WorldWideScience

Sample records for biomagnetic source imaging

  1. Algorithms for biomagnetic source imaging with prior anatomical and physiological information

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, Paul William [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1995-12-01

    This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.

  2. Interpretation of the MEG-MUSIC scan in biomagnetic source localization

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1993-09-01

    MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak at unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.

  3. Biomagnetism using SQUIDs: status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sternickel, Karsten [CardioMag Imaging, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Braginski, Alex I [Research Center Juelich, ISG-2, D-52425 Juelich (Germany)

    2006-03-15

    Biomagnetism involves the measurement and analysis of very weak local magnetic fields of living organisms and various organs in humans. Such fields can be of physiological origin or due to magnetic impurities or markers. This paper reviews existing and prospective applications of biomagnetism in clinical research and medical diagnostics. Currently, such applications require sensitive magnetic SQUID sensors and amplifiers. The practicality of biomagnetic methods depends especially on techniques for suppressing the dominant environmental electromagnetic noise, and on suitable nearly real-time data processing and interpretation methods. Of the many biomagnetic methods and applications, only the functional studies of the human brain (magnetoencephalography) and liver susceptometry are in clinical use, while functional diagnostics of the human heart (magnetocardiography) approaches the threshold of clinical acceptance. Particularly promising for the future is the ongoing research into low-field magnetic resonance anatomical imaging using SQUIDs.

  4. Biomagnetism an interdisciplinary approach

    CERN Document Server

    Romani, Gian-Luca; Kaufman, Lloyd; Modena, Ivo

    1983-01-01

    Biomagnetism is the study of magnetic fields that originate in biological systems. This is a relatively new discipline that has attracted considerable interest throughout the scientific commu- ty. The study of biomagnetic fields requires the use of techniques and concepts drawn from widely disparate scientific disciplines. To make these techniques and concepts available to a wide spectrum of the scientific community, a NATO Advanced study Institute on B- magnetism was held near Frascati at Grottaferrata, Italy, in S- tember 1982. This volume is based on the lectures delivered by scholars representing many different scientific areas, ranging from solid state physics to psychology. It attempts to preserve the - herent development of concepts drawn from physiology, psychology, biology, physics, medicine, occupational health and geology that was evident during the Institute. The reader will quickly become aware that the progress in biomagnetism over the past decade was due principally to the efforts of interdisci...

  5. Biomagnetics and bioimaging for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Shoogo [Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)]. E-mail: ueno@medes.m.u-tokyo.ac.jp; Sekino, Masaki [Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2006-09-15

    This paper reviews medical applications of the recently developed techniques in biomagnetics and bioimaging such as transcranial magnetic stimulation, magnetoencephalography, magnetic resonance imaging, cancer therapy based on magnetic stimulation, and magnetic control of cell orientation and cell growth. These techniques are leading medicine and biology into a new horizon through the novel applications of magnetism.

  6. Objective assessment of biomagnetic devices and alternative clinical therapies using infrared thermal imaging

    Science.gov (United States)

    Rockley, Graham J.

    2001-03-01

    The overwhelming introduction of magnetic devices and other alternative therapies into the health care market prompts the need for objective evaluation of these techniques through the use of infrared thermal imaging. Many of these therapies are reported to promote the stimulation of blood flow or the relief of pain conditions. Infrared imaging is an efficient tool to assess such changes in the physiological state. Therefore, a thermal imager can help document and substantiate whether these therapies are in fact providing an effective change to the local circulation. Thermal images may also indicate whether the change is temporary or sustained. As a specific case example, preliminary findings will be presented concerning the use of magnets and the effect they have on peripheral circulation. This will include a discussion of the recommended protocols for this type of infrared testing. This test model can be applied to the evaluation of other devices and therapeutic procedures which are reputed to affect circulation such as electro acupuncture, orthopedic footwear and topical ointments designed to relieve pain or inflammation.

  7. SQUIDs in biomagnetism: a roadmap towards improved healthcare

    Science.gov (United States)

    Körber, Rainer; Storm, Jan-Hendrik; Seton, Hugh; Mäkelä, Jyrki P.; Paetau, Ritva; Parkkonen, Lauri; Pfeiffer, Christoph; Riaz, Bushra; Schneiderman, Justin F.; Dong, Hui; Hwang, Seong-min; You, Lixing; Inglis, Ben; Clarke, John; Espy, Michelle A.; Ilmoniemi, Risto J.; Magnelind, Per E.; Matlashov, Andrei N.; Nieminen, Jaakko O.; Volegov, Petr L.; Zevenhoven, Koos C. J.; Höfner, Nora; Burghoff, Martin; Enpuku, Keiji; Yang, S. Y.; Chieh, Jen-Jei; Knuutila, Jukka; Laine, Petteri; Nenonen, Jukka

    2016-11-01

    magnetoencephalography (MEG), by far the most widespread application of biomagnetism with systems containing typically 300 sensors cooled to liquid-helium temperature, 4.2 K. Two important clinical applications are presurgical mapping of focal epilepsy and of eloquent cortex in brain-tumor patients. Reducing the sensor-to-brain separation and the system noise level would both improve spatial resolution. The very recent commercial innovation that replaces the need for frequent manual transfer of liquid helium with an automated system that collects and liquefies the gas and transfers the liquid to the dewar will make MEG systems more accessible. A highly promising means of placing the sensors substantially closer to the scalp for MEG is to use high-transition-temperature (high-T c) SQUID sensors and flux transformers (chapter 3). Operation of these devices at liquid-nitrogen temperature, 77 K, enables one to minimize or even omit metallic thermal insulation between the sensors and the dewar. Noise levels of a few fT Hz-1/2 have already been achieved, and lower values are likely. The dewars can be made relatively flexible, and thus able to be placed close to the skull irrespective of the size of the head, potentially providing higher spatial resolution than liquid-helium based systems. The successful realization of a commercial high-T c MEG system would have a major commercial impact. Chapter 4 introduces the concept of SQUID-based ultra-low-field magnetic resonance imaging (ULF MRI) operating at typically several kHz, some four orders of magnitude lower than conventional, clinical MRI machines. Potential advantages of ULF MRI include higher image contrast than for conventional MRI, enabling methodologies not currently available. Examples include screening for cancer without a contrast agent, imaging traumatic brain injury (TBI) and degenerative diseases such as Alzheimer’s, and determining the elapsed time since a stroke. The major current problem with ULF MRI is that its signal

  8. Cardiomagnetic source imaging

    OpenAIRE

    Pesola, Katja

    2000-01-01

    Magnetocardiographic (MCG) source imaging has received increasing interest in recent years. With a high enough localization accuracy of the current sources in the heart, valuable information can be provided, e.g., for the pre-ablative evaluation of arrhythmia patients. Furthermore, preliminary studies indicate that ischemic areas, i.e. areas which are suffering from lack of oxygen, and infarcted regions could be localized from multichannel MCG recordings. In this thesis, the accuracy of cardi...

  9. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  10. Coded source neutron imaging

    Science.gov (United States)

    Bingham, Philip; Santos-Villalobos, Hector; Tobin, Ken

    2011-03-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100μm) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100μm and 10μm aperture hole diameters show resolutions matching the hole diameters.

  11. Biomagnetic monitoring as a validation tool for local air quality models: a case study for an urban street canyon.

    Science.gov (United States)

    Hofman, Jelle; Samson, Roeland

    2014-09-01

    Biomagnetic monitoring of tree leaf deposited particles has proven to be a good indicator of the ambient particulate concentration. The objective of this study is to apply this method to validate a local-scale air quality model (ENVI-met), using 96 tree crown sampling locations in a typical urban street canyon. To the best of our knowledge, the application of biomagnetic monitoring for the validation of pollutant dispersion modeling is hereby presented for the first time. Quantitative ENVI-met validation showed significant correlations between modeled and measured results throughout the entire in-leaf period. ENVI-met performed much better at the first half of the street canyon close to the ring road (r=0.58-0.79, RMSE=44-49%), compared to second part (r=0.58-0.64, RMSE=74-102%). The spatial model behavior was evaluated by testing effects of height, azimuthal position, tree position and distance from the main pollution source on the obtained model results and magnetic measurements. Our results demonstrate that biomagnetic monitoring seems to be a valuable method to evaluate the performance of air quality models. Due to the high spatial and temporal resolution of this technique, biomagnetic monitoring can be applied anywhere in the city (where urban green is present) to evaluate model performance at different spatial scales.

  12. Magnetoresistive-superconducting mixed sensors for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier-Lecoeur, M. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Fermon, C., E-mail: claude.fermon@cea.f [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Dyvorne, H.; Jacquinot, J.F.; Polovy, H.; Walliang, A.L. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France)

    2010-05-15

    When coupled to a giant magnetoresistive (GMR) sensor, a superconducting loop containing a constriction can be a very sensitive magnetometer. It has thermal noise levels of few fT/sqrt(Hz), comparable to low-T{sub c} SQUID noise, with a flat frequency response. These mixed sensors are good candidates for detection of weak biomagnetic signals, like a cardiac or neuronal signature. Furthermore, being sensitive to the flux, mixed sensors can be used for nuclear magnetic resonance (NMR) detection and Magnetic Resonance Imaging (MRI) especially at low fields. They are very robust and accept strong RF pulses with a very short recovery time compared to tuned RF coils, which allow measurements of broad signals (short relaxation time or multiple resonances). We will first present the last generation sensors having a noise level of 3 fT/sqrt(Hz) and we will show signals measured at low frequency (magnetocardiography-magnetoencephalography range) and at higher frequency (NMR signals). The use of additional flux transformers for improving the signal-to-noise will be discussed. Finally, we will present perspectives for low-field MRI, which can be combined with neural signal detection (MEG), especially for brain anatomy and temporal response on the same experimental setup.

  13. Proceedings of the biomagnetic effects workshop. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S. (ed.)

    1978-01-01

    Separate abstracts were prepared for six of the eight chapters contained in these proceedings. The other two chapters contain introductory material (Chapter 1) dealing with the rationale for the work shop, and a summary (Chapter 8) of the major objectives that were accomplished at the workshop relative to the current status of awareness in the field of biomagnetic effects. (ERB)

  14. Neutron imaging of radioactive sources

    Science.gov (United States)

    Hameed, F.; Karimzadeh, S.; Zawisky, M.

    2008-08-01

    Isotopic neutron sources have been available for more than six decades. At the Atomic Institute in Vienna, operating a 250 kW TRIGA reactor, different neutron sources are in use for instrument calibration and fast neutron applications but we have only little information about their construction and densities. The knowledge of source design is essential for a complete MCNP5 modeling of the experiments. Neutron radiography (NR) and neutron tomography (NT) are the best choices for the non-destructive inspection of the source geometry and homogeneity. From the transmission analysis we gain information about the shielding components and the densities of the radio-isotopes in the cores. Three neutron sources, based on (alpha, n) reaction, have been investigated, two 239PuBe sources and one 241AmBe source. In the NR images the internal structure was clearly revealed using high-resolving scintillation and imaging plate detectors. In one source tablet a crack was detected which causes asymmetric neutron emission. The tomography inspection of strong absorbing materials is more challenging due to the low beam intensity of 1.3x105 n/cm2s at our NT instrument, and due to the beam hardening effect which requires an extension of reconstruction software. The tomographic inspection of a PuBe neutron source and appropriate measures for background and beam hardening correction are presented.

  15. Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements

    Science.gov (United States)

    Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.

    2016-06-01

    Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.

  16. Detecting Diffuse Sources in Astronomical Images

    CERN Document Server

    Butler-Yeoman, T; Hollitt, C P; Hogg, D W; Johnston-Hollitt, M

    2016-01-01

    We present an algorithm capable of detecting diffuse, dim sources of any size in an astronomical image. These sources often defeat traditional methods for source finding, which expand regions around points of high intensity. Extended sources often have no bright points and are only detectable when viewed as a whole, so a more sophisticated approach is required. Our algorithm operates at all scales simultaneously by considering a tree of nested candidate bounding boxes, and inverts a hierarchical Bayesian generative model to obtain the probability of sources existing at given locations and sizes. This model naturally accommodates the detection of nested sources, and no prior knowledge of the distribution of a source, or even the background, is required. The algorithm scales nearly linear with the number of pixels making it feasible to run on large images, and requires minimal parameter tweaking to be effective. We demonstrate the algorithm on several types of astronomical and artificial images.

  17. The atomic magnetometer: A new era in biomagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Ronald T., E-mail: rtwakai@wisc.edu [1005 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-11-07

    The high cost and impracticality of SQUID (Superconducting QUantum Interference Device) magnetometers has limited the expansion of magnetoencephalography (MEG) and magnetocardiography (MCG), especially in countries where the cost of liquid helium is high. A recent breakthrough, however, has the potential to radically change this situation. In 2003, a group at Princeton University demonstrated an atomic magnetometer, known as the SERF (spin-exchange free relaxation) magnetometer, with unprecedented sensitivity. Since then, several research groups have utilized SERF magnetometers to record MEG, MCG, and fetal MCG signals. Despite some modest drawbacks, it now seems almost certain that SERF magnetometers can replace SQUIDs for many applications. With a price tag that is likely to be far less than that of SQUIDs, SERF magnetometers can propel the next wave of growth in biomagnetism.

  18. NOTE: Sampling and reconstruction schemes for biomagnetic sensor arrays

    Science.gov (United States)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-01

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  19. Sampling and reconstruction schemes for biomagnetic sensor arrays.

    Science.gov (United States)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-21

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  20. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  1. Source-space ICA for MEG source imaging

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D.

    2016-02-01

    Objective. One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. Approach. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Main Results. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. Significance. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  2. Multi-Source Image Analysis.

    Science.gov (United States)

    1979-12-01

    Laboratories, Fort Belvoir, Virginia. Estes, J. E., and L. W. Senger (eds.), 1974, Remote Sensing: Techniques for environmental analysis, Hamilton, Santa ...E. and W. Senger (eds.), Remote Sensing Techniques in Environmental Analysis, Santa Barbara, California, Hamilton Publishing Co., p. 127-165. Morain...The large body of water labeled "W" on each image represents the Agua Hedionda lagoon. East of the lagoon the area is primarily agricultural with a

  3. Imaging with power controlled source pairs

    CERN Document Server

    Bardsley, Patrick

    2015-01-01

    Scatterers in a homogeneous medium are imaged by probing the medium with two point sources of waves modulated by correlated signals and by measuring only intensities at one single receiver. For appropriately chosen source pairs, we show that full waveform array measurements can be recovered from such intensity measurements by solving a linear least squares problem. The least squares solution can be used to image with Kirchhoff migration, even if the solution is determined only up to a known one-dimensional nullspace. The same imaging strategy can be used when the medium is probed with point sources driven by correlated Gaussian processes and autocorrelations are measured at a single location. Since autocorrelations are robust to noise, this can be used for imaging when the probing wave is drowned in background noise.

  4. Multiphoton imaging with a nanosecond supercontinuum source

    Science.gov (United States)

    Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.

  5. Coded source imaging simulation with visible light

    Science.gov (United States)

    Wang, Sheng; Zou, Yubin; Zhang, Xueshuang; Lu, Yuanrong; Guo, Zhiyu

    2011-09-01

    A coded source could increase the neutron flux with high L/ D ratio. It may benefit a neutron imaging system with low yield neutron source. Visible light CSI experiments were carried out to test the physical design and reconstruction algorithm. We used a non-mosaic Modified Uniformly Redundant Array (MURA) mask to project the shadow of black/white samples on a screen. A cooled-CCD camera was used to record the image on the screen. Different mask sizes and amplification factors were tested. The correlation, Wiener filter deconvolution and Richardson-Lucy maximum likelihood iteration algorithm were employed to reconstruct the object imaging from the original projection. The results show that CSI can benefit the low flux neutron imaging with high background noise.

  6. Integrated imaging of neuromagnetic reconstructions and morphological magnetic resonance data.

    Science.gov (United States)

    Kullmann, W H; Fuchs, M

    1991-01-01

    New neuromagnetic imaging methods provide spatial information about the functional electrical properties of complex current distributions in the human brain. For practical use in medical diagnosis a combination of the abstract neuromagnetic imaging results with magnetic resonance (MR) or computed tomography (CT) images of the morphology is required. The biomagnetic images can be overlayed onto three-dimensional morphological images with spatially arbitrary selectable slices, calculated from conventional 2D data. For the current reconstruction the 3D images furthermore provide a priori information about the conductor geometry. A combination of current source density calculations and linear estimation methods for handling the inverse magnetic problem allows quick imaging of impressed current source density in arbitrary volume conductors.

  7. XNAT Central: Open sourcing imaging research data.

    Science.gov (United States)

    Herrick, Rick; Horton, William; Olsen, Timothy; McKay, Michael; Archie, Kevin A; Marcus, Daniel S

    2016-01-01

    XNAT Central is a publicly accessible medical imaging data repository based on the XNAT open-source imaging informatics platform. It hosts a wide variety of research imaging data sets. The primary motivation for creating XNAT Central was to provide a central repository to host and provide access to a wide variety of neuroimaging data. In this capacity, XNAT Central hosts a number of data sets from research labs and investigative efforts from around the world, including the OASIS Brains imaging studies, the NUSDAST study of schizophrenia, and more. Over time, XNAT Central has expanded to include imaging data from many different fields of research, including oncology, orthopedics, cardiology, and animal studies, but continues to emphasize neuroimaging data. Through the use of XNAT's DICOM metadata extraction capabilities, XNAT Central provides a searchable repository of imaging data that can be referenced by groups, labs, or individuals working in many different areas of research. The future development of XNAT Central will be geared towards greater ease of use as a reference library of heterogeneous neuroimaging data and associated synthetic data. It will also become a tool for making data available supporting published research and academic articles.

  8. Infrared imaging of WENSS radio sources

    CERN Document Server

    Villani, D

    1999-01-01

    We have performed deep imaging in the IR J- and K-bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift radio galaxies and quasars. We find that the radio galaxies contained in our sample do not show the pronounced radio/IR alignment claimed for 3CR sources. IR photometric measurements of the gravitational lens system 1600+434 are also presented.

  9. Pulsed-Source Interferometry in Acoustic Imaging

    Science.gov (United States)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  10. EEG source imaging during two Qigong meditations.

    Science.gov (United States)

    Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-08-01

    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.

  11. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    Institute of Scientific and Technical Information of China (English)

    Teodoro Cordova-Fraga; Modesto Sosa; Cados Wiechers; Jose Maria De la Roca-Chiapas; Alejandro Maldonado Moreles; Jesus BernaI-Alvarado; Raquel Huerta-Franco

    2008-01-01

    AIM: To study the esophageal transit time (ETT)and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI).METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright,fowler,and supine positions; 90°,45° and 0°,respectively).RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions.The ETT means were 5.2 ±1.1 s,6.1±1.5 s,and 23.6 ± 9.2 s for 90°,45° and 0°,respectively.Pearson correlation results were r = -0.716 and P < 0.001 by subjects' anatomical position,and r =-0.024 and P > 0.05 according the subject's BHI.CONCLUSION: We demonstrated that using this biomagnetic technique,it is possible to measure the ETT and the effects of the anatomical position on the ETT.

  12. Weighted-elastic-wave interferometric imaging of microseismic source location

    Science.gov (United States)

    Li, Lei; Chen, Hao; Wang, Xiu-Ming

    2015-06-01

    Knowledge of the locations of seismic sources is critical for microseismic monitoring. Time-window-based elastic wave interferometric imaging and weighted-elastic-wave (WEW) interferometric imaging are proposed and used to locate modeled microseismic sources. The proposed method improves the precision and eliminates artifacts in location profiles. Numerical experiments based on a horizontally layered isotropic medium have shown that the method offers the following advantages: It can deal with low-SNR microseismic data with velocity perturbations as well as relatively sparse receivers and still maintain relatively high precision despite the errors in the velocity model. Furthermore, it is more efficient than conventional traveltime inversion methods because interferometric imaging does not require traveltime picking. Numerical results using a 2D fault model have also suggested that the weighted-elastic-wave interferometric imaging can locate multiple sources with higher location precision than the time-reverse imaging method.

  13. An evolution of image source camera attribution approaches.

    Science.gov (United States)

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics

  14. Upconversion imaging using an all-fiber supercontinuum source

    DEFF Research Database (Denmark)

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter

    2016-01-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 mu m with upconversion detection. Th...

  15. Application of SQUIDs for registration of biomagnetic signals

    Science.gov (United States)

    Voitovych, I. D.; Primin, M. A.; Sosnytskyy, V. N.

    2012-04-01

    Supersensitive magnetometric systems based on low-temperature SQUIDs have been designed to conduct research in cardiology (magnetocardiography) and to examine distribution of magnetic nanoparticles in biologic objects. Such SQUID magnetometric systems are distinguished by their noise immunity enabling research in nonscreened rooms. High repeatability of research outcomes has been confirmed. The use of magnetocardiographic systems has permitted a new screening information technology to be developed to diagnose heart diseases at early stages. Magnetic imaging of heart's action currents is an ideal way to test local electrical heterogeneity of myocardium. It is shown that magnetocardiography has a significant potential for both basic science of analysis of heart's biosignals and clinical cardiologic practice. A SQUID magnetometric system measuring magnetic signals radiated by the organs of laboratory animals is described. Information technology for automatic recording and transforming magnetometric data has been developed; the measurement of signals over rats' livers while injecting intravenously the nanoparticles of iron oxides and lead solutions are presented.

  16. Lesion area detection using source image correlation coefficient for CT perfusion imaging.

    Science.gov (United States)

    Fan Zhu; Rodriguez Gonzalez, David; Carpenter, Trevor; Atkinson, Malcolm; Wardlaw, Joanna

    2013-09-01

    Computer tomography (CT) perfusion imaging is widely used to calculate brain hemodynamic quantities such as cerebral blood flow, cerebral blood volume, and mean transit time that aid the diagnosis of acute stroke. Since perfusion source images contain more information than hemodynamic maps, good utilization of the source images can lead to better understanding than the hemodynamic maps alone. Correlation-coefficient tests are used in our approach to measure the similarity between healthy tissue time-concentration curves and unknown curves. This information is then used to differentiate penumbra and dead tissues from healthy tissues. The goal of the segmentation is to fully utilize information in the perfusion source images. Our method directly identifies suspected abnormal areas from perfusion source images and then delivers a suggested segmentation of healthy, penumbra, and dead tissue. This approach is designed to handle CT perfusion images, but it can also be used to detect lesion areas in magnetic resonance perfusion images.

  17. Sparse Source EEG Imaging with the Variational Garrote

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  18. Transport of intensity phase imaging using Bessel sources

    Science.gov (United States)

    Petruccelli, Jonathan C.; Chakraborty, Tonmoy

    2016-05-01

    Propagation-based phase contrast using the transport of intensity equation (TIE) allows rapid, deterministic phase retrieval from defocused images. For weakly attenuating objects, phase can be retrieved from a single image. However, the TIE suffers from significant low frequency artifacts due to enhancement of noise during phase retrieval. We demonstrate that by patterning the illumination source as approximately a modified Bessel function of the 2nd kind of zero order, quantitative phase can be imaged directly at the detector within a spatial frequency band. Outside of that band, Bessel sources still improve low frequency performance in phase retrieval.

  19. Blind Source Separation Algorithms for PSF Subtraction from Direct Imaging

    Science.gov (United States)

    Shapiro, Jacob; Ranganathan, Nikhil; Savransky, Dmitry; Ruffio, Jean-Baptise; Macintosh, Bruce; GPIES Team

    2017-01-01

    The principal difficulty with detecting planets via direct imaging is that the target signal is similar in magnitude, or fainter, than the noise sources in the image. To compensate for this, several methods exist to subtract the PSF of the host star and other confounding noise sources. One of the most effective methods is Karhunen-Loève Image Processing (KLIP). The core algorithm within KLIP is Principal Component Analysis, which is a member of a class of algorithms called Blind Source Separation (BSS).We examine three other BSS algorithms that may potentially also be used for PSF subtraction: Independent Component Analysis, Stationary Subspace Analysis, and Common Spatial Pattern Filtering. The underlying principles of each of the algorithms is discussed, as well as the processing steps needed to achieve PSF subtraction. The algorithms are examined both as primary PSF subtraction techniques, as well as additional postprocessing steps used with KLIP.These algorithms have been used on data from the Gemini Planet Imager, analyzing images of β Pic b. To build a reference library, both Angular Differential Imaging and Spectral Differential Imaging were used. To compare to KLIP, three major metrics are examined: computation time, signal-to-noise ratio, and astrometric and photometric biases in different image regimes (e.g., speckle-dominated compared to Poisson-noise dominated). Preliminary results indicate that these BSS algorithms improve performance when used as an enhancement for KLIP, and that they can achieve similar SNR when used as the primary method of PSF subtraction.

  20. Penumbral imaging and numerical evaluation of large area source neutron imaging system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer functions of the two discrete units in the neutron source were obtained in two situations:Imaging in geometrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation,the neutron penumbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.

  1. Penumbral imaging and numerical evaluation of large area source neutron imaging system

    Institute of Scientific and Technical Information of China (English)

    WU YueLei; HU HuaSi; ZHANG BoPing; LI LinBo; CHEN Da; SHAN Qing; ZHU Jie

    2009-01-01

    The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer func-tions of the two discrete units in the neutron source were obtained in two situations: Imaging in geo-metrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation, the neutron pen-umbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.

  2. Ictal Magnetic Source Imaging in Presurgical Assessment.

    Science.gov (United States)

    Badier, Jean-Michel; Bénar, Christian-George; Woodman, Michael; Cruto, Catarina; Chauvel, Patrick; Bartolomei, Fabrice; Gavaret, Martine

    2016-01-01

    Ictal MEG recordings constitute rare data. The objective of this study was to evaluate ictal magnetic source localization (MSI), using two algorithms: linearly constrained minimum variance (LCMV), a beamforming technique and equivalent current dipole (ECD). Ictal MSI was studied in six patients. Three of them were undergoing post-operative re-evaluation. For all patients, results were validated by the stereoelectroencephalographic (SEEG) definition of the epileptogenic zone (EZ). EZ was quantified using the epileptogenicity index (EI) method, which accounts for both the propensity of a brain area to generate rapid discharges and the time for this area to become involved in the seizure. EI values range from 0 (no epileptogenicity) to 1 (maximal epileptogenicity). Levels of concordance between ictal MSI and EZ were determined as follows: A: ictal MSI localized the site whose value EI = 1, B: MSI localized a part of the EZ (not corresponding to the maximal value of EI = 1), C: a region could be identified on ictal MSI but not on SEEG, D: a region could be identified on SEEG but not on MSI, E: different regions were localized on MSI and SEEG. Ictal MEG pattern consisted of rhythmic activities between 10 and 20 Hz for all patients. For LCMV (first maxima), levels of concordance were A (two cases), B (two cases) and E (two cases). For ECD fitted on each time point separately (location characterized by the best goodness-of-fit value), levels of concordance were A (one case), B (one case), D (three cases) and E (one case). For ECD calculated for the whole time window, levels of concordance were A (two cases) and D (four cases). Source localization methods performed on rhythmic patterns can localize the EZ as validated by SEEG. In terms of concordance, LCMV was superior to ECD. In some cases, LCMV allows extraction of several maxima that could reflect ictal dynamics. In a medial temporal lobe epilepsy case, ictal MSI indicated an area of delayed propagation and was non

  3. Source detection in astronomical images by Bayesian model comparison

    Science.gov (United States)

    Frean, Marcus; Friedlander, Anna; Johnston-Hollitt, Melanie; Hollitt, Christopher

    2014-12-01

    The next generation of radio telescopes will generate exabytes of data on hundreds of millions of objects, making automated methods for the detection of astronomical objects ("sources") essential. Of particular importance are faint, diffuse objects embedded in noise. There is a pressing need for source finding software that identifies these sources, involves little manual tuning, yet is tractable to calculate. We first give a novel image discretisation method that incorporates uncertainty about how an image should be discretised. We then propose a hierarchical prior for astronomical images, which leads to a Bayes factor indicating how well a given region conforms to a model of source that is exceptionally unconstrained, compared to a model of background. This enables the efficient localisation of regions that are "suspiciously different" from the background distribution, so our method looks not for brightness but for anomalous distributions of intensity, which is much more general. The model of background can be iteratively improved by removing the influence on it of sources as they are discovered. The approach is evaluated by identifying sources in real and simulated data, and performs well on these measures: the Bayes factor is maximized at most real objects, while returning only a moderate number of false positives. In comparison to a catalogue constructed by widely-used source detection software with manual post-processing by an astronomer, our method found a number of dim sources that were missing from the "ground truth" catalogue.

  4. Influential sources affecting Bangkok adolescent body image perceptions.

    Science.gov (United States)

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society.

  5. Source effects in analyzer-based X-ray phase contrast imaging with conventional sources

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M. G. [Universidade Federal da Integracao Latino-Americana, 85867-970 Foz do Iguacu, PR (Brazil); Manica, J. [Universidade Estadual do Oeste do Parana, 85867-970 Foz do Iguacu, PR (Brazil); Mazzaro, I.; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba, PR (Brazil); Huang, X.-R. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-11-15

    Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals. These parameters, if not well optimized, may cause important features in the acquired images which can mislead the interpretation. A few ways to minimize these effects are implemented and discussed, including some experimental results.

  6. Photoacoustic imaging driven by an interstitial irradiation source

    Directory of Open Access Journals (Sweden)

    Trevor Mitcham

    2015-06-01

    Full Text Available Photoacoustic (PA imaging has shown tremendous promise in providing valuable diagnostic and therapy-monitoring information in select clinical procedures. Many of these pursued applications, however, have been relatively superficial due to difficulties with delivering light deep into tissue. To address this limitation, this work investigates generating a PA image using an interstitial irradiation source with a clinical ultrasound (US system, which was shown to yield improved PA signal quality at distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional radiology procedures.

  7. Incorporating priors for EEG source imaging and connectivity analysis

    Directory of Open Access Journals (Sweden)

    Xu eLei

    2015-08-01

    Full Text Available Electroencephalography source imaging (ESI is a useful technique to localize the generators from a given scalp electric measurement and to investigate the temporal dynamics of the large-scale neural circuits. By introducing reasonable priors from other modalities, ESI reveals the most probable sources and communication structures at every moment in time. Here, we review the available priors from such techniques as magnetic resonance imaging (MRI, functional MRI (fMRI, and positron emission tomography (PET. The modality's specific contribution is analyzed from the perspective of source reconstruction. For spatial priors, such as EEG-correlated fMRI, temporally coherent networks and resting-state fMRI are systematically introduced in the ESI. Moreover, the fiber tracking (diffusion tensor imaging, DTI and neuro-stimulation techniques (transcranial magnetic stimulation, TMS are also introduced as the potential priors, which can help to draw inferences about the neuroelectric connectivity in the source space. We conclude that combining EEG source imaging with other complementary modalities is a promising approach towards the study of brain networks in cognitive and clinical neurosciences.

  8. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA.

  9. A Pico Projector Source for Confocal Fluorescence and Ophthalmic Imaging.

    Science.gov (United States)

    Muller, Matthew S

    2012-09-02

    A Pico digital light projector has been implemented as an integrated illumination source and spatial light modulator for confocal imaging. The target is illuminated with a series of rapidly projected lines or points to simulate scanning. Light returning from the target is imaged onto a 2D rolling shutter CMOS sensor. By controlling the spatio-temporal relationship between the rolling shutter and illumination pattern, light returning from the target is spatially filtered. Confocal retinal, fluorescence, and Fourier-domain optical coherence tomography implementations of this novel imaging technique are presented.

  10. Phase-Based Road Detection in Multi-Source Images

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, S K; Lopez, A S; Brase, J M; Paglieroni, D W

    2004-06-16

    The problem of robust automatic road detection in remotely sensed images is complicated by the fact that the sensor, spatial resolution, acquisition conditions, road width, road orientation and road material composition can all vary. A novel technique for detecting road pixels in multi-source remotely sensed images based on the phase (i.e., orientation or directional) information in edge pixels is described. A very dense map of edges extracted from the image is separated into channels, each containing edge pixels whose phases lie within a different range of orientations. The edge map associated with each channel is de-cluttered. A map of road pixels is formed by re-combining the de-cluttered channels into a composite edge image which is itself then separately de-cluttered. Road detection results are provided for DigitalGlobe and TerraServerUSA images. Road representations suitable for various applications are then discussed.

  11. Research Progress on Biomagnetism and Biomagnetic Effect of Bone%骨组织生物磁性及磁场生物学效应研究

    Institute of Scientific and Technical Information of China (English)

    丁冲; 陈晓虎; 李迪杰; 宁旦旦; 商澎

    2013-01-01

    骨组织是一种整体表现抗磁性的生物活性物质,外加磁场具有促进骨组织生长的作用.临床上应用一定参数的脉冲磁场、静磁场进行骨质疏松、骨折愈合的治疗,并开发磁性骨植入材料促进骨修复.骨组织磁生物学效应的研究在整体、细胞、分子等多个层面开展,不同的骨组织细胞对磁场产生不同的响应.对各种骨细胞细胞磁性来源进行分析和检测,将为骨组织磁生物效应的机制及其应用提供指导和帮助.%The magnetic properties of bone tissue are mainly dominated by the diamagnetic materials, which can act with the external magnetic fields. With the function of promoting bone growth, puls-electromagnetic fields (PEMFs) or static magnetic fields (SMFs) with certain parameters can be used as a therapy for the osteoporosis and fracture healing in clinical application, as well as the bone implant materials with magnetic property are developed to promote the damaged tissues repair. The research of effect of magnetic fields on bone tissue are studied on integration, cell, and molecular level. The osteoblast, osteo-clast and osteocyte's responses to the same magnetic fields are different. To analysis and detect the magnetism of bone cells and bone tissue will provide a guidance for research the mechanism of biomagnetic effects of bone and its application.

  12. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...

  13. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    work describing the basic principles, potential error sources, and/or adjustment and calibration procedures. This report fulfils the need for such documentationwith special focus on the system at KVL. The PGP based system has several severe error sources, which should be removed prior any analysis....... Most of the random noise sources can be minimised by carefully selecting high-grade components especially withconcern to the camera. Systematic error sources like CCD fixed pattern noise (FPN), CCD photoresponse nonuniformity (PRNU), CCD charge transfer efficiency (CTE), slit width variations, changes...... in off-axis transmission efficiencies, diffractionefficiencies, and image distortion have a significant impact on the instrument performance. Procedures removing or minimising these systematic error sources are developed and described for the system build at KVL but can be generalised to other PGP...

  14. Fast Source Camera Identification Using Content Adaptive Guided Image Filter.

    Science.gov (United States)

    Zeng, Hui; Kang, Xiangui

    2016-03-01

    Source camera identification (SCI) is an important topic in image forensics. One of the most effective fingerprints for linking an image to its source camera is the sensor pattern noise, which is estimated as the difference between the content and its denoised version. It is widely believed that the performance of the sensor-based SCI heavily relies on the denoising filter used. This study proposes a novel sensor-based SCI method using content adaptive guided image filter (CAGIF). Thanks to the low complexity nature of the CAGIF, the proposed method is much faster than the state-of-the-art methods, which is a big advantage considering the potential real-time application of SCI. Despite the advantage of speed, experimental results also show that the proposed method can achieve comparable or better performance than the state-of-the-art methods in terms of accuracy.

  15. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets.

  16. Passive synthetic aperture imaging with limited noise sources

    Science.gov (United States)

    Garnier, Josselin

    2016-09-01

    We consider a passive synthetic aperture imaging problem. A single moving receiver antenna records random signals generated by one or several distant noise sources and backscattered by one or several reflectors. The sources emit noise signals modeled by stationary random processes. The reflectors can be imaged by summing the autocorrelation functions of the received signals computed over successive time windows, corrected for Doppler factors and migrated by appropriate travel times. In particular, the Doppler effect plays an important role and it can be used for resolution enhancement. When the noise source positions are not known, the reflector can be localized with an accuracy proportional to the reciprocal of the noise bandwidth, even when only a very small number of sources are available. When the noise source positions are known, the reflector can be localized with a cross range resolution proportional to the carrier wavelength and inversely proportional to the length of the receiver trajectory (i.e. the synthetic aperture), and with a range resolution proportional to the reciprocal of the bandwidth, even with only one noise source.

  17. Introducing djatoka: a reuse friendly, open source JPEG image server

    Energy Technology Data Exchange (ETDEWEB)

    Chute, Ryan M [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory

    2008-01-01

    The ISO-standardized JPEG 2000 image format has started to attract significant attention. Support for the format is emerging in major consumer applications, and the cultural heritage community seriously considers it a viable format for digital preservation. So far, only commercial image servers with JPEG 2000 support have been available. They come with significant license fees and typically provide the customers with limited extensibility capabilities. Here, we introduce djatoka, an open source JPEG 2000 image server with an attractive basic feature set, and extensibility under control of the community of implementers. We describe djatoka, and point at demonstrations that feature digitized images of marvelous historical manuscripts from the collections of the British Library and the University of Ghent. We also caIl upon the community to engage in further development of djatoka.

  18. Open source tools for standardized privacy protection of medical images

    Science.gov (United States)

    Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas

    2011-03-01

    In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.

  19. The utilization of dual source CT in imaging of polytrauma

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaou, S. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)], E-mail: savvas.nicolaou@vch.ca; Eftekhari, A.; Sedlic, T.; Hou, D.J.; Mudri, M.J.; Aldrich, John; Louis, L. [University of British Columbia, Vancouver General Hospital, Department of Radiology, 899 West 12th Avenue, Vancouver, British Columbia, V5Z1M9 (Canada)

    2008-12-15

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner.

  20. Combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho;

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part....... The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music...

  1. EEG/MEG Source Imaging: Methods, Challenges, and Open Issues

    OpenAIRE

    Katrina Wendel; Outi Väisänen; Jaakko Malmivuo; Gencer, Nevzat G.; Bart Vanrumste; Piotr Durka; Ratko Magjarević; Selma Supek; Mihail Lucian Pascu; Hugues Fontenelle; Rolando Grave de Peralta Menendez

    2009-01-01

    We present the four key areas of research—preprocessing, the volume conductor, the forward problem, and the inverse problem—that affect the performance of EEG and MEG source imaging. In each key area we identify prominent approaches and methodologies that have open issues warranting further investigation within the community, challenges associated with certain techniques, and algorithms necessitating clarification of their implications. More than providing definitive answers we aim to identif...

  2. Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Barni Mauro

    2007-01-01

    Full Text Available This paper deals with the application of distributed source coding (DSC theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the complexity of the onboard encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems.

  3. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  4. An overview of joint inversion in earthquake source imaging

    Science.gov (United States)

    Koketsu, Kazuki

    2016-10-01

    We reviewed joint inversion studies of the rupture processes of significant earthquakes, using the definition of a joint inversion in earthquake source imaging as a source inversion of multiple kinds of datasets (waveform, geodetic, or tsunami). Yoshida and Koketsu (Geophys J Int 103:355-362, 1990), and Wald and Heaton (Bull Seismol Soc Am 84:668-691, 1994) independently initiated joint inversion methods, finding that joint inversion provides more reliable rupture process models than single-dataset inversion, leading to an increase of joint inversion studies. A list of these studies was made using the finite-source rupture model database (Mai and Thingbaijam in Seismol Res Lett 85:1348-1357, 2014). Outstanding issues regarding joint inversion were also discussed.

  5. Gadgetron: an open source framework for medical image reconstruction.

    Science.gov (United States)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-06-01

    This work presents a new open source framework for medical image reconstruction called the "Gadgetron." The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or "Gadgets" from raw data to reconstructed images. The data processing pipeline is configured dynamically at run-time based on an extensible markup language configuration description. The framework promotes reuse and sharing of reconstruction modules and new Gadgets can be added to the Gadgetron framework through a plugin-like architecture without recompiling the basic framework infrastructure. Gadgets are typically implemented in C/C++, but the framework includes wrapper Gadgets that allow the user to implement new modules in the Python scripting language for rapid prototyping. In addition to the streaming framework infrastructure, the Gadgetron comes with a set of dedicated toolboxes in shared libraries for medical image reconstruction. This includes generic toolboxes for data-parallel (e.g., GPU-based) execution of compute-intensive components. The basic framework architecture is independent of medical imaging modality, but this article focuses on its application to Cartesian and non-Cartesian parallel magnetic resonance imaging.

  6. Diffraction-enhanced imaging at the UK synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Ibison, M. [Liverpool University, Liverpool (United Kingdom); Cheung, K.C. [C.L.R.C. Daresbury Laboratory, Keckwick Lane, Daresbury, Cheshire WA4 4AD (United Kingdom); Siu, K. [Monash University, Melbourne, Victoria (Australia); Hall, C.J. [C.L.R.C. Daresbury Laboratory, Keckwick Lane, Daresbury, Cheshire WA4 4AD (United Kingdom)]. E-mail: c.j.hall@dl.ac.uk; Lewis, R.A. [Monash University, Melbourne, Victoria (Australia); Hufton, A. [Christie Hospital, Manchester (United Kingdom); Wilkinson, S.J. [Cranfield University, R.M.C.S., Shrivenham (United Kingdom); Rogers, K.D. [Cranfield University, R.M.C.S., Shrivenham (United Kingdom); Round, A. [C.L.R.C. Daresbury Laboratory, Keckwick Lane, Daresbury, Cheshire WA4 4AD (United Kingdom)

    2005-08-11

    The Diffraction-Enhanced Imaging (DEI) system, which shares access to Beamline 7.6 on the Daresbury Synchrotron Radiation Source (SRS), is now in its third year of existence. The system was developed under a European Commission grant PHase Analyser SYstem (PHASY), won during the Fourth Framework. Typical applications continue to be the imaging of small biological specimens, using a beam of 12-17 keV after monochromation and up to 40 mm in width and 1-2 mm in height, although it is planned to investigate other materials as opportunity permits and time becomes available for more routine scientific use. Recent improvements have been made to the optical alignment procedure for setting up the station before imaging: a small laser device can now be set up to send a beam down the X-ray path through the four crystals, and a small photodiode, which has much better signal-to-noise characteristics than the ion chamber normally used for alignment, has been trailed successfully. A 3-D tomographic reconstruction capability has recently been developed and tested for DEI projection image sets, and will be applied to future imaging work on the SRS, in conjunction with volume visualization software. The next generation of DEI system, planned to operate at up to 60 keV on an SRS wiggler station, is in its design stage; it will feature much improved mechanics and mountings, especially for angular control, and a simplified alignment procedure to facilitate the necessary sharing of the SRS station.

  7. Diffraction-enhanced imaging at the UK synchrotron radiation source

    Science.gov (United States)

    Ibison, M.; Cheung, K. C.; Siu, K.; Hall, C. J.; Lewis, R. A.; Hufton, A.; Wilkinson, S. J.; Rogers, K. D.; Round, A.

    2005-08-01

    The Diffraction-Enhanced Imaging (DEI) system, which shares access to Beamline 7.6 on the Daresbury Synchrotron Radiation Source (SRS), is now in its third year of existence. The system was developed under a European Commission grant PHase Analyser SYstem (PHASY), won during the Fourth Framework. Typical applications continue to be the imaging of small biological specimens, using a beam of 12-17 keV after monochromation and up to 40 mm in width and 1-2 mm in height, although it is planned to investigate other materials as opportunity permits and time becomes available for more routine scientific use. Recent improvements have been made to the optical alignment procedure for setting up the station before imaging: a small laser device can now be set up to send a beam down the X-ray path through the four crystals, and a small photodiode, which has much better signal-to-noise characteristics than the ion chamber normally used for alignment, has been trailed successfully. A 3-D tomographic reconstruction capability has recently been developed and tested for DEI projection image sets, and will be applied to future imaging work on the SRS, in conjunction with volume visualization software. The next generation of DEI system, planned to operate at up to 60 keV on an SRS wiggler station, is in its design stage; it will feature much improved mechanics and mountings, especially for angular control, and a simplified alignment procedure to facilitate the necessary sharing of the SRS station.

  8. Cardiac magnetic source imaging based on current multipole model

    Institute of Scientific and Technical Information of China (English)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution.Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseuDOInverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides,two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.

  9. EEG source imaging in epilepsy--practicalities and pitfalls.

    Science.gov (United States)

    Kaiboriboon, Kitti; Lüders, Hans O; Hamaneh, Mehdi; Turnbull, John; Lhatoo, Samden D

    2012-09-01

    EEG source imaging (ESI) is a model-based imaging technique that integrates temporal and spatial components of EEG to identify the generating source of electrical potentials recorded on the scalp. Recent advances in computer technologies have made the analysis of ESI data less time-consuming, and have rekindled interest in this technique as a clinical diagnostic tool. On the basis of the available body of evidence, ESI seems to be a promising tool for epilepsy evaluation; however, the precise clinical value of ESI in presurgical evaluation of epilepsy and in localization of eloquent cortex remains to be investigated. In this Review, we describe two fundamental issues in ESI; namely, the forward and inverse problems, and their solutions. The clinical application of ESI in surgical planning for patients with medically refractory focal epilepsy, and its use in source reconstruction together with invasive recordings, is also discussed. As ESI can be used to map evoked responses, we discuss the clinical utility of this technique in cortical mapping-an essential process when planning resective surgery for brain regions that are in close proximity to eloquent cortex.

  10. An Image Matching Algorithm Integrating Global SRTM and Image Segmentation for Multi-Source Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Xiao Ling

    2016-08-01

    Full Text Available This paper presents a novel image matching method for multi-source satellite images, which integrates global Shuttle Radar Topography Mission (SRTM data and image segmentation to achieve robust and numerous correspondences. This method first generates the epipolar lines as a geometric constraint assisted by global SRTM data, after which the seed points are selected and matched. To produce more reliable matching results, a region segmentation-based matching propagation is proposed in this paper, whereby the region segmentations are extracted by image segmentation and are considered to be a spatial constraint. Moreover, a similarity measure integrating Distance, Angle and Normalized Cross-Correlation (DANCC, which considers geometric similarity and radiometric similarity, is introduced to find the optimal correspondences. Experiments using typical satellite images acquired from Resources Satellite-3 (ZY-3, Mapping Satellite-1, SPOT-5 and Google Earth demonstrated that the proposed method is able to produce reliable and accurate matching results.

  11. Biomagnetic separation of Salmonella Typhimurium with high affine and specific ligand peptides isolated by phage display technique

    Energy Technology Data Exchange (ETDEWEB)

    Steingroewer, Juliane [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)]. E-mail: juliane.steingroewer@tu-dresden.de; Bley, Thomas [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany); Bergemann, Christian [Chemicell GmbH, D-10823, Berlin (Germany); Boschke, Elke [Institute of Food Technology and Bioprocess Engineering, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2007-04-15

    Analyses of food-borne pathogens are of great importance in order to minimize the health risk for customers. Thus, very sensitive and rapid detection methods are required. Current conventional culture techniques are very time consuming. Modern immunoassays and biochemical analysis also require pre-enrichment steps resulting in a turnaround time of at least 24 h. Biomagnetic separation (BMS) is a promising more rapid method. In this study we describe the isolation of high affine and specific peptides from a phage-peptide library, which combined with BMS allows the detection of Salmonella spp. with a similar sensitivity as that of immunomagnetic separation using antibodies.

  12. Low energy electron point source microscopy: beyond imaging.

    Science.gov (United States)

    Beyer, André; Gölzhäuser, Armin

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes.

  13. Upconversion imaging using an all-fiber supercontinuum source.

    Science.gov (United States)

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter; Leick, Lasse; Pedersen, Christian

    2016-06-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 μm with upconversion detection. The infrared signal is used to probe a sample and mixed with a synchronized 1550 nm laser pulse inside a lithium niobate (LiNbO3) crystal. The signal is thus upconverted to the 860-970 nm range and acquired on a standard silicon CCD array at a rate of 22 frames per second. In our implementation, spatial features in the sample plane as small as 55 μm could be resolved.

  14. Extraction of Emission Source Images in d+Au and

    Science.gov (United States)

    Chung, Paul

    2004-10-01

    Relativistic heavy ion collisions at RHIC, produce a fireball of nuclear matter with extremely high energy density. The dynamical evolution of this fireball is driven by such fundamental properties as the nuclear Equation of State (EOS) and possibly by a phase transition, e.g., to a Quark Gluon Plasma (QGP). Two-particle correlation studies, for various particle species,provide an important probe of the space-time extent of this fireball. In recent measurements the PHENIX collaboration has used a model-independent imaging technique proposed by Brown and Danielewicz(D.Brown and P.Danieliwicz, Phys.Rev.C 64, 014902 (2001))to extract two-particle source functions directly from Au+Au and d+Au collisions at √sNN=200 GeV. Source images obtained from these two systems for various particle species for several centality and kt selections will be presented and compared/contrasted. The implications of these results for the decay dynamics of the fireball created at RHIC will also be dicussed.

  15. Noise sources and noise suppression in CMOS imagers

    Science.gov (United States)

    Pain, Bedabrata; Cunningham, Thomas J.; Hancock, Bruce R.

    2004-01-01

    Mechanisms for noise coupling in CMOS imagers are complex, since unlike a CCD, a CMOS imager has to be considered as a full digital-system-on-a-chip, with a highly sensitive front-end. In this paper, we analyze the noise sources in a photodiode CMOS imager, and model their propagation through the signal chain to determine the nature and magnitude of noise coupling. We present methods for reduction of noise, and present measured data to show their viability. For temporal read noise reduction, we present pixel signal chain design techniques to achieve near 2 electrons read noise. We model the front-end reset noise both for conventional photodiode and CTIA type of pixels. For the suppression of reset noise, we present a column feedback-reset method to reduce reset noise below 6 electrons. For spatial noise reduction, we present the design of column signal chain that suppresses both spatial noise and power supply coupling noise. We conclude by identifying problems in low-noise design caused by dark current spatial distribution.

  16. How to coadd images? I. Optimal source detection and photometry using ensembles of images

    CERN Document Server

    Zackay, Barak

    2015-01-01

    Stacks of digital astronomical images are combined in order to increase image depth. The variable seeing conditions, sky background and transparency of ground-based observations make the coaddition process non-trivial. We present image coaddition methods optimized for source detection and flux measurement, that maximize the signal-to-noise ratio (S/N). We show that for these purposes the best way to combine images is to apply a matched filter to each image using its own point spread function (PSF) and only then to sum the images with the appropriate weights. Methods that either match filter after coaddition, or perform PSF homogenization prior to coaddition will result in loss of sensitivity. We argue that our method provides an increase of between a few and 25 percent in the survey speed of deep ground-based imaging surveys compared with weighted coaddition techniques. We demonstrate this claim using simulated data as well as data from the Palomar Transient Factory data release 2. We present a variant of thi...

  17. Toward seismic source imaging using seismo-ionospheric data

    Science.gov (United States)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  18. $\\mathtt{ComEst}$: a Completeness Estimator of Source Extraction on Astronomical Imaging

    CERN Document Server

    Chiu, I-Non; Liu, Jiayi

    2016-01-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package $\\mathtt{ComEst}$, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator $\\mathtt{ComEst}$ is designed for the source finder $\\mathtt{SExtractor}$ used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, $\\mathtt{ComEst}$ estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, $\\mathtt{ComEst}$ directly carries out the detection of simulated sources on the observed images. Given an observed CCD ...

  19. An Ultraviolet imager to study bright UV sources

    CERN Document Server

    Mathew, Joice; Sarpotdar, Mayuresh; Sreejith, A G; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    We have designed and developed a compact ultraviolet imaging payload to fly on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and e...

  20. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    Science.gov (United States)

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  1. Uncertainty in Earthquake Source Imaging Due to Variations in Source Time Function and Earth Structure

    KAUST Repository

    Razafindrakoto, H. N. T.

