WorldWideScience

Sample records for biomagnetic source imaging

  1. Biomagnetic source localization and image fusion as a tool for functional diagnosis

    International Nuclear Information System (INIS)

    This paper reports on functional diagnosis of electric activity in the body by measurement of the minute extracorporeal magnetic fields, combining the results with three-dimensional MR images. A multichannel biomagnetic system in a shielded room simultaneously measures the coherent magnetic signals in 37 channels. A special bite piece for head measurements and localization coils with watermarks for chest measurements are used. Pass marks are defined in the reference frames for biomagnetism and MR. Acquisition of data for the heart or the brain is completed within a few minutes without repositioning of the patient. Localization of focal electric sources is calculated on the basis of appropriate models

  2. TOPICAL REVIEW: SQUID systems for biomagnetic imaging

    Science.gov (United States)

    Pizzella, Vittorio; Della Penna, Stefania; DelGratta, Cosimo; Luca Romani, Gian

    2001-07-01

    This review paper illustrates the different SQUID based systems used for biomagnetic imaging. The review is divided into nine sections. The first three sections are introductory: section 1 is a short overview of the topic; section 2 summarizes how the biomagnetic fields are generated and what are the basic mathematical models for the field sources; section 3 illustrates the principles of operation of the SQUID device. Sections 4-8 are specifically devoted to the description of the different systems used for biomagnetic measurements: section 4 discusses the different types of detection coils; section 5 illustrates the SQUID sensors specifically designed for biomagnetic applications together with the necessary driving electronics, with special emphasis on high-temperature superconductivity (HTS) SQUIDs, since HTS devices are still in a developing stage; section 6 illustrates the different noise reduction techniques; section 7 describes the different multichannel sensors presently operating; and, finally, section 8 gives a hint of what kind of physiological and/or clinical information may be gathered by the biomagnetic technique. Section 9 suggests some future trends for the biomagnetic technique.

  3. Algorithms for biomagnetic source imaging with prior anatomical and physiological information

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, P W [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1995-12-01

    This dissertation derives a new method for estimating current source amplitudes in the brain and heart from external magnetic field measurements and prior knowledge about the probable source positions and amplitudes. The minimum mean square error estimator for the linear inverse problem with statistical prior information was derived and is called the optimal constrained linear inverse method (OCLIM). OCLIM includes as special cases the Shim-Cho weighted pseudoinverse and Wiener estimators but allows more general priors and thus reduces the reconstruction error. Efficient algorithms were developed to compute the OCLIM estimate for instantaneous or time series data. The method was tested in a simulated neuromagnetic imaging problem with five simultaneously active sources on a grid of 387 possible source locations; all five sources were resolved, even though the true sources were not exactly at the modeled source positions and the true source statistics differed from the assumed statistics.

  4. Performances of compact integrated superconducting magnetometers for biomagnetic imaging

    Science.gov (United States)

    Granata, C.; Vettoliere, A.; Rombetto, S.; Nappi, C.; Russo, M.

    2008-10-01

    In the present paper, performances of compact fully integrated superconducting quantum interference device (SQUID) magnetometers, recently developed, have been investigated in view of their employment in large multichannel systems for biomagnetic imaging. The analysis has been focused on SQUID sensors having a pickup loop side length of 3 and 4 mm based on a design aimed to maximize the magnetic flux transferred from the detection coil to the SQUID in comparison with a magnetometer with 9 mm side length having a suitable sensitivity for biomagnetic applications. The performance study has been consisted in the computation of the magnetic responses to a current dipole which is the most fundamental approach used in biomagnetism. The results have shown that the dipole current sensitivity of 4 mm long side compact magnetometers is suitable for application in multichannel systems for magnetoencephalography and magnetocardiography.

  5. Interpretation of the MEG-MUSIC scan in biomagnetic source localization

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, J.C.; Lewis, P.S. [Los Alamos National Lab., NM (United States); Leahy, R.M. [University of Southern California, Los Angeles, CA (United States). Signal and Image Processing Inst.

    1993-09-01

    MEG-Music is a new approach to MEG source localization. MEG-Music is based on a spatio-temporal source model in which the observed biomagnetic fields are generated by a small number of current dipole sources with fixed positions/orientations and varying strengths. From the spatial covariance matrix of the observed fields, a signal subspace can be identified. The rank of this subspace is equal to the number of elemental sources present. This signal sub-space is used in a projection metric that scans the three dimensional head volume. Given a perfect signal subspace estimate and a perfect forward model, the metric will peak at unity at each dipole location. In practice, the signal subspace estimate is contaminated by noise, which in turn yields MUSIC peaks which are less than unity. Previously we examined the lower bounds on localization error, independent of the choice of localization procedure. In this paper, we analyzed the effects of noise and temporal coherence on the signal subspace estimate and the resulting effects on the MEG-MUSIC peaks.

  6. Multichannel instrumentation for biomagnetism

    International Nuclear Information System (INIS)

    A review of recent developments of multichannel instrumentation for Biomagnetism is presented. The main factors affecting the design, with different source configuration, is examined. Problems related to the SQUID sensors, the detection coils and the cryogenic aspects are examined. The existing large array multichannel systems and of those one that will be ready in the near future are described. (orig.)

  7. Biomagnetism using SQUIDs: status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Sternickel, Karsten [CardioMag Imaging, Inc., 450 Duane Avenue, Schenectady, NY 12304 (United States); Braginski, Alex I [Research Center Juelich, ISG-2, D-52425 Juelich (Germany)

    2006-03-15

    Biomagnetism involves the measurement and analysis of very weak local magnetic fields of living organisms and various organs in humans. Such fields can be of physiological origin or due to magnetic impurities or markers. This paper reviews existing and prospective applications of biomagnetism in clinical research and medical diagnostics. Currently, such applications require sensitive magnetic SQUID sensors and amplifiers. The practicality of biomagnetic methods depends especially on techniques for suppressing the dominant environmental electromagnetic noise, and on suitable nearly real-time data processing and interpretation methods. Of the many biomagnetic methods and applications, only the functional studies of the human brain (magnetoencephalography) and liver susceptometry are in clinical use, while functional diagnostics of the human heart (magnetocardiography) approaches the threshold of clinical acceptance. Particularly promising for the future is the ongoing research into low-field magnetic resonance anatomical imaging using SQUIDs.

  8. Biomagnetism an interdisciplinary approach

    CERN Document Server

    Romani, Gian-Luca; Kaufman, Lloyd; Modena, Ivo

    1983-01-01

    Biomagnetism is the study of magnetic fields that originate in biological systems. This is a relatively new discipline that has attracted considerable interest throughout the scientific commu- ty. The study of biomagnetic fields requires the use of techniques and concepts drawn from widely disparate scientific disciplines. To make these techniques and concepts available to a wide spectrum of the scientific community, a NATO Advanced study Institute on B- magnetism was held near Frascati at Grottaferrata, Italy, in S- tember 1982. This volume is based on the lectures delivered by scholars representing many different scientific areas, ranging from solid state physics to psychology. It attempts to preserve the - herent development of concepts drawn from physiology, psychology, biology, physics, medicine, occupational health and geology that was evident during the Institute. The reader will quickly become aware that the progress in biomagnetism over the past decade was due principally to the efforts of interdisci...

  9. New horizons in biomagnetics and bioimaging

    International Nuclear Information System (INIS)

    This paper reviews recently developed techniques in biomagnetics and bioimaging such as transcranial magnetic stimulation (TMS), magnetic resonance imaging (MRI), and cancer therapy based on magnetic stimulation. The technique of localized and vectorial TMS has made it possible to obtain non-invasive functional mapping of the human brain, and the development of new bioimaging technologies such as current distribution MRI and conductivity MRI may make it possible to understand the dynamics of brain functions, which include millisecond-level changes in functional regions and dynamic relations between brain neuronal networks. These techniques are leading medicine and biology toward new horizons through novel applications of magnetism. (author)

  10. Bio-magnetic signatures of fetal breathing movement

    International Nuclear Information System (INIS)

    The purpose of fetal magnetoencephalography (fMEG) is to record and analyze fetal brain activity. Unavoidably, these recordings consist of a complex mixture of bio-magnetic signals from both mother and fetus. The acquired data include biological signals that are related to maternal and fetal heart function as well as fetal gross body and breathing movements. Since fetal breathing generates a significant source of bio-magnetic interference during these recordings, the goal of this study was to identify and quantify the signatures pertaining to fetal breathing movements (FBM). The fMEG signals were captured using superconducting quantum interference devices (SQUIDs) The existence of FBM was verified and recorded concurrently by an ultrasound-based video technique. This simultaneous recording is challenging since SQUIDs are extremely sensitive to magnetic signals and highly susceptible to interference from electronic equipment. For each recording, an ultrasound-FBM (UFBM) signal was extracted by tracing the displacement of the boundary defined by the fetal thorax frame by frame. The start of each FBM was identified by using the peak points of the UFBM signal. The bio-magnetic signals associated with FBM were obtained by averaging the bio-magnetic signals time locked to the FBMs. The results showed the existence of a distinctive sinusoidal signal pattern of FBM in fMEG data

  11. Application of superconducting electronics to registration of biomagnetic signals

    International Nuclear Information System (INIS)

    Computer-aided systems used to measure superweak magnetic fields in a human body are created. A relaxation oscillation (RO) SQUID magnetometer is the basis of these systems. It is shown that if the RO operation mode is utilized, it becomes possible to improve the parameters and simplify the SQUID-magnetometer electronics. The software used for preprocessing provides the digital filtration, data input and accumulation, visual signal-quality control and signal averaging and all this is done in a PC/AT. The magnetocardiogram (MCG) processing programs yield magnetic mapping, magnetic chart visualization, provide the correlational/ statistical analysis and magnetic signal source localization. The biomagnetic systems are now installed in the cardiological clinic. The specialists examine MCGs, magnetoplethismograms and perform magnetic liver biopsy. More then 400 patients have been examined and the experience gained after such examinations shows that biomagnetic investigations aimed at human body organ disease diagnosis are of high informational value. (orig.)

  12. Detection geometry and reconstruction error in magnetic source imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hughett, P.; Budinger, T.F. [Lawrence Berkeley Lab., CA (United States)]|[California Univ., Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences

    1993-11-01

    A recently developed reconstruction algorithm for magnetic source imaging exploits prior knowledge about source location, source power density, detector geometry, and detector noise power to obtain an explicit estimate of the reconstruction error. This paper demonstrates the application of the new algorithm to the optimal design of practical detector arrays to minimize the reconstruction error in specific applications. For a representative configuration for magnetocardiography, the optimal array width (for minimum reconstruction error) varies from 19 to 28 cm depending on the assumed source depth, number of detectors, source power and noise power. The reconstruction accuracy ranges from 5% of the a priori standard deviation for the sources nearest the detector plane to 95% of the a priori deviation for the deepest sources. The reconstruction error was found to depend on accidental alignments between dipole sources and point detectors, indicating that a more sophisticated model is required for accurate estimates of reconstruction error. The error calculation is fast, taking about a second for this problem on a workstation-class computer. The availability of a method for rapidly computing the reconstruction error for any given source characteristics and detector geometry will facilitate the optimal design of magnetometer array size, element spacing, and orientation for specific applications in biomagnetic and geomagnetic source imaging.

  13. Pharyngeal transit time measured by scintigraphic and biomagnetic method

    International Nuclear Information System (INIS)

    A comparative evaluation between scintigraphic and biomagnetic method to measure the pharyngeal transit is presented. Three volunteers have been studied. The aliment (yogurt) was labeled with 99m Technetium for the scintigraphic test and with ferrite for the biomagnetic one. The preliminary results indicate a difference between the values obtained, probably due to the biomagnetic detector resolution

  14. Experience with a multichannel system for biomagnetic study.

    Science.gov (United States)

    Schneider, S; Abraham-Fuchs, K; Reichenberger, H; Seifert, H; Hoenig, H E; Röhrlein, G

    1993-11-01

    The components of the biomagnetic multichannel system Krenikon are described. The combination of biomagnetically yielded localizations with anatomic images gained from MR or CT is discussed as well as the enhancement of the signal-to-noise ratio by using a correlation technique. The overall localization accuracy is tested with technical phantoms. With volunteers measurements of auditory, visual and somatosensory evoked fields are performed to evaluate the system performance in vivo. Clinical studies were performed mainly with partners from the Universities of Erlangen-Nünberg and Ulm. The data acquisition time typically is 2-10 min which is tolerable both for the patient and the clinical staff. Electric potentials even with invasive electrodes can be recorded simultaneously with the magnetic fields. MEG gives important information for the presurgical diagnosis of epileptic patients and for the understanding of the epilepsy genesis. With MCG, centres of biologic excitation such as ventricular ectopies or accessory bundles in WPW syndrome have been successfully localized. PMID:8274986

  15. Coded source neutron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bingham, Philip R [ORNL; Santos-Villalobos, Hector J [ORNL

    2011-01-01

    Coded aperture techniques have been applied to neutron radiography to address limitations in neutron flux and resolution of neutron detectors in a system labeled coded source imaging (CSI). By coding the neutron source, a magnified imaging system is designed with small spot size aperture holes (10 and 100 m) for improved resolution beyond the detector limits and with many holes in the aperture (50% open) to account for flux losses due to the small pinhole size. An introduction to neutron radiography and coded aperture imaging is presented. A system design is developed for a CSI system with a development of equations for limitations on the system based on the coded image requirements and the neutron source characteristics of size and divergence. Simulation has been applied to the design using McStas to provide qualitative measures of performance with simulations of pinhole array objects followed by a quantitative measure through simulation of a tilted edge and calculation of the modulation transfer function (MTF) from the line spread function. MTF results for both 100um and 10um aperture hole diameters show resolutions matching the hole diameters.

  16. Multichannel biomagnetic system for study of electrical activity in the brain and heart.

    Science.gov (United States)

    Schneider, S; Hoenig, E; Reichenberger, H; Abraham-Fuchs, K; Moshage, W; Oppelt, A; Stefan, H; Weikl, A; Wirth, A

    1990-09-01

    The authors designed a multichannel system for noninvasive measurement of the extremely weak magnetic fields generated by the brain and the heart. It uses a flat array of 37 superconducting magnetic field-sensing coils connected to sophisticated superconducting quantum interference devices. To prevent interference from external electromagnetic fields, the system is operated inside a shielded room. Complete sets of coherent data, even from spontaneous events, can be recorded. System performance was evaluated with phantom measurements and evoked-response studies. A spatial resolution of a few millimeters and a temporal resolution of a millisecond were obtained. First results in patients with partial epilepsy and investigations of the cardiac conductive pathway indicate that biomagnetism is now ready for a systematic clinical evaluation. Interpretation of measurements was facilitated by highlighting biomagnetically localized electrical activity in three-dimensional digital magnetic resonance images. PMID:2389043

  17. Recent advances in biomagnetics; Seitai jiki kenkyu no saikin no tenkai

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, S. [The University of Tokyo, Tokyo (Japan). Institute of Medical Electronics

    1996-01-20

    The latest trend of biomagnetics was described in outline. On oxide superconductivity SQUID (i.e., high Tc SQUID), the SQUID element that operates at a liquid nitrogen temperature of 77 K is presently produced for trial, and the Magnetocardiography has been already measured. However, a problem occurs in the reliability of element sensitivity and the change with passage of time. To use the SQUID element for biomagnetics or clinical application, the technology must be more improved in future. A magnetic shield obtained when Permalloy plates with high-permeability are laminated by two to six layers is used to measure the Magnetoencephalography in a magnetic shielded room. The technology by which the magnetic shield in a wide space used for high-temperature superconductive materials can be easily mounted is required. In the SQUID system of a hole head type, the progress of software and system technology is required more and more. Moreover, the latest subject of a SQUID microscope, inverse problem and biomagnetics imaging, and magnetic resonance imaging was described. 1 ref., 1 fig.

  18. Magnetoresistive-superconducting mixed sensors for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier-Lecoeur, M. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Fermon, C., E-mail: claude.fermon@cea.f [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Dyvorne, H.; Jacquinot, J.F.; Polovy, H.; Walliang, A.L. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France)

    2010-05-15

    When coupled to a giant magnetoresistive (GMR) sensor, a superconducting loop containing a constriction can be a very sensitive magnetometer. It has thermal noise levels of few fT/sqrt(Hz), comparable to low-T{sub c} SQUID noise, with a flat frequency response. These mixed sensors are good candidates for detection of weak biomagnetic signals, like a cardiac or neuronal signature. Furthermore, being sensitive to the flux, mixed sensors can be used for nuclear magnetic resonance (NMR) detection and Magnetic Resonance Imaging (MRI) especially at low fields. They are very robust and accept strong RF pulses with a very short recovery time compared to tuned RF coils, which allow measurements of broad signals (short relaxation time or multiple resonances). We will first present the last generation sensors having a noise level of 3 fT/sqrt(Hz) and we will show signals measured at low frequency (magnetocardiography-magnetoencephalography range) and at higher frequency (NMR signals). The use of additional flux transformers for improving the signal-to-noise will be discussed. Finally, we will present perspectives for low-field MRI, which can be combined with neural signal detection (MEG), especially for brain anatomy and temporal response on the same experimental setup.

  19. Calcium source (image)

    Science.gov (United States)

    Getting enough calcium to keep bones from thinning throughout a person's life may be made more difficult if that person has ... as a tendency toward kidney stones, for avoiding calcium-rich food sources. Calcium deficiency also effects the ...

  20. Proceedings of the biomagnetic effects workshop. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T.S. (ed.)

    1978-01-01

    Separate abstracts were prepared for six of the eight chapters contained in these proceedings. The other two chapters contain introductory material (Chapter 1) dealing with the rationale for the work shop, and a summary (Chapter 8) of the major objectives that were accomplished at the workshop relative to the current status of awareness in the field of biomagnetic effects. (ERB)

  1. Ultrasound Current Source Density Imaging

    OpenAIRE

    Olafsson, Ragnar; Witte, Russell S.; Huang, Sheng-Wen; O’Donnell, Matthew

    2008-01-01

    Surgery to correct severe heart arrhythmias usually requires detailed maps of the cardiac activation wave prior to ablation. The pinpoint electrical mapping procedure is laborious and limited by its spatial resolution (5–10 mm). We propose ultrasound current source density imaging (UCSDI), a direct 3-D imaging technique that potentially facilitates existing mapping procedures with superior spatial resolution. The technique is based on a pressure-induced change in resistivity known as the acou...

  2. Dual signal subspace projection (DSSP): a novel algorithm for removing large interference in biomagnetic measurements

    Science.gov (United States)

    Sekihara, Kensuke; Kawabata, Yuya; Ushio, Shuta; Sumiya, Satoshi; Kawabata, Shigenori; Adachi, Yoshiaki; Nagarajan, Srikantan S.

    2016-06-01

    Objective. In functional electrophysiological imaging, signals are often contaminated by interference that can be of considerable magnitude compared to the signals of interest. This paper proposes a novel algorithm for removing such interferences that does not require separate noise measurements. Approach. The algorithm is based on a dual definition of the signal subspace in the spatial- and time-domains. Since the algorithm makes use of this duality, it is named the dual signal subspace projection (DSSP). The DSSP algorithm first projects the columns of the measured data matrix onto the inside and outside of the spatial-domain signal subspace, creating a set of two preprocessed data matrices. The intersection of the row spans of these two matrices is estimated as the time-domain interference subspace. The original data matrix is projected onto the subspace that is orthogonal to this interference subspace. Main results. The DSSP algorithm is validated by using the computer simulation, and using two sets of real biomagnetic data: spinal cord evoked field data measured from a healthy volunteer and magnetoencephalography data from a patient with a vagus nerve stimulator. Significance. The proposed DSSP algorithm is effective for removing overlapped interference in a wide variety of biomagnetic measurements.

