whom exhibited physical examination findings at the elbow. No fractures were documented in children with a negative physical examination of the elbow. Although elbow fractures occasionally complicate distal forearm fractures in children, our findings indicate that a careful physical evaluation of the elbow is sufficient to guide further radiographic investigation. Routine radiographs of both the wrist and elbow in children with distal forearm fracture appear to be unnecessary when an appropriate physical examination is performed. (orig.)

  2. Swept source optical coherence tomography for in vivo imaging and vibrometry in the apex of the mouse cochlea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Yoon [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Raphael, Patrick D.; Oghalai, John S. [Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Ellerbee, Audrey K. [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane, tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.

  3. Cascade of neural events leading from error commission to subsequent awareness revealed using EEG source imaging.

    Directory of Open Access Journals (Sweden)

    Monica Dhar

    Full Text Available The goal of the present study was to shed light on the respective contributions of three important action monitoring brain regions (i.e. cingulate cortex, insula, and orbitofrontal cortex during the conscious detection of response errors. To this end, fourteen healthy adults performed a speeded Go/Nogo task comprising Nogo trials of varying levels of difficulty, designed to elicit aware and unaware errors. Error awareness was indicated by participants with a second key press after the target key press. Meanwhile, electromyogram (EMG from the response hand was recorded in addition to high-density scalp electroencephalogram (EEG. In the EMG-locked grand averages, aware errors clearly elicited an error-related negativity (ERN reflecting error detection, and a later error positivity (Pe reflecting conscious error awareness. However, no Pe was recorded after unaware errors or hits. These results are in line with previous studies suggesting that error awareness is associated with generation of the Pe. Source localisation results confirmed that the posterior cingulate motor area was the main generator of the ERN. However, inverse solution results also point to the involvement of the left posterior insula during the time interval of the Pe, and hence error awareness. Moreover, consecutive to this insular activity, the right orbitofrontal cortex (OFC was activated in response to aware and unaware errors but not in response to hits, consistent with the implication of this area in the evaluation of the value of an error. These results reveal a precise sequence of activations in these three non-overlapping brain regions following error commission, enabling a progressive differentiation between aware and unaware errors as a function of time elapsed, thanks to the involvement first of interoceptive or proprioceptive processes (left insula, later leading to the detection of a breach in the prepotent response mode (right OFC.

  4. A next-generation open-source toolkit for FITS file image viewing

    Science.gov (United States)

    Jeschke, Eric; Inagaki, Takeshi; Kackley, Russell

    2012-09-01

    The astronomical community has a long tradition of sharing and collaborating on FITS file tools, including viewers. Several excellent viewers such as DS9 and Skycat have been successfully reused again and again. Yet this "first generation" of viewers predate the emergence of a new class of powerful object-oriented scripting languages such as Python, which has quickly become a very popular language for astronomical (and general scientific) use. Integration and extension of these viewers by Python is cumbersome. Furthermore, these viewers are also built on older widget toolkits such as Tcl/Tk, which are becoming increasingly difficult to support and extend as time passes. Suburu Telescope's second-generation observation control system (Gen2) is built on a a foundation of Python-based technologies and leverages several important astronomically useful packages such as numpy and pyfits. We have written a new flexible core widget for viewing FITS files which is available in versions for both the modern Gtk and Qt-based desktops. The widget offers seamless integration with pyfits and numpy arrays of FITS data. A full-featured viewer based on this widget has been developed, and supports a plug-in architecture in which new features can be added by scripting simple Python modules. In this paper we will describe and demonstrate the capabilities of the new widget and viewer and discuss the architecture of the software which allows new features and widgets to easily developed by subclassing a powerful abstract base class. The software will be released as open-source.

  5. Source Mechanism of Explosive Degassing at Kilauea Volcano Imaged From Inversion of Very Long Period Seismic Waveforms

    Science.gov (United States)

    Chouet, B. A.; Dawson, P. B.

    2008-12-01

    Following the opening of a new vent in the Halemaumau pit crater on 19 March 2008, summit activity at Kilauea has been marked by emissions of volcanic gases and ash from this vent, occasionally disrupted by explosive degassing bursts. The source mechanisms of very long period (VLP) signals accompanying the degassing bursts are analyzed in the 10 - 50 s band by minimizing the residual error between data and synthetics calculated for a point source embedded in a homogeneous medium. The waveforms of five explosions (19 March, 9 and 16 April, and 9 July 2008) are well reproduced by our inversions, which take into account volcano topography. All explosions originate from the same point source positioned 1000 m below the eastern perimeter of Halemaumau. The source mechanisms include both moment-tensor and single-force components. The principal axes of the moment tensor have amplitude ratios 1:1.4:1.5, which can be interpreted as representative of either a pipe, or two intersecting cracks, if one assumes the rock matrix at the source to have a Poisson ratio ν = 1/3, a value appropriate for hot rock. The imaged pipe dips 64° northeast, while the two-crack model features an east-striking crack (dike) dipping 80° north, intersecting a north-striking crack (another dike) dipping 65° east. Each explosion is marked by a similar sequence of deflation, inflation, deflation of the volumetric source, reflecting a cycle of depressurization, pressurization, depressurization within a time interval of ~1 min. Maximum volume changes range from 400 to 1500 m3 in the pipe model, and from 500 to 1900 m3 split roughly evenly among both cracks in the dual-crack model. Accompanying these volumetric components is a dominantly vertical single-force component with magnitude of 109 N. The force is initially upward, synchronous with source deflation, followed by a downward force synchronous with the subsequent source inflation. This combination of force and volume change is suggestive of a

  6. Active-source seismic imaging below Lake Malawi (Nyasa) from the SEGMeNT project

    Science.gov (United States)

    Shillington, D. J.; Scholz, C. A.; Gaherty, J. B.; Accardo, N. J.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Trinhammer, P.; Wood, D. A.; Khalfan, M.; Ebinger, C. J.; Nyblade, A.; Mbogoni, G. J.; Mruma, A. H.; Salima, J.; Ferdinand-Wambura, R.

    2015-12-01

    Little is known about the controls on the initiation and development of magmatism and segmentation in young rift systems. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined in the upper crust by ~100-km-long border faults. Very little volcanism is associated with rifting; the only surface expression of magmatism occurs in an accommodation zone between segments to the north of the lake in the Rungwe Volcanic Province. The SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project is a multidisciplinary, multinational study that is acquiring a suite of geophysical, geological and geochemical data to characterize deformation and magmatism in the crust and mantle lithosphere along 2-3 segments of this rift. As a part of the SEGMeNT project, we acquired seismic reflection and refraction data in Lake Malawi (Nyasa) in March-April 2015. Over 2000 km of seismic reflection data were acquired with a 500 to 2580 cu in air gun array from GEUS/Aarhus and a 500- to 1500-m-long seismic streamer from Syracuse University over a grid of lines across and along the northern and central basins. Air gun shots from MCS profiles and 1000 km of additional shooting with large shot intervals were also recorded on 27 short-period and 6 broadband lake bottom seismometers from Scripps Oceanographic Institute as a part of the Ocean Bottom Seismic Instrument Pool (OBSIP) as well as the 55-station onshore seismic array. The OBS were deployed along one long strike line and two dip lines. We will present preliminary data and results from seismic reflection and refraction data acquired in the lake and their implications for crustal deformation within and between rift segments. Seismic reflection data image structures up to ~5-6 km below the lake bottom, including syntectonic sediments, intrabasinal faults and other complex horsts. Some intrabasinal faults in both the northern and

  7. Initial experience with single-source dual-energy CT abdominal angiography and comparison with single-energy CT angiography: image quality, enhancement, diagnosis and radiation dose

    International Nuclear Information System (INIS)

    To assess image quality of virtual monochromatic spectral (VMS) images, compared to single-energy (SE) CT, and to evaluate the feasibility of material density imaging in abdominal aortic disease. In this retrospective study, single-source (ss) dual-energy (DE) CT of the aorto-iliac system in 35 patients (32 male, mean age 76.5 years) was compared to SE-CT. By post-processing the data from ssDECT, VMS images at different energies and material density water (WD) images were generated. The image quality parameters were rated on 5-point scales. The aorto-iliac attenuation and contrast-to-noise ratio (CNR) were recorded. Quality of WD images was compared to true unenhanced (TNE) images. Radiation dose was recorded and statistical analysis was performed. Image quality and noise were better at 70 keV (P < 0.01). Renal artery branch visualisation was better at 50 keV (P < 0.005). Attenuation and CNR were higher at 50 and 70 keV (P < 0.0001). The WD images had diagnostic quality but higher noise than TNE images (P < 0.0001). Radiation dose was lower using single-phase ssDECT compared to dual-phase SE-CT (P < 0.0001). 70-keV images from ssDECT provide higher contrast enhancement and improved image quality for aorto-iliac CT when compared to SE-CT at 120 kVp. WD images are an effective substitute for TNE images with a potential for dose reduction. (orig.)