    2014-03-25

    One way to improve the accuracy and reliability of kinematic earthquake source imaging is to investigate the origin of uncertainty and to minimize their effects. The difficulties in kinematic source inversion arise from the nonlinearity of the problem, nonunique choices in the parameterization, and observational errors. We analyze particularly the uncertainty related to the choice of the source time function (STF) and the variability in Earth structure. We consider a synthetic data set generated from a spontaneous dynamic rupture calculation. Using Bayesian inference, we map the solution space of peak slip rate, rupture time, and rise time to characterize the kinematic rupture in terms of posterior density functions. Our test to investigate the effect of the choice of STF reveals that all three tested STFs (isosceles triangle, regularized Yoffe with acceleration time of 0.1 and 0.3 s) retrieve the patch of high slip and slip rate around the hypocenter. However, the use of an isosceles triangle as STF artificially accelerates the rupture to propagate faster than the target solution. It additionally generates an artificial linear correlation between rupture onset time and rise time. These appear to compensate for the dynamic source effects that are not included in the symmetric triangular STF. The exact rise time for the tested STFs is difficult to resolve due to the small amount of radiated seismic moment in the tail of STF. To highlight the effect of Earth structure variability, we perform inversions including the uncertainty in the wavespeed only, and variability in both wavespeed and layer depth. We find that little difference is noticeable between the resulting rupture model uncertainties from these two parameterizations. Both significantly broaden the posterior densities and cause faster rupture propagation particularly near the hypocenter due to the major velocity change at the depth where the fault is located.

  2. An ultraviolet imager to study bright UV sources

    Science.gov (United States)

    Mathew, Joice; Prakash, Ajin; Sarpotdar, Mayuresh; Sreejith, A. G.; Safonova, Margarita; Murthy, Jayant

    2016-07-01

    We have designed and developed a compact ultraviolet imaging payload to y on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and electrical design of the instrument. We have adopted an all spherical optical design which would make the system less complex to realize and a cost effective solution compared to other telescope configuration. The structural design has been chosen in such a way that it will ensure that the instrument could withstand all the launch load vibrations. An FPGA based electronics board is used for the data acquisition, processing and CCD control. We will also brie y discuss about the hardware implementation of the detector interface and algorithms for the detector readout and data processing.

  3. Computer vision for detecting and quantifying gamma-ray sources in coded-aperture images

    Energy Technology Data Exchange (ETDEWEB)

    Schaich, P.C.; Clark, G.A.; Sengupta, S.K.; Ziock, K.P.

    1994-11-02

    The authors report the development of an automatic image analysis system that detects gamma-ray source regions in images obtained from a coded aperture, gamma-ray imager. The number of gamma sources in the image is not known prior to analysis. The system counts the number (K) of gamma sources detected in the image and estimates the lower bound for the probability that the number of sources in the image is K. The system consists of a two-stage pattern classification scheme in which the Probabilistic Neural Network is used in the supervised learning mode. The algorithms were developed and tested using real gamma-ray images from controlled experiments in which the number and location of depleted uranium source disks in the scene are known.

  4. Solar Imaging Radio Array (SIRA): Imaging solar, magnetospheric, and astrophysical sources at < 15 MHz

    Science.gov (United States)

    Howard, R.; MacDowall, R.; Gopalswamy, N.; Kaiser, M. L.; Reiner, M. J.; Bale, S.; Jones, D.; Kasper, J.; Weiler, K.

    2004-12-01

    The Solar Imaging Radio Array (SIRA) is a mission to perform aperture synthesis imaging of low frequency solar, magnetospheric, and astrophysical radio bursts. The primary science targets are coronal mass ejections (CMEs), which drive radio emission producing shock waves. A space-based interferometer is required, because the frequencies of observation (SIRA mission serves as a lower frequency counterpart to LWA, LOFAR, and similar ground-based radio imaging arrays. SIRA will require 12 to 16 microsatellites to establish a sufficient number of baselines with separations on the order of kilometers. The microsat constellation consists of microsats located quasi-randomly on a spherical shell, initially of radius 5 km or less. The baseline microsat is 3-axis stabilized with body-mounted solar arrays and an articulated, earth pointing high gain antenna. A retrograde orbit at 500,000 km from Earth was selected as the preferred orbit because it reduces the downlink requirement while keeping the microsats sufficiently distant from terrestrial radio interference. Also, the retrograde orbit permits imaging of terrestrial magnetospheric radio sources from varied perspectives. The SIRA mission serves as a pathfinder for space-based satellite constellations and for spacecraft interferometry at shorter wavelengths. It will be proposed to the NASA MIDEX proposal opportunity in mid-2005.

  5. View-Aware Image Object Compositing and Synthesis from Multiple Sources

    Institute of Scientific and Technical Information of China (English)

    Xiang Chen; Wei-Wei Xu; Sai-Kit Yeung; Kun Zhou

    2016-01-01

    Image compositing is widely used to combine visual elements from separate source images into a single image. Although recent image compositing techniques are capable of achieving smooth blending of the visual elements from different sources, most of them implicitly assume the source images are taken in the same viewpoint. In this paper, we present an approach to compositing novel image objects from multiple source images which have different viewpoints. Our key idea is to construct 3D proxies for meaningful components of the source image objects, and use these 3D component proxies to warp and seamlessly merge components together in the same viewpoint. To realize this idea, we introduce a coordinate-frame based single-view camera calibration algorithm to handle general types of image objects, a structure-aware cuboid optimization algorithm to get the cuboid proxies for image object components with correct structure relationship, and finally a 3D-proxy transformation guided image warping algorithm to stitch object components. We further describe a novel application based on this compositing approach to automatically synthesize a large number of image objects from a set of exemplars. Experimental results show that our compositing approach can be applied to a variety of image objects, such as chairs, cups, lamps, and robots, and the synthesis application can create novel image objects with significant shape and style variations from a small set of exemplars.

  6. Cardiac activation mapping using ultrasound current source density imaging (UCSDI).

    Science.gov (United States)

    Olafsson, Ragnar; Witte, Russell S; Jia, Congxian; Huang, Sheng-Wen; Kim, Kang; O'Donnell, Matthew

    2009-03-01

    We describe the first mapping of biological current in a live heart using ultrasound current source density imaging (UCSDI). Ablation procedures that treat severe heart arrhythmias require detailed maps of the cardiac activation wave. The conventional procedure is time-consuming and limited by its poor spatial resolution (5-10 mm). UCSDI can potentially improve on existing mapping procedures. It is based on a pressure-induced change in resistivity known as the acousto-electric (AE) effect, which is spatially confined to the ultrasound focus. Data from 2 experiments are presented. A 540 kHz ultrasonic transducer (f/# = 1, focal length = 90 mm, pulse repetition frequency = 1600 Hz) was scanned over an isolated rabbit heart perfused with an excitation-contraction decoupler to reduce motion significantly while retaining electric function. Tungsten electrodes inserted in the left ventricle recorded simultaneously the AE signal and the low-frequency electrocardiogram (ECG). UCSDI displayed spatial and temporal patterns consistent with the spreading activation wave. The propagation velocity estimated from UCSDI was 0.25 +/- 0.05 mm/ms, comparable to the values obtained with the ECG signals. The maximum AE signal-to-noise ratio after filtering was 18 dB, with an equivalent detection threshold of 0.1 mA/ cm(2). This study demonstrates that UCSDI is a potentially powerful technique for mapping current flow and biopotentials in the heart.

  7. Localization of the human language cortex by magnetic source imaging

    Institute of Scientific and Technical Information of China (English)

    孙吉林; 吴杰; 李素敏; 吴育锦; 刘连祥

    2003-01-01

    Objective To localize the language cortex associated with Chinese word processing by magnetic source imaging (MSI). Methods Eight right-handed and one left-handed healthy native Chinese subjects were examined by magnetoencephalography (MEG) and a 1.5T magnetic resonance imaging (MRI) unit. All subjects were given pure tone stimuli 50 times, 150 pairs of Chinese words (meaning related or unrelated) auditory stimuli, and pure tone stimuli subsequently 50 times. Evoked response fields time locked to the pure tone and Chinese words were recorded using a whole-head neuromagnetometer in real-time. The acquired data were averaged by the acquisition computer according to the response to the pure tone, related pairs of words and unrelated pairs of words. The data obtained by MEG were superimposed on MRI, using a GE Signa 1.5T system. Results MEG, showed there were two obviously higher magnetic waves named M50 and M100, which were localized in the bilateral transverse temporal gyri in all subjects. The responses to the pairs of Chinese words (meaning related or unrelated) were similar in the same hemisphere of the same subjects. There was a higher peak during 300-600 ms in the right hemisphere of one left handed subject, but no peak in the left hemisphere, indicating that the language dominant hemisphere was localized in the right hemisphere. Superimposing the MEG data on MRI, the language area was localized in the Wernicke's areas. A 300-600 ms response peak was obsarved in each hemisphere (the amplitude of the 300-600 ms response peak in each hemisphere was almost the same) in two right-handed subjects, showing that the language area was localized in the 2 hemispheres in the two subjects. There was one peak in each hemisphere (300-600 ms response) in 6 subjects, but the amplitude of the wave in the left hemisphere in the 6 subjects was much higher than that in the right hemisphere. By choosing randomly from the later component (300-600 ms response) several time points and

  8. ComEst: A completeness estimator of source extraction on astronomical imaging

    Science.gov (United States)

    Chiu, I.; Desai, S.; Liu, J.

    2016-07-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package ComEst, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator ComEst is designed for the source finder SExtractor used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, ComEst estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, ComEst directly carries out the detection of simulated sources on the observed images. Given an observed CCD image saved in FITS format, ComEst derives the completeness of the source detection from end to end as a function of source flux (or magnitude) and CCD position. In addition, ComEst can also estimate the purity of the source detection by comparing the catalog of the detected sources to the input catalogs of the simulated sources. We run ComEst on the images from Blanco Cosmology Survey (BCS) and compare the derived completeness as a function of magnitude to the limiting magnitudes derived by using the Signal-to-Noise ratio (SNR) and number count histogram of the detected sources. ComEst is released as a Python package with an easy-to-use syntax and is publicly available at https://github.com/inonchiu/ComEst.

  9. Non-imaging Optics of multi-LED light source for hyperspectral imaging

    Science.gov (United States)

    Islam, Kashif; Gosnell, Martin E.; Ploschner, Martin; Anwer, Ayad G.; Goldys, Ewa M.

    2016-12-01

    The main objective of our work was to design a light source which should be capable to collect and illuminate light of LEDs at the smaller aperture of cone (9mm) which could be either coupled with secondary optics of a microscope or utilized independently for hyperspectral studies. Optimized performance of cone was assessed for different substrates (diffused glass silica, Alumina, Zerodur glass, acrylic plastic) and coating surfaces (white diffused, flat white paint, standard mirror) using a simulation software. The parameters optimized for truncated cone include slanting length and Top Major R (Larger diameter of cone) which were also varied from 10 to 350 mm and 10 to 80 mm respectively. In order to see affect of LED positions on cone efficiency, the positions of LED were varied from central axis to off-axis. Similarly, interLED distance was varied from 2 mm to 6 mm to reckon its effect on the performance of cone. The optimized Slant length (80 mm) and Top Major R (50 mm) were determined for substrates (glass zerodur or acrylic plastic) and coating surface (standard mirror). The output profile of truncated source was found non uniform, which is a typical presentation of non imaging optics problem. The maximum efficiency of cone has been found for LED at the centre and it was found decreasing as LED moves away from the central axis. Moreover, shorter the interLED distance, better is the performance of cone. The primary optics of cone shaped light source is capable to lit visible and UV LEDs in practical design. The optimum parameters obtained through simulations could be implemented in the fabrication procedure if the reflectance of source would have been maintained upto finish level of a standard mirror.

  10. Swept source OCT imaging of human anterior segment at 200 kHz

    Science.gov (United States)

    Karnowski, Karol; Gora, Michalina; Kaluzny, Bartlomiej; Huber, Robert; Szkulmowski, Maciej; Kowalczyk, Andrzej; Wojtkowski, Maciej

    2009-02-01

    We present applicability of the high speed swept-source optical coherence tomography for in vivo imaging of the anterior segment of the human eye. Three dimensional imaging of the cornea with reduced motion artifacts is possible by using swept source with Fourier domain mode locking operating at 200kHz with 1300nm central wavelength. High imaging speeds allow for assessment of anterior and posterior corneal topography and generation of thickness and elevation maps.

  11. Advanced Calibration Source for Planetary and Earth Observing Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiometric calibration is critical to many NASA activities.  At NASA SSC, imaging cameras have been used in-situ to monitor propulsion test stand...

  12. Synthetically Evaluation System for Multi-source Image Fusion and Experimental Analysis

    Institute of Scientific and Technical Information of China (English)

    XIAO Gang; JING Zhong-liang; WU Jian-min; LIU Cong-yi

    2006-01-01

    Study on the evaluation system for multi-source image fusion is an important and necessary part of image fusion. Qualitative evaluation indexes and quantitative evaluation indexes were studied. A series of new concepts,such as independent single evaluation index, union single evaluation index, synthetic evaluation index were proposed. Based on these concepts, synthetic evaluation system for digital image fusion was formed. The experiments with the wavelet fusion method, which was applied to fuse the multi-spectral image and panchromatic remote sensing image, the IR image and visible image, the CT and MRI image, and the multi-focus images show that it is an objective, uniform and effective quantitative method for image fusion evaluation.

  13. Cardiac amyloidosis imaged by dual-source computed tomography.

    Science.gov (United States)

    Marwan, Mohamed; Pflederer, Tobias; Ropers, Dieter; Schmid, Michael; Wasmeier, Gerald; Söder, Stephan; Daniel, Werner G; Achenbach, Stephan

    2008-11-01

    The ability of contrast-enhanced CT to detect "late enhancement" in a fashion similar to magnetic resonance imaging has been reported previously. Typical myocardial distribution patterns of "late enhancement" have been described for MRI. The same patterns can be observed in CT imaging, albeit at a lower signal to noise ratio. We report a case of cardiac amyloidosis with a typical pattern of subendocardial, circumferential late enhancement in all four cardiac chambers.

  14. Segmenting Multi-Source images using hidden Markov fields with copula-based multivariate statistical distributions.

    Science.gov (United States)

    Lapuyade-Lahorgue, Jerome; Xue, Jing-Hao; Ruan, Su

    2017-03-21

    Nowadays, multi-source image acquisition attracts an increasing interest in many fields such as multi-modal medical image segmentation. Such acquisition aims at considering complementary information to perform image segmentation since the same scene has been observed by various types of images. However, strong dependency often exists between multi-source images. This dependency should be taken into account when we try to extract joint information for precisely making a decision. In order to statistically model this dependency between multiple sources, we propose a novel multi-source fusion method based on the Gaussian copula. The proposed fusion model is integrated in a statistical framework with the hidden Markov field inference in order to delineate a target volume from multi-source images. Estimation of parameters of the models and segmentation of the images are jointly performed by an iterative algorithm based on Gibbs sampling. Experiments are performed on multi-sequence MRI to segment tumors. The results show that the proposed method based on the Gaussian copula is effective to accomplish multi-source image segmentation.

  15. Blind separation of image sources via adaptive dictionary learning.

    Science.gov (United States)

    Abolghasemi, Vahid; Ferdowsi, Saideh; Sanei, Saeid

    2012-06-01

    Sparsity has been shown to be very useful in source separation of multichannel observations. However, in most cases, the sources of interest are not sparse in their current domain and one needs to sparsify them using a known transform or dictionary. If such a priori about the underlying sparse domain of the sources is not available, then the current algorithms will fail to successfully recover the sources. In this paper, we address this problem and attempt to give a solution via fusing the dictionary learning into the source separation. We first define a cost function based on this idea and propose an extension of the denoising method in the work of Elad and Aharon to minimize it. Due to impracticality of such direct extension, we then propose a feasible approach. In the proposed hierarchical method, a local dictionary is adaptively learned for each source along with separation. This process improves the quality of source separation even in noisy situations. In another part of this paper, we explore the possibility of adding global priors to the proposed method. The results of our experiments are promising and confirm the strength of the proposed approach.

  16. Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging

    Science.gov (United States)

    Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.

    2016-06-01

    We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.

  17. Requirements for dynamical differential phase contrast x-ray imaging with a laboratory source

    Science.gov (United States)

    Macindoe, David; Kitchen, Marcus J.; Irvine, Sarah C.; Fouras, Andreas; Morgan, Kaye S.

    2016-12-01

    X-ray phase contrast enables weakly-attenuating structures to be imaged, with bright synchrotron sources adding the ability to capture time sequences and analyse sample dynamics. Here, we describe the translation of dynamical differential phase contrast imaging from the synchrotron to a compact x-ray source, in order to achieve this kind of time sequence imaging in the laboratory. We formulate broadly-applicable set-up guidelines for the single-grid, single-exposure imaging technique using a divergent source, exploring the experimental factors that restrict set-up size, imaging sensitivity and sample size. Experimental images are presented using the single-grid phase contrast technique with a steel attenuation grid and a liquid-metal-jet x-ray source, enabling exposure times as short as 0.5 s for dynamic imaging. Differential phase contrast images were retrieved from phantoms, incorporating noise filtering to improve the low-count images encountered when imaging dynamics using short exposures.

  18. A Multimodal Data Mining Framework for Revealing Common Sources of Spam Images

    Directory of Open Access Journals (Sweden)

    Chengcui Zhang

    2009-10-01

    Full Text Available This paper proposes a multimodal framework that clusters spam images so that ones from the same spam source/cluster are grouped together. By identifying the common sources of spam images, we can provide evidence in tracking spam gangs. For this purpose, text recognition and visual feature extraction are performed. Subsequently, a two-level clustering method is applied where images with visually similar illustrations are first grouped together. Then the clustering result from the first level is further refined using the textual clues (if applicable contained in spam images. Our experimental results show the effectiveness of the proposed framework.

  19. A Latent Source Model for Patch-Based Image Segmentation.

    Science.gov (United States)

    Chen, George H; Shah, Devavrat; Golland, Polina

    2015-10-01

    Despite the popularity and empirical success of patch-based nearest-neighbor and weighted majority voting approaches to medical image segmentation, there has been no theoretical development on when, why, and how well these nonparametric methods work. We bridge this gap by providing a theoretical performance guarantee for nearest-neighbor and weighted majority voting segmentation under a new probabilistic model for patch-based image segmentation. Our analysis relies on a new local property for how similar nearby patches are, and fuses existing lines of work on modeling natural imagery patches and theory for nonparametric classification. We use the model to derive a new patch-based segmentation algorithm that iterates between inferring local label patches and merging these local segmentations to produce a globally consistent image segmentation. Many existing patch-based algorithms arise as special cases of the new algorithm.

  20. Imaging spectroscopic analysis at the Advanced Light Source

    Energy Technology Data Exchange (ETDEWEB)

    MacDowell, A. A.; Warwick, T.; Anders, S.; Lamble, G.M.; Martin, M.C.; McKinney, W.R.; Padmore, H.A.

    1999-05-12

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications.

  1. Straight to the Source: Detecting Aggregate Objects in Astronomical Images with Proper Error Control.

    Science.gov (United States)

    Friedenberg, David A; Genovese, Christopher R

    2013-07-01

    The next generation of telescopes, coming on-line in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few if any provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this paper, we propose a technique that is effective at source detection while providing rigorous control on source-wise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques.

  2. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  3. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  4. Source Camera Identification and Blind Tamper Detections for Images

    Science.gov (United States)

    2007-04-24

    sensor cleaning, through camera. In this context, the most promising approach is pro- swabbing, brushing, using compressed air , brings with it the... qualitly of the test image. The blurring operation purportedly measures).󈧎 and HOWS (higher order wavelet statistics). removes additive high

  5. Interferometry imaging for the evolving source in heavy ion collisions at HIRFL-CSR energy

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-Jie; M. J. Efaaf; ZHANG Wei-Ning

    2012-01-01

    Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in heavy ion collisions at HIRFL-CSR energy.The source evolution is described by the relativistic hydrodynamics in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and compared with the interferometry results obtained by the usual Gaussian formula fit.It is found that the firstorder source function moments can describe the source sizes.The ratio of the normalized standard deviation (O) to the first-order moment (R),(O)/(R),is sensitive to the shape of the source function.

  6. Development of a novel bacteriophage based biomagnetic separation method as an aid for sensitive detection of viable Escherichia coli.

    Science.gov (United States)

    Wang, Ziyuan; Wang, Danhui; Chen, Juhong; Sela, David A; Nugen, Sam R

    2016-02-01

    The application of bacteriophage combined with the use of magnetic separation techniques has emerged as a valuable tool for the sensitive identification and detection of bacteria. In this study, bacteriophage T7 labelled magnetic beads were developed for the detection of viable bacterial cells. Fusion of the biotin acceptor peptide (BAP) with the phage capsid protein gene and the insertion of the biotin ligase (BirA) gene enabled the display of the BAP ligand and the expression protein BirA during the replication cycle of phage infection. The replicated Escherichia coli specific bacteriophage was biotinylated in vivo and coated on magnetic beads via streptavidin-biotin interaction. Immobilization efficiency of the recombinant phage was investigated on magnetic beads and the phage-bead complex was evaluated by detecting E. coli from inoculated broth. When compared to the wild type phage, the recombinant phage T7birA-bap had a high immobilization density on streptavidin-coated magnetic beads and could capture 86.2% of E. coli cells from broth within 20 min. As this phage-based biomagnetic detection approach provided a low detection limit of 10(2) CFU mL(-1) without pre-enrichment, we believe this assay could be further developed to detect other bacteria of interest by applying host-specific phages. This would be of particular use in detecting bacteria which are difficult to grow or replicate slowly in culture.

  7. Construction of source positioning system in RALS with using I.I.-DR image

    Energy Technology Data Exchange (ETDEWEB)

    Minamoto, Takahiro; Oda, Masahiko; Nakae, Yasuo [Hyogo Coll. of Medicine, Nishinomiya (Japan). Hospital; Kamikonya, Norihiko; Nakao, Norio [Hyogo Coll. of Medicine, Nishinomiya (Japan)

    2003-03-01

    In the Remote After Loading System (RALS), the source position is reconstructed as a 3 dimensional position by X-ray catheter points on bi-plane X-ray films. There are several reconstruction methods. However, the geometrical accuracy of the source coordinate position is important to evaluate dose distribution in any case. Many institutions adopted a C-arm X-ray fluoroscopic system with a rotational mechanism due to the simplicity of handling. However, the image intensifier (I.I.)-digital radiography (DR) image by the C-arm system has image distortion that results from mechanical accuracy and fluorescence plane of I.I., and films are used to confirm the source position in RALS. Therefore, the RALS positioning system that corrected I.I. DR image distortion was reconstructed. RALS positioning system kept reconstruction accuracy of the source coordinate position within 1 mm and this system also realized simplification of work and shortening in treatment time. (author)

  8. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas;

    2014-01-01

    A model that combines image source modelling and acoustical radiosity with complex boundary con- ditions, thus including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Model (PARISM). It has been developed in order to be able...... to model both specular and diffuse reflections with complex-valued acoustical descriptions of the surfaces. This paper mainly describes the combination of the two models and the implementation of the angle dependent surface descriptions both in the image source model and in acoustical radiosity....... It furthermore describes how a pressure impulse response is obtained from the energy based radios- ity model. Validation of the image source model with real-valued boundary conditions is done by comparison with the analytical Green’s function in an enclosure. The full model is compared with measurements done...

  9. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  10. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  11. X-ray imaging detectors for synchrotron and XFEL sources

    Directory of Open Access Journals (Sweden)

    Takaki Hatsui

    2015-05-01

    Full Text Available Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  12. X-ray imaging detectors for synchrotron and XFEL sources.

    Science.gov (United States)

    Hatsui, Takaki; Graafsma, Heinz

    2015-05-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivity and high peak signal. Similar performance improvements are sought in monolithic detectors. The monolithic approach also offers a lower noise floor, which is required for the detection of soft X-ray photons. The link between technology development and detector performance is described briefly in the context of potential future capabilities for X-ray imaging detectors.

  13. Microfocus x-ray imaging of traceable pointlike {sup 22}Na sources for quality control

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, T.; Oda, K.; Sato, Y.; Ito, H.; Masuda, S.; Yamada, T.; Matsumoto, M.; Murayama, H.; Takei, H. [Allied Health Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan); Positron Medical Center, Tokyo Metropolitan Institute of Gerontology Sakaecho 35-2, Itabashi-ku, Tokyo 173-0015 (Japan); Advanced Industrial Science and Technology (AIST) Central 2, Umezono 1-1-1, Tsukuba-shi, Ibaraki 305-8568 (Japan); Kanagawa Industrial Technology Center (KITC) Shimoimazumi 705-1, Ebina-shi, Kanagawa 243-0435 (Japan); Japan Radioisotope Association (JRIA) Komagome 2-28-45, Bunkyo-ku, Tokyo 113-8941 (Japan); Molecular Imaging Center, National Institute of Radiological Sciences Anagawa 4-9-1, Inage, Chiba 263-8555 (Japan); Graduate School of Medical Sciences, Kitasato University Kitasato 1-15-1, Minami-ku, Sagamihara-shi, Kanagawa 252-0373 (Japan)

    2012-07-15

    Purpose: The purpose of this study is to propose a microfocus x-ray imaging technique for observing the internal structure of small radioactive sources and evaluating geometrical errors quantitatively, and to apply this technique to traceable pointlike {sup 22}Na sources, which were designed for positron emission tomography calibration, for the purpose of quality control of the pointlike sources. Methods: A microfocus x-ray imaging system with a focus size of 0.001 mm was used to obtain projection x-ray images and x-ray CT images of five pointlike source samples, which were manufactured during 2009-2012. The obtained projection and tomographic images were used to observe the internal structure and evaluate geometrical errors quantitatively. Monte Carlo simulation was used to evaluate the effect of possible geometrical errors on the intensity and uniformity of 0.511 MeV annihilation photon pairs emitted from the sources. Results: Geometrical errors were evaluated with sufficient precision using projection x-ray images. CT images were used for observing the internal structure intuitively. As a result, four of the five examined samples were within the tolerance to maintain the total uncertainty below {+-}0.5%, given the source radioactivity; however, one sample was found to be defective. Conclusions: This quality control procedure is crucial and offers an important basis for using the pointlike {sup 22}Na source as a basic calibration tool. The microfocus x-ray imaging approach is a promising technique for visual and quantitative evaluation of the internal geometry of small radioactive sources.

  14. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  15. [Application of weighted minimum-norm estimation with Tikhonov regularization for neuromagnetic source imaging].

    Science.gov (United States)

    Hu, Jing; Hu, Jie; Wang, Yuanmei

    2003-03-01

    In magnetoencepholography(MEG) inverse research, according to the point source model and distributed source model, the neuromagnetic source reconstruction methods are classified as parametric current dipole localization and nonparametric source imaging (or current density reconstruction). MEG source imaging technique can be formulated as an inherent ill-posed and highly underdetermined linear inverse problem. In order to yield a robust and plausible neural current distribution image, various approaches have been proposed. Among those, the weighted minimum-norm estimation with Tikhonov regularization is a popular technique. The authors present a relatively overall theoretical framework Followed by a discussion of the development, several regularized minimum-norm algorithms have been described in detail, including the depth normalization, low resolution electromagnetic tomography(LORETA), focal underdetermined system solver(FOCUSS), selective minimum-norm(SMN). In addition, some other imaging methods, e.g., maximum entropy method(MEM), the method incorporating other brain functional information such as fMRI data and maximum a posteriori(MAP) method using Markov random field model, are explained as well. From the generalized point of view based on minimum-norm estimation with Tikhonov regularization, all these algorithms are aiming to resolve the tradeoff between fidelity to the measured data and the constraints assumptions about the neural source configuration such as anatomical and physiological information. In conclusion, almost all the source imaging approaches can be consistent with the regularized minimum-norm estimation to some extent.

  16. Rotating Modulation Imager for the Orphan Source Search Problem

    Science.gov (United States)

    2008-01-01

    31 2.2.3.7 Comparison of Universal Field to the Wilmore Far Field Model..... 32 2.2.3.8 RMC Response to Complex Source Geometries...12 2-3. A picture of the 1D transmission function used by Wilmore to describe the fate of a photon incident on a 1D...first model developed by Wilmore was selected because of its straightforward and systematic approach to developing the mask transmission function [Wil70

  17. Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Bingham, Philip R [ORNL

    2012-01-01

    Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the $10\\mu m$ range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of $1 \\mu m$ or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

  18. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  19. Correlation-based virtual source imaging in strongly scattering random media

    Science.gov (United States)

    Garnier, Josselin; Papanicolaou, George

    2012-07-01

    Array imaging in a strongly scattering medium is limited because coherent signals recorded at the array and coming from a reflector to be imaged are weak and dominated by incoherent signals coming from multiple scattering by the medium. If, however, an auxiliary passive array can be placed between the reflector to be imaged and the scattering medium then the cross correlations of the incoherent signals on this array can also be used to image the reflector. In this paper, we show both in the weakly scattering paraxial regime and in strongly scattering layered media that this cross-correlation approach produces images as if the medium between the sources and the passive array was homogeneous and the auxiliary passive array was an active one made up of both sources and receivers.

  20. Combining inter-source seismic interferometry and source-receiver interferometry for deep local imaging

    NARCIS (Netherlands)

    Liu, Y.; Arntsen, B.; Wapenaar, C.P.A.; Van der Neut, J.R.

    2014-01-01

    The virtual source method has been applied successfully to retrieve the impulse response between pairs of receivers in the subsurface. This method is further improved by an updown separation prior to the crosscorrelation to suppress the reflections from the overburden and the free surface. In a reve

  1. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging.

    Science.gov (United States)

    Loomis, E N; Grim, G P; Wilde, C; Wilson, D C; Morgan, G; Wilke, M; Tregillis, I; Merrill, F; Clark, D; Finch, J; Fittinghoff, D; Bower, D

    2010-10-01

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  2. A method for MREIT-based source imaging: simulation studies

    Science.gov (United States)

    Song, Yizhuang; Jeong, Woo Chul; Woo, Eung Je; Seo, Jin Keun

    2016-08-01

    This paper aims to provide a method for using magnetic resonance electrical impedance tomography (MREIT) to visualize local conductivity changes associated with evoked neuronal activities in the brain. MREIT is an MRI-based technique for conductivity mapping by probing the magnetic flux density induced by an externally injected current through surface electrodes. Since local conductivity changes resulting from evoked neural activities are very small (less than a few %), a major challenge is to acquire exogenous magnetic flux density data exceeding a certain noise level. Noting that the signal-to-noise ratio is proportional to the square root of the number of averages, it is important to reduce the data acquisition time to get more averages within a given total data collection time. The proposed method uses a sub-sampled k-space data set in the phase-encoding direction to significantly reduce the data acquisition time. Since the sub-sampled data violates the Nyquist criteria, we only get a nonlinearly wrapped version of the exogenous magnetic flux density data, which is insufficient for conductivity imaging. Taking advantage of the sparseness of the conductivity change, the proposed method detects local conductivity changes by estimating the time-change of the Laplacian of the nonlinearly wrapped data.

  3. Low-spatial-coherence broadband fiber source for speckle free imaging

    CERN Document Server

    Redding, Brandon; Mokan, Vadim; Seifert, Martin; Choma, Michael A; Cao, Hui

    2015-01-01

    We designed and demonstrate a fiber-based amplified spontaneous emission (ASE) source with low spatial coherence, low temporal coherence, and high power per mode. ASE is produced by optically pumping a large gain core multimode fiber while minimizing optical feedback to avoid lasing. The fiber ASE source provides 270 mW of continuous wave emission, centered at {\\lambda}=1055 nm with a full-width half-maximum bandwidth of 74 nm. The emission is distributed among as many as ~70 spatial modes, enabling efficient speckle suppression when combined with spectral compounding. Finally, we demonstrate speckle-free full field imaging using the fiber ASE source. The fiber ASE source provides a unique combination of high power per mode with both low spatial and low temporal coherence, making it an ideal source for full-field imaging and ranging applications.

  4. Low-spatial-coherence high-radiance broadband fiber source for speckle free imaging.

    Science.gov (United States)

    Redding, Brandon; Ahmadi, Peyman; Mokan, Vadim; Seifert, Martin; Choma, Michael A; Cao, Hui

    2015-10-15

    We design and demonstrate a fiber-based amplified spontaneous emission (ASE) source with low spatial coherence, low temporal coherence, and high power per mode. ASE is produced by optically pumping a large gain core multimode fiber while minimizing optical feedback to avoid lasing. The fiber ASE source provides 270 mW of continuous wave emission, centered at λ=1055  nm, with a full width at half-maximum bandwidth of 74 nm. The emission is distributed among as many as ∼70 spatial modes, enabling efficient speckle suppression when combined with spectral compounding. Finally, we demonstrate speckle-free full-field imaging using the fiber ASE source. The fiber ASE source provides a unique combination of high power per mode with both low spatial and low temporal coherence, making it an ideal source for full-field imaging and ranging applications.

  5. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    Directory of Open Access Journals (Sweden)

    Stephan Lau

    2016-05-01

    Full Text Available Magnetocardiography (MCG non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics.

  6. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    Energy Technology Data Exchange (ETDEWEB)

    Kilburn-Toppin, Fleur; Arthurs, Owen J.; Tasker, Angela D.; Set, Patricia A.K. [Addenbrooke' s Hospital, Cambridge University Teaching Hospitals NHS Foundation Trust, Department of Radiology, Box 219, Cambridge (United Kingdom)

    2013-07-15

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 {+-} 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 {+-} 43.7 s vs. 92.9 {+-} 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  7. IQM: an extensible and portable open source application for image and signal analysis in Java.

    Science.gov (United States)

    Kainz, Philipp; Mayrhofer-Reinhartshuber, Michael; Ahammer, Helmut

    2015-01-01

    Image and signal analysis applications are substantial in scientific research. Both open source and commercial packages provide a wide range of functions for image and signal analysis, which are sometimes supported very well by the communities in the corresponding fields. Commercial software packages have the major drawback of being expensive and having undisclosed source code, which hampers extending the functionality if there is no plugin interface or similar option available. However, both variants cannot cover all possible use cases and sometimes custom developments are unavoidable, requiring open source applications. In this paper we describe IQM, a completely free, portable and open source (GNU GPLv3) image and signal analysis application written in pure Java. IQM does not depend on any natively installed libraries and is therefore runnable out-of-the-box. Currently, a continuously growing repertoire of 50 image and 16 signal analysis algorithms is provided. The modular functional architecture based on the three-tier model is described along the most important functionality. Extensibility is achieved using operator plugins, and the development of more complex workflows is provided by a Groovy script interface to the JVM. We demonstrate IQM's image and signal processing capabilities in a proof-of-principle analysis and provide example implementations to illustrate the plugin framework and the scripting interface. IQM integrates with the popular ImageJ image processing software and is aiming at complementing functionality rather than competing with existing open source software. Machine learning can be integrated into more complex algorithms via the WEKA software package as well, enabling the development of transparent and robust methods for image and signal analysis.

  8. Blind source separation of ex-vivo aorta tissue multispectral images.

    Science.gov (United States)

    Galeano, July; Perez, Sandra; Montoya, Yonatan; Botina, Deivid; Garzón, Johnson

    2015-05-01

    Blind Source Separation methods (BSS) aim for the decomposition of a given signal in its main components or source signals. Those techniques have been widely used in the literature for the analysis of biomedical images, in order to extract the main components of an organ or tissue under study. The analysis of skin images for the extraction of melanin and hemoglobin is an example of the use of BSS. This paper presents a proof of concept of the use of source separation of ex-vivo aorta tissue multispectral Images. The images are acquired with an interference filter-based imaging system. The images are processed by means of two algorithms: Independent Components analysis and Non-negative Matrix Factorization. In both cases, it is possible to obtain maps that quantify the concentration of the main chromophores present in aortic tissue. Also, the algorithms allow for spectral absorbance of the main tissue components. Those spectral signatures were compared against the theoretical ones by using correlation coefficients. Those coefficients report values close to 0.9, which is a good estimator of the method's performance. Also, correlation coefficients lead to the identification of the concentration maps according to the evaluated chromophore. The results suggest that Multi/hyper-spectral systems together with image processing techniques is a potential tool for the analysis of cardiovascular tissue.

  9. Observation of image pair creation and annihilation from superluminal scattering sources

    CERN Document Server

    Clerici, Matteo; Warburton, Ryan E; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2015-01-01

    The invariance of the speed of light implies a series of consequences related to our perception of simultaneity and of time itself. Whilst these consequences are experimentally well studied for subluminal speeds, the kinematics of superluminal motion lack direct evidence. Using high temporal resolution imaging techniques, we demonstrate that if a source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backwards. If the source changes its speed, crossing the interface between sub- and super-luminal propagation, we observe image pair annihilation and creation. These results show that it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone.

  10. In situ image segmentation using the convexity of illumination distribution of the light sources.

    Science.gov (United States)

    Zhang, Li

    2008-10-01

    When separating objects from a background in an image, we often meet difficulties in obtaining the precise output due to the unclear edges of the objects, as well as the poor or nonuniform illumination. In order to solve this problem, this paper presents an in situ segmentation method which takes advantages of the distribution feature of illumination of light sources, rather than analyzing the image pixels themselves. After analyzing the convexity of illumination distribution (CID) of point and linear light sources, the paper makes use of the CID features to find pixels belonging to the background. Then some background pixels are selected as control points to reconstruct the image background by means of B-spline; finally, by subtracting the reconstructed background from the original image, global thresholding can be employed to make the final segmentation. Quantitative evaluation experiments are made to test the performance of the method.

  11. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  12. Tunable Ultrafast Photon Source and Imaging System for Studying Carrier Dynamics in Graphene Devices

    Science.gov (United States)

    2015-07-23

    Tunable ultrafast photon source and imaging system for studying carrier dynamics in graphene devices This project enabled the acquisition of a...and imaging system for studying carrier dynamics in graphene devices Report Title This project enabled the acquisition of a optical parametric...carrier dynamics in graphene devices As discussed below the focus of this DURIP project was on understanding the interaction between electrons, holes

  13. X-ray phase imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2013-04-22

    A novel approach for hard x-ray phase contrast imaging with a laboratory source is reported. The technique is based on total external reflection from the edge of a mirror, aligned to intercept only half of the incident beam. The mirror edge thus produces two beams. The refraction x-rays undergo when interacting with a sample placed before the mirror, causes relative intensity variations between direct and reflected beams. Quantitative phase contrast and pure absorption imaging are demonstrated using this method.

  14. A combination of the acoustic radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I.; Brunskog, Jonas; Jeong, Cheol-Ho;

    2012-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part....... The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... allows for a dynamic control of the image source production, so that no fixed maximum order is required....

  15. Subtraction of point sources from interferometric radio images through an algebraic forward modeling scheme

    CERN Document Server

    Bernardi, G; Ord, S M; Greenhill, L J; Pindor, B; Wayth, R B; Wyithe, J S B

    2010-01-01

    We present a method for subtracting point sources from interferometric radio images via forward modeling of the instrument response and involving an algebraic nonlinear minimization. The method is applied to simulated maps of the Murchison Wide-field Array but is generally useful in cases where only image data are available. After source subtraction, the residual maps have no statistical difference to the expected thermal noise distribution at all angular scales, indicating high effectiveness in the subtraction. Simulations indicate that the errors in recovering the source parameters decrease with increasing signal-to-noise ratio, which is consistent with the theoretical measurement errors. In applying the technique to simulated snapshot observations with the Murchison Wide-field Array, we found that all 101 sources present in the simulation were recovered with an average position error of 10 arcsec and an average flux density error of 0.15%. This led to a dynamic range increase of approximately 3 orders of m...

  16. Subwavelength imaging of sparse broadband sources surrounded by an open disordered medium from a single antenna

    CERN Document Server

    Li, Lianlin; Cui, Tie Jun

    2014-01-01

    In this letter we study the subwavelength imaging of sparse broadband sources inside a disordered medium by processing the data acquired by a single antenna. A mathematical model has been developed for solving such problem based on the idea of sparse reconstruction. We show that the strongly disordered medium can serves as an efficient apparatus for compressive measurement, which shifts the complexity of devising compressive sensing (CS) hardware from the design, fabrication and electronic control. The proposed method and associated results can find applications in several imaging disciplines, such as optics, THz, RF or ultrasound imaging.

  17. Imaging a spatially confined photoacoustic source defined by a distribution of plasmonic nanoparticles

    Science.gov (United States)

    Norton, Stephen J.; Vo-Dinh, Tuan

    2012-05-01

    This paper describes the use of plasmonic nanoparticles in photoacoustic imaging. When acoustic waves are generated by thermoacoustic expansion in the fluid medium surrounding a distribution of these particles and the acoustic signals are recorded over a planar aperture, a bandlimited image of this distribution can be reconstructed. It is shown that the accessible portion of the three-dimensional spatial Fourier transform of the unknown source distribution is a spherical shell in k-space, with the core representing missing low-frequency Fourier components of the source density. When the source arises from an isolated distribution of nanoparticles, the iterative Gerchberg-Papoulis procedure can be applied to recover the low-frequency Fourier components. It is shown that this version of the photoacoustic source reconstruction problem is well suited for the use of this procedure. In this way, the fidelity of the image of the photoacoustic-generated source defined by the particle concentration can be enhanced. The procedure is illustrated using simulated data derived from a hypothetical source distribution.

  18. Exploring the potentials and limitations of the time-reversal imaging of finite seismic sources

    Directory of Open Access Journals (Sweden)

    S. Kremers

    2011-06-01

    Full Text Available The characterisation of seismic sources with time-reversed wave fields is developing into a standard technique that has already been successful in numerous applications. While the time-reversal imaging of effective point sources is now well-understood, little work has been done to extend this technique to the study of finite rupture processes. This is despite the pronounced non-uniqueness in classic finite source inversions.

    The need to better constrain the details of finite rupture processes motivates the series of synthetic and real-data time reversal experiments described in this paper. We address questions concerning the quality of focussing in the source area, the localisation of the fault plane, the estimation of the slip distribution and the source complexity up to which time-reversal imaging can be applied successfully. The frequency band for the synthetic experiments is chosen such that it is comparable to the band usually employed for finite source inversion.

    Contrary to our expectations, we find that time-reversal imaging is useful only for effective point sources, where it yields good estimates of both the source location and the origin time. In the case of finite sources, however, the time-reversed field does not provide meaningful characterisations of the fault location and the rupture process. This result cannot be improved sufficiently with the help of different imaging fields, realistic modifications of the receiver geometry or weights applied to the time-reversed sources.

    The reasons for this failure are manifold. They include the choice of the frequency band, the incomplete recording of wave field information at the surface, the excitation of large-amplitude surface waves that deteriorate the depth resolution, the absence of a sink that should absorb energy radiated during the later stages of the rupture process, the invisibility of small slip and the neglect of prior information concerning the fault

  19. MULTI—SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    ZHAOShu-he; FENGXue-zhi; 等

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine(SVM),using high spatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4.Firstly,the new method is established by building a model of remote sensing image fusion based on SVM.Then by using SPIN-2 data and SPOT-4 data ,image classify-cation fusion in tested.Finally,and evaluation of the fusion result is made in two ways.1)From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4.And it is clearly that the texture of the fused image is distinctive.2)From quantitative analysis,the effect of classification fusion is better.As a whole ,the re-sult shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for applica-tion in remote sensing image fusion processes.

  20. MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine (SVM), using highspatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4. Firstly, the new method is established bybuilding a model of remote sensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classification fusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1 ) From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4. And it is clearly that the texture of thefused image is distinctive. 2) From quantitative analysis, the effect of classification fusion is better. As a whole, the result shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for application in remote sensing image fusion processes.

  1. Cortical surface alignment in multi-subject spatiotemporal independent EEG source imaging.

    Science.gov (United States)

    Tsai, Arthur C; Jung, Tzyy-Ping; Chien, Vincent S C; Savostyanov, Alexander N; Makeig, Scott

    2014-02-15

    Brain responses to stimulus presentations may vary widely across subjects in both time course and spatial origins. Multi-subject EEG source imaging studies that apply Independent Component Analysis (ICA) to data concatenated across subjects have overlooked the fact that projections to the scalp sensors from functionally equivalent cortical sources vary from subject to subject. This study demonstrates an approach to spatiotemporal independent component decomposition and alignment that spatially co-registers the MR-derived cortical topographies of individual subjects to a well-defined, shared spherical topology (Fischl et al., 1999). Its efficacy for identifying functionally equivalent EEG sources in multi-subject analysis is demonstrated by analyzing EEG and behavioral data from a stop-signal paradigm using two source-imaging approaches, both based on individual subject independent source decompositions. The first, two-stage approach uses temporal infomax ICA to separate each subject's data into temporally independent components (ICs), then estimates the source density distribution of each IC process from its scalp map and clusters similar sources across subjects (Makeig et al., 2002). The second approach, Electromagnetic Spatiotemporal Independent Component Analysis (EMSICA), combines ICA decomposition and source current density estimation of the artifact-rejected data into a single spatiotemporal ICA decomposition for each subject (Tsai et al., 2006), concurrently identifying both the spatial source distribution of each cortical source and its event-related dynamics. Applied to the stop-signal task data, both approaches gave IC clusters that separately accounted for EEG processes expected in stop-signal tasks, including pre/postcentral mu rhythms, anterior-cingulate theta rhythm, and right-inferior frontal responses, the EMSICA clusters exhibiting more tightly correlated source areas and time-frequency features.

  2. Medical imaging using a laser-wakefield driven x-ray source

    Science.gov (United States)

    Cole, Jason; Wood, Jonathan; Lopes, Nelson; Poder, Kristjan; Kamperidis, Christos; Alatabi, Saleh; Bryant, Jonathan; Kneip, Stefan; Mecseki, Katalin; Norris, Dominic; Teboul, Lydia; Westerburg, Henrik; Abel, Richard; Jin, Andi; Symes, Dan; Mangles, Stuart; Najmudin, Zulfikar

    2016-10-01

    Laser-wakefield accelerators driven by high-intensity laser pulses are a proven centimetre-scale source of GeV electron beams. One of the proposed uses for these accelerators is the driving of compact hard x-ray synchrotron light sources. Such sources have been shown to be bright, have small source size and high photon energy, and are therefore interesting for imaging applications. By doubling the focal length at the Astra-Gemini laser facility of the Rutherford Appleton Laboratory, UK, we have significantly improved the average betatron x-ray flux compared to previous experiments. This fact, coupled to the stability of the radiation source, facilitated the acquisition of full 3D tomograms of hard bone tissue and soft mouse neonates, the latter requiring the recording of over 500 successive radiographs. Such multimodal performance is unprecedented in the betatron field and indicates the usefulness of these sources in clinical imaging applications, scalable to very high photon flux without compromising source size or photon energy.

  3. A Simulation and Experimental Study on Equivalent Dipole Layer Imaging of Brain Electric Sources

    Science.gov (United States)

    2007-11-02

    to the scalp potentials. Human experiments were further conducted to examine the feasibility of EDLI. Pattern reversal visual evoked potentials ( VEP ...were recorded from 94 electrodes and the brain electric sources at P100 were estimated. The VEP experiments demonstrate that the present EDLI can...Keywords: forward problem, inverse problem, equivalent dipole layer imaging, VEP I. INTRODUCTION Although conventional EEG offers excellent

  4. eSlide suite: an open source software system for whole slide imaging.

    Science.gov (United States)

    Della Mea, V; Bortolotti, N; Beltrami, C A

    2009-08-01

    This short report briefly describes the principles underlying the telepathology technique known as whole slide imaging, and the design and implementation of a system for acquisition and visualisation of digital slides. The developed system, including an acquisition module and a visualisation module, is available as an open source on the Internet, together with sample acquired slides.

  5. Probabilistic M/EEG source imaging from sparse spatio-temporal event structure

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Wipf, David

    While MEG and EEG source imaging methods have to tackle a severely ill-posed problem their success can be stated as their ability to constrain the solutions using appropriate priors. In this paper we propose a hierarchical Bayesian model facilitating spatio-temporal patterns through the use of bo...

  6. Single particle imaging with soft x-rays at the Linac Coherent Light Source

    Science.gov (United States)

    Martin, Andrew V.; Andreasson, Jakob; Aquila, Andrew; Bajt, Saša; Barends, Thomas R. M.; Barthelmess, Miriam; Barty, Anton; Benner, W. Henry; Bostedt, Christoph; Bozek, John D.; Bucksbaum, Phillip; Caleman, Carl; Coppola, Nicola; DePonte, Daniel P.; Ekeberg, Tomas; Epp, Sascha W.; Erk, Benjamin; Farquar, George R.; Fleckenstein, Holger; Foucar, Lutz; Frank, Matthias; Gumprecht, Lars; Hampton, Christina Y.; Hantke, Max; Hartmann, Andreas; Hartmann, Elisabeth; Hartmann, Robert; Hau-Riege, Stephan P.; Hauser, Günther; Holl, Peter; Hoemke, André; Jönsson, Olof; Kassemeyer, Stephan; Kimmel, Nils; Kiskinova, Maya; Krasniqi, Faton; Krzywinski, Jacek; Liang, Mengning; Loh, Ne-Te Duane; Lomb, Lukas; Maia, Filipe R. N. C.; Marchesini, Stefano; Messerschmidt, Marc; Nass, Karol; Odic, Duško; Pedersoli, Emanuele; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schmidt, Carlo; Schultz, Joachim; Seibert, M. Marvin; Shoeman, Robert L.; Sierra, Raymond G.; Soltau, Heike; Starodub, Dmitri; Steinbrener, Jan; Stellato, Francesco; Strüder, Lothar; Svenda, Martin; Tobias, Herbert; Ullrich, Joachim; Weidenspointner, Georg; Westphal, Daniel; White, Thomas A.; Williams, Garth; Hajdu, Janos; Schlichting, Ilme; Bogan, Michael J.; Chapman, Henry N.

    2011-06-01

    Results of coherent diffractive imaging experiments performed with soft X-rays (1-2 keV) at the Linac Coherent Light Source are presented. Both organic and inorganic nano-sized objects were injected into the XFEL beam as an aerosol focused with an aerodynamic lens. The high intensity and femtosecond duration of X-ray pulses produced by the Linac Coherent Light Source allow structural information to be recorded by X-ray diffraction before the particle is destroyed. Images were formed by using iterative methods to phase single shot diffraction patterns. Strategies for improving the reconstruction methods have been developed. This technique opens up exciting opportunities for biological imaging, allowing structure determination without freezing, staining or crystallization.

  7. Imaging an Event Horizon: Mitigation of Source Variability of Sagittarius A*

    CERN Document Server

    Lu, Ru-Sen; Fish, Vincent L; Shiokawa, Hotaka; Doeleman, Sheperd S; Gammie, Charles F; Falcke, Heino; Krichbaum, Thomas P; Zensus, J Anton

    2015-01-01

    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits vari- ability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we d...

  8. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  9. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ

    Science.gov (United States)

    Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas

    2016-03-01

    Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses.

  10. Application of synchrotron source based DEI method in guinea pig cochleae imaging

    Institute of Scientific and Technical Information of China (English)

    YIN Hongxia; LIU Bo; GAO Xin; GAO Xiulai; LUO Shuqian

    2007-01-01

    Hard X-ray diffraction enhanced imaging (DEI), which is based on a synchrotron source and monochromator-analyzercrystal system, is an effective method for imaging X-ray phase shift. Utilizing an analyzer crystal with high angular sensitivity of micro-radian, DEI can measure the transmitted, refracted and scattered X-rays when projecting onto a sample. It dramatically improves the contrast and spatial resolution of the resultant images. At the topography station of Beijing Synchrotron Radiation Facilities (BSRF), we implemented DEI method in guinea pig cochleae imaging and acquired a series of DEI images. Based on these images, the apparent absorption and refraction images were calculated. The DEI images revealed the holistic spiral structures and inner details of guinea pig cochleae clearly, even including the structures at the cellular level, such as the static cilia of hairy cells and the limbus of Hansen cell. Due to the advanrages of high contrast, high spatial resolution and distinct edge-enhanced effect, DEI method promises extensive applications in biology,medicine and clinic in the near future.