  3. Advances in biomagnetic research using high- T{sub c} superconducting quantum interference devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong-Chang [Department of Physics/Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Horng, Herng-Er; Yang, S Y [Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Liao, Shu-Hsien, E-mail: hcyang@phys.ntu.edu.t [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2009-09-15

    This review reports the advances of biomagnetic research using high- T{sub c} superconducting quantum interference devices (SQUIDs). It especially focuses on SQUID-detected magnetocardiography (MCG), magnetically labeled immunoassays (MLIs) as well as nuclear magnetic resonance and imaging (NMR/MRI). The progress in MCG that scientists have made and the encountered challenges are discussed here. This study includes the early detection of the electromagnetic change in cardiac activity in animal studies of hypercholesterolemic rabbits, which suggests the possibility of early diagnosis of cardiac disease in clinical applications. The progress on MLIs using measurements of remanence, magnetic relaxation and magnetic susceptibility reduction is presented. The wash-free immunomagnetic reduction shows both high sensitivity and high specificity. NMR/MRI of high spectral resolution and of high signal-to-noise ratio are addressed and discussed. The proton-phosphate J-coupling of trimethyl phosphate ((CH{sub 3}){sub 3}PO{sub 4}) in one shot in microtesla fields is demonstrated. The prospects of biomagnetic applications are addressed. (topical review)

  4. Study of the Gastric Emptying in Humans: Biomagnetic Assessments

    Science.gov (United States)

    Hernández, E.; Córdova, T.; Huerta-Franco, R.; Sosa, M.; Vargas-Luna, M.

    2006-09-01

    Biomagnetic studies of the gastrointestinal system can be carried out in two ways. Recording the magnetic field produced by the myenteric nervous system or created by any oral contrast mean as magnetic tracers or markers. In the first case, a SQUID magnetometer is demanded while a fluxgate magnetometer is enough in the second case. In this work, a magnetic marker was ingested by 8 healthy volunteers, in three gastric volume conditions, to measure the luminal content volume effect in the gastric emptying and to perform the quantification of the peristaltic frequencies in gastric and duodenum tract segments. The average emptying times for low luminal content, relative to the emptying time when the intake was the highest, were 43.6 ± 15.6 % and 77.3 ± 47.0 %. These results show that the biomagnetic technique is a powerful modality to estimate the effects of the gastric volume in the gastric emptying and a way to record the peristaltic frequencies.

  5. Interpreting Biomagnetic Fields of Planar Wave Fronts in Cardiac Muscle

    OpenAIRE

    dos Santos, Rodrigo Weber; Koch, Hans

    2005-01-01

    The recent results of Holzer and co-workers reveal the existence of net currents that flow along the front of a planar wave propagating through cardiac tissue. This is an important contribution toward the better understanding of the physics of biomagnetic fields. However, although the authors claim their results reveal particular bidomain properties, we show in this short letter that the results allow multiple interpretations. For instance, cardiac anisotropy by itself may also explain the ex...

  6. 11-channel multipurpose biomagnetic system for operation in unshielded environment

    International Nuclear Information System (INIS)

    Progress toward the realization of a medium size multipurpose biomagnetic system is described. Eleven second-order gradiometers are coupled with as many dc-SQUIDs manifactured in our laboratory. The geometry of the detecting coils consists of seven sensors arranged in a straight line and four sensors placed around the center. By means of this configuration it is possible to scan the chest or the abdomen with the seven aligned sensors, to measure the head with the seven central sensors whereas the whole system can provide significant information for ''single shot'' cardiomagnetic measurements in clinical studies. (orig.)

  7. Numerical investigation of biomagnetic fluids in circular ducts.

    Science.gov (United States)

    Tzirakis, K; Papaharilaou, Y; Giordano, D; Ekaterinaris, J

    2014-03-01

    A mathematical model for the description of biomagnetic fluid flow exposed to a magnetic field that accounts for both electric and magnetic properties of the biofluid is presented. This is achieved by adding the Lorentz and magnetization forces in the Navier-Stokes equations. To demonstrate the effects of magnetic fields, we consider the case of laminar, incompressible, viscous, the steady flow of a Newtonian biomagnetic fluid (i) between two parallel plates; and (ii) through a straight rigid tube with a 60% in diameter, 84% on area, axisymmetric stenosis. Two external magnetic fields were investigated: one produced by an infinite wire carrying constant current, and a dipole-like field. We show, numerically and analytically, that the wire produces an irrotational force that, independent of its intensity, only alters the pressure leaving the velocity field unaffected. In contrast, when the fluid is exposed to the dipole-like field, which generates a rotational force, then both pressure and velocity can be strongly influenced even at moderate field strengths. Similar trends were obtained when a time varying flow is simulated through the axisymmetric stenosis in the presence of the dipole-like rotational magnetic field. It is expected that our findings could have important applications in blood flow control. PMID:24123947

  8. Detecting Diffuse Sources in Astronomical Images

    CERN Document Server

    Butler-Yeoman, T; Hollitt, C P; Hogg, D W; Johnston-Hollitt, M

    2016-01-01

    We present an algorithm capable of detecting diffuse, dim sources of any size in an astronomical image. These sources often defeat traditional methods for source finding, which expand regions around points of high intensity. Extended sources often have no bright points and are only detectable when viewed as a whole, so a more sophisticated approach is required. Our algorithm operates at all scales simultaneously by considering a tree of nested candidate bounding boxes, and inverts a hierarchical Bayesian generative model to obtain the probability of sources existing at given locations and sizes. This model naturally accommodates the detection of nested sources, and no prior knowledge of the distribution of a source, or even the background, is required. The algorithm scales nearly linear with the number of pixels making it feasible to run on large images, and requires minimal parameter tweaking to be effective. We demonstrate the algorithm on several types of astronomical and artificial images.

  9. NOTE: Sampling and reconstruction schemes for biomagnetic sensor arrays

    Science.gov (United States)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-01

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  10. The atomic magnetometer: A new era in biomagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Wakai, Ronald T., E-mail: rtwakai@wisc.edu [1005 Wisconsin Institutes for Medical Research, 1111 Highland Avenue, University of Wisconsin-Madison, Madison, Wisconsin 53705 (United States)

    2014-11-07

    The high cost and impracticality of SQUID (Superconducting QUantum Interference Device) magnetometers has limited the expansion of magnetoencephalography (MEG) and magnetocardiography (MCG), especially in countries where the cost of liquid helium is high. A recent breakthrough, however, has the potential to radically change this situation. In 2003, a group at Princeton University demonstrated an atomic magnetometer, known as the SERF (spin-exchange free relaxation) magnetometer, with unprecedented sensitivity. Since then, several research groups have utilized SERF magnetometers to record MEG, MCG, and fetal MCG signals. Despite some modest drawbacks, it now seems almost certain that SERF magnetometers can replace SQUIDs for many applications. With a price tag that is likely to be far less than that of SQUIDs, SERF magnetometers can propel the next wave of growth in biomagnetism.

  11. Source coding model for repeated snapshot imaging

    CERN Document Server

    Li, Junhui; Yang, Dongyue; wu, Guohua; Yin, Longfei; Guo, Hong

    2016-01-01

    Imaging based on successive repeated snapshot measurement is modeled as a source coding process in information theory. The necessary number of measurement to maintain a certain level of error rate is depicted as the rate-distortion function of the source coding. Quantitative formula of the error rate versus measurement number relation is derived, based on the information capacity of imaging system. Second order fluctuation correlation imaging (SFCI) experiment with pseudo-thermal light verifies this formula, which paves the way for introducing information theory into the study of ghost imaging (GI), both conventional and computational.

  12. A Light Source for Testing CMOS Imagers

    OpenAIRE

    Hancock, Jed J.; Baker, Doran

    2003-01-01

    Testing the optical properties of complementary metal oxide (CMOS) imagers requires a light source. The light source must produce stable uniform light with calibrated wavelength and intensity. Available commercial light source units are costly and often unalterable to a custom test setup. The proposed light source is designed to be affordable and adaptable while maintaining the necessary optical quality. The design consists of an array of light emitting diodes (LED), an infrared (IR) cut-off ...

  13. Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

    Science.gov (United States)

    Norouzi, Samira; Khademi, Hossein; Cano, Angel Faz; Acosta, Jose A

    2016-05-15

    Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding

  14. Source-space ICA for MEG source imaging

    Science.gov (United States)

    Jonmohamadi, Yaqub; Jones, Richard D.

    2016-02-01

    Objective. One of the most widely used approaches in electroencephalography/magnetoencephalography (MEG) source imaging is application of an inverse technique (such as dipole modelling or sLORETA) on the component extracted by independent component analysis (ICA) (sensor-space ICA + inverse technique). The advantage of this approach over an inverse technique alone is that it can identify and localize multiple concurrent sources. Among inverse techniques, the minimum-variance beamformers offer a high spatial resolution. However, in order to have both high spatial resolution of beamformer and be able to take on multiple concurrent sources, sensor-space ICA + beamformer is not an ideal combination. Approach. We propose source-space ICA for MEG as a powerful alternative approach which can provide the high spatial resolution of the beamformer and handle multiple concurrent sources. The concept of source-space ICA for MEG is to apply the beamformer first and then singular value decomposition + ICA. In this paper we have compared source-space ICA with sensor-space ICA both in simulation and real MEG. The simulations included two challenging scenarios of correlated/concurrent cluster sources. Main Results. Source-space ICA provided superior performance in spatial reconstruction of source maps, even though both techniques performed equally from a temporal perspective. Real MEG from two healthy subjects with visual stimuli were also used to compare performance of sensor-space ICA and source-space ICA. We have also proposed a new variant of minimum-variance beamformer called weight-normalized linearly-constrained minimum-variance with orthonormal lead-field. Significance. As sensor-space ICA-based source reconstruction is popular in EEG and MEG imaging, and given that source-space ICA has superior spatial performance, it is expected that source-space ICA will supersede its predecessor in many applications.

  15. Multiphoton imaging with a nanosecond supercontinuum source

    Science.gov (United States)

    Lefort, Claire; O'Connor, Rodney P.; Blanquet, Véronique; Baraige, Fabienne; Tombelaine, Vincent; Lévêque, Philippe; Couderc, Vincent; Leproux, Philippe

    2016-03-01

    Multiphoton microscopy is a well-established technique for biological imaging of several kinds of targets. It is classically based on multiphoton processes allowing two means of contrast simultaneously: two-photon fluorescence (TPF) and second harmonic generation (SHG). Today, the quasi exclusive laser technology used in that aim is femtosecond titanium sapphire (Ti: Sa) laser. We experimentally demonstrate that a nanosecond supercontinuum laser source (STM-250-VIS-IR-custom, Leukos, France; 1 ns, 600-2400 nm, 250 kHz, 1 W) allows to obtain the same kind of image quality in the case of both TPF and SHG, since it is properly filtered. The first set of images concerns the muscle of a mouse. It highlights the simultaneous detection of TPF and SHG. TPF is obtained thanks to the labelling of alpha-actinin with Alexa Fluor® 546 by immunochemistry. SHG is created from the non-centrosymmetric organization of myosin. As expected, discs of actin and myosin are superimposed alternatively. The resulting images are compared with those obtained from a standard femtosecond Ti: Sa source. The physical parameters of the supercontinuum are discussed. Finally, all the interest of using an ultra-broadband source is presented with images obtained in vivo on the brain of a mouse where tumor cells labeled with eGFP are grafted. Texas Red® conjugating Dextran is injected into the blood vessels network. Thus, two fluorophores having absorption wavelengths separated by 80 nm are imaged simultaneously with a single laser source.

  16. LED light source for hyperspectral fluorescence imaging

    OpenAIRE

    Tendenes, Nils Ove

    2012-01-01

    This report deals with the possibility of creating a LED light source, to be used withhyperspectral fluorescence imaging. There are commercially available light sources thatcould be used, but they are expensive, they do not necessarily emit the right wavelength, the uniformity of the field is questionable and they are difficult to modify.First a batch of Light emitting diodes were acquired, these were subjected to a seriesof tests to classify their limitations and determine which diodes were ...

  17. Infrared imaging of WENSS radio sources

    OpenAIRE

    Villani, D.; Alighieri, S. di Serego

    1998-01-01

    We have performed deep imaging in the IR J- and K-bands for three sub-samples of radio sources extracted from the Westerbork Northern Sky Survey, a large low-frequency radio survey containing Ultra Steep Spectrum (USS), Gigahertz Peaked Spectrum (GPS) and Flat Spectrum (FS) sources. We present the results of these IR observations, carried out with the ARcetri Near Infrared CAmera (ARNICA) at the Nordic Optical Telescope (NOT), providing photometric and morphologic information on high redshift...

  18. Biomagnetic fluid flow in an aneurysm using ferrohydrodynamics principles

    Science.gov (United States)

    Tzirtzilakis, E. E.

    2015-06-01

    In this study, the fundamental problem of biomagnetic fluid flow in an aneurysmal geometry under the influence of a steady localized magnetic field is numerically investigated. The mathematical model used to formulate the problem is consistent with the principles of ferrohydrodynamics. Blood is considered to be an electrically non-conducting, homogeneous, non-isothermal Newtonian magnetic fluid. For the numerical solution of the problem, which is described by a coupled, non-linear system of Partial Differential Equations (PDEs), with appropriate boundary conditions, the stream function-vorticity formulation is adopted. The solution is obtained by applying an efficient pseudotransient numerical methodology using finite differences. This methodology is based on the application of a semi-implicit numerical technique, transformations, stretching of the grid, and construction of the boundary conditions for the vorticity. The results regarding the velocity and temperature field, skin friction, and rate of heat transfer indicate that the presence of a magnetic field considerably influences the flow field, particularly in the region of the aneurysm.

  19. High Tc superconducting asymmetric gradiometer for biomagnetic applications

    International Nuclear Information System (INIS)

    We describe a high transition temperature superconducting, first-order gradiometer intended for biomagnetic measurements in an unshielded environment. The gradiometer involves a single-layer, planar flux transformer with two loops of unequal size, the smaller of which is inductively coupled to the pickup loop of a directly coupled magnetometer. In this configuration, the presence of the flux transformer reduces the sensitivity of the magnetometer by only about 5%. The flux transformer is patterned in a thin film of YBa2Cu3O7-δ deposited on a 100 mm diam wafer, and has a baseline of 48 mm. The flux transformer and magnetometer substrates are permanently bonded together in a flipchip arrangement. The common mode rejection of uniform magnetic field fluctuations in any direction is better than 1 part per 100. The outputs of two such gradiometers are subtracted to form a second-order gradiometer, which rejects first-order gradient fluctuations to about 1 part in 100. With the aid of three orthogonally mounted magnetometers, one can reduce the response of the gradiometers to uniform field fluctuations to below 100 ppm. This system is used to detect magnetic signals from the human heart in an unshielded environment. (c) 2000 American Institute of Physics

  20. High-T{sub c} superconducting quantum interference devices and biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H. C.; Wu, C. H.; Chen, J. C.; Chen, K. L.; Chen, M. J.; Yang, S. Y. [National Taiwan University, Taipei (China); Liao, S. H.; Horng, H. E. [National Taiwan Normal University, Taipei (China)

    2006-05-15

    The superconducting quantum interference device (SQUID) is the most sensitive detector of the magnetic flux in the range of frequencies from dc to MHz and has widely been used in biomagnetic applications. In this paper, we highlight a few aspects of High-T{sub c} SQUIDs, novel biomagnetic applications, and perspective. We give an overview of the current status and the principle techniques used to fabricate High-T{sub c} SQUIDs. SQUID applications in magnetocardiography, biological immunoassay, and nuclear magnetic resonance are addressed. The results are discussed.

  1. Open source portal to distributed image repositories

    Science.gov (United States)

    Tao, Wenchao; Ratib, Osman M.; Kho, Hwa; Hsu, Yung-Chao; Wang, Cun; Lee, Cason; McCoy, J. M.

    2004-04-01

    In large institution PACS, patient data may often reside in multiple separate systems. While most systems tend to be DICOM compliant, none of them offer the flexibility of seamless integration of multiple DICOM sources through a single access point. We developed a generic portal system with a web-based interactive front-end as well as an application programming interface (API) that allows both web users and client applications to query and retrieve image data from multiple DICOM sources. A set of software tools was developed to allow accessing several DICOM archives through a single point of access. An interactive web-based front-end allows user to search image data seamlessly from the different archives and display the results or route the image data to another DICOM compliant destination. An XML-based API allows other software programs to easily benefit from this portal to query and retrieve image data as well. Various techniques are employed to minimize the performance overhead inherent in the DICOM. The system is integrated with a hospital-wide HIPAA-compliant authentication and auditing service that provides centralized management of access to patient medical records. The system is provided under open source free licensing and developed using open-source components (Apache Tomcat for web server, MySQL for database, OJB for object/relational data mapping etc.). The portal paradigm offers a convenient and effective solution for accessing multiple image data sources in a given healthcare enterprise and can easily be extended to multi-institution through appropriate security and encryption mechanisms.

  2. Stereoscopic radiographic images with gamma source encoding

    International Nuclear Information System (INIS)

    Conventional radiography with X-ray tube has several drawbacks, as the compromise between the size of the focal spot and the fluence. The finite dimensions of the focal spot impose a limit to the spatial resolution. Gamma radiography uses gamma-ray sources which surpass in size, portability and simplicity to X-ray tubes. However, its low intrinsic fluence forces to use extended sources that also degrade the spatial resolution. In this work, we show the principles of a new radiographic technique that overcomes the limitations associated with the finite dimensions of X-ray sources, and that offers additional benefits to conventional techniques. The new technique called coding source imaging (CSI), is based on the use of extended sources, edge-encoding of radiation and differential detection. The mathematical principles and the method of images reconstruction with the new proposed technique are explained in the present work. Analytical calculations were made to determine the maximum spatial resolution and the variables on which it depends. The CSI technique was tested by means of Monte Carlo simulations with sets of spherical objects. We show that CSI has stereoscopic capabilities and it can resolve objects smaller than the source size. The CSI decoding algorithm reconstructs simultaneously four different projections from the same object, while conventional radiography produces only one projection per acquisition. Projections are located in separate image fields on the detector plane. Our results show it is possible to apply an extremely simple radiographic technique with extended sources, and get 3D information of the attenuation coefficient distribution for simple geometry objects in a single acquisition. The results are promising enough to evaluate the possibility of future research with more complex objects typical of medical diagnostic radiography and industrial gamma radiography (author)

  3. Magnetic source imaging studies of dyslexia interventions.

    Science.gov (United States)

    Simos, Panagiotis G; Fletcher, Jack M; Denton, Carolyn; Sarkari, Shirin; Billingsley-Marshall, Rebecca; Papanicolaou, Andrew C

    2006-01-01

    Rapidly accumulating evidence from functional brain imaging studies indicates that developmental reading disability is associated with a functional disruption of the brain circuits that normally develop to support reading-related processes. This article briefly overviews recent advances in methods that capture the anatomical outline and temporal (dynamic) features of regional brain activation during performance of reading tasks. One of these methods, magnetoencephalography (MEG) or magnetic sources imaging (MSI) is described in more detail in the context of investigations of changes in spatiotemporal patterns of brain activity associated with improvement in reading skills in response to various types of educational interventions. PMID:16925476

  4. XNAT Central: Open sourcing imaging research data.

    Science.gov (United States)

    Herrick, Rick; Horton, William; Olsen, Timothy; McKay, Michael; Archie, Kevin A; Marcus, Daniel S

    2016-01-01

    XNAT Central is a publicly accessible medical imaging data repository based on the XNAT open-source imaging informatics platform. It hosts a wide variety of research imaging data sets. The primary motivation for creating XNAT Central was to provide a central repository to host and provide access to a wide variety of neuroimaging data. In this capacity, XNAT Central hosts a number of data sets from research labs and investigative efforts from around the world, including the OASIS Brains imaging studies, the NUSDAST study of schizophrenia, and more. Over time, XNAT Central has expanded to include imaging data from many different fields of research, including oncology, orthopedics, cardiology, and animal studies, but continues to emphasize neuroimaging data. Through the use of XNAT's DICOM metadata extraction capabilities, XNAT Central provides a searchable repository of imaging data that can be referenced by groups, labs, or individuals working in many different areas of research. The future development of XNAT Central will be geared towards greater ease of use as a reference library of heterogeneous neuroimaging data and associated synthetic data. It will also become a tool for making data available supporting published research and academic articles. PMID:26143202

  5. Imaging of small radioactive point source displacement

    International Nuclear Information System (INIS)

    A new technique for three dimensional recording of a patient mandibular movement is described. A small and harmless radioactive source is fixed at the point of interest. Using proper collimation, the motion of the point source is recorded via a gamma camera and minicomputer. Image enhancement techniques are used and physiological displacement is reproduced. We measured the vertical, lateral and protrusive envelopes of motion of a point on a tooth from a full denture set mounted on a semiadjustable articulator. All displacements were calibrated. Multiple sources in a single experiment may be recorded to describe the displacement of several points of interest. First experiments were run on patients. This method, derived from Nuclear Medicine techniques, offers a powerful tool of general interest for the tracking of dynamic events in many fields of Dental Medicine, for instance temporo-mandibular joint disfunction as well as Prosthetics. (author)

  6. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  7. Imaging of granular sources in high energy heavy ion collisions

    OpenAIRE

    Yang, Zhi-Tao; Zhang, Wei-Ning; Huo, Lei; Zhang, Jing-Bo

    2008-01-01

    We investigate the source imaging for a granular pion-emitting source model in high energy heavy ion collisions. The two-pion source functions of the granular sources exhibit a two-tiered structure. Using a parametrized formula of granular two-pion source function, we examine the two-tiered structure of the source functions for the imaging data of Au+Au collisions at Alternating Gradient Synchrotron (AGS) and Relativistic Heavy Ion Collider (RHIC). We find that the imaging technique introduce...