  8. SimVascular 2.0: an Integrated Open Source Pipeline for Image-Based Cardiovascular Modeling and Simulation

    Science.gov (United States)

    Lan, Hongzhi; Merkow, Jameson; Updegrove, Adam; Schiavazzi, Daniele; Wilson, Nathan; Shadden, Shawn; Marsden, Alison

    2015-11-01

    SimVascular (www.simvascular.org) is currently the only fully open source software package that provides a complete pipeline from medical image based modeling to patient specific blood flow simulation and analysis. It was initially released in 2007 and has contributed to numerous advances in fundamental hemodynamics research, surgical planning, and medical device design. However, early versions had several major barriers preventing wider adoption by new users, large-scale application in clinical and research studies, and educational access. In the past years, SimVascular 2.0 has made significant progress by integrating open source alternatives for the expensive commercial libraries previously required for anatomic modeling, mesh generation and the linear solver. In addition, it simplified the across-platform compilation process, improved the graphical user interface and launched a comprehensive documentation website. Many enhancements and new features have been incorporated for the whole pipeline, such as 3-D segmentation, Boolean operation for discrete triangulated surfaces, and multi-scale coupling for closed loop boundary conditions. In this presentation we will briefly overview the modeling/simulation pipeline and advances of the new SimVascular 2.0.

  9. Reflection seismic imaging of the upper crystalline crust for characterization of potential repository sites: Fine tuning the seismic source

    International Nuclear Information System (INIS)

    SKB is currently carrying out studies to determine which seismic techniques, and how, they will be used for investigations prior to and during the building of a high-level nuclear waste repository. Active seismic methods included in these studies are refraction seismics, reflection seismics, and vertical seismic profiling (VSP). The main goal of the active seismic methods is to locate fracture zones in the crystalline bedrock. Plans are to use longer reflection seismic profiles (3.4 km) in the initial stages of the site investigations. The target depth for these seismic profiles is 100-1500 m. Prior to carrying out the seismic surveys over actual candidate waste repository sites it has been necessary to carry out a number of tests to determine the optimum acquisition parameters. This report constitutes a summary of the tests carried out by Uppsala University. In addition, recommended acquisition and processing parameters are presented at the end of the report. A major goal in the testing has been to develop a methodology for acquiring high-resolution reflection seismic data over crystalline rock in as a cost effective manner as possible. Since the seismic source is generally a major cost in any survey, significant attention has been given to reducing the cost of the source. It was agreed upon early in the study that explosives were the best source from a data quality perspective and, therefore, only explosive source methods have been considered in this study. The charge size and shot hole dimension required to image the upper 1-1.5 km of bedrock is dependent upon the conditions at the surface. In this study two types of shot hole drilling methods have been employed depending upon whether the thickness of the loose sediments at the surface is greater or less than 0.5 m. The charge sizes and shot hole dimensions required are: Loose sediment thickness less than 0.5 m: 15 g in 90 cm deep 12 mm wide uncased shot holes. Loose sediment thickness greater than 0.5 m: 75 g

  10. Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet

    Energy Technology Data Exchange (ETDEWEB)

    Mariappan, Leo; Hu, Gang [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States); He, Bin, E-mail: binhe@umn.edu [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)

    2014-02-15

    Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ∼1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

  11. Multi-parameter high-resolution lithospheric imaging by source-independent full-waveform inversion of teleseismic data

    Science.gov (United States)

    Beller, S.; Monteiller, V.; Operto, S.; Nolet, G.

    2015-12-01

    Building broadband multi-parameter lithospheric models is one of the quest of earthquake seismology. Nowadays, deployment of dense arrays of broadband stations and advances in high-performance computing open new perspectives to achieve this goal by full waveform inversion (FWI) of teleseismic data. Compared to traveltime tomography, broadband images can be obtained by FWI when wavefields that are forward-scattered (i.e., transmission regime) and backward-scattered (reflection regime) by lithospheric heterogeneties to be imaged are involved in the inversion. In teleseismic setting, incident wavefields impinge the boundaries of the lithospheric target and propagate up to the surface where they are recorded by the stations, giving rise to the transmitted part of the recorded wavefield. The incident wavefield is also reflected back into the lithospheric target by the free surface acting as P- and S-waves secondary sources. The resulting wavefield is reflected by the lithospheric reflectors before being recorded by the stations, giving rise to the second-order reflection part of the recorded wavefield. While the transmitted part of the wavefield allows one to achieve a resolution close to that obtained by traveltime tomography, involving the reflected part of the wavefield in the FWI is amenable to the short-wavelength updates, hence broadaning the wavenumber spectrum of the lithospheric models toward high wavenumbers. Another benefit to involve the reflection regime in FWI is to increase the sensitivity of the FWI to the density parameter. In this study, we first discuss the feasibility of the density reconstruction in addition to that of the P- and S-waves velocities by FWI of teleseismic wavefields with a realistic synthetic study representative of the western Alps. The density reconstruction implies the extraction of information given by small amplitude secondary wavefields from the data that may be drastically affected by noise and trade-off between model parameter

  12. Variational multi-source image fusion based on the structure tensor%基于结构张量的变分多源图像融合

    Institute of Scientific and Technical Information of China (English)

    赵文达; 赵建; 续志军

    2013-01-01

    提出了可以保持源图像特征和细节信息的基于结构张量的变分多源图像融合算法。首先叙述基于结构张量的融合梯度场,然后测量每幅源图像的特征图,根据特征图为源图像的每个梯度构造一个权值,将携带明显特征的梯度在融合的梯度场中凸显出来,从而使源图像的特征和细节得到保持,最后应用变分偏微分方程理论从目标梯度场重建出融合的图像。实验结果表明,本文算法融合图像的灰度平均梯度和信息熵均高于小波变换算法、塔分解法和直接梯度融合算法,视觉效果上,融合图像很好的保留了源图像的特征和细节,为图像目标检测和识别提供了高质量的图像信息。%This article describes the variational multi-source image fusion using the structure tensor algorithm, which can keep the image features and details very well. We first narrative the fusion gradient field based on structure tensor, then measure the characteristic graphs of each source image, and thus construct a weight value for the source image gradient according to the characteristic graph. Gradients with high image features are highlighted in the fusion gradient field, and thus image features in the sources are well preserved. By using variational partial differential equation, the fusion image is reconstructed from the target gradient field. From the actual experimental results, the average gradient value and entropy of the fused image are found to be higher than those obtained by using the wavelet transform algorithm, tower decomposition algorithm, and direct gradient fusion algorithm, and the visual effect of the fusion image is good enough to retain the feature of source images and details in it. Therefore, it can give qualified image information for target detection and identification.