  11. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    Science.gov (United States)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-12-01

    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  12. Spectro-refractometry of individual microscopic objects using swept-source quantitative phase imaging.

    Science.gov (United States)

    Jung, Jae-Hwang; Jang, Jaeduck; Park, Yongkeun

    2013-11-05

    We present a novel spectroscopic quantitative phase imaging technique with a wavelength swept-source, referred to as swept-source diffraction phase microscopy (ssDPM), for quantifying the optical dispersion of microscopic individual samples. Employing the swept-source and the principle of common-path interferometry, ssDPM measures the multispectral full-field quantitative phase imaging and spectroscopic microrefractometry of transparent microscopic samples in the visible spectrum with a wavelength range of 450-750 nm and a spectral resolution of less than 8 nm. With unprecedented precision and sensitivity, we demonstrate the quantitative spectroscopic microrefractometry of individual polystyrene beads, 30% bovine serum albumin solution, and healthy human red blood cells.

  13. IMAGING AN EVENT HORIZON: MITIGATION OF SOURCE VARIABILITY OF SAGITTARIUS A*

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ru-Sen; Fish, Vincent L.; Doeleman, Sheperd S. [Massachusetts Institute of Technology, Haystack Observatory, Route 40, Westford, MA 01886 (United States); Roelofs, Freek; Falcke, Heino [Department of Astrophysics, Institute for Mathematics, Astrophysics and Particle Physics, Radboud University, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Shiokawa, Hotaka; Gammie, Charles F. [Astronomy Department, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Krichbaum, Thomas P.; Zensus, J. Anton, E-mail: rslu@mpifr-bonn.mpg.de [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2016-02-01

    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity (GR) in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits variability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we demonstrate that an image of the average quiescent emission, featuring the characteristic black hole shadow and photon ring predicted by GR, can nonetheless be obtained by observing over multiple days and subsequent processing of the visibilities (scaling, averaging, and smoothing) before imaging. Moreover, it is shown that this procedure can be combined with an existing method to mitigate the effects of interstellar scattering. Taken together, these techniques allow the black hole shadow in the Galactic center to be recovered on the reconstructed image.

  14. Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion

    Institute of Scientific and Technical Information of China (English)

    Liu Xing; Hu Guangdao; Qiu Yubao

    2003-01-01

    The geological data are constructed in vector format in geographical information system(GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.

  15. Simulation of an IXS imaging analyzer with an extended scattering source

    Energy Technology Data Exchange (ETDEWEB)

    Suvorov, Alexey [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II; Cai, Yong Q. [Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source II

    2016-09-15

    A concept of an inelastic x-ray scattering (IXS) spectrograph with an imaging analyzer was proposed recently and discussed in a number of publications (see e.g. Ref.1). The imaging analyzer as proposed combines x-ray lenses with highly dispersive crystal optics. It allows conversion of the x-ray energy spectrum into a spatial image with very high energy resolution. However, the presented theoretical analysis of the spectrograph did not take into account details of the scattered radiation source, i.e. sample, and its impact on the spectrograph performance. Using numerical simulations we investigated the influence of the finite sample thickness, the scattering angle and the incident energy detuning on the analyzer image and the ultimate resolution.

  16. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics.

    Science.gov (United States)

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-11

    Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements.

  17. A Novel Light Source Design for Spectral Tuning in Biomedical Imaging

    CERN Document Server

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01

    We propose a novel architecture with a remote phosphor based modular and compact light source in a non-contact dermoscope prototype for skin cancer screening. The spectrum and color temperature of the output light can easily and significantly be changed depending on spectral absorption characteristics of the tissues being imaged. The new system has several advantages compared to state-of-the-art phosphor converted ultra-bright white LEDs, used in a wide range of medical imaging devices, which have a fixed spectrum and color temperature at a given operating point. In particular, the system can more easily be adapted to the requirements originating from different tissues in the human body which have wavelength dependent absorption and reflectivity. This leads to improved contrast for different kinds of imaged tissue components. The concept of such a lighting architecture can be vastly utilized in many other medical imaging devices including endoscopic systems.

  18. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  19. Observation of image pair creation and annihilation from superluminal scattering sources.

    Science.gov (United States)

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena.

  20. Temporal Unmixing of Dynamic Fluorescent Images by Blind Source Separation Method with a Convex Framework

    Directory of Open Access Journals (Sweden)

    Duofang Chen

    2015-01-01

    Full Text Available By recording a time series of tomographic images, dynamic fluorescence molecular tomography (FMT allows exploring perfusion, biodistribution, and pharmacokinetics of labeled substances in vivo. Usually, dynamic tomographic images are first reconstructed frame by frame, and then unmixing based on principle component analysis (PCA or independent component analysis (ICA is performed to detect and visualize functional structures with different kinetic patterns. PCA and ICA assume sources are statistically uncorrelated or independent and don’t perform well when correlated sources are present. In this paper, we deduce the relationship between the measured imaging data and the kinetic patterns and present a temporal unmixing approach, which is based on nonnegative blind source separation (BSS method with a convex analysis framework to separate the measured data. The presented method requires no assumption on source independence or zero correlations. Several numerical simulations and phantom experiments are conducted to investigate the performance of the proposed temporal unmixing method. The results indicate that it is feasible to unmix the measured data before the tomographic reconstruction and the BSS based method provides better unmixing quality compared with PCA and ICA.

  1. Source-channel optimized trellis codes for bitonal image transmission over AWGN channels.

    Science.gov (United States)

    Kroll, J M; Phamdo, N

    1999-01-01

    We consider the design of trellis codes for transmission of binary images over additive white Gaussian noise (AWGN) channels. We first model the image as a binary asymmetric Markov source (BAMS) and then design source-channel optimized (SCO) trellis codes for the BAMS and AWGN channel. The SCO codes are shown to be superior to Ungerboeck's codes by approximately 1.1 dB (64-state code, 10(-5) bit error probability), We also show that a simple "mapping conversion" method can be used to improve the performance of Ungerboeck's codes by approximately 0.4 dB (also 64-state code and 10 (-5) bit error probability). We compare the proposed SCO system with a traditional tandem system consisting of a Huffman code, a convolutional code, an interleaver, and an Ungerboeck trellis code. The SCO system significantly outperforms the tandem system. Finally, using a facsimile image, we compare the image quality of an SCO code, an Ungerboeck code, and the tandem code, The SCO code yields the best reconstructed image quality at 4-5 dB channel SNR.

  2. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  3. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Science.gov (United States)

    Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-05-01

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50% when imaging with iodine-125, and up to 25% when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30%, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50%) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the use of resolution

  4. THE Q/U IMAGING EXPERIMENT: POLARIZATION MEASUREMENTS OF RADIO SOURCES AT 43 AND 95 GHz

    Energy Technology Data Exchange (ETDEWEB)

    Huffenberger, K. M. [Department of Physics, Florida State University, P.O. Box 3064350, Tallahassee, FL 32306-4350 (United States); Araujo, D.; Zwart, J. T. L. [Department of Physics and Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Bischoff, C.; Buder, I. [Kavli Institute for Cosmological Physics, Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637 (United States); Chinone, Y.; Hasegawa, M. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Cleary, K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, 1200 E. California Blvd M/C 249-17, Pasadena, CA 91125 (United States); Kusaka, A. [Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Monsalve, R. [School of Earth and Space Exploration, Arizona State University, 781 E. Terrace Road, Tempe, AZ 85287 (United States); Næss, S. K. [Department of Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Newburgh, L. B. [Dunlap Institute, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4 (Canada); Reeves, R. [CePIA, Departamento de Astronomía, Universidad de Concepción (Chile); Ruud, T. M.; Eriksen, H. K. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Wehus, I. K.; Gaier, T. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Dickinson, C. [Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Gundersen, J. O., E-mail: huffenbe@physics.fsu.edu [Department of Physics, University of Miami, 1320 Campo Sano Drive, Coral Gables, FL 33146 (United States); Collaboration: QUIET Collaboration; and others

    2015-06-10

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ∼480 such sources within QUIET’s four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps.

  5. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn;

    2016-01-01

    BACKGROUND: Clinical application of deformable registration (DIR) of medical images remains limited due to sparse validation of DIR methods in specific situations, e. g. in case of cancer recurrences. In this study the accuracy of DIR for registration of planning CT (pCT) and recurrence CT (r...... manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. METHODS: pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR...

  6. Spectral-domain and swept-source OCT imaging of asteroid hyalosis: a case report.

    Science.gov (United States)

    Alasil, Tarek; Adhi, Mehreen; Liu, Jonathan J; Fujimoto, James G; Duker, Jay S; Baumal, Caroline R

    2014-01-01

    A 72-year-old man with diabetes was referred to the retina clinic for diabetic retinopathy. Detailed funduscopic examination of the left eye was limited by prominent asteroid hyalosis. Spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) were utilized to examine the vitreous, vitreoretinal interface, and the morphology of the retina. Asteroid hyalosis induced artifacts of the OCT images, which resolved when the appropriate imaging protocols were applied. SS-OCT may show superior diagnostic and preoperative capabilities when compared to SD-OCT in the settings of asteroid hyalosis-induced media opacity.

  7. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  8. Regulatory compliance requirements for an open source electronic image trial management system.

    Science.gov (United States)

    Rhodes, Colin; Moore, Steve; Clark, Ken; Maffitt, David; Perry, John; Handzel, Toni; Prior, Fred

    2010-01-01

    There is a global need for software to manage imaging based clinical trials to speed basic research and drug development. Such a system must comply with regulatory requirements. The U.S. Food and Drug Administration (FDA) has regulations regarding software development process controls and data provenance tracking. A key unanswered problem is the identification of which data changes are significant given a workflow model for image trial management. We report on the results of our study of provenance tracking requirements and define an architecture and software development process that meets U.S. regulatory requirements using open source software components.

  9. A Transformative Imaging Capability Using Laser Driven Multi MeV Photon Sources

    Science.gov (United States)

    Gautier, Donald; Espy, Michelle; Palaniyappan, Sasi; Mendez, Jacob; Nelson, Ronald; Hunter, James; Fernandez, Juan; los alamos national laboratory Team

    2016-10-01

    Recent results from the LANL Trident Laser demonstrate the practical use of a laser of this class ( 70 J, 600 fs) as a multi MeV photon source. The utilization of novel targets operating in the relativistic transparency regime of laser-plasmas has enabled this development. The electron population made from these targets, when coupled to a suitable high-Z converter foil placed near the laser target, produces an intense >1 MeV photon source with a small source size compared to conventional sources. When coupled with efficient imaging detectors, this laser-driven hard x-ray source provides new capabilities to address current non-destructive and dynamic testing problems that require a quantum jump in resolution. ``Flash'' (pulse picosecond) photon imaging, micro-focus resolution enhancement, good object penetration, and magnification (4x) with sufficient dose (>10 Rad/sr) for practical application have all been demonstrated at the LANL Trident Laser, as summarized in this presentation.

  10. Neutron imaging with coded sources: new challenges and the implementation of a simultaneous iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Bingham, Philip R [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK)

    2013-01-01

    The limitations in neutron flux and resolution (L/D) of current neutron imaging systems can be addressed with a Coded Source Imaging system with magnification (xCSI). More precisely, the multiple sources in an xCSI system can exceed the flux of a single pinhole system for several orders of magnitude, while maintaining a higher L/D with the small sources. Moreover, designing for an xCSI system reduces noise from neutron scattering, because the object is placed away from the detector to achieve magnification. However, xCSI systems are adversely affected by correlated noise such as non-uniform illumination of the neutron source, incorrect sampling of the coded radiograph, misalignment of the coded masks, mask transparency, and the imperfection of the system Point Spread Function (PSF). We argue that a model-based reconstruction algorithm can overcome these problems and describe the implementation of a Simultaneous Iterative Reconstruction Technique algorithm for coded sources. Design pitfalls that preclude a satisfactory reconstruction are documented.

  11. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.

    Science.gov (United States)

    Hennig, Holger; Rees, Paul; Blasi, Thomas; Kamentsky, Lee; Hung, Jane; Dao, David; Carpenter, Anne E; Filby, Andrew

    2017-01-01

    Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological samples. However, data analysis is often performed in a highly manual and subjective manner using very limited image analysis techniques in combination with conventional flow cytometry gating strategies. This approach is not scalable to the hundreds of available image-based features per cell and thus makes use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we describe a pipeline using open-source software that leverages the rich information in digital imagery using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing hundreds of morphological features to be measured. This high-dimensional data can then be analysed using cutting-edge machine learning and clustering approaches using "user-friendly" platforms such as CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types, cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This workflow should enable the scientific community to leverage the full analytical power of IFC-derived data sets. It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden to the human eye that include subtle measured differences in label free detection channels such as bright-field and dark-field imagery.

  12. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-12-01

    Seismic waves are used to study the Earth, exploit its hydrocarbon resources, and understand its hazards. Extracting information from seismic waves about the Earth’s subsurface, however, is becoming more challenging as our questions become more complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full-waveform inversion. In the first part of this dissertation, I describe a method where the recorded seismic data are used to image subsurface heterogeneities like fault planes. This method, denoted as natural migration of backscattered surface waves, provides higher resolution images for near-surface faults that is complementary to surface-wave tomography images. Our proposed method differ from contemporary methods in that it does not (1) require a velocity model of the earth, (2) assumes weak scattering, or (3) have a high computational cost. This method is applied to ambient noise recorded by the US-Array to map regional faults across the American continent. Natural migration can be formulated as a least-squares inversion to furtherer enhance the resolution and the quality of the fault images. This inversion is applied to ambient noise recorded in Long Beach, California to reveal a matrix of shallow subsurface faults. The second part of this dissertation describes a convergent full waveform inversion method for controlled source data. A controlled source excites waves that scatter from subsurface reflectors. The scattered waves are recorded by a large array of geophones. These recorded waves can be inverted for a high-resolution image of the subsurface by FWI, which is typically convergent for transmitted arrivals but often does not converge for deep reflected events. I propose a preconditioning approach that extends the ability of FWI to image deep parts of the velocity model, which

  13. Measurement of effective source distribution and its importance for quantitative interpretation of STEM images

    Energy Technology Data Exchange (ETDEWEB)

    Dwyer, C., E-mail: christian.dwyer@mcem.monash.edu.au [Monash Centre for Electron Microscopy, and Department of Materials Engineering, Monash University, Victoria 3800 (Australia); Erni, R. [Electron Microscopy Center, Swiss Federal Laboratories for Materials Testing and Research, CH-8600 Duebendorf (Switzerland); Etheridge, J. [Monash Centre for Electron Microscopy, and Department of Materials Engineering, Monash University, Victoria 3800 (Australia)

    2010-07-15

    We review the manner in which lens aberrations, partial spatial coherence, and partial temporal coherence affect the formation of a sub-A electron probe in an aberration-corrected transmission electron microscope. Simulations are used to examine the effect of each of these factors on a STEM image. It is found that the effects of partial spatial coherence (resulting from finite effective source size) are dominant, while the effects of residual lens aberrations and partial temporal coherence produce only subtle changes from an ideal image. We also review the way in which partial spatial and temporal coherence effects are manifest in a Ronchigram. Finally, we provide a demonstration of the Ronchigram method for measuring the effective source distribution in a probe aberration-corrected 300 kV field-emission gun transmission electron microscope.

  14. The Image-Guided Surgery ToolKit IGSTK: an open source C++ software toolkit

    Science.gov (United States)

    Cheng, Peng; Ibanez, Luis; Gobbi, David; Gary, Kevin; Aylward, Stephen; Jomier, Julien; Enquobahrie, Andinet; Zhang, Hui; Kim, Hee-su; Blake, M. Brian; Cleary, Kevin

    2007-03-01

    The Image-Guided Surgery Toolkit (IGSTK) is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. The focus of the toolkit is on robustness using a state machine architecture. This paper presents an overview of the project based on a recent book which can be downloaded from igstk.org. The paper includes an introduction to open source projects, a discussion of our software development process and the best practices that were developed, and an overview of requirements. The paper also presents the architecture framework and main components. This presentation is followed by a discussion of the state machine model that was incorporated and the associated rationale. The paper concludes with an example application.

  15. Spot size measurement of a flash-radiography source using the pinhole imaging method

    Science.gov (United States)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong

    2016-07-01

    The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  16. Spot size measurement of flash-radiography source utilizing the pinhole imaging method

    CERN Document Server

    Wang, Yi; Chen, Nan; Cheng, Jinming; Xie, Yutong; Liu, Yulong; Long, Quanhong

    2015-01-01

    The spot size of the x-ray source is a key parameter of a flash-radiography facility, which is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam is tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  17. Progressive Source Channel Embedded Coding of Image Over Static (Memory Less Channel

    Directory of Open Access Journals (Sweden)

    Anil L.Wanare

    2009-06-01

    Full Text Available In this paper, we proposed a progressive time varying source channel coding system for transmitting image over wireless channels. Transmission of compressed image data over noisy channel is an important problem and has been investigated in a variety of scenarios. the core results obtained by a systematic method of instantaneous rate allocation between the progressive source coder and progressive channel coder .It is developed by closed form ofexpression for end-to-end distortion , rate allocation respectively in static channels. It is extended the static result to an algorithm for fading channels. It is introduced set DCT (blocks approach is adapted to perform sub band decomposition followed by SPIHT (Setpartitioning in Hierarchical tree

  18. Theoretical and computational methods for the noninvasive detection of gastric electrical source coupling.

    Science.gov (United States)

    Irimia, Andrei; Bradshaw, L Alan

    2004-05-01

    The ability to study the pathology of the stomach noninvasively from magnetic field measurements is important due to the significant practical advantages offered by noninvasive methods over other techniques of investigation. The inverse biomagnetic problem can play a central role in this process due to the information that inverse solutions can yield concerning the characteristics of the gastric electrical activity (GEA). To analyze gastrointestinal (GI) magnetic fields noninvasively, we have developed a computer implementation of a least-squares minimization algorithm that obtains numerical solutions to the biomagnetic inverse problem for the stomach. In this paper, we show how electric current propagation and the mechanical coupling of gastric smooth muscle cells during electrical control activity can be studied using such solutions. To validate our model, two types of numerical simulations of the GEA were developed and successfully used to demonstrate the ability of our computer algorithm to detect and accurately analyze these two phenomena. We also describe our analysis of experimental, noninvasively acquired gastric biomagnetic data as well as the information of interest that our numerical method can yield in clinical studies. Most importantly, we present experimental evidence that the coupling of gastric electrical sources can be observed using noninvasive techniques of measurement, in our case with the use of a superconducting quantum interference device magnetometer. We discuss the relevance and implications of our achievement to the future of GI research.

  19. Dual-source computed tomography in patients with acute chest pain: feasibility and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schertler, Thomas; Scheffel, Hans; Frauenfelder, Thomas; Desbiolles, Lotus; Leschka, Sebastian; Stolzmann, Paul; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Department of Medical Radiology, Institute of Diagnostic Radiology, Zurich (Switzerland); Seifert, Burkhardt [University of Zurich, Department of Biostatistics, Zurich (Switzerland); Flohr, Thomas G. [Computed Tomography CTE PA, Siemens Medical Solutions, Forchheim (Germany)

    2007-12-15

    The aim of this study was to determine the feasibility and image quality of dual-source computed tomography angiography (DSCTA) in patients with acute chest pain for the assessment of the lung, thoracic aorta, and for pulmonary and coronary arteries. Sixty consecutive patients (32 female, 28 male, mean age 58.1{+-}16.3 years) with acute chest pain underwent contrast-enhanced electrocardiography-gated DSCTA without prior beta-blocker administration. Vessel attenuation of different thoracic vascular territories was measured, and image quality was semi-quantitatively analyzed by two independent readers. Image quality of the thoracic aorta was diagnostic in all 60 patients, image quality of pulmonary arteries was diagnostic in 59, and image quality of coronary arteries was diagnostic in 58 patients. Pairwise intraindividual comparisons of attenuation values were small and ranged between 1{+-}6 HU comparing right and left coronary artery and 56{+-}9 HU comparing the pulmonary trunk and left ventricle. Mean attenuation was 291{+-}65 HU in the ascending aorta, 334{+-}93 HU in the pulmonary trunk, and 285{+-}66 HU and 268{+-}67 HU in the right and left coronary artery, respectively. DSCTA is feasible and provides diagnostic image quality of the thoracic aorta, pulmonary and coronary arteries in patients with acute chest pain. (orig.)

  20. Dental image source sex cyst%牙源性囊肿的影像表现

    Institute of Scientific and Technical Information of China (English)

    李时光

    2015-01-01

    目的 探讨牙源性囊肿的影像表现,对牙源性囊肿的影像表现的临床鉴别诊断价值.方法 选取我院2011~2014年收治的牙源性囊肿患者55例,并且对牙源性囊肿的影像进行回顾性分析,并与手术病理结果对比.结果 24例颌骨牙源性囊性病变中,牙源性角化囊肿6例,特点是单房囊性病变,囊内的密度呈不均匀状呈现;非角化囊肿14例,表现呈现为颌骨内出现囊肿,且边界清晰,密度均匀;造釉细胞瘤4例,表现为囊内密度分布不那么均匀,而且会对周围的组织造成侵害.结论 颌骨牙源性囊性的CT颌骨牙源性囊肿病症不同的CT呈现形式,效果比X线明显要好,是检测颌骨牙源性囊肿的重要依据.%ObjectiveDental image source sex cyst, images of tooth source sex cyst clinical value in differential diagnosis.methods In our hospital from 2011 to 2014, to select the independent of 55 patients with tooth source sex cyst, and images of tooth source sex cyst were retrospectively analyzed, and compared with surgical pathology results.Results 24 cases of jaw teeth source sex cystic lesion, the teeth of source sex keratocysts, 6 cases of these teeth source sex keratocysts features a single room with a cystic lesion, the density is uneven in the sac present; 14 cases of non keratocysts, not the performance of the keratin cysts appear to occur within a jaw cyst, and the boundary is clear, uniform density; Ameloblastoma 4 cases, the symptoms of ameloblastoma is experience less uniform density distribution inside the capsule, and will cause infringement to the surrounding tissue.Conclusion Jaw cystic CT jaw teeth tooth origin source sex cyst disease different CT presentation styles, it is better than X-ray effect, is the important basis of source sex cyst jaw teeth.

  1. APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES

    OpenAIRE

    M. Pierrot Deseilligny; I. Clery

    2012-01-01

    IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist) than people. APERO uses bo...

  2. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Directory of Open Access Journals (Sweden)

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  3. Fast X-ray imaging at beamline I13L at Diamond Light Source

    Science.gov (United States)

    De Fanis, A.; Pešić, Z. D.; Wagner, U.; Rau, C.

    2013-03-01

    The imaging branch of the dual-branch beamline I13L at Diamond Light Source has been operational since April 2012. This branch is dedicated to hard X-ray imaging (in-line phase contrast radiography and tomography, and full-field microscopy), with energies in the ranges 6-30keV. At present we aim to achieve spatial resolution of the order of 1 μm over a field of view of l-20mm2. This branch aims to excel at imaging experiment of fast dynamic processes, where it is of interest to have short exposure times and high frame rates. To accommodate for this, we prepared for the beamline to operate with "pink" beam to provide higher flux, an efficient detection system, and rapid data acquisition, transfer, and saving to storage. This contributed paper describes the present situation and illustrate the author's goal for the mid-future.

  4. Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source

    CERN Document Server

    Rupp, Daniela; Langbehn, Bruno; Sauppe, Mario; Zimmermann, Julian; Ovcharenko, Yevheniy; Möller, Thomas; Frassetto, Fabio; Poletto, Luca; Trabattoni, Andrea; Calegari, Francesca; Nisoli, Mauro; Sander, Katharina; Peltz, Christian; Vrakking, Marc J J; Fennel, Thomas; Rouzée, Arnaud

    2016-01-01

    Coherent diffractive imaging of individual free nanoparticles has opened novel routes for the in-situ analysis of their transient structural, optical, and electronic properties. So far, single-particle diffraction was assumed to be feasible only at extreme ultraviolet (XUV) and X-ray free-electron lasers, restricting this research field to large-scale facilities. Here we demonstrate single-shot imaging of isolated helium nanodroplets using XUV pulses from a femtosecond-laser driven high harmonic source. We obtain bright scattering patterns that provide access to the nanostructure's optical parameters. Moreover, the wide-angle scattering data enable us to uniquely identify hitherto unresolved prolate shapes of superfluid helium droplets. Our results mark the advent of single-shot gas-phase nanoscopy with lab-based short-wavelength pulses and pave the way to ultrafast coherent diffractive imaging with phase-controlled multicolor fields and attosecond pulses.

  5. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    CERN Document Server

    Men'shchikov, Alexander

    2016-01-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. The major source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, such mass estimates are uncertain. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow us to assess the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting image intensities gives more accurate masses for more resolved objects than the method o...

  6. Comparison of Open Source Compression Algorithms on Vhr Remote Sensing Images for Efficient Storage Hierarchy

    Science.gov (United States)

    Akoguz, A.; Bozkurt, S.; Gozutok, A. A.; Alp, G.; Turan, E. G.; Bogaz, M.; Kent, S.

    2016-06-01

    High resolution level in satellite imagery came with its fundamental problem as big amount of telemetry data which is to be stored after the downlink operation. Moreover, later the post-processing and image enhancement steps after the image is acquired, the file sizes increase even more and then it gets a lot harder to store and consume much more time to transmit the data from one source to another; hence, it should be taken into account that to save even more space with file compression of the raw and various levels of processed data is a necessity for archiving stations to save more space. Lossless data compression algorithms that will be examined in this study aim to provide compression without any loss of data holding spectral information. Within this objective, well-known open source programs supporting related compression algorithms have been implemented on processed GeoTIFF images of Airbus Defence & Spaces SPOT 6 & 7 satellites having 1.5 m. of GSD, which were acquired and stored by ITU Center for Satellite Communications and Remote Sensing (ITU CSCRS), with the algorithms Lempel-Ziv-Welch (LZW), Lempel-Ziv-Markov chain Algorithm (LZMA & LZMA2), Lempel-Ziv-Oberhumer (LZO), Deflate & Deflate 64, Prediction by Partial Matching (PPMd or PPM2), Burrows-Wheeler Transform (BWT) in order to observe compression performances of these algorithms over sample datasets in terms of how much of the image data can be compressed by ensuring lossless compression.

  7. High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT

    Science.gov (United States)

    Fechtig, Daniel J.; Kumar, Abhishek; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-03-01

    MHz OCT allows mitigating undesired influence of motion artifacts during retinal assessment, but comes in state-of-the-art point scanning OCT at the price of increased system complexity. By changing the paradigm from scanning to parallel OCT for in vivo retinal imaging the three-dimensional (3D) acquisition time is reduced without a trade-off between speed, sensitivity and technological requirements. Furthermore, the intrinsic phase stability allows for applying digital refocusing methods increasing the in-focus imaging depth range. Line field parallel interferometric imaging (LPSI) is utilizing a commercially available swept source, a single-axis galvo-scanner and a line scan camera for recording 3D data with up to 1MHz A-scan rate. Besides line-focus illumination and parallel detection, we mitigate the necessity for high-speed sensor and laser technology by holographic full-range imaging, which allows for increasing the imaging speed by low sampling of the optical spectrum. High B-scan rates up to 1kHz further allow for implementation of lable-free optical angiography in 3D by calculating the inter B-scan speckle variance. We achieve a detection sensitivity of 93.5 (96.5) dB at an equivalent A-scan rate of 1 (0.6) MHz and present 3D in vivo retinal structural and functional imaging utilizing digital refocusing. Our results demonstrate for the first time competitive imaging sensitivity, resolution and speed with a parallel OCT modality. LPSI is in fact currently the fastest OCT device applied to retinal imaging and operating at a central wavelength window around 800 nm with a detection sensitivity of higher than 93.5 dB.

  8. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  9. OsiriX: an open-source software for navigating in multidimensional DICOM images.

    Science.gov (United States)

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-09-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix.

  10. A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging

    Science.gov (United States)

    Hartmann, Sébastien; Elsäßer, Wolfgang

    2017-02-01

    Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications.

  11. A novel semiconductor-based, fully incoherent amplified spontaneous emission light source for ghost imaging

    Science.gov (United States)

    Hartmann, Sébastien; Elsäßer, Wolfgang

    2017-01-01

    Initially, ghost imaging (GI) was demonstrated with entangled light from parametric down conversion. Later, classical light sources were introduced with the development of thermal light GI concepts. State-of-the-art classical GI light sources rely either on complex combinations of coherent light with spatially randomizing optical elements or on incoherent lamps with monochromating optics, however suffering strong losses of efficiency and directionality. Here, a broad-area superluminescent diode is proposed as a new light source for classical ghost imaging. The coherence behavior of this spectrally broadband emitting opto-electronic light source is investigated in detail. An interferometric two-photon detection technique is exploited in order to resolve the ultra-short correlation timescales. We thereby quantify the coherence time, the photon statistics as well as the number of spatial modes unveiling a complete incoherent light behavior. With a one-dimensional proof-of-principle GI experiment, we introduce these compact emitters to the field which could be beneficial for high-speed GI systems as well as for long range GI sensing in future applications. PMID:28150737

  12. Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object

    CERN Document Server

    Pursiainen, Sampsa

    2016-01-01

    This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...

  13. Thermal imager sources of non-uniformities: modeling of static and dynamic contributions during operations

    Science.gov (United States)

    Sozzi, B.; Olivieri, M.; Mariani, P.; Giunti, C.; Zatti, S.; Porta, A.

    2014-05-01

    Due to the fast-growing of cooled detector sensitivity in the last years, on the image 10-20 mK temperature difference between adjacent objects can theoretically be discerned if the calibration algorithm (NUC) is capable to take into account and compensate every spatial noise source. To predict how the NUC algorithm is strong in all working condition, the modeling of the flux impinging on the detector becomes a challenge to control and improve the quality of a properly calibrated image in all scene/ambient conditions including every source of spurious signal. In literature there are just available papers dealing with NU caused by pixel-to-pixel differences of detector parameters and by the difference between the reflection of the detector cold part and the housing at the operative temperature. These models don't explain the effects on the NUC results due to vignetting, dynamic sources out and inside the FOV, reflected contributions from hot spots inside the housing (for example thermal reference far of the optical path). We propose a mathematical model in which: 1) detector and system (opto-mechanical configuration and scene) are considered separated and represented by two independent transfer functions 2) on every pixel of the array the amount of photonic signal coming from different spurious sources are considered to evaluate the effect on residual spatial noise due to dynamic operative conditions. This article also contains simulation results showing how this model can be used to predict the amount of spatial noise.

  14. K-edge digital subtraction imaging with dichromatic x-ray sources: SNR and dose studies

    Science.gov (United States)

    Sarnelli, A.; Elleaume, H.; Taibi, A.; Gambaccini, M.; Bravin, A.

    2006-09-01

    The aim of the present work is to analytically evaluate the signal to noise ratio (SNR) and the delivered dose in K-edge digital subtraction imaging (KES) using two types of x-ray sources: a monochromatic x-ray source (available at synchrotron radiation facilities and considered as gold standard) and a quasi-monochromatic compact source. The energy separation ΔE between the two monochromatic beams is 1 keV and 4 keV for the two sources, respectively. The evaluation has been performed for both radiography and computed tomography. Different geometries have been studied to mimic clinical situations. In mammography, a pathology perfused by a contrast agent has been modelled; in angiography, a vessel superimposed to a ventricle or a stand-alone artery stenosis has been studied. The SNR and the skin dose have been calculated as a function of the detail diameter, the contrast agent (iodine and gadolinium), and its concentration in the tissues. Results show that for ΔE = 4 keV a slightly higher delivered dose is required to obtain the same SNR with respect to ΔE < 1 keV. A similar study has been performed for KES-CT. Computer simulations of CT images performed with Snark software are shown to validate the analytical calculations.

  15. Nanoscale displacement of the image of an atomic source of radiation

    Institute of Scientific and Technical Information of China (English)

    Xin Li; Jie Shu; Henk F. Arnoldus

    2009-01-01

    Light emitted by an atomic source of radiation appears to travel along a straight line (ray) from the location of the source to the observer in the far field. However, when the energy flow pattern of the radiation is resolved with an accuracy better than an optical wavelength, it turns out that the field lines are usually curved. We consider electric dipole radiation, a prime example of which is the radiation emitted by an atom during an electronic transition, and we show that the field lines of energy flow are in general curves. Near the location of the dipole, the field lines exhibit a vortex structure, and in the far field they approach a straight line. The spatial extension of the vortex in the optical near field is of nanoscale dimension. Due to the rotation of the field lines near the source, the asymptotic limit of a field line is not exactly in the radially outward direction and as a consequence, the image in the far field is slightly shifted. This sub-wavelength displacement of the image of the source should be amenable to experimental observation with contemporary nanoscale-precision techniques.

  16. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    CERN Document Server

    Huffenberger, K M; Bischoff, C; Buder, I; Chinone, Y; Cleary, K; Kusaka, A; Monsalve, R; Næss, S K; Newburgh, L B; Reeves, R; Ruud, T M; Wehus, I K; Zwart, J T L; Dickinson, C; Eriksen, H K; Gaier, T; Gundersen, J O; Hasegawa, M; Hazumi, M; Miller, A D; Radford, S J E; Readhead, A C S; Staggs, S T; Tajima, O; Thompson, K L

    2014-01-01

    We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $\\sim$480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30--40 mJy per Stokes parameter. At S/N $> 3$ significance, we detect linear polarization for seven sources in Q-band and six in W-band; only $1.3 \\pm 1.1$ detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization meas...

  17. The first VLBI image of an infrared-faint radio source

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  18. The first VLBI image of an Infrared-Faint Radio Source

    CERN Document Server

    Middelberg, E; Tingay, S; Mao, M Y; Phillips, C J; Hotan, A W

    2008-01-01

    Context: To investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  19. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Science.gov (United States)

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets.

  20. Design of Programmable LED Controller with a Variable Current Source for 3D Image Display

    Directory of Open Access Journals (Sweden)

    Kyung-Ryang Lee

    2014-12-01

    Full Text Available Conventional fluorescent light sources, as well as incandescent light sources are gradually being replaced by Light Emitting Diodes (LEDs for reducing power consumption in the image display area for multimedia application. An LED light source requires a controller with a low-power operation. In this paper, a low-power technique using adiabatic operation is applied for the implementation of LED controller with a stable constant-current, a low-power and low-heat function. From the simulation result, the power consumption of the proposed LED controller using adiabatic operation was reduced to about 87% in comparison with conventional operation with a constant VDD. The proposed circuit is expected to be an alternative LED controller which is sensitive to external conditions such as heat.

  1. Elasticity estimates from images of crawling waves generated by miniature surface sources.

    Science.gov (United States)

    Partin, Alexander; Hah, Zaegyoo; Barry, Christopher T; Rubens, Deborah J; Parker, Kevin J

    2014-04-01

    We describe a surface-based approach to the generation of shear wave interference patterns, called crawling waves (CrW), within a medium and derive local estimates of biomechanical properties of tissue. In previous experiments, elongated bars operating as vibration sources were used to generate CrW propagation in samples. In the present study, however, a pair of miniature circular vibration sources was applied to the overlying skin to generate the CrW within the medium. The shape and position of the miniature sources make this configuration more applicable for in vivo implementation. A modified ultrasound imaging system is used to display the CrW propagation. A shear speed mapping algorithm is developed using a detailed analysis of the CrW. The proposed setup is applied to several biomaterials including a homogeneous phantom, an inhomogeneous phantom and an ex vivo human liver. The data are analyzed using the mapping algorithm to reveal the biomechanical properties of the biomaterials.

  2. OCT imaging with temporal dispersion induced intense and short coherence laser source

    Science.gov (United States)

    Manna, Suman K.; le Gall, Stephen; Li, Guoqiang

    2016-10-01

    Lower coherence length and higher intensity are two indispensable requirements on the light source for high resolution and large penetration depth OCT imaging. While tremendous interest is being paid on engineering various laser sources to enlarge their bandwidth and hence lowering the coherence length, here we demonstrate another approach by employing strong temporal dispersion onto the existing laser source. Cholesteric liquid crystal (CLC) cells with suitable dispersive slope at the edge of 1-D organic photonic band gap have been designed to provide maximum reduction in coherence volume while maintaining the intensity higher than 50%. As an example, the coherence length of a multimode He-Ne laser is reduced by more than 730 times.

  3. Electromagnetic, complex image model of a large area RF resonant antenna as inductive plasma source

    Science.gov (United States)

    Guittienne, Ph; Jacquier, R.; Howling, A. A.; Furno, I.

    2017-03-01

    A large area antenna generates a plasma by both inductive and capacitive coupling; it is an electromagnetically coupled plasma source. In this work, experiments on a large area planar RF antenna source are interpreted in terms of a multi-conductor transmission line coupled to the plasma. This electromagnetic treatment includes mutual inductive coupling using the complex image method, and capacitive matrix coupling between all elements of the resonant network and the plasma. The model reproduces antenna input impedance measurements, with and without plasma, on a 1.2× 1.2 m2 antenna used for large area plasma processing. Analytic expressions are given, and results are obtained by computation of the matrix solution. This method could be used to design planar inductive sources in general, by applying the termination impedances appropriate to each antenna type.

  4. Development of advanced signal processing and source imaging methods for superparamagnetic relaxometry

    Science.gov (United States)

    Huang, Ming-Xiong; Anderson, Bill; Huang, Charles W.; Kunde, Gerd J.; Vreeland, Erika C.; Huang, Jeffrey W.; Matlashov, Andrei N.; Karaulanov, Todor; Nettles, Christopher P.; Gomez, Andrew; Minser, Kayla; Weldon, Caroline; Paciotti, Giulio; Harsh, Michael; Lee, Roland R.; Flynn, Edward R.

    2017-02-01

    Superparamagnetic relaxometry (SPMR) is a highly sensitive technique for the in vivo detection of tumor cells and may improve early stage detection of cancers. SPMR employs superparamagnetic iron oxide nanoparticles (SPION). After a brief magnetizing pulse is used to align the SPION, SPMR measures the time decay of SPION using super-conducting quantum interference device (SQUID) sensors. Substantial research has been carried out in developing the SQUID hardware and in improving the properties of the SPION. However, little research has been done in the pre-processing of sensor signals and post-processing source modeling in SPMR. In the present study, we illustrate new pre-processing tools that were developed to: (1) remove trials contaminated with artifacts, (2) evaluate and ensure that a single decay process associated with bounded SPION exists in the data, (3) automatically detect and correct flux jumps, and (4) accurately fit the sensor signals with different decay models. Furthermore, we developed an automated approach based on multi-start dipole imaging technique to obtain the locations and magnitudes of multiple magnetic sources, without initial guesses from the users. A regularization process was implemented to solve the ambiguity issue related to the SPMR source variables. A procedure based on reduced chi-square cost-function was introduced to objectively obtain the adequate number of dipoles that describe the data. The new pre-processing tools and multi-start source imaging approach have been successfully evaluated using phantom data. In conclusion, these tools and multi-start source modeling approach substantially enhance the accuracy and sensitivity in detecting and localizing sources from the SPMR signals. Furthermore, multi-start approach with regularization provided robust and accurate solutions for a poor SNR condition similar to the SPMR detection sensitivity in the order of 1000 cells. We believe such algorithms will help establishing the industrial

  5. Separation of image-distortion sources and magnetic-field measurement in scanning electron microscope (SEM).

    Science.gov (United States)

    Płuska, Mariusz; Czerwinski, Andrzej; Ratajczak, Jacek; Katcki, Jerzy; Oskwarek, Lukasz; Rak, Remigiusz

    2009-01-01

    The electron-microscope image distortion generated by electromagnetic interference (EMI) is an important problem for accurate imaging in scanning electron microscopy (SEM). Available commercial solutions to this problem utilize sophisticated hardware for EMI detection and compensation. Their efficiency depends on the complexity of distortions influence on SEM system. Selection of a proper method for reduction of the distortions is crucial. The current investigations allowed for a separation of the distortions impact on several components of SEM system. A sum of signals from distortion sources causes wavy deformations of specimen shapes in SEM images. The separation of various reasons of the distortion is based on measurements of the periodic deformations of the images for different electron beam energies and working distances between the microscope final aperture and the specimen. Using the SEM images, a direct influence of alternating magnetic field on the electron beam was distinguished. Distortions of electric signals in the scanning block of SEM were also separated. The presented method separates the direct magnetic field influence on the electron beam below the SEM final aperture (in the chamber) from its influence above this aperture (in the electron column). It also allows for the measurement of magnetic field present inside the SEM chamber. The current investigations gave practical guidelines for selecting the most efficient solution for reduction of the distortions.

  6. Assessment of image quality of 64-row Dual Source versus Single Source CT coronary angiography on heart rate: A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Dikkers, R. [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: r.dikkers@rad.umcg.nl; Greuter, M.J.W. [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: m.j.w.greuter@rad.umcg.nl; Kristanto, W. [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: w.kristanto@rad.umcg.nl; Ooijen, P.M.A. van [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: p.m.a.van.ooyen@rad.umcg.nl; Sijens, P.E. [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: p.e.sijens@rad.umcg.nl; Willems, T.P. [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: t.p.willems@rad.umcg.nl; Oudkerk, M. [Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, P.O. Box 30001, 9700 RB Groningen (Netherlands)], E-mail: m.oudkerk@rad.umcg.nl

    2009-04-15

    Purpose: To assess the influence of temporal resolution on image quality of computed tomographic (CT) coronary angiography by comparing 64-row Dual Source CT (DSCT) and Single Source CT (SSCT) at different heart rates. Methods: An anthropomorphic moving heart phantom was scanned at rest, and at 50 beats per minute (bpm) up to 110 bpm, with intervals of 10 bpm. 3D volume rendered images and curved multi-planar reconstructions (MPRs) were acquired and image quality of the coronary arteries was rated on a 5-points scale (1 = poor image quality with many artefacts, 5 = excellent image quality) for each heart rate and each scanner by 3 observers. Paired sample t-test and Wilcoxon Signed Ranks test were used to assess clinically relevant differences between both modalities. Results: The mean image quality scores at 70, 100 and 110 bpm were significantly higher for DSCT compared to SSCT. The overall mean image quality scores for DSCT (4.2 {+-} 0.6) and SSCT (3.0 {+-} 1.1) also differed significantly (p < 0.001). Conclusion: These initial results show a clinically relevant overall higher image quality for DSCT compared to SSCT, especially at heart rates of 70, 100 and 110 bpm. With its comparatively high image quality and low radiation dose, DSCT appears to be the method of choice in CT coronary angiography at heart rates above 70 bpm.

  7. Advances in Mineral Dust Source Composition Measurement with Imaging Spectroscopy at the Salton Sea, CA

    Science.gov (United States)

    Green, R. O.; Realmuto, V. J.; Thompson, D. R.; Mahowald, N. M.; Pérez García-Pando, C.; Miller, R. L.; Clark, R. N.; Swayze, G. A.; Okin, G. S.

    2015-12-01

    Mineral dust emitted from the Earth's surface is a principal contributor to direct radiative forcing over the arid regions, where shifts in climate have a significant impact on agriculture, precipitation, and desert encroachment around the globe. Dust particles contribute to both positive and negative forcing, depending on the composition of the particles. Particle composition is a function of the surface mineralogy of dust source regions, but poor knowledge of surface mineralogy on regional to global scales limits the skill of Earth System models to predict shifts in regional climate around the globe. Earth System models include the source, emission, transport and deposition phases of the dust cycle. In addition to direct radiative forcing contributions, mineral dust impacts include indirect radiative forcing, modification of the albedo and melting rates of snow and ice, kinetics of tropospheric photochemistry, formation and deposition of acidic aerosols, supply of nutrients to aquatic and terrestrial ecosystems, and impact on human health and safety. We demonstrate the ability to map mineral dust source composition in the Salton Sea dust source region with imaging spectroscopy measurements acquired as part of the NASA HyspIRI preparatory airborne campaign. These new spectroscopically derived compositional measurements provide a six orders of magnitude improvement over current atlases for this dust source region and provide a pathfinder example for a remote measurement approach to address this critical dust composition gap for global Earth System models.

  8. Self characterization of a coded aperture array for neutron source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Volegov, P. L., E-mail: volegov@lanl.gov; Danly, C. R.; Guler, N.; Merrill, F. E.; Wilde, C. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N. [Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-12-15

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF.

  9. Imaging Spectroscopy on Preflare Coronal Nonthermal Sources Associated with the 2002 July 23 Flare

    CERN Document Server

    Asai, Ayumi; Shimojo, Masumi; Yokoyama, Takaaki; Masuda, Satoshi; Krucker, Sam

    2009-01-01

    We present a detailed examination on the coronal nonthermal emissions during the preflare phase of the X4.8 flare that occurred on 2002 July 23. The microwave (17 GHz and 34 GHz) data obtained with Nobeyama Radioheliograph, at Nobeyama Solar Radio Observatory and the hard X-ray (HXR) data taken with {\\it Reuven Ramaty High Energy Solar Spectroscopic Imager} obviously showed nonthermal sources that are located above the flare loops during the preflare phase. We performed imaging spectroscopic analyses on the nonthermal emission sources both in microwaves and in HXRs, and confirmed that electrons are accelerated from several tens of keV to more than 1 MeV even in this phase. If we assume the thin-target model for the HXR emission source, the derived electron spectral indices ($\\sim 4.7$) is the same value as that from microwaves ($\\sim 4.7$) within the observational uncertainties, which implies that the distribution of the accelerated electrons follows a single power-law. The number density of the microwave-emi...

  10. Hydrogeophysical imaging of deposit heterogeneity and groundwater chemistry changes during DNAPL source zone bioremediation

    Science.gov (United States)

    Chambers, J. E.; Wilkinson, P. B.; Wealthall, G. P.; Loke, M. H.; Dearden, R.; Wilson, R.; Allen, D.; Ogilvy, R. D.

    2010-10-01

    Robust characterization and monitoring of dense nonaqueous phase liquid (DNAPL) source zones is essential for designing effective remediation strategies, and for assessing the efficacy of treatment. In this study high-resolution cross-hole electrical resistivity tomography (ERT) was evaluated as a means of monitoring a field-scale in-situ bioremediation experiment, in which emulsified vegetable oil (EVO) electron donor was injected into a trichloroethene source zone. Baseline ERT scans delineated the geometry of the interface between the contaminated alluvial aquifer and the underlying mudstone bedrock, and also the extent of drilling-induced physical heterogeneity. Time-lapse ERT images revealed major preferential flow pathways in the source and plume zones, which were corroborated by multiple lines of evidence, including geochemical monitoring and hydraulic testing using high density multilevel sampler arrays within the geophysical imaging planes. These pathways were shown to control the spatial distribution of the injected EVO, and a bicarbonate buffer introduced into the cell for pH control. Resistivity signatures were observed within the preferential flow pathways that were consistent with elevated chloride levels, providing tentative evidence from ERT of the biodegradation of chlorinated solvents.

  11. Imaging source process of earthquakes from back-projection of high frequency seismograms

    Science.gov (United States)

    Pulido, N.

    2007-12-01

    Standard methodologies for calculation of the earthquakes source process, are based on inversion procedures which require the calculation of complete source-stations Greens functions. On the other hand alternative procedures have been developed in order to directly retrieve an image of the rupture process from high frequency seismograms (Spudich et. al. 1984, Kao and Shan 2004, Ishii et. al. 2005). In this study we extend the Isochron- Backprojection methodology (Festa et al., 2006), to image the source process of earthquakes, by incorporating the use of high frequency seismograms around the source area. We take full advantage of the dense strong motion networks available in Japan to model the source process of recent Japanese earthquakes. The IBM method differs from conventional earthquake source inversion approaches, in that the calculation of Green's functions is not required. The idea of the procedure is to directly back-project amplitudes of seismograms envelopes around the source into a space image of the earthquake rupture (Pulido et al. 2007). The method requires the calculation of theoretical travel times between a set of grids points distributed across the fault plane, and every station. For this purpose and for simplicity we assume a multi-layered 1D model. All travel times are adjusted by a station correction factor, calculated by taking the difference between observed and theoretical travel times at each station. Next we calculate the rupture time of every grid within the fault plane by assuming some arbitrary constant rupture velocity value, and obtain the isochrones distribution across the fault plane by adding subfaults rupture times and the corresponding travel times for every station. We select waveforms that have clear P and S wavelets, which means stations located approximately between 40 km and 100km from the epicenter. We extract P-wave windows between the origin time of the earthquake and the theoretical arrival of the S-wave, and taper 1s of

  12. Laserspray ionization imaging of multiply charged ions using a commercial vacuum MALDI ion source.

    Science.gov (United States)

    Inutan, Ellen D; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-11-06

    This is the first report of imaging mass spectrometry (MS) from multiply charged ions at vacuum. Laserspray ionization (LSI) was recently extended to applications at vacuum producing electrospray ionization-like multiply charged ions directly from surfaces using a commercial intermediate pressure matrix-assisted laser desorption/ionization ion mobility spectrometry (IMS) MS instrument. Here, we developed a strategy to image multiply charged peptide ions. This is achieved by the use of 2-nitrophloroglucinol as matrix for spray deposition onto the tissue section and implementation of "soft" acquisition conditions including lower laser power and ion accelerating voltages similar to electrospray ionization-like conditions. Sufficient ion abundance is generated by the vacuum LSI method to employ IMS separation in imaging multiply charged ions obtained on a commercial mass spectrometer ion source without physical instrument modifications using the laser in the commercially available reflection geometry alignment. IMS gas-phase separation reduces the complexity of the ion signal from the tissue, especially for multiply charged relative to abundant singly charged ions from tissue lipids. We show examples of LSI tissue imaging from charge state +2 of three endogenous peptides consisting of between 1 and 16 amino acid residues from the acetylated N-terminal end of myelin basic protein: mass-to-charge (m/z) 795.81 (+2) molecular weight (MW) 1589.6, m/z 831.35 (+2) MW 1660.7, and m/z 917.40 (+2) MW 1832.8.

  13. Algorithm for unmanned aerial vehicle aerial different-source image matching

    Science.gov (United States)

    Zuo, Yujia; Liu, Jinghong; Yang, Mingyu; Wang, Xuan; Sun, Mingchao

    2016-12-01

    The fusion between visible and infrared images captured by unmanned aerial vehicles (UAVs), both complementary to each other, can improve the reliability of target detection and recognition and other tasks. The images captured by UAV are featured by high dynamics and complex air-ground target background. Pixel-level matching should be conducted for the two different-source images, prior to their fusion. Therefore, an improved matching algorithm has been proposed that combines the improved Shi-Tomasi algorithm with the shape context (SC)-based algorithm. First, the Shi-Tomasi algorithm is employed to conduct feature-point detection in the scale space. The tangential direction of the edge contour where the feature-point lies is taken as its main direction, so as to guarantee the algorithm's rotational invariance. Then, this paper conducts the block description for the extracted feature-point within the n×n neighborhood of its edge contour to obtain its descriptors. Finally, a fast library for approximate nearest neighbors matching algorithm is adopted to match all the feature-points. And the experimental results show that, in the scene where the shape of the main target is clear, the algorithm can achieve better matching and registration results for infrared and visible images that have been transformed through rotation, translation, or zooming.