  8. Imaging of Sources in Heavy-Ion Reactions

    OpenAIRE

    Danielewicz, P.; Brown, D A

    1997-01-01

    We discuss imaging sources from low relative-velocity correlations in heavy-ion reactions. When the correlation is dominated by interference, we can obtain the images by Fourier transforming the correlation function. In the general case, we may use the method of optimized discretization. This method stabilizes the inversion by adapting the resolution of the source to the experimental error and to the measured velocities. The imaged sources contain information on freeze-out density, phase-spac...

  9. Terahertz sources for spectroscopy and imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Yun Sik; Kim, K. J.; Jung, Sun Shin; Shon, Chae Wha; Kim, Jee Hyun [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of)

    2004-07-01

    The generation of TeraHertz (THz) radiation via photoconductive excitation of semiconducting materials and optical rectification was described. As an excitation source of optical pulse, a mode-locked Ti:Sapphire femtosecond laser was used. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer for photoconductive antenna. As for optical rectification method, 1 mm thick ZnTe (110) crystal was used. The features of above two method of THz pulse generation are compared. In case of the PhotoConductive Antenna (PCA) method, ultra-wide band THz radiation with frequencies between 0.1 THz and 2.5 THz was obtained. Compared with the PCA method, THz field intensity of the optical rectification was smaller. But the full width at half maximum of frequency spectrum of optical rectification was much larger than the PCA method. The terahertz pulses obtained by both the methods can be used to THz time-domain spectroscopy (THz-TDS) and spectroscopic pulse imaging applications.

  10. Terahertz sources for spectroscopy and imaging applications

    International Nuclear Information System (INIS)

    The generation of TeraHertz (THz) radiation via photoconductive excitation of semiconducting materials and optical rectification was described. As an excitation source of optical pulse, a mode-locked Ti:Sapphire femtosecond laser was used. Using modern integrated circuit techniques, micron-sized dipole antenna has been fabricated on a low-temperature grown GaAs (LT-GaAs) wafer for photoconductive antenna. As for optical rectification method, 1 mm thick ZnTe (110) crystal was used. The features of above two method of THz pulse generation are compared. In case of the PhotoConductive Antenna (PCA) method, ultra-wide band THz radiation with frequencies between 0.1 THz and 2.5 THz was obtained. Compared with the PCA method, THz field intensity of the optical rectification was smaller. But the full width at half maximum of frequency spectrum of optical rectification was much larger than the PCA method. The terahertz pulses obtained by both the methods can be used to THz time-domain spectroscopy (THz-TDS) and spectroscopic pulse imaging applications

  11. Optimized Discretization of Sources Imaged in Heavy-Ion Reactions

    OpenAIRE

    Brown, David A.; Danielewicz, Pawel

    1997-01-01

    We develop the new method of optimized discretization for imaging the relative source from two particle correlation functions. In this method, the source resolution depends on the relative particle separation and is adjusted to available data and their errors. We test the method by restoring assumed pp sources and then apply the method to pp and IMF data. In reactions below 100 MeV/nucleon, significant portions of the sources extend to large distances (r > 20 fm). The results from the imaging...

  12. Robust laser sources for ultrafast imaging systems

    OpenAIRE

    Wei, Xiaoming; 韦小明

    2015-01-01

    Optical imaging has not unleashed its full potential for a better temporal resolution, which is in great demand for the studies of high-speed dynamical phenomena. Traditional imagers incorporated with CCD/CMOS electronic sensors are fundamentally limited by their on-chip storage and readout speed. Time-stretch imaging, on the other hand, has been proved to be a promising imaging modality for high throughput screening and transient dynamics observation. However, it has suffered greatly from th...

  13. Backscatter absorption gas imaging systems and light sources therefore

    Science.gov (United States)

    Kulp, Thomas Jan; Kliner, Dahv A. V.; Sommers, Ricky; Goers, Uta-Barbara; Armstrong, Karla M.

    2006-12-19

    The location of gases that are not visible to the unaided human eye can be determined using tuned light sources that spectroscopically probe the gases and cameras that can provide images corresponding to the absorption of the gases. The present invention is a light source for a backscatter absorption gas imaging (BAGI) system, and a light source incorporating the light source, that can be used to remotely detect and produce images of "invisible" gases. The inventive light source has a light producing element, an optical amplifier, and an optical parametric oscillator to generate wavelength tunable light in the IR. By using a multi-mode light source and an amplifier that operates using 915 nm pump sources, the power consumption of the light source is reduced to a level that can be operated by batteries for long periods of time. In addition, the light source is tunable over the absorption bands of many hydrocarbons, making it useful for detecting hazardous gases.

  14. Coherent Lensless imaging with Ultra-Broadband Light Sources

    Directory of Open Access Journals (Sweden)

    Eikema K. S. E.

    2013-03-01

    Full Text Available We demonstrate a method for efficient lensless imaging using ultra-broadband light sources. By using a pair of time-delayed, coherent pulses in a Fourier-transform scheme, spectrally resolved diffraction patterns are obtained throughout the entire spectrum of the incident light source. We perform a proof-of-principle experiment using an octave-spanning visible light source, and obtain images of a holographic test sample with near-diffraction limited resolution. Our approach provides a promising route towards efficient high-resolution imaging using table-top high-harmonic soft-X-ray sources.

  15. Towards the 3D-Imaging of Sources

    CERN Document Server

    Danielewicz, P; Heffner, M; Pratt, S; Soltz, R A

    2004-01-01

    Geometric details of a nuclear reaction zone, at the time of particle emission, can be restored from low relative-velocity particle-correlations, following imaging. Some of the source details get erased and are a potential cause of problems in the imaging, in the form of instabilities. These can be coped with by following the method of discretized optimization for the restored sources. So far it has been possible to produce 1-dimensional emission source images, corresponding to the reactions averaged over all possible spatial directions. Currently, efforts are in progress to restore angular details.

  16. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    OpenAIRE

    Yu, Lifeng; Christner, Jodie A.; Leng, Shuai; Wang, Jia; Fletcher, Joel G.; McCollough, Cynthia H.

    2011-01-01

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose.

  17. [Development of a nonmagnetic angle encoder for active shielding during biomagnetic measurements].

    Science.gov (United States)

    Giessler, F; Witt, C; Haueisen, J; Bellemann, M E

    2002-04-01

    Biomagnetic fields--in particular in the low-frequency range--are subject to environmental interference, which cannot be adequately reduced by most passive shielding methods. However, the signal-to-noise ratio can be increased by active compensation. For this purpose, the interference is detected by reference sensors and fed back through integrated compensation coils. To establish deviation of normal directions between reference sensors and compensation coils, an angle encoder was developed. The rotation of the reference sensors about two axes at right angles to each other, is converted into voltage pulses by means of codewheels and photoelectric beams. The pulses are counted by incremental encoders, and represent a measure of the angles. A cardanic suspension and a plumb-line act as a reference system. The pulses counted are converted into binary angle values, which are used for coordinate transformation of the interfering fields. The angle encoder can determine the tilt of the reference sensors with an accuracy of 1 degree within a range between -45 and +45 degrees. The noise level of the system remains unaffected during a biomagnetic measurement. Magnetic signals of up to 5 pT arising during the oscillation of the plumb-line can be neglected because of the static nature of the angular measurement. PMID:12051137

  18. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    Institute of Scientific and Technical Information of China (English)

    Teodoro Cordova-Fraga; Modesto Sosa; Cados Wiechers; Jose Maria De la Roca-Chiapas; Alejandro Maldonado Moreles; Jesus BernaI-Alvarado; Raquel Huerta-Franco

    2008-01-01

    AIM: To study the esophageal transit time (ETT)and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI).METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright,fowler,and supine positions; 90°,45° and 0°,respectively).RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions.The ETT means were 5.2 ±1.1 s,6.1±1.5 s,and 23.6 ± 9.2 s for 90°,45° and 0°,respectively.Pearson correlation results were r = -0.716 and P < 0.001 by subjects' anatomical position,and r =-0.024 and P > 0.05 according the subject's BHI.CONCLUSION: We demonstrated that using this biomagnetic technique,it is possible to measure the ETT and the effects of the anatomical position on the ETT.

  19. An evolution of image source camera attribution approaches.

    Science.gov (United States)

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics

  20. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  1. Upconversion imaging using an all-fiber supercontinuum source

    DEFF Research Database (Denmark)

    Huot, Laurent; Moselund, Peter Morten; Tidemand-Lichtenberg, Peter;

    2016-01-01

    In this Letter, the first demonstration, to the best of our knowledge, of pulsed upconversion imaging using supercontinuum light is presented. A mid-infrared (IR) imaging system was built by combining a mid-IR supercontinuum source emitting between 1.8 and 2.6 mu m with upconversion detection. The...

  2. Dirichlet Methods for Bayesian Source Detection in Radio Astronomy Images

    Science.gov (United States)

    Friedlander, A. M.

    2014-02-01

    The sheer volume of data to be produced by the next generation of radio telescopes - exabytes of data on hundreds of millions of objects - makes automated methods for the detection of astronomical objects ("sources") essential. Of particular importance are low surface brightness objects, which are not well found by current automated methods. This thesis explores Bayesian methods for source detection that use Dirichlet or multinomial models for pixel intensity distributions in discretised radio astronomy images. A novel image discretisation method that incorporates uncertainty about how the image should be discretised is developed. Latent Dirichlet allocation - a method originally developed for inferring latent topics in document collections - is used to estimate source and background distributions in radio astronomy images. A new Dirichlet-multinomial ratio, indicating how well a region conforms to a well-specified model of background versus a loosely-specified model of foreground, is derived. Finally, latent Dirichlet allocation and the Dirichlet-multinomial ratio are combined for source detection in astronomical images. The methods developed in this thesis perform source detection well in comparison to two widely-used source detection packages and, importantly, find dim sources not well found by other algorithms.

  3. Sparse Source EEG Imaging with the Variational Garrote

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  4. Optimized Discretization of Sources Imaged in Heavy-Ion Reactions

    CERN Document Server

    Brown, D A; Brown, David A.; Danielewicz, Pawel

    1998-01-01

    We develop the new method of optimized discretization for imaging the relative source from two particle correlation functions. In this method, the source resolution depends on the relative particle separation and is adjusted to available data and their errors. We test the method by restoring assumed pp sources and then apply the method to pp and IMF data. In reactions below 100 MeV/nucleon, significant portions of the sources extend to large distances (r > 20 fm). The results from the imaging show the inadequacy of common Gaussian source-parametrizations. We establish a simple relation between the height of the pp correlation function and the source value at short distances, and between the height and the proton freeze-out phase-space density.

  5. Flash imaging in dual source CT (DSCT)

    Science.gov (United States)

    Bruder, H.; Petersilka, M.; Mehldau, H.; Heidinger, W.; Allmendinger, T.; Schmidt, B.,; Raupach, R.; Thierfelder, C.,; Stierstorfer, K.; Flohr, T.

    2009-02-01

    We present new acquisition modes of a recently introduced dual-source computed tomography (DSCT) system equipped with two X-ray tubes and two corresponding detectors, mounted onto the rotating gantry with an angular offset of typically 90°. Due to the simultaneous acquisition of complementary data, the minimum exposure time is reduced by a factor of two compared to a single-source CT system (SSCT). The correspondingly improved temporal resolution is beneficial for cardiac CT. Also, maximum table feed per rotation in a spiral mode can be increased by a factor of 2 compared to SSCT, which provides benefits both for cardiac CT and non-cardiac CT. In an ECG-triggered mode the entire cardiac volume can be scanned within a fraction of one cardiac RR-cycle. At a rotation time of 0.28s using a detector with 64×0.6 mm beam collimation, the scan time of the entire heart is less than 0.3s at a temporal resolution of 75 ms. It will be shown, that the extremely fast cardiac scan reduces the patient dose to a theoretical lowest limit: for a 120 kV scan the dose level for a typical cardiac CT scan is well below 2 mSv. Using further protocol optimization (scan range adaptation, 100kV), the radiation dose can be reduced below 1mSv.

  6. Coded aperture imaging of alpha source spatial distribution

    International Nuclear Information System (INIS)

    The Coded Aperture Imaging (CAI) technique has been applied with CR-39 nuclear track detectors to image alpha particle source spatial distributions. The experimental setup comprised: a 226Ra source of alpha particles, a laser-machined CAI mask, and CR-39 detectors, arranged inside a vacuum enclosure. Three different alpha particle source shapes were synthesized by using a linear translator to move the 226Ra source within the vacuum enclosure. The coded mask pattern used is based on a Singer Cyclic Difference Set, with 400 pixels and 57 open square holes (representing ρ = 1/7 = 14.3% open fraction). After etching of the CR-39 detectors, the area, circularity, mean optical density and positions of all candidate tracks were measured by an automated scanning system. Appropriate criteria were used to select alpha particle tracks, and a decoding algorithm applied to the (x, y) data produced the de-coded image of the source. Signal to Noise Ratio (SNR) values obtained for alpha particle CAI images were found to be substantially better than those for corresponding pinhole images, although the CAI-SNR values were below the predictions of theoretical formulae. Monte Carlo simulations of CAI and pinhole imaging were performed in order to validate the theoretical SNR formulae and also our CAI decoding algorithm. There was found to be good agreement between the theoretical formulae and SNR values obtained from simulations. Possible reasons for the lower SNR obtained for the experimental CAI study are discussed.

  7. The linac coherent light source single particle imaging road map

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2015-07-01

    Full Text Available Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.

  8. Penumbral imaging and numerical evaluation of large area source neutron imaging system

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer functions of the two discrete units in the neutron source were obtained in two situations:Imaging in geometrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation,the neutron penumbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.

  9. Penumbral imaging and numerical evaluation of large area source neutron imaging system

    Institute of Scientific and Technical Information of China (English)

    WU YueLei; HU HuaSi; ZHANG BoPing; LI LinBo; CHEN Da; SHAN Qing; ZHU Jie

    2009-01-01

    The fusion neutron penumbral imaging system Monte Carlo model was established. The transfer func-tions of the two discrete units in the neutron source were obtained in two situations: Imaging in geo-metrical near-optical and real situation. The spatial resolutions of the imaging system in two situations were evaluated and compared. The penumbral images of four units in the source were obtained by means of 2-dimensional (2D) convolution and Monte Carlo simulation. The penumbral images were reconstructed with the same method of filter. The same results were confirmed. The encoding essence of penumbral imaging was revealed. With MCNP(Monte Carlo N-particle) simulation, the neutron pen-umbral images of the large area source (200 μm×200 μm) on scintillation fiber array were obtained. The improved Wiener filter method was used to reconstruct the penumbral image and the source image was obtained. The results agree with the preset neutron source image. The feasibility of the neutron imaging system was verified.

  10. Influential sources affecting Bangkok adolescent body image perceptions.

    Science.gov (United States)

    Thianthai, Chulanee

    2006-01-01

    The study of body image-related problems in non-Western countries is still very limited. Thus, this study aims to identify the main influential sources and show how they affect the body image perceptions of Bangkok adolescents. The researcher recruited 400 Thai male and female adolescents in Bangkok, attending high school to freshmen level, ranging from 16-19 years, to participate in this study. Survey questionnaires were distributed to every student and follow-up interviews conducted with 40 students. The findings showed that there are eight main influential sources respectively ranked from the most influential to the least influential: magazines, television, peer group, familial, fashion trend, the opposite gender, self-realization and health knowledge. Similar to those studies conducted in Western countries, more than half of the total percentage was the influence of mass media and peer groups. Bangkok adolescents also internalized Western ideal beauty through these mass media channels. Alike studies conducted in the West, there was similarities in the process of how these influential sources affect Bangkok adolescent body image perception, with the exception of familial source. In conclusion, taking the approach of identifying the main influential sources and understanding how they affect adolescent body image perceptions can help prevent adolescents from having unhealthy views and taking risky measures toward their bodies. More studies conducted in non-Western countries are needed in order to build a cultural sensitive program, catered to the body image problems occurring in adolescents within that particular society. PMID:17340854

  11. Center determination for trailed sources in astronomical observation images

    Science.gov (United States)

    Du, Jun Ju; Hu, Shao Ming; Chen, Xu; Guo, Di Fu

    2014-11-01

    Images with trailed sources can be obtained when observing near-Earth objects, such as small astroids, space debris, major planets and their satellites, no matter the telescopes track on sidereal speed or the speed of target. The low centering accuracy of these trailed sources is one of the most important sources of the astrometric uncertainty, but how to determine the central positions of the trailed sources accurately remains a significant challenge to image processing techniques, especially in the study of faint or fast moving objects. According to the conditions of one-meter telescope at Weihai Observatory of Shandong University, moment and point-spread-function (PSF) fitting were chosen to develop the image processing pipeline for space debris. The principles and the implementations of both two methods are introduced in this paper. And some simulated images containing trailed sources are analyzed with each technique. The results show that two methods are comparable to obtain the accurate central positions of trailed sources when the signal to noise (SNR) is high. But moment tends to fail for the objects with low SNR. Compared with moment, PSF fitting seems to be more robust and versatile. However, PSF fitting is quite time-consuming. Therefore, if there are enough bright stars in the field, or the high astronometric accuracy is not necessary, moment is competent. Otherwise, the combination of moment and PSF fitting is recommended.