  13. Triple seismic source, double research ship, single ambitious goal: integrated imaging of young oceanic crust in the Panama Basin

    Science.gov (United States)

    Wilson, Dean; Peirce, Christine; Hobbs, Richard; Gregory, Emma

    2016-04-01

    Understanding geothermal heat and mass fluxes through the seafloor is fundamental to the study of the Earth's energy budget. Using geophysical, geological and physical oceanography data we are exploring the interaction between the young oceanic crust and the ocean in the Panama Basin. We acquired a unique geophysical dataset that will allow us to build a comprehensive model of young oceanic crust from the Costa Rica Ridge axis to ODP borehole 504B. Data were collected over two 35 x 35 km2 3D grid areas, one each at the ridge axis and the borehole, and along three 330 km long 2D profiles orientated in the spreading direction, connecting the two grids. In addition to the 4.5 km long multichannel streamer and 75 ocean-bottom seismographs (OBS), we also deployed 12 magnetotelluric (MT) stations and collected underway swath bathymetry, gravity and magnetic data. For the long 2D profiles we used two research vessels operating synchronously. The RRS James Cook towed a high frequency GI-gun array (120 Hz) to image the sediments, and a medium frequency Bolt-gun array (50 Hz) for shallow-to-mid-crustal imaging. The R/V Sonne followed the Cook, 9 km astern and towed a third seismic source; a low frequency, large volume G-gun array (30 Hz) for whole crustal and upper mantle imaging at large offsets. Two bespoke vertical hydrophone arrays recorded real far field signatures that have enabled us to develop inverse source filters and match filters. Here we present the seismic reflection image, forward and inverse velocity-depth models and a density model along the primary 330 km north-south profile, from ridge axis to 6 Ma crust. By incorporating wide-angle streamer data from our two-ship, synthetic aperture acquisition together with traditional wide-angle OBS data we are able to constrain the structure of the upper oceanic crust. The results show a long-wavelength trend of increasing seismic velocity and density with age, and a correlation between velocity structure and basement

  14. Imaging of pulmonary vein anatomy using low-dose prospective ECG-triggered dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Philipp; Baumann, Tobias; Langer, Mathias; Pache, Gregor [University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany)

    2010-08-15

    To prospectively investigate the feasibility, image quality and radiation dose estimates for computed tomography angiography (CTA) of the pulmonary veins and left atrium using prospective electrocardiography (ECG)-triggered sequential dual-source (DS) data acquisition at end-systole in patients with paroxysmal atrial fibrillation undergoing radiofrequency ablation. Thirty-five patients (mean age 66.2 {+-} 12.6 years) with paroxysmal atrial fibrillation underwent prospective ECG-triggered sequential DS-CTA with tube current (250 mAs/rotation) centred 250 ms past the R-peak. Tube voltage was adjusted to the BMI (<25 kg/m{sup 2}: 100 kV, >25 kg/m{sup 2}: 120 kV). Presence of motion or stair-step artefacts was assessed. Effective radiation dose was calculated from the dose-length product. All data sets could be integrated into the electroanatomical mapping system. Twenty-two patients (63%) were in sinus rhythm (mean heart rate 69.2 {+-} 11.1 bpm, variability 1.0 {+-} 1.7 bpm) and 13 (37%) showed an ECG pattern of atrial fibrillation (mean heart rate 84.8 {+-} 16.6 bpm, variability 17.9 {+-} 7.5 bpm). Minor step artefacts were observed in three patients (23%) with atrial fibrillation. Mean estimated effective dose was 1.1 {+-} 0.3 and 3.0 {+-} 0.5 mSv for 100 and 120 kV respectively. Imaging of pulmonary vein anatomy is feasible using prospective ECG-triggered sequential data acquisition at end-systole regardless of heart rate or rhythm at the benefit of low radiation dose. (orig.)

  15. An image-based skeletal dosimetry model for the ICRP reference adult male-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hough, Matthew; Johnson, Perry; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States); Lee, Choonsik, E-mail: wbolch@ufl.edu [Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD (United States)

    2011-04-21

    In this study, a comprehensive electron dosimetry model of the adult male skeletal tissues is presented. The model is constructed using the University of Florida adult male hybrid phantom of Lee et al (2010 Phys. Med. Biol. 55 339-63) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow, associated with radiogenic leukemia, and total shallow marrow, associated with radiogenic bone cancer. Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following sources: bone marrow (active and inactive), trabecular bone (surfaces and volumes), and cortical bone (surfaces and volumes). Specific absorbed fractions are computed according to the MIRD schema, and are given as skeletal-averaged values in the paper with site-specific values reported in both tabular and graphical format in an electronic annex available from http://stacks.iop.org/0031-9155/56/2309/mmedia. The distribution of cortical bone and spongiosa at the macroscopic dimensions of the phantom, as well as the distribution of trabecular bone and marrow tissues at the microscopic dimensions of the phantom, is imposed through detailed analyses of whole-body ex vivo CT images (1 mm resolution) and spongiosa-specific ex vivo microCT images (30 {mu}m resolution), respectively, taken from a 40 year male cadaver. The method utilized in this work includes: (1) explicit accounting for changes in marrow self-dose with variations in marrow cellularity, (2) explicit accounting for electron escape from spongiosa, (3) explicit consideration of spongiosa cross-fire from cortical bone, and (4) explicit consideration of the ICRP's change in the surrogate tissue region defining the location of the osteoprogenitor cells (from a 10 {mu}m endosteal layer covering the trabecular and cortical surfaces to a 50 {mu}m shallow marrow layer covering trabecular and medullary cavity surfaces). Skeletal

  16. The impact of heart rate on image quality and reconstruction timing of dual-source CT coronary angiography

    International Nuclear Information System (INIS)

    Objective: To evaluate the impact of patient's heart rate (HR) on coronary CT angiography (CTA) image quality (IQ) and reconstruction timing in dual-source CT (DSCT). Methods Ninety-five patients with suspicion of coronary artery disease were examined with a DSCT scanner (Somatom Definition, Siemens) using 32 x 0.6 mm collimation. All patients were divided three groups according to the heart rate (HR): group 1, HR ≤ 70 beats per minute (bpm), n=26; group 2, HR >70 bpm to ≤90 bpm, n=37; group 3, HR > 90 bpm, n=32. No beta-blockers were taken before CT scan. 50- 60 ml of nonionic contrast agent were injected with a rate of 5 ml/s. Images were reconstructed from 10% to 100% of the R-R interval using single-segment reconstruction. Two readers independently assessed IQ of all coronary, segments using a 3-point scale from excellent (1) to non-assessable (3) for coronary segments and the relationship between IQ and the HR. Results: Overall mean IQ score was 1.31 ± 0.55 for all patients with 1.08 ± 0.27 for group 1, 1.32 ± 0.58 for group 2 and 1.47 ± 0.61 for group 3. The IQ was better in the LAD than the RCA and LCX (P<0.01). Only 1.4% (19/1386) of coronary artery segments were considered non-assessable due to the motion artifacts. Optimal image quality of all coronary segments in 74 patients (77.9%) can be achieved with one reconstruction data set. The best IQ was predominately in diastole (88.5%) in group 1, while the best IQ was in systole (84.4%) in group 3. Conclusions: DSCT can achieve the optimal IQ with a wide range of HR using single-segment reconstruction. With the increasing of HR, the timing of data reconstruction for the best IQ shifts from mid-diastole to systole. (authors)

  17. The Typology and Role of Online Information Sources in Destination Image Formation: An Eye-Tracking Study

    OpenAIRE

    Mariussen, Anastasia; Ibenfeldt, Cathrine von; Vespestad, May Kristin

    2014-01-01

    The construct of destination image and its formation are well researched. Numerous studies are conducted to investigate how destination images impact tourists‟ attitudes, behaviour and destination choice and what factors influence their destination image formation. However, much of this research focuses on post-visit images, and little is still known about the actual process of destination image formation as it unfolds, particularly prior to visiting a destination. Understanding this process ...

  18. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate

    OpenAIRE

    Miller-Jones, J.C.A.; Strader, J.; Heinke, C. O.; Maccarone, T.J.; van den Berg, M; Knigge, C.; Chomiuk, L.; Noyola, E.; Russell, T.D.; Seth, A.C.; Sivakoff, G.R.

    2015-01-01

    We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C iv emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA (Australia Telescope Compact Array) imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as S??????) of ? = ?0.4 ± 0.4....

  19. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate

    CERN Document Server

    Miller-Jones, J C A; Heinke, C O; Maccarone, T J; Berg, M van den; Knigge, C; Chomiuk, L; Noyola, E; Russell, T D; Seth, A C; Sivakoff, G R

    2015-01-01

    We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C IV emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as $S_{\

  20. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo.