  14. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-03-01

    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  15. OPEN SOURCE IMAGE-PROCESSING TOOLS FOR LOW-COST UAV-BASED LANDSLIDE INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    U. Niethammer

    2012-09-01

    Full Text Available In recent years, the application of unmanned aerial vehicles (UAVs has become more common and the availability of lightweight digital cameras has enabled UAV-systems to represent affordable and practical remote sensing platforms, allowing flexible and high- resolution remote sensing investigations. In the course of numerous UAV-based remote sensing campaigns significant numbers of airborne photographs of two different landslides have been acquired. These images were used for ortho-mosaic and digital terrain model (DTM generation, thus allowing for high-resolution landslide monitoring. Several new open source image- and DTM- processing tools are now providing a complete remote sensing working cycle with the use of no commercial hard- or software.

  16. Imaging of local temperature distributions in mesas of high-Tc superconducting terahertz sources

    Science.gov (United States)

    Tsujimoto, M.; Kambara, H.; Maeda, Y.; Yoshioka, Y.; Nakagawa, Y.; Kakeya, I.

    2014-12-01

    Stacks of intrinsic Josephson junctions in high-Tc superconductors are a promising source of intense, continuous, and monochromatic terahertz waves. In this paer, we establish a fluorescence-based temperature imaging system to directly image the surface temperature on a Bi2Sr2CaCu2O8+δ mesa sample. Intense terahertz emissions are observed in both high- and low-bias regimes, where the mesa voltage satisfies the cavity resonance condition. In the high- bias regime, the temperature distributions are shown to be inhomogeneous with a considerable temperature rise. In contrast, in the low-bias regime, the distributions are rather uniform and the local temperature is close to the bath temperature over the entire sample.

  17. Comparing a phased combination of acoustical radiosity and the image source method with other simulation tools

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho;

    2015-01-01

    A phased combination of acoustical radiosity and the image source method (PARISM) has been developed in order to be able to model both specular and diffuse reflections with angle-dependent and complex-valued acoustical descriptions of the surfaces. It is of great interest to model both specular...... and diffuse reflections when simulating the acoustics of small rooms with non-diffuse sound fields, since scattering from walls add to the diffuseness in the room. This room type is often seen in class rooms and offices, as they are often small rectangular rooms with most of the absorption placed...

  18. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    OpenAIRE

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried...

  19. Refined Satellite Image Orientation in the Free Open-Source Photogrammetric Tools Apero/micmac

    Science.gov (United States)

    Rupnik, E.; Pierrot Deseilligny, M.; Delorme, A.; Klinger, Y.

    2016-06-01

    This publication presents the RPC-based bundle adjustment implemented in the freeware open-source photogrammetric tool Apero/MicMac. The bundle adjustment model is based on some polynomial correction functions, enriched with a physical constraint that introduces the notion of a global sensor rotation into the model. The devised algorithms are evaluated against two datasets consisting of two stereo and a triplet pair of the Pleiades images. Two sets of correction functions and a number of GCPs configurations are examined. The obtained geo-referencing accuracy falls below the size of 1GSD.

  20. Strategies for Imaging Faint Extended Sources in the Near-Infrared

    CERN Document Server

    Vaduvescu, O; Vaduvescu, Ovidiu; Call, Marshall L. Mc

    2004-01-01

    Quantitative information about variations in the background at J and K' are presented and used to develop guidelines for the acquisition and reduction of ground-based images of faint extended sources in the near-infrared, especially those which occupy a significant fraction of the field of view of a detector or which are located in areas crowded with foreground or background sources. Findings are based primarily upon data acquired over three photometric nights with the 3.6x3.6 arcmin CFHT-IR array on the Canada-France-Hawaii Telescope atop Mauna Kea. Although some results are specific to CFHT, overall conclusions should be useful in guiding observing and reduction strategies of extended objects elsewhere.

  1. Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury

    Science.gov (United States)

    Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael

    2008-01-01

    Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.

  2. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  3. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    Science.gov (United States)

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-08-18

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  4. Deep hard X-ray source counts from a fluctuation analysis of ASCA SIS images

    CERN Document Server

    Gendreau, K C; Fabian, A C

    1997-01-01

    An analysis of the spatial fluctuations in 15 deep ASCA SIS0 images has been conducted in order to probe the 2-10 keV X-ray source counts down to a flux limit 2E-14 erg/cm2/s. Special care has been taken in modelling the fluctuations in terms of the sensitivity maps of every one of the 16 regions (5.6 x 5.6 arcmin2 each) in which the SIS0 has been divided, by means of raytracing simulations with improved optical constants in the X-ray telescope. The very extended `side lobes' (extending up to a couple of degrees) exhibited by these sensitivity maps make our analysis sensitive to both faint on-axis sources and brighter off-axis ones, the former being dominant. The source counts in the range (2-12)E-14 erg/cm2/s are found to be close to a euclidean form which extrapolates well to previous results from higher fluxes and in reasonable agreement with some recent ASCA surveys. However, our results disagree with the deep survey counts by Georgantopoulos et al. (1997). The possibility that the source counts flatten t...

  5. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  6. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  7. Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization

    Science.gov (United States)

    Tuia, Devis; Marcos, Diego; Camps-Valls, Gustau

    2016-10-01

    Remote sensing image classification exploiting multiple sensors is a very challenging problem: data from different modalities are affected by spectral distortions and mis-alignments of all kinds, and this hampers re-using models built for one image to be used successfully in other scenes. In order to adapt and transfer models across image acquisitions, one must be able to cope with datasets that are not co-registered, acquired under different illumination and atmospheric conditions, by different sensors, and with scarce ground references. Traditionally, methods based on histogram matching have been used. However, they fail when densities have very different shapes or when there is no corresponding band to be matched between the images. An alternative builds upon manifold alignment. Manifold alignment performs a multidimensional relative normalization of the data prior to product generation that can cope with data of different dimensionality (e.g. different number of bands) and possibly unpaired examples. Aligning data distributions is an appealing strategy, since it allows to provide data spaces that are more similar to each other, regardless of the subsequent use of the transformed data. In this paper, we study a methodology that aligns data from different domains in a nonlinear way through kernelization. We introduce the Kernel Manifold Alignment (KEMA) method, which provides a flexible and discriminative projection map, exploits only a few labeled samples (or semantic ties) in each domain, and reduces to solving a generalized eigenvalue problem. We successfully test KEMA in multi-temporal and multi-source very high resolution classification tasks, as well as on the task of making a model invariant to shadowing for hyperspectral imaging.

  8. An Adaptive Source-Channel Coding with Feedback for Progressive Transmission of Medical Images

    Directory of Open Access Journals (Sweden)

    Jen-Lung Lo

    2009-01-01

    Full Text Available A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI. The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician. In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC and Rayleigh channel. The experimental results verify the effectiveness of the design.

  9. Improvement of dem Generation from Aster Images Using Satellite Jitter Estimation and Open Source Implementation

    Science.gov (United States)

    Girod, L.; Nuth, C.; Kääb, A.

    2015-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.

  10. Joint source/channel iterative arithmetic decoding with JPEG 2000 image transmission application

    Science.gov (United States)

    Zaibi, Sonia; Zribi, Amin; Pyndiah, Ramesh; Aloui, Nadia

    2012-12-01

    Motivated by recent results in Joint Source/Channel coding and decoding, we consider the decoding problem of Arithmetic Codes (AC). In fact, in this article we provide different approaches which allow one to unify the arithmetic decoding and error correction tasks. A novel length-constrained arithmetic decoding algorithm based on Maximum A Posteriori sequence estimation is proposed. The latter is based on soft-input decoding using a priori knowledge of the source-symbol sequence and the compressed bit-stream lengths. Performance in the case of transmission over an Additive White Gaussian Noise channel is evaluated in terms of Packet Error Rate. Simulation results show that the proposed decoding algorithm leads to significant performance gain while exhibiting very low complexity. The proposed soft input arithmetic decoder can also generate additional information regarding the reliability of the compressed bit-stream components. We consider the serial concatenation of the AC with a Recursive Systematic Convolutional Code, and perform iterative decoding. We show that, compared to tandem and to trellis-based Soft-Input Soft-Output decoding schemes, the proposed decoder exhibits the best performance/complexity tradeoff. Finally, the practical relevance of the presented iterative decoding system is validated under an image transmission scheme based on the JPEG 2000 standard and excellent results in terms of decoded image quality are obtained.

  11. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  12. An adaptive source-channel coding with feedback for progressive transmission of medical images.

    Science.gov (United States)

    Lo, Jen-Lung; Sanei, Saeid; Nazarpour, Kianoush

    2009-01-01

    A novel adaptive source-channel coding with feedback for progressive transmission of medical images is proposed here. In the source coding part, the transmission starts from the region of interest (RoI). The parity length in the channel code varies with respect to both the proximity of the image subblock to the RoI and the channel noise, which is iteratively estimated in the receiver. The overall transmitted data can be controlled by the user (clinician). In the case of medical data transmission, it is vital to keep the distortion level under control as in most of the cases certain clinically important regions have to be transmitted without any visible error. The proposed system significantly reduces the transmission time and error. Moreover, the system is very user friendly since the selection of the RoI, its size, overall code rate, and a number of test features such as noise level can be set by the users in both ends. A MATLAB-based TCP/IP connection has been established to demonstrate the proposed interactive and adaptive progressive transmission system. The proposed system is simulated for both binary symmetric channel (BSC) and Rayleigh channel. The experimental results verify the effectiveness of the design.

  13. Country of origin image attributes as a source of competitive advantage: study in international brazilian fashion industry

    OpenAIRE

    Sutter, Mariana Bassi; Universidade de São Paulo - FEA/USP; Polo, Edison Fernandes; Universidade de São Paulo - FEA/USP; Maclennan, Maria Laura Ferranty; Universidade de São Paulo - FEA/USP

    2014-01-01

    The study sought to understand which attributes of the country of origin image are source of international competitive advantage in the context of Brazilian fashion. From the theoretical framework related to competitive advantage, country of origin image, Brazilianness and their attributes in fashion, we conducted exploratory research with a qualitative approach. The results suggest that the image of Brazil is understood by the international fashion market in accordance with the attributes of...

  14. An open-source engine for the processing of electron backscatter patterns: EBSD-image.

    Science.gov (United States)

    Pinard, Philippe T; Lagacé, Marin; Hovington, Pierre; Thibault, Denis; Gauvin, Raynald

    2011-06-01

    An open source software package dedicated to processing stored electron backscatter patterns is presented. The package gives users full control over the type and order of operations that are performed on electron backscatter diffraction (EBSD) patterns as well as the results obtained. The current version of EBSD-Image (www.ebsd-image.org) offers a flexible and structured interface to calculate various quality metrics over large datasets. It includes unique features such as practical file formats for storing diffraction patterns and analysis results, stitching of mappings with automatic reorganization of their diffraction patterns, and routines for processing data on a distributed computer grid. Implementations of the algorithms used in the software are described and benchmarked using simulated diffraction patterns. Using those simulated EBSD patterns, the detection of Kikuchi bands in EBSD-Image was found to be comparable to commercially available EBSD systems. In addition, 24 quality metrics were evaluated based on the ability to assess the level of deformation in two samples (copper and iron) deformed using 220 grit SiC grinding paper. Fourteen metrics were able to properly measure the deformation gradient of the samples.

  15. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  16. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    Science.gov (United States)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  17. Characterization of a velocity-tunable 87Rb cold atomic source with a high-speed imaging technology

    Institute of Scientific and Technical Information of China (English)

    Feng Yan-Ying; Zhu Chang-Xing; Wang Xiao-Jia; Xue Hong-Bo; Ye Xiong-Ying; Zhou Zhao-Ying

    2009-01-01

    This paper has developed and characterized a method to produce a velocity-tunable 87Rb cold atomic source for atomic interferometry application.Using a high speed fluorescence imaging technology,it reports that the dynamic process of the atomic source formation is observed and the source performances including the flux and the initial velocity axe characterized.A tunable atomic source with the initial velocity of 1.4~2.6 m/s and the atomic source flux of 2×108~6×109 atoms/s has been obtained with the built experimental setup.

  18. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  19. Progressive Image Transmission Based on Joint Source-Channel Decoding Using Adaptive Sum-Product Algorithm

    Directory of Open Access Journals (Sweden)

    David G. Daut

    2007-03-01

    Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.

  20. Progressive Image Transmission Based on Joint Source-Channel Decoding Using Adaptive Sum-Product Algorithm

    Directory of Open Access Journals (Sweden)

    Liu Weiliang

    2007-01-01

    Full Text Available A joint source-channel decoding method is designed to accelerate the iterative log-domain sum-product decoding procedure of LDPC codes as well as to improve the reconstructed image quality. Error resilience modes are used in the JPEG2000 source codec making it possible to provide useful source decoded information to the channel decoder. After each iteration, a tentative decoding is made and the channel decoded bits are then sent to the JPEG2000 decoder. The positions of bits belonging to error-free coding passes are then fed back to the channel decoder. The log-likelihood ratios (LLRs of these bits are then modified by a weighting factor for the next iteration. By observing the statistics of the decoding procedure, the weighting factor is designed as a function of the channel condition. Results show that the proposed joint decoding methods can greatly reduce the number of iterations, and thereby reduce the decoding delay considerably. At the same time, this method always outperforms the nonsource controlled decoding method by up to 3 dB in terms of PSNR.

  1. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    CERN Document Server

    Cool, Adrienne M; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2012-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10'x10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray ...

  2. EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis.

    Science.gov (United States)

    Valdés-Sosa, Pedro A; Vega-Hernández, Mayrim; Sánchez-Bornot, José Miguel; Martínez-Montes, Eduardo; Bobes, María Antonieta

    2009-06-01

    This article describes a spatio-temporal EEG/MEG source imaging (ESI) that extracts a parsimonious set of "atoms" or components, each the outer product of both a spatial and a temporal signature. The sources estimated are localized as smooth, minimally overlapping patches of cortical activation that are obtained by constraining spatial signatures to be nonnegative (NN), orthogonal, sparse, and smooth-in effect integrating ESI with NN-ICA. This constitutes a generalization of work by this group on the use of multiple penalties for ESI. A multiplicative update algorithm is derived being stable, fast and converging within seconds near the optimal solution. This procedure, spatio-temporal tomographic NN ICA (STTONNICA), is equally able to recover superficial or deep sources without additional weighting constraints as tested with simulations. STTONNICA analysis of ERPs to familiar and unfamiliar faces yields an occipital-fusiform atom activated by all faces and a more frontal atom that only is active with familiar faces. The temporal signatures are at present unconstrained but can be required to be smooth, complex, or following a multivariate autoregressive model.

  3. Comparison of Aortic Valve Area Measured by Magnetic Resonance Imaging and Dual-Source Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bruder, O.; Jochims, M.; Jensen, C.; Sabin, G.V. (Dept. of Cardiology and Angiology, Elisabeth Hospital Essen (Germany)); Hunold, P.; Forsting, M.; Barkhausen, J.; Schlosser, T. (Dept. of Diagnostic and Interventional Radiology and Neuroradiology, Univ. Hospital Essen, Univ. of Duisburg-Essen (Germany))

    2009-07-15

    Background: Aortic valve stenosis is the most common type of valve lesion in Europe and North America. Patient treatment is based on disease severity, which is classified by determining the aortic valve area (AVA). Purpose: To compare dual-source computed tomography (DSCT) with magnetic resonance (MR) imaging for quantifying AVA. Material and Methods: Thirty-two patients, 28 with normal aortic valve function and four with aortic valve stenosis, who underwent DSCT coronary angiography (Somatom Definition; Siemens, Erlangen, Germany), were included in this study. Retrospective ECG-gated contrast-enhanced DSCT scans with dose-reducing tube current modulation were performed, and data sets were reconstructed in 3% steps of the R-R interval (slice thickness 0.75 mm, increment 0.6 mm). Planimetry of the AVA in systole was assessed on cross-sectional images by multiplanar reformations. Within 48 hours, MR was performed with a 1.5T scanner (Magnetom Sonata; Siemens, Erlangen, Germany) using a balanced steady-state free-precession cine sequence (repetition/echo time 3/1.5 ms, flip angle 60 deg, spatial resolution 1.4x1.4 mm2). Cine sequences of the left ventricular outflow tract (LVOT) were obtained in two orthogonal planes, and MR planimetry was performed on cross-sectional images of the aortic valve perpendicular to the LVOT images. Results: AVA assessment by DSCT and MR was feasible in all 32 patients. Mean AVA values determined by DSCT and MR were 4.73+-1.5 cm2 and 4.69+-1.4 cm2, respectively. A strong positive correlation was found between both imaging modalities (R=0.98, P<0.001). Bland-Altman analysis demonstrated an excellent intermodality agreement, with a slight underestimation of AVA by DSCT. The mean difference was -0.04 cm2, with a standard deviation of 0.32 cm2. Conclusion: Retrospective ECG-gated contrast-enhanced DSCT with tube current modulation provides an accurate imaging technique for the assessment of the AVA. Further studies are required to determine

  4. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  5. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    Science.gov (United States)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  6. APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES

    Directory of Open Access Journals (Sweden)

    M. Pierrot Deseilligny

    2012-09-01

    Full Text Available IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  7. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    Science.gov (United States)

    Fukuda, Y.; Faenov, A. Ya.; Pikuz, T.; Kando, M.; Kotaki, H.; Daito, I.; Ma, J.; Chen, L. M.; Homma, T.; Kawase, K.; Kameshima, T.; Kawachi, T.; Daido, H.; Kimura, T.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2008-03-01

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800nm ) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%.

  8. Advances in EEG: home video telemetry, high frequency oscillations and electrical source imaging.

    Science.gov (United States)

    Patel, Anjla C; Thornton, Rachel C; Mitchell, Tejal N; Michell, Andrew W

    2016-10-01

    Over the last two decades, technological advances in electroencephalography (EEG) have allowed us to extend its clinical utility for the evaluation of patients with epilepsy. This article reviews three main areas in which substantial advances have been made in the diagnosis and pre-surgical planning of patients with epilepsy. Firstly, the development of small portable video-EEG systems have allowed some patients to record their attacks at home, thereby improving diagnosis, with consequent substantial healthcare and economic implications. Secondly, in specialist centres carrying out epilepsy surgery, there has been considerable interest in whether bursts of very high frequency EEG activity can help to determine the regions of the brain likely to be generating the seizures. Identification of these discharges, initially only recorded from intracranial electrodes, may thus allow better surgical planning and improve surgical outcomes. Finally we discuss the contribution of electrical source imaging in the pre-surgical evaluation of patients with focal epilepsy, and its prospects for the future.

  9. Inferential multi-spectral image compression based on distributed source coding

    Science.gov (United States)

    Wu, Xian-yun; Li, Yun-song; Wu, Cheng-ke; Kong, Fan-qiang

    2008-08-01

    Based on the analyses of the interferential multispectral imagery(IMI), a new compression algorithm based on distributed source coding is proposed. There are apparent push motions between the IMI sequences, the relative shift between two images is detected by the block match algorithm at the encoder. Our algorithm estimates the rate of each bitplane with the estimated side information frame. then our algorithm adopts a ROI coding algorithm, in which the rate-distortion lifting procedure is carried out in rate allocation stage. Using our algorithm, the FBC can be removed from the traditional scheme. The compression algorithm developed in the paper can obtain up to 3dB's gain comparing with JPEG2000 and significantly reduce the complexity and storage consumption comparing with 3D-SPIHT at the cost of slight degrade in PSNR.

  10. X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

    1999-05-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

  11. Apero, AN Open Source Bundle Adjusment Software for Automatic Calibration and Orientation of Set of Images

    Science.gov (United States)

    Pierrot Deseilligny, M.; Clery, I.

    2011-09-01

    IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist) than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  12. Source imaging of potential fields through a matrix space-domain algorithm

    Science.gov (United States)

    Baniamerian, Jamaledin; Oskooi, Behrooz; Fedi, Maurizio

    2017-01-01

    Imaging of potential fields yields a fast 3D representation of the source distribution of potential fields. Imaging methods are all based on multiscale methods allowing the source parameters of potential fields to be estimated from a simultaneous analysis of the field at various scales or, in other words, at many altitudes. Accuracy in performing upward continuation and differentiation of the field has therefore a key role for this class of methods. We here describe an accurate method for performing upward continuation and vertical differentiation in the space-domain. We perform a direct discretization of the integral equations for upward continuation and Hilbert transform; from these equations we then define matrix operators performing the transformation, which are symmetric (upward continuation) or anti-symmetric (differentiation), respectively. Thanks to these properties, just the first row of the matrices needs to be computed, so to decrease dramatically the computation cost. Our approach allows a simple procedure, with the advantage of not involving large data extension or tapering, as due instead in case of Fourier domain computation. It also allows level-to-drape upward continuation and a stable differentiation at high frequencies; finally, upward continuation and differentiation kernels may be merged into a single kernel. The accuracy of our approach is shown to be important for multi-scale algorithms, such as the continuous wavelet transform or the DEXP (depth from extreme point method), because border errors, which tend to propagate largely at the largest scales, are radically reduced. The application of our algorithm to synthetic and real-case gravity and magnetic data sets confirms the accuracy of our space domain strategy over FFT algorithms and standard convolution procedures.

  13. Extreme ultraviolet and soft X-ray imaging with compact, table top laser plasma EUV and SXR sources

    Science.gov (United States)

    Wachulak, P. W.; Bartnik, A.; Kostecki, J.; Wegrzynski, L.; Fok, T.; Jarocki, R.; Szczurek, M.; Fiedorowicz, H.

    2015-12-01

    We present a few examples of imaging experiments, which were possible using a compact laser-plasma extreme ultraviolet (EUV) and soft X-ray (SXR) source, based on a double stream gas puff target. This debris-free source was used in full-field EUV imaging to obtain magnified images of test samples, ZnO nanofibers and images of the membranes coated with salt crystals. The source was also employed for SXR microscopy in the "water-window" spectral range using grazing incidence Wolter type-I objective to image test samples and to perform the initial studies of biological objects. Gas puff target EUV source, spectrally tuned for 13.5 nm wavelength with multilayer mirror and thin film filters, was also used in variety of shadowgraphy experiments to study the density of newly developed modulated density gas puff targets. Finally, the source was also employed in EUV tomography experiments of low density objects with the goal to measure and optimize the density of the targets dedicated to high harmonic generation.

  14. X-ray imaging and imaging spectroscopy of fusion plasmas and light-source experiments with spherical optics and pixel array detectors

    Science.gov (United States)

    Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Pablant, N. A.; Beiersdorfer, P.; Sanchez del Rio, M.; Zhang, L.

    2012-10-01

    High resolution (λ/Δλ ~10,000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixelarray detector (PAD) is used world wide for Doppler measurements of ion-temperature (Ti) and plasma flow-velocityprofiles in magnetic confinement fusion (MCF) plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion (ICF) plasmas and targets on x-ray light source beam lines, with spatial resolution of microns. A new concept of using matched pairs of spherically bent crystals for monochromatic stigmatic 2D x-ray imaging of mm sized sources offers the possibility of spatial resolution of microns and large solid angle, relative to that achieved with pinhole imaging. Other potential applications of the 2D imaging schemes include x-ray lithography and x-ray microscopy for biological and materials science research. Measurements from MFE plasmas, as well as laboratory experiments and ray tracing computations validating the 1D imaging spectroscopy and 2D x-ray imaging techniques will be presented.

  15. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images.

    Science.gov (United States)

    Mashouf, S; Lechtman, E; Lai, P; Keller, B M; Karotki, A; Beachey, D J; Pignol, J P

    2014-09-21

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 [Formula: see text] formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  16. Dose heterogeneity correction for low-energy brachytherapy sources using dual-energy CT images

    Science.gov (United States)

    Mashouf, S.; Lechtman, E.; Lai, P.; Keller, B. M.; Karotki, A.; Beachey, D. J.; Pignol, J. P.

    2014-09-01

    Permanent seed implant brachytherapy is currently used for adjuvant radiotherapy of early stage prostate and breast cancer patients. The current standard for calculation of dose around brachytherapy sources is based on the AAPM TG-43 formalism, which generates the dose in a homogeneous water medium. Recently, AAPM TG-186 emphasized the importance of accounting for tissue heterogeneities. We have previously reported on a methodology where the absorbed dose in tissue can be obtained by multiplying the dose, calculated by the TG-43 formalism, by an inhomogeneity correction factor (ICF). In this work we make use of dual energy CT (DECT) images to extract ICF parameters. The advantage of DECT over conventional CT is that it eliminates the need for tissue segmentation as well as assignment of population based atomic compositions. DECT images of a heterogeneous phantom were acquired and the dose was calculated using both TG-43 and TG-43 × \\text{ICF} formalisms. The results were compared to experimental measurements using Gafchromic films in the mid-plane of the phantom. For a seed implant configuration of 8 seeds spaced 1.5 cm apart in a cubic structure, the gamma passing score for 2%/2 mm criteria improved from 40.8% to 90.5% when ICF was applied to TG-43 dose distributions.

  17. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  18. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Marc Fossorier

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope M-ary phase shift key (M-PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded M-PSK signaling (with M=2k. Then, it is extended to include coded M-PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded M-PSK signaling performs 3.1 to 5.2 dB better than uncoded M-PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  19. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  20. Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging

    Science.gov (United States)

    Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.

    2016-05-01

    Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.

  1. An Open Source Agenda for Research Linking Text and Image Content Features.

    Science.gov (United States)

    Goodrum, Abby A.; Rorvig, Mark E.; Jeong, Ki-Tai; Suresh, Chitturi

    2001-01-01

    Proposes methods to utilize image primitives to support term assignment for image classification. Proposes to release code for image analysis in a common tool set for other researchers to use. Of particular focus is the expansion of work by researchers in image indexing to include image content-based feature extraction capabilities in their work.…

  2. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho;

    2015-01-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse...... reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angledependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical...... radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber...

  3. Country of origin image attributes as a source of competitive advantage: study in international brazilian fashion industry

    Directory of Open Access Journals (Sweden)

    Mariana Bassi Sutter

    2014-08-01

    Full Text Available The study sought to understand which attributes of the country of origin image are source of international competitive advantage in the context of Brazilian fashion. From the theoretical framework related to competitive advantage, country of origin image, Brazilianness and their attributes in fashion, we conducted exploratory research with a qualitative approach. The results suggest that the image of Brazil is understood by the international fashion market in accordance with the attributes of the literature. However (i in fashion, market still does not have a steady concept on the image of Brazil, (ii Brazilianness attributes in fashion can be a source of competitive advantage in international trades if they are communicated, promoted and understood by the international market; finally, (iii among the eight Brazilianness trendy attributes identified in the literature, four were highlighted as differentiators: shape and volumes, colors, prints and lifestyle.

  4. Longitudinal Evaluation of Cornea With Swept-Source Optical Coherence Tomography and Scheimpflug Imaging Before and After Lasik.

    Science.gov (United States)

    Chan, Tommy C Y; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal

    2015-07-01

    Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and Scheimpflug imaging. The study parameters included central corneal thickness (CCT), thinnest corneal thickness (TCT), keratometry at steep (Ks) and flat (Kf) axes, mean keratometry (Km), and, anterior and posterior best fit spheres (Ant and Post BFS). The main outcome measures included reliability of measurements before and after LASIK was evaluated using intraclass correlation coefficient (ICC) and reproducibility coefficients (RC). Association between the mean value of corneal parameters with age, spherical equivalent (SEQ), and residual bed thickness (RBT) and association of variance heterogeneity of corneal parameters and these covariates were analyzed. Twenty-six right eyes of 26 participants (mean age, 32.7 ± 6.9 yrs; mean SEQ, -6.27 ± 1.67 D) were included. Preoperatively, swept-source OCT demonstrated significantly higher ICC for Ks, CCT, TCT, and Post BFS (P ≤ 0.016), compared with Scheimpflug imaging. Swept-source OCT demonstrated significantly smaller RC values for CCT, TCT, and Post BFS (P ≤ 0.001). After LASIK, both devices had significant differences in measurements for all corneal parameters (P ≤ 0.015). Swept-source OCT demonstrated a significantly higher ICC and smaller RC for all measurements, compared with Scheimpflug imaging (P ≤ 0.001). Association of variance heterogeneity was only found in pre-LASIK Ant BFS and post-LASIK Post BFS for swept-source OCT, whereas significant association of variance heterogeneity was noted for all measurements except Ks and

  5. HST/ACS IMAGING OF OMEGA CENTAURI: OPTICAL COUNTERPARTS OF CHANDRA X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Adrienne M.; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian [Department of Physics and Astronomy, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132 (United States); Haggard, Daryl [Center for Interdisciplinary Exploration and Research in Astrophysics, Physics and Astronomy Department, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Anderson, Jay, E-mail: cool@sfsu.edu, E-mail: dhaggard@northwestern.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2013-02-15

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel images obtained using F625W, F435W, and F658N filters; with nine pointings we cover the central {approx}10' Multiplication-Sign 10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, {approx}40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M {sub 625} =10.4-12.6, making them comparable in brightness to field CVs near the period minimum discovered in the Sloan Digital Sky Survey. Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously reported quiescent low-mass X-ray binary. We also identify 3 foreground stars and 11 probable active galactic nuclei. Finally, we report the discovery of a group of seven stars whose X-ray properties are suggestive of magnetically active binaries, and whose optical counterparts lie on or very near the metal-rich anomalous giant and subgiant branches in {omega} Cen. If the apparent association between these seven stars and the RGB/SGB-a stars is real, then the frequency of X-ray sources in this metal-rich population is enhanced by a factor of at least five relative to the other giant and subgiant populations in the cluster. If these stars are not members of the metal-rich population, then they bring the total number of red stragglers (also known as sub-subgiants) that have been identified in {omega} to Cen 20, the largest number yet known in any globular cluster.

  6. Three-dimensional forward modeling and inversion of borehole-to-surface electrical imaging with different power sources

    Science.gov (United States)

    Bai, Ze; Tan, Mao-Jin; Zhang, Fu-Lai

    2016-09-01

    Borehole-to-surface electrical imaging (BSEI) uses a line source and a point source to generate a stable electric field in the ground. In order to study the surface potential of anomalies, three-dimensional forward modeling of point and line sources was conducted by using the finite-difference method and the incomplete Cholesky conjugate gradient (ICCG) method. Then, the damping least square method was used in the 3D inversion of the formation resistivity data. Several geological models were considered in the forward modeling and inversion. The forward modeling results suggest that the potentials generated by the two sources have different surface signatures. The inversion data suggest that the low-resistivity anomaly is outlined better than the high-resistivity anomaly. Moreover, when the point source is under the anomaly, the resistivity anomaly boundaries are better outlined than when using a line source.

  7. Beamline Design and Instrumentation for the Imaging and Coherence Beamline I13L at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Pešić, Z. D.; De Fanis, A.; Rau, C.

    2013-03-01

    I13L is a 250 m long hard x-ray beamline (6 keV to 35 keV) at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. In this paper we will discuss the fundamental design concepts of the beamline and explain their implications for the civil engineering of the endstation building and the beamline instrumentation. For the latter this paper will focus on the beamline mirror systems and monochromators.

  8. Imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA

    CERN Document Server

    Ghara, Raghunath; Datta, Kanan K; Choudhuri, Samir

    2016-01-01

    Understanding properties of the first sources in the Universe using the redshifted \\HI ~21-cm signal is one of the major aims of present and upcoming low-frequency experiments. We investigate the possibility of imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA1-low. We model the \\HI ~21-cm image maps, appropriate for the SKA1-low, around the first sources consisting of stars and X-ray sources within galaxies. In addition to the system noise, we account also for the astrophysical foregrounds by adding them to the signal maps. We find that after subtracting the foregrounds using a polynomial fit and suppressing the noise by smoothing the maps over $10^{'} - 30^{'}$ angular scale, the isolated sources at $z \\sim 15$ are detectable with $\\sim 4 - 9 \\, \\sigma$ confidence level in 2000 h of observation with the SKA1-low. Although the 21-cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the so...

  9. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Haris, K. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India); Singh, Param Jeet [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Shastri, Aparna, E-mail: ashastri@barc.gov.in [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sunanda, K.; Babita, K.; Rao, S.V.N. Bhaskara [Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Ahmad, Shabbir; Tauheed, A. [Department of Physics, Aligarh Muslim University, Aligarh 202002 (India)

    2014-12-11

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu{sup 2+} phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O{sub 2}, N{sub 2}O and SO{sub 2} are carried out to evaluate the performance of the IP detection system. An FWHM of ∼0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible. - Highlights: • Incorporation of an image plate detection system on HRVUV beamline at Indus-1. • Design and fabrication of mounting mechanisms, performance evaluation of new system. • Photoabsorption spectra of Xe, O{sub 2}, SO{sub 2} and N{sub 2}O recorded in the region 1150–2300 Å. • Sensitivity, wavelength coverage, reproducibility and resolution of IP demonstrated. • First report of IP detector for VUV photoabsorption using synchrotron radiation.

  10. Defect inspection in hot slab surface: multi-source CCD imaging based fuzzy-rough sets method

    Science.gov (United States)

    Zhao, Liming; Zhang, Yi; Xu, Xiaodong; Xiao, Hong; Huang, Chao

    2016-09-01

    To provide an accurate surface defects inspection method and make the automation of robust image region of interests(ROI) delineation strategy a reality in production line, a multi-source CCD imaging based fuzzy-rough sets method is proposed for hot slab surface quality assessment. The applicability of the presented method and the devised system are mainly tied to the surface quality inspection for strip, billet and slab surface etcetera. In this work we take into account the complementary advantages in two common machine vision (MV) systems(line array CCD traditional scanning imaging (LS-imaging) and area array CCD laser three-dimensional (3D) scanning imaging (AL-imaging)), and through establishing the model of fuzzy-rough sets in the detection system the seeds for relative fuzzy connectedness(RFC) delineation for ROI can placed adaptively, which introduces the upper and lower approximation sets for RIO definition, and by which the boundary region can be delineated by RFC region competitive classification mechanism. For the first time, a Multi-source CCD imaging based fuzzy-rough sets strategy is attempted for CC-slab surface defects inspection that allows an automatic way of AI algorithms and powerful ROI delineation strategies to be applied to the MV inspection field.

  11. An image-based skeletal dosimetry model for the ICRP reference newborn-internal electron sources

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Rajon, Didier [Department of Neurosurgery, University of Florida, Gainesville, FL (United States); Jokisch, Derek [Department of Physics and Astronomy, Francis Marion University, Florence, SC (United States)], E-mail: wbolch@ufl.edu

    2010-04-07

    In this study, a comprehensive electron dosimetry model of newborn skeletal tissues is presented. The model is constructed using the University of Florida newborn hybrid phantom of Lee et al (2007 Phys. Med. Biol. 52 3309-33), the newborn skeletal tissue model of Pafundi et al (2009 Phys. Med. Biol. 54 4497-531) and the EGSnrc-based Paired Image Radiation Transport code of Shah et al (2005 J. Nucl. Med. 46 344-53). Target tissues include the active bone marrow (surrogate tissue for hematopoietic stem cells), shallow marrow (surrogate tissue for osteoprogenitor cells) and unossified cartilage (surrogate tissue for chondrocytes). Monoenergetic electron emissions are considered over the energy range 1 keV to 10 MeV for the following source tissues: active marrow, trabecular bone (surfaces and volumes), cortical bone (surfaces and volumes) and cartilage. Transport results are reported as specific absorbed fractions according to the MIRD schema and are given as skeletal-averaged values in the paper with bone-specific values reported in both tabular and graphic format as electronic annexes (supplementary data). The method utilized in this work uniquely includes (1) explicit accounting for the finite size and shape of newborn ossification centers (spongiosa regions), (2) explicit accounting for active and shallow marrow dose from electron emissions in cortical bone as well as sites of unossified cartilage, (3) proper accounting of the distribution of trabecular and cortical volumes and surfaces in the newborn skeleton when considering mineral bone sources and (4) explicit consideration of the marrow cellularity changes for active marrow self-irradiation as applicable to radionuclide therapy of diseased marrow in the newborn child.

  12. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging

    Directory of Open Access Journals (Sweden)

    Henning U. Voss

    2014-07-01

    Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation

  13. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Jonathan J Liu

    Full Text Available To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT. The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.Observational prospective cross-sectional study.Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2 were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1 standard logarithmic scale display, enhanced vitreous imaging using (2 vitreous window display and (3 HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.Features observed included the bursa premacularis (BPM, area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s, and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%-81.1% using standard logarithmic scale display, 80.6% (95%CI: 73.8%-86.0% using HDR display, and 91.9% (95%CI: 86.6%-95.2% using vitreous window display.SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The

  14. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  15. Flaw Imaging Technique for Plate-Like Structures Using Scanning Laser Source Actuation

    Directory of Open Access Journals (Sweden)

    Changgil Lee

    2014-01-01

    Full Text Available Recently, the longitudinal, shear, and surface waves have been very widely used as ultrasonic wave-based exploration methods to identify internal defects of host structures. In this context, a noncontact nondestructive testing (NDT method is proposed to detect the damage of plate-like structures and to identify the location of the damage. To achieve this goal, a scanning laser source actuation technique is utilized to generate a guided wave and scans a specific area to find damage location more precisely. The ND:YAG pulsed laser is used to generate Lamb wave and a piezoelectric sensor is installed to measure the structural responses. The measured responses are analyzed using 3-dimensional Fourier transformation (3D FT. The damage-sensitive features are extracted by wavenumber filtering based on the 3D FT. Then, flaw imaging techniques of a plate-like structure are conducted using the damage-sensitive features. Finally, the plates with notches are investigated to verify the effectiveness and the robustness of the proposed NDT approach.

  16. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    Science.gov (United States)

    Haris, K.; Singh, Param Jeet; Shastri, Aparna; Sunanda, K.; Babita, K.; Rao, S. V. N. Bhaskara; Ahmad, Shabbir; Tauheed, A.

    2014-12-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 m off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~0.5 Å is achieved for the Xe atomic line at 1469.6 Å. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection system is expected to greatly enhance the utilization of the HRVUV beamline as a number of spectroscopic experiments which require fast recording times combined with a good signal to noise ratio are now feasible.

  17. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    CERN Document Server

    Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

  18. Sources

    OpenAIRE

    2015-01-01

    SOURCES MANUSCRITES Archives nationales Rôles de taille 1768/71 Z1G-344/18 Aulnay Z1G-343a/02 Gennevilliers Z1G-340/01 Ivry Z1G-340/05 Orly Z1G-334c/09 Saint-Remy-lès-Chevreuse Z1G-344/18 Sevran Z1G-340/05 Thiais 1779/80 Z1G-391a/18 Aulnay Z1G-380/02 Gennevilliers Z1G-385/01 Ivry Z1G-387b/05 Orly Z1G-388a/09 Saint-Remy-lès-Chevreuse Z1G-391a/18 Sevran Z1G-387b/05 Thiais 1788/89 Z1G-451/18 Aulnay Z1G-452/21 Chennevières Z1G-443b/02 Gennevilliers Z1G-440a/01 Ivry Z1G-452/17 Noiseau Z1G-445b/05 ...

  19. Accessing select properties of the electron with ImageJ: an open-source image-processing paradigm

    Science.gov (United States)

    Alam, Junaid; Shaheen, Amrozia; Sabieh Anwar, Muhammad

    2014-01-01

    This paper describes a way to measure the radii of curvature of electrons following a curved path in a magnetic field and the radii of the concentric rings resulting from the interference of the electrons inside an evacuated diffraction tube. High-resolution imaging dramatically increases the precision of measurements of physical distances, if they are along circular arcs. Digital photographs were taken and the free software ImageJ that comes with a multitude of image-processing routines and is widely used in life sciences research was employed for measurement and analysis.

  20. Forward model with space-variant of source size for reconstruction on x-ray radiographic image

    CERN Document Server

    Liu, Jin; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan

    2016-01-01

    Forward imaging technique is the base of combined method on density reconstruction with the forward calculation and inverse problem solution. In the paper, we introduced the projection equation for the radiographic system with areal source blur and detector blur, gained the projecting matrix from any point source to any detector pixel with x-ray trace technique, proposed the ideal on gridding the areal source as many point sources with different weights, and used the blurring window as the effect of the detector blur. We used the forward projection equation to gain the same deviation information about the object edge as the experimental image. Our forward projection equation is combined with Constrained Conjugate Gradient method to form a new method for density reconstruction, XTRACE-CCG. The new method worked on the simulated image of French Test Object and experimental image. The same results have been concluded the affecting range of the blur is decreased and can be controlled to one or two pixels. The met...

  1. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  2. Ultrasound Current Source Density Imaging in live rabbit hearts using clinical intracardiac catheter

    Science.gov (United States)

    Li, Qian

    Ultrasound Current Source Density Imaging (UCSDI) is a noninvasive modality for mapping electrical activities in the body (brain and heart) in 4-dimensions (space + time). Conventional cardiac mapping technologies for guiding the radiofrequency ablation procedure for treatment of cardiac arrhythmias have certain limitations. UCSDI can potentially overcome these limitations and enhance the electrophysiology mapping of the heart. UCSDI exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity. When an ultrasound beam intersects a current path in a material, the local resistivity of the material is modulated by the ultrasonic pressure, and a change in voltage signal can be detected based on Ohm's Law. The degree of modulation is determined by the AE interaction constant K. K is a fundamental property of any type of material, and directly affects the amplitude of the AE signal detected in UCSDI. UCSDI requires detecting a small AE signal associated with electrocardiogram. So sensitivity becomes a major challenge for transferring UCSDI to the clinic. This dissertation will determine the limits of sensitivity and resolution for UCSDI, balancing the tradeoff between them by finding the optimal parameters for electrical cardiac mapping, and finally test the optimized system in a realistic setting. This work begins by describing a technique for measuring K, the AE interaction constant, in ionic solution and biological tissue, and reporting the value of K in excised rabbit cardiac tissue for the first time. K was found to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart tissue, K was determined to be 0.041 +/- 0.012 %/MPa, similar to the measurement of K in physiologic saline: 0.034 +/- 0.003 %/MPa. Next, this dissertation investigates the sensitivity limit of UCSDI by quantifying the relation

  3. Performance analysis of GPU-accelerated filter-based source finding for HI spectral line image data

    Science.gov (United States)

    Westerlund, Stefan; Harris, Christopher

    2015-03-01

    Searching for sources of electromagnetic emission in spectral-line radio astronomy interferometric data is a computationally intensive process. Parallel programming techniques and High Performance Computing hardware may be used to improve the computational performance of a source finding program. However, it is desirable to further reduce the processing time of source finding in order to decrease the computational resources required for the task. GPU acceleration is a method that may achieve significant increases in performance for some source finding algorithms, particularly for filtering image data. This work considers the application of GPU acceleration to the task of source finding and the techniques used to achieve the best performance, such as memory management. We also examine the changes in performance, where the algorithms that were GPU accelerated achieved a speedup of around 3.2 times the 12 core per node CPU-only performance, while the program as a whole experienced a speedup of 2.0 times.

  4. Performance Analysis of GPU-Accelerated Filter-Based Source Finding for HI Spectral Line Image Data

    CERN Document Server

    Westerlund, Stefan

    2015-01-01

    Searching for sources of electromagnetic emission in spectral-line radio astronomy interferometric data is a computationally intensive process. Parallel programming techniques and High Performance Computing hardware may be used to improve the computational performance of a source finding program. However, it is desirable to further reduce the processing time of source finding in order to decrease the computational resources required for the task. GPU acceleration is a method that may achieve significant increases in performance for some source finding algorithms, particularly for filtering image data. This work considers the application of GPU acceleration to the task of source finding and the techniques used to achieve the best performance, such as memory management. We also examine the changes in performance, where the algorithms that were GPU accelerated achieved a speedup of around 3.2 times the 12 core per node CPU-only performance, while the program as a whole experienced a speedup of 2.0 times.

  5. Near-Infrared Image Reconstruction of Newborns' Brains: Robustness to Perturbations of the Source/Detector Location.

    Science.gov (United States)

    Ahnen, L; Wolf, M; Hagmann, C; Sanchez, S

    2016-01-01

    The brain of preterm infants is the most vulnerable organ and can be severely injured by cerebral ischemia. We are working on a near-infrared imager to early detect cerebral ischemia. During imaging of the brain, movements of the newborn infants are inevitable and the near-infrared sensor has to be able to function on irregular geometries. Our aim is to determine the robustness of the near-infrared image reconstruction to small variations of the source and detector locations. In analytical and numerical simulations, the error estimations for a homogeneous medium agree well. The worst case estimates of errors in reduced scattering and absorption coefficient for distances of r=40 mm are acceptable for a single source-detector pair. The optical properties of an inhomogeneity representing an ischemia are reconstructed correctly within a homogeneous medium, if the error in placement is random.

  6. Estimation of plate material properties by means of a complex wavenumber fit using Hankel's functions and the image source method

    Science.gov (United States)

    Roozen, N. B.; Leclère, Q.; Ege, K.; Gerges, Y.

    2017-03-01

    This paper presents a new wave fitting approach to estimate the frequency dependent material properties of thin isotropic plate structures from an experimentally obtained vibrational field, exciting the plate at a single point. The method projects the measurement data on to an analytical image source model, in which Hankel's functions are used for a description of the wave fields emanating from the point of excitation, including the reflected wave fields from the edges of the finite plate. By minimizing the error between the projected field and the measured field, varying the complex wave number and the source strengths of the image sources, an optimum fit is searched for. Thus the source strengths of the image sources do not need to be determined theoretically, but are estimated from the fit on to the experimental data instead (thus avoiding difficulties in theoretically assessing the reflection coefficient of the edges of the plate). The approach uses a complex wavenumber fit, enabling the determination of the dynamic stiffness of the plate structure and its damping properties as function of frequency. The method is especially suited for plates with a sufficient amount of damping, excited at high frequencies.

  7. Model-independent source imaging using two-pion correlations in 2 to 8A GeV Au + Au collisions

    CERN Document Server

    Panitkin, S Y; Alexander, J; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J; Chung, P; Cole, B; Crowe, K M; Das, A; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A; Hjort, E; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J; Klay, J L; Krofcheck, D; Lacey, R A; Lauret, J; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D; Pinkenburg, C H; Porile, N; Rai, G; Ritter, H G; Romero, J; Scharenberg, R P; Schröder, L S; Srivastava, B; Stone, N T B; Symons, T J M; Wang, S; Wells, R; Whitfield, J; Wienold, T; Witt, R; Wood, L; Yang, X; Zhang Wei Ning; Zhang, Y

    2001-01-01

    We report a particle source imaging analysis based on two-pion correlations in high multiplicity Au + Au collisions at beam energies between 2 and 8A GeV. We apply the imaging technique introduced by Brown and Danielewicz, which allows a model-independent extraction of source functions with useful accuracy out to relative pion separations of about 20 fm. The extracted source functions have Gaussian shapes. Values of source functions at zero separation are almost constant across the energy range under study. Imaging results are found to be consistent with conventional source parameters obtained from a multidimensional HBT analysis.

  8. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao, E-mail: sunhao_robert@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Hou, Xin-Yi, E-mail: hxy_pumc@126.com [Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Xue, Hua-Dan, E-mail: bjdanna95@hotmail.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Li, Xiao-Guang, E-mail: xglee88@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Jin, Zheng-Yu, E-mail: zhengyu_jin@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Qian, Jia-Ming, E-mail: qjiaming57@gmail.com [Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Yu, Jian-Chun, E-mail: yu-jch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Zhu, Hua-Dong, E-mail: huadongzhu@hotmail.com [Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China)

    2015-05-15

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  9. Ultrahigh phase-stable swept-source optical coherence tomography as a cardiac imaging platform (Conference Presentation)

    Science.gov (United States)

    Ling, Yuye; Hendon, Christine P.

    2016-02-01

    Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.

  10. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  11. High-Power, Computer-Controlled, Light-Emitting Diode–Based Light Sources for Fluorescence Imaging and Image-Guided Surgery

    Directory of Open Access Journals (Sweden)

    Sylvain Gioux

    2009-05-01

    Full Text Available Optical imaging requires appropriate light sources. For image-guided surgery, in particular fluorescence-guided surgery, a high fluence rate, a long working distance, computer control, and precise control of wavelength are required. In this article, we describe the development of light-emitting diode (LED-based light sources that meet these criteria. These light sources are enabled by a compact LED module that includes an integrated linear driver, heat dissipation technology, and real-time temperature monitoring. Measuring only 27 mm wide by 29 mm high and weighing only 14.7 g, each module provides up to 6,500 lx of white (400–650 nm light and up to 157 mW of filtered fluorescence excitation light while maintaining an operating temperature ≤ 50°C. We also describe software that can be used to design multimodule light housings and an embedded processor that permits computer control and temperature monitoring. With these tools, we constructed a 76-module, sterilizable, three-wavelength surgical light source capable of providing up to 40,000 lx of white light, 4.0 mW/cm2 of 670 nm near-infrared (NIR fluorescence excitation light, and 14.0 mW/cm2 of 760 nm NIR fluorescence excitation light over a 15 cm diameter field of view. Using this light source, we demonstrated NIR fluorescence–guided surgery in a large-animal model.

  12. Automated detection and analysis of Ca(2+) sparks in x-y image stacks using a thresholding algorithm implemented within the open-source image analysis platform ImageJ.

    Science.gov (United States)

    Steele, Elliot M; Steele, Derek S

    2014-02-04

    Previous studies have used analysis of Ca(2+) sparks extensively to investigate both normal and pathological Ca(2+) regulation in cardiac myocytes. The great majority of these studies used line-scan confocal imaging. In part, this is because the development of open-source software for automatic detection of Ca(2+) sparks in line-scan images has greatly simplified data analysis. A disadvantage of line-scan imaging is that data are collected from a single row of pixels, representing only a small fraction of the cell, and in many instances x-y confocal imaging is preferable. However, the limited availability of software for Ca(2+) spark analysis in two-dimensional x-y image stacks presents an obstacle to its wider application. This study describes the development and characterization of software to enable automatic detection and analysis of Ca(2+) sparks within x-y image stacks, implemented as a plugin within the open-source image analysis platform ImageJ. The program includes methods to enable precise identification of cells within confocal fluorescence images, compensation for changes in background fluorescence, and options that allow exclusion of events based on spatial characteristics.

  13. Image Quality and Radiation Dose for Prospectively Triggered Coronary CT Angiography: 128-Slice Single-Source CT versus First-Generation 64-Slice Dual-Source CT

    Science.gov (United States)

    Gu, Jin; Shi, He-Shui; Han, Ping; Yu, Jie; Ma, Gui-Na; Wu, Sheng

    2016-10-01

    This study sought to compare the image quality and radiation dose of coronary computed tomography angiography (CCTA) from prospectively triggered 128-slice CT (128-MSCT) versus dual-source 64-slice CT (DSCT). The study was approved by the Medical Ethics Committee at Tongji Medical College of Huazhong University of Science and Technology. Eighty consecutive patients with stable heart rates lower than 70 bpm were enrolled. Forty patients were scanned with 128-MSCT, and the other 40 patients were scanned with DSCT. Two radiologists independently assessed the image quality in segments (diameter >1 mm) according to a three-point scale (1: excellent; 2: moderate; 3: insufficient). The CCTA radiation dose was calculated. Eighty patients with 526 segments in the 128-MSCT group and 544 segments in the DSCT group were evaluated. The image quality 1, 2 and 3 scores were 91.6%, 6.9% and 1.5%, respectively, for the 128-MSCT group and 97.6%, 1.7% and 0.7%, respectively, for the DSCT group, and there was a statistically significant inter-group difference (P ≤ 0.001). The effective doses were 3.0 mSv in the 128-MSCT group and 4.5 mSv in the DSCT group (P ≤ 0.001). Compared with DSCT, CCTA with prospectively triggered 128-MSCT had adequate image quality and a 33.3% lower radiation dose.