  12. Propulsion Velocity and ETT on Biomagnetic Assessment of the Human Esophagus

    International Nuclear Information System (INIS)

    Esophagus transit time measurement is a common clinical practical. Biomagnetic techniques and modern instrumentation can perform non invasive and functional assessments of the gastrointestinal tract. This study presents the evaluation of the esophagus transit time and propulsion velocity of a magnetic marker from the mouth to stomach using water vs. a swallow easy substance recently patented. A group of ten healthy subjects from 45 to 55 years, were evaluated in identical conditions for two times, they ingested randomly a magnetic marker in an anatomical body position of 45 deg., one times with water and the other one with a patented substance developed in order to help the subjects to swallow pills. The esophagus transit time was shorter when the subjects ingested the magnetic marker with the swallow easy substance than they ingested the magnetic marker with same quantity of water

  13. Biomagnetic multi-channel system consisting of several self-contained autonomous small-size units

    International Nuclear Information System (INIS)

    A new approach is suggested to the design of mulit-channel systems for biomagnetic applications, based on a combination of several autonomous small-size measuring modules within one system. Small-diameter second-order gradiometers have been developed for practical realization of the new design; the gradiometers are based on integrated dc-SQUIDs and have an intrinsic noise level of 5.10-15T/√Hz. Small-size 1.3 liter fiberglass helium dewars have been designed; the operating period of such dewards is more than two days. Tests have been carried out on a 3-channel version of the modular system. Ways are suggested for future development of modular multi-channel measuring system. (orig.)

  14. Development of a rat biomagnetic measurement system using a high-TC SQUID magnetometer

    International Nuclear Information System (INIS)

    We have developed a rat magnetocardiograph (MCG) system employing a high-TC SQUID magnetometer and a tabletop magnetic shield. We obtained clear MCG signals from a healthy Wistar Kyoto rat with a relatively high peak amplitude of 50 pT by virtue of the small gap cryostat developed in this study. Well defined P-, QRS- and T-waves were observed on the MCG of the healthy rat. In the case of a spontaneously hypertensive rat measurement, the MCG showed quite a disturbed wave pattern thought to be caused by the hypertensive heart abnormality. The results suggest that the rat biomagnetic measurement system has a strong potential for monitoring the progress of the heart disease model.

  15. Biomagnetic Measurement System on Mice-Evaluation of System Performance by MCG and Application to MEG

    International Nuclear Information System (INIS)

    We developed a biomagnetic measurement system on mice. Our initial model of the system has the magnetic field sensitivity of 1.3 pT/Hz1/2 in the white-noise region (10 Hz-10 kHz). And using the system, we succeeded to obtain magnetically the heart activity on mice. However, in its application to measure the brain activity on mice, it was necessary to improve the magnetic field sensitivity of the system. Therefore, we changed the material of the window cap, which holds a sapphire glass window on the dewar tail, to ceramic. The system noise was decreased and the magnetic field sensitivity of the system was improved to 0.75 pT/Hz1/2 in the white-noise region. For an initial measurement of the brain activity, we also developed a whisker stimulation system using a piezoelectric element to evoke somatosensory responses

  16. Photoacoustic imaging driven by an interstitial irradiation source

    Directory of Open Access Journals (Sweden)

    Trevor Mitcham

    2015-06-01

    Full Text Available Photoacoustic (PA imaging has shown tremendous promise in providing valuable diagnostic and therapy-monitoring information in select clinical procedures. Many of these pursued applications, however, have been relatively superficial due to difficulties with delivering light deep into tissue. To address this limitation, this work investigates generating a PA image using an interstitial irradiation source with a clinical ultrasound (US system, which was shown to yield improved PA signal quality at distances beyond 13 mm and to provide improved spectral fidelity. Additionally, interstitially driven multi-wavelength PA imaging was able to provide accurate spectra of gold nanoshells and deoxyhemoglobin in excised prostate and liver tissue, respectively, and allowed for clear visualization of a wire at 7 cm in excised liver. This work demonstrates the potential of using a local irradiation source to extend the depth capabilities of future PA imaging techniques for minimally invasive interventional radiology procedures.

  17. Stellar Source Selections for Image Validation of Earth Observation Satellite

    Science.gov (United States)

    Yu, Jiwoong; Park, Sang-Young; Lim, Dongwook; Lee, Dong-Han; Sohn, Young-Jong

    2011-12-01

    A method of stellar source selection for validating the quality of image is investigated for a low Earth orbit optical remote sensing satellite. Image performance of the optical payload needs to be validated after its launch into orbit. The stellar sources are ideal source points that can be used to validate the quality of optical images. For the image validation, stellar sources should be the brightest as possible in the charge-coupled device dynamic range. The time delayed and integration technique, which is used to observe the ground, is also performed to observe the selected stars. The relations between the incident radiance at aperture and V magnitude of a star are established using Gunn & Stryker's star catalogue of spectrum. Applying this result, an appropriate image performance index is determined, and suitable stars and areas of the sky scene are selected for the optical payload on a remote sensing satellite to observe. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit.

  18. The optimal algorithm for Multi-source RS image fusion.

    Science.gov (United States)

    Fu, Wei; Huang, Shui-Guang; Li, Zeng-Shun; Shen, Hao; Li, Jun-Shuai; Wang, Peng-Yuan

    2016-01-01

    In order to solve the issue which the fusion rules cannot be self-adaptively adjusted by using available fusion methods according to the subsequent processing requirements of Remote Sensing (RS) image, this paper puts forward GSDA (genetic-iterative self-organizing data analysis algorithm) by integrating the merit of genetic arithmetic together with the advantage of iterative self-organizing data analysis algorithm for multi-source RS image fusion. The proposed algorithm considers the wavelet transform of the translation invariance as the model operator, also regards the contrast pyramid conversion as the observed operator. The algorithm then designs the objective function by taking use of the weighted sum of evaluation indices, and optimizes the objective function by employing GSDA so as to get a higher resolution of RS image. As discussed above, the bullet points of the text are summarized as follows.•The contribution proposes the iterative self-organizing data analysis algorithm for multi-source RS image fusion.•This article presents GSDA algorithm for the self-adaptively adjustment of the fusion rules.•This text comes up with the model operator and the observed operator as the fusion scheme of RS image based on GSDA. The proposed algorithm opens up a novel algorithmic pathway for multi-source RS image fusion by means of GSDA. PMID:27408827

  19. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    International Nuclear Information System (INIS)

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements

  20. Phase contrast imaging simulation and measurements using polychromatic sources with small source-object distances

    Science.gov (United States)

    Golosio, Bruno; Delogu, Pasquale; Zanette, Irene; Carpinelli, Massimo; Masala, Giovanni Luca; Oliva, Piernicola; Stefanini, Arnaldo; Stumbo, Simone

    2008-11-01

    Phase contrast imaging is a technique widely used in synchrotron facilities for nondestructive analysis. Such technique can also be implemented through microfocus x-ray tube systems. Recently, a relatively new type of compact, quasimonochromatic x-ray sources based on Compton backscattering has been proposed for phase contrast imaging applications. In order to plan a phase contrast imaging system setup, to evaluate the system performance and to choose the experimental parameters that optimize the image quality, it is important to have reliable software for phase contrast imaging simulation. Several software tools have been developed and tested against experimental measurements at synchrotron facilities devoted to phase contrast imaging. However, many approximations that are valid in such conditions (e.g., large source-object distance, small transverse size of the object, plane wave approximation, monochromatic beam, and Gaussian-shaped source focal spot) are not generally suitable for x-ray tubes and other compact systems. In this work we describe a general method for the simulation of phase contrast imaging using polychromatic sources based on a spherical wave description of the beam and on a double-Gaussian model of the source focal spot, we discuss the validity of some possible approximations, and we test the simulations against experimental measurements using a microfocus x-ray tube on three types of polymers (nylon, poly-ethylene-terephthalate, and poly-methyl-methacrylate) at varying source-object distance. It will be shown that, as long as all experimental conditions are described accurately in the simulations, the described method yields results that are in good agreement with experimental measurements.

  1. Virtual ultrasound sources in high-resolution ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2002-01-01

    beamforming procedure for 3D ultrasound imaging. The position of the virtual source, and the created waveform are investigated with simulation, and with pulse-echo measurements. There is good agreement between the estimated wavefront and the theoretically tted one. Several examples of the use of virtual...

  2. New source of random telegraph signal in CMOS image sensors

    OpenAIRE

    Goiffon, Vincent; Magnan, Pierre; Martin-Gonthier, Philippe; Virmontois, Cédric; Gaillardin, Marc

    2012-01-01

    We report a new source of dark current random telegraph signal in CMOS image sensors due to meta-stable Shockley-Read-Hall generation mechanism at oxide interfaces. The role of oxide defects is discriminated thanks to the use of ionizing radiations.

  3. Auto-focused virtual source imaging with arbitrarily shaped interfaces.

    Science.gov (United States)

    Camacho, Jorge; Cruza, Jorge F

    2015-11-01

    This work presents a new method, named auto-focused virtual source imaging (AVSI), for synthetic aperture focusing through arbitrarily shaped interfaces with arrays. First, the shape of the component surface is obtained by time-of-flight (TOF) measurements. Then, a set of virtual source/receivers is created by focusing several array subapertures at the interface normal incidence points. Finally, the synthetic aperture focusing technique (SAFT) is applied to the received signals to generate a high-resolution image. The AVSI method provides several advantages for ultrasonic imaging in a two-media scenario. First, knowledge of the probe-part geometry is not required, because all information needed for image formation is obtained from a set of ultrasonic measurements. Second, refraction complications in TOF calculations are avoided, because foci at the interface can be considered as virtual source/ receivers, and SAFT can be performed in the second medium only. Third, the signal-to-noise ratio is higher than with synthetic aperture techniques that use a single element as emitter, and fourth, resolution is higher than that obtained by phased-array imaging with the same number of active elements, which reduces hardware complexity. The theoretical bases of the method are given, and its performance is evaluated by simulation. Finally, experimental results showing good agreement with theory are presented. PMID:26559624

  4. Nonlinear Interferometric Vibrational Imaging (NIVI) with Novel Optical Sources

    Science.gov (United States)

    Boppart, Stephen A.; King, Matthew D.; Liu, Yuan; Tu, Haohua; Gruebele, Martin

    Optical imaging is essential in medicine and in fundamental studies of biological systems. Although many existing imaging modalities can supply valuable information, not all are capable of label-free imaging with high-contrast and molecular specificity. The application of molecular or nanoparticle contrast agents may adversely influence the biological system under investigation. These substances also present ongoing concerns over toxicity or particle clearance, which must be properly addressed before their approval for in vivo human imaging. Hence there is an increasing appreciation for label-free imaging techniques. It is of primary importance to develop imaging techniques that can indiscriminately identify and quantify biochemical compositions to high degrees of sensitivity and specificity through only the intrinsic optical response of endogenous molecular species. The development and use of nonlinear interferometric vibrational imaging, which is based on the interferometric detection of optical signals from coherent anti-Stokes Raman scattering (CARS), along with novel optical sources, offers the potential for label-free molecular imaging.

  5. Dual-source CT cardiac imaging: initial experience

    International Nuclear Information System (INIS)

    The relation of heart rate and image quality in the depiction of coronary arteries, heart valves and myocardium was assessed on a dual-source computed tomography system (DSCT). Coronary CT angiography was performed on a DSCT (Somatom Definition, Siemens) with high concentration contrast media (Iopromide, Ultravist 370, Schering) in 24 patients with heart rates between 44 and 92 beats per minute. Images were reconstructed over the whole cardiac cycle in 10% steps. Two readers independently assessed the image quality with regard to the diagnostic evaluation of right and left coronary artery, heart valves and left ventricular myocardium for the assessment of vessel wall changes, coronary stenoses, valve morphology and function and ventricular function on a three point grading scale. The image quality ratings at the optimal reconstruction interval were 1.24±0.42 for the right and 1.09±0.27 for the left coronary artery. A reconstruction of diagnostic systolic and diastolic images is possible for a wide range of heart rates, allowing also a functional evaluation of valves and myocardium. Dual-source CT offers very robust diagnostic image quality in a wide range of heart rates. The high temporal resolution now also makes a functional evaluation of the heart valves and myocardium possible. (orig.)

  6. Image Harvest: an open-source platform for high-throughput plant image processing and analysis.

    Science.gov (United States)

    Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal

    2016-05-01

    High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917

  7. Iterative compressive sampling for hyperspectral images via source separation

    Science.gov (United States)

    Kamdem Kuiteing, S.; Barni, Mauro

    2014-03-01

    Compressive Sensing (CS) is receiving increasing attention as a way to lower storage and compression requirements for on-board acquisition of remote-sensing images. In the case of multi- and hyperspectral images, however, exploiting the spectral correlation poses severe computational problems. Yet, exploiting such a correlation would provide significantly better performance in terms of reconstruction quality. In this paper, we build on a recently proposed 2D CS scheme based on blind source separation to develop a computationally simple, yet accurate, prediction-based scheme for acquisition and iterative reconstruction of hyperspectral images in a CS setting. Preliminary experiments carried out on different hyperspectral images show that our approach yields a dramatic reduction of computational time while ensuring reconstruction performance similar to those of much more complicated 3D reconstruction schemes.

  8. Light source design for spectral tuning in biomedical imaging.

    Science.gov (United States)

    Basu, Chandrajit; Schlangen, Sebastian; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2015-10-01

    We propose an architecture with a remote phosphor-based modular and compact light-emitting diode (LED) light source in a noncontact dermoscope prototype for skin cancer screening. The spectrum and color temperature of the output light can easily and significantly be changed depending on spectral absorption characteristics of the tissues being imaged. The new system has several advantages compared to state-of-the-art phosphor converted ultrabright white LEDs, used in a wide range of medical imaging devices, which have a fixed spectrum and color temperature at a given operating point. In particular, the system can more easily be adapted to the requirements originating from different tissues in the human body, which have wavelength-dependent absorption and reflectivity. This leads to improved contrast for different kinds of imaged tissue components. The concept of such a lighting architecture can be vastly utilized in many other medical imaging devices including endoscopic systems. PMID:26839911

  9. Introducing djatoka: a reuse friendly, open source JPEG image server

    Energy Technology Data Exchange (ETDEWEB)

    Chute, Ryan M [Los Alamos National Laboratory; Van De Sompel, Herbert [Los Alamos National Laboratory

    2008-01-01

    The ISO-standardized JPEG 2000 image format has started to attract significant attention. Support for the format is emerging in major consumer applications, and the cultural heritage community seriously considers it a viable format for digital preservation. So far, only commercial image servers with JPEG 2000 support have been available. They come with significant license fees and typically provide the customers with limited extensibility capabilities. Here, we introduce djatoka, an open source JPEG 2000 image server with an attractive basic feature set, and extensibility under control of the community of implementers. We describe djatoka, and point at demonstrations that feature digitized images of marvelous historical manuscripts from the collections of the British Library and the University of Ghent. We also caIl upon the community to engage in further development of djatoka.

  10. Passive synthetic aperture imaging with limited noise sources

    Science.gov (United States)

    Garnier, Josselin

    2016-09-01

    We consider a passive synthetic aperture imaging problem. A single moving receiver antenna records random signals generated by one or several distant noise sources and backscattered by one or several reflectors. The sources emit noise signals modeled by stationary random processes. The reflectors can be imaged by summing the autocorrelation functions of the received signals computed over successive time windows, corrected for Doppler factors and migrated by appropriate travel times. In particular, the Doppler effect plays an important role and it can be used for resolution enhancement. When the noise source positions are not known, the reflector can be localized with an accuracy proportional to the reciprocal of the noise bandwidth, even when only a very small number of sources are available. When the noise source positions are known, the reflector can be localized with a cross range resolution proportional to the carrier wavelength and inversely proportional to the length of the receiver trajectory (i.e. the synthetic aperture), and with a range resolution proportional to the reciprocal of the bandwidth, even with only one noise source.

  11. Testing SPI imaging of high-energy and extended sources

    Energy Technology Data Exchange (ETDEWEB)

    Vunderer, C.B.; Schonfelder, V.; Strong, A.W. [Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany); Connell, P. [Birmingham Univ. (United Kingdom); Hammer, J.W. [Stuttgart Univ. (Germany). Inst. fuer Strahlenphysik

    2003-11-01

    INTEGRAL's main instruments employ coded apertures to obtain directional information on the incoming radiation. In order to experimentally better determine the imaging capabilities of the spectrometer SPI, the SPI Imaging Test Setup (SPITS) has been built at MPE. It consists of the SPI coded mask and two SPI-identical Ge detectors on an XY-table which allows us to move them to cover the 19 Ge detector positions. The SPI flight model imaging calibration only covered the energy range up to 2.7 MeV and did not include extended emission. SPITS was used to explore the performance of such a coded aperture system - combined with the SPI image analysis software - for higher-energy point sources and extended sources. We find that a 2.4 degrees diameter disk emitting 511 keV emission is reconstructed well. For the high signal-to-noise ratios of laboratory measurements, positions of point sources above 4 MeV could be reconstructed to better than 0.1 degrees. (authors)

  12. MEG-based imaging of focal neuronal current sources

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, J.W.; Leahy, R.M. [University of Southern California, Los Angeles, CA (United States); Mosher, J.C. [Los Alamos National Lab., NM (United States)

    1996-07-01

    We describe a new approach to imaging neuronal current sources from measurements of the magnetoencephalogram (MEG) associated with sensory, motor, or cognitive brain activation. Previous approaches to this problem have concentrated on the use of weighted minimum norm inverse methods. While these methods ensure a unique solution, they do not introduce information specific to the MEG inverse problem, often producing overly smoothed solutions and exhibiting severe sensitivity to noise. We describe a Bayesian formulation of the inverse problem in which a Gibbs prior is constructed to reflect the sparse focal nature of neuronal current sources associated with evoked response data. The prior involves a binary process indicating active sources and a continuous Gaussian process designating associated amplitudes. An estimate of the primary current source distribution for a specific data set is formed by maximizing over the posterior probability with respect to the binary and continuous variables.

  13. Automated feature extraction and classification from image sources

    Science.gov (United States)

    U.S. Geological Survey

    1995-01-01

    The U.S. Department of the Interior, U.S. Geological Survey (USGS), and Unisys Corporation have completed a cooperative research and development agreement (CRADA) to explore automated feature extraction and classification from image sources. The CRADA helped the USGS define the spectral and spatial resolution characteristics of airborne and satellite imaging sensors necessary to meet base cartographic and land use and land cover feature classification requirements and help develop future automated geographic and cartographic data production capabilities. The USGS is seeking a new commercial partner to continue automated feature extraction and classification research and development.

  14. Gadgetron: An Open Source Framework for Medical Image Reconstruction

    DEFF Research Database (Denmark)

    Hansen, Michael Schacht; Sørensen, Thomas Sangild

    2013-01-01

    recompiling the basic framework infrastructure. Gadgets are typically implemented in C/C++, but the framework includes wrapper Gadgets that allow the user to implement new modules in the Python scripting language for rapid prototyping. In addition to the streaming framework infrastructure, the Gadgetron comes......This work presents a new open source framework for medical image reconstruction called the “Gadgetron.” The framework implements a flexible system for creating streaming data processing pipelines where data pass through a series of modules or “Gadgets” from raw data to reconstructed images. The...