    Science.gov (United States)

    Shimada, Yasushi; Nakagawa, Hisaichi; Sadr, Alireza; Wada, Ikumi; Nakajima, Masatoshi; Nikaido, Toru; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2014-07-01

    The aim of this study was to determine the diagnostic accuracy of swept-source optical coherent tomography (SS-OCT) in detecting and estimating the depth of proximal caries in posterior teeth in vivo. SS-OCT images and bitewing radiographs were obtained from 86 proximal surfaces of 53 patients. Six examiners scored the locations according to a caries lesion depth scale (0-4) using SS-OCT and the radiographs. The results were compared with clinical observations obtained after the treatment. SS-OCT could detect the presence of proximal caries in tomograms that were synthesized based on the backscatter signal obtained from the proximal carious lesion through occlusal enamel. SS-OCT showed significantly higher sensitivity and larger area under the receiver operating characteristic curve than radiographs for the detection of cavitated enamel lesions and dentin caries (Student's t -test, p SS-OCT appears to be a more reliable and accurate method than bitewing radiographs for the detection and estimation of the depth of proximal lesions in the clinical environment.

  1. Two configurations of miniature Mirau interferometry for swept-source OCT imaging: applications in dermatology and gastroendoscopy

    Science.gov (United States)

    Gorecki, Christophe

    2015-08-01

    The early diagnosis of cancer is essential since it can be treated more effectively when detected earlier. Visual inspection followed by histological examination is, still today, the gold standard for clinicians. However, a large number of unnecessary surgical procedures are still performed. New diagnostics aids are emerging including the recent techniques of optical coherence tomography (OCT) which permits non-invasive 3D optical biopsies of biological tissues, improving patient's quality of life. Nevertheless, the existing bulk or fiber optics systems are expensive, only affordable at the hospital and thus, not sufficiently used by physicians or cancer's specialists as an early diagnosis tool. We developed two different microsystems based on Mirau interferometry and applied for swept source OCT imaging: one for dermatology and second for gastroenterology. In both cases the architecture is based tem based on spectrally tuned Mirau interferometry. The first configuration, developed in the frame of the European project VIAMOS, includes an active array of 4x4 Mirau interferometers. The matrix of Mirau reference mirrors is integrated on top of an electrostatic vertical comb-drive actuator. In second configuration, developed in the frame of Labex ACTION, we adapted VIAMOS technology to develop an OCT endomicroscope with a single-channel passive Mirau interferometer.

  2. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    Science.gov (United States)

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict conditions were created by contrasting the subjects’ predictions with the results of experimental situations inspired by the History of Science, with a view to destabilizing the pupils’ alternative representations. During the second stage, the experimental teaching intervention was carried out; it was based on the geometrical optics model and its parameters were derived from Kepler’s relevant historic experiment. For the duration of this process and within the framework of didactical interactions, an effort was made to reorganize initial limited representations and restructure them at the level of the accepted scientific model. The effectiveness of the intervention was evaluated two weeks later, using experimental tasks which had the same cognitive yet different empirical content with respect to the tasks conducted during the intervention. The results of the study showed that the majority of the subjects accepted the model of geometrical optics, that is, the pupils were able to correctly predict and adequately justify the experimental results based on the principle of punctiform light emission. Educational and research implications are discussed.

  3. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  4. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  5. Experimental demonstration of direct L-shell x-ray fluorescence imaging of gold nanoparticles using a benchtop x-ray source

    OpenAIRE

    Manohar, Nivedh; Reynoso, Francisco J.; Cho, Sang Hyun

    2013-01-01

    Purpose: To develop a proof-of-principle L-shell x-ray fluorescence (XRF) imaging system that locates and quantifies sparse concentrations of gold nanoparticles (GNPs) using a benchtop polychromatic x-ray source and a silicon (Si)-PIN diode x-ray detector system.

  6. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    International Nuclear Information System (INIS)

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy

  7. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M [Kyoto University Hospital, Kyoto, Kyoto (Japan)

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  8. Real-time calibration-free C-scan images of the eye fundus using Master Slave swept source optical coherence tomography

    Science.gov (United States)

    Bradu, Adrian; Kapinchev, Konstantin; Barnes, Fred; Garway-Heath, David F.; Rajendram, Ranjan; Keane, Pearce; Podoleanu, Adrian G.

    2015-03-01

    Recently, we introduced a novel Optical Coherence Tomography (OCT) method, termed as Master Slave OCT (MS-OCT), specialized for delivering en-face images. This method uses principles of spectral domain interfereometry in two stages. MS-OCT operates like a time domain OCT, selecting only signals from a chosen depth only while scanning the laser beam across the eye. Time domain OCT allows real time production of an en-face image, although relatively slowly. As a major advance, the Master Slave method allows collection of signals from any number of depths, as required by the user. The tremendous advantage in terms of parallel provision of data from numerous depths could not be fully employed by using multi core processors only. The data processing required to generate images at multiple depths simultaneously is not achievable with commodity multicore processors only. We compare here the major improvement in processing and display, brought about by using graphic cards. We demonstrate images obtained with a swept source at 100 kHz (which determines an acquisition time [Ta] for a frame of 200×200 pixels2 of Ta =1.6 s). By the end of the acquired frame being scanned, using our computing capacity, 4 simultaneous en-face images could be created in T = 0.8 s. We demonstrate that by using graphic cards, 32 en-face images can be displayed in Td 0.3 s. Other faster swept source engines can be used with no difference in terms of Td. With 32 images (or more), volumes can be created for 3D display, using en-face images, as opposed to the current technology where volumes are created using cross section OCT images.

  9. Quantitative comparison of wavelength dependence on penetration depth and imaging contrast for ultrahigh-resolution optical coherence tomography using supercontinuum sources at five wavelength regions

    Science.gov (United States)

    Ishida, S.; Nishizawa, N.

    2012-01-01

    Optical coherence tomography (OCT) is a non invasive optical imaging technology for micron-scale cross-sectional imaging of biological tissue and materials. We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) using fiber based supercontinuum sources. Although ultrahigh longitudinal resolution was achieved in several center wavelength regions, its low penetration depth is a serious limitation for other applications. To realize ultrahigh resolution and deep penetration depth simultaneously, it is necessary to choose the proper wavelength to maximize the light penetration and enhance the image contrast at deeper depths. Recently, we have demonstrated the wavelength dependence of penetration depth and imaging contrast for ultrahigh resolution OCT at 0.8 μm, 1.3 μm, and 1.7 μm wavelength ranges. In this paper, additionally we used SC sources at 1.06 μm and 1.55 μm, and we have investigated the wavelength dependence of UHR-OCT at five wavelength regions. The image contrast and penetration depth have been discussed in terms of the scattering coefficient and water absorption of samples. Almost the same optical characteristics in longitudinal and lateral resolution, sensitivity, and incident optical power at all wavelength regions were demonstrated. We confirmed the enhancement of image contrast and decreased ambiguity of deeper epithelioid structure at longer wavelength region.

  10. Initial experimentation with in-line holography x-ray phase-contrast imaging with an ultrafast laser-based x-ray source

    Science.gov (United States)

    Krol, Andrzej; Kincaid, Russell; Servol, Marina; Kieffer, Jean-Claude; Nesterets, Yakov; Gureyev, Tim; Stevenson, Andrew; Wilkins, Steve; Ye, Hongwei; Lipson, Edward; Toth, Remy; Pogany, Andrew; Coman, Ioana

    2007-03-01

    We have investigated experimentally and theoretically the imaging performance of our newly constructed in-line holography x-ray phase-contrast imaging system with an ultrafast laser-based x-ray source. Projection images of nylon fibers with diameters in the 10-330 μm range were obtained using an ultrafast (100 Hz, 28 fs, 40 mJ) laser-based x-ray source with Mo and Ta targets and Be filter, and Gaussian spatial-intensity distribution (FWHMS = 5 μm). A cooled CCD camera (24 μm pitch) with a Gd IIOS II screen coupled via 1:1 optical taper was used (FWHMD = 50 μm). We have investigated nylon-fiber image quality vs. imaging setup geometry and x-ray spectra. The following parameters were evaluated: contrast, signal-to-noise ratio (SNR), resolution, and sampling. In addition, we performed theoretical simulation of image formation for the same objects but within a wide range of geometrical parameters. The rigorous wave-optical formalism was used for modeling of the free-space propagation of x-rays from the object plane to the detector, and the "projection approximation" was used. We found reasonable agreement between predictions of our analytical model and the experiments. We conclude that: a) Optimum magnification maximizing contrast and SNR is almost independent of the source-to-detector (R) distance and depends strongly on the diameter of the fiber. b) The corresponding maximum values of the contrast and SNR are almost linear with respect to R; the optimum magnification decreases with fiber diameter. c) The minimum diameter of fiber defines the minimum source-to-object distance R I if R is fixed and the object is moved.