  14. Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac

    Science.gov (United States)

    Rosu, Ana-Maria; Pierrot-Deseilligny, Marc; Delorme, Arthur; Binet, Renaud; Klinger, Yann

    2015-02-01

    Image correlation is one of the most efficient techniques to determine horizontal ground displacements due to earthquakes, landslides, ice flows or sand dune migrations. Analyzing these deformations allows a better understanding of the causes and mechanisms of the events. By using sub-pixel correlation on before- and after-event ortho-images obtained from high resolution satellite images it is possible to compute the displacement field with high planimetric resolution. In this paper, we focus on measuring the ground displacements due to seismotectonic events. The three sub-pixel correlators used are: COSI-Corr - developed by Caltech, a free, closed-source correlator, dependent on commercial software (ENVI) and widely used by the geoscience community for measuring ground displacement; Medicis - developed by CNES, also a closed-source correlator capable of measuring this type of deformation; and MicMac - developed by IGN, the free open-source correlator we study and tune for measuring fine ground displacements. We measured horizontal ground deformation using these three correlators on SPOT images in three study cases: the 2001 Kokoxili earthquake, the 2005 dyke intrusion in the Afar depression and the 2008 Yutian earthquake.

  15. SPLASSH: Open source software for camera-based high-speed, multispectral in-vivo optical image acquisition.

    Science.gov (United States)

    Sun, Ryan; Bouchard, Matthew B; Hillman, Elizabeth M C

    2010-08-02

    Camera-based in-vivo optical imaging can provide detailed images of living tissue that reveal structure, function, and disease. High-speed, high resolution imaging can reveal dynamic events such as changes in blood flow and responses to stimulation. Despite these benefits, commercially available scientific cameras rarely include software that is suitable for in-vivo imaging applications, making this highly versatile form of optical imaging challenging and time-consuming to implement. To address this issue, we have developed a novel, open-source software package to control high-speed, multispectral optical imaging systems. The software integrates a number of modular functions through a custom graphical user interface (GUI) and provides extensive control over a wide range of inexpensive IEEE 1394 Firewire cameras. Multispectral illumination can be incorporated through the use of off-the-shelf light emitting diodes which the software synchronizes to image acquisition via a programmed microcontroller, allowing arbitrary high-speed illumination sequences. The complete software suite is available for free download. Here we describe the software's framework and provide details to guide users with development of this and similar software.

  16. Multi-modal hard x-ray imaging with a laboratory source using selective reflection from a mirror.

    Science.gov (United States)

    Pelliccia, Daniele; Paganin, David M

    2014-04-01

    Multi-modal hard x-ray imaging sensitive to absorption, refraction, phase and scattering contrast is demonstrated using a simple setup implemented with a laboratory source. The method is based on selective reflection at the edge of a mirror, aligned to partially reflect a pencil x-ray beam after its interaction with a sample. Quantitative scattering contrast from a test sample is experimentally demonstrated using this method. Multi-modal imaging of a house fly (Musca domestica) is shown as proof of principle of the technique for biological samples.

  17. High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery.

    Science.gov (United States)

    Gioux, Sylvain; Kianzad, Vida; Ciocan, Razvan; Gupta, Sunil; Oketokoun, Rafiou; Frangioni, John V

    2009-01-01

    Optical imaging requires appropriate light sources. For image-guided surgery, in particular fluorescence-guided surgery, a high fluence rate, a long working distance, computer control, and precise control of wavelength are required. In this article, we describe the development of light-emitting diode (LED)-based light sources that meet these criteria. These light sources are enabled by a compact LED module that includes an integrated linear driver, heat dissipation technology, and real-time temperature monitoring. Measuring only 27 mm wide by 29 mm high and weighing only 14.7 g, each module provides up to 6,500 lx of white (400-650 nm) light and up to 157 mW of filtered fluorescence excitation light while maintaining an operating temperature mW/cm2 of 670 nm near-infrared (NIR) fluorescence excitation light, and 14.0 mW/cm2 of 760 nm NIR fluorescence excitation light over a 15 cm diameter field of view. Using this light source, we demonstrated NIR fluorescence-guided surgery in a large-animal model.

  18. Emphysema early diagnosis using X-ray diffraction enhanced imaging at synchrotron light source

    OpenAIRE

    Dong, Linan; Li, Jun; Jian, Wushuai; Zhang, Lu; Wu, Mingshu; Shi, Hongli; Luo, Shuqian

    2014-01-01

    Background Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide, and emphysema is a common component of COPD. Currently, it is very difficult to detect early stage emphysema using conventional radiographic imaging without contrast agents, because the change in X-ray attenuation is not detectable with absorption-based radiography. Compared with the absorption-based CT, phase contrast imaging has more advantages in soft tissue imaging, b...

  19. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Doll, W.E. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Miller, R.D.; Xia, J. [Kansas Geological Survey, Lawrence, KS (United States)

    1997-02-01

    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR).

  20. Magnetic resonance imaging of the shoulder: a review of potential sources of diagnostic errors

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, K.W. [Radiology Regional Center, Naples, FL (United States); Helms, C.A. [Duke University Medical Center, Department of Radiology, Durham, NC (United States)

    2002-07-01

    Shoulder magnetic resonance (MR) imaging and MR arthrography are frequently utilized in the evaluation of shoulder pain and instability. The clinical scenario and imaging findings may be confusing to clinicians and radiologists and may present diagnostic challenges for those involved in evaluating and treating shoulder pathology. Often rotator cuff and labral abnormalities may be coexistent, clinical manifestations of denervation syndromes may be confusing to clinicians, and normal anatomic variations, imaging pitfalls, and various artifacts may cause dilemmas for the radiologist. This article will review the most frequently encountered mimickers and pitfalls of MR imaging of the shoulder. (orig.)

  1. Image reconstruction of mMR PET data using the open source software STIR

    Energy Technology Data Exchange (ETDEWEB)

    Markiewicz, Pawel [Centre for Medical Image Computing, University College London, London (United Kingdom); Thielemans, Kris [Institute of Nuclear Medicine, University College London, London (United Kingdom); Burgos, Ninon [Centre for Medical Image Computing, University College London, London (United Kingdom); Manber, Richard [Institute of Nuclear Medicine, University College London, London (United Kingdom); Jiao, Jieqing [Centre for Medical Image Computing, University College London, London (United Kingdom); Barnes, Anna [Institute of Nuclear Medicine, University College London, London (United Kingdom); Atkinson, David [Centre for Medical Imaging, University College London, London (United Kingdom); Arridge, Simon R [Centre for Medical Image Computing, University College London, London (United Kingdom); Hutton, Brian F [Institute of Nuclear Medicine, University College London, London (United Kingdom); Ourselin, Sébastien [Centre for Medical Image Computing, University College London, London (United Kingdom); Dementia Research Centre, University College London, London (United Kingdom)

    2014-07-29

    Simultaneous PET and MR acquisitions have now become possible with the new hybrid Biograph Molecular MR (mMR) scanner from Siemens. The purpose of this work is to create a platform for mMR 3D and 4D PET image reconstruction which would be freely accessible to the community as well as fully adjustable in order to obtain optimal images for a given research task in PET imaging. The proposed platform is envisaged to prove useful in developing novel and robust image bio-markers which could then be adapted for use on the mMR scanner.

  2. Instability of Solution of Phase Retrieval in Direct Diffraction Phase-Contrast Imaging with Partially Coherent X-Ray Source

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; HAN Shen-Sheng

    2006-01-01

    The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressedby an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phaseretrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution ofthe phase retrieval is unstable. The numerical simulation is performed and the result validates that the solutionof the phase retrieval is unstable.

  3. Validation tests of open-source procedures for digital camera calibration and 3D image-based modelling

    OpenAIRE

    I. Toschi; Rivola, R.; Bertacchini, E; Castagnetti, C.; M. Dubbini; Capra, A.

    2013-01-01

    Among the many open-source software solutions recently developed for the extraction of point clouds from a set of un-oriented images, the photogrammetric tools Apero and MicMac (IGN, Institut Géographique National) aim to distinguish themselves by focusing on the accuracy and the metric content of the final result. This paper firstly aims at assessing the accuracy of the simplified and automated calibration procedure offered by the IGN tools. Results obtained with this procedure were...

  4. Images as Representations: Visual Sources on Education and Childhood in the Past

    Science.gov (United States)

    Dekker, Jeroen J.H.

    2015-01-01

    The challenge of using images for the history of education and childhood will be addressed in this article by looking at them as representations. Central is the relationship between representations and reality. The focus is on the power of paintings as representations of aspects of realities. First the meaning of representation for images as…

  5. New open source medical imaging tools released by CERN and University of Bath collaboration

    CERN Multimedia

    Anaïs Rassat, KT group

    2016-01-01

    New toolbox has applications in medical imaging and cancer diagnosis.   3D X-ray imaging of a patient’s lungs and thorax. The TIGRE toolbox provides a high resolution image with only 1/30th of the radiation for the patient. (Image: Ander Biguri) CERN and the University of Bath have released a new toolbox for fast, accurate 3D X-ray image reconstruction with applications in medical imaging and cancer diagnosis. The software offers a very simple and affordable way to improve imaging and potentially reduce radiation doses for patients. The toolbox is based on Cone Beam Computed Tomography (CBCT), a type of scanning process that takes a series of 2D X-ray pictures and that then processes them into a 3D image. As part of the collaborative project between CERN and the University of Bath, Ander Biguri, a PhD student at Bath, has reviewed a broad range of published CBCT algorithms and adapted them to be faster. Ander Biguri modified the algorithms to run on a laptop fitted with a GPU &ndash...

  6. Ultra-high performance mirror systems for the imaging and coherence beamline I13 at the Diamond Light Source

    Science.gov (United States)

    Wagner, U. H.; Alcock, S.; Ludbrook, G.; Wiatryzk, J.; Rau, C.

    2012-05-01

    I13L is a 250m long hard x-ray beamline (6 keV to 35 keV) currently under construction at the Diamond Light Source. The beamline comprises of two independent experimental endstations: one for imaging in direct space using x-ray microscopy and one for imaging in reciprocal space using coherent diffraction based imaging techniques. To minimise the impact of thermal fluctuations and vibrations onto the beamline performance, we are developing a new generation of ultra-stable beamline instrumentation with highly repeatable adjustment mechanisms using low thermal expansion materials like granite and large piezo-driven flexure stages. For minimising the beam distortion we use very high quality optical components like large ion-beam polished mirrors. In this paper we present the first metrology results on a newly designed mirror system following this design philosophy.

  7. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  8. Jenkins-CI, an Open-Source Continuous Integration System, as a Scientific Data and Image-Processing Platform.

    Science.gov (United States)

    Moutsatsos, Ioannis K; Hossain, Imtiaz; Agarinis, Claudia; Harbinski, Fred; Abraham, Yann; Dobler, Luc; Zhang, Xian; Wilson, Christopher J; Jenkins, Jeremy L; Holway, Nicholas; Tallarico, John; Parker, Christian N

    2017-03-01

    High-throughput screening generates large volumes of heterogeneous data that require a diverse set of computational tools for management, processing, and analysis. Building integrated, scalable, and robust computational workflows for such applications is challenging but highly valuable. Scientific data integration and pipelining facilitate standardized data processing, collaboration, and reuse of best practices. We describe how Jenkins-CI, an "off-the-shelf," open-source, continuous integration system, is used to build pipelines for processing images and associated data from high-content screening (HCS). Jenkins-CI provides numerous plugins for standard compute tasks, and its design allows the quick integration of external scientific applications. Using Jenkins-CI, we integrated CellProfiler, an open-source image-processing platform, with various HCS utilities and a high-performance Linux cluster. The platform is web-accessible, facilitates access and sharing of high-performance compute resources, and automates previously cumbersome data and image-processing tasks. Imaging pipelines developed using the desktop CellProfiler client can be managed and shared through a centralized Jenkins-CI repository. Pipelines and managed data are annotated to facilitate collaboration and reuse. Limitations with Jenkins-CI (primarily around the user interface) were addressed through the selection of helper plugins from the Jenkins-CI community.

  9. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  10. Imaging of primary and secondary radiation-Modelling and experimental results of a radioactive source and a water phantom

    Science.gov (United States)

    Gamage, K. A. A.; Taylor, G. C.; Joyce, M. J.

    2014-11-01

    In this paper the contribution of primary and secondary radiation from a water phantom to a pinhole volume, as a result of three neutron sources (Cf, AmBe and 5 MeV mono-energetic) and two gamma sources (Cs and Co), is separately estimated using the PTRAC particle tracking option available in MCNP. Also in this paper imaging of the mixed radiation field produced by a Van de Graaf accelerator (when a water phantom is present) is described. In the model, a spherical tally volume, 2 cm in diameter, was placed equidistantly from a radioactive source and 30×30×15 cm3 water phantom. Monte Carlo simulations have been carried out to investigate the level of primary and secondary radiation contributing to the pinhole volume directly from the source and from interactions in the phantom respectively. The spatial distribution of counts clearly discriminated the source and the phantom. The results have shown that the percentage of neutrons reflected from the phantom with energies above 1 MeV increases with mean energy of the source. This method has significant potential to characterise secondary radiation in proton therapy, where it would help to verify the location and the energy delivered during the treatment.

  11. Joint Source-Channel Decoding Scheme for Image Transmission over Wireless Channel

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We improve the iterative decoding algorithm by utilizing the "leaked" residual redundancy at the output of the source encoder without changing the encoder structure for the noisy channel.The experimental results show that using the residual redundancy of the compressed source in channel decoding is an effective method to improve the error correction performance.

  12. Imaging Molecular Structure and Dynamics utilizing X-ray Free-Electron-Laser Sources

    OpenAIRE

    Küpper, Jochen

    2015-01-01

    Imaging controlled molecules with ultrashort x- ray pulses from free-electron lasers enables the recording of “molecular movies”, i.e., snapshots of molecules at work, with spatial (picometer) and temporal (femtosecond) atomic resolution.

  13. Processing digital images and calculation of beam emittance (pepper-pot method for the Krion source)

    Science.gov (United States)

    Alexandrov, V. S.; Donets, E. E.; Nyukhalova, E. V.; Kaminsky, A. K.; Sedykh, S. N.; Tuzikov, A. V.; Philippov, A. V.

    2016-12-01

    Programs for the pre-processing of photographs of beam images on the mask based on Wolfram Mathematica and Origin software are described. Angles of rotation around the axis and in the vertical plane are taken into account in the generation of the file with image coordinates. Results of the emittance calculation by the Pep_emit program written in Visual Basic using the generated file in the test mode are presented.

  14. Study on exposure dose according to change of source to image distance and additional filter using abdomen phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Son, Jin Hyun [Dept. of Radiological Science, Shingu University, Sungnam (Korea, Republic of)

    2016-09-15

    This study is to minimize the patient dose and maintain the image quality according to change of source to image receptor distance and applying additional filter. In this study, we used the DR system, the tissue-equivalent abdomen phantom and the aluminium filter. The exposure conditions were set to 80 kVp using AEC mode. The collimation size was 16 x 16 inch. The exposure dose were measured 10 times when the SID was changed with 100, 110, 120 and 130 cm, respectively. The pirana 657 for dosimeter was located on center of radiation irradiation. The acquired images were analyzed by using the image J. In the results, the tube current was increased with increasing the SID but ESD was decreased with increasing the SID. The decrease of ESD attribute to use of filter that remove the photon of lower energy. In the histogram results using image J, there were differences between the ESD and the exposure conditions according to change of SID. However, there were not differences in histogram. Therefore, the exposure dose could reduced when set the longer SID. For pediatric exam, the exposure dose could reduced when used the aluminium filter.

  15. The National Alliance for Medical Image Computing, a roadmap initiative to build a free and open source software infrastructure for translational research in medical image analysis.

    Science.gov (United States)

    Kapur, Tina; Pieper, Steve; Whitaker, Ross; Aylward, Stephen; Jakab, Marianna; Schroeder, Will; Kikinis, Ron

    2012-01-01

    The National Alliance for Medical Image Computing (NA-MIC), is a multi-institutional, interdisciplinary community of researchers, who share the recognition that modern health care demands improved technologies to ease suffering and prolong productive life. Organized under the National Centers for Biomedical Computing 7 years ago, the mission of NA-MIC is to implement a robust and flexible open-source infrastructure for developing and applying advanced imaging technologies across a range of important biomedical research disciplines. A measure of its success, NA-MIC is now applying this technology to diseases that have immense impact on the duration and quality of life: cancer, heart disease, trauma, and degenerative genetic diseases. The targets of this technology range from group comparisons to subject-specific analysis.

  16. Head model and electrical source imaging: A study of 38 epileptic patients

    Directory of Open Access Journals (Sweden)

    Gwénael Birot

    2014-01-01

    We found that all head models provided very similar source locations. In patients having a positive post-operative outcome, at least 74% of the source maxima were within the resection. The median distance from the source maximum to the nearest intracranial electrode showing IED was 13.2, 15.6 and 15.6 mm for LSMAC, BEM and FEM, respectively. The study demonstrates that in clinical applications, the use of highly sophisticated and difficult to implement head models is not a crucial factor for an accurate ESI.

  17. Line fo cal X-ray source imaging%线焦斑X射线源成像∗

    Institute of Scientific and Technical Information of China (English)

    刘鑫; 易明皓; 郭金川

    2016-01-01

    High spatial coherent and bright X-ray beam is necessary condition for acquiring high quality radiography image. However, traditional X-ray tube can only provide high flux X-ray light or high spatial coherent light. In general, X-ray photons are generated by using energetic electrons with several tens or even hundreds keV to hit a target. Unfortunately, over 99% electron energy are converted into heat rather than the energy of X-ray photons. Thus, the heat dissipation of the target restricts the emission power and radiation flux. Increasing the emission area of X-ray can relieve the heat dissipation, but it would bring another serious problem—low spatial coherence that is in inverse proportion to emission area or focal spot. In order to solve the conflict between brightness and spatial coherence, an X-ray source with one-dimensional coherence is proposed in this work. The new X-ray source has a special focal spot where one side is small enough to ensure the spatial coherence and the perpendicular side is big enough to provide sufficient X-ray flux. In the direction of long side, the long size of focal spot will result in losing the image details. Consequently, an algorithm of superposition and rotation, in which many images with different rotation angles are added together, is proposed to retrieve the lost information. On the other hand, the spatial transfer function of superposition is analyzed in the frequency domain, and the result shows that the method of superposition can transfer more components of frequency than single image. Based on a traditional X-ray tube, a line focal spot source is designed and fabricated. Two series of experiments are performed for different destinations. After 17 images of a chip with different rotation angles and the line focal spot are collected, those images are rotated in the reverse direction and added together. The image of superposition clearly presents some details which are invisible in one of 17 images. At the same tube

  18. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Science.gov (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  19. Subarcsecond Imaging of the NGC 6334 I(N) Protocluster: Two Dozen Compact Sources and a Massive Disk Candidate

    CERN Document Server

    Hunter, T R; Cyganowski, C J; Young, K H

    2014-01-01

    Using the SMA and VLA, we have imaged the massive protocluster NGC6334I(N) at high angular resolution (0.5"~650AU) from 6cm to 0.87mm, detecting 18 new compact continuum sources. Three of the new sources are coincident with previously-identified water masers. Together with the previously-known sources, these data bring the number of likely protocluster members to 25 for a protostellar density of ~700 pc^-3. Our preliminary measurement of the Q-parameter of the minimum spanning tree is 0.82 -- close to the value for a uniform volume distribution. All of the (nine) sources with detections at multiple frequencies have SEDs consistent with dust emission, and two (SMA1b and SMA4) also have long wavelength emission consistent with a central hypercompact HII region. Thermal spectral line emission, including CH3CN, is detected in six sources: LTE model fitting of CH3CN(J=12-11) yields temperatures of 72-373K, confirming the presence of multiple hot cores. The fitted LSR velocities range from -3.3 to -7.0 km/s, with a...

  20. Development and Evaluation of an Open-Source Software Package “CGITA” for Quantifying Tumor Heterogeneity with Molecular Images

    Directory of Open Access Journals (Sweden)

    Yu-Hua Dean Fang

    2014-01-01

    Full Text Available Background. The quantification of tumor heterogeneity with molecular images, by analyzing the local or global variation in the spatial arrangements of pixel intensity with texture analysis, possesses a great clinical potential for treatment planning and prognosis. To address the lack of available software for computing the tumor heterogeneity on the public domain, we develop a software package, namely, Chang-Gung Image Texture Analysis (CGITA toolbox, and provide it to the research community as a free, open-source project. Methods. With a user-friendly graphical interface, CGITA provides users with an easy way to compute more than seventy heterogeneity indices. To test and demonstrate the usefulness of CGITA, we used a small cohort of eighteen locally advanced oral cavity (ORC cancer patients treated with definitive radiotherapies. Results. In our case study of ORC data, we found that more than ten of the current implemented heterogeneity indices outperformed SUVmean for outcome prediction in the ROC analysis with a higher area under curve (AUC. Heterogeneity indices provide a better area under the curve up to 0.9 than the SUVmean and TLG (0.6 and 0.52, resp.. Conclusions. CGITA is a free and open-source software package to quantify tumor heterogeneity from molecular images. CGITA is available for free for academic use at http://code.google.com/p/cgita.

  1. Development of a prototype apparatus visualizing on a screen the gamma sources superimposed on the image of the vision field

    Energy Technology Data Exchange (ETDEWEB)

    Imbard, G.; Lemaire, J.E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Carcreff, H.; Marchand, L.; Thellier, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux

    1994-12-31

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for {sup 60} Co and 0.8 deg. for {sup 137} Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h{sup -1}. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs.

  2. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  3. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array

    Science.gov (United States)

    Zhang, Lei; Yuan, Hong; Burk, Laurel M.; Inscoe, Christy R.; Hadsell, Michael J.; Chtcheprov, Pavel; Lee, Yueh Z.; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors.

  4. X-ray Sources with Periodic Variability in a Deep Chandra Image of the Galactic Center

    CERN Document Server

    Muno, M P; Bautz, M W; Brandt, W N; Garmire, G P; Ricker, G R

    2003-01-01

    We report the discovery of eight X-ray sources with periodic variability in 487 ks of observations of the Galactic center with Chandra. The sources are identified from a sample of 285 objects detected with 100-4200 net counts. Their periods range from 300 s to 4.5 h with amplitudes between 40% and 70% rms. They have luminosities of (1 - 5) \\times 10^{32} erg/sec (2--8 keV at 8 kpc). The spectra of seven of the eight sources are consistent with Gamma = 0 power laws absorbed by gas and dust with a column density equal to or higher than that toward the Galactic Center (6 times 10^{22} cm^{-2}). Four of these sources also exhibit emission lines near 6.7 keV from He-like Fe, with equivalent widths of 600-1000 eV. These properties are consistent with both magnetically accreting cataclysmic variables and wind-accreting neutron stars in high-mass X-ray binaries. The eighth source has an absorbing column of 5 \\times 10^{21} cm^{-2} that places it in the foreground. Its spectrum is consistent with either a Gamma = 1.4 ...

  5. Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Hansen, Sofie Therese; Stahlhut, Carsten

    2013-01-01

    EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring...

  6. Alternative technique using dual source CT imaging for assessment of myocardial perfusion

    Directory of Open Access Journals (Sweden)

    Amgad S. Abdel-Rahman

    2015-06-01

    Conclusion: We propose that comprehensive evaluation of coronary artery morphology and myocardial perfusion in patients with CAD could be achieved by single reproducible non-invasive contrast enhanced CT acquisition using DSCT scanners while operated in single energy mode with high sensitivity, specificity and diagnostic accuracy, it also has the potential to be the first, independent and stand out imaging choice in such field.

  7. Three-dimensional imaging MS of lipids in atherosclerotic plaques: Open-source methods for reconstruction and analysis.

    Science.gov (United States)

    Patterson, Nathan H; Doonan, Robert J; Daskalopoulou, Stella S; Dufresne, Martin; Lenglet, Sébastien; Montecucco, Fabrizio; Thomas, Aurélien; Chaurand, Pierre

    2016-06-01

    Three-dimensional MALDI imaging MS (IMS) is a growing branch of IMS still requiring developments in methodology and technology to make the technique routinely accessible. Many challenges are simply a matter of producing 3D reconstructions and interpreting them in a timely fashion. In this aim and using analysis of lipids from atherosclerotic plaques from a human carotid and mouse aortic sinuses, we describe 3D reconstruction methods using open-source software that provides high-quality visualization and rapid interpretation through multivariate segmentation of the 3D IMS data. Multiple datasets were generated for each sample and we provide insight into simple means to correlate the separate datasets.

  8. Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors.

    Science.gov (United States)

    Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs

    2013-06-01

    In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications.

  9. Images of innovation in discourses of free and open source software

    NARCIS (Netherlands)

    Dafermos, G.; Van Eeten, M.J.G.

    2014-01-01

    In this study, we examine the relationship between innovation and free/open source software (FOSS) based on the views of contributors to FOSS projects, using Q methodology as a method of discourse analysis to make visible the positions held by FOSS contributors and identify the discourses encountere

  10. An all-optical Compton source for single-exposure x-ray imaging

    Science.gov (United States)

    Döpp, A.; Guillaume, E.; Thaury, C.; Gautier, J.; Andriyash, I.; Lifschitz, A.; Malka, V.; Rousse, A.; Phuoc, K. Ta

    2016-03-01

    All-optical Compton sources are innovative, compact devices to produce high energy femtosecond x-rays. Here we present results on a single-pulse scheme that uses a plasma mirror to reflect the drive beam of a laser plasma accelerator and to make it collide with the highly-relativistic electrons in its wake. The accelerator is operated in the self-injection regime, producing quasi-monoenergetic electron beams of around 150 MeV peak energy. Scattering with the intense femtosecond laser pulse leads to the emission of a collimated high energy photon beam. Using continuum-attenuation filters we measure significant signal content beyond 100 keV and with simulations we estimate a peak photon energy of around 500 keV. The source divergence is about 13 mrad and the pointing stability is 7 mrad. We demonstrate that the photon yield from the source is sufficiently high to illuminate a centimeter-size sample placed 90 centimeters behind the source, thus obtaining radiographs in a single shot.

  11. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  12. K-edge digital subtraction imaging based on a dichromatic and compact x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sarnelli, A [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy); Taibi, A [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy); Tuffanelli, A [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy); Baldazzi, G [Dipartimento di Fisica dell' Universita di Bologna and INFN Sezione di Bologna, Viale Berti Pichat 64/2, 40127 Bologna (Italy); Bollini, D [Dipartimento di Fisica dell' Universita di Bologna and INFN Sezione di Bologna, Viale Berti Pichat 64/2, 40127 Bologna (Italy); Rodriguez, A E Cabal [CAEDAN, Havana (Cuba); Gombia, M [Dipartimento di Fisica dell' Universita di Bologna and INFN Sezione di Bologna, Viale Berti Pichat 64/2, 40127 Bologna (Italy); Prino, F [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN Sezione di Alessandria, C.so, Borsalino 54, I-15100 Alessandria (Italy); Ramello, L [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN Sezione di Alessandria, C.so, Borsalino 54, I-15100 Alessandria (Italy); Tomassi, E [Dipartimento di Scienze e Tecnologie Avanzate, Universita del Piemonte Orientale and INFN Sezione di Alessandria, C.so, Borsalino 54, I-15100 Alessandria (Italy); Gambaccini, M [Dipartimento di Fisica dell' Universita di Ferrara and INFN Sezione di Ferrara, Via Paradiso 12, I-44100 Ferrara (Italy)

    2004-07-21

    This work proposes a compact dichromatic imaging system for the application of the K-edge digital subtraction technique based on a conventional x-ray tube and a monochromator system. A quasi-monochromatic x-ray beam at the energy of iodine K-edge is produced by Bragg diffraction on a mosaic crystal. Two thin adjacent beams with energies that bracket the K-edge discontinuity are obtained from the diffracted beam by means of a proper collimation system. They are then detected using an array of Si detectors. A home-made phantom is used to study the image quality as a function of iodine concentration. Signal and signal-to-noise ratio analysis has also been performed. The results are compared with theoretical expectations.

  13. A new method for imaging faint objects nearby a bright source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In astronomical observation, it is difficult to obtain the image of faint objects in the peripheral area around a bright celestial body. In order to solve the problem, a new method is designed and experimented, which is called the separation readout technique (SRT). SRT is different from either the traditional coronagraphy or the newly-developed anti-blooming CCD technique, and allows an enough-long exposure to the faint objects in the area around a bright celestial body with the well-preserved bright body's image in one frame. This paper describes in detail the principle of SRT, the computer simulation, the experimental devising and result of SRT observation on a telescope.

  14. K-edge digital subtraction imaging based on a dichromatic and compact x-ray source

    Science.gov (United States)

    Sarnelli, A.; Taibi, A.; Tuffanelli, A.; Baldazzi, G.; Bollini, D.; Cabal Rodriguez, A. E.; Gombia, M.; Prino, F.; Ramello, L.; Tomassi, E.; Gambaccini, M.

    2004-07-01

    This work proposes a compact dichromatic imaging system for the application of the K-edge digital subtraction technique based on a conventional x-ray tube and a monochromator system. A quasi-monochromatic x-ray beam at the energy of iodine K-edge is produced by Bragg diffraction on a mosaic crystal. Two thin adjacent beams with energies that bracket the K-edge discontinuity are obtained from the diffracted beam by means of a proper collimation system. They are then detected using an array of Si detectors. A home-made phantom is used to study the image quality as a function of iodine concentration. Signal and signal-to-noise ratio analysis has also been performed. The results are compared with theoretical expectations.

  15. Blind Source Separation of Hemodynamics from Magnetic Resonance Perfusion Brain Images Using Independent Factor Analysis

    Directory of Open Access Journals (Sweden)

    Yen-Chun Chou

    2010-01-01

    Full Text Available Perfusion magnetic resonance brain imaging induces temporal signal changes on brain tissues, manifesting distinct blood-supply patterns for the profound analysis of cerebral hemodynamics. We employed independent factor analysis to blindly separate such dynamic images into different maps, that is, artery, gray matter, white matter, vein and sinus, and choroid plexus, in conjunction with corresponding signal-time curves. The averaged signal-time curve on the segmented arterial area was further used to calculate the relative cerebral blood volume (rCBV, relative cerebral blood flow (rCBF, and mean transit time (MTT. The averaged ratios for rCBV, rCBF, and MTT between gray and white matters for normal subjects were congruent with those in the literature.

  16. Comparison of Source Images for protons, $\\pi^-$'s and $\\Lambda$'s in 6 AGeV Au+Au collisions

    CERN Document Server

    Chung, P; Alexander, J M; Anderson, M; Best, D; Brady, F P; Case, T; Caskey, W; Cebra, D; Chance, J L; Cole, B; Crowe, K; Das, A C; Draper, J E; Gilkes, M L; Gushue, S; Heffner, M; Hirsch, A S; Hjort, E L; Huo, L; Justice, M; Kaplan, M; Keane, D; Kintner, J C; Klay, J; Krofcheck, D; Lacey, R A; Lauret, J; Lisa, M A; Liu, H; Liu, Y M; McGrath, R; Milosevich, Z; Odyniec, Grazyna Janina; Olson, D L; Panitkin, S; Porile, N T; Rai, G; Ritter, H G; Romero, J L; Scharenberg, R P; Srivastava, B; Stone, N T B; Symons, T J M; Whitfield, J; Witt, R; Wood, L; Zhang Wei Ning; Brown, D; Pratt, S; Wang, F; Danielewicz, P

    2003-01-01

    Source images are extracted from two-particle correlations constructed from strange and non-strange hadrons produced in 6 AGeV Au + Au collisions. Very different source images result from pp vs p$\\Lambda$ vs $\\pi^-\\pi^-$ correlations. These observations suggest important differences in the space-time emission histories for protons, pions and neutral strange baryons produced in the same events.

  17. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  18. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources.

    Science.gov (United States)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mírian L A F; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (μCT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray μCT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumbá (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based μCT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  19. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  20. Construction and testing of wavefront reference sources for interferometry of ultra-precise imaging systems

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M A; Phillion, D W; Sommargren, G E; Decker, T A; Taylor, J S; Gomei, Y; Kakuchi, O; Takeuchi, S

    2005-07-01

    We have built and calibrated a set of 532-nm wavelength wavefront reference sources that fill a numerical aperture of 0.3. Early data show that they have a measured departure from sphericity of less than 0.2 nm RMS (0.4 milliwaves) and a reproducibility of better than 0.05 nm rms. These devices are compact, portable, fiber-fed, and are intended as sources of measurement and reference waves in wavefront measuring interferometers used for metrology of EUVL optical elements and systems. Keys to wave front accuracy include fabrication of an 800-nm pinhole in a smooth reflecting surface as well as a calibration procedure capable of measuring axisymmetric and non-axisymmetric errors.

  1. EcoIP: An Open Source Image Analysis Toolkit to Identify Different Stages of Plant Phenology for Multiple Species with Pan-Tilt-Zoom Cameras

    DEFF Research Database (Denmark)

    Granados, Joel; Bonnet, Philippe

    2013-01-01

    Because of the increased number of cameras employed in environmental sensing and the tremendous image output they produce, we have created a flexible, open-source software solution called EcoIP to help automatically determine different phenophases for different species from digital image sequences...

  2. A Compact Source for Quantum Image Processing with Four-wave Mixing in Rubidium-85

    CERN Document Server

    Vogl, Ulrich; Lett, Paul D; 10.1117/12.907333

    2012-01-01

    We have built a compact light source for bright squeezed twin-beams at 795\\,nm based on four-wave-mixing in atomic $^{85}$Rb vapor. With a total optical power of 400\\,mW derived from a free running diode laser and a tapered amplifier to pump the four-wave-mixing process, we achieve 2.1\\,dB intensity difference squeezing of the twin beams below the standard quantum limit, without accounting for losses. Squeezed twin beams generated by the type of source presented here could be used as reference for the precise calibration of photodetectors. Transferring the quantum correlations from the light to atoms in order to generate correlated atom beams is another interesting prospect. In this work we investigate the dispersion that is generated by the employed four-wave-mixing process with respect to bandwidth and dependence on probe detuning. We are currently using this squeezed light source to test the transfer of spatial information and quantum correlations through media of anomalous dispersion.

  3. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Finite size correction by image sources

    Science.gov (United States)

    Alimonti, L.; Atalla, N.

    2017-02-01

    This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.

  4. Smartphones Get Emotional: Mind Reading Images and Reconstructing the Neural Sources

    DEFF Research Database (Denmark)

    Petersen, Michael Kai; Stahlhut, Carsten; Stopczynski, Arkadiusz

    2011-01-01

    Combining a 14 channel neuroheadset with a smartphone to capture and process brain imaging data, we demonstrate the ability to distinguish among emotional responses re ected in dierent scalp potentials when viewing pleasant and unpleasant pictures compared to neutral content. Clustering independent...... but may also provide an intuitive interface for interacting with a 3D rendered model of brain activity. Integrating a wireless EEG set with a smartphone thus offers completely new opportunities for modeling the mental state of users as well as providing a basis for novel bio-feedback applications....

  5. Retinal image smear as a source of information about magnitude of eye movement.

    Science.gov (United States)

    Festinger, L; Holtzman, J D

    1978-11-01

    A number of experiments were conducted to determine to what extent retinal image smearing during saccades provides information about the eye movement magnitude to the perceptual system. The technique involved obtaining measures of perceived movement when the total visual field was displaced in conjunction with saccadic eye movements. Trials with normal retinal smear were compared with trials on which smearing was greatly reduced or eliminated. The results are interpreted as showing that the absence of normal retinal smear during a saccade increases the uncertainty in the information available to the perceptual system and that this uncertainty results in a tendency to perceive smaller than veridical amounts of movement.

  6. An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources

    Science.gov (United States)

    O'Reilly, Shannon E.; DeWeese, Lindsay S.; Maynard, Matthew R.; Rajon, Didier A.; Wayson, Michael B.; Marshall, Emily L.; Bolch, Wesley E.

    2016-12-01

    An image-based skeletal dosimetry model for internal electron sources was created for the ICRP-defined reference adult female. Many previous skeletal dosimetry models, which are still employed in commonly used internal dosimetry software, do not properly account for electron escape from trabecular spongiosa, electron cross-fire from cortical bone, and the impact of marrow cellularity on active marrow self-irradiation. Furthermore, these existing models do not employ the current ICRP definition of a 50 µm bone endosteum (or shallow marrow). Each of these limitations was addressed in the present study. Electron transport was completed to determine specific absorbed fractions to both active and shallow marrow of the skeletal regions of the University of Florida reference adult female. The skeletal macrostructure and microstructure were modeled separately. The bone macrostructure was based on the whole-body hybrid computational phantom of the UF series of reference models, while the bone microstructure was derived from microCT images of skeletal region samples taken from a 45 years-old female cadaver. The active and shallow marrow are typically adopted as surrogate tissue regions for the hematopoietic stem cells and osteoprogenitor cells, respectively. Source tissues included active marrow, inactive marrow, trabecular bone volume, trabecular bone surfaces, cortical bone volume, and cortical bone surfaces. Marrow cellularity was varied from 10 to 100 percent for active marrow self-irradiation. All other sources were run at the defined ICRP Publication 70 cellularity for each bone site. A total of 33 discrete electron energies, ranging from 1 keV to 10 MeV, were either simulated or analytically modeled. The method of combining skeletal macrostructure and microstructure absorbed fractions assessed using MCNPX electron transport was found to yield results similar to those determined with the PIRT model applied to the UF adult male skeletal dosimetry model. Calculated

  7. Web-based spatial analysis with the ILWIS open source GIS software and satellite images from GEONETCast

    Science.gov (United States)

    Lemmens, R.; Maathuis, B.; Mannaerts, C.; Foerster, T.; Schaeffer, B.; Wytzisk, A.

    2009-12-01

    This paper involves easy accessible integrated web-based analysis of satellite images with a plug-in based open source software. The paper is targeted to both users and developers of geospatial software. Guided by a use case scenario, we describe the ILWIS software and its toolbox to access satellite images through the GEONETCast broadcasting system. The last two decades have shown a major shift from stand-alone software systems to networked ones, often client/server applications using distributed geo-(web-)services. This allows organisations to combine without much effort their own data with remotely available data and processing functionality. Key to this integrated spatial data analysis is a low-cost access to data from within a user-friendly and flexible software. Web-based open source software solutions are more often a powerful option for developing countries. The Integrated Land and Water Information System (ILWIS) is a PC-based GIS & Remote Sensing software, comprising a complete package of image processing, spatial analysis and digital mapping and was developed as commercial software from the early nineties onwards. Recent project efforts have migrated ILWIS into a modular, plug-in-based open source software, and provide web-service support for OGC-based web mapping and processing. The core objective of the ILWIS Open source project is to provide a maintainable framework for researchers and software developers to implement training components, scientific toolboxes and (web-) services. The latest plug-ins have been developed for multi-criteria decision making, water resources analysis and spatial statistics analysis. The development of this framework is done since 2007 in the context of 52°North, which is an open initiative that advances the development of cutting edge open source geospatial software, using the GPL license. GEONETCast, as part of the emerging Global Earth Observation System of Systems (GEOSS), puts essential environmental data at the

  8. AKARI Near- to Mid-Infrared Imaging and Spectroscopic Observations of the Small Magellanic Cloud. I. Bright Point Source List

    CERN Document Server

    Ita, Y; Tanabe, T; Matsunaga, N; Matsuura, M; Yamamura, I; Nakada, Y; Izumiura, H; Ueta, T; Mito, H; Fukushi, H; Kato, D

    2010-01-01

    We carried out a near- to mid-infrared imaging and spectroscopic observations of the patchy areas in the Small Magellanic Cloud using the Infrared Camera on board AKARI. Two 100 arcmin2 areas were imaged in 3.2, 4.1, 7, 11, 15, and 24 um and also spectroscopically observed in the wavelength range continuously from 2.5 to 13.4 um. The spectral resolving power (lambda/Delta lambda) is about 20, 50, and 50 at 3.5, 6.6 and 10.6 um, respectively. Other than the two 100 arcmin2 areas, some patchy areas were imaged and/or spectroscopically observed as well. In this paper, we overview the observations and present a list of near- to mid-infrared photometric results, which lists ~ 12,000 near-infrared and ~ 1,800 mid-infrared bright point sources detected in the observed areas. The 10 sigma limits are 16.50, 16.12, 13.28, 11.26, 9.62, and 8.76 in Vega magnitudes at 3.2, 4.1, 7, 11, 15, and 24 um bands, respectively.

  9. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA Utilizing Raster Attribute Tables

    Directory of Open Access Journals (Sweden)

    Daniel Clewley

    2014-06-01

    Full Text Available A modular system for performing Geographic Object-Based Image Analysis (GEOBIA, using entirely open source (General Public License compatible software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT. The system utilizes a number of libraries, developed by the authors: The Remote Sensing and GIS Library (RSGISLib, the Raster I/O Simplification (RIOS Python Library, the KEA image format and TuiView image viewer. All libraries are accessed through Python, providing a common interface on which to build processing chains. Three examples are presented, to demonstrate the capabilities of the system: (1 classification of mangrove extent and change in French Guiana; (2 a generic scheme for the classification of the UN-FAO land cover classification system (LCCS and their subsequent translation to habitat categories; and (3 a national-scale segmentation for Australia. The system presented provides similar functionality to existing GEOBIA packages, but is more flexible, due to its modular environment, capable of handling complex classification processes and applying them to larger datasets.

  10. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, Adam [National Security Technologies, LLC; Carlson, Carl [National Security Technologies, LLC; Young, Jason [National Security Technologies, LLC; Curtis, Alden [National Security Technologies, LLC; Jensen, Brian [Los Alamos National Laboratory; Ramos, Kyle [Los Alamos National Laboratory; Yeager, John [Los Alamos National Laboratory; Montgomery, David [Los Alamos National Laboratory; Fezza, Kamel [Argonne National Laboratory

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSE experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.

  11. High-pitch dual-source CT angiography of supra-aortic arteries: assessment of image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Korn, A.; Fenchel, M.; Bender, B.; Danz, S.; Ernemann, U. [Department of Diagnostic und Interventional Neuroradiology, Tuebingen (Germany); Thomas, C.; Ketelsen, D.; Claussen, C.D.; Heuschmid, M. [Department of Diagnostic und Interventional Radiology, Tuebingen (Germany); Moonis, G. [Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA (United States); Krauss, B. [Siemens AG, Imaging and Therapy Division, Forchheim (Germany); Brodoefel, H. [Department of Diagnostic und Interventional Radiology, Tuebingen (Germany); Beth Israel Deaconess Medical Center, Department of Radiology, Boston, MA (United States); Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA (United States)

    2013-04-15

    High-pitch CT angiography (CTA) is a recent innovation that allows significant shortening of scan time with volume coverage of 43 mm per second. The aim of our study was to assess this technique in CTA of the head and neck. CTA of supra-aortic arteries was performed in 50 patients using two acquisition protocols: conventional single-source 64-slice (pitch 1.2) and high-pitch dual-source 128-slice CT (pitch 3.2). Subjective and objective image quality of supra-aortic vessel ostia as well as intra- and extra-cranial segments was retrospectively assessed by blinded readers and radiation dose compared between the two protocols. Conventional and high-pitch CTA achieved comparable signal-to-noise ratios in arterial (54.3 {+-} 16.5 versus 57.3 {+-} 14.8; p = 0.50) and venous segments (15.8 {+-} 6.7 versus 18.9 {+-} 8.9; p = 0.21). High-pitch scanning was, however, associated with sharper delineation of vessel contours and image quality significantly improved at the level of supra-aortic vessel ostia (p < 0.0001) as well as along the brachiocephalic trunk (p < 0.0001), the subclavian arteries (p < 0.0001), proximal common carotid arteries (p = 0.01), and vertebral V1 segments (p < 0.0001). Using the high-pitch mode, the dose-length product was reduced by about 35 % (218.2 {+-} 30 versus 141.8 {+-} 20 mGy x cm). Due to elimination of transmitted cardiac motion, high-pitch CTA of the neck improves image quality in the proximity of the aortic arch while significantly lowering radiation dose. The technique thus qualifies as a promising alternative to conventional spiral CTA and may be particularly useful for identification of ostial stenosis. (orig.)

  12. Agreement between Gonioscopic Examination and Swept Source Fourier Domain Anterior Segment Optical Coherence Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Mohammed Rigi

    2016-01-01

    Full Text Available Purpose. To evaluate interobserver, intervisit, and interinstrument agreements for gonioscopy and Fourier domain anterior segment optical coherence tomography (FD ASOCT for classifying open and narrow angle eyes. Methods. Eighty-six eyes with open or narrow anterior chamber angles were included. The superior angle was classified open or narrow by 2 of 5 glaucoma specialists using gonioscopy and imaged by FD ASOCT in the dark. The superior angle of each FD ASOCT image was graded as open or narrow by 2 masked readers. The same procedures were repeated within 6 months. Kappas for interobserver and intervisit agreements for each instrument and interinstrument agreements were calculated. Results. The mean age was 50.9 (±18.4 years. Interobserver agreements were moderate to good for both gonioscopy (0.57 and 0.69 and FD ASOCT (0.58 and 0.75. Intervisit agreements were moderate to excellent for both gonioscopy (0.53 to 0.86 and FD ASOCT (0.57 and 0.85. Interinstrument agreements were fair to good (0.34 to 0.63, with FD ASOCT classifying more angles as narrow than gonioscopy. Conclusions. Both gonioscopy and FD ASOCT examiners were internally consistent with similar interobserver and intervisit agreements for angle classification. Agreement between instruments was fair to good, with FD ASOCT classifying more angles as narrow than gonioscopy.

  13. Three-dimensional ventricular activation imaging by means of equivalent current source modeling and estimation.

    Science.gov (United States)

    Liu, Z; Liu, C; He, B

    2006-01-01

    This paper presents a novel electrocardiographic inverse approach for imaging the 3-D ventricular activation sequence based on the modeling and estimation of the equivalent current density throughout the entire myocardial volume. The spatio-temporal coherence of the ventricular excitation process is utilized to derive the activation time from the estimated time course of the equivalent current density. At each time instant during the period of ventricular activation, the distributed equivalent current density is noninvasively estimated from body surface potential maps (BSPM) using a weighted minimum norm approach with a spatio-temporal regularization strategy based on the singular value decomposition of the BSPMs. The activation time at any given location within the ventricular myocardium is determined as the time point with the maximum local current density estimate. Computer simulation has been performed to evaluate the capability of this approach to image the 3-D ventricular activation sequence initiated from a single pacing site in a physiologically realistic cellular automaton heart model. The simulation results demonstrate that the simulated "true" activation sequence can be accurately reconstructed with an average correlation coefficient of 0.90, relative error of 0.19, and the origin of ventricular excitation can be localized with an average localization error of 5.5 mm for 12 different pacing sites distributed throughout the ventricles.

  14. A sparsity-based iterative algorithm for reconstruction of micro-CT images from highly undersampled projection datasets obtained with a synchrotron X-ray source

    Science.gov (United States)

    Melli, S. Ali; Wahid, Khan A.; Babyn, Paul; Cooper, David M. L.; Gopi, Varun P.

    2016-12-01

    Synchrotron X-ray Micro Computed Tomography (Micro-CT) is an imaging technique which is increasingly used for non-invasive in vivo preclinical imaging. However, it often requires a large number of projections from many different angles to reconstruct high-quality images leading to significantly high radiation doses and long scan times. To utilize this imaging technique further for in vivo imaging, we need to design reconstruction algorithms that reduce the radiation dose and scan time without reduction of reconstructed image quality. This research is focused on using a combination of gradient-based Douglas-Rachford splitting and discrete wavelet packet shrinkage image denoising methods to design an algorithm for reconstruction of large-scale reduced-view synchrotron Micro-CT images with acceptable quality metrics. These quality metrics are computed by comparing the reconstructed images with a high-dose reference image reconstructed from 1800 equally spaced projections spanning 180°. Visual and quantitative-based performance assessment of a synthetic head phantom and a femoral cortical bone sample imaged in the biomedical imaging and therapy bending magnet beamline at the Canadian Light Source demonstrates that the proposed algorithm is superior to the existing reconstruction algorithms. Using the proposed reconstruction algorithm to reduce the number of projections in synchrotron Micro-CT is an effective way to reduce the overall radiation dose and scan time which improves in vivo imaging protocols.

  15. Investigations of OCT imaging performance using a unique source providing several spectral wavebands

    Science.gov (United States)

    Cernat, Ramona; Dobre, George M.; Trifanov, Irina; Neagu, Liviu; Bradu, Adrian; Hughes, Michael; Podoleanu, Adrian Gh.

    2008-02-01

    The authors report investigations into the suitability of a broadband supercontinuum fiber laser (SCFL) for use in Optical Coherence Tomography (OCT). The supercontinuum of light extending from 400 nm to 1800 nm can be used selectively in several spectral wavebands from 600 nm to 1700 nm in order to characterize the performance of single mode (SM) fiber OCT systems through spectral and auto-correlation measurements, dispersion measurements and image acquisition. Spectral selection and tailoring is made possible through a combination of bandpass optical filters. In addition, for the first time, given the optical bandwidth available, we perform evaluation of effective noise bandwidths which take into consideration the spectral behavior of the optical splitter in the balanced detection receiver.

  16. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    The conventional scanning techniques are not directly extendable for 3D real-time imaging because of the time necessary to acquire one volume. Using a linear array and synthetic transmit aperture, the volume can be scanned plane by plane. Up to 1000 planes per second can be scanned for a typical...... dynamic focusing in the elevation plane. A 0.1 mm point scatterer was mounted in an agar block and scanned in a water bath. The transducer is a 64 elements linear array with a pitch of 209 μm. The transducer height is 4 mm in the elevation plane and it is focused at 20 mm giving a F-number of 5. The point...