  15. The utilization of dual source CT in imaging of polytrauma

    International Nuclear Information System (INIS)

    Despite the growing role of imaging, trauma remains the leading cause of death in people below the age of 45 years in the western industrialized countries. Trauma has been touted as the largest epidemic in the 20th century. The advent of MDCT has been the greatest advance in trauma care in the last 25 years. However, there are still challenges in CT imaging of the polytrauma individual including time restraints, diagnostic errors, radiation dose effects and bridging the gap between anatomy and physiology. This article will analyze these challenges and provide possible solutions offered by the unique design of the dual source CT scanner

  16. Magnetic particle capture for biomagnetic fluid flow in stenosed aortic bifurcation considering particle-fluid coupling

    Science.gov (United States)

    Bose, Sayan; Banerjee, Moloy

    2015-07-01

    Magnetic nanoparticles drug carriers continue to attract considerable interest for drug targeting in the treatment of cancer and other pathological conditions. Guiding magnetic iron oxide nanoparticles with the help of an external magnetic field to its target is the basic principle behind the Magnetic Drug Targeting (MDT). It is essential to couple the ferrohydrodynamic (FHD) and magnetohydrodynamic (MHD) principles when magnetic fields are applied to blood as a biomagnetic fluid. The present study is devoted to study on MDT technique by particle tracking in the presence of a non uniform magnetic field in a stenosed aortic bifurcation. The present numerical model of biomagnetic fluid dynamics (BFD) takes into accounts both magnetization and electrical conductivity of blood. The blood flow in the bifurcation is considered to be incompressible and Newtonian. An Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of the magnetic particles in the flow using ANSYS FLUENT two way particle-fluid coupling. An implantable infinitely long cylindrical current carrying conductor is used to create the requisite magnetic field. Targeted transport of the magnetic particles in a partly occluded vessel differs distinctly from the same in a regular unblocked vessel. Results concerning the velocity and temperature field indicate that the presence of the magnetic field influences the flow field considerably and the disturbances increase as the magnetic field strength increases. The insert position is also varied to observe the variation in flow as well as temperature field. Parametric investigation is conducted and the influence of the particle size (dp), flow Reynolds number (Re) and external magnetic field strength (B0) on the "capture efficiency" (CE) is reported. The difference in CE is also studied for different particle loading condition. According to the results, the magnetic field increased the particle concentration in the target region

  17. Coherent Electron Source for Ultrafast Electron Diffraction and Imaging

    Directory of Open Access Journals (Sweden)

    Xu C.

    2013-03-01

    Full Text Available We numerically investigate the suitability of photoexcited nanotips as a source of coherent femtosecond single electron pulses for ultrafast surface-sensitive electron diffraction and non-destructive imaging with low-energy electrons. The experimental parameters for realizing hundred femtosecond time resolution are identified by evaluating the effects of vacuum dispersion and beam divergence on the temporal broadening of the electron wave packet during its propagation to the sample.

  18. Electronic Ghost Images Around Soft ROSAT Point Sources

    Science.gov (United States)

    Lesser, A.; Nousek, J.

    1992-12-01

    The PSPC can not always properly position X-ray events with very low energy. This results in apparent `ghost images', as named in MPE calibration reports. We study this effect using the bright, ultra-soft X-ray source H1504+65 and find that as many as 1/2 of the total events in the lowest two channels are displaced into 8 satellite ghost images. We display the appearance of the images, supply quantitative estimates of the effect, and suggest the kind of scientific inquiries likely to be adversely affected. This research was performed as part of the Penn State Site of the National Science Foundation's Research Experiences for Undergraduates.

  19. Distributed Source Coding Techniques for Lossless Compression of Hyperspectral Images

    Directory of Open Access Journals (Sweden)

    Barni Mauro

    2007-01-01

    Full Text Available This paper deals with the application of distributed source coding (DSC theory to remote sensing image compression. Although DSC exhibits a significant potential in many application fields, up till now the results obtained on real signals fall short of the theoretical bounds, and often impose additional system-level constraints. The objective of this paper is to assess the potential of DSC for lossless image compression carried out onboard a remote platform. We first provide a brief overview of DSC of correlated information sources. We then focus on onboard lossless image compression, and apply DSC techniques in order to reduce the complexity of the onboard encoder, at the expense of the decoder's, by exploiting the correlation of different bands of a hyperspectral dataset. Specifically, we propose two different compression schemes, one based on powerful binary error-correcting codes employed as source codes, and one based on simpler multilevel coset codes. The performance of both schemes is evaluated on a few AVIRIS scenes, and is compared with other state-of-the-art 2D and 3D coders. Both schemes turn out to achieve competitive compression performance, and one of them also has reduced complexity. Based on these results, we highlight the main issues that are still to be solved to further improve the performance of DSC-based remote sensing systems.

  20. Neutron source reconstruction from pinhole imaging at National Ignition Facility

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics

  1. Compressive Source Separation: Theory and Methods for Hyperspectral Imaging

    Science.gov (United States)

    Golbabaee, Mohammad; Arberet, Simon; Vandergheynst, Pierre

    2013-12-01

    With the development of numbers of high resolution data acquisition systems and the global requirement to lower the energy consumption, the development of efficient sensing techniques becomes critical. Recently, Compressed Sampling (CS) techniques, which exploit the sparsity of signals, have allowed to reconstruct signal and images with less measurements than the traditional Nyquist sensing approach. However, multichannel signals like Hyperspectral images (HSI) have additional structures, like inter-channel correlations, that are not taken into account in the classical CS scheme. In this paper we exploit the linear mixture of sources model, that is the assumption that the multichannel signal is composed of a linear combination of sources, each of them having its own spectral signature, and propose new sampling schemes exploiting this model to considerably decrease the number of measurements needed for the acquisition and source separation. Moreover, we give theoretical lower bounds on the number of measurements required to perform reconstruction of both the multichannel signal and its sources. We also proposed optimization algorithms and extensive experimentation on our target application which is HSI, and show that our approach recovers HSI with far less measurements and computational effort than traditional CS approaches.

  2. Images of the 10-micron source in the Cygnus 'Egg'

    International Nuclear Information System (INIS)

    Mid-IR images of AFGL 2688, the Egg nebula, obtained with a 16 x 16 pixel array camera (field of view 12.5 x 12.5 arcsec) resolve the central source. It appears as a centrally peaked ellipsoid with major axis of symmetry parallel to the axis of the visible nebulosity. This is contrary to the expected extension perpendicular to this axis implied by proposed dust-toroid models of the IR source. Maps of the spatial distribution of 8-13 micron color temperature and warm dust opacity derived from the multiwavelength images further characterize the IR emission. The remarkable flatness of the color temperature conflicts with the radial temperature gradient expected across a thick shell of material with a single heat source at its center. The new data suggest instead that the source consists of a central star surrounded by a dust shell that is too thin to provide a detectable temperature gradient and too small to permit the resolution of limb brightening. 29 references

  3. An overview of joint inversion in earthquake source imaging

    Science.gov (United States)

    Koketsu, Kazuki

    2016-06-01

    We reviewed joint inversion studies of the rupture processes of significant earthquakes, using the definition of a joint inversion in earthquake source imaging as a source inversion of multiple kinds of datasets (waveform, geodetic, or tsunami). Yoshida and Koketsu (Geophys J Int 103:355-362, 1990), and Wald and Heaton (Bull Seismol Soc Am 84:668-691, 1994) independently initiated joint inversion methods, finding that joint inversion provides more reliable rupture process models than single-dataset inversion, leading to an increase of joint inversion studies. A list of these studies was made using the finite-source rupture model database (Mai and Thingbaijam in Seismol Res Lett 85:1348-1357, 2014). Outstanding issues regarding joint inversion were also discussed.

  4. A proposal to study the esophageal transit by biomagnetic and scintigraphic study

    International Nuclear Information System (INIS)

    The initial results for a new apparatus to study the esophageal transit time is studied in asymptomatic persons for a yogurt bolus (10 ml). The bolus is uniformly labeled with 5 g of ferrite powder (biomagnetic study, B) or 350 MBq of 99m Tc (scintigraphic study, C). For the B study the detection is made by means two pair of coils in opposite phase excited by a 10 k Hz sinusoidal voltage. The signal response is obtained when the bolus traverses the coils placed on the regions-of-interest (ROIs) of the esophagus (furcula, F and xiphoid process, X) and produces a signal voltage that is measured by a lock-in amplifier Stanford SR530. For C studies an Orbiter Siemens scintillation camera is used linked to a computer. The data analysis shows a (4.1±0.7)s in B studies and (3.7±0.9)s in C studies (R=0.6, P<0.07)

  5. New imaging using pulsed neutron sources imaging of crystalline structural information by Bragg edge transmission spectroscopy

    International Nuclear Information System (INIS)

    Neutron imaging at a pulsed neutron source can simultaneously give position-dependent neutron transmission spectra of a material. 'Bragg edge' transmission pattern appears at low energy region of the spectrum. Since the Bragg edge transmission spectrum includes various crystalline structural information, e.g., crystal structure, crystalline phase, crystallographic texture, crystallite size and strain, the pulsed neutron imaging using a two-dimensional area detector can non-destructively visualize such the information over the wide area of a material. In this article, principles, features and experimental examples of the Bragg edge transmission imaging that is expected as a new analysis tool for materials science are presented. (author)

  6. Cardiac magnetic source imaging based on current multipole model

    Institute of Scientific and Technical Information of China (English)

    Tang Fa-Kuan; Wang Qian; Hua Ning; Lu Hong; Tang Xue-Zheng; Ma Ping

    2011-01-01

    It is widely accepted that the heart current source can be reduced into a current multipole. By adopting three linear inverse methods, the cardiac magnetic imaging is achieved in this article based on the current multipole model expanded to the first order terms. This magnetic imaging is realized in a reconstruction plane in the centre of human heart, where the current dipole array is employed to represent realistic cardiac current distribution. The current multipole as testing source generates magnetic fields in the measuring plane, serving as inputs of cardiac magnetic inverse problem. In the heart-torso model constructed by boundary element method, the current multipole magnetic field distribution is compared with that in the homogeneous infinite space, and also with the single current dipole magnetic field distribution.Then the minimum-norm least-squares (MNLS) method, the optimal weighted pseuDOInverse method (OWPIM), and the optimal constrained linear inverse method (OCLIM) are selected as the algorithms for inverse computation based on current multipole model innovatively, and the imaging effects of these three inverse methods are compared. Besides,two reconstructing parameters, residual and mean residual, are also discussed, and their trends under MNLS, OWPIM and OCLIM each as a function of SNR are obtained and compared.

  7. Open source database of images DEIMOS: extension for large-scale subjective image quality assessment

    Science.gov (United States)

    Vítek, Stanislav

    2014-09-01

    DEIMOS (Database of Images: Open Source) is an open-source database of images and video sequences for testing, verification and comparison of various image and/or video processing techniques such as compression, reconstruction and enhancement. This paper deals with extension of the database allowing performing large-scale web-based subjective image quality assessment. Extension implements both administrative and client interface. The proposed system is aimed mainly at mobile communication devices, taking into account advantages of HTML5 technology; it means that participants don't need to install any application and assessment could be performed using web browser. The assessment campaign administrator can select images from the large database and then apply rules defined by various test procedure recommendations. The standard test procedures may be fully customized and saved as a template. Alternatively the administrator can define a custom test, using images from the pool and other components, such as evaluating forms and ongoing questionnaires. Image sequence is delivered to the online client, e.g. smartphone or tablet, as a fully automated assessment sequence or viewer can decide on timing of the assessment if required. Environmental data and viewing conditions (e.g. illumination, vibrations, GPS coordinates, etc.), may be collected and subsequently analyzed.

  8. Low energy electron point source microscopy: beyond imaging

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Andre; Goelzhaeuser, Armin [Physics of Supramolecular Systems and Surfaces, University of Bielefeld, Postfach 100131, 33501 Bielefeld (Germany)

    2010-09-01

    Low energy electron point source (LEEPS) microscopy has the capability to record in-line holograms at very high magnifications with a fairly simple set-up. After the holograms are numerically reconstructed, structural features with the size of about 2 nm can be resolved. The achievement of an even higher resolution has been predicted. However, a number of obstacles are known to impede the realization of this goal, for example the presence of electric fields around the imaged object, electrostatic charging or radiation induced processes. This topical review gives an overview of the achievements as well as the difficulties in the efforts to shift the resolution limit of LEEPS microscopy towards the atomic level. A special emphasis is laid on the high sensitivity of low energy electrons to electrical fields, which limits the structural determination of the imaged objects. On the other hand, the investigation of the electrical field around objects of known structure is very useful for other tasks and LEEPS microscopy can be extended beyond the task of imaging. The determination of the electrical resistance of individual nanowires can be achieved by a proper analysis of the corresponding LEEPS micrographs. This conductivity imaging may be a very useful application for LEEPS microscopes. (topical review)

  9. Development of standard sources for imaging plate system

    International Nuclear Information System (INIS)

    Imaging plate system is now in wide use in diagnostic radiography, and also it is very effective for low level radioactivity measurement. Image data are read out by laser scanning of sensor plate and data are stored directly in a computer system, so that they are very suitable for inspection of low level radioactivity, especially for contamination monitoring of floor or such flat surface material. To get exact activity level, standard sources for imagining systems are desirable to be thin and flat, small as possible and applicable for resolution check, a set of different activities like a color index of contour map and well calibrated both activities and emission rate of charged particles. We tried to use ink-jet printer mixing a small amount of radioactive solution in the ink. Several test patterns were printed and measured by the imagining plate system. This method was successfully works and some of printed results were presented in this paper. (T. Tanaka)

  10. Combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho;

    2013-01-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The...... model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated...... studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy....

  11. Diagnostic value of perfusion source images in hyperacute stroke

    International Nuclear Information System (INIS)

    Objective: To investigate the diagnostic value of CT perfusion source images (CTPSI) in acute stroke less than 9 hours. Methods: 'One-stop' CT examination were performed in 100 patients with symptoms of acute stroke in less than 9 hours. Patients were divided into two groups according to with and without delayed perfusion on CTPSI, and compared Alberta stroke program early CT score study (ASPECTS) scores on non-contrast CT, arterial phase CTPSI and venous phase CTPSI with follow-up imaging. The ASPECTS were analyzed on arterial phase CTPSI and venous phase CTPSI using Wilcoxon rank-sum test, then compared with the follow up imaging ASPECTS using multiple linear regressions. Results: The median (min-max) scores of ASPECTS on NCCT, arterial phase CTPSI, venous phase CTPSI and follow-up imaging were 8.0 (6.0-10.0), 7.0 (1.0-8.0), 8.0 (3.0-10.0) and 7.5 (0-10.0) i group with delayed perfusion, respectively, and 8.0 (1.0-10.0), 7.5 (1.0-10.0), 8.5 (1.0-10.0) and 7.0 (0-10.0) in group without delayed perfusion respectively. ASPECTS scores measured on arterial phase CTPSI did not differ with venous phase CTPSI group without delayed per-fusion (Z=-1.00, P=0.459), while there was statistic difference in group with delayed perfusion (Z=-3.08, P=0.001). There were significant correlation of ASPECTS scores measured on mon-contrast CT, arterial phase CTPSI and venous phase CTPSI to follow-up imaging ASPECTS (r=0.879, 0.902, 0.945, P<0.01) in group without delayed perfusion; ASPECTS measured in venous phase CTPSI showed the best correlation to follow-up imaging ASPECTS (r=0.831, P=0.004) in group with delayed perfusion. Multiple linear regression showed that the correlation in only venous phase CTPSI with follow-up imaging ASPECTS was statistically significant: in group without delayed perfusion, β=0.946, P<0.001; in group with delayed perfusion, β=0.714, P=0.003. Conclusion: Presence of delayed perfusion in CTPSI is quit important in identifying ischemic penumbra, which plays

  12. Virtual monochromatic imaging in dual-source dual-energy CT: Radiation dose and image quality

    International Nuclear Information System (INIS)

    Purpose: To evaluate the image quality of virtual monochromatic images synthesized from dual-source dual-energy computed tomography (CT) in comparison with conventional polychromatic single-energy CT for the same radiation dose. Methods: In dual-energy CT, besides the material-specific information, one may also synthesize monochromatic images at different energies, which can be used for routine diagnosis similar to conventional polychromatic single-energy images. In this work, the authors assessed whether virtual monochromatic images generated from dual-source CT scanners had an image quality similar to that of polychromatic single-energy images for the same radiation dose. First, the authors provided a theoretical analysis of the optimal monochromatic energy for either the minimum noise level or the highest iodine contrast to noise ratio (CNR) for a given patient size and dose partitioning between the low- and high-energy scans. Second, the authors performed an experimental study on a dual-source CT scanner to evaluate the noise and iodine CNR in monochromatic images. A thoracic phantom with three sizes of attenuating rings was used to represent four adult sizes. For each phantom size, three dose partitionings between the low-energy (80 kV) and the high-energy (140 kV) scans were used in the dual-energy scan. Monochromatic images at eight energies (40 to 110 keV) were generated for each scan. Phantoms were also scanned at each of the four polychromatic single energy (80, 100, 120, and 140 kV) with the same radiation dose. Results: The optimal virtual monochromatic energy depends on several factors: phantom size, partitioning of the radiation dose between low- and high-energy scans, and the image quality metrics to be optimized. With the increase of phantom size, the optimal monochromatic energy increased. With the increased percentage of radiation dose on the low energy scan, the optimal monochromatic energy decreased. When maximizing the iodine CNR in

  13. An open source toolkit for medical imaging de-identification

    International Nuclear Information System (INIS)

    Medical imaging acquired for clinical purposes can have several legitimate secondary uses in research projects and teaching libraries. No commonly accepted solution for anonymising these images exists because the amount of personal data that should be preserved varies case by case. Our objective is to provide a flexible mechanism for anonymising Digital Imaging and Communications in Medicine (DICOM) data that meets the requirements for deployment in multicentre trials. We reviewed our current de-identification practices and defined the relevant use cases to extract the requirements for the de-identification process. We then used these requirements in the design and implementation of the toolkit. Finally, we tested the toolkit taking as a reference those requirements, including a multicentre deployment. The toolkit successfully anonymised DICOM data from various sources. Furthermore, it was shown that it could forward anonymous data to remote destinations, remove burned-in annotations, and add tracking information to the header. The toolkit also implements the DICOM standard confidentiality mechanism. A DICOM de-identification toolkit that facilitates the enforcement of privacy policies was developed. It is highly extensible, provides the necessary flexibility to account for different de-identification requirements and has a low adoption barrier for new users. (orig.)

  14. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    Energy Technology Data Exchange (ETDEWEB)

    Bastarrika, Gorka; Arraiza, Maria; Pueyo, Jesus C. [Clinica Universitaria, Universidad de Navarra, Department of Radiology, Pamplona (Spain); Cecco, Carlo N. de [Universita' di Roma ' ' Sapienza' ' -Ospedale Sant' Andrea, Department of Radiology, Rome (Italy); Ubilla, Matias; Mastrobuoni, Stefano; Rabago, Gregorio [Clinica Universitaria, Universidad de Navarra, Department of Cardiovascular Surgery, Pamplona (Spain)

    2008-09-15

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1{+-}10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1{+-}10.4 bpm. At the best reconstruction interval, diagnostic image quality (score {>=}2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04{+-} 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03{+-}1.06 and 2.73{+-}1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  15. How to coadd images? I. Optimal source detection and photometry using ensembles of images

    CERN Document Server

    Zackay, Barak

    2015-01-01

    Stacks of digital astronomical images are combined in order to increase image depth. The variable seeing conditions, sky background and transparency of ground-based observations make the coaddition process non-trivial. We present image coaddition methods optimized for source detection and flux measurement, that maximize the signal-to-noise ratio (S/N). We show that for these purposes the best way to combine images is to apply a matched filter to each image using its own point spread function (PSF) and only then to sum the images with the appropriate weights. Methods that either match filter after coaddition, or perform PSF homogenization prior to coaddition will result in loss of sensitivity. We argue that our method provides an increase of between a few and 25 percent in the survey speed of deep ground-based imaging surveys compared with weighted coaddition techniques. We demonstrate this claim using simulated data as well as data from the Palomar Transient Factory data release 2. We present a variant of thi...

  16. Electrical Conductivity Imaging Using Controlled Source Electromagnetics for Subsurface Characterization

    Science.gov (United States)

    Miller, C. R.; Routh, P. S.; Donaldson, P. R.