  11. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    Science.gov (United States)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  12. Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye

    Science.gov (United States)

    Dhalla, Al-Hafeez Zahir

    extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.

  13. Automated detection of inflammatory cells in whole anterior chamber of a uveitis mouse from swept-source optical coherence tomography images

    Science.gov (United States)

    Choi, Woo June; Pepple, Kathryn L.; Wang, Ruikang K.

    2016-03-01

    Cell grading in a rodent anterior chamber is essential for anterior inflammation evaluation in preclinical vision research. This paper describes a computerized method for detection and counting of the anterior chamber cells from swept-source optical coherence tomography (SS-OCT) images of a experimental rodent model of uveitis. The volumetric anterior segment OCT data is obtained from 100 kHz SS-OCT imaging of mouse eye in vivo. For the OCT cross-sections, each OCT structural image is de-speckled and binarized. After removal of cornea, iris, and crystalline lens structures connected to the binary image border, an area thresholding is then employed for each labeled region to isolate only celllike objects in the anterior chamber, followed by roundness estimation of the objects to identify potential cell candidates in the data. Eventually, the cell candidates are counted and graded as total number of cells in the anterior chamber.

  14. Early stroke detection and extent: impact of experience and the role of computed tomography angiography source images

    Energy Technology Data Exchange (ETDEWEB)

    Aviv, R.I. [Department of Neuroradiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada)]. E-mail: richardaviv@lineone.net; Shelef, I. [Department of Neuroradiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada); Malam, S. [Department of Neuroradiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada); Chakraborty, S. [Department of Neuroradiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada); Sahlas, D.J. [Department of Neurology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada); Tomlinson, G. [Department of Biostatistics, University of Toronto, Toronto (Canada); Symons, S. [Department of Neuroradiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada); Fox, A.J. [Department of Neuroradiology, Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto (Canada)

    2007-05-15

    Aim: To test the performance of computed tomography angiography 'source images' (CTA-SI) versus unenhanced CT (NCCT) for stroke detection and extent using the Alberta Stroke Programme Early CT Score (ASPECTS), and examine the effect of experience and clinical history. Materials and methods: Studies of 23 consecutive patients presenting within 4.5 h were analysed by three reviewers of varying experience. Each reviewer, blinded to clinical information reviewed a random order of NCCT and CTA-SI and documented side of infarct and the ASPECTS. The readings were repeated for CTA-SI with and without clinical information. Performance measures and observer agreement were calculated. Applying an ASPECTS threshold of {<=} 7, the number of patients misclassified was determined. Results: CTA-SI improved trainee accuracy by 9%, but had little impact on more experienced readers. The accuracy and sensitivity of stroke extent assessment was increased for all readers, but was greatest for the trainee (17% and 12%, respectively). Clinical history contributed little to CTA-SI accuracy. Observer agreement was higher for CTA-SI. NCCT could have resulted in the misclassification of more patients than CTA-SI. Conclusion: CTA-SI are an important adjunct in acute stroke assessment, improving stroke extent determination for all readers irrespective of level of experience. In addition less experienced readers may benefit from CTA-SI for detection of presence of strokes. CTA-SI performance appears independent of clinical history. CTA-SI resulted in fewer misclassified patients if an ASPECTS threshold of {<=} 7 is considered.

  15. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Science.gov (United States)

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  16. On a Possible Source of Some of the Images in the Annalistic Pokhvala to Prince Roman Mstislavich

    Directory of Open Access Journals (Sweden)

    Vadym I. Stavyskyi

    2015-12-01

    Full Text Available The subject of this article is the text known as the “Eulogy (Pokhvala to Prince Roman Mstislavich Galitsky,” which is from the opening section of the Galician-Volhynian Chronicle. The author of the article amplifies remarks made by Alexander Orlov about loanwords taken from translated works that appear in the text of the Pokhvala. The text of the exegesis of prophets by St. Hippolytus of Rome, which was widely known in Slavonic translation from the 12th century as the Slovo o Khriste i ob Antikhriste, produces additional material for comparison. St. Hippolytus’s text offers a possible interpretation of the concept “uma mudrostʹiu,” which the author of the Pokhvala offers as an explanation of the successful foreign policy of Prince Roman; in addition, this explanation helps to clarify the comparison of the prince with the eagle-lion, the lynx, and the crocodile. Certain characteristics of the text of the Pokhvala as revealed in the account of the exile of Khan Atrak by Prince Vladimir Monomakh and the subsequent mission carried out by Khan Syrchan, both unsupported in other sources, were, we believe, influenced by the text of the Slovo as well. It appears that literary images used throughout the Pokhvala were determined by apocalyptic symbols, following the approach that was typical of their interpretation by St. Hippolytus. This conclusion permits us to broaden our notions about the enumeration of works in translation used by the creator of the Galician-Volhynian Chronicle.

  17. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O.; Henzler, Thomas [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Raupach, Rainer; Schmidt, Bernhard; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas [Siemens Healthcare, Imaging and Therapy Division, Forchheim (Germany); Lietzmann, Florian; Schad, Lothar R. [Heidelberg University, Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany)

    2015-01-15

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm{sup 2} removesthe necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63 %/39 % lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. (orig.)

  18. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  19. Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix

  20. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Rompel, Oliver; Janka, Rolf; Lell, Michael M.; Uder, Michael; Hammon, Matthias [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Gloeckler, Martin; Dittrich, Sven [University Hospital Erlangen, Department of Pediatric Cardiology, Erlangen (Germany); Cesnjevar, Robert [University Hospital Erlangen, Department of Pediatric Cardiac Surgery, Erlangen (Germany)

    2016-04-15

    Many technical updates have been made in multi-detector CT. To evaluate image quality and radiation dose of high-pitch second- and third-generation dual-source chest CT angiography and to assess the effects of different levels of advanced modeled iterative reconstruction (ADMIRE) in newborns and children. Chest CT angiography (70 kVp) was performed in 42 children (age 158 ± 267 days, range 1-1,194 days). We evaluated subjective and objective image quality, and radiation dose with filtered back projection (FBP) and different strength levels of ADMIRE. For comparison were 42 matched controls examined with a second-generation 128-slice dual-source CT-scanner (80 kVp). ADMIRE demonstrated improved objective and subjective image quality (P <.01). Mean signal/noise, contrast/noise and subjective image quality were 11.9, 10.0 and 1.9, respectively, for the 80 kVp mode and 11.2, 10.0 and 1.9 for the 70 kVp mode. With ADMIRE, the corresponding values for the 70 kVp mode were 13.7, 12.1 and 1.4 at strength level 2 and 17.6, 15.6 and 1.2 at strength level 4. Mean CTDI{sub vol}, DLP and effective dose were significantly lower with the 70-kVp mode (0.31 mGy, 5.33 mGy*cm, 0.36 mSv) compared to the 80-kVp mode (0.46 mGy, 9.17 mGy*cm, 0.62 mSv; P <.01). The third-generation dual-source CT at 70 kVp provided good objective and subjective image quality at lower radiation exposure. ADMIRE improved objective and subjective image quality. (orig.)

  1. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction

    International Nuclear Information System (INIS)

    Many technical updates have been made in multi-detector CT. To evaluate image quality and radiation dose of high-pitch second- and third-generation dual-source chest CT angiography and to assess the effects of different levels of advanced modeled iterative reconstruction (ADMIRE) in newborns and children. Chest CT angiography (70 kVp) was performed in 42 children (age 158 ± 267 days, range 1-1,194 days). We evaluated subjective and objective image quality, and radiation dose with filtered back projection (FBP) and different strength levels of ADMIRE. For comparison were 42 matched controls examined with a second-generation 128-slice dual-source CT-scanner (80 kVp). ADMIRE demonstrated improved objective and subjective image quality (P <.01). Mean signal/noise, contrast/noise and subjective image quality were 11.9, 10.0 and 1.9, respectively, for the 80 kVp mode and 11.2, 10.0 and 1.9 for the 70 kVp mode. With ADMIRE, the corresponding values for the 70 kVp mode were 13.7, 12.1 and 1.4 at strength level 2 and 17.6, 15.6 and 1.2 at strength level 4. Mean CTDIvol, DLP and effective dose were significantly lower with the 70-kVp mode (0.31 mGy, 5.33 mGy*cm, 0.36 mSv) compared to the 80-kVp mode (0.46 mGy, 9.17 mGy*cm, 0.62 mSv; P <.01). The third-generation dual-source CT at 70 kVp provided good objective and subjective image quality at lower radiation exposure. ADMIRE improved objective and subjective image quality. (orig.)