  17. Multi-source image reconstruction: exploitation of EO-1/ALI in Landsat-7/ETM+ SLC-off gap filling

    Science.gov (United States)

    Darvishi Boloorani, Ali; Erasmi, Stefan; Kappas, Martin

    2008-02-01

    The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) is the sensor payload on the Landsat-7 satellite imager (launched on April 15th, 1999) that is a derivative of the Landsat-4 and 5 Thematic Mapper (TM) land imager sensors. Scan Line Corrector (SLC) malfunctioning appeared onboard on May 31, 2003. The SLC-Off problem was caused by failure of the SLC which compensates for the forward motion of the satellite [1]. As ETM+ is still capable of acquiring images with the SLC-Off mode, the need of applying new techniques and using other data sources to reconstruct the missed data is a challenging for scientists and final users of remotely sensed images. One of the predicted future roles of the Advanced Land Imager (ALI) onboard the Earth Observer One (EO-1) is its ability to offer a potential technological direction for Landsat data continuity missions [2]. In this regard more than the purposes of the work as fabricating the gapped area in the ETM+ the attempt to evaluate the ALI imagery ability is another noticeable point in this work. In the literature there are several techniques and algorithms for gap filling. For instance local linear histogram matching [3], ordinary kriging, and standardized ordinary cokriging [4]. Here we used the Regression Based Data Combination (RBDC) in which it is generally supposed that two data sets (i.e. Landsat/ETM+ and EO-1/ALI) in the same spectral ranges (for instance band 3 ETM+ and band 4 ALI in 0.63 - 0.69 μm) will have meaningful and useable statistical characteristics. Using this relationship the gap area in ETM+ can be filled using EO-1/ALI data. Therefore the process is based on the knowledge of statistical structures of the images which is used to reconstruct the gapped areas. This paper presents and compares four regression based techniques. First two ordinary methods with no improvement in the statistical parameters were undertaken as Scene Based (SB) and Cluster Based (CB) followed by two statistically developed algorithms

  18. First application of liquid-metal-jet sources for small-animal imaging: High-resolution CT and phase-contrast tumor demarcation

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Daniel H.; Lundstroem, Ulf; Burvall, Anna; Hertz, Hans M. [Department of Applied Physics, KTH Royal Institute of Technology/Albanova, 10691 Stockholm (Sweden); Westermark, Ulrica K.; Arsenian Henriksson, Marie [Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm (Sweden)

    2013-02-15

    Purpose: Small-animal studies require images with high spatial resolution and high contrast due to the small scale of the structures. X-ray imaging systems for small animals are often limited by the microfocus source. Here, the authors investigate the applicability of liquid-metal-jet x-ray sources for such high-resolution small-animal imaging, both in tomography based on absorption and in soft-tissue tumor imaging based on in-line phase contrast. Methods: The experimental arrangement consists of a liquid-metal-jet x-ray source, the small-animal object on a rotating stage, and an imaging detector. The source-to-object and object-to-detector distances are adjusted for the preferred contrast mechanism. Two different liquid-metal-jet sources are used, one circulating a Ga/In/Sn alloy and the other an In/Ga alloy for higher penetration through thick tissue. Both sources are operated at 40-50 W electron-beam power with {approx}7 {mu}m x-ray spots, providing high spatial resolution in absorption imaging and high spatial coherence for the phase-contrast imaging. Results: High-resolution absorption imaging is demonstrated on mice with CT, showing 50 {mu}m bone details in the reconstructed slices. High-resolution phase-contrast soft-tissue imaging shows clear demarcation of mm-sized tumors at much lower dose than is required in absorption. Conclusions: This is the first application of liquid-metal-jet x-ray sources for whole-body small-animal x-ray imaging. In absorption, the method allows high-resolution tomographic skeletal imaging with potential for significantly shorter exposure times due to the power scalability of liquid-metal-jet sources. In phase contrast, the authors use a simple in-line arrangement to show distinct tumor demarcation of few-mm-sized tumors. This is, to their knowledge, the first small-animal tumor visualization with a laboratory phase-contrast system.

  19. 3D nanoscale imaging of biological samples with laboratory-based soft X-ray sources

    Science.gov (United States)

    Dehlinger, Aurélie; Blechschmidt, Anne; Grötzsch, Daniel; Jung, Robert; Kanngießer, Birgit; Seim, Christian; Stiel, Holger

    2015-09-01

    In microscopy, where the theoretical resolution limit depends on the wavelength of the probing light, radiation in the soft X-ray regime can be used to analyze samples that cannot be resolved with visible light microscopes. In the case of soft X-ray microscopy in the water-window, the energy range of the radiation lies between the absorption edges of carbon (at 284 eV, 4.36 nm) and oxygen (543 eV, 2.34 nm). As a result, carbon-based structures, such as biological samples, posses a strong absorption, whereas e.g. water is more transparent to this radiation. Microscopy in the water-window, therefore, allows the structural investigation of aqueous samples with resolutions of a few tens of nanometers and a penetration depth of up to 10μm. The development of highly brilliant laser-produced plasma-sources has enabled the transfer of Xray microscopy, that was formerly bound to synchrotron sources, to the laboratory, which opens the access of this method to a broader scientific community. The Laboratory Transmission X-ray Microscope at the Berlin Laboratory for innovative X-ray technologies (BLiX) runs with a laser produced nitrogen plasma that emits radiation in the soft X-ray regime. The mentioned high penetration depth can be exploited to analyze biological samples in their natural state and with several projection angles. The obtained tomogram is the key to a more precise and global analysis of samples originating from various fields of life science.

  20. Application of fusion of coincidence PET/CT image and dual source CT image in diagnosis of tumors%经济型PET/CT与双源CT异机融合在肿瘤诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    苏雪娟; 鲍红梅; 刘帆; 李运奇; 高琼

    2012-01-01

    Objective To explore the value of fusion of coincidence PET/CT image and dual source CT image in comparison of fused imaging quality. Methods Integration of coincidence PET/CT PET images with dual source CT images was performed in 29 cases with suspected tumor or tumor recurrence or metastasis, and the image quality was compared with that of PET/CT in fused images. Results Forty-six primary or metastic tumors were detected by both methods. The image quality in fused imaging of stand-alone coincidence PET/CT with dual source CT was better than that of coincidence PET/CT in fused images (X2 = 14. 743, P<0. 001). Conclusion The integration of stand-alone coincidence PET/CT and dual source CT is convenient and practical,having complementary advantages, which may improve image quality and help clinical diagnosis and treatment of tumors.%目的 通过对比分析经济型PET/CT与双源CT异机融合的图像质量,探讨异机融合的临床应用价值.方法 对29例可疑肿瘤或肿瘤复发转移患者行经济型PET/CT的PET与双源CT图像融合,并与同机融合图像质量进行对比分析.结果 两种方法均检出原发灶和转移灶共46个,异机融合图像质量优于同机融合(x2=14.743,P<0.001).结论 双源CT与经济型PET/CT异机融合,方便实用,优势互补,可提高图像质量,对临床诊断和治疗肿瘤有重要价值.

  1. RecutClub.com: An Open Source, Whole Slide Image-based Pathology Education System

    Science.gov (United States)

    Christensen, Paul A.; Lee, Nathan E.; Thrall, Michael J.; Powell, Suzanne Z.; Chevez-Barrios, Patricia; Long, S. Wesley

    2017-01-01

    Background: Our institution's pathology unknown conferences provide educational cases for our residents. However, the cases have not been previously available digitally, have not been collated for postconference review, and were not accessible to a wider audience. Our objective was to create an inexpensive whole slide image (WSI) education suite to address these limitations and improve the education of pathology trainees. Materials and Methods: We surveyed residents regarding their preference between four unique WSI systems. We then scanned weekly unknown conference cases and study set cases and uploaded them to our custom built WSI viewer located at RecutClub.com. We measured site utilization and conference participation. Results: Residents preferred our OpenLayers WSI implementation to Ventana Virtuoso, Google Maps API, and OpenSlide. Over 16 months, we uploaded 1366 cases from 77 conferences and ten study sets, occupying 793.5 GB of cloud storage. Based on resident evaluations, the interface was easy to use and demonstrated minimal latency. Residents are able to review cases from home and from their mobile devices. Worldwide, 955 unique IP addresses from 52 countries have viewed cases in our site. Conclusions: We implemented a low-cost, publicly available repository of WSI slides for resident education. Our trainees are very satisfied with the freedom to preview either the glass slides or WSI and review the WSI postconference. Both local users and worldwide users actively and repeatedly view cases in our study set.

  2. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    Science.gov (United States)

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  3. Seismic reflection imaging of underground cavities using open-source software

    Energy Technology Data Exchange (ETDEWEB)

    Mellors, R J

    2011-12-20

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.

  4. Evaluation of a dichromatic X-ray source for dual-energy imaging in mammography

    Science.gov (United States)

    Tuffanelli, A.; Fabbri, S.; Sarnelli, A.; Taibi, A.; Gambaccini, M.

    2002-08-01

    A novel X-ray system, providing dichromatic beams for dual-energy radiography, has been assembled. The source generates pairs of superimposed quasi-monochromatic beams, having energies E and 2 E, with E tuneable in the 15-20 keV range. In this paper the characteristics of the radiation field in terms of energy resolution and fluence, for three dichromatic X-ray beams are reported. A study of the spectra attenuated by a 5 cm-thick phantom of breast equivalent tissue demonstrates that the optimal energy of the dichromatic beam for dual-energy application may be set as a function of the thickness of investigated tissue. A detailed topographic study of mean energy and flux shows the spatial superposition of the first and the second diffraction order beam, that is the main requirement for the application of a single exposure dual-energy radiography. The bidimensional mapping of the irradiated beam is also reported, showing the presence of energy and intensity gradients. We estimate that the observed gradients do not affect the results of dual-energy technique application in an appreciable way.

  5. The sources of sodium escaping from Io revealed by spectral high definition imaging.

    Science.gov (United States)

    Mendillo, Michael; Laurent, Sophie; Wilson, Jody; Baumgardner, Jeffrey; Konrad, Janusz; Karl, W Clem

    2007-07-19

    On Jupiter's moon Io, volcanic plumes and evaporating lava flows provide hot gases to form an atmosphere that is subsequently ionized. Some of Io's plasma is captured by the planet's strong magnetic field to form a co-rotating torus at Io's distance; the remaining ions and electrons form Io's ionosphere. The torus and ionosphere are also depleted by three time-variable processes that produce a banana-shaped cloud orbiting with Io, a giant nebula extending out to about 500 Jupiter radii, and a jet close to Io. No spatial constraints exist for the sources of the first two; they have been inferred only from modelling the patterns seen in the trace gas sodium observed far from Io. Here we report observations that reveal a spatially confined stream that ejects sodium only from the wake of the Io-torus interaction, together with a visually distinct, spherically symmetrical outflow region arising from atmospheric sputtering. The spatial extent of the ionospheric wake that feeds the stream is more than twice that observed by the Galileo spacecraft and modelled successfully. This implies considerable variability, and therefore the need for additional modelling of volcanically-driven, episodic states of the great jovian nebula.

  6. The 1946 Unimak Tsunami Earthquake Area: revised tectonic structure in reprocessed seismic images and a suspect near field tsunami source

    Science.gov (United States)

    Miller, John J.; von Huene, Roland; Ryan, Holly F.

    2014-01-01

    In 1946 at Unimak Pass, Alaska, a tsunami destroyed the lighthouse at Scotch Cap, Unimak Island, took 159 lives on the Hawaiian Islands, damaged island coastal facilities across the south Pacific, and destroyed a hut in Antarctica. The tsunami magnitude of 9.3 is comparable to the magnitude 9.1 tsunami that devastated the Tohoku coast of Japan in 2011. Both causative earthquake epicenters occurred in shallow reaches of the subduction zone. Contractile tectonism along the Alaska margin presumably generated the far-field tsunami by producing a seafloor elevation change. However, the Scotch Cap lighthouse was destroyed by a near-field tsunami that was probably generated by a coeval large undersea landslide, yet bathymetric surveys showed no fresh large landslide scar. We investigated this problem by reprocessing five seismic lines, presented here as high-resolution graphic images, both uninterpreted and interpreted, and available for the reader to download. In addition, the processed seismic data for each line are available for download as seismic industry-standard SEG-Y files. One line, processed through prestack depth migration, crosses a 10 × 15 kilometer and 800-meter-high hill presumed previously to be basement, but that instead is composed of stratified rock superimposed on the slope sediment. This image and multibeam bathymetry illustrate a slide block that could have sourced the 1946 near-field tsunami because it is positioned within a distance determined by the time between earthquake shaking and the tsunami arrival at Scotch Cap and is consistent with the local extent of high runup of 42 meters along the adjacent Alaskan coast. The Unimak/Scotch Cap margin is structurally similar to the 2011 Tohoku tsunamigenic margin where a large landslide at the trench, coeval with the Tohoku earthquake, has been documented. Further study can improve our understanding of tsunami sources along Alaska’s erosional margins.

  7. Swept source optical coherence tomography for in vivo imaging and vibrometry in the apex of the mouse cochlea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Yoon [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Raphael, Patrick D.; Oghalai, John S. [Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California (United States); Ellerbee, Audrey K. [E.L. Ginzton Laboratory and Department of Electrical Engineering, Stanford University, Stanford, California (United States); Applegate, Brian E. [Department of Biomedical Engineering, Texas A& M University, College Station, Texas (United States)

    2015-12-31

    Cochlear amplification has been most commonly investigated by measuring the vibrations of the basilar membrane in animal models. Several different techniques have been used for measuring these vibrations such as laser Doppler vibrometry, miniature pressure sensors, low coherence interferometry, and spectral-domain optical coherence tomography (SD-OCT). We have built a swept-source OCT (SS-OCT) system, which is similar to SD-OCT in that it is capable of performing both imaging and vibration measurements within the mouse cochlea in vivo without having to open the bone. In vivo 3D images of a mouse cochlea were obtained, and the basilar membrane, tectorial membrane, Reissner’s membrane, tunnel of Corti, and reticular lamina could all be resolved. We measured vibrations of multiple structures within the mouse cochlea to sound stimuli. As well, we measured the radial deflections of the reticular lamina and tectorial membrane to estimate the displacement of the outer hair cell stereocilia. These measurements have the potential to more clearly define the mechanisms underlying the linear and non-linear processes within the mammalian cochlea.

  8. Imaging of the elbow in children with wrist fracture: an unnecessary source of radiation and use of resources?

    Energy Technology Data Exchange (ETDEWEB)

    Golding, Lauren P. [Wake Forest University Baptist Health, Department of Radiology, Winston-Salem, NC (United States); Triad Radiology Associates, Winston-Salem, NC (United States); Yasin, Yousef; Singh, Jasmeet; Anthony, Evelyn [Wake Forest University Baptist Health, Department of Radiology, Winston-Salem, NC (United States); Gyr, Bettina M. [Wake Forest University Baptist Health, Department of Orthopedic Surgery, Winston-Salem, NC (United States); Gardner, Alison [Wake Forest University Baptist Health, Department of Pediatric Emergency Medicine, Winston-Salem, NC (United States)

    2015-08-15

    Anecdotally accepted practice for evaluation of children with clinically suspected or radiographically proven wrist fracture in many urgent care and primary care settings is concurrent imaging of the forearm and elbow, despite the lack of evidence to support additional images. These additional radiographs may be an unnecessary source of radiation and use of health care resources. Our study assesses the necessity of additional radiographs of the forearm and elbow in children with wrist injury. We reviewed electronic medical records of children 17 and younger in whom wrist fracture was diagnosed in the emergency department. We identified the frequency with which additional radiographs of the proximal forearm and distal humerus demonstrated another site of acute injury. We identified 214 children with wrist fracture. Of those, 129 received additional radiographs of the elbow. Physical examination findings proximal to the wrist were documented in only 16 (12%) of these 129 children. A second injury proximal to the wrist fracture was present in 4 (3%) of these 129 children, all of whom exhibited physical examination findings at the elbow. No fractures were documented in children with a negative physical examination of the elbow. Although elbow fractures occasionally complicate distal forearm fractures in children, our findings indicate that a careful physical evaluation of the elbow is sufficient to guide further radiographic investigation. Routine radiographs of both the wrist and elbow in children with distal forearm fracture appear to be unnecessary when an appropriate physical examination is performed. (orig.)

  9. iSpectra: An Open Source Toolbox For The Analysis of Spectral Images Recorded on Scanning Electron Microscopes.

    Science.gov (United States)

    Liebske, Christian

    2015-08-01

    iSpectra is an open source and system-independent toolbox for the analysis of spectral images (SIs) recorded on energy-dispersive spectroscopy (EDS) systems attached to scanning electron microscopes (SEMs). The aim of iSpectra is to assign pixels with similar spectral content to phases, accompanied by cumulative phase spectra with superior counting statistics for quantification. Pixel-to-phase assignment starts with a threshold-based pre-sorting of spectra to create groups of pixels with identical elemental budgets, similar to a method described by van Hoek (2014). Subsequent merging of groups and re-assignments of pixels using elemental or principle component histogram plots enables the user to generate chemically and texturally plausible phase maps. A variety of standard image processing algorithms can be applied to groups of pixels to optimize pixel-to-phase assignments, such as morphology operations to account for overlapping excitation volumes over pixels located at phase boundaries. iSpectra supports batch processing and allows pixel-to-phase assignments to be applied to an unlimited amount of SIs, thus enabling phase mapping of large area samples like petrographic thin sections.

  10. Mapping the ECG in the live rabbit heart using Ultrasound Current Source Density Imaging with coded excitation.

    Science.gov (United States)

    Qin, Yexian; Li, Qian; Ingram, Pier; Witte, Russell S

    2012-10-01

    Ultrasound current source density imaging (UCSDI) is a noninvasive technique for mapping electric current fields in 4D (space + time) with the resolution of ultrasound imaging. This approach can potentially overcome limitations of conventional electrical mapping procedures often used during treatment of cardiac arrhythmia or epilepsy. However, at physiologic currents, the detected acoustoelectric (AE) interaction signal in tissue is very weak. In this work, we evaluated coded ultrasound excitation (chirps) for improving the sensitivity of UCSDI for mapping the electrocardiogram (ECG) in a live rabbit heart preparation. Results confirmed that chirps improved detection of the AE signal by as much as 6.1 dB compared to a square pulse. We further demonstrated mapping the ECG using a clinical intracardiac catheter, 1 MHz ultrasound transducer and coded excitation. B-mode pulse echo and UCSDI revealed regions of high current flow in the heart wall during the peak of the ECG. These improvements to UCSDI are important steps towards translation of this new technology to the clinic for rapidly mapping the cardiac activation wave.

  11. MoBILAB: An open source toolbox for analysis and visualization of mobile brain/body imaging data

    Directory of Open Access Journals (Sweden)

    Alejandro eOjeda

    2014-03-01

    Full Text Available A new paradigm for human brain imaging, mobile brain/body imaging (MoBI, involves synchronous collection of human brain activity (via electroencephalography, EEG and behavior (via body motion capture, eye tracking, etc., plus environmental events (scene and event recording to study joint brain/body dynamics supporting natural human cognition supporting performance of naturally motivated human actions and interactions in 3-D environments (Makeig et al., 2009⁠. Processing complex, concurrent, multi-modal, multi-rate data streams requires a signal-processing environment quite different from one designed to process single-modality time series data. Here we describe MoBILAB (more details available at sccn.ucsd.edu/wiki/MoBILAB, an open source, cross platform toolbox running on MATLAB (The Mathworks, Inc. that supports analysis and visualization of any mixture of synchronously recorded brain, behavioral, and environmental time series plus time-marked event stream data. MoBILAB can serve as a pre-processing environment for adding behavioral and other event markers to EEG data for further processing, and/or as a development platform for expanded analysis of simultaneously recorded data streams.

  12. Cascade of neural events leading from error commission to subsequent awareness revealed using EEG source imaging.

    Directory of Open Access Journals (Sweden)

    Monica Dhar

    Full Text Available The goal of the present study was to shed light on the respective contributions of three important action monitoring brain regions (i.e. cingulate cortex, insula, and orbitofrontal cortex during the conscious detection of response errors. To this end, fourteen healthy adults performed a speeded Go/Nogo task comprising Nogo trials of varying levels of difficulty, designed to elicit aware and unaware errors. Error awareness was indicated by participants with a second key press after the target key press. Meanwhile, electromyogram (EMG from the response hand was recorded in addition to high-density scalp electroencephalogram (EEG. In the EMG-locked grand averages, aware errors clearly elicited an error-related negativity (ERN reflecting error detection, and a later error positivity (Pe reflecting conscious error awareness. However, no Pe was recorded after unaware errors or hits. These results are in line with previous studies suggesting that error awareness is associated with generation of the Pe. Source localisation results confirmed that the posterior cingulate motor area was the main generator of the ERN. However, inverse solution results also point to the involvement of the left posterior insula during the time interval of the Pe, and hence error awareness. Moreover, consecutive to this insular activity, the right orbitofrontal cortex (OFC was activated in response to aware and unaware errors but not in response to hits, consistent with the implication of this area in the evaluation of the value of an error. These results reveal a precise sequence of activations in these three non-overlapping brain regions following error commission, enabling a progressive differentiation between aware and unaware errors as a function of time elapsed, thanks to the involvement first of interoceptive or proprioceptive processes (left insula, later leading to the detection of a breach in the prepotent response mode (right OFC.

  13. A next-generation open-source toolkit for FITS file image viewing

    Science.gov (United States)

    Jeschke, Eric; Inagaki, Takeshi; Kackley, Russell

    2012-09-01

    The astronomical community has a long tradition of sharing and collaborating on FITS file tools, including viewers. Several excellent viewers such as DS9 and Skycat have been successfully reused again and again. Yet this "first generation" of viewers predate the emergence of a new class of powerful object-oriented scripting languages such as Python, which has quickly become a very popular language for astronomical (and general scientific) use. Integration and extension of these viewers by Python is cumbersome. Furthermore, these viewers are also built on older widget toolkits such as Tcl/Tk, which are becoming increasingly difficult to support and extend as time passes. Suburu Telescope's second-generation observation control system (Gen2) is built on a a foundation of Python-based technologies and leverages several important astronomically useful packages such as numpy and pyfits. We have written a new flexible core widget for viewing FITS files which is available in versions for both the modern Gtk and Qt-based desktops. The widget offers seamless integration with pyfits and numpy arrays of FITS data. A full-featured viewer based on this widget has been developed, and supports a plug-in architecture in which new features can be added by scripting simple Python modules. In this paper we will describe and demonstrate the capabilities of the new widget and viewer and discuss the architecture of the software which allows new features and widgets to easily developed by subclassing a powerful abstract base class. The software will be released as open-source.

  14. Active-source seismic imaging below Lake Malawi (Nyasa) from the SEGMeNT project

    Science.gov (United States)

    Shillington, D. J.; Scholz, C. A.; Gaherty, J. B.; Accardo, N. J.; McCartney, T.; Chindandali, P. R. N.; Kamihanda, G.; Trinhammer, P.; Wood, D. A.; Khalfan, M.; Ebinger, C. J.; Nyblade, A.; Mbogoni, G. J.; Mruma, A. H.; Salima, J.; Ferdinand-Wambura, R.

    2015-12-01

    Little is known about the controls on the initiation and development of magmatism and segmentation in young rift systems. The northern Lake Malawi (Nyasa) rift in the East African Rift System is an early stage rift exhibiting pronounced tectonic segmentation, which is defined in the upper crust by ~100-km-long border faults. Very little volcanism is associated with rifting; the only surface expression of magmatism occurs in an accommodation zone between segments to the north of the lake in the Rungwe Volcanic Province. The SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project is a multidisciplinary, multinational study that is acquiring a suite of geophysical, geological and geochemical data to characterize deformation and magmatism in the crust and mantle lithosphere along 2-3 segments of this rift. As a part of the SEGMeNT project, we acquired seismic reflection and refraction data in Lake Malawi (Nyasa) in March-April 2015. Over 2000 km of seismic reflection data were acquired with a 500 to 2580 cu in air gun array from GEUS/Aarhus and a 500- to 1500-m-long seismic streamer from Syracuse University over a grid of lines across and along the northern and central basins. Air gun shots from MCS profiles and 1000 km of additional shooting with large shot intervals were also recorded on 27 short-period and 6 broadband lake bottom seismometers from Scripps Oceanographic Institute as a part of the Ocean Bottom Seismic Instrument Pool (OBSIP) as well as the 55-station onshore seismic array. The OBS were deployed along one long strike line and two dip lines. We will present preliminary data and results from seismic reflection and refraction data acquired in the lake and their implications for crustal deformation within and between rift segments. Seismic reflection data image structures up to ~5-6 km below the lake bottom, including syntectonic sediments, intrabasinal faults and other complex horsts. Some intrabasinal faults in both the northern and

  15. Design and implementation of an open source indexing solution for a large set of radiological reports and images.

    Science.gov (United States)

    Voet, T; Devolder, P; Pynoo, B; Vercruysse, J; Duyck, P

    2007-11-01

    This paper hopes to share the insights we experienced during designing, building, and running an indexing solution for a large set of radiological reports and images in a production environment for more than 3 years. Several technical challenges were encountered and solved in the course of this project. One hundred four million words in 1.8 million radiological reports from 1989 to the present were indexed and became instantaneously searchable in a user-friendly fashion; the median query duration is only 31 ms. Currently, our highly tuned index holds 332,088 unique words in four languages. The indexing system is feature-rich and language-independent and allows for making complex queries. For research and training purposes it certainly is a valuable and convenient addition to our radiology informatics toolbox. Extended use of open-source technology dramatically reduced both implementation time and cost. All software we developed related to the indexing project has been made available to the open-source community covered by an unrestricted Berkeley Software Distribution-style license.

  16. SimVascular 2.0: an Integrated Open Source Pipeline for Image-Based Cardiovascular Modeling and Simulation

    Science.gov (United States)

    Lan, Hongzhi; Merkow, Jameson; Updegrove, Adam; Schiavazzi, Daniele; Wilson, Nathan; Shadden, Shawn; Marsden, Alison

    2015-11-01

    SimVascular (www.simvascular.org) is currently the only fully open source software package that provides a complete pipeline from medical image based modeling to patient specific blood flow simulation and analysis. It was initially released in 2007 and has contributed to numerous advances in fundamental hemodynamics research, surgical planning, and medical device design. However, early versions had several major barriers preventing wider adoption by new users, large-scale application in clinical and research studies, and educational access. In the past years, SimVascular 2.0 has made significant progress by integrating open source alternatives for the expensive commercial libraries previously required for anatomic modeling, mesh generation and the linear solver. In addition, it simplified the across-platform compilation process, improved the graphical user interface and launched a comprehensive documentation website. Many enhancements and new features have been incorporated for the whole pipeline, such as 3-D segmentation, Boolean operation for discrete triangulated surfaces, and multi-scale coupling for closed loop boundary conditions. In this presentation we will briefly overview the modeling/simulation pipeline and advances of the new SimVascular 2.0.

  17. 多源遥感图像融合方法研究%Research on Multi -source Remote Sensing Image Fusion Method

    Institute of Scientific and Technical Information of China (English)

    郑影

    2011-01-01

    研究多源遥感图像的融合技术,针对不同传感器获取的遥感图像像素信息有很大差异.当所要融合的图像是多源遥感图像时,应提取多图像的有效信息,组合出高质量的图像.传统IHS图像融合方法无法避免多源图像像素不匹配带来的有效像素丢失,造成融合图像模糊,清晰度不高的问题.提出一种基于Contourlet变换的遥感图像融合方法,通过对图像进行Contourlet变换后提取各源图像的特征信息,并计算提取特征所包含的信息量,选取高信息景的特征进行融合,最后通过进行Contourlet逆变换即得到多源融合图像,利用信息量融合配准的方法就避免了直接对不匹配像素运算而造成的有效像素丢失.实验证明,改进的优化融合方法能够保留图像的有效信息,得到高清晰度的融合图像.%Research multi - source remote sensing image fusion methods. The remote sensing pixels spectrum information from different sensors has very big differences. When the fusion images were multi - source remote sensing images, traditional HIS image fusion method cannot avoid the effective pixels lost because multiple source pixels do not match, causing the problem of fuzzy fusion images. This paper presented a contourlet algorithm based on the remote sensing image fusion method. The characteristics information of source images were extracted after the image contourlet transformation. Then the information content contained in the extracted features was calculated, and the characteristics with high information content were selected for fusion. Finally, through the inverse contourlet transformation , the multi - source fusion image was produced. This information fusion registration method can avoid the pixel lost when the unmatched pixels are operated. Experiments show that the optimal fusion method effective information can keep images, get high quality fusion image.

  18. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging.

    Science.gov (United States)

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression. The source has an x-ray conversion efficiency of greater than 10(-5) into K-alpha line emission. In preparation for phase contrast imaging applications, the size of the resultant K-alpha x-ray emission spot has been also characterized. The source exhibits sufficient spatial coherence to observe phase contrast. We observe a relatively small broadening of the K-alpha source size compared to the size of the laser beam itself. Detailed characterization of the source including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented.

  19. Imaging of pulmonary vein anatomy using low-dose prospective ECG-triggered dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blanke, Philipp; Baumann, Tobias; Langer, Mathias; Pache, Gregor [University Hospital Freiburg, Department of Diagnostic Radiology, Freiburg (Germany)

    2010-08-15

    To prospectively investigate the feasibility, image quality and radiation dose estimates for computed tomography angiography (CTA) of the pulmonary veins and left atrium using prospective electrocardiography (ECG)-triggered sequential dual-source (DS) data acquisition at end-systole in patients with paroxysmal atrial fibrillation undergoing radiofrequency ablation. Thirty-five patients (mean age 66.2 {+-} 12.6 years) with paroxysmal atrial fibrillation underwent prospective ECG-triggered sequential DS-CTA with tube current (250 mAs/rotation) centred 250 ms past the R-peak. Tube voltage was adjusted to the BMI (<25 kg/m{sup 2}: 100 kV, >25 kg/m{sup 2}: 120 kV). Presence of motion or stair-step artefacts was assessed. Effective radiation dose was calculated from the dose-length product. All data sets could be integrated into the electroanatomical mapping system. Twenty-two patients (63%) were in sinus rhythm (mean heart rate 69.2 {+-} 11.1 bpm, variability 1.0 {+-} 1.7 bpm) and 13 (37%) showed an ECG pattern of atrial fibrillation (mean heart rate 84.8 {+-} 16.6 bpm, variability 17.9 {+-} 7.5 bpm). Minor step artefacts were observed in three patients (23%) with atrial fibrillation. Mean estimated effective dose was 1.1 {+-} 0.3 and 3.0 {+-} 0.5 mSv for 100 and 120 kV respectively. Imaging of pulmonary vein anatomy is feasible using prospective ECG-triggered sequential data acquisition at end-systole regardless of heart rate or rhythm at the benefit of low radiation dose. (orig.)

  20. Added value of 80 kVp images to averaged 120 kVp images in the detection of hepatocellular carcinomas in liver transplantation candidates using dual-source dual-energy MDCT: Results of JAFROC analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Hoon [Department of Radiology, Seoul National University Hospital (Korea, Republic of); Kim, Se Hyung, E-mail: shkim@radcom.snu.ac.kr [Department of Radiology, Seoul National University Hospital (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Hospital (Korea, Republic of); Park, Hee Sun [Department of Radiology, Konkuk University Hospital (Korea, Republic of); Kim, Gi Hyeon [Department of Radiology, Chung-Ang University Hospital (Korea, Republic of); Lee, Jae Young; Lee, Jeong Min; Han, Joon Koo; Choi, Byung Ihn [Department of Radiology, Seoul National University Hospital (Korea, Republic of); The Institute of Radiation Medicine, Seoul National University Hospital (Korea, Republic of)

    2011-11-15

    Background: To assess the added value of 80 kVp images to weighted average 120 kVp images for detecting hepatocellular carcinomas (HCCs) using dual-source, dual-energy MDCT. Materials and methods: Forty-one HCCs in 42 patients who underwent liver transplantation (LT) were included. All patients underwent quadruple-phase CT using a 64-row dual-source, dual-energy MDCT with 80 kVp and 140 kVp. For 120 kVp, a linear blending ratio of 0.3 was chosen. Interval reviews for both simulated 120 kVp images without and with pure 80 kVp data were performed independently by two radiologists. They detected HCCs using a 4-point confidence scale. Tumor-to-liver contrast-to-noise ratio (CNR) was calculated and compared between the 80 kVp and simulated 120 kVp images. The additional diagnostic value of 80 kVp images was evaluated by jackknife alternative free-response receiver-operating characteristic (JAFROC) analysis. Results: There were 41 HCCs on pathology and 37 of the 41 HCCs were depicted on CT scan. The mean CNR of the 37 HCCs in late arterial and portal-phase images was significantly better in the 80 kVp images than in 120 kVp images. The average JAFROC figure of merit, however, was not significantly improved when 80 kVp was added. Furthermore, the number of false-positives was significantly increased in reader 1 when adding 80 kVp data. Conclusion: The addition of 80 kVp CT images to simulated 120 kVp images did not significantly improve the detection of HCCs despite of the significantly better CNR of 80 kVp images.

  1. Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings

    Energy Technology Data Exchange (ETDEWEB)

    Busch, S.; Johnson, T.R.C.; Wintersperger, B.J.; Minaifar, N.; Bhargava, A.; Rist, C.; Reiser, M.F.; Becker, C.; Nikolaou, K. [University of Munich, Department of Clinical Radiology, Munich (Germany)

    2008-03-15

    Cardiac magnetic resonance imaging and echocardiography are currently regarded as standard modalities for the quantification of left ventricular volumes and ejection fraction. With the recent introduction of dual-source computedtomography (DSCT), the increased temporal resolution of 83 ms should also improve the assessment of cardiac function in CT. The aim of this study was to evaluate the accuracy of DSCT in the assessment of left ventricular functional parameters with cardiac magnetic resonance imaging (MRI) as standard of reference. Fifteen patients (two female, 13 male; mean age 50.8 {+-} 19.2 years) underwent CT and MRI examinations on a DSCT (Somatom Definition; Siemens Medical Solutions, Forchheim, Germany) and a 3.0-Tesla MR scanner (Magnetom Trio; Siemens Medical Solutions), respectively. Multiphase axial CT images were analysed with a semiautomatic region growing algorithms (Syngo Circulation; Siemens Medical Solutions) by two independent blinded observers. In MRI, dynamic cine loops of short axis slices were evaluated with semiautomatic contour detection software (ARGUS; Siemens Medical Solutions) independently by two readers. End-systolic volume (ESV), end-diastolic volume (EDV), ejection fraction (EF) and stroke volume (SV) were determined for both modalities, and correlation coefficient, systematic error, limits of agreement and inter-observer variability were assessed. In DSCT, EDV and ESV were 135.8 {+-} 41.9 ml and 54.9 {+-} 29.6 ml, respectively, compared with 132.1 {+-} 40.8 ml EDV and 57.6 {+-} 27.3 ml ESV in MRI. Thus, EDV was overestimated by 3.7 ml (limits of agreement -46.1/+53.6), while ESV was underestimated by 2.6 ml (-36.6/+31.4). Mean EF was 61.6 {+-} 12.4% in DSCT and 57.9 {+-} 9.0% in MRI, resulting in an overestimation of EF by 3.8% with limits of agreement at -14.7 and +22.2%. Rank correlation rho values were 0.81 for EDV (P = 0.0024), 0.79 for ESV (P = 0.0031) and 0.64 for EF (P = 0.0168). The kappa value of inter

  2. Deep radio imaging of 47 Tuc identifies the peculiar X-ray source X9 as a new black hole candidate

    CERN Document Server

    Miller-Jones, J C A; Heinke, C O; Maccarone, T J; Berg, M van den; Knigge, C; Chomiuk, L; Noyola, E; Russell, T D; Seth, A C; Sivakoff, G R

    2015-01-01

    We report the detection of steady radio emission from the known X-ray source X9 in the globular cluster 47 Tuc. With a double-peaked C IV emission line in its ultraviolet spectrum providing a clear signature of accretion, this source had been previously classified as a cataclysmic variable. In deep ATCA imaging from 2010 and 2013, we identified a steady radio source at both 5.5 and 9.0 GHz, with a radio spectral index (defined as $S_{\

  3. Teaching Image Formation by Extended Light Sources: The Use of a Model Derived from the History of Science

    Science.gov (United States)

    Dedes, Christos; Ravanis, Konstantinos

    2009-01-01

    This research, carried out in Greece on pupils aged 12-16, focuses on the transformation of their representations concerning light emission and image formation by extended light sources. The instructive process was carried out in two stages, each one having a different, distinct target set. During the first stage, the appropriate conflict conditions were created by contrasting the subjects’ predictions with the results of experimental situations inspired by the History of Science, with a view to destabilizing the pupils’ alternative representations. During the second stage, the experimental teaching intervention was carried out; it was based on the geometrical optics model and its parameters were derived from Kepler’s relevant historic experiment. For the duration of this process and within the framework of didactical interactions, an effort was made to reorganize initial limited representations and restructure them at the level of the accepted scientific model. The effectiveness of the intervention was evaluated two weeks later, using experimental tasks which had the same cognitive yet different empirical content with respect to the tasks conducted during the intervention. The results of the study showed that the majority of the subjects accepted the model of geometrical optics, that is, the pupils were able to correctly predict and adequately justify the experimental results based on the principle of punctiform light emission. Educational and research implications are discussed.

  4. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Eakins, D. E., E-mail: d.eakins@imperial.ac.uk; Chapman, D. J. [Institute of Shock Physics, Imperial College London, London SW7 2BZ (United Kingdom)

    2014-12-15

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  5. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source

    Science.gov (United States)

    Eakins, D. E.; Chapman, D. J.

    2014-12-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  6. X-ray imaging of subsurface dynamics in high-Z materials at the Diamond Light Source.

    Science.gov (United States)

    Eakins, D E; Chapman, D J

    2014-12-01

    In this paper, we describe a new approach enabling study of subsurface dynamics in high-Z materials using the unique combination of high-energy synchrotron X-rays, a hybrid bunch structure, and a new dynamic loading platform. We detail the design and operation of the purpose-built, portable small bore gas-gun, which was installed on the I12 high-energy beamline at the Diamond Light Source and used to drive compression waves into solid and porous metal targets. Using a hybrid bunch structure and broadband X-ray pulses of up to 300 keV, radiographic snapshots were captured during various dynamic deformation processes in cm-scale specimens, thereby contributing to a more complete understanding of the evolution of mesoscale damage. Importantly, we highlight strategies for overcoming the challenges associated with using high-energy X-rays, and suggest areas for improvement needed to advance dynamic imaging through large-scale samples of relevance to engineering scenarios. These preliminary measurements demonstrate the feasibility of probing highly transient phenomena using the presented methodology.

  7. Electron cyclotron resonance ion source plasma characterization by X-ray spectroscopy and X-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Mascali, David, E-mail: davidmascali@lns.infn.it; Castro, Giuseppe; Celona, Luigi; Neri, Lorenzo; Gammino, Santo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Biri, Sándor; Rácz, Richárd; Pálinkás, József [Institute for Nuclear Research (Atomki), Hungarian Academy of Sciences, Bem tér 18/c, H-4026 Debrecen (Hungary); Caliri, Claudia [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università degli Studi di Catania, Dip.to di Fisica e Astronomia, via Santa Sofia 64, 95123 Catania (Italy); Romano, Francesco Paolo [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); CNR, Istituto per i Beni Archeologici e Monumentali, Via Biblioteca 4, 95124 Catania (Italy); Torrisi, Giuseppe [INFN–Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Università Mediterranea di Reggio Calabria, DIIES, Via Graziella, I-89100 Reggio Calabria (Italy)

    2016-02-15

    An experimental campaign aiming to investigate electron cyclotron resonance (ECR) plasma X-ray emission has been recently carried out at the ECRISs—Electron Cyclotron Resonance Ion Sources laboratory of Atomki based on a collaboration between the Debrecen and Catania ECR teams. In a first series, the X-ray spectroscopy was performed through silicon drift detectors and high purity germanium detectors, characterizing the volumetric plasma emission. The on-purpose developed collimation system was suitable for direct plasma density evaluation, performed “on-line” during beam extraction and charge state distribution characterization. A campaign for correlating the plasma density and temperature with the output charge states and the beam intensity for different pumping wave frequencies, different magnetic field profiles, and single-gas/gas-mixing configurations was carried out. The results reveal a surprisingly very good agreement between warm-electron density fluctuations, output beam currents, and the calculated electromagnetic modal density of the plasma chamber. A charge-coupled device camera coupled to a small pin-hole allowing X-ray imaging was installed and numerous X-ray photos were taken in order to study the peculiarities of the ECRIS plasma structure.

  8. Noninvasive cross-sectional imaging of proximal caries using swept-source optical coherence tomography (SS-OCT) in vivo.

    Science.gov (United States)

    Shimada, Yasushi; Nakagawa, Hisaichi; Sadr, Alireza; Wada, Ikumi; Nakajima, Masatoshi; Nikaido, Toru; Otsuki, Masayuki; Tagami, Junji; Sumi, Yasunori

    2014-07-01

    The aim of this study was to determine the diagnostic accuracy of swept-source optical coherent tomography (SS-OCT) in detecting and estimating the depth of proximal caries in posterior teeth in vivo. SS-OCT images and bitewing radiographs were obtained from 86 proximal surfaces of 53 patients. Six examiners scored the locations according to a caries lesion depth scale (0-4) using SS-OCT and the radiographs. The results were compared with clinical observations obtained after the treatment. SS-OCT could detect the presence of proximal caries in tomograms that were synthesized based on the backscatter signal obtained from the proximal carious lesion through occlusal enamel. SS-OCT showed significantly higher sensitivity and larger area under the receiver operating characteristic curve than radiographs for the detection of cavitated enamel lesions and dentin caries (Student's t -test, p SS-OCT appears to be a more reliable and accurate method than bitewing radiographs for the detection and estimation of the depth of proximal lesions in the clinical environment.

  9. Validation Tests of Open-Source Procedures for Digital Camera Calibration and 3d Image-Based Modelling

    Science.gov (United States)

    Toschi, I.; Rivola, R.; Bertacchini, E.; Castagnetti, C.; Dubbini, M.; Capra, A.

    2013-07-01

    Among the many open-source software solutions recently developed for the extraction of point clouds from a set of un-oriented images, the photogrammetric tools Apero and MicMac (IGN, Institut Géographique National) aim to distinguish themselves by focusing on the accuracy and the metric content of the final result. This paper firstly aims at assessing the accuracy of the simplified and automated calibration procedure offered by the IGN tools. Results obtained with this procedure were compared with those achieved with a test-range calibration approach using a pre-surveyed laboratory test-field. Both direct and a-posteriori validation tests turned out successfully showing the stability and the metric accuracy of the process, even when low textured or reflective surfaces are present in the 3D scene. Afterwards, the possibility of achieving accurate 3D models from the subsequently extracted dense point clouds is also evaluated. Three different types of sculptural elements were chosen as test-objects and "ground-truth" data were acquired with triangulation laser scanners. 3D models derived from point clouds oriented with a simplified relative procedure show a suitable metric accuracy: all comparisons delivered a standard deviation of millimeter-level. The use of Ground Control Points in the orientation phase did not improve significantly the accuracy of the final 3D model, when a small figure-like corbel was used as test-object.

  10. Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Eisses, A.; Kell, A.; Kent, G. [UNR; Driscoll, N. [UCSD; Karlin, R.; Baskin, R. [USGS; Louie, J. [UNR; Pullammanappallil, S. [Optim

    2016-08-01

    Amy Eisses, Annie Kell, Graham Kent, Neal Driscoll, Robert Karlin, Rob Baskin, John Louie, and Satish Pullammanappallil, 2011, Marine and land active-source seismic imaging of mid-Miocene to Holocene-aged faulting near geothermal prospects at Pyramid Lake, Nevada: presented at Geothermal Resources Council Annual Meeting, San Diego, Oct. 23-26.

  11. Systematic review of the accuracy of dual-source cardiacct for detection of arterial stenosis in difficult to image patient groups

    NARCIS (Netherlands)

    M. Westwood (Marie); H. Raatz (Heike); K. Misso (Kate); L.T. Burgers (Laura); W.K. Redekop (Ken); S.K. Lhachimi (Stefan); N. Armstrong (Nigel); J. Kleijnen (Jos)

    2013-01-01

    textabstractPurpose: To assess the diagnostic performance of dual-source cardiac (DSC) computed tomography (CT) newer-generation CT instruments for identifying anatomically significant coronary artery disease (CAD) in patients who are difficult to image by using 64-section CT. Materials and Methods:

  12. SU-D-207-03: Development of 4D-CBCT Imaging System with Dual Source KV X-Ray Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M; Ishihara, Y; Matsuo, Y; Ueki, N; Iizuka, Y; Mizowaki, T; Hiraoka, M [Kyoto University Hospital, Kyoto, Kyoto (Japan)

    2015-06-15

    Purpose: The purposes of this work are to develop 4D-CBCT imaging system with orthogonal dual source kV X-ray tubes, and to determine the imaging doses from 4D-CBCT scans. Methods: Dual source kV X-ray tubes were used for the 4D-CBCT imaging. The maximum CBCT field of view was 200 mm in diameter and 150 mm in length, and the imaging parameters were 110 kV, 160 mA and 5 ms. The rotational angle was 105°, the rotational speed of the gantry was 1.5°/s, the gantry rotation time was 70 s, and the image acquisition interval was 0.3°. The observed amplitude of infrared marker motion during respiration was used to sort each image into eight respiratory phase bins. The EGSnrc/BEAMnrc and EGSnrc/DOSXYZnrc packages were used to simulate kV X-ray dose distributions of 4D-CBCT imaging. The kV X-ray dose distributions were calculated for 9 lung cancer patients based on the planning CT images with dose calculation grid size of 2.5 x 2.5 x 2.5 mm. The dose covering a 2-cc volume of skin (D2cc), defined as the inner 5 mm of the skin surface with the exception of bone structure, was assessed. Results: A moving object was well identified on 4D-CBCT images in a phantom study. Given a gantry rotational angle of 105° and the configuration of kV X-ray imaging subsystems, both kV X-ray fields overlapped at a part of skin surface. The D2cc for the 4D-CBCT scans was in the range 73.8–105.4 mGy. Linear correlation coefficient between the 1000 minus averaged SSD during CBCT scanning and D2cc was −0.65 (with a slope of −0.17) for the 4D-CBCT scans. Conclusion: We have developed 4D-CBCT imaging system with dual source kV X-ray tubes. The total imaging dose with 4D-CBCT scans was up to 105.4 mGy.

  13. Image quality and radiation dose of 128-slice dual-source CT venography using low kilovoltage combined with high-pitch scanning and automatic tube current modulation.

    Science.gov (United States)

    Park, Chan Kue; Choo, Ki Seok; Jeon, Ung Bae; Baik, Seung Kug; Kim, Yong Woo; Kim, Tae Un; Kim, Chang Won; Jeong, Yeon Ju; Jeong, Dong Wook; Lim, Soo Jin

    2013-06-01

    To compare vascular enhancement, image quality, and radiation dose of 128-slice dual-source CT venography (CTV) between an imaging setting of 120 kVp with low pitch, and a setting of 100 kVp combined with high pitch and automatic tube current modulation. A total of 100 patients with suspected deep vein thrombosis and varicose veins were divided into two groups: Group 1 [50 patients, 120 kVp, low pitch (0.6), and fixed 120 mA) and Group 2 (50 patients, 100 kVp, high pitch (3.0), and automatic tube current modulation]. Two radiologists, who were blinded to the image protocol, assessed vascular enhancement and image noise in the inferior vena cava (IVC), femoral vein, and popliteal vein. They also assigned an image quality score independently using a 5-point visual scale. Effective dose was estimated using the dose-length product (DLP). Group demographics, radiation dose, vascular enhancement, image noise, and image quality in the two groups were analyzed. Mean vascular enhancement of the IVC, femoral vein, and popliteal vein was significantly higher in group 2 than in group 1, and images in group 2 had significantly higher image noise. However, there were no significant differences in subjective image quality score of the IVC, femoral vein, and popliteal vein. The mean DLP in group 2 (402.10 ± 94.29 mGy cm) was significantly lower than that in group 1 (973.36 ± 63.20 mGy cm) (P enhancement with acceptable image quality and low radiation dose.

  14. Automated detection of inflammatory cells in whole anterior chamber of a uveitis mouse from swept-source optical coherence tomography images

    Science.gov (United States)

    Choi, Woo June; Pepple, Kathryn L.; Wang, Ruikang K.

    2016-03-01

    Cell grading in a rodent anterior chamber is essential for anterior inflammation evaluation in preclinical vision research. This paper describes a computerized method for detection and counting of the anterior chamber cells from swept-source optical coherence tomography (SS-OCT) images of a experimental rodent model of uveitis. The volumetric anterior segment OCT data is obtained from 100 kHz SS-OCT imaging of mouse eye in vivo. For the OCT cross-sections, each OCT structural image is de-speckled and binarized. After removal of cornea, iris, and crystalline lens structures connected to the binary image border, an area thresholding is then employed for each labeled region to isolate only celllike objects in the anterior chamber, followed by roundness estimation of the objects to identify potential cell candidates in the data. Eventually, the cell candidates are counted and graded as total number of cells in the anterior chamber.

  15. Development of Extended-Depth Swept Source Optical Coherence Tomography for Applications in Ophthalmic Imaging of the Anterior and Posterior Eye

    Science.gov (United States)

    Dhalla, Al-Hafeez Zahir

    extending the imaging range of OCT systems are developed. These techniques include the use of a high spectral purity swept source laser in a full-field OCT system, as well as the use of a peculiar phenomenon known as coherence revival to resolve the complex conjugate ambiguity in swept source OCT. In addition, a technique for extending the depth of focus of OCT systems by using a polarization-encoded, dual-focus sample arm is demonstrated. Along the way, other related advances are also presented, including the development of techniques to reduce crosstalk and speckle artifacts in full-field OCT, and the use of fast optical switches to increase the imaging speed of certain low-duty cycle swept source OCT systems. Finally, the clinical utility of these techniques is demonstrated by combining them to demonstrate high-speed, high resolution, extended-depth imaging of both the anterior and posterior eye simultaneously and in vivo.

  16. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools.

    Science.gov (United States)

    Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr

    2012-05-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.

  17. On a Possible Source of Some of the Images in the Annalistic Pokhvala to Prince Roman Mstislavich

    Directory of Open Access Journals (Sweden)

    Vadym I. Stavyskyi

    2015-12-01

    Full Text Available The subject of this article is the text known as the “Eulogy (Pokhvala to Prince Roman Mstislavich Galitsky,” which is from the opening section of the Galician-Volhynian Chronicle. The author of the article amplifies remarks made by Alexander Orlov about loanwords taken from translated works that appear in the text of the Pokhvala. The text of the exegesis of prophets by St. Hippolytus of Rome, which was widely known in Slavonic translation from the 12th century as the Slovo o Khriste i ob Antikhriste, produces additional material for comparison. St. Hippolytus’s text offers a possible interpretation of the concept “uma mudrostʹiu,” which the author of the Pokhvala offers as an explanation of the successful foreign policy of Prince Roman; in addition, this explanation helps to clarify the comparison of the prince with the eagle-lion, the lynx, and the crocodile. Certain characteristics of the text of the Pokhvala as revealed in the account of the exile of Khan Atrak by Prince Vladimir Monomakh and the subsequent mission carried out by Khan Syrchan, both unsupported in other sources, were, we believe, influenced by the text of the Slovo as well. It appears that literary images used throughout the Pokhvala were determined by apocalyptic symbols, following the approach that was typical of their interpretation by St. Hippolytus. This conclusion permits us to broaden our notions about the enumeration of works in translation used by the creator of the Galician-Volhynian Chronicle.

  18. SpotMetrics: An Open-Source Image-Analysis Software Plugin for Automatic Chromatophore Detection and Measurement

    Science.gov (United States)

    Hadjisolomou, Stavros P.; El-Haddad, George

    2017-01-01

    Coleoid cephalopods (squid, octopus, and sepia) are renowned for their elaborate body patterning capabilities, which are employed for camouflage or communication. The specific chromatic appearance of a cephalopod, at any given moment, is a direct result of the combined action of their intradermal pigmented chromatophore organs and reflecting cells. Therefore, a lot can be learned about the cephalopod coloration system by video recording and analyzing the activation of individual chromatophores in time. The fact that adult cephalopods have small chromatophores, up to several hundred thousand in number, makes measurement and analysis over several seconds a difficult task. However, current advancements in videography enable high-resolution and high framerate recording, which can be used to record chromatophore activity in more detail and accuracy in both space and time domains. In turn, the additional pixel information and extra frames per video from such recordings result in large video files of several gigabytes, even when the recording spans only few minutes. We created a software plugin, “SpotMetrics,” that can automatically analyze high resolution, high framerate video of chromatophore organ activation in time. This image analysis software can track hundreds of individual chromatophores over several hundred frames to provide measurements of size and color. This software may also be used to measure differences in chromatophore activation during different behaviors which will contribute to our understanding of the cephalopod sensorimotor integration system. In addition, this software can potentially be utilized to detect numbers of round objects and size changes in time, such as eye pupil size or number of bacteria in a sample. Thus, we are making this software plugin freely available as open-source because we believe it will be of benefit to other colleagues both in the cephalopod biology field and also within other disciplines. PMID:28298896

  19. SpotMetrics: An Open-Source Image-Analysis Software Plugin for Automatic Chromatophore Detection and Measurement.

    Science.gov (United States)

    Hadjisolomou, Stavros P; El-Haddad, George

    2017-01-01

    Coleoid cephalopods (squid, octopus, and sepia) are renowned for their elaborate body patterning capabilities, which are employed for camouflage or communication. The specific chromatic appearance of a cephalopod, at any given moment, is a direct result of the combined action of their intradermal pigmented chromatophore organs and reflecting cells. Therefore, a lot can be learned about the cephalopod coloration system by video recording and analyzing the activation of individual chromatophores in time. The fact that adult cephalopods have small chromatophores, up to several hundred thousand in number, makes measurement and analysis over several seconds a difficult task. However, current advancements in videography enable high-resolution and high framerate recording, which can be used to record chromatophore activity in more detail and accuracy in both space and time domains. In turn, the additional pixel information and extra frames per video from such recordings result in large video files of several gigabytes, even when the recording spans only few minutes. We created a software plugin, "SpotMetrics," that can automatically analyze high resolution, high framerate video of chromatophore organ activation in time. This image analysis software can track hundreds of individual chromatophores over several hundred frames to provide measurements of size and color. This software may also be used to measure differences in chromatophore activation during different behaviors which will contribute to our understanding of the cephalopod sensorimotor integration system. In addition, this software can potentially be utilized to detect numbers of round objects and size changes in time, such as eye pupil size or number of bacteria in a sample. Thus, we are making this software plugin freely available as open-source because we believe it will be of benefit to other colleagues both in the cephalopod biology field and also within other disciplines.