    2004-05-01

    Controlled Source Audio-Frequency Magnetotellurics (CSAMT) is a frequency domain electromagnetic (EM) sounding technique. CSAMT typically uses a grounded horizontal electric dipole approximately one to two kilometers in length as a source. Measurements of electric and magnetic field components are made at stations located ideally at least four skin depths away from the transmitter to approximate plane wave characteristics of the source. Data are acquired in a broad band frequency range that is sampled logarithmically from 0.1 Hz to 10 kHz. The usefulness of CSAMT soundings is to detect and map resistivity contrasts in the top two to three km of the Earth's surface. Some practical applications that CSAMT soundings have been used for include mapping ground water resources; mineral/precious metals exploration; geothermal reservoir mapping and monitoring; petroleum exploration; and geotechnical investigations. Higher frequency data can be used to image shallow features and lower frequency data are sensitive to deeper structures. We have a 3D CSAMT data set consisting of phase and amplitude measurements of the Ex and Hy components of the electric and magnetic fields respectively. The survey area is approximately 3 X 5 km. Receiver stations are situated 50 meters apart along a total of 13 lines with 8 lines bearing approximately N60E and the remainder of the lines oriented orthogonal to these 8 lines. We use an unconstrained Gauss-Newton method with positivity to invert the data. Inversion results will consist of conductivity versus depth profiles beneath each receiver station. These 1D profiles will be combined into a 3D subsurface conductivity image. We will include our interpretation of the subsurface conductivity structure and quantify the uncertainties associated with this interpretation.

  17. First Results for a Superconducting Imaging-Surface Sensor Array for Magnetocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, R.H. Jr.; Flynn, E.R.; Espy, M.A.; Matlachov, A.; Overton, W.; Wood, C.C.; Peters, M.V.; Ruminer, P.

    1998-08-28

    The authors have completed fabrication and preliminary testing of a 12-channel SQUID array using the superconducting image-surface gradiometer concept. Sensor response to point dipole magnetic sources, and uniform fields used to simulate ambient magnetic fields followed predicted values to high precision. Edge effects were not observed for sources, within 5cm of the center of the imaging surface independent of whether the source is close or far from the surface. The superconducting imaging-surface also reduced uniform ambient fields at the SQUID sensors by approximately a factor of ten. Finally, a high degree of symmetry was observed between sides of the imaging surface for uniform fields. This symmetry, together with the very small sensitivity of sensors on the back side of the imaging surface to sources close to the front side provides an excellent circumstance for implementing either digital or analog background rejection. Their goal is to implement a higher density array with the superconducting imaging surface, together with background rejection, and utilize this system for MCG and other biomagnetic studies.

  18. Magnetic resonance imaging in entomology: a critical review

    OpenAIRE

    Hart, A.G.; Bowtell, R W; Köckenberger, W; Wenseleers, T.; Ratnieks, F.L.W.

    2005-01-01

    Magnetic resonance imaging (MRI) enables in vivo imaging of organisms. The recent development of the magnetic resonance microscope (MRM) has enabled organisms within the size range of many insects to be imaged. Here, we introduce the principles of MRI and MRM and review their use in entomology. We show that MRM has been successfully applied in studies of parasitology, development, metabolism, biomagnetism and morphology, and the advantages and disadvantages relative to other imaging technique...

  19. Automatic Image Registration Using Free and Open Source Software

    Science.gov (United States)

    Giri Babu, D.; Raja Shekhar, S. S.; Chandrasekar, K.; Sesha Sai, M. V. R.; Diwakar, P. G.; Dadhwal, V. K.

    2014-11-01

    Image registration is the most critical operation in remote sensing applications to enable location based referencing and analysis of earth features. This is the first step for any process involving identification, time series analysis or change detection using a large set of imagery over a region. Most of the reliable procedures involve time consuming and laborious manual methods of finding the corresponding matching features of the input image with respect to reference. Also the process, as it involves human interaction, does not converge with multiple operations at different times. Automated procedures rely on accurately determining the matching locations or points from both the images under comparison and the procedures are robust and consistent over time. Different algorithms are available to achieve this, based on pattern recognition, feature based detection, similarity techniques etc. In the present study and implementation, Correlation based methods have been used with a improvement over newly developed technique of identifying and pruning the false points of match. Free and Open Source Software (FOSS) have been used to develop the methodology to reach a wider audience, without any dependency on COTS (Commercially off the shelf) software. Standard deviation from foci of the ellipse of correlated points, is a statistical means of ensuring the best match of the points of interest based on both intensity values and location correspondence. The methodology is developed and standardised by enhancements to meet the registration requirements of remote sensing imagery. Results have shown a performance improvement, nearly matching the visual techniques and have been implemented in remote sensing operational projects. The main advantage of the proposed methodology is its viability in production mode environment. This paper also shows that the visualization capabilities of MapWinGIS, GDAL's image handling abilities and OSSIM's correlation facility can be efficiently

  20. Toward seismic source imaging using seismo-ionospheric data

    Science.gov (United States)

    Rolland, L.; Larmat, C. S.; Mikesell, D.; Sladen, A.; Khelfi, K.; Astafyeva, E.; Lognonne, P. H.

    2014-12-01

    The worldwide coverage offered by global navigation space systems (GNSS) such as GPS, GLONASS or Galileo allows seismological measurements of a new kind. GNSS-derived total electron content (TEC) measurements can be especially useful to image seismically active zones that are not covered by conventional instruments. For instance, it has been shown that the Japanese dense GPS network GEONET was able to record images of the ionosphere response to the initial coseismic sea-surface motion induced by the great Mw 9.0 2011 Tohoku-Oki earthquake less than 10 minutes after the rupture initiation (Astafyeva et al., 2013). But earthquakes of lower magnitude, down to about 6.5 would also induce measurable ionospheric perturbations, when GNSS stations are located less than 250 km away from the epicenter. In order to make use of these new data, ionospheric seismology needs to develop accurate forward models so that we can invert for quantitative seismic sources parameters. We will present our current understanding of the coupling mechanisms between the solid Earth, the ocean, the atmosphere and the ionosphere. We will also present the state-of-the-art in the modeling of coseismic ionospheric disturbances using acoustic ray theory and a new 3D modeling method based on the Spectral Element Method (SEM). This latter numerical tool will allow us to incorporate lateral variations in the solid Earth properties, the bathymetry and the atmosphere as well as realistic seismic source parameters. Furthermore, seismo-acoustic waves propagate in the atmosphere at a much slower speed (from 0.3 to ~1 km/s) than seismic waves propagate in the solid Earth. We are exploring the application of back-projection and time-reversal methods to TEC observations in order to retrieve the time and space characteristics of the acoustic emission in the seismic source area. We will first show modeling and inversion results with synthetic data. Finally, we will illustrate the imaging capability of our approach

  1. $\\mathtt{ComEst}$: a Completeness Estimator of Source Extraction on Astronomical Imaging

    CERN Document Server

    Chiu, I-Non; Liu, Jiayi

    2016-01-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package $\\mathtt{ComEst}$, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator $\\mathtt{ComEst}$ is designed for the source finder $\\mathtt{SExtractor}$ used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, $\\mathtt{ComEst}$ estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, $\\mathtt{ComEst}$ directly carries out the detection of simulated sources on the observed images. Given an observed CCD ...

  2. An Ultraviolet imager to study bright UV sources

    CERN Document Server

    Mathew, Joice; Sarpotdar, Mayuresh; Sreejith, A G; Safonova, Margarita; Murthy, Jayant

    2016-01-01

    We have designed and developed a compact ultraviolet imaging payload to fly on a range of possible platforms such as high altitude balloon experiments, cubesats, space missions, etc. The primary science goals are to study the bright UV sources (mag < 10) and also to look for transients in the Near UV (200 - 300 nm) domain. Our first choice is to place this instrument on a spacecraft going to the Moon as part of the Indian entry into Google lunar X-Prize competition. The major constraints for the instrument are, it should be lightweight (< 2Kg), compact (length < 50cm) and cost effective. The instrument is an 80 mm diameter Cassegrain telescope with a field of view of around half a degree designated for UV imaging. In this paper we will discuss about the various science cases that can be performed by having observations with the instrument on different platforms. We will also describe the design, development and the current state of implementation of the instrument. This includes opto-mechanical and e...

  3. Matrix kernels for MEG and EEG source localization and imaging

    International Nuclear Information System (INIS)

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell's equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ''gain'' or ''transfer'' matrices used in multiple dipole and source imaging models

  4. Dual-source CT coronary imaging in heart transplant recipients: image quality and optimal reconstruction interval

    International Nuclear Information System (INIS)

    The image quality and optimal reconstruction interval for coronary arteries in heart transplant recipients undergoing non-invasive dual-source computed tomography (DSCT) coronary angiography was evaluated. Twenty consecutive heart transplant recipients who underwent DSCT coronary angiography were included (19 male, one female; mean age 63.1±10.7 years). Data sets were reconstructed in 5% steps from 30% to 80% of the R-R interval. Two blinded independent observers assessed the image quality of each coronary segments using a five-point scale (from 0 = not evaluative to 4=excellent quality). A total of 289 coronary segments in 20 heart transplant recipients were evaluated. Mean heart rate during the scan was 89.1±10.4 bpm. At the best reconstruction interval, diagnostic image quality (score ≥2) was obtained in 93.4% of the coronary segments (270/289) with a mean image quality score of 3.04± 0.63. Systolic reconstruction intervals provided better image quality scores than diastolic reconstruction intervals (overall mean quality scores obtained with the systolic and diastolic reconstructions 3.03±1.06 and 2.73±1.11, respectively; P<0.001). Different systolic reconstruction intervals (35%, 40%, 45% of RR interval) did not yield to significant differences in image quality scores for the coronary segments (P=0.74). Reconstructions obtained at the systolic phase of the cardiac cycle allowed excellent diagnostic image quality coronary angiograms in heart transplant recipients undergoing DSCT coronary angiography. (orig.)

  5. Point spread functions for earthquake source imaging: An interpretation based on seismic interferometry

    Science.gov (United States)

    Nakahara, Hisashi; Haney, Matt

    2015-01-01

    Recently, various methods have been proposed and applied for earthquake source imaging, and theoretical relationships among the methods have been studied. In this study, we make a follow-up theoretical study to better understand the meanings of earthquake source imaging. For imaging problems, the point spread function (PSF) is used to describe the degree of blurring and degradation in an obtained image of a target object as a response of an imaging system. In this study, we formulate PSFs for earthquake source imaging. By calculating the PSFs, we find that waveform source inversion methods remove the effect of the PSF and are free from artifacts. However, the other source imaging methods are affected by the PSF and suffer from the effect of blurring and degradation due to the restricted distribution of receivers. Consequently, careful treatment of the effect is necessary when using the source imaging methods other than waveform inversions. Moreover, the PSF for source imaging is found to have a link with seismic interferometry with the help of the source-receiver reciprocity of Green’s functions. In particular, the PSF can be related to Green’s function for cases in which receivers are distributed so as to completely surround the sources. Furthermore, the PSF acts as a low-pass filter. Given these considerations, the PSF is quite useful for understanding the physical meaning of earthquake source imaging.

  6. Uncertainty in Earthquake Source Imaging Due to Variations in Source Time Function and Earth Structure

    KAUST Repository

    Razafindrakoto, H. N. T.

    2014-03-25

    One way to improve the accuracy and reliability of kinematic earthquake source imaging is to investigate the origin of uncertainty and to minimize their effects. The difficulties in kinematic source inversion arise from the nonlinearity of the problem, nonunique choices in the parameterization, and observational errors. We analyze particularly the uncertainty related to the choice of the source time function (STF) and the variability in Earth structure. We consider a synthetic data set generated from a spontaneous dynamic rupture calculation. Using Bayesian inference, we map the solution space of peak slip rate, rupture time, and rise time to characterize the kinematic rupture in terms of posterior density functions. Our test to investigate the effect of the choice of STF reveals that all three tested STFs (isosceles triangle, regularized Yoffe with acceleration time of 0.1 and 0.3 s) retrieve the patch of high slip and slip rate around the hypocenter. However, the use of an isosceles triangle as STF artificially accelerates the rupture to propagate faster than the target solution. It additionally generates an artificial linear correlation between rupture onset time and rise time. These appear to compensate for the dynamic source effects that are not included in the symmetric triangular STF. The exact rise time for the tested STFs is difficult to resolve due to the small amount of radiated seismic moment in the tail of STF. To highlight the effect of Earth structure variability, we perform inversions including the uncertainty in the wavespeed only, and variability in both wavespeed and layer depth. We find that little difference is noticeable between the resulting rupture model uncertainties from these two parameterizations. Both significantly broaden the posterior densities and cause faster rupture propagation particularly near the hypocenter due to the major velocity change at the depth where the fault is located.

  7. Functional Cortical Source Imaging from Simultaneously Recorded ERP and fMRI

    OpenAIRE

    Im, Chang-Hwan; Liu, Zhongming; Zhang, Nanyin; Chen, Wei; He, Bin

    2006-01-01

    Feasibility of continuously and simultaneously recording visual evoked potentials (VEPs) with fMRI was assessed by quantitatively comparing cortical source images by means of receiver operating characteristic (ROC) curve analysis. The averaged EEG source images coincided well with simultaneously acquired fMRI activations. Strong correlation was found between the cortical source images of VEPs recorded inside and outside the scanner, despite slight difference in latencies and amplitudes of P1 ...

  8. Influences of source displacement on the features of subwavelength imaging of a photonic crystal slab

    OpenAIRE

    Luan, Pi-Gang; Chiang, Chen-Yu; Yeh, Hsiao-Yu

    2010-01-01

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square- and triangular-lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on the imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double-image. Both properties are found to be sensiti...

  9. Infrared Images and Millimeter Data from Cold Southern IRAS Sources

    Science.gov (United States)

    Osterloh, M.; Henning, Th.; Launhardt, R.

    1997-05-01

    We present near-infrared (H, K'), CO (2-1), CS (2-1), and 1.3 mm continuum data for 31 southern objects [δ(1950) Fν(60 μm) > Fν(25 μm) > 20 × Fν(12 μm)]. The data are meant to help reveal new, very young stellar objects. K'-band near-infrared counterparts to the IRAS point sources are detected in 22 of 25 good K' images. Most K' counterparts are multiples. Eighteen of 21 objects were detected in CS, implying the presence of dense gas. Completing the set of CS (2-1) spectra by including the data of Bronfman, Nyman, & Ray, we still find only three nondetections among all 31 objects; these three were also not detected in K'. Wings indicative of outflows are found in a large fraction (20/30) of CO spectra. Twenty-six of 31 observations in the millimeter continuum were detections and point to the presence of large amounts of circumstellar matter. Most of the objects have 103-105 times solar luminosity; we speculate that most contain at least one massive star capable of producing a compact/ultracompact H II region. Based on observations performed at the European Southern Observatory.

  10. Increasing source to image distance for AP pelvis imaging – Impact on radiation dose and image quality

    International Nuclear Information System (INIS)

    Aim: A quantative primary study to determine whether increasing source to image distance (SID), with and without the use of automatic exposure control (AEC) for antero-posterior (AP) pelvis imaging, reduces dose whilst still producing an image of diagnostic quality. Methods: Using a computed radiography (CR) system, an anthropomorphic pelvic phantom was positioned for an AP examination using the table bucky. SID was initially set at 110 cm, with tube potential set at a constant 75 kVp, with two outer chambers selected and a fine focal spot of 0.6 mm. SID was then varied from 90 cm to 140 cm with two exposures made at each 5 cm interval, one using the AEC and another with a constant 16 mAs derived from the initial exposure. Effective dose (E) and entrance surface dose (ESD) were calculated for each acquisition. Seven experienced observers blindly graded image quality using a 5-point Likert scale and 2 Alternative Forced Choice software. Signal-to-Noise Ratio (SNR) was calculated for comparison. For each acquisition, femoral head diameter was also measured for magnification indication. Results: Results demonstrated that when increasing SID from 110 cm to 140 cm, both E and ESD reduced by 3.7% and 17.3% respectively when using AEC and 50.13% and 41.79% respectively, when the constant mAs was used. No significant statistical (T-test) difference (p = 0.967) between image quality was detected when increasing SID, with an intra-observer correlation of 0.77 (95% confidence level). SNR reduced slightly for both AEC (38%) and no AEC (36%) with increasing SID. Conclusion: For CR, increasing SID significantly reduces both E and ESD for AP pelvis imaging without adversely affecting image quality

  11. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array

    Science.gov (United States)

    Leyva, Juan A.; Carneiro, Antonio A. O.; Murta, Luís O.; Baffa, O.

    2006-09-01

    The aim of this work was to study the feasibility to obtain images from a distribution of ferromagnetic tracers using a magnetoresistive multichannel sensor array (MRA). A magnetic imaging system formed by a linear array composed of 12 magnetoresistive sensors (Honeywell HMC 1001) was constructed covering a scanning area of (16×18) cm2. The signal was pre-processed for off-set correction and interpolation to generate a matrix of (256×256). The point spread function of the MRA was evaluated and the sensors were spaced accordingly. The magnetic images were generated by mapping the response of the MRA at short distances from the presence of a magnetite powder dispersed in planar phantoms with different shapes. The phantoms were magnetized by a pulse field of approximately 80 mT produced by a Helmholtz coil. Using the Wiener filtering, the magnetic source images were obtained. We conclude that this biomagnetic method can be successfully used to generate planar functional images of the gastrointestinal tract using magnetic markers in the near field.

  12. BOOTSTRAP-BASED STATISTICAL THRESHOLDING FOR MEG SOURCE RECONSTRUCTION IMAGES

    OpenAIRE

    Sekihara, Kensuke; Sahani, Maneesh; Nagarajan, Srikantan S.

    2004-01-01

    This paper proposes a bootstrap-based statistical method for extracting target source activities from MEG/EEG source reconstruction results. The method requires measurements in a control condition, which contains only non-target source activities. The method derives, at each pixel location, an empirical probability distribution of the non-target source activity using bootstrapped reconstruction obtained from the control period. The statistical threshold that can extract the target source acti...

  13. Neutron gamma fraction imaging: Detection, location and identification of neutron sources

    International Nuclear Information System (INIS)

    In this paper imaging of neutron sources and identification and separation of a neutron source from another neutron source is described. The system is based upon organic liquid scintillator detector, tungsten collimator, bespoke fast digitiser and adjustable equatorial mount. Three environments have been investigated with this setup corresponding to an AmBe neutron source, a 252Cf neutron source and both sources together separated in space. In each case, events are detected, digitised, discriminated and radiation images plotted corresponding to the area investigated. The visualised neutron count distributions clearly locate the neutron source and, relative gamma to neutron (or neutron to gamma) fraction images aid in discriminating AmBe sources from 252Cf source. The measurements were performed in the low scatter facility of the National Physical Laboratory, Teddington, UK

  14. ComEst: A completeness estimator of source extraction on astronomical imaging

    Science.gov (United States)

    Chiu, I.; Desai, S.; Liu, J.

    2016-07-01

    The completeness of source detection is critical for analyzing the photometric and spatial properties of the population of interest observed by astronomical imaging. We present a software package ComEst, which calculates the completeness of source detection on charge-coupled device (CCD) images of astronomical observations, especially for the optical and near-infrared (NIR) imaging of galaxies and point sources. The completeness estimator ComEst is designed for the source finder SExtractor used on the CCD images saved in the Flexible Image Transport System (FITS) format. Specifically, ComEst estimates the completeness of the source detection by deriving the detection rate of synthetic point sources and galaxies simulated on the observed CCD images. In order to capture any observational artifacts or noise properties while deriving the completeness, ComEst directly carries out the detection of simulated sources on the observed images. Given an observed CCD image saved in FITS format, ComEst derives the completeness of the source detection from end to end as a function of source flux (or magnitude) and CCD position. In addition, ComEst can also estimate the purity of the source detection by comparing the catalog of the detected sources to the input catalogs of the simulated sources. We run ComEst on the images from Blanco Cosmology Survey (BCS) and compare the derived completeness as a function of magnitude to the limiting magnitudes derived by using the Signal-to-Noise ratio (SNR) and number count histogram of the detected sources. ComEst is released as a Python package with an easy-to-use syntax and is publicly available at https://github.com/inonchiu/ComEst.