  2. Large-field high-contrast hard x-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source

    Science.gov (United States)

    Lim, Jun; Park, So Yeong; Huang, Jung Yun; Han, Sung Mi; Kim, Hong-Tae

    2013-01-01

    We developed an off-axis-illuminated zone-plate-based hard x-ray Zernike phase-contrast microscope beamline at Pohang Light Source. Owing to condenser optics-free and off-axis illumination, a large field of view was achieved. The pinhole-type Zernike phase plate affords high-contrast images of a cell with minimal artifacts such as the shade-off and halo effects. The setup, including the optics and the alignment, is simple and easy, and allows faster and easier imaging of large bio-samples.

  3. Advanced Penning-type ion source development and passive beam focusing techniques for an associated particle imaging neutron generator

    OpenAIRE

    Sy, Amy

    2013-01-01

    The use of accelerator-based neutron generators for non-destructive imaging and analysis in commercial and security applications is continuously under development, with improvements to available systems and combinations of available techniques revealing new capabilities for real-time elemental and isotopic analysis. The recent application of associated particle imaging (API) techniques for time- and directionally-tagged neutrons to induced fission and transmission imaging methods demonstrate...

  4. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    OpenAIRE

    Hongchang Wang; Yogesh Kashyap; Kawal Sawhney

    2016-01-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time...

  5. Investigations on the effect of frequency and noise in a localization technique based on microwave imaging for an in-body RF source

    Science.gov (United States)

    Chandra, Rohit; Balasingham, Ilangko

    2015-05-01

    Localization of a wireless capsule endoscope finds many clinical applications from diagnostics to therapy. There are potentially two approaches of the electromagnetic waves based localization: a) signal propagation model based localization using a priori information about the persons dielectric channels, and b) recently developed microwave imaging based localization without using any a priori information about the persons dielectric channels. In this paper, we study the second approach in terms of a variety of frequencies and signal-to-noise ratios for localization accuracy. To this end, we select a 2-D anatomically realistic numerical phantom for microwave imaging at different frequencies. The selected frequencies are 13:56 MHz, 431:5 MHz, 920 MHz, and 2380 MHz that are typically considered for medical applications. Microwave imaging of a phantom will provide us with an electromagnetic model with electrical properties (relative permittivity and conductivity) of the internal parts of the body and can be useful as a foundation for localization of an in-body RF source. Low frequency imaging at 13:56 MHz provides a low resolution image with high contrast in the dielectric properties. However, at high frequencies, the imaging algorithm is able to image only the outer boundaries of the tissues due to low penetration depth as higher frequency means higher attenuation. Furthermore, recently developed localization method based on microwave imaging is used for estimating the localization accuracy at different frequencies and signal-to-noise ratios. Statistical evaluation of the localization error is performed using the cumulative distribution function (CDF). Based on our results, we conclude that the localization accuracy is minimally affected by the frequency or the noise. However, the choice of the frequency will become critical if the purpose of the method is to image the internal parts of the body for tumor and/or cancer detection.

  6. 20 cm VLA Radio-Continuum Study of M31 - Images and Point Source Catalogues DR2: Extraction of a supernova remnant sample

    CERN Document Server

    Galvin, T J

    2014-01-01

    We present Data Release 2 of the Point Source Catalogue created from a series of previously constructed radio-continuum images of M31 at lambda=20 cm (nu=1.4 GHz) from archived VLA observations. In total, we identify a collection of 916 unique discrete radio sources across the field of M31. Comparing these detected sources to those listed by Gelfand et al. (2004) at lambda=92 cm, the spectral index of 98 sources has been derived. The majority (73%) of these sources exhibit a spectral index of alpha <-0.6, indicating that their emission is predominantly non-thermal in nature, which is typical for background objects and Supernova Remnants (SNRs). Additionally, we investigate the presence of radio counterparts for some 156 SNRs and SNR candidates, finding a total of only 13 of these object in our images within a 5 arcsec search area. Auxiliary optical, radio and X-ray catalogs were cross referenced highlighting a small population of SNR and SNR candidates common to multi-frequency domains.

  7. 20 cm VLA radio-continuum study of M31-images and point source catalogues DR2: Extraction of a supernova remnant sample

    Directory of Open Access Journals (Sweden)

    Galvin T.J.

    2014-01-01

    Full Text Available We present Data Release 2 of the Point Source Catalogue created from a series of previously constructed radio-continuum images of M31 at λ=20 cm (v=1.4 GHz from archived VLA observations. In total, we identify a collection of 916 unique discrete radio sources across the field of M31. Comparing these detected sources to those listed by Gelfand et al. (2004 at λ=92 cm, the spectral index of 98 sources has been derived. The majority (73% of these sources exhibit a spectral index of α<-0.6, indicating that their emission is predominantly non-thermal in nature, which is typical for background objects and Supernova Remnants (SNRs. Additionally, we investigate the presence of radio counterparts for some 156 SNRs and SNR candidates, finding a total of only 13 of these objects in our images within a 500 search area. Auxiliary optical, radio and X-ray catalogues were cross referenced highlighting a small population of SNRs and SNR candidates common to multi frequency domains.

  8. Source breakup dynamics in Au + Au collisions at sqrt[s(NN)]=200 GeV via three-dimensional two-pion source imaging.

    Science.gov (United States)

    Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J-S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanád, M; Csörgo, T; Dahms, T; Das, K; David, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Y V; Egdemir, J; Enokizono, A; En'yo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S-Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Gunji, T; Gustafsson, H-A; Hachiya, T; Henni, A Hadj; Haggerty, J S; Hagiwara, M N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y-S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Manko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J-C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T-A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarján, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Tuli, S K; Tydesjö, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L

    2008-06-13

    A three-dimensional correlation function obtained from midrapidity, low p(T), pion pairs in central Au+Au collisions at sqrt[s(NN)]=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). A proper breakup time tau(0) ~ 9 fm/c and a mean proper emission duration Delta tau ~ 2 fm/c, leading to sizable emission time differences ({|Delta t(LCM)|} approximately 12 fm/c), are required to allow models to be successfully matched to these tails. The model comparisons also suggest an outside-in "burning" of the emission source reminiscent of many hydrodynamical models. PMID:18643489