  20. Initial results of a new generation dual source CT system using only an in-plane comb filter for ultra-high resolution temporal bone imaging

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O.; Henzler, Thomas [Heidelberg University, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany); Raupach, Rainer; Schmidt, Bernhard; Leidecker, Christianne; Allmendinger, Thomas; Flohr, Thomas [Siemens Healthcare, Imaging and Therapy Division, Forchheim (Germany); Lietzmann, Florian; Schad, Lothar R. [Heidelberg University, Computer Assisted Clinical Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Mannheim (Germany)

    2015-01-15

    To prospectively evaluate radiation dose and image quality of a third generation dual-source CT (DSCT) without z-axis filter behind the patient for temporal bone CT. Forty-five patients were either examined on a first, second, or third generation DSCT in an ultra-high-resolution (UHR) temporal bone-imaging mode. On the third generation DSCT system, the tighter focal spot of 0.2 mm{sup 2} removesthe necessity for an additional z-axis-filter, leading to an improved z-axis radiation dose efficiency. Images of 0.4 mm were reconstructed using standard filtered-back-projection or iterative reconstruction (IR) technique for previous generations of DSCT and a novel IR algorithm for the third generation DSCT. Radiation dose and image quality were compared between the three DSCT systems. The statistically significantly highest subjective and objective image quality was evaluated for the third generation DSCT when compared to the first or second generation DSCT systems (all p < 0.05). Total effective dose was 63 %/39 % lower for the third generation examination as compared to the first and second generation DSCT. Temporal bone imaging without z-axis-UHR-filter and a novel third generation IR algorithm allows for significantly higher image quality while lowering effective dose when compared to the first two generations of DSCTs. (orig.)

  1. Spectrally and Radiometrically Stable Wide-Band on Board Calibration Source for In-Flight Data Validation in Imaging Spectroscopy Applications

    Science.gov (United States)

    Coles, J. B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Hernandez, Marco A.; Kroll, Linley A.; Nolte, Scott H.; Porter, Michael D.; Green, Robert O.

    2011-01-01

    The quality of the quantitative spectral data collected by an imaging spectrometer instrument is critically dependent upon the accuracy of the spectral and radiometric calibration of the system. In order for the collected spectra to be scientifically useful, the calibration of the instrument must be precisely known not only prior to but during data collection. Thus, in addition to a rigorous in-lab calibration procedure, the airborne instruments designed and built by the NASA/JPL Imaging Spectroscopy Group incorporate an on board calibrator (OBC) system with the instrument to provide auxiliary in-use system calibration data. The output of the OBC source illuminates a target panel on the backside of the foreoptics shutter both before and after data collection. The OBC and in-lab calibration data sets are then used to validate and post-process the collected spectral image data. The resulting accuracy of the spectrometer output data is therefore integrally dependent upon the stability of the OBC source. In this paper we describe the design and application of the latest iteration of this novel device developed at NASA/JPL which integrates a halogen-cycle source with a precisely designed fiber coupling system and a fiber-based intensity monitoring feedback loop. The OBC source in this Airborne Testbed Spectrometer was run over a period of 15 hours while both the radiometric and spectral stabilities of the output were measured and demonstrated stability to within 1% of nominal.

  2. Dual-energy imaging of bone marrow edema on a dedicated multi-source cone-beam CT system for the extremities

    Science.gov (United States)

    Zbijewski, W.; Sisniega, A.; Stayman, J. W.; Thawait, G.; Packard, N.; Yorkston, J.; Demehri, S.; Fritz, J.; Siewerdsen, J. H.

    2015-03-01

    Purpose: Arthritis and bone trauma are often accompanied by bone marrow edema (BME). BME is challenging to detect in CT due to the overlaying trabecular structure but can be visualized using dual-energy (DE) techniques to discriminate water and fat. We investigate the feasibility of DE imaging of BME on a dedicated flat-panel detector (FPD) extremities cone-beam CT (CBCT) with a unique x-ray tube with three longitudinally mounted sources. Methods: Simulations involved a digital BME knee phantom imaged with a 60 kVp low-energy beam (LE) and 105 kVp high-energy beam (HE) (+0.25 mm Ag filter). Experiments were also performed on a test-bench with a Varian 4030CB FPD using the same beam energies as the simulation study. A three-source configuration was implemented with x-ray sources distributed along the longitudinal axis and DE CBCT acquisition in which the superior and inferior sources operate at HE (and collect half of the projection angles each) and the central source operates at LE. Three-source DE CBCT was compared to a double-scan, single-source orbit. Experiments were performed with a wrist phantom containing a 50 mg/ml densitometry insert submerged in alcohol (simulating fat) with drilled trabeculae down to ~1 mm to emulate the trabecular matrix. Reconstruction-based three-material decomposition of fat, soft tissue, and bone was performed. Results: For a low-dose scan (36 mAs in the HE and LE data), DE CBCT achieved combined accuracy of ~0.80 for a pattern of BME spherical lesions ranging 2.5 - 10 mm diameter in the knee phantom. The accuracy increased to ~0.90 for a 360 mAs scan. Excellent DE discrimination of the base materials was achieved in the experiments. Approximately 80% of the alcohol (fat) voxels in the trabecular phantom was properly identified both for single and 3-source acquisitions, indicating the ability to detect edemous tissue (water-equivalent plastic in the body of the densitometry insert) from the fat inside the trabecular matrix

  3. Third-generation dual-source 70-kVp chest CT angiography with advanced iterative reconstruction in young children: image quality and radiation dose reduction

    Energy Technology Data Exchange (ETDEWEB)

    Rompel, Oliver; Janka, Rolf; Lell, Michael M.; Uder, Michael; Hammon, Matthias [University Hospital Erlangen, Department of Radiology, Erlangen (Germany); Gloeckler, Martin; Dittrich, Sven [University Hospital Erlangen, Department of Pediatric Cardiology, Erlangen (Germany); Cesnjevar, Robert [University Hospital Erlangen, Department of Pediatric Cardiac Surgery, Erlangen (Germany)

    2016-04-15

    Many technical updates have been made in multi-detector CT. To evaluate image quality and radiation dose of high-pitch second- and third-generation dual-source chest CT angiography and to assess the effects of different levels of advanced modeled iterative reconstruction (ADMIRE) in newborns and children. Chest CT angiography (70 kVp) was performed in 42 children (age 158 ± 267 days, range 1-1,194 days). We evaluated subjective and objective image quality, and radiation dose with filtered back projection (FBP) and different strength levels of ADMIRE. For comparison were 42 matched controls examined with a second-generation 128-slice dual-source CT-scanner (80 kVp). ADMIRE demonstrated improved objective and subjective image quality (P <.01). Mean signal/noise, contrast/noise and subjective image quality were 11.9, 10.0 and 1.9, respectively, for the 80 kVp mode and 11.2, 10.0 and 1.9 for the 70 kVp mode. With ADMIRE, the corresponding values for the 70 kVp mode were 13.7, 12.1 and 1.4 at strength level 2 and 17.6, 15.6 and 1.2 at strength level 4. Mean CTDI{sub vol}, DLP and effective dose were significantly lower with the 70-kVp mode (0.31 mGy, 5.33 mGy*cm, 0.36 mSv) compared to the 80-kVp mode (0.46 mGy, 9.17 mGy*cm, 0.62 mSv; P <.01). The third-generation dual-source CT at 70 kVp provided good objective and subjective image quality at lower radiation exposure. ADMIRE improved objective and subjective image quality. (orig.)

  4. Three-Dimensional two-pion source image from Pb+Pb Collisions at $\\sqrt{s_NN}$=17.3 GeV New constraints for source breakup dynamics

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J.G; Csato, P; Dinkelaker, P; Eckardt, V; Flierl, D; Fodor, Z; Foka, P; Friese, V; Gal, J; Gazdzicki, M; Genchev, V; Georgopoulos, G; Gladysz, E; Grebieszkow, K; Hegyi, S; Hohne, C; Kadija, K; Karev, A; Kikola, D; Kliemant, M; Kniege, S; Kolesnikov, V.I; Kornas, E; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Laszlo, A; Lacey, R; van Leeuwen, M; Levai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A.I; Mateev, M; Melkumov, G.L; Mischke, A; Mitrovski, M; Molnar, J; Mrowczynski, St; Nicolic, V; Palla, G; Panagiotou, A.D; Panayotov, D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Puhlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Sikler, F; Sitar, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Strobele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Varga, D; Vassiliou, M; Veres, G.I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Wojtaszek, A; Yoo, I.K; Zimanyi, J; Alexander, J.M; Danielewicz, P; Kisiel, A; Pratt, S

    2010-01-01

    Source imaging methodology is used to provide a three-dimensional two-pion source function for mid-rapidity pion pairs with $p_T<70$ MeV/c in central ($0-7%$) Pb+Pb collisions at $\\sqrt s_{NN}$=17.3 GeV. Prominent non-Gaussian tails are observed in the pion pair transverse momentum (outward) and in the beam (longitudinal) directions. Model calculations reproduce them with the assumption of Bjorken longitudinal boost invariance and transverse flow blast-wave dynamics coupled with "outside-in burning" in the transverse direction; they also yield a proper time for breakup and emission duration for the pion source.

  5. 20 cm VLA radio-continuum study of M31-images and point source catalogues DR2: Extraction of a supernova remnant sample

    Directory of Open Access Journals (Sweden)

    Galvin T.J.

    2014-01-01

    Full Text Available We present Data Release 2 of the Point Source Catalogue created from a series of previously constructed radio-continuum images of M31 at λ=20 cm (v=1.4 GHz from archived VLA observations. In total, we identify a collection of 916 unique discrete radio sources across the field of M31. Comparing these detected sources to those listed by Gelfand et al. (2004 at λ=92 cm, the spectral index of 98 sources has been derived. The majority (73% of these sources exhibit a spectral index of α<-0.6, indicating that their emission is predominantly non-thermal in nature, which is typical for background objects and Supernova Remnants (SNRs. Additionally, we investigate the presence of radio counterparts for some 156 SNRs and SNR candidates, finding a total of only 13 of these objects in our images within a 500 search area. Auxiliary optical, radio and X-ray catalogues were cross referenced highlighting a small population of SNRs and SNR candidates common to multi frequency domains.

  6. 20 cm VLA Radio-Continuum Study of M31 - Images and Point Source Catalogues DR2: Extraction of a supernova remnant sample

    CERN Document Server

    Galvin, T J

    2014-01-01

    We present Data Release 2 of the Point Source Catalogue created from a series of previously constructed radio-continuum images of M31 at lambda=20 cm (nu=1.4 GHz) from archived VLA observations. In total, we identify a collection of 916 unique discrete radio sources across the field of M31. Comparing these detected sources to those listed by Gelfand et al. (2004) at lambda=92 cm, the spectral index of 98 sources has been derived. The majority (73%) of these sources exhibit a spectral index of alpha <-0.6, indicating that their emission is predominantly non-thermal in nature, which is typical for background objects and Supernova Remnants (SNRs). Additionally, we investigate the presence of radio counterparts for some 156 SNRs and SNR candidates, finding a total of only 13 of these object in our images within a 5 arcsec search area. Auxiliary optical, radio and X-ray catalogs were cross referenced highlighting a small population of SNR and SNR candidates common to multi-frequency domains.

  7. Mobile, hybrid Compton/coded aperture imaging for detection, identification and localization of gamma-ray sources at stand-off distances

    Science.gov (United States)

    Tornga, Shawn R.

    The Stand-off Radiation Detection System (SORDS) program is an Advanced Technology Demonstration (ATD) project through the Department of Homeland Security's Domestic Nuclear Detection Office (DNDO) with the goal of detection, identification and localization of weak radiological sources in the presence of large dynamic backgrounds. The Raytheon-SORDS Tri-Modal Imager (TMI) is a mobile truck-based, hybrid gamma-ray imaging system able to quickly detect, identify and localize, radiation sources at standoff distances through improved sensitivity while minimizing the false alarm rate. Reconstruction of gamma-ray sources is performed using a combination of two imaging modalities; coded aperture and Compton scatter imaging. The TMI consists of 35 sodium iodide (NaI) crystals 5x5x2 in3 each, arranged in a random coded aperture mask array (CA), followed by 30 position sensitive NaI bars each 24x2.5x3 in3 called the detection array (DA). The CA array acts as both a coded aperture mask and scattering detector for Compton events. The large-area DA array acts as a collection detector for both Compton scattered events and coded aperture events. In this thesis, developed coded aperture, Compton and hybrid imaging algorithms will be described along with their performance. It will be shown that multiple imaging modalities can be fused to improve detection sensitivity over a broader energy range than either alone. Since the TMI is a moving system, peripheral data, such as a Global Positioning System (GPS) and Inertial Navigation System (INS) must also be incorporated. A method of adapting static imaging algorithms to a moving platform has been developed. Also, algorithms were developed in parallel with detector hardware, through the use of extensive simulations performed with the Geometry and Tracking Toolkit v4 (GEANT4). Simulations have been well validated against measured data. Results of image reconstruction algorithms at various speeds and distances will be presented as well as

  8. The perception of difference and the differences of perception: The image of the Norman invaders in southern Italy in contemporary western medieval and Byzantine sources

    Directory of Open Access Journals (Sweden)

    Eleni TOUNTA

    2010-11-01

    Full Text Available The paper examines the image of the Norman invaders in southern Italy in contemporary western medieval and Byzantine sources. The comparative method and the methodology of linguistic and literary criticism are equally applied. The interest is focussed on the conceptual notions that defined the perception of the Norman invaders by medieval men and, consequently, their cultural representation. In this way, mentalities and social values are revealed, and, thus, historians investigating political developments are offered a research tool for medieval historical sources.

  9. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging

    OpenAIRE

    Serbanescu, Cristina; Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum...

  10. Hyperspectral fluorescence imaging using violet LEDs as excitation sources for fecal matter contaminate identification on spinach leaves

    Science.gov (United States)

    Food safety in the production of fresh produce for human consumption is a worldwide issue and needs to be addressed to decrease foodborne illnesses and resulting costs. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for detection of fecal contaminates on spina...

  11. Reliability of visual assessment of non-contrast CT, CT angiography source images and CT perfusion in patients with suspected ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Tom van Seeters

    Full Text Available BACKGROUND AND PURPOSE: Good reliability of methods to assess the extent of ischemia in acute stroke is important for implementation in clinical practice, especially between observers with varying experience. Our aim was to determine inter- and intra-observer reliability of the 1/3 middle cerebral artery (MCA rule and the Alberta Stroke Program Early CT Score (ASPECTS for different CT modalities in patients suspected of acute ischemic stroke. METHODS: We prospectively included 105 patients with acute neurological deficit due to suspected acute ischemic stroke within 9 hours after symptom onset. All patients underwent non-contrast CT, CT perfusion and CT angiography on admission. All images were evaluated twice for presence of ischemia, ischemia with >1/3 MCA involvement, and ASPECTS. Four observers evaluated twenty scans twice for intra-observer agreement. We used kappa statistics and intraclass correlation coefficient to calculate agreement. RESULTS: Inter-observer agreement for the 1/3 MCA rule and ASPECTS was fair to good for non-contrast CT, poor to good for CT angiography source images, but excellent for all CT perfusion maps (cerebral blood volume, mean transit time, and predicted penumbra and infarct maps. Intra-observer agreement for the 1/3 MCA rule and ASPECTS was poor to good for non-contrast CT, fair to moderate for CT angiography source images, and good to excellent for all CT perfusion maps. CONCLUSION: Between observers with a different level of experience, agreement on the radiological diagnosis of cerebral ischemia is much better for CT perfusion than for non-contrast CT and CT angiography source images, and therefore CT perfusion is a very reliable addition to standard stroke imaging.

  12. MSiReader: an open-source interface to view and analyze high resolving power MS imaging files on Matlab platform.

    Science.gov (United States)

    Robichaud, Guillaume; Garrard, Kenneth P; Barry, Jeremy A; Muddiman, David C

    2013-05-01

    During the past decade, the field of mass spectrometry imaging (MSI) has greatly evolved, to a point where it has now been fully integrated by most vendors as an optional or dedicated platform that can be purchased with their instruments. However, the technology is not mature and multiple research groups in both academia and industry are still very actively studying the fundamentals of imaging techniques, adapting the technology to new ionization sources, and developing new applications. As a result, there important varieties of data file formats used to store mass spectrometry imaging data and, concurrent to the development of MSi, collaborative efforts have been undertaken to introduce common imaging data file formats. However, few free software packages to read and analyze files of these different formats are readily available. We introduce here MSiReader, a free open source application to read and analyze high resolution MSI data from the most common MSi data formats. The application is built on the Matlab platform (Mathworks, Natick, MA, USA) and includes a large selection of data analysis tools and features. People who are unfamiliar with the Matlab language will have little difficult navigating the user-friendly interface, and users with Matlab programming experience can adapt and customize MSiReader for their own needs.

  13. The application of active-source seismic imaging techniques to transtensional problems the Walker Lane and Salton Trough

    Science.gov (United States)

    Kell, Anna Marie

    The plate margin in the western United States is an active tectonic region that contains the integrated deformation between the North American and Pacific plates. Nearly focused plate motion between the North American and Pacific plates within the northern Gulf of California gives way north of the Salton Trough to more diffuse deformation. In particular a large fraction of the slip along the southernmost San Andreas fault ultimately bleeds eastward, including about 20% of the total plate motion budget that finds its way through the transtensional Walker Lane Deformation Belt just east of the Sierra Nevada mountain range. Fault-bounded ranges combined with intervening low-lying basins characterize this region; the down-dropped features are often filled with water, which present opportunities for seismic imaging at unprecedented scales. Here I present active-source seismic imaging from the Salton Sea and Walker Lane Deformation Belt, including both marine applications in lakes and shallow seas, and more conventional land-based techniques along the Carson range front. The complex fault network beneath the Salton Trough in eastern California is the on-land continuation of the Gulf of California rift system, where North American-Pacific plate motion is accommodated by a series of long transform faults, separated by small pull-apart, transtensional basins; the right-lateral San Andreas fault bounds this system to the north where it carries, on average, about 50% of total plate motion. The Salton Sea resides within the most youthful and northerly "spreading center" in this several thousand-kilometer-long rift system. The Sea provides an ideal environment for the use of high-data-density marine seismic techniques. Two active-source seismic campaigns in 2010 and 2011 show progression of the development of the Salton pull-apart sub-basin and the northerly propagation of the Imperial-San Andreas system through time at varying resolutions. High fidelity seismic imagery

  14. Prospective versus retrospective ECG gating for dual source CT of the coronary stent: Comparison of image quality, accuracy, and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Lei, E-mail: zhaolei219@sohu.com [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China); Zhang Zhaoqi; Fan Zhanming; Yang Lin; Du Jing [Beijing Anzhen Hospital of the Capital University of Medical Sciences (China)

    2011-03-15

    Objective: To compare image quality, diagnostic accuracy and radiation dose of prospective and retrospective electrocardiogram (ECG) gated dual source computed tomography (DSCT) for the evaluation of the coronary stent, using conventional coronary angiography (CA) as a standard reference. Design, setting and patients: Sixty patients (heart rates {<=}70 bpm) with previous stent implantation who were scheduled for CA were divided in two groups, receiving either prospective or retrospective ECG gated DSCT separately. Two reviewers scored coronary stent image quality and evaluated stent lumen. Results: There was no significant difference in image quality between the two groups. In the prospective group, there were 86.4% (51/59) stents with interpretable images, in the retrospective group, there were 87.5% (49/56) stents with interpretable images. Image quality was not influenced by age, body mass index or heart rate in either group, but heart rate variability had a weak impact on the image quality of the prospective group. Image noise was higher in the prospective group, but this difference reached statistical significance only by using a smooth kernel reconstruction. Per-stent based sensitivity, specificity, and positive and negative predictive value were 100%, 84.1%, 68.2%, and 100%, respectively, in the prospective CT angiography group and 94.4%, 86.8%, 77.3%, and 97.1%, respectively, in the retrospective CT angiography group. There was a significant difference in the effective radiation dose between the two groups, mean effective dose in the prospective and retrospective group was 2.2 {+-} 0.5 mSv (1.5-3.2 mSv) and 14.6 {+-} 3.3 mSv (10.0-20.4 mSv) (p < .001) respectively. Conclusions: Compared with retrospective CT angiography, prospective CT angiography has a similar performance in assessing coronary stent patency, but a lower effective dose in selected patients with regular heart rates {<=}70 bpm.

  15. EXSdetect: an end-to-end software for extended source detection in X-ray images: application to Swift-XRT data

    CERN Document Server

    Liu, Teng; Tundo, Elena; Moretti, A; Wang, Jun-Xian; Rosati, Piero; Guglielmetti, Fabrizia; 10.1051/0004-6361/201219866

    2012-01-01

    Aims. We present a stand-alone software (named EXSdetect) for the detection of extended sources in X-ray images. Our goal is to provide a flexible tool capable of detecting extended sources down to the lowest flux levels attainable within instrumental limitations, while maintaining robust photometry, high completeness, and low contamination, regardless of source morphology. EXSdetect was developed mainly to exploit the ever-increasing wealth of archival X-ray data, but is also ideally suited to explore the scientific capabilities of future X-ray facilities, with a strong focus on investigations of distant groups and clusters of galaxies. Methods. EXSdetect combines a fast Voronoi tessellation code with a friends-of-friends algorithm and an automated deblending procedure. The values of key parameters are matched to fundamental telescope properties such as angular resolution and instrumental background. In addition, the software is designed to permit extensive tests of its performance via simulations of a wide ...

  16. Is an "ideal" service institution image the same for all referral sources? The case of chemical dependency treatment programs.

    Science.gov (United States)

    Johnson, K; LaTour, M S

    1993-01-01

    In a competitive market like chemical dependency treatment, segmenting the professional referral market according to an "ideal" service image may offer a service institution a strategic advantage. Results of this study suggest that while different professionals in a referral market may attach differential importance to the same service feature, a favorable or unfavorable "image" seems to encompass how well both the professional and the professionals' client are treated by the service institution.

  17. Assessment and quantification of sources of variability in breast apparent diffusion coefficient (ADC) measurements at diffusion weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, E., E-mail: ytteb84@hotmail.com [Breast Imaging Department, Ninewells Hospital and Medical School, Dundee DD1 9SY (United Kingdom); Waugh, S., E-mail: shelley.waugh@nhs.net [Department of Medical Physics, Ninewells Hospital and Medical School, Dundee DD1 9SY (United Kingdom); Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee DD1 9SY (United Kingdom); Priba, L., E-mail: lpriba@nhs.net [Department of Medical Physics, Ninewells Hospital and Medical School, Dundee DD1 9SY (United Kingdom); Davis, Z., E-mail: zoedavis@doctors.org.uk [Breast Imaging Department, Ninewells Hospital and Medical School, Dundee DD1 9SY (United Kingdom); Crowe, E., E-mail: e.crowe@nhs.net [Department of Clinical Radiology, Ninewells Hospital and Medical School, Dundee DD1 9SY (United Kingdom); Vinnicombe, S., E-mail: s.vinnicombe@dundee.ac.uk [Division of Imaging and Technology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY (United Kingdom)

    2015-09-15

    Highlights: • Inter-scan errors have minimal contribution to ADC measurement variability. • Intra-observer measures of ADC values in breast cancer are excellent. • ADC measures in whole tumour are more reproducible than minimum ADC measures. • ADC measurement error is most influenced by multiple readers. - Abstract: Purpose: Apparent Diffusion Coefficient (ADC) measurements are increasingly used for assessing breast cancer response to neoadjuvant chemotherapy although little data exists on ADC measurement reproducibility. The purpose of this work was to investigate and characterise the magnitude of errors in ADC measures that may be encountered in such follow-up studies- namely scanner stability, scan–scan reproducibility, inter- and intra- observer measures and the most reproducible measurement of ADC. Methods: Institutional Review Board approval was obtained for the prospective study of healthy volunteers and written consent acquired for the retrospective study of patient images. All scanning was performed on a 3.0-T MRI scanner. Scanner stability was assessed using an ice-water phantom weekly for 12 weeks. Inter-scan repeatability was assessed across two scans of 10 healthy volunteers (26–61 years; mean: 44.7 years). Inter- and intra-reader analysis repeatability was measured in 52 carcinomas from clinical patients (29–70 years; mean: 50.0 years) by measuring the whole tumor ADC value on a single slice with maximum tumor diameter (ADC{sub S}) and the ADC value of a small region of interest (ROI) on the same slice (ADC{sub min}). Repeatability was assessed using intraclass correlation coefficients (ICC) and coefficients of repeatability (CoR). Results: Scanner stability contributed 6% error to phantom ADC measurements (0.071 × 10{sup −3} mm{sup 2}/s; mean ADC = 1.089 × 10{sup −3} mm{sup 2}/s). The measured scan-scan CoR in the volunteers was 0.122 × 10{sup −3} mm{sup 2}/s, contributing an error of 8% to the mean measured values (ADC

  18. Study of the imaging property of a fluorescent confocal microscopy with a phase-only filter in an extended source

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The phase information of an enlarged source is reconstructed with an annular two-zone phase-only filter in a fluorescent confocal scanning optical microscope for resolution improvement. The dependences of its resolution on the source size and on the phase transmission of the outer annular zone of the filter are investigated theoretically by use of its three-dimensional optical transfer function (3D OTF ). The increased source size and the required phase value of the outer annular zone of the phase-only filter for an optimal 3D OTF of the optical system are presented.

  19. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory

    Science.gov (United States)

    Tang, Xiangyang; Hsieh, Jiang; Hagiwara, Akira; Nilsen, Roy A.; Thibault, Jean-Baptiste; Drapkin, Evgeny

    2005-08-01

    The original FDK algorithm proposed for cone beam (CB) image reconstruction under a circular source trajectory has been extensively employed in medical and industrial imaging applications. With increasing cone angle, CB artefacts in images reconstructed by the original FDK algorithm deteriorate, since the circular trajectory does not satisfy the so-called data sufficiency condition (DSC). A few 'circular plus' trajectories have been proposed in the past to help the original FDK algorithm to reduce CB artefacts by meeting the DSC. However, the circular trajectory has distinct advantages over other scanning trajectories in practical CT imaging, such as head imaging, breast imaging, cardiac, vascular and perfusion applications. In addition to looking into the DSC, another insight into the CB artefacts existing in the original FDK algorithm is the inconsistency between conjugate rays that are 180° apart in view angle (namely conjugate ray inconsistency). The conjugate ray inconsistency is pixel dependent, varying dramatically over pixels within the image plane to be reconstructed. However, the original FDK algorithm treats all conjugate rays equally, resulting in CB artefacts that can be avoided if appropriate weighting strategies are exercised. Along with an experimental evaluation and verification, a three-dimensional (3D) weighted axial cone beam filtered backprojection (CB-FBP) algorithm is proposed in this paper for image reconstruction in volumetric CT under a circular source trajectory. Without extra trajectories supplemental to the circular trajectory, the proposed algorithm applies 3D weighting on projection data before 3D backprojection to reduce conjugate ray inconsistency by suppressing the contribution from one of the conjugate rays with a larger cone angle. Furthermore, the 3D weighting is dependent on the distance between the reconstruction plane and the central plane determined by the circular trajectory. The proposed 3D weighted axial CB-FBP algorithm

  20. IHC Profiler: An Open Source Plugin for the Quantitative Evaluation and Automated Scoring of Immunohistochemistry Images of Human Tissue Samples

    Science.gov (United States)

    Malhotra, Renu; De, Abhijit

    2014-01-01

    In anatomic pathology, immunohistochemistry (IHC) serves as a diagnostic and prognostic method for identification of disease markers in tissue samples that directly influences classification and grading the disease, influencing patient management. However, till today over most of the world, pathological analysis of tissue samples remained a time-consuming and subjective procedure, wherein the intensity of antibody staining is manually judged and thus scoring decision is directly influenced by visual bias. This instigated us to design a simple method of automated digital IHC image analysis algorithm for an unbiased, quantitative assessment of antibody staining intensity in tissue sections. As a first step, we adopted the spectral deconvolution method of DAB/hematoxylin color spectra by using optimized optical density vectors of the color deconvolution plugin for proper separation of the DAB color spectra. Then the DAB stained image is displayed in a new window wherein it undergoes pixel-by-pixel analysis, and displays the full profile along with its scoring decision. Based on the mathematical formula conceptualized, the algorithm is thoroughly tested by analyzing scores assigned to thousands (n = 1703) of DAB stained IHC images including sample images taken from human protein atlas web resource. The IHC Profiler plugin developed is compatible with the open resource digital image analysis software, ImageJ, which creates a pixel-by-pixel analysis profile of a digital IHC image and further assigns a score in a four tier system. A comparison study between manual pathological analysis and IHC Profiler resolved in a match of 88.6% (P<0.0001, CI = 95%). This new tool developed for clinical histopathological sample analysis can be adopted globally for scoring most protein targets where the marker protein expression is of cytoplasmic and/or nuclear type. We foresee that this method will minimize the problem of inter-observer variations across labs and further help in

  1. IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples.

    Directory of Open Access Journals (Sweden)

    Frency Varghese

    Full Text Available In anatomic pathology, immunohistochemistry (IHC serves as a diagnostic and prognostic method for identification of disease markers in tissue samples that directly influences classification and grading the disease, influencing patient management. However, till today over most of the world, pathological analysis of tissue samples remained a time-consuming and subjective procedure, wherein the intensity of antibody staining is manually judged and thus scoring decision is directly influenced by visual bias. This instigated us to design a simple method of automated digital IHC image analysis algorithm for an unbiased, quantitative assessment of antibody staining intensity in tissue sections. As a first step, we adopted the spectral deconvolution method of DAB/hematoxylin color spectra by using optimized optical density vectors of the color deconvolution plugin for proper separation of the DAB color spectra. Then the DAB stained image is displayed in a new window wherein it undergoes pixel-by-pixel analysis, and displays the full profile along with its scoring decision. Based on the mathematical formula conceptualized, the algorithm is thoroughly tested by analyzing scores assigned to thousands (n = 1703 of DAB stained IHC images including sample images taken from human protein atlas web resource. The IHC Profiler plugin developed is compatible with the open resource digital image analysis software, ImageJ, which creates a pixel-by-pixel analysis profile of a digital IHC image and further assigns a score in a four tier system. A comparison study between manual pathological analysis and IHC Profiler resolved in a match of 88.6% (P<0.0001, CI = 95%. This new tool developed for clinical histopathological sample analysis can be adopted globally for scoring most protein targets where the marker protein expression is of cytoplasmic and/or nuclear type. We foresee that this method will minimize the problem of inter-observer variations across labs and

  2. Evaluations of sparse source imaging and minimum norm estimate methods in both simulation and clinical MEG data.

    Science.gov (United States)

    Zhu, Min; Zhang, Wenbo; Dickens, Deanna; Ding, Lei

    2012-01-01

    The aim of the present study is to evaluate the capability of a recently proposed l(1)-norm based regularization method, named as variation-based sparse cortical current density (VB-SCCD) algorithm, in estimating location and spatial coverage of extensive brain sources. Its performance was compared to the conventional minimum norm estimate (MNE) using both simulations and clinical interictal spike MEG data from epilepsy patients. Four metrics were adopted to evaluate two regularization methods for EEG/MEG inverse problems from different aspects in simulation study. Both methods were further compared in reconstructing epileptic sources and validated using results from clinical diagnosis. Both simulation and experimental results suggest VB-SCCD has better performance in localization and estimation of source extents, as well as less spurious sources than MNE, which makes it a promising noninvasive tool to assist presurgical evaluation for surgical treatment in epilepsy patients.

  3. Keyhole reflection-mode coherent diffraction imaging of nano-patterned surfaces using a tabletop EUV source

    Science.gov (United States)

    Shanblatt, Elisabeth; Seaberg, Matthew; Zhang, Bosheng; Gardner, Dennis; Murnane, Margaret; Kapyetn, Henry; Adams, Daniel

    2014-03-01

    We demonstrate the first reflection-mode keyhole coherent diffraction imaging (CDI) of non-isolated samples from a single diffraction pattern. A tabletop high harmonic generation (HHG) beam at 30 nm with a curved wave-front is used to illuminate Ti nano-patterns on a Si substrate at 45 degree angle of incidence. The 30 nm illumination beam profile is first characterized using ptychograhic CDI. Keyhole CDI is then used to image the nano-sample. In contrast to ptychography CDI, keyhole CDI needs only one diffraction pattern, and therefore requires no scanning of the sample. This is a significant advantage for ultrafast pump-probe imaging of thermal or spin transport, allowing a sequence of time-delayed images of the same region to be easily acquired. Our technique opens the door for imaging dynamics in nanostructures with sub-10 nm spatial resolution and fs temporal resolution. National Science Foundation Engineering Research Center in EUV Science and Technology, AMRDEC, DARPA PULSE, SRC grant 2013-OJ-2443, NSSEFF Fellowship, NSF IGERT program.

  4. Virtual monochromatic imaging in dual-source and dual-energy CT for visualization of acute ischemic stroke

    CERN Document Server

    Hara, Hidetake; Matsuzawa, Hiroki; Inoue, Toshiyuki; Abe, Shinji; Satoh, Hitoshi; Nakajima, Yasuo

    2015-01-01

    We have recently developed a phantom that simulates acute ischemic stroke. We attempted to visualize acute-stage cerebral infarction by applying virtual monochromatic images to this phantom using dual-energy CT (DECT). Virtual monochromatic images were created using DECT from 40 to 100 keV at every 10 keV and from 60 to 80 keV at every 1 keV, under three energy conditions of tube voltages with thin (Sn) filters. Calculation of the CNR values allowed us to evaluate the visualization of acute-stage cerebral infarction. The CNR value of a virtual monochromatic image was the highest at 68 keV under 80 kV / Sn 140 kV, at 72 keV under 100 kV / Sn 140 kV, and at 67 keV under 140 kV / 80 kV. The CNR values of virtual monochromatic images between 65 and 75 keV were significantly higher than those obtained for all other created energy images. Therefore, optimal conditions for visualizing acute ischemic stroke were achievable.

  5. Impact of head models in N170 component source imaging: results in control subjects and ADHD patients

    Science.gov (United States)

    Beltrachini, L.; Blenkmann, A.; von Ellenrieder, N.; Petroni, A.; Urquina, H.; Manes, F.; Ibáñez, A.; Muravchik, C. H.

    2011-12-01

    The major goal of evoked related potential studies arise in source localization techniques to identify the loci of neural activity that give rise to a particular voltage distribution measured on the surface of the scalp. In this paper we evaluate the effect of the head model adopted in order to estimate the N170 component source in attention deficit hyperactivity disorder (ADHD) patients and control subjects, considering faces and words stimuli. The standardized low resolution brain electromagnetic tomography algorithm (sLORETA) is used to compare between the three shell spherical head model and a fully realistic model based on the ICBM-152 atlas. We compare their variance on source estimation and analyze the impact on the N170 source localization. Results show that the often used three shell spherical model may lead to erroneous solutions, specially on ADHD patients, so its use is not recommended. Our results also suggest that N170 sources are mainly located in the right occipital fusiform gyrus for faces stimuli and in the left occipital fusiform gyrus for words stimuli, for both control subjects and ADHD patients. We also found a notable decrease on the N170 estimated source amplitude on ADHD patients, resulting in a plausible marker of the disease.

  6. Sources of and Remedies for Removing Unwanted Reflections in Millimeter Wave Images of Complex SOFI-Covered Space Shuttle Structures

    Science.gov (United States)

    Kharkovsky, S.; Zoughi, R.; Hepburn, Frank L.

    2007-01-01

    In the recent years, continuous-wave near-field and lens-focused millimeter wave imaging systems have been effectively used to demonstrate their utility for producing high-resolution images of metallic structures covered with spay on foam insulation (SOFI) such as the Space Shuttle external fuel tank. However, for some specific structures a certain interference -pattern may be superimposed on the produced images. There are methods by which the influence of this unwanted interference can be reduced, such as the incorporation of an incidence .angle and the proper use of signal polarization. This paper presents the basics of this problem and describes the use of the methods for reducing this unwanted influence through specific examples.

  7. Neuropeptide imaging on an LTQ with vMALDI source: The complete `all-in-one' peptidome analysis

    Science.gov (United States)

    Verhaert, Peter D.; Conaway, Maria C. Prieto; Pekar, Tonya M.; Miller, Ken

    2007-02-01

    Direct tissue imaging was performed on dissected insect tissue using a MALDI ion trap to visualize endogenous neuropeptides. Coupling tissue imaging to tandem MSn allows for the identification of previously known species and the ability to identify new ones by de novo sequencing, as searchable databases for insects are sparse. Direct tissue imaging is an attractive technique for the study of neuropeptides as minimal sample preparation is required prior to mass spectrometry. We successfully identified neuropeptides present in the corpora cardiaca and allata of Acheta domesticus (the house cricket). Diagnostic fragments at low m/z were used to distinguish between lipids and neuropeptides. The distribution of peptides appears to be more differentially localized than that of phospholipids, which seem to be more evenly distributed within the tissue.

  8. Hypoxia imaging endoscopy equipped with laser light source from preclinical live animal study to first-in-human subject research.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Kaneko

    Full Text Available A goal in next-generation endoscopy is to develop functional imaging techniques to open up new opportunities for cancer diagnosis. Although spatial and temporal information on hypoxia is crucial for understanding cancer physiology and expected to be useful for cancer diagnosis, existing techniques using fluorescent indicators have limitations due to low spatial resolution and invasive administration. To overcome these problems, we developed an imaging technology based on hemoglobin oxygen saturation in both the tumor and surrounding mucosa using a laser endoscope system, and conducted the first human subject research for patients with aero-digestive tract cancer. The oxygen saturation map overlapped the images of cancerous lesions and indicated highly heterogeneous features of oxygen supply in the tumor. The hypoxic region of the tumor surface was found in both early cancer and cancer precursors. This technology illustrates a novel aspect of cancer biology as a potential biomarker and can be widely utilized in cancer diagnosis.

  9. Near-Infrared Properties of Faint X-rays Sources from NICMOS Imaging in the Chandra Deep Fields

    CERN Document Server

    Colbert, J W; Yan, L; Malkan, M A; McCarthy, P; Colbert, James W.; Teplitz, Harry; Yan, Lin; Malkan, Matthew; Carthy, Patrick Mc

    2004-01-01

    We measure the near-infrared properties of 42 X-ray detected sources from the Chandra Deep Fields North and South, the majority of which lie within the NICMOS Hubble Deep Field North and Ultra Deep Field. We detect all 42 Chandra sources with NICMOS, with 95% brighter than H = 24.5. We find that X-ray sources are most often in the brightest and most massive galaxies. Neither the X-ray fluxes nor hardness ratios of the sample show any correlation with near-infrared flux, color or morphology. This lack of correlation indicates there is little connection between the two emission mechanisms and is consistent with the near-infrared emission being dominated by starlight rather than a Seyfert non-stellar continuum. Near-infrared X-ray sources make up roughly half of all extremely red (J-H > 1.4) objects brighter than H > 24.5. These red X-ray sources have a range of hardness ratios similar to the rest of the sample, decreasing the likelihood of dust-obscured AGN activity as the sole explanation for their red color. ...

  10. Recent developments in widely tunable and high peak power ultrafast laser sources and their adoption in biological imaging

    Science.gov (United States)

    Klein, J.

    2016-03-01

    Widely tunable ultrafast lasers have enabled a large number of biological imaging techniques including point scanning multiphoton excited fluorescence (MPEF), SHG/THG and stimulated Raman imaging. Tunable ultrafast lasers offer spectral agility, covering the entire relative transparency window in live tissue (700-1300nnm) and flexibility with multi-color, synchronized outputs to support sophisticated label free techniques (e.g. stimulated Raman modalities). More recently newly available high peak power lasers based on Ytterbium technology drive advances in two-photon light-sheet, 3 photon excited fluorescence and holographic patterning for optogenetics photo-stimulation. These laser platforms offer a unique blend of compactness, ease of use and cost efficiency, and ideally complement tunable platforms typically based on Ti:Sapphire and IR optical parametric oscillators (OPO). We present various types of ultrafast laser architectures, link their optical characteristics to key bio-imaging requirements, and present relevant examples and images illustrating their impact in biological science. In particular we review the use of ultrafast lasers in optogenetics for photo-stimulation of networks of neurons.

  11. Perception of Solar Eclipses Captured by Art Explains How Imaging Misrepresented the Source of the Solar Wind

    Directory of Open Access Journals (Sweden)

    Richard Woo

    2015-11-01

    Full Text Available The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856–1934, the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclipse paintings are, therefore, ideal for capturing and representing best the perceptual experience of the visible corona. Explained here is how by bridging the eras of visual (late 19th century and imaging investigations (since the latter half of the 20th century, Butler’s paintings reveal why white-light images misled researching and understanding the Sun’s atmosphere, the solar wind. The closure in understanding solar eclipses through the convergence of perception, art, imaging, science and the history of science promises to enrich the experience of viewing and photographing the first solar eclipse of the 21st century in the United States on 21st August 2017.

  12. Perception of Solar Eclipses Captured by Art Explains How Imaging Misrepresented the Source of the Solar Wind.

    Science.gov (United States)

    Woo, Richard

    2015-12-01

    The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856-1934), the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclipse paintings are, therefore, ideal for capturing and representing best the perceptual experience of the visible corona. Explained here is how by bridging the eras of visual (late 19th century) and imaging investigations (since the latter half of the 20th century), Butler's paintings reveal why white-light images misled researching and understanding the Sun's atmosphere, the solar wind. The closure in understanding solar eclipses through the convergence of perception, art, imaging, science and the history of science promises to enrich the experience of viewing and photographing the first solar eclipse of the 21st century in the United States on 21st August 2017.

  13. Adenosine-stress dynamic myocardial perfusion imaging using 128-slice dual-source CT: optimization of the CT protocol to reduce the radiation dose.

    Science.gov (United States)

    Kim, Sung Mok; Kim, Yoo Na; Choe, Yeon Hyeon

    2013-04-01

    The aim of this study was to compare the radiation dose and image quality of different adenosine-stress dynamic myocardial perfusion CT protocols using a 128-slice dual-source computed tomography (DSCT) scanner. We included 330 consecutive patients with suspected coronary artery disease. Protocols employed the following dynamic scan parameters: protocol I, a 30-s scan with a fixed tube current (FTC, n = 172); protocol II, a 30-s scan using an automatic tube current modulation (ATCM) technique (n = 108); protocol III, a 14-s scan using an ATCM (n = 50). To determine the scan interval for protocol III, we analyzed time-attenuation curves of 26 patients with myocardial perfusion who had been scanned using protocol I or II. The maximum attenuation difference between normal and abnormal myocardium occurred at 18.0 s to 30.3 s after initiation of contrast injection. Myocardial perfusion images of FTC and ATCM were of diagnostic image quality based on visual analysis. The mean radiation dose associated with protocols I, II, and III was 12.1 ± 1.6 mSv, 7.7 ± 2.5 mSv, and 3.8 ± 1.3 mSv, respectively (p < 0.01). Use of a dose-modulation technique and a 14-s scan duration for adenosine-stress CT enables significant dose reduction while maintaining diagnostic image quality.

  14. ChiMS: Open-source instrument control software platform on LabVIEW for imaging/depth profiling mass spectrometers.

    Science.gov (United States)

    Cui, Yang; Hanley, Luke

    2015-06-01

    ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.

  15. Bedside functional brain imaging in critically-ill children using high-density EEG source modeling and multi-modal sensory stimulation

    Directory of Open Access Journals (Sweden)

    Danny Eytan

    2016-01-01

    Full Text Available Acute brain injury is a common cause of death and critical illness in children and young adults. Fundamental management focuses on early characterization of the extent of injury and optimizing recovery by preventing secondary damage during the days following the primary injury. Currently, bedside technology for measuring neurological function is mainly limited to using electroencephalography (EEG for detection of seizures and encephalopathic features, and evoked potentials. We present a proof of concept study in patients with acute brain injury in the intensive care setting, featuring a bedside functional imaging set-up designed to map cortical brain activation patterns by combining high density EEG recordings, multi-modal sensory stimulation (auditory, visual, and somatosensory, and EEG source modeling. Use of source-modeling allows for examination of spatiotemporal activation patterns at the cortical region level as opposed to the traditional scalp potential maps. The application of this system in both healthy and brain-injured participants is demonstrated with modality-specific source-reconstructed cortical activation patterns. By combining stimulation obtained with different modalities, most of the cortical surface can be monitored for changes in functional activation without having to physically transport the subject to an imaging suite. The results in patients in an intensive care setting with anatomically well-defined brain lesions suggest a topographic association between their injuries and activation patterns. Moreover, we report the reproducible application of a protocol examining a higher-level cortical processing with an auditory oddball paradigm involving presentation of the patient's own name. This study reports the first successful application of a bedside functional brain mapping tool in the intensive care setting. This application has the potential to provide clinicians with an additional dimension of information to manage

  16. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Muertz, Petra, E-mail: petra.muertz@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kaschner, Marius, E-mail: marius.kaschner@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Traeber, Frank, E-mail: frank.traeber@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Kukuk, Guido M., E-mail: guido.kukuk@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Buedenbender, Sarah M., E-mail: sarah_m_buedenbender@yahoo.de [Department of Radiology, University of Bonn (Germany); Skowasch, Dirk, E-mail: dirk.skowasch@ukb.uni-bonn.de [Department of Medicine, University of Bonn (Germany); Gieseke, Juergen, E-mail: juergen.gieseke@philips.com [Philips Healthcare, Best (Netherlands); Department of Radiology, University of Bonn (Germany); Schild, Hans H., E-mail: hans.schild@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany); Willinek, Winfried A., E-mail: winfried.willinek@ukb.uni-bonn.de [Department of Radiology, University of Bonn (Germany)

    2012-11-15

    Purpose: To evaluate the use of dual-source parallel RF excitation (TX) for diffusion-weighted whole-body MRI with background body signal suppression (DWIBS) at 3.0 T. Materials and methods: Forty consecutive patients were examined on a clinical 3.0-T MRI system using a diffusion-weighted (DW) spin-echo echo-planar imaging sequence with a combination of short TI inversion recovery and slice-selective gradient reversal fat suppression. DWIBS of the neck (n = 5), thorax (n = 8), abdomen (n = 6) and pelvis (n = 21) was performed both with TX (2:56 min) and with standard single-source RF excitation (4:37 min). The quality of DW images and reconstructed inverted maximum intensity projections was visually judged by two readers (blinded to acquisition technique). Signal homogeneity and fat suppression were scored as 'improved', 'equal', 'worse' or 'ambiguous'. Moreover, the apparent diffusion coefficient (ADC) values were measured in muscles, urinary bladder, lymph nodes and lesions. Results: By the use of TX, signal homogeneity was 'improved' in 25/40 and 'equal' in 15/40 cases. Fat suppression was 'improved' in 17/40 and 'equal' in 23/40 cases. These improvements were statistically significant (p < 0.001, Wilcoxon signed-rank test). In five patients, fluid-related dielectric shading was present, which improved remarkably. The ADC values did not significantly differ for the two RF excitation methods (p = 0.630 over all data, pairwise Student's t-test). Conclusion: Dual-source parallel RF excitation improved image quality of DWIBS at 3.0 T with respect to signal homogeneity and fat suppression, reduced scan time by approximately one-third, and did not influence the measured ADC values.

  17. Negative refraction of elastic waves in 2D phononic crystals: Contribution of resonant transmissions to the construction of the image of a point source

    Directory of Open Access Journals (Sweden)

    Anne-Christine Hladky-Hennion

    2011-12-01

    Full Text Available Negative refraction properties of a two-dimensional phononic crystal (PC, made of a triangular lattice of steel rods embedded in epoxy are investigated both experimentally and numerically. First, experiments have been carried out on a prism shaped PC immersed in water. Then, for focusing purposes, a flat lens is considered and the construction of the image of a point source is analyzed in details, when indices are matched between the PC and the surrounding fluid medium, whereas acoustic impedances are mismatched. Optimal conditions for focusing longitudinal elastic waves by such PC flat lens are then discussed.

  18. Seafloor sound-speed profile characterization with non-parallel layering by the image source method: Application to CLUTTER'09 campaign data.

    Science.gov (United States)

    Pinson, Samuel; Holland, Charles W

    2016-08-01

    The image source method was originally developed to estimate sediment sound speed as a function of depth assuming plane-layered sediments. Recently, the technique was extended to treat dipping, i.e., non-parallel layers and was tested using synthetic data. Here, the technique is applied to measured reflection data with dipping layers and mud volcanoes. The data were collected with an autonomous underwater vehicle towing a source (1600-3500 Hz) and a horizontal array of hydrophones. Data were collected every 3 m criss-crossing an area about 1 km(2). The results provide a combination of two-dimensional sections of the sediment sound-speeds plotted in a three-dimensional picture.

  19. VizieR Online Data Catalog: CFHT r- and z-band images 28 Planck sources (van der Burg+, 2016)

    Science.gov (United States)

    van der Burg, R. F. J.; Aussel, H.; Pratt, G. W.; Arnaud, M.; Melin, J.-B.; Aghanim, N.; Barrena, R.; Dahle, H.; Douspis, M.; Ferragamo, A.; Fromenteau, S.; Herbonnet, R.; Hurier, G.; Pointecouteau, E.; Rubino-Martin, J. A.; Streblyanska, A.

    2016-02-01

    Reduced CFHT MegaCam r-, and z-band FITS images of the 28 Planck candidates studied in the paper. WCS information (calibrated w.r.t. USNO-B1) is included. Exposure times are 2000 seconds in each filter. Magnitude zero points are calibrated w.r.t. SDSS (where there is overlap), or else using the Universal stellar locus in combination with WISE Channel 1, as detailed on in the accompanying paper. The MAGZP keywords correspond to the best estimates (with uncertainty ~0.05), in the AB magnitude system. Images are centred on the Planck SZ position, and have a size (15'x15') that is several times larger than the Planck beam, to allow for a study of optical counterparts to the SZ detections. (3 data files).

  20. Kinetic Analysis of Dynamic Positron Emission Tomography Data using Open-Source Image Processing and Statistical Inference Tools

    OpenAIRE

    Hawe, David; Hernández Fernández, Francisco R.; O’Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O’Sullivan, Finbarr

    2012-01-01

    In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course da...