  15. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    International Nuclear Information System (INIS)

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy

  16. Dedicated full-field X-ray imaging beamline at Advanced Photon Source

    Energy Technology Data Exchange (ETDEWEB)

    Shen Qun [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: qshen@aps.anl.gov; Lee, Wah-Keat; Fezzaa, Kamel; Chu, Yong S.; De Carlo, Francesco; Jemian, Peter; Ilavsky, Jan; Erdmann, Mark; Long, Gabrielle G. [Advanced Photon Source (APS), Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2007-11-11

    We report the basic beamline design and current status of a new full-field X-ray imaging facility at Sector 32 of the Advanced Photon Source. The beamline consists of an existing hutch at 40 m and a new experiment enclosure at 77 m from the source, with both monochromatic and white-beam undulator X-ray capabilities. Experimental programs being planned for the beamline include high-speed time-resolved imaging, phase-contrast and coherent imaging, diffraction-enhanced imaging, ultra-small-angle scattering imaging, and phase- and absorption-contrast transmission X-ray microscopy.

  17. Constrained source space imaging: application to fast, region-based functional MRI.

    Science.gov (United States)

    Chiew, Mark; Graham, Simon J

    2013-10-01

    A new technique called constrained source space imaging is introduced that holds promise for ultrafast acquisition of functional magnetic resonance imaging data. A sparse set of arbitrarily positioned, coarse voxels is first localized using radiofrequency selective excitation, from which magnetization signals are separated using only the spatial sensitivities of multichannel receiver coils, without the need for k-space encoding using imaging gradients. This method permits very fast acquisitions of targeted magnetization without complex or time-consuming image reconstruction techniques. Furthermore, because the data acquisition is performed without imaging gradients, T2* decays can be densely sampled and processed for contrast enhancement to improve functional magnetic resonance imaging data quality. Here, the constrained source space imaging technique is validated in proof-of-concept form, for a simple functional magnetic resonance imaging motor task using a prototype dual-band stimulated echo acquisition mode excitation to image four voxels at TR = 250 ms. Results demonstrate good voxel signal separation and good characterization of hemodynamic responses in primary motor cortices (M1) and supplementary motor areas through T2* fitting of the measured signals. With further refinement, the constrained source space imaging method has potential utility in a priori ROI-based functional magnetic resonance imaging experiments with TR values under 100 ms. Rapid, multivoxel measurements of other sources of MR signal contrast are also possible. PMID:23225605

  18. The VTTVIS line imaging spectrometer - principles, error sources, and calibration

    DEFF Research Database (Denmark)

    Jørgensen, R.N.

    2002-01-01

    . Most of the random noise sources can be minimised by carefully selecting high-grade components especially withconcern to the camera. Systematic error sources like CCD fixed pattern noise (FPN), CCD photoresponse nonuniformity (PRNU), CCD charge transfer efficiency (CTE), slit width variations, changes...

  19. Synthetically Evaluation System for Multi-source Image Fusion and Experimental Analysis

    Institute of Scientific and Technical Information of China (English)

    XIAO Gang; JING Zhong-liang; WU Jian-min; LIU Cong-yi

    2006-01-01

    Study on the evaluation system for multi-source image fusion is an important and necessary part of image fusion. Qualitative evaluation indexes and quantitative evaluation indexes were studied. A series of new concepts,such as independent single evaluation index, union single evaluation index, synthetic evaluation index were proposed. Based on these concepts, synthetic evaluation system for digital image fusion was formed. The experiments with the wavelet fusion method, which was applied to fuse the multi-spectral image and panchromatic remote sensing image, the IR image and visible image, the CT and MRI image, and the multi-focus images show that it is an objective, uniform and effective quantitative method for image fusion evaluation.

  20. Advanced Calibration Source for Planetary and Earth Observing Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiometric calibration is critical to many NASA activities.  At NASA SSC, imaging cameras have been used in-situ to monitor propulsion test stand...

  1. Development of an LED reference light source for calibration of radiographic imaging detectors

    OpenAIRE

    Weierganz, M.; Bar, D.; Bromberger, B.; Dangendorf, V.; Feldman, G.; Goldberg, M B; Lindemann, M.; Mor, I.; Tittelmeier, K.; Vartsky, D.

    2010-01-01

    A stable reference light source based on an LED (Light Emission Diode) is presented for stabilizing the conversion gain of the opto-electronic system of a gamma- and fast-neutron radiographic and tomographic imaging device. A constant fraction of the LED light is transported to the image plane of the camera and provides a stable reference exposure. This is used to normalize the images during off-line image processing. We have investigated parameters influencing the stability of LEDs and devel...

  2. Open source image analysis software toolboxes for microscopic applications

    OpenAIRE

    Dimiter Prodanov

    2013-01-01

    Modern microscopy allows for acquisition of images spanning in different spectral, spatial and temporal dimensions. Once acquired, these frequently huge images need to be condensed into several quantitative statements that can either support or falsify the initial research questions. This process of measurement and analysis cannot be performed nowadays without the use of specialized software toolboxes. These toolboxes make the backbone of a newly defined branch of bioinformatics denoted as bi...

  3. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    International Nuclear Information System (INIS)

    Research highlights: → Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. → The inter-grating distance is not limited by the polychromaticity of the X-ray source. → Sensitivity for phase measurements can be further improved. → Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  4. Grating-based X-ray phase contrast imaging using polychromatic laboratory sources

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhili [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao Kun [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Zhu Peiping; Yuan Qingxi; Huang Wanxia; Zhang Kai; Hong Youli [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Ge Xin [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China); Wu Ziyu, E-mail: wuzy@ustc.edu.cn [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026 (China)

    2011-04-15

    Research highlights: {yields} Efficient use of polychromatic laboratory sources for X-ray phase contrast imaging. {yields} The inter-grating distance is not limited by the polychromaticity of the X-ray source. {yields} Sensitivity for phase measurements can be further improved. {yields} Potential optimizations of the imaging system from an application perspective. - Abstract: X-ray phase contrast imaging has been demonstrated to have an improved contrast over conventional absorption imaging for those weakly absorbing objects. However, most of the hard X-ray phase-sensitive imaging has so far been impractical with laboratory available X-ray sources. Grating-based phase imaging approach has the prominent advantage that polychromatic laboratory X-ray generators can be efficiently used in a Talbot-Lau configuration. Through numerical simulations, we demonstrate here the efficient use of polychromatic X-ray laboratory sources for differential phase contrast imaging. The presented results explain why in recently reported experiments, polychromatic X-ray tubes could be efficiently used in a Talbot-Lau interferometer. Furthermore, the results indicate that the fractional Talbot distance is not limited by the polychromaticity of the X-ray source. Since the sensitivity of phase measurements is proportional to the fractional Talbot distance, the image quality for phase measurements can be further improved. Finally, the potential optimizations of the imaging system are discussed from an application perspective, taking into consideration both available X-ray flux and compactness of the system.

  5. Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging

    Science.gov (United States)

    Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.

    2016-03-01

    We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a "wavelet-free" imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings, because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.

  6. Source estimation with surface-related multiples—fast ambiguity-resolved seismic imaging

    Science.gov (United States)

    Tu, Ning; Aravkin, Aleksandr; van Leeuwen, Tristan; Lin, Tim; Herrmann, Felix J.

    2016-06-01

    We address the problem of obtaining a reliable seismic image without prior knowledge of the source wavelet, especially from data that contain strong surface-related multiples. Conventional reverse-time migration requires prior knowledge of the source wavelet, which is either technically or computationally challenging to accurately determine; inaccurate estimates of the source wavelet can result in seriously degraded reverse-time migrated images, and therefore wrong geological interpretations. To solve this problem, we present a `wavelet-free' imaging procedure that simultaneously inverts for the source wavelet and the seismic image, by tightly integrating source estimation into a fast least-squares imaging framework, namely compressive imaging, given a reasonably accurate background velocity model. However, this joint inversion problem is difficult to solve as it is plagued with local minima and the ambiguity with respect to amplitude scalings because of the multiplicative, and therefore nonlinear, appearance of the source wavelet in the otherwise linear formalism. We have found a way to solve this nonlinear joint-inversion problem using a technique called variable projection, and a way to overcome the scaling ambiguity by including surface-related multiples in our imaging procedure following recent developments in surface-related multiple prediction by sparse inversion. As a result, we obtain without prior knowledge of the source wavelet high-resolution seismic images, comparable in quality to images obtained assuming the true source wavelet is known. By leveraging the computationally efficient compressive-imaging methodology, these results are obtained at affordable computational costs compared with conventional processing work flows that include surface-related multiple removal and reverse-time migration.

  7. Imaging spectroscopic analysis at the Advanced Light Source

    International Nuclear Information System (INIS)

    One of the major advances at the high brightness third generation synchrotrons is the dramatic improvement of imaging capability. There is a large multi-disciplinary effort underway at the ALS to develop imaging X-ray, UV and Infra-red spectroscopic analysis on a spatial scale from. a few microns to 10nm. These developments make use of light that varies in energy from 6meV to 15KeV. Imaging and spectroscopy are finding applications in surface science, bulk materials analysis, semiconductor structures, particulate contaminants, magnetic thin films, biology and environmental science. This article is an overview and status report from the developers of some of these techniques at the ALS. The following table lists all the currently available microscopes at the. ALS. This article will describe some of the microscopes and some of the early applications

  8. A Multimodal Data Mining Framework for Revealing Common Sources of Spam Images

    Directory of Open Access Journals (Sweden)

    Chengcui Zhang

    2009-10-01

    Full Text Available This paper proposes a multimodal framework that clusters spam images so that ones from the same spam source/cluster are grouped together. By identifying the common sources of spam images, we can provide evidence in tracking spam gangs. For this purpose, text recognition and visual feature extraction are performed. Subsequently, a two-level clustering method is applied where images with visually similar illustrations are first grouped together. Then the clustering result from the first level is further refined using the textual clues (if applicable contained in spam images. Our experimental results show the effectiveness of the proposed framework.

  9. Vector Velocity Imaging Using Cross-Correlation and Virtual Sources

    DEFF Research Database (Denmark)

    Holfort, Iben Kraglund; Kortbek, Jacob; Jensen, Jørgen Arendt

    2006-01-01

    /s. During the experiments fixed beam-to-flow angles at $\\{60^{\\circ}, 75^{\\circ}, 90^{\\circ}\\}$ have been applied. The images are obtained using a pulse repetition frequency of 15~kHz, and the images contain 33~lines with 60~emissions for each line. Corresponding to the three fixed beam-to-flow angles, the...... range $[0^{\\circ}; 180^{\\circ}[$ and identifying the direction that produces the largest correlation across emissions. An estimate of the velocity magnitude is obtained from the spatial shift between signals beamformed along the estimated direction. This paper expands these investigations to include...

  10. Straight to the Source: Detecting Aggregate Objects in Astronomical Images with Proper Error Control.

    Science.gov (United States)

    Friedenberg, David A; Genovese, Christopher R

    2013-07-01

    The next generation of telescopes, coming on-line in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few if any provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this paper, we propose a technique that is effective at source detection while providing rigorous control on source-wise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques. PMID:24068849

  11. Diagnostic value of CT perfusion source images in superacute stroke

    International Nuclear Information System (INIS)

    Objective: To investigate the diagnostic value of CTP-SI in acute stroke less than 9 hours. Methods: In present study, 'one-stop shop' CT examination were performed in 34 patients with symptoms of acute stroke in less than 9 hours. We divided patients into two groups according to with and without delayed perfusion on CTP-SI, and compared ASPECTS (Alberta Stroke Program Early CT Score Study) scores on non-contrast CT (NCCT), arterial phase CTP-SI, venous phase CTP-SI with follow-up imaging. The ASPECTS were analyzed on arterial phase CTP-SI and venous phase CTP-SI using Wilcoxon rank-sum test, then compared with the follow up imaging ASPECTS using multiple linear regression. Results The median (min-max) scores of ASPECTS on NCCT, arterial phase CTP-SI, venous phase CTP-SI and follow-up imaging were 9.0(6.0-10.0), 6.5 (1.0-8.0), 8.0(3.0-10.0) and 7.0(0-10.0) in group with delayed perfusion, respectively, and 9.0 (1.0-10.0), 8.5 (1.0-10.0), 8.5(1.0-10.0) and 8.0 (0-10.0) in group without delayed perfusion respectively. ASPECTS scores measured on arterial phase CTP-SI did not differ from venous phase CTP-SI in group without delayed perfusion (Z=-1.00, P= 0.317), while there was significant difference in group with delayed perfusion(Z=-3.08, P=0.002). There were significant correlation with ASPECTS scores measured on NCCT, arterial phase CTP-SI and venous phase CTP-SI to follow-up imaging ASPECTS (r= 0.899,0.926,0.928,P<0.01) in group without delayed perfusion; ASPECTS measured in venous phase CTP-SI showed the best correlation to follow-up imaging ASPECTS (r=0.762, P=0.004) in group with delayed perfusion. Multiple linear regression showed that the correlation in only venous phase CTP-SI with follow-up imaging ASPECTS was statistically significant: in group without delayed perfusion, Beta=0.966, P<0.001; in group with delayed perfusion, Beta=0.765, P=0.004. Conclusion: Presence of delayed perfusion in CTP-SI is quite important in identifying ischemic penumbra, which

  12. Lithography imaging control by enhanced monitoring of light source performance

    Science.gov (United States)

    Alagna, Paolo; Zurita, Omar; Lalovic, Ivan; Seong, Nakgeuon; Rechsteiner, Gregory; Thornes, Joshua; D'havé, Koen; Van Look, Lieve; Bekaert, Joost

    2013-04-01

    Reducing lithography pattern variability has become a critical enabler of ArF immersion scaling and is required to ensure consistent lithography process yield for sub-30nm device technologies. As DUV multi-patterning requirements continue to shrink, it is imperative that all sources of lithography variability are controlled throughout the product life-cycle, from technology development to high volume manufacturing. Recent developments of new ArF light-source metrology and monitoring capabilities have been introduced in order to improve lithography patterning control.[1] These technologies enable performance monitoring of new light-source properties, relating to illumination stability, and enable new reporting and analysis of in-line performance.

  13. Interferometry imaging for the evolving source in heavy ion collisions at HIRFL-CSR energy

    International Nuclear Information System (INIS)

    Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in heavy ion collisions at HIRFL-CSR energy. The source evolution is described by the relativistic hydrodynamics in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and compared with the interferometry results obtained by the usual Gaussian formula fit. It is found that the first- order source function moments can describe the source sizes. The ratio of the normalized standard deviation a to the first-order moment R-tilde, σ-tilde/R-tilde, is sensitive to the shape of the source function. (authors)

  14. Interferometry imaging for the evolving source in heavy ion collisions at HIRFL-CSR energy

    Institute of Scientific and Technical Information of China (English)

    YIN Hong-Jie; M. J. Efaaf; ZHANG Wei-Ning

    2012-01-01

    Imaging analysis of two-pion interferometry is performed for an evolving particle-emitting source in heavy ion collisions at HIRFL-CSR energy.The source evolution is described by the relativistic hydrodynamics in (2+1) dimensions. The model-independent characteristic quantities of the source are investigated and compared with the interferometry results obtained by the usual Gaussian formula fit.It is found that the firstorder source function moments can describe the source sizes.The ratio of the normalized standard deviation (O) to the first-order moment (R),(O)/(R),is sensitive to the shape of the source function.

  15. A Fieldable-Prototype Large-Area Gamma-ray Imager for Orphan Source Search

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, Klaus-Peter [ORNL; Fabris, Lorenzo [ORNL; Carr, Dennis [Lawrence Livermore National Laboratory (LLNL); Collins, Jeff [Lawrence Livermore National Laboratory (LLNL); Cunningham, Mark F [Lawrence Livermore National Laboratory (LLNL); Habte Ghebretatios, Frezghi [ORNL; Karnowski, Thomas Paul [ORNL; Marchant, William [University of California, Berkeley

    2008-01-01

    We have constructed a unique instrument for use in the search for orphan sources. The system uses gamma-ray imaging to "see through" the natural background variations that effectively limit the search range of normal devices to ~10 m. The imager is mounted in a 4.9- m-long trailer and can be towed by a large personal vehicle. Source locations are determined both in range and along the direction of travel as the vehicle moves. A fully inertial platform coupled to a Global Positioning System receiver is used to map the gamma-ray images onto overhead geospatial imagery. The resulting images provide precise source locations, allowing rapid follow-up work. The instrument simultaneously searches both sides of the street to a distance of 50 m (100-m swath) for milliCurieclass sources with near-perfect performance.

  16. Influences of source dispalcement on the features of subwavelength imaging of a photonic crystal slab

    CERN Document Server

    Luan, Pi-Gang; Yeh, Hsiao-Yu

    2010-01-01

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square- and triangular-lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on the imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double-image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

  17. Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab.

    Science.gov (United States)

    Luan, Pi-Gang; Chiang, Chen-Yu; Yeh, Hsiao-Yu

    2011-01-26

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability. PMID:21406862

  18. Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab

    Energy Technology Data Exchange (ETDEWEB)

    Luan, Pi-Gang; Chiang, Chen-Yu; Yeh, Hsiao-Yu [Wave Engineering Laboratory, Department of Optics and Photonics, National Central University, Jhungli 320, Taiwan (China)

    2011-01-26

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

  19. Influence of source displacement on the features of subwavelength imaging of a photonic crystal slab

    International Nuclear Information System (INIS)

    In this paper we study the characteristics of subwavelength imaging of a photonic crystal (PhC) superlens under the influence of source displacement. For square and triangular lattice photonic crystal lenses, we investigate the influence of changing the lateral position of a single point source on imaging uniformity and stability. We also study the effect of changing the geometrical center of a pair of sources on the resolution of the double image. Both properties are found to be sensitive to the displacement, which implies that a PhC slab cannot be treated seriously as a flat lens. We also show that by introducing material absorption into the dielectric cylinders of the PhC slab and widening the lateral width of the slab, the imaging uniformity and stability can be substantially improved. This study helps us to clarify the underlying mechanisms of some recently found phenomena concerning imaging instability.

  20. Point source detection performance of Hard X-ray Modulation Telescope imaging observation

    CERN Document Server

    Huo, Zhuoxi; Li, Xiaobo; Zhou, Jianfeng

    2015-01-01

    The Hard X-ray Modulation Telescope (HXMT) will perform an all-sky survey in hard X-ray band as well as deep imaging of a series of small sky regions. We expect various compact objects to be detected in these imaging observations. Point source detection performance of HXMT imaging observation depends not only on the instrument but also on its data analysis since images are reconstructed from HXMT observed data with numeric methods. Denoising technique plays an import part in HXMT imaging data analysis pipeline alongside with demodulation and source detection. In this paper we have implemented several methods for denoising HXMT data and evaluated the point source detection performances in terms of sensitivities and location accuracies. The results show that direct demodulation with 1-fold cross correlation should be the default reconstruction and regularization methods, although both sensitivity and location accuracy could be further imporved by selecting and tuning numerical methods in data analysis of HXMT i...

  1. Carbon nanotube based X-ray sources: Applications in pre-clinical and medical imaging

    International Nuclear Information System (INIS)

    Field emission offers an alternate method of electron production for Bremsstrahlung based X-ray tubes. Carbon nanotubes (CNTs) serve as very effective field emitters, allowing them to serve as electron sources for X-ray sources, with specific advantages over traditional thermionic tubes. CNT derived X-ray sources can create X-ray pulses of any duration and frequency, gate the X-ray pulse to any source and allow the placement of many sources in close proximity. We have constructed a number of micro-CT systems based on CNT X-ray sources for applications in small animal imaging, specifically focused on the imaging of the heart and lungs. This paper offers a review of the pre-clinical applications of the CNT based micro-CT that we have developed. We also discuss some of the current and potential clinical applications of the CNT X-ray sources.