  9. Source breakup dynamics in Au+Au Collisions at sqrt(s_NN)=200 GeV via three-dimensional two-pion source imaging

    CERN Document Server

    Afanasiev, S; Ajitanand, N N; Akiba, Y; Alexander, J; Al-Jamel, A; Aoki, K; Aphecetche, L; Armendariz, R; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Baldisseri, Alberto; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bauer, F; Bazilevsky, A; Belikov, S; Bennett, R; Berdnikov, Y; Bjorndal, M T; Boissevain, J G; Borel, H; Boyle, K; Brooks, M L; Brown, D S; Bucher, D; Büsching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Campbell, S; Chai, J S; Chernichenko, S; Chiba, J; Chi, C Y; Chiu, M; Choi, I J; Chujo, T; Chung, P; Cianciolo, V; Cleven, C R; Cobigo, Y; Cole, B A; Comets, M P; Constantin, P; Csanad, M; Csrgo, T; Dahms, T; Das, K; Dávid, G; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dietzsch, O; Dion, A; Drachenberg, J L; Drapier, O; Drees, A; Dubey, A K; Durum, A; Dzhordzhadze, V; Efremenko, Yu V; Egdemir, J; Enokizono, A; Enyo, H; Espagnon, B; Esumi, S; Fields, D E; Fleuret, F; Fokin, S L; Forestier, B; Fraenkel, Zeev; Frantz, J E; Franz, A; Frawley, A D; Fukao, Y; Fung, S Y; Gadrat, S; Gastineau, F; Germain, M; Glenn, A; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse-Perdekamp, M; Gunji, T; Gustafsson, H; Hachiya, T; Hadj Henni, A; Haggerty, J S; Hagiwara, AM N; Hamagaki, H; Harada, H; Hartouni, E P; Haruna, K; Harvey, M; Haslum, E; Hasuko, K; Hayano, R; Heffner, M; Hemmick, T K; Heuser, J M; He, X; Hiejima, H; Hill, J C; Hobbs, R; Holmes, M; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hur, M G; Ichihara, T; Imai, K; Inaba, M; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Jacak, B V; Jia, J; Jin, J; Jinnouchi, O; Johnson, B M; Joo, K S; Jouan, D; Kajihara, F; Kametani, S; Kamihara, N; Kaneta, M; Kang, J H; Kawagishi, T; Kazantsev, A V; Kelly, S; Khanzadeev, A; Kim, D J; Kim, E; Kim, Y S; Kinney, E; Kiss, A; Kistenev, E; Kiyomichi, A; Klein-Bösing, C; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kunde, G J; Kurihara, N; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lebedev, A; Le Bornec, Y; Leckey, S; Lee, D M; Lee, M K; Leitch, M J; Leite, M A L; Lim, H; Litvinenko, A; Liu, M X; Li, X H; Maguire, C F; Makdisi, Y I; Malakhov, A; Malik, M D; Man'ko, V I; Masui, H; Matathias, F; McCain, M C; McGaughey, P L; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mishra, G C; Mitchell, J T; Morrison, D P; Moss, J M; Moukhanova, T V; Mukhopadhyay, D; Murata, J; Nagamiya, S; Nagata, Y; Nagle, J L; Naglis, M; Nakamura, T; Newby, J; Nguyen, M; Norman, B E; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, H; Okada, K; Omiwade, O O; Oskarsson, A; Otterlund, I; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, J; Park, W J; Pate, S F; Pei, H; Peng, J C; Pereira, H; Peresedov, V; Peressounko, D Yu; Pinkenburg, C; Pisani, R P; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosendahl, S S E; Rosnet, P; Rukoyatkin, P; Rykov, V L; Ryu, S S; Sahlmueller, B; Saitô, N; Sakaguchi, T; Sakai, S; Samsonov, V; Sato, H D; Sato, S; Sawada, S; Semenov, V; Seto, R; Sharma, D; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shimomura, M; Shohjoh, T; Shoji, K; Sickles, A; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Skutnik, S; Smith, W C; Soldatov, A; Soltz, R A; Sondheim, W E; Sørensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sullivan, J P; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Taketani, A; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Taranenko, A; Tarjn, P; Thomas, T L; Togawa, M; Tojo, J; Torii, H; Towell, R S; Tram, V-N; Tserruya, Itzhak; Tsuchimoto, a Y; Tuli, S K; Tydesj, H; Tyurin, N; Vale, C; Valle, H; van Hecke, H W; Velkovska, J; Vertesi, o R; Vinogradov, A A; Vznuzdaev, E; Wagner, M; Wang, X R; Watanabe, Y; Wessels, J; White, S N; Willis, N; Winter, D; Woody, C L; Wysocki, M; Xie, W; Yanovich, A; Yokkaichi, S; Young, G R; Younus, I; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zhang, C; Zimányi, J; Zolin, L

    2007-01-01

    A three-dimensional (3D) correlation function obtained from mid-rapidity, low pT pion pairs in central Au+Au collisions at sqrt(s_NN)=200 GeV is studied. The extracted model-independent source function indicates a long range tail in the directions of the pion pair transverse momentum (out) and the beam (long). Model comparisons to these distensions indicate a proper breakup time \\tau_0 ~ 9 fm/c and a mean proper emission duration \\Delta\\tau ~ 2 fm/c, leading to sizable emission time differences ( ~ 12 fm/c), partly due to resonance decays. They also suggest an outside-in "burning" of the emission source reminiscent of many hydrodynamical models.

  10. Reliability of visual assessment of non-contrast CT, CT angiography source images and CT perfusion in patients with suspected ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Tom van Seeters

    Full Text Available BACKGROUND AND PURPOSE: Good reliability of methods to assess the extent of ischemia in acute stroke is important for implementation in clinical practice, especially between observers with varying experience. Our aim was to determine inter- and intra-observer reliability of the 1/3 middle cerebral artery (MCA rule and the Alberta Stroke Program Early CT Score (ASPECTS for different CT modalities in patients suspected of acute ischemic stroke. METHODS: We prospectively included 105 patients with acute neurological deficit due to suspected acute ischemic stroke within 9 hours after symptom onset. All patients underwent non-contrast CT, CT perfusion and CT angiography on admission. All images were evaluated twice for presence of ischemia, ischemia with >1/3 MCA involvement, and ASPECTS. Four observers evaluated twenty scans twice for intra-observer agreement. We used kappa statistics and intraclass correlation coefficient to calculate agreement. RESULTS: Inter-observer agreement for the 1/3 MCA rule and ASPECTS was fair to good for non-contrast CT, poor to good for CT angiography source images, but excellent for all CT perfusion maps (cerebral blood volume, mean transit time, and predicted penumbra and infarct maps. Intra-observer agreement for the 1/3 MCA rule and ASPECTS was poor to good for non-contrast CT, fair to moderate for CT angiography source images, and good to excellent for all CT perfusion maps. CONCLUSION: Between observers with a different level of experience, agreement on the radiological diagnosis of cerebral ischemia is much better for CT perfusion than for non-contrast CT and CT angiography source images, and therefore CT perfusion is a very reliable addition to standard stroke imaging.

  11. Prospectively ECG-Triggered Sequential Dual-Source Coronary CT Angiography in Patients with Atrial Fibrillation: Influence of Heart Rate on Image Quality and Evaluation of Diagnostic Accuracy.

    Directory of Open Access Journals (Sweden)

    Lin Yang

    Full Text Available To evaluate the effects of mean heart rate (HR and heart rate variation (HRV on image quality and diagnostic accuracy of prospectively ECG-triggered sequential dual-source coronary CT angiography (CCTA in patients with atrial fibrillation (AF.Eighty-five patients (49 women, 36 men; mean age 62. 1 ± 9.5 years with persistent AF underwent prospectively ECG-triggered sequential second-generation dual-source CCTA. Tube current and voltage were adjusted according to body mass index (BMI and iterative reconstruction was used. Image quality of coronary segments (four-point scale and presence of significant stenosis (>50% were evaluated. Diagnostic accuracy was analyzed in 30 of the 85 patients who underwent additional invasive coronary angiography (ICA.Only 8 of 1102 (0.7% segments demonstrated poor image quality. No significant impact on image quality was found for mean HR (94.9 ± 21.8 bpm; r=0.034, p=0.758; F=0.413, p=0.663 or HRV (67.5 ± 22.8 bpm; r=0.097, p=0.377; F=0.111, p=0.895. On per-segment analysis, sensitivity, specificity, positive predictive value (PPV, and negative predictive value (NPV were 89.7% (26/29, 99.4% (355/357, 92.9% (26/28, and 99.2% (355/358, respectively, with excellent correlation (kappa=0.91 with ICA. Mean effective dose was 3.3 ± 1.0 mSv.Prospectively ECG-triggered sequential dual-source CCTA provides diagnostic image quality and good diagnostic accuracy for detection of coronary stenosis in AF patients without significant influence by HR or HRV.