  1. Perception of Solar Eclipses Captured by Art Explains How Imaging Misrepresented the Source of the Solar Wind

    OpenAIRE

    2015-01-01

    The visible corona revealed by the natural phenomenon of solar eclipses has been studied for 150 years. A turning point has been the discovery that the true spatial distribution of coronal brightness can neither be seen nor imaged on account of its unprecedented dynamic range. Howard Russell Butler (1856–1934), the painter of solar eclipses in the early 20th century, possessed the extraordinary skill of painting from memory what he saw for only a brief time. His remarkable but forgotten eclip...

  2. Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, K.; Li, M. H.; Yan, W. C.; Ma, Y.; Zhao, J. R.; Li, Y. F.; Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Guo, X. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China); Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China); School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Y. P.; Zhang, J. [Department of Physics, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2014-11-15

    We report an efficient Mo Kα x-ray source produced by interaction of femtosecond Ti: sapphire laser pulses with a solid Molybdenum target working at 1 kHz repetition rate. The generated Mo Kα x-ray intensity reaches to 4.7 × 10{sup 10} photons sr{sup −1} s{sup −1}, corresponding to an average power of 0.8 mW into 2π solid angle. The spatial resolution of this x-ray source is measured to be 26 lp/mm. With the high flux and high spatial resolution characteristics, high resolving in-line x-ray radiography was realized on test objects and large size biological samples within merely half a minute. This experiment shows the possibility of laser plasma hard x-ray source as a new low cost and high resolution system for radiography and its ability of ultrafast x-ray pump-probe study of matter.

  3. Ammonia excitation imaging of shocked gas towards the W28 gamma-ray source HESS J1801-233

    CERN Document Server

    Maxted, Nigel I; Rowell, Gavin P; Nicholas, Brent P; Burton, Michael G; Walsh, Andrew; Fukui, Yasuo; Kawamura, Akiko

    2016-01-01

    We present 12 mm Mopra observations of the dense (>10^3 cm^-3 ) molecular gas towards the north-east (NE) of the W28 supernova remnant (SNR). This cloud is spatially well-matched to the TeV gamma-ray source HESS J1801-233 and is known to be a SNR-molecular cloud interaction region. Shock-disruption is evident from broad NH3 (1,1) spectral line-widths in regions towards the W28 SNR, while strong detections of spatially-extended NH3(3,3), NH3(4,4) and NH3(6,6) inversion emission towards the cloud strengthen the case for the existence of high temperatures within the cloud. Velocity dispersion measurements and NH3(n,n)/(1,1) ratio maps, where n=2, 3, 4 and 6, indicate that the source of disruption is from the side of the cloud nearest to the W28 SNR, suggesting that it is the source of cloud-disruption. Towards part of the cloud, the ratio of ortho to para-NH3 is observed to exceed 2, suggesting gas-phase NH3 enrichment due to NH3 liberation from dust grain mantles. The measured NH3 abundance with respect to H2 i...

  4. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    Science.gov (United States)

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-03-03

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  5. Modelling of oil spill frequency, leak sources and contamination probability in the Caspian Sea using multi-temporal SAR images 2006–2010 and stochastic modelling

    Directory of Open Access Journals (Sweden)

    Emil Bayramov

    2016-05-01

    Full Text Available The main goal of this research was to detect oil spills, to determine the oil spill frequencies and to approximate oil leak sources around the Oil Rocks Settlement, the Chilov and Pirallahi Islands in the Caspian Sea using 136 multi-temporal ENVISAT Advanced Synthetic Aperture Radar Wide Swath Medium Resolution images acquired during 2006–2010. The following oil spill frequencies were observed around the Oil Rocks Settlement, the Chilov and Pirallahi Islands: 2–10 (3471.04 sq km, 11–20 (971.66 sq km, 21–50 (692.44 sq km, 51–128 (191.38 sq km. The most critical oil leak sources with the frequency range of 41–128 were observed at the Oil Rocks Settlement. The exponential regression analysis between wind speeds and oil slick areas detected from 136 multi-temporal ENVISAT images revealed the regression coefficient equal to 63%. The regression model showed that larger oil spill areas were observed with decreasing wind speeds. The spatiotemporal patterns of currents in the Caspian Sea explained the multi-directional spatial distribution of oil spills around Oil Rocks Settlement, the Chilov and Pirallahi Islands. The linear regression analysis between detected oil spill frequencies and predicted oil contamination probability by the stochastic model showed the positive trend with the regression coefficient of 30%.

  6. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter

    Directory of Open Access Journals (Sweden)

    Assim Boukhayma

    2016-03-01

    Full Text Available This paper presents the first low noise complementary metal oxide semiconductor (CMOS terahertz (THz imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  7. Single image de-haze under illumination from artificial light sources%人造光照下的单幅雾天图像复原

    Institute of Scientific and Technical Information of China (English)

    鲁丹; 方帅; 邵堃

    2015-01-01

    Current researches on single image de-hazing always premise a sufficient illumination, which refers to skylight in the daytime. However in condition that illumination mainly comes from artificial light sources, the current algorithm will not work well and related researches are rare. This paper presents a novel image de-hazing algorithm under illumina-tion from artificial light sources, which considers non-uniform illumination and light compensation. A detecting algorithm is proposed to confirm the position of artificial light sources;atmospheric light and compensatory coefficient are obtained according to artificial light characteristic;after that, the haze-free image is effectively recovered based on a newly proposed imaging model;edge based color constancy is used to correct color. Experimental results show that this algorithm can get good performance under non-uniform illumination.%当前基于单幅雾天图像复原算法的研究都是在光照充足的情形下(白天),这种情形下的光照主要来自天空光。然而,对于在光照主要来自人造光(夜间)的雾天图像复原算法的研究屈指可数。因此提出了新的基于人造光照下的雾天成像模型,并同时考虑了不均匀的环境光和对图像的光照补偿。检测出光源位置,根据光源的发光特性求出环境光和光照补偿系数,利用提出的新模型求出清晰的图像,使用基于边缘颜色恒常性(EBCC)来对颜色进行校正。实验结果表明,该算法优于其他算法。

  8. Flatbed scanners as a source of imaging. Brightness assessment and additives determination in a nickel electroplating bath.

    Science.gov (United States)

    Vidal, M; Amigo, J M; Bro, R; Ostra, M; Ubide, C; Zuriarrain, J

    2011-05-23

    Desktop flatbed scanners are very well-known devices that can provide digitized information of flat surfaces. They are practically present in most laboratories as a part of the computer support. Several quality levels can be found in the market, but all of them can be considered as tools with a high performance and low cost. The present paper shows how the information obtained with a scanner, from a flat surface, can be used with fine results for exploratory and quantitative purposes through image analysis. It provides cheap analytical measurements for assessment of quality parameters of coated metallic surfaces and monitoring of electrochemical coating bath lives. The samples used were steel sheets nickel-plated in an electrodeposition bath. The quality of the final deposit depends on the bath conditions and, especially, on the concentration of the additives in the bath. Some additives become degraded with the bath life and so is the quality of the plate finish. Analysis of the scanner images can be used to follow the evolution of the metal deposit and the concentration of additives in the bath. Principal component analysis (PCA) is applied to find significant differences in the coating of sheets, to find directions of maximum variability and to identify odd samples. The results found are favorably compared with those obtained by means of specular reflectance (SR), which is here used as a reference technique. Also the concentration of additives SPB and SA-1 along a nickel bath life can be followed using image data handled with algorithms such as partial least squares (PLS) regression and support vector regression (SVR). The quantitative results obtained with these and other algorithms are compared. All this opens new qualitative and quantitative possibilities to flatbed scanners.

  9. Adequacy of source to image receptor distance with chest postero-anterior projection in digital radiology system

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Young Cheol [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Lim, Cheong Hwan; Jung, Hong Ryang [Dept. of Radiology, Science, Hanseo University, Seosan (Korea, Republic of); You, In Gyu [Dept. of Radiology, Hallym University Hospital, Chuncheon (Korea, Republic of); Lee, Sang Ho [Dept. of Radiology, Science, Seonam University, Namwon (Korea, Republic of)

    2016-06-15

    The purpose of this study is to evaluate propriety of using SID 180cm at Chest PA examination and to find effect of geometrical cause to the image. XGEO-GC80, INNOVISION-SH, CXDI-40EG detector and a chest phantom designed self-production was used for this study. Images were acquired at SID 180cm with changing the factor OID as 0, 75 and 83mm and were analyzed by Centricity Radiography RA1000 PACS system. Statistical program was used the SPSS (Version 22.0, SPSS, Chicago, IL, USA), p-value(under 0.05) was considered to be statistically significant. In OID 0 mm was enlarged about 2.7⁓3.5 mm than the actual degree of the HS, BS of phantom in all equipments. Compared with the calculated magnification has been expanded 1.6⁓2.8% when viewed. The OID 75 mm with OID 83 mm was extended from the CS and BS 6⁓8 mm range. Compared to the calculated values, the measured values are expanded from 6.1 to 7.9%. CS and BS according to the OID change showed a statistically significant difference (p<0.05) among each group, the post-analysis only OID 0 mm group appeared as an independent group, 75 mm and 83 mm are separated in the same group It was. But had no statistically significant difference could change depending on the OID (p>0.05), post-mortem analysis showed, both in the same group. Heart sizes appears larger than actual size 6⁓8 mm at chest PA examination which is enlarged 6.1~7.9% more than the actual theoretical value. We can find magnification of the image because of the increase of the OID due to technical limitations between cover of standing detector and the image plate. so we suggest to have occurred between them when considering the need to adjust the equipment installed by the SID to match the characteristics of the equipment.

  10. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S., E-mail: sichen@aps.anl.gov; Vine, D. J.; Lai, B. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Paunesku, T.; Yuan, Y.; Woloschak, G. E. [Department of Radiation Oncology, Northwester University, Chicago, IL 60611 (United States); Deng, J. [Applied Physics, Northwestern University, Evanston, IL 60208 (United States); Jin, Q.; Hong, Y. P. [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Flachenecker, C.; Hornberger, B. [Carl Zeiss X-ray Microscopy, Pleasanton, CA 94588 (United States); Brister, K. [Synchrotron Research Center, Northwestern University, Argonne, IL 60439 (United States); Jacobsen, C. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Applied Physics, Northwestern University, Evanston, IL 60208 (United States); Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 (United States); Vogt, S. [Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439 (United States); Department of Radiation Oncology, Northwester University, Chicago, IL 60611 (United States)

    2016-01-28

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.

  11. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data.

    Science.gov (United States)

    Muir, Dylan R; Kampa, Björn M

    2014-01-01

    Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  12. Infrared image processing devoted to thermal non-contact characterization-Applications to Non-Destructive Evaluation, Microfluidics and 2D source term distribution for multispectral tomography

    Science.gov (United States)

    Batsale, Jean-Christophe; Pradere, Christophe

    2015-11-01

    The cost of IR cameras is more and more decreasing. Beyond the preliminary calibration step and the global instrumentation, the infrared image processing is then one of the key step for achieving in very broad domains. Generally the IR images are coming from the transient temperature field related to the emission of a black surface in response to an external or internal heating (active IR thermography). The first applications were devoted to the so called thermal Non-Destructive Evaluation methods by considering a thin sample and 1D transient heat diffusion through the sample (transverse diffusion). With simplified assumptions related to the transverse diffusion, the in-plane diffusion and transport phenomena can be also considered. A general equation can be applied in order to balance the heat transfer at the pixel scale or between groups of pixels in order to estimate several fields of thermophysical properties (heterogeneous field of in-plane diffusivity, flow distributions, source terms). There is a lot of possible strategies to process the space and time distributed big amount of data (previous integral transformation of the images, compression, elimination of the non useful areas...), generally based on the necessity to analyse the derivative versus space and time of the temperature field. Several illustrative examples related to the Non-Destructive Evaluation of heterogeneous solids, the thermal characterization of chemical reactions in microfluidic channels and the design of systems for multispectral tomography, will be presented.

  13. FocusStack and StimServer: A new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging data

    Directory of Open Access Journals (Sweden)

    Dylan Richard Muir

    2015-01-01

    Full Text Available Two-photon calcium imaging of neuronal responses is an increasingly accessible technology for probing population responses in cortex at single cell resolution, and with reasonable and improving temporal resolution. However, analysis of two-photon data is usually performed using ad-hoc solutions. To date, no publicly available software exists for straightforward analysis of stimulus-triggered two-photon imaging experiments. In addition, the increasing data rates of two-photon acquisition systems imply increasing cost of computing hardware required for in-memory analysis. Here we present a Matlab toolbox, FocusStack, for simple and efficient analysis of two-photon calcium imaging stacks on consumer-level hardware, with minimal memory footprint. We also present a Matlab toolbox, StimServer, for generation and sequencing of visual stimuli, designed to be triggered over a network link from a two-photon acquisition system. FocusStack is compatible out of the box with several existing two-photon acquisition systems, and is simple to adapt to arbitrary binary file formats. Analysis tools such as stack alignment for movement correction, automated cell detection and peri-stimulus time histograms are already provided, and further tools can be easily incorporated. Both packages are available as publicly-accessible source-code repositories.

  14. Ammonia excitation imaging of shocked gas towards the W28 gamma-ray source HESS J1801-233

    Science.gov (United States)

    Maxted, Nigel I.; de Wilt, Phoebe; Rowell, Gavin P.; Nicholas, Brent P.; Burton, Michael. G.; Walsh, Andrew; Fukui, Yasuo; Kawamura, Akiko

    2016-10-01

    We present 12 mm Mopra observations of the dense (>103 cm-3) molecular gas towards the north-east of the W28 supernova remnant (SNR). This cloud is spatially well matched to the TeV gamma-ray source HESS J1801-233 and is known to be an SNR-molecular cloud interaction region. Shock-disruption is evident from broad NH3 (1,1) spectral linewidths in regions towards the W28 SNR, while strong detections of spatially extended NH3 (3,3), NH3(4,4) and NH3(6,6) inversion emission towards the cloud strengthen the case for the existence of high temperatures within the cloud. Velocity dispersion measurements and NH3(n,n)/(1,1) ratio maps, where n = 2, 3, 4 and 6, indicate that the source of disruption is from the side of the cloud nearest to the W28 SNR, suggesting that it is the source of cloud-disruption. Towards part of the cloud, the ratio of ortho to para-NH3 is observed to exceed 2, suggesting gas-phase NH3 enrichment due to NH3 liberation from dust-grain mantles. The measured NH3 abundance with respect to H2 is ˜(1.2 ± 0.5) × 10-9, which is not high, as might be expected for a hot, dense molecular cloud enriched by sublimated grain-surface molecules. The results are suggestive of NH3 sublimation and destruction in this molecular cloud, which is likely to be interacting with the W28 SNR shock.

  15. Development and implementation in the Monte Carlo code PENELOPE of a new virtual source model for radiotherapy photon beams and portal image calculation

    Science.gov (United States)

    Chabert, I.; Barat, E.; Dautremer, T.; Montagu, T.; Agelou, M.; Croc de Suray, A.; Garcia-Hernandez, J. C.; Gempp, S.; Benkreira, M.; de Carlan, L.; Lazaro, D.

    2016-07-01

    This work aims at developing a generic virtual source model (VSM) preserving all existing correlations between variables stored in a Monte Carlo pre-computed phase space (PS) file, for dose calculation and high-resolution portal image prediction. The reference PS file was calculated using the PENELOPE code, after the flattening filter (FF) of an Elekta Synergy 6 MV photon beam. Each particle was represented in a mobile coordinate system by its radial position (r s ) in the PS plane, its energy (E), and its polar and azimuthal angles (φ d and θ d ), describing the particle deviation compared to its initial direction after bremsstrahlung, and the deviation orientation. Three sub-sources were created by sorting out particles according to their last interaction location (target, primary collimator or FF). For each sub-source, 4D correlated-histograms were built by storing E, r s , φ d and θ d values. Five different adaptive binning schemes were studied to construct 4D histograms of the VSMs, to ensure histogram efficient handling as well as an accurate reproduction of E, r s , φ d and θ d distribution details. The five resulting VSMs were then implemented in PENELOPE. Their accuracy was first assessed in the PS plane, by comparing E, r s , φ d and θ d distributions with those obtained from the reference PS file. Second, dose distributions computed in water, using the VSMs and the reference PS file located below the FF, and also after collimation in both water and heterogeneous phantom, were compared using a 1.5%-0 mm and a 2%-0 mm global gamma index, respectively. Finally, portal images were calculated without and with phantoms in the beam. The model was then evaluated using a 1%-0 mm global gamma index. Performance of a mono-source VSM was also investigated and led, as with the multi-source model, to excellent results when combined with an adaptive binning scheme.

  16. Development and implementation in the Monte Carlo code PENELOPE of a new virtual source model for radiotherapy photon beams and portal image calculation.

    Science.gov (United States)

    Chabert, I; Barat, E; Dautremer, T; Montagu, T; Agelou, M; Croc de Suray, A; Garcia-Hernandez, J C; Gempp, S; Benkreira, M; de Carlan, L; Lazaro, D

    2016-07-21

    This work aims at developing a generic virtual source model (VSM) preserving all existing correlations between variables stored in a Monte Carlo pre-computed phase space (PS) file, for dose calculation and high-resolution portal image prediction. The reference PS file was calculated using the PENELOPE code, after the flattening filter (FF) of an Elekta Synergy 6 MV photon beam. Each particle was represented in a mobile coordinate system by its radial position (r s ) in the PS plane, its energy (E), and its polar and azimuthal angles (φ d and θ d ), describing the particle deviation compared to its initial direction after bremsstrahlung, and the deviation orientation. Three sub-sources were created by sorting out particles according to their last interaction location (target, primary collimator or FF). For each sub-source, 4D correlated-histograms were built by storing E, r s , φ d and θ d values. Five different adaptive binning schemes were studied to construct 4D histograms of the VSMs, to ensure histogram efficient handling as well as an accurate reproduction of E, r s , φ d and θ d distribution details. The five resulting VSMs were then implemented in PENELOPE. Their accuracy was first assessed in the PS plane, by comparing E, r s , φ d and θ d distributions with those obtained from the reference PS file. Second, dose distributions computed in water, using the VSMs and the reference PS file located below the FF, and also after collimation in both water and heterogeneous phantom, were compared using a 1.5%-0 mm and a 2%-0 mm global gamma index, respectively. Finally, portal images were calculated without and with phantoms in the beam. The model was then evaluated using a 1%-0 mm global gamma index. Performance of a mono-source VSM was also investigated and led, as with the multi-source model, to excellent results when combined with an adaptive binning scheme.

  17. Deep radio images of the HEGRA and Whipple TeV sources in the Cygnus OB2 region

    CERN Document Server

    Marti, Josep; Ishwara Chandra C H; Bosch-Ramon, Valenti

    2007-01-01

    Context. The modern generation of Cherenkov telescopes has revealed a new population of gamma-ray sources in the Galaxy. Some of them have been identified with previously known X-ray binary systems while other remain without clear counterparts a lower energies. Our initial goal here was reporting on extensive radio observations of the first extended and yet unidentified source, namely TeV J2032+4130. This object was originally detected by the HEGRA telescope in the direction of the Cygnus OB2 region and its nature has been a matter of debate during the latest years. Aims. We aim to pursue our radio exploration of the TeV J2032+4130 position that we initiated in a previous paper but taking now into account the latest results from new Whipple and MILAGRO TeV telescopes. Methods. Our investigation is mostly based on interferometric radio observations with the Giant Metre Wave Radio Telescope (GMRT) close to Pune (India) and the Very Large Array (VLA) in New Mexico (USA). We also conducted near infrared observati...

  18. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    Science.gov (United States)

    Jensen-Clem, Rebecca; Millar-Blanchaer, Max; Mawet, Dimitri; Graham, James R.; Wallace, J. Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J.; Perrin, Marshall D.; Marley, Mark S.; Fitzgerald, Michael P.; Oppenheimer, Rebecca; Ammons, S. Mark; Rantakyro, Fredrik T.; Marchis, Franck

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of H-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of pCL99:73% less than 1:7%. We discuss our results in the context of T dwarf cloud models and photometric variability.

  19. Point Source Polarimetry with the Gemini Planet Imager: Sensitivity Characterization with T5.5 Dwarf Companion HD 19467 B

    CERN Document Server

    Jensen-Clem, Rebecca; Mawet, Dimitri; Graham, James R; Wallace, J Kent; Macintosh, Bruce; Hinkley, Sasha; Wiktorowicz, Sloane J; Perrin, Marshall D; Marley, Mark S; Fitzgerald, Michael P; Oppenheimer, Rebecca; Ammons, S Mark; Rantakyro, Fredrik T; Marchis, Franck

    2016-01-01

    Detecting polarized light from self-luminous exoplanets has the potential to provide key information about rotation, surface gravity, cloud grain size, and cloud coverage. While field brown dwarfs with detected polarized emission are common, no exoplanet or substellar companion has yet been detected in polarized light. With the advent of high contrast imaging spectro-polarimeters such as GPI and SPHERE, such a detection may now be possible with careful treatment of instrumental polarization. In this paper, we present 28 minutes of $H$-band GPI polarimetric observations of the benchmark T5.5 companion HD 19467 B. We detect no polarization signal from the target, and place an upper limit on the degree of linear polarization of $p_{\\text{CL}99.73\\%} \\leq 2.4\\%$. We discuss our results in the context of T dwarf cloud models and photometric variability.

  20. Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Cannao, Paola M. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Milan, Scuola di Specializzazione in Radiodiagnostica, Milan (Italy); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Canstein, Christian [Siemens Medical Solutions, Malvern, PA (United States); Fuller, Stephen R.; Varga-Szemes, Akos [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Muscogiuri, Giuseppe; De Cecco, Carlo N. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncology and Pathology, Rome (Italy); Nikolaou, Konstantin [Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-06-15

    To evaluate the impact of an advanced monoenergetic (ME) reconstruction algorithm on CT coronary stent imaging in a phantom model. Three stents with lumen diameters of 2.25, 3.0 and 3.5 mm were examined with a third-generation dual-source dual-energy CT (DECT). Tube potential was set at 90/Sn150 kV for DE and 70, 90 or 120 kV for single-energy (SE) acquisitions and advanced modelled iterative reconstruction was used. Overall, 23 reconstructions were evaluated for each stent including three SE acquisitions and ten advanced and standard ME images with virtual photon energies from 40 to 130 keV, respectively. In-stent luminal diameter was measured and compared to nominal lumen diameter to determine stent lumen visibility. Contrast-to-noise ratio was calculated. Advanced ME reconstructions substantially increased lumen visibility in comparison to SE for stents ≤3 mm. 130 keV images produced the best mean lumen visibility: 86 % for the 2.25 mm stent (82 % for standard ME and 64 % for SE) and 82 % for the 3.0 mm stent (77 % for standard ME and 69 % for SE). Mean DLP for SE 120 kV and DE acquisitions were 114.4 ± 9.8 and 58.9 ± 2.2 mGy x cm, respectively. DECT with advanced ME reconstructions improves the in-lumen visibility of small stents in comparison with standard ME and SE imaging. (orig.)

  1. The high temperature superconductor YBa2Cu3O7-δ: symmetry of the order parameter, and gradiometers for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Kouznetsov, Konstantin Alexander [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1999-12-01

    pickup up loop of a directly coupled magnetometer. The long baseline of the gradiometer, 48 mm, and the intrinsic. Balance of better than 1 part in 100 make it an ideal candidate for operation in biomagnetic systems in an unshielded environment. They demonstrate a practical multichannel SQUID system for MagnetoCardioGraphy. Using this system, they are able to detect magnetic signals from the human heart in an unshielded environment, thereby demonstrating the applicability of their technology to practical applications. Their gradiometers are readily manufacturable devices that could be used in clinical applications in the near future.

  2. EXSdetect: an end-to-end software for extended source detection in X-ray images: application to Swift-XRT data

    Science.gov (United States)

    Liu, T.; Tozzi, P.; Tundo, E.; Moretti, A.; Wang, J.-X.; Rosati, P.; Guglielmetti, F.

    2013-01-01

    Aims: We present a stand-alone software (named EXSdetect) for the detection of extended sources in X-ray images. Our goal is to provide a flexible tool capable of detecting extended sources down to the lowest flux levels attainable within instrumental limitations, while maintaining robust photometry, high completeness, and low contamination, regardless of source morphology. EXSdetect was developed mainly to exploit the ever-increasing wealth of archival X-ray data, but is also ideally suited to explore the scientific capabilities of future X-ray facilities, with a strong focus on investigations of distant groups and clusters of galaxies. Methods: EXSdetect combines a fast Voronoi tessellation code with a friends-of-friends algorithm and an automated deblending procedure. The values of key parameters are matched to fundamental telescope properties such as angular resolution and instrumental background. In addition, the software is designed to permit extensive tests of its performance via simulations of a wide range of observational scenarios. Results: We applied EXSdetect to simulated data fields modeled to realistically represent the Swift X-ray Cluster Survey (SXCS), which is based on archival data obtained by the X-ray telescope onboard the Swift satellite. We achieve more than 90% completeness for extended sources comprising at least 80 photons in the 0.5-2 keV band, a limit that corresponds to 10-14 erg cm-2 s-1 for the deepest SXCS fields. This detection limit is comparable to the one attained by the most sensitive cluster surveys conducted with much larger X-ray telescopes. While evaluating the performance of EXSdetect, we also explored the impact of improved angular resolution and discuss the ideal properties of the next generation of X-ray survey missions. The Phyton code EXSdetect is available on the SXCS website http://adlibitum.oats.inaf.it/sxcs

  3. A novel biomagnetic nanoparticle based on hydroxyapatite

    Science.gov (United States)

    Wu, Hsi-Chin; Wang, Tzu-Wei; Sun, Jui-Sheng; Wang, Wen-Hsi; Lin, Feng-Huei

    2007-04-01

    In the present study, magnetic HAP was synthesized at different ratios of Fe:Ca (XFe/Ca) by the co-precipitation method. We have evaluated the present essential properties including the crystal structure and cell parameters by XRD, lattice arrangement by HR-TEM, composition analysis by ICP-MS, and functional groups by FTIR. The morphology and magnetization were investigated by SEM and AFM and SQUID, respectively. The in vitro biocompatibility was also investigated with a lactate dehydrogenase assay. The results showed that the crystal and molecular structure of the synthesized magnetic-HAP nanoparticle remained unaltered without collapse with the addition of iron ions. The lattice constants of m-HAP were similar to reference JCPDS card no. 9-432. The magnetization of m-HAP nanoparticles increased with increasing XFe/Ca and possessed the superparamagnetic property with size distribution around 20 nm. The hydroxyapatite-based magnetic nanoparticles were also examined with good biocompatibility. With the appropriate physico-chemical and biological properties, the magnetic-HAP nanoparticles would have great potential to be applied in biomedical applications.

  4. Biomagnetics and Cell-Based Biochips

    Science.gov (United States)

    Ingber, Donald

    2005-03-01

    This presentation will review various micro- and nanotechnologies that we have developed over the past decade in our efforts to manipulate and probe living cells. In early studies, we used magnetic micro-particles to apply controlled mechanical forces to surface membrane receptors. We did this to probe cellular mechanical properties, and to investigate the molecular basis of mechanotransduction -- how mechanical forces are transduced into changes in intracellular biochemistry. The magnetic beads were coated with ligands for adhesion receptors, such as synthetic RGD (arginine-glycine-aspartate) peptides or antibodies that bind to membrane integrin receptors. Controlled twisting (torque) or pulling (tension) forces were exerted on the integrin-bound beads using magnetic twisting or pulling cytometry. To investigate the cellular response to dynamic forces, and to increase the level of stress applied, an electromagnetic needle was developed to apply a temporally varying magnetic field controlled by a user-defined solenoidal current; the end of the needle also was electropolished to produce a nanoscale pole tip. Magnetic forces applied to integrin receptors, but not other cell-surface receptors, induced force-dependent recruitment of cytoskeletal linker (focal adhesion) proteins to the site of bead binding, resulting in assembly and mechanical strengthening of the adhesions. Stress application to integrins also resulted in force-dependent increases in cAMP signaling and induction of gene transcription. These experiments revealed that integrins and the cytoskeleton play a central role in cellular mechanotransduction.studies in collaboration with George Whitesides (Harvard U.), we used microcontact printing techniques with self- assembled monolayers of alkanethiols to microfabricate extracellular matrix-coated adhesive islands of defined size, shape, and position on the micrometer scale. When cells were plated on these islands, the spread to take on the form of the island. These studies revealed that cells can be switched between growth, differentiation, and death (apoptosis) by varying the degree to which a cell physically can distend. When cells grown on islands with corners (e.g., squares, triangles) were stimulated with motility factors, the cells preferentially extended new motile processes from the corner regions, whereas cells on circular islands showed no bias. These findings demonstrated that much of cell behavior is controlled through physical interactions between cells and their adhesive substrate, and that microfabrication methods may be useful for tissue engineering, as well as creation of ``laboratories on a chip'' or biosensor devices that incorporate living mammalian cells. addition, in experiments with Bob Westervelt and Donhee Ham (Harvard U.), we have demonstrated the feasilibility of using microelectromagnetic circuits and CMOS technology to physically pull cells out from medium magnetically, and to move them in a directed manner. This approach may have great value for cell separation applications. Finally, with Whitesides group, we also demonstrated that microfluidics technologies may be used to deliver chemicals or probes to different regions of the same living cell under flow conditions. This provides a novel way to create chemical gradients at the subcellular scale and thereby probe the relation between cell structure and function. We also are currently exploring novel uses of microfluidics technologies, including their application for clinical cell separation applications. Taken together, this body of his work clearly demonstrates the great value of microsystem and microfluidic approaches for the analysis and manipulation of living cells. These approaches may have great value, both for fundamental scientific research and for clinical applications.

  5. Plants and Magnetism: Experiments with Biomagnetism

    Science.gov (United States)

    McCormack, Alan J.

    1972-01-01

    Phenomenon of effect of magnetic field on plant growth provides wide opportunities for research in classrooms. Using moderately powerful magnets, seed growth patterns can be observed in pre-germination treatment, germination period exposure and under many other conditions. Such research may enable understanding magnetotropism more clearly. (PS)

  6. Adapting astronomical source detection software to help detect animals in thermal images obtained by unmanned aerial systems

    Science.gov (United States)

    Longmore, S. N.; Collins, R. P.; Pfeifer, S.; Fox, S. E.; Mulero-Pazmany, M.; Bezombes, F.; Goodwind, A.; de Juan Ovelar, M.; Knapen, J. H.; Wich, S. A.

    2017-02-01

    In this paper we describe an unmanned aerial system equipped with a thermal-infrared camera and software pipeline that we have developed to monitor animal populations for conservation purposes. Taking a multi-disciplinary approach to tackle this problem, we use freely available astronomical source detection software and the associated expertise of astronomers, to efficiently and reliably detect humans and animals in aerial thermal-infrared footage. Combining this astronomical detection software with existing machine learning algorithms into a single, automated, end-to-end pipeline, we test the software using aerial video footage taken in a controlled, field-like environment. We demonstrate that the pipeline works reliably and describe how it can be used to estimate the completeness of different observational datasets to objects of a given type as a function of height, observing conditions etc. - a crucial step in converting video footage to scientifically useful information such as the spatial distribution and density of different animal species. Finally, having demonstrated the potential utility of the system, we describe the steps we are taking to adapt the system for work in the field, in particular systematic monitoring of endangered species at National Parks around the world.

  7. Subtracted dynamic MR perfusion source images (sMRP-SI) provide collateral blood flow assessment in MCA occlusions and predict tissue fate

    Energy Technology Data Exchange (ETDEWEB)

    Villringer, Kersten; Serrano-Sandoval, Rafael; Galinovic, Ivana; Ostwaldt, Ann-Christin; Brunecker, Peter; Fiebach, Jochen B. [Charite-Universitaetsmedizin, Academic Neuroradiology, Center for Stroke Research (CSB), Berlin (Germany); Grittner, Ulrike [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Charite, Department for Biostatistics and Clinical Epidemiology, Berlin (Germany); Schneider, Alice [Charite, Universitaetsmedizin Berlin, Center for Stroke Research, Berlin (Germany); Rocco, Andrea [Charite, Department of Neurology and Center for Stroke Research, Berlin (Germany)

    2016-05-15

    Collateral blood flow is accepted as a predictive factor of tissue fate in ischemic stroke. Thus, we aimed to evaluate a new method derived from MR perfusion source images to assess collateral flow in patients with ICA/MCA occlusions. A total of 132 patients of the prospective 1000+ study were examined. MR perfusion source images were assessed according to Δimg{sub n} = img{sub n} + 1 - img{sub n} - 1 using the five-grade Higashida collateral flow rating system. Higashida scores were correlated to mismatch (MM) volume, mismatch ratio, day 6 FLAIR lesion volumes and day 90 mRS. Patients with Higashida scores 3 and 4 had significantly lower admission NIHSS, smaller FLAIR day 6 lesion volumes (p < 0.001) and higher rates of better long-term outcome (mRS 0-2, p = 0.002). There was a linear trend for the association of Higashida grade 1 (p = 0.002) and 2 (p = 0.001) with unfavourable outcome (day 90 mRS 3-6), but no significant association was found for MM volume, MM ratio and day 90 mRS. Inter-rater agreement was 0.58 (95 % CI 0.43-0.73) on day 1, 0.70 (95 % CI 0.58-0.81) on day 2. sMRP-SI Higashida score offers a non-invasive collateral vessel and tissue perfusion assessment of ischemic tissue. The predictive value of Higashida rating proved superior to MM with regard to day 90 mRS. (orig.)

  8. Application of compressed sensing in multi-source image fusion%压缩感知在多源图像融合中的应用

    Institute of Scientific and Technical Information of China (English)

    杜鑫

    2013-01-01

    A new fusion method based on Compressed Sensing(CS) is proposed to solve storage and computation cost problems in traditional image fusion algorithms. Sparse representation coefficients of source images are obtained on the basis of overcomplete two-dimensional Discrete Cosine Transform(DCT) dictionary. Then the observed values which will be fused are got by applying random projection on the coefficients. The weights of each image block are calculated adaptively based on standard deviation method. Thus input image measurements are fused into composite measurements via weighted averaging. The fused image is reconstructed through improved gradient pursuit with modified stepsize. The simulation results show that, comparing with other fusion algorithms, the proposed method can achieve better performance on fusion results with less sampling numbers and low computational complexity.%针对全采样传统图像融合方法中计算量大、时间复杂度高的问题,提出了一种基于压缩感知(CS)理论的多源图像融合模型。为满足一定的稀疏性,将源图像在过完备二维离散余弦变换(DCT)字典上进行稀疏表示,并通过随机观测得到待融合的观测值;在每一图像块上采用基于标准差的方法自适应地计算融合权值,加权合成融合后的观测值,然后利用改进步长的梯度追踪算法求解稀疏系数,得到最终融合图像。实验结果表明:与传统方法相比,提出的融合模型在减少计算量和存储容量的同时,能更好地从源图像中提取信息,获得效果较好的融合图像。

  9. Perspectives of Imaging of Single Protein Molecules with the Present Design of the European XFEL. - Part I - X-ray Source, Beamlime Optics and Instrument Simulations

    CERN Document Server

    Serkez, Svitozar; Saldin, Evgeni; Zagorodnov, Igor; Geloni, Gianluca; Yefanov, Oleksandr

    2014-01-01

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 micrometer and 1 micrometer size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between x-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal...

  10. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    Science.gov (United States)

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  11. Radiation exposure and image quality in staged low-dose protocols for coronary dual-source CT angiography: a randomized comparison

    Energy Technology Data Exchange (ETDEWEB)

    Pflederer, Tobias; Jakstat, Josy; Marwan, Mohamed; Schepis, Tiziano; Bachmann, Sven; Muschiol, Gerd; Ropers, Dieter; Daniel, Werner G.; Achenbach, Stephan [University of Erlangen, Department of Internal Medicine 2, Erlangen (Germany); Kuettner, Axel; Anders, Katharina; Lell, Michael [University of Erlangen, Institute of Diagnostic Radiology, Erlangen (Germany)

    2010-05-15

    To evaluate staged low-dose approaches for coronary CT angiography (CTA) in which a standard sequence was added if the low-dose sequence did not allow reliable rule-out of coronary stenosis. A total of 176 consecutive patients referred for dual-source CTA were randomized to three protocols: group 1 using prospective ECG-triggering (100 kV, 330 mAs), group 2 a retrospectively gated ''MinDose'' sequence (100 kV, 330 mAs) and group 3 a standard spiral sequence (120 kV, 400 mAs). If image quality in low-dose groups 1 or 2 was non-diagnostic, an additional standard CT examination (as in group 3) was performed. Non-diagnostic image quality was found in 11/56, 4/55, and 2/65 patients (46/896, 4/880 and 3/1,040 coronary segments) in groups 1, 2 and 3, respectively. Median (interquartile ranges) volumes of contrast material, CTDI{sub vol}, DLP and effective dose for low-dose groups 1 and 2 and for standard group 3 were 92.5 (11.3), 75.0 (2.5) and 75.0 (9.0) ml; 8.0 (1.4), 16.8 (4.8) and 48.1 (14.2) mGy; 108.0 (27.3), 246.0 (93.0) and 701.0 (207.8) mGy cm; and 1.5 (0.4), 3.4 (1.3) and 9.8 (2.9) mSv, respectively. A staged coronary CTA protocol with an initial low-dose approach and addition of a standard sequence - should image quality be too low - can lead to a substantial reduction in radiation exposure. (orig.)

  12. Development of Portable Digital Radiography System with a Device for Monitoring X-ray Source-Detector Angle and Its Application in Chest Imaging

    Directory of Open Access Journals (Sweden)

    Tae-Hoon Kim

    2017-03-01

    Full Text Available This study developed a device measuring the X-ray source-detector angle (SDA and evaluated the imaging performance for diagnosing chest images. The SDA device consisted of Arduino, an accelerometer and gyro sensor, and a Bluetooth module. The SDA values were compared with the values of a digital angle meter. The performance of the portable digital radiography (PDR was evaluated using the signal-to-noise (SNR, contrast-to-noise ratio (CNR, spatial resolution, distortion and entrance surface dose (ESD. According to different angle degrees, five anatomical landmarks were assessed using a five-point scale. The mean SNR and CNR were 182.47 and 141.43. The spatial resolution and ESD were 3.17 lp/mm (157 μm and 0.266 mGy. The angle values of the SDA device were not significantly difference as compared to those of the digital angle meter. In chest imaging, the SNR and CNR values were not significantly different according to the different angle degrees. The visibility scores of the border of the heart, the fifth rib and the scapula showed significant differences according to different angles (p < 0.05, whereas the scores of the clavicle and first rib were not significant. It is noticeable that the increase in the SDA degree was consistent with the increases of the distortion and visibility score. The proposed PDR with a SDA device would be useful for application in the clinical radiography setting according to the standard radiography guidelines.

  13. Time-of-flight magnetic resonance angiography for follow-up of coil embolization with enterprise stent intracranial aneurysm: Usefulness of source images

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Dae; Kim, Kang Min; Lee, Woong Jae; Sohn, Chul Ho; Kang, Hyun Seung; Kim, Jeong Eun; Han, Moon Hee [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2014-02-15

    The aim of this study was to determine the interobserver and intermodality agreement in the interpretation of time-of-flight (TOF) MR angiography (MRA) for the follow-up of coiled intracranial aneurysms with the Enterprise stent. Two experienced neurointerventionists independently reviewed the follow-up MRA studies of 40 consecutive patients with 44 coiled aneurysms. All aneurysms were treated with assistance from the Enterprise stent and the radiologic follow-up intervals were greater than 6 months after the endovascular therapy. Digital subtraction angiography (DSA) served as the reference standard. The degree of aneurysm occlusion was determined by an evaluation of the maximal intensity projection (MIP) and source images (SI) of the TOF MRA. The capability of the TOF MRA to depict the residual flow within the coiled aneurysms and the stented parent arteries was compared with that of the DSA. DSA showed stable occlusions in 25 aneurysms, minor recanalization in 8, and major recanalization in 11. Comparisons between the TOF MRA and conventional angiography showed that the MIP plus SI had almost perfect agreement (κ = 0.892, range 0.767 to 1.000) and had better agreement than with the MIP images only ((κ = 0.598, range 0.370 to 0.826). In-stent stenosis of more than 33% was observed in 5 cases. Both MIP and SI of the MRA showed poor depiction of in-stent stenosis compared with the DSA. TOF MRA seemed to be reliable in screening for aneurysm recurrence after coil embolization with Enterprise stent assistance, especially in the evaluation of the SI, in addition to MIP images in the TOF MRA.

  14. Use of the isolated problem approach for multi-compartment BEM models of electro-magnetic source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gencer, Nevzat G; Akalin-Acar, Zeynep [Department of Electrical and Electronics Engineering, Brain Research Laboratory, Middle East Technical University, 06531 Ankara (Turkey)

    2005-07-07

    The isolated problem approach (IPA) is a method used in the boundary element method (BEM) to overcome numerical inaccuracies caused by the high-conductivity difference in the skull and the brain tissues in the head. Haemaelaeinen and Sarvas (1989 IEEE Trans. Biomed. Eng. 36 165-71) described how the source terms can be updated to overcome these inaccuracies for a three-layer head model. Meijs et al (1989 IEEE Trans. Biomed. Eng. 36 1038-49) derived the integral equations for the general case where there are an arbitrary number of layers inside the skull. However, the IPA is used in the literature only for three-layer head models. Studies that use complex boundary element head models that investigate the inhomogeneities in the brain or model the cerebrospinal fluid (CSF) do not make use of the IPA. In this study, the generalized formulation of the IPA for multi-layer models is presented in terms of integral equations. The discretized version of these equations are presented in two different forms. In a previous study (Akalin-Acar and Gencer 2004 Phys. Med. Biol. 49 5011-28), we derived formulations to calculate the electroencephalography and magnetoencephalography transfer matrices assuming a single layer in the skull. In this study, the transfer matrix formulations are updated to incorporate the generalized IPA. The effects of the IPA are investigated on the accuracy of spherical and realistic models when the CSF layer and a tumour tissue are included in the model. It is observed that, in the spherical model, for a radial dipole 1 mm close to the brain surface, the relative difference measure (RDM*) drops from 1.88 to 0.03 when IPA is used. For the realistic model, the inclusion of the CSF layer does not change the field pattern significantly. However, the inclusion of an inhomogeneity changes the field pattern by 25% for a dipole oriented towards the inhomogeneity. The effect of the IPA is also investigated when there is an inhomogeneity in the brain. In addition

  15. Perspectives of imaging of single protein molecules with the present design of the European XFEL. Pt. 1. X-ray source, beamline optics and instrument simulations

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Yefanov, Oleksandr [Center for Free-Electron Laser Science, Hamburg (Germany)

    2014-08-15

    The Single Particles, Clusters and Biomolecules (SPB) instrument at the European XFEL is located behind the SASE1 undulator, and aims to support imaging and structure determination of biological specimen between about 0.1 μm and 1 μm size. The instrument is designed to work at photon energies from 3 keV up to 16 keV. This wide operation range is a cause for challenges to the focusing optics. In particular, a long propagation distance of about 900 m between X-ray source and sample leads to a large lateral photon beam size at the optics. The beam divergence is the most important parameter for the optical system, and is largest for the lowest photon energies and for the shortest pulse duration (corresponding to the lowest charge). Due to the large divergence of nominal X-ray pulses with duration shorter than 10 fs, one suffers diffraction from mirror aperture, leading to a 100-fold decrease in fluence at photon energies around 4 keV, which are ideal for imaging of single biomolecules. The nominal SASE1 output power is about 50 GW. This is very far from the level required for single biomolecule imaging, even assuming perfect beamline and focusing efficiency. Here we demonstrate that the parameters of the accelerator complex and of the SASE1 undulator offer an opportunity to optimize the SPB beamline for single biomolecule imaging with minimal additional costs and time. Start to end simulations from the electron injector at the beginning of the accelerator complex up to the generation of diffraction data indicate that one can achieve diffraction without diffraction with about 0.5 photons per Shannon pixel at near-atomic resolution with 10{sup 13} photons in a 4 fs pulse at 4 keV photon energy and in a 100 nm focus, corresponding to a fluence of 10{sup 23}ph/cm{sup 2}. This result is exemplified using the RNA Pol II molecule as a case study.

  16. Identifying Groundwater Discharge Sources and Associated Geochemical Influences Using Resistivity Imaging and Geochemical Tracers in a Semi-Arid Estuary in South Texas

    Science.gov (United States)

    Douglas, A. R.; Murgulet, D.; Spalt, N.

    2015-12-01

    The Nueces Bay (NB) system has been found to be ecologically unsound due to the loss/alteration of habitat and flow regimes required by indicator species and compromised nutrient cycling and sediment loading. The management practices of freshwater inflow regimes to NB concentrates on surface water flows and does not account for groundwater inflows, though submarine groundwater discharge (SGD) has been identified as a source of freshwater and limiting nutrients that could significantly impact bay salinities and nutrient loading. To encompass the range of spatio-temporal variabilities occurring between groundwater (GW) and surface-water (SW), multiple methods, including resistivity imaging, geochemical tracers, and radioisotopes, are applied in conjunction to identify SGD sources. Preliminary continuous resistivity profile surveys identified multiple possible GW upwelling paths from which thirteen stations were chosen in NB and two stations in Nueces River (NR). A Principal Component Analysis (PCA) of initial geochemical, nutrient and radioisotope data, shows that 76% of the variation in the data is explained by three factors: seasonality, freshwater inflows, and reducing environment. Significant seasonal variation is seen in average SW salinity (37psu in September 2014 to 4psu in June 2015), Ra-224 (359dpm/L in September to 636dpm/L in December), Ra-226 (268dpm/L in September to 570 dpm/L in December), ammonium (1.3μM in September to 5.5μM in April), and chlorophyll-α (3.99μg/L in December to 12.3 μg/L in April). Additionally, short-lived radioisotopes Rn-222 and Ra-224 are consistently elevated near the NR mouth, the inflow from Gum Hollow Creek, and a single station in the middle of the Bay indicating more localized, active SGD sources. However, only the stations in NR and at the NR mouth show consistently strong correlations to chlorophyll-α, phosphate, and silicate, with the river station closest to NB having the highest concentrations of nitrogen

  17. Alberta Stroke Program Early CT Score applied to CT angiography source images is a strong predictor of futile recanalization in acute ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Kawiorski, Michal M.; Alonso de Lecinana, Maria [Hospital Universitario La Paz, IdiPAZ, Universidad Autonoma de Madrid, Madrid (Spain); Hospital Universitario Ramon y Cajal, IRYCIS, Universidad de Alcala de Henares, Madrid (Spain); Martinez-Sanchez, Patricia; Fuentes, Blanca; Sanz-Cuesta, Borja E.; Marin, Begona; Ruiz-Ares, Gerardo; Diez-Tejedor, Exuperio [Hospital Universitario La Paz, IdiPAZ, Universidad Autonoma de Madrid, Madrid (Spain); Garcia-Pastor, Andres; Diaz-Otero, Fernando [Hospital Universitario Gregorio Maranon, IiSGM, Universidad Complutense de Madrid, Madrid (Spain); Calleja, Patricia [Hospital Universitario 12 de Octubre, Universidad Autonoma de Madrid, Madrid (Spain); Lourido, Daniel; Vicente, Agustina; Fandino, Eduardo [Hospital Universitario Ramon y Cajal, IRYCIS, Universidad de Alcala de Henares, Madrid (Spain); Sierra-Hidalgo, Fernando [Hospital Universitario 12 de Octubre, Universidad Autonoma de Madrid, Madrid (Spain); Hospital Universitario Infanta Leonor, Universidad Complutense de Madrid, Madrid (Spain)

    2016-05-15

    Reliable predictors of poor clinical outcome despite successful revascularization might help select patients with acute ischemic stroke for thrombectomy. We sought to determine whether baseline Alberta Stroke Program Early CT Score (ASPECTS) applied to CT angiography source images (CTA-SI) is useful in predicting futile recanalization. Data are from the FUN-TPA study registry (ClinicalTrials.gov; NCT02164357) including patients with acute ischemic stroke due to proximal arterial occlusion in anterior circulation, undergoing reperfusion therapies. Baseline non-contrast CT and CTA-SI-ASPECTS, time-lapse to image acquisition, occurrence, and timing of recanalization were recorded. Outcome measures were NIHSS at 24 h, symptomatic intracranial hemorrhage, modified Rankin scale score, and mortality at 90 days. Futile recanalization was defined when successful recanalization was associated with poor functional outcome (death or disability). Included were 110 patients, baseline NIHSS 17 (IQR 12; 20), treated with intravenous thrombolysis (IVT; 45 %), primary mechanical thrombectomy (MT; 16 %), or combined IVT + MT (39 %). Recanalization rate was 71 %, median delay of 287 min (225; 357). Recanalization was futile in 28 % of cases. In an adjusted model, baseline CTA-SI-ASPECTS was inversely related to the odds of futile recanalization (OR 0.5; 95 % CI 0.3-0.7), whereas NCCT-ASPECTS was not (OR 0.8; 95 % CI 0.5-1.2). A score ≤5 in CTA-SI-ASPECTS was the best cut-off to predict futile recanalization (sensitivity 35 %; specificity 97 %; positive predictive value 86 %; negative predictive value 77 %). CTA-SI-ASPECTS strongly predicts futile recanalization and could be a valuable tool for treatment decisions regarding the indication of revascularization therapies. (orig.)

  18. Ultra-low-dose dual-source CT coronary angiography with high pitch: diagnostic yield of a volumetric planning scan and effects on dose reduction and imaging strategy

    Science.gov (United States)

    Hamm, B; Huppertz, A; Lembcke, A

    2015-01-01

    Objective: To evaluate the role of an ultra-low-dose dual-source CT coronary angiography (CTCA) scan with high pitch for delimiting the range of the subsequent standard CTCA scan. Methods: 30 patients with an indication for CTCA were prospectively examined using a two-scan dual-source CTCA protocol (2.0 × 64.0 × 0.6 mm; pitch, 3.4; rotation time of 280 ms; 100 kV): Scan 1 was acquired with one-fifth of the tube current suggested by the automatic exposure control software [CareDose 4D™ (Siemens Healthcare, Erlangen, Germany) using 100 kV and 370 mAs as a reference] with the scan length from the tracheal bifurcation to the diaphragmatic border. Scan 2 was acquired with standard tube current extending with reduced scan length based on Scan 1. Nine central coronary artery segments were analysed qualitatively on both scans. Results: Scan 2 (105.1 ± 10.1 mm) was significantly shorter than Scan 1 (127.0 ± 8.7 mm). Image quality scores were significantly better for Scan 2. However, in 5 of 6 (83%) patients with stenotic coronary artery disease, a stenosis was already detected in Scan 1 and in 13 of 24 (54%) patients with non-stenotic coronary arteries, a stenosis was already excluded by Scan 1. Using Scan 2 as reference, the positive- and negative-predictive value of Scan 1 was 83% (5 of 6 patients) and 100% (13 of 13 patients), respectively. Conclusion: An ultra-low-dose CTCA planning scan enables a reliable scan length reduction of the following standard CTCA scan and allows for correct diagnosis in a substantial proportion of patients. Advances in knowledge: Further dose reductions are possible owing to a change in the individual patient's imaging strategy as a prior ultra-low-dose CTCA scan may already rule out the presence of a stenosis or may lead to a direct transferal to an invasive catheter procedure. PMID:25710210

  19. EU-FP7-iMARS: analysis of Mars multi-resolution images using auto-coregistration, data mining and crowd source techniques

    <