  2. Source camera identification for low resolution heavily compressed images

    NARCIS (Netherlands)

    E.J. Alles; Z.J.M.H. Geradts; C.J. Veenman

    2008-01-01

    In this paper, we propose a method to exploit photo response non-uniformity (PRNU) to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 times 480 pixels. Similarly to research reported previously, we extract the PRNU patterns from both reference and question

  3. A novel method for detecting light source for digital images forensic

    Science.gov (United States)

    Roy, A. K.; Mitra, S. K.; Agrawal, R.

    2011-06-01

    Manipulation in image has been in practice since centuries. These manipulated images are intended to alter facts — facts of ethics, morality, politics, sex, celebrity or chaos. Image forensic science is used to detect these manipulations in a digital image. There are several standard ways to analyze an image for manipulation. Each one has some limitation. Also very rarely any method tried to capitalize on the way image was taken by the camera. We propose a new method that is based on light and its shade as light and shade are the fundamental input resources that may carry all the information of the image. The proposed method measures the direction of light source and uses the light based technique for identification of any intentional partial manipulation in the said digital image. The method is tested for known manipulated images to correctly identify the light sources. The light source of an image is measured in terms of angle. The experimental results show the robustness of the methodology.

  4. Micro-seismic Imaging Using a Source Independent Waveform Inversion Method

    KAUST Repository

    Wang, Hanchen

    2016-04-18

    Micro-seismology is attracting more and more attention in the exploration seismology community. The main goal in micro-seismic imaging is to find the source location and the ignition time in order to track the fracture expansion, which will help engineers monitor the reservoirs. Conventional imaging methods work fine in this field but there are many limitations such as manual picking, incorrect migration velocity and low signal to noise ratio (S/N). In traditional surface survey imaging, full waveform inversion (FWI) is widely used. The FWI method updates the velocity model by minimizing the misfit between the observed data and the predicted data. Using FWI to locate and image microseismic events allows for an automatic process (free of picking) that utilizes the full wavefield. Use the FWI technique, and overcomes the difficulties of manual pickings and incorrect velocity model for migration. However, the technique of waveform inversion of micro-seismic events faces its own problems. There is significant nonlinearity due to the unknown source location (space) and function (time). We have developed a source independent FWI of micro-seismic events to simultaneously invert for the source image, source function and velocity model. It is based on convolving reference traces with the observed and modeled data to mitigate the effect of an unknown source ignition time. The adjoint-state method is used to derive the gradient for the source image, source function and velocity updates. To examine the accuracy of the inverted source image and velocity model the extended image for source wavelet in z-axis is extracted. Also the angle gather is calculated to check the applicability of the migration velocity. By inverting for the source image, source wavelet and the velocity model simultaneously, the proposed method produces good estimates of the source location, ignition time and the background velocity in the synthetic experiments with both parts of the Marmousi and the SEG

  5. X-ray imaging detectors for synchrotron and XFEL sources

    OpenAIRE

    Takaki Hatsui; Heinz Graafsma

    2015-01-01

    Current trends for X-ray imaging detectors based on hybrid and monolithic detector technologies are reviewed. Hybrid detectors with photon-counting pixels have proven to be very powerful tools at synchrotrons. Recent developments continue to improve their performance, especially for higher spatial resolution at higher count rates with higher frame rates. Recent developments for X-ray free-electron laser (XFEL) experiments provide high-frame-rate integrating detectors with both high sensitivit...

  6. Young stars and dust in AFGL437: NICMOS/HST polarimetric imaging of an outflow source

    OpenAIRE

    Meakin, Casey A.; Hines, Dean C.; Thompson, Roger I.

    2005-01-01

    We present near infrared broad band and polarimetric images of the compact star forming cluster AFGL437 obtained with the NICMOS instrument aboard HST. Our high resolution images reveal a well collimated bipolar reflection nebulosity in the cluster and allow us to identify WK34 as the illuminating source. The scattered light in the bipolar nebulosity centered on this source is very highly polarized (up to 79%). Such high levels of polarization implies a distribution of dust grains lacking lar...

  7. 28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging

    OpenAIRE

    Wei, Xiaoming; Lau, Andy K. S.; Xu, Yiqing; Tsia, Kevin K.; Wong, Kenneth K. Y.

    2015-01-01

    Emerging high-throughput optical imaging modalities, in particular those providing phase information, necessitate a demanding speed regime (e.g. megahertz sweep rate) for those conventional swept sources; while an effective solution is yet to be demonstrated. We demonstrate a stable breathing laser as inertia-free swept source (BLISS) operating at a wavelength sweep rate of 28 MHz, particularly for the ultrafast interferometric imaging modality at 1.0 μm. Leveraging a tunable dispersion compe...

  8. Registration and Fusion of Multiple Source Remotely Sensed Image Data

    Science.gov (United States)

    LeMoigne, Jacqueline

    2004-01-01

    Earth and Space Science often involve the comparison, fusion, and integration of multiple types of remotely sensed data at various temporal, radiometric, and spatial resolutions. Results of this integration may be utilized for global change analysis, global coverage of an area at multiple resolutions, map updating or validation of new instruments, as well as integration of data provided by multiple instruments carried on multiple platforms, e.g. in spacecraft constellations or fleets of planetary rovers. Our focus is on developing methods to perform fast, accurate and automatic image registration and fusion. General methods for automatic image registration are being reviewed and evaluated. Various choices for feature extraction, feature matching and similarity measurements are being compared, including wavelet-based algorithms, mutual information and statistically robust techniques. Our work also involves studies related to image fusion and investigates dimension reduction and co-kriging for application-dependent fusion. All methods are being tested using several multi-sensor datasets, acquired at EOS Core Sites, and including multiple sensors such as IKONOS, Landsat-7/ETM+, EO1/ALI and Hyperion, MODIS, and SeaWIFS instruments. Issues related to the coregistration of data from the same platform (i.e., AIRS and MODIS from Aqua) or from several platforms of the A-train (i.e., MLS, HIRDLS, OMI from Aura with AIRS and MODIS from Terra and Aqua) will also be considered.

  9. Image reconstruction from limited angle projections collected by multi-source interior x-ray imaging systems

    OpenAIRE

    Liu, Baodong; Wang, Ge; Ritman, Erik L.; Cao, Guohua; Lu, Jianping; Zhou, Otto; Zeng, Li; Yu, Hengyong

    2011-01-01

    A multi-source x-ray interior imaging system with limited angle scanning is investigated to study the possibility of building an ultra-fast micro-CT for dynamic small animal imaging. And two methods are employed to perform interior reconstruction from a limited number of projections collected by the multi-source interior x-ray system. The first is total variation minimization with the steepest descent search (TVM-SD) and the second is total difference minimization with soft-threshold filterin...

  10. Use of single- and multi-source image fusion for statistical decision-making

    NARCIS (Netherlands)

    Stein, A.

    2005-01-01

    In this paper, we explore the use of single- and multi-source image fusion for statistical decision-making. On the basis of usability and loss functions, two image fusion procedures are formulated. For each of these, an optimality criterion is defined. First, attention focuses on fusion of different

  11. Four-dimensional ultrasound current source density imaging of a dipole field

    OpenAIRE

    Z. H. Wang; Olafsson, R.; P Ingram; Q. Li; Qin, Y.; Witte, R. S.

    2011-01-01

    Ultrasound current source density imaging (UCSDI) potentially transforms conventional electrical mapping of excitable organs, such as the brain and heart. For this study, we demonstrate volume imaging of a time-varying current field by scanning a focused ultrasound beam and detecting the acoustoelectric (AE) interaction signal. A pair of electrodes produced an alternating current distribution in a special imaging chamber filled with a 0.9% NaCl solution. A pulsed 1 MHz ultrasound beam was sca...

  12. Modelling of an imaging beamline at the ISIS pulsed neutron source

    OpenAIRE

    Burca, G.; Kockelmann, W.; James, J A; Fitzpatrick, M. E.

    2013-01-01

    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and charac...

  13. Temporal Coherence Effects on Coherent Diffractive Imaging of a Binary Sample by a High Harmonic Source

    Directory of Open Access Journals (Sweden)

    Frey J.G.

    2013-03-01

    Full Text Available Coherent Diffractive Imaging (CDI is performed with single and multiple harmonics from an ultrafast HHG source. The effect of HHG source bandwidth on the effectiveness of the reconstruction algorithms is compared. A low quality reconstruction from broadband data is achieved assuming full coherence in the algorithm.

  14. Energy source perceptions and policy support: Image associations, emotional evaluations, and cognitive beliefs

    International Nuclear Information System (INIS)

    This paper represents the most in-depth effort conducted to date to assess affective, emotional and cognitive perceptions of coal, natural gas, nuclear, and wind energy and the relationship between these perceptions and support for the energy sources. U.S. residents, recruited from a consumer panel, completed surveys assessing image associations, emotional reactions, and cognitive beliefs about energy sources and support for increased reliance on energy sources and local siting of energy facilities. The content of images produced by participants when evaluating energy sources revealed several interesting findings. Additionally, analysis of the image evaluations, emotions, and beliefs about each energy source showed that coal and nuclear energy were viewed most negatively, with natural gas in the middle, and wind viewed most positively. Importantly, these affective, emotional, and cognitive perceptions explained significant amounts of variance in support for each of the energy sources. Implications for future researchers and policy makers are discussed. - Highlights: ► Image associations, emotions, and beliefs about energy sources were measured. ► A dual-process model of energy support was proposed and tested. ► Coal and nuclear were viewed most negatively and wind was viewed most positively. ► The cognitive-affective model predicted support for each energy source.

  15. HIGH-RESOLUTION IMAGING OF THE ATLBS REGIONS: THE RADIO SOURCE COUNTS

    International Nuclear Information System (INIS)

    The Australia Telescope Low-brightness Survey (ATLBS) regions have been mosaic imaged at a radio frequency of 1.4 GHz with 6'' angular resolution and 72 μJy beam–1 rms noise. The images (centered at R.A. 00h35m00s, decl. –67°00'00'' and R.A. 00h59m17s, decl. –67°00'00'', J2000 epoch) cover 8.42 deg2 sky area and have no artifacts or imaging errors above the image thermal noise. Multi-resolution radio and optical r-band images (made using the 4 m CTIO Blanco telescope) were used to recognize multi-component sources and prepare a source list; the detection threshold was 0.38 mJy in a low-resolution radio image made with beam FWHM of 50''. Radio source counts in the flux density range 0.4-8.7 mJy are estimated, with corrections applied for noise bias, effective area correction, and resolution bias. The resolution bias is mitigated using low-resolution radio images, while effects of source confusion are removed by using high-resolution images for identifying blended sources. Below 1 mJy the ATLBS counts are systematically lower than the previous estimates. Showing no evidence for an upturn down to 0.4 mJy, they do not require any changes in the radio source population down to the limit of the survey. The work suggests that automated image analysis for counts may be dependent on the ability of the imaging to reproduce connecting emission with low surface brightness and on the ability of the algorithm to recognize sources, which may require that source finding algorithms effectively work with multi-resolution and multi-wavelength data. The work underscores the importance of using source lists—as opposed to component lists—and correcting for the noise bias in order to precisely estimate counts close to the image noise and determine the upturn at sub-mJy flux density.

  16. Employing partially coherent, compact gas-discharge sources for coherent diffractive imaging with extreme ultraviolet light

    Science.gov (United States)

    Bußmann, J.; Odstrčil, M.; Bresenitz, R.; Rudolf, D.; Miao, Jianwei; Brocklesby, W. S.; Grützmacher, D.; Juschkin, L.

    2015-09-01

    Coherent diffractive imaging (CDI) and related techniques enable a new type of diffraction-limited high-resolution extreme ultraviolet (EUV) microscopy. Here, we demonstrate CDI reconstruction of a complex valued object under illumination by a compact gas-discharge EUV light source emitting at 17.3 nm (O VI spectral line). The image reconstruction method accounts for the partial spatial coherence of the radiation and allows imaging even with residual background light. These results are a first step towards laboratory-scale CDI with a gas-discharge light source for applications including mask inspection for EUV lithography, metrology and astronomy.

  17. Imaging the magmatic system of Newberry Volcano using Joint active source and teleseismic tomography

    Science.gov (United States)

    Heath, Benjamin A.; Hooft, Emilie E. E.; Toomey, Douglas R.; Bezada, Maximiliano J.

    2015-12-01

    In this paper, we combine active and passive source P wave seismic data to tomographically image the magmatic system beneath Newberry Volcano, located east of the Cascade arc. By using both travel times from local active sources and delay times from teleseismic earthquakes recorded on closely spaced seismometers (300-800 m), we significantly improve recovery of upper crustal velocity structure (benefit from longer deployment times to also record teleseismic sources.

  18. Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging

    International Nuclear Information System (INIS)

    Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the 10 μm range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of 1 μm or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

  19. Non-Uniform Contrast and Noise Correction for Coded Source Neutron Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Bingham, Philip R [ORNL

    2012-01-01

    Since the first application of neutron radiography in the 1930s, the field of neutron radiography has matured enough to develop several applications. However, advances in the technology are far from concluded. In general, the resolution of scintillator-based detection systems is limited to the $10\\mu m$ range, and the relatively low neutron count rate of neutron sources compared to other illumination sources restricts time resolved measurement. One path toward improved resolution is the use of magnification; however, to date neutron optics are inefficient, expensive, and difficult to develop. There is a clear demand for cost-effective scintillator-based neutron imaging systems that achieve resolutions of $1 \\mu m$ or less. Such imaging system would dramatically extend the application of neutron imaging. For such purposes a coded source imaging system is under development. The current challenge is to reduce artifacts in the reconstructed coded source images. Artifacts are generated by non-uniform illumination of the source, gamma rays, dark current at the imaging sensor, and system noise from the reconstruction kernel. In this paper, we describe how to pre-process the coded signal to reduce noise and non-uniform illumination, and how to reconstruct the coded signal with three reconstruction methods correlation, maximum likelihood estimation, and algebraic reconstruction technique. We illustrates our results with experimental examples.

  20. Flow of a biomagnetic viscoelastic fluid: application to estimation of blood flow in arteries during electromagnetic hyperthermia,a therapeutic procedure for cancer treatment

    Institute of Scientific and Technical Information of China (English)

    J.C.MISRA; A.SINHA; G.C.SHIT

    2010-01-01

    The paper deals with the theoretical investigation of a fundamental problem of biomagnetic fluid flow through a porous medium subject to a magnetic field by using the principles of biomagnetic fluid dynamics(BFD).The study pertains to a situation where magnetization of the fluid varies with temperature.The fluid is considered to be non-Newtonian,whose flow is governed by the equation of a second-grade viscoelastic fluid.The walls of the channel are assumed to be stretchable,where the surface velocity is proportional to the longitudinal distance from the origin of coordinates.The problem is first reduced to solving a system of coupled nonlinear differential equations involving seven parameters.Considering blood as a biomagnetic fluid and using the present analysis,an attempt is made to compute some parameters of the blood flow by developing a suitable numerical method and by devising an appropriate finite difference scheme.The computational results are presented in graphical form,and thereby some theoretical predictions are made with respect to the hemodynamical flow of the blood in a hyperthermal state under the action of a magnetic field.The results clearly indicate that the presence of a magnetic dipole bears the potential so as to affect the characteristics of the blood flow in arteries to a significant extent during the therapeutic procedure of electromagnetic hyperthermia.The study will attract the attention of clinicians,to whom the results would be useful in the treatment of cancer patients by the method of electromagnetic hyperthermia.

  1. Bistatic synthetic aperture radar imaging using wide-bandwidth continuous-wave sources

    Science.gov (United States)

    Soumekh, Mehrdad

    1998-10-01

    Monostatic and bistatic Synthetic Aperture Radar (SAR) imaging systems with Wide-Bandwidth Continuous-Wave (WB-CW) sources have been utilized for military reconnaissance. WB-CW sources are less susceptible than FM-CW sources to Electronic Counter Measures (ECM). The main shortcoming of the WB-CW microwave illumination is that its resultant SAR echoed signal is not composed of distinct Doppler spreading around specific tones; this creates difficulties to formulate the image formation in the WB-CW SAR systems via the conventional pulse or FM-CW SAR imaging algorithms. The current paper outlines a Time Domain Correlation (TDC) processing method and a Fourier-based processing method for image formation in WB-CW monostatic and bistatic SAR systems. Results are provided.

  2. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    Science.gov (United States)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  3. Superresolving Imaging of Irregular Arrays of Thermal Light Sources using Multiphoton Interferences

    CERN Document Server

    Classen, Anton; Giebel, Sebastian; Schneider, Raimund; Bhatti, Daniel; Mehringer, Thomas; von Zanthier, Joachim

    2016-01-01

    We propose to use multiphoton interferences of photons emitted from statistically independent thermal light sources in combination with linear optical detection techniques to reconstruct, i.e., image, arbitrary source geometries in one dimension with subclassical resolution. The scheme is an extension of earlier work [Phys. Rev. Lett. 109, 233603 (2012)] where N regularly spaced sources in one dimension were imaged by use of the Nth-order intensity correlation function. Here, we generalize the scheme to reconstruct any number of independent thermal light sources at arbitrary separations in one dimension exploiting intensity correlation functions of order $m \\geq 3$. We present experimental results confirming the imaging protocol and provide a rigorous mathematical proof for the obtained subclassical resolution.

  4. Combining bayesian source imaging with equivalent dipole approach to solve the intracranial EEG source localization problem.

    Science.gov (United States)

    Le Cam, Steven; Caune, Vairis; Ranta, Radu; Korats, Gundars; Louis-Dorr, Valerie

    2015-08-01

    The brain source localization problem has been extensively studied in the past years, yielding a large panel of methodologies, each bringing their own strengths and weaknesses. Combining several of these approaches might help in enhancing their respective performance. Our study is carried out in the particular context of intracranial recordings, with the objective to explain the measurements based on a reduced number of dipolar activities. We take benefit of the sparse nature of the Bayesian approaches to separate the noise from the source space, and to distinguish between several source contributions on the electrodes. This first step provides accurate estimates of the dipole projections, which can be used as an entry to an equivalent current dipole fitting procedure. We demonstrate on simulations that the localization results are significantly enhanced by this post-processing step when up to five dipoles are activated simultaneously. PMID:26736344

  5. Reconstruction algorithm for point source neutron imaging through finite thickness scintillator

    International Nuclear Information System (INIS)

    A new inversion algorithm based on the maximum entropy method (MEM) is proposed to remove unwanted effects in fast neutron imaging which result from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as an input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). The inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. Algorithm details as well as numerical results using MCNP simulated images are presented. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique should also be applicable to high energy gamma or x-ray radiography using thick scintillators.

  6. A rotating modulation imager for locating mid-range point sources

    International Nuclear Information System (INIS)

    Rotating modulation collimators (RMC) are relatively simple indirect imaging devices that have proven useful in gamma ray astronomy (far field) and have more recently been studied for medical imaging (very near field). At the University of Michigan a RMC has been built to study the performance for homeland security applications. This research highlights the imaging performance of this system and focuses on three distinct regions in the RMC field of view that can impact the search for hidden sources. These regions are a blind zone around the axis of rotation, a two mask image zone that extends from the blind zone to the edge of the field of view, and a single mask image zone that occurs when sources fall outside the field of view of both masks. By considering the extent and impact of these zones, the size of the two mask region can be optimized for the best system performance.

  7. Development of an LED reference light source for calibration of radiographic imaging detectors

    CERN Document Server

    Weierganz, M; Bromberger