  12. Feasibility and evaluation of dual-source transmit 3D imaging of the orbits: Comparison to high-resolution conventional MRI at 3T

    Energy Technology Data Exchange (ETDEWEB)

    Seeger, Achim, E-mail: achim.seeger@gmx.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schulze, Maximilian, E-mail: maximilian.schulze@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Schuettauf, Frank, E-mail: fschuettauf@uni-tuebingen.de [University Eye Hospital, Department of Ophthalmology, Eberhard-Karls-University, Schleichstrasse 12, Tübingen 72076 (Germany); Klose, Uwe, E-mail: uwe.klose@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Ernemann, Ulrike, E-mail: ulrike.ernemann@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany); Hauser, Till-Karsten, E-mail: till-karsten.hauser@med.uni-tuebingen.de [Department of Diagnostic and Interventional Neuroradiology, Eberhard-Karls-University, Hoppe-Seyler-Str. 3, Tübingen 72076 (Germany)

    2015-06-15

    Highlights: • Reduced FOV imaging enables a 3D approach for a very fast assessment of the orbits. • Conventional MRI exhibited higher eSNR values and consecutively higher scores for overall image quality in the subjective readers’ analysis. • All pathologies could be detected compared to high-resolution conventional MRI making 3D pTX SPACE to a potential alternative and fast imaging technique. - Abstract: Purpose: To prospectively compare the image quality and diagnostic performance of orbital MR images obtained by using a dual-source parallel transmission (pTX) 3D sequence (Sampling Perfection with Application optimized Contrasts using different flip angle Evolution, SPACE) with the image quality of conventional high-resolution standard protocol for clinical use in patients at 3T. Materials and methods: After obtaining institutional review board approval and patient consent, 32 patients with clinical indication for orbital MRI were examined using a high-resolution conventional sequences and 3D pTX SPACE sequences. Quantitative measurements, image quality of the healthy orbit, incidence of artifacts, and the subjective diagnostic performance to establish diagnosis was rated. Statistical significance was calculated by using a Student's t-test and nonparametric Wilcoxon signed rank test. Results: Length measurements were comparable in the two techniques, 3D pTX SPACE resulted in significant faster image acquisition with higher spatial resolution and less motion artifacts as well as better delineation of the optic nerve sheath. However, estimated contrast-to-noise and signal-to-noise and overall image quality as well as subjective scores of the conventional TSE imaging were rated significantly higher. The conventional MR sequences were the preferred techniques by the readers. Conclusion: This study demonstrates the feasibility of 3D pTX SPACE of the orbit resulting in a rapid acquisition of isotropic high-resolution images. Although no pathology was

  13. Translation of atherosclerotic plaque phase-contrast CT imaging from synchrotron radiation to a conventional lab-based X-ray source.

    Directory of Open Access Journals (Sweden)

    Tobias Saam

    Full Text Available OBJECTIVES: Phase-contrast imaging is a novel X-ray based technique that provides enhanced soft tissue contrast. The aim of this study was to evaluate the feasibility of visualizing human carotid arteries by grating-based phase-contrast tomography (PC-CT at two different experimental set-ups: (i applying synchrotron radiation and (ii using a conventional X-ray tube. MATERIALS AND METHODS: Five ex-vivo carotid artery specimens were examined with PC-CT either at the European Synchrotron Radiation Facility using a monochromatic X-ray beam (2 specimens; 23 keV; pixel size 5.4 µm, or at a laboratory set-up on a conventional X-ray tube (3 specimens; 35-40 kVp; 70 mA; pixel size 100 µm. Tomographic images were reconstructed and compared to histopathology. Two independent readers determined vessel dimensions and one reader determined signal-to-noise ratios (SNR between PC-CT and absorption images. RESULTS: In total, 51 sections were included in the analysis. Images from both set-ups provided sufficient contrast to differentiate individual vessel layers. All PCI-based measurements strongly predicted but significantly overestimated lumen, intima and vessel wall area for both the synchrotron and the laboratory-based measurements as compared with histology (all p0.53 per mm(2, 95%-CI: 0.35 to 0.70. Although synchrotron-based images were characterized by higher SNRs than laboratory-based images; both PC-CT set-ups had superior SNRs compared to corresponding conventional absorption-based images (p0.98 and >0.84 for synchrotron and for laboratory-based measurements; respectively. CONCLUSION: Experimental PC-CT of carotid specimens is feasible with both synchrotron and conventional X-ray sources, producing high-resolution images suitable for vessel characterization and atherosclerosis research.

  14. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform.

    Science.gov (United States)

    Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  15. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    International Nuclear Information System (INIS)

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  −  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ∼160 µm. (paper)

  16. Dual-source chest CT angiography with high temporal resolution and high pitch modes: evaluation of image quality in 140 patients

    Energy Technology Data Exchange (ETDEWEB)

    Tacelli, Nunzia; Remy-Jardin, Martine; Faivre, Jean-Baptiste; Remy, Jacques [University Centre of Lille (EA 2694), Department of Thoracic Imaging, Hospital Calmette, Lille (France); Flohr, Thomas [Siemens Healthcare, Computed Tomography, Forchheim (Germany); Delannoy, Valerie; Duhamel, Alain [University Centre of Lille (EA 2694), Department of Biostatistics, Lille (France)

    2010-05-15

    To evaluate image quality of dual-source computed tomography (CT) angiograms acquired with high temporal resolution and high pitch modes. Two groups of 70 consecutive patients underwent chest CT angiography with dual-source, single-energy CT, with an 83-ms temporal resolution and a pitch of 2 (group 1) or a pitch of 3 (group 2). Subjective and objective image quality and the diagnostic value were assessed by two radiologists in consensus. The radiation dose was recorded. The image quality was always diagnostic in both groups, rated as excellent in 97% of group 1 (68/70) and 98.5% of group 2 (69/70) examinations. Although no statistically significant difference in subjective image noise was found between the two groups (p = 0.3055), objective noise was found to be statistically higher in group 2 (p<0.0001). The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were found to be significantly higher in group 1 than in group 2 (p=0.0014). The acquisition time was significantly shorter in group 2 than in group 1 (p<0.0001). The dose-length product was significantly lower in group 2 than in group 1 (p < 0.0001). High temporal resolution and high pitch modes provided standard CT angiographic examinations of excellent quality for thoracic applications in routine clinical practice. (orig.)

  17. A portable x-ray source with a nanostructured Pt-coated silicon field emission cathode for absorption imaging of low-Z materials

    Science.gov (United States)

    Basu, Anirban; Swanwick, Michael E.; Fomani, Arash A.; Velásquez-García, Luis Fernando

    2015-06-01

    We report the design, fabrication, and characterization of a portable x-ray generator for imaging of low-atomic number materials such as biological soft tissue. The system uses a self-aligned, gated, Pt-coated silicon field emitter cathode with two arrays of 62 500 nano-sharp tips arranged in a square grid with 10 μm emitter pitch, and a natural convection-cooled reflection anode composed of a Cu bar coated with a thin Mo film. Characterization of the field emitter array demonstrated continuous emission of 1 mA electron current (16 mA cm  -  2) with  >95% current transmission at a 150 V gate-emitter bias voltage for over 20 h with no degradation. The emission of the x-ray source was characterized across a range of anode bias voltages to maximize the fraction of photons from the characteristic K-shell peaks of the Mo film to produce a quasi-monochromatic photon beam, which enables capturing high-contrast images of low-atomic number materials. The x-ray source operating at the optimum anode bias voltage, i.e. 35 kV, was used to image ex vivo and nonorganic samples in x-ray fluoroscopic mode while varying the tube current; the images resolve feature sizes as small as ~160 µm.

  18. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    Science.gov (United States)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  19. Evaluation of three methods for retrospective correction of vignetting on medical microscopy images utilizing two open source software tools.

    Science.gov (United States)

    Babaloukas, Georgios; Tentolouris, Nicholas; Liatis, Stavros; Sklavounou, Alexandra; Perrea, Despoina

    2011-12-01

    Correction of vignetting on images obtained by a digital camera mounted on a microscope is essential before applying image analysis. The aim of this study is to evaluate three methods for retrospective correction of vignetting on medical microscopy images and compare them with a prospective correction method. One digital image from four different tissues was used and a vignetting effect was applied on each of these images. The resulted vignetted image was replicated four times and in each replica a different method for vignetting correction was applied with fiji and gimp software tools. The highest peak signal-to-noise ratio from the comparison of each method to the original image was obtained from the prospective method in all tissues. The morphological filtering method provided the highest peak signal-to-noise ratio value amongst the retrospective methods. The prospective method is suggested as the method of choice for correction of vignetting and if it is not applicable, then the morphological filtering may be suggested as the retrospective alternative method. PMID:21950542

  20. Assessment of a Monte-Carlo simulation of SPECT recordings from a new-generation heart-centric semiconductor camera: from point sources to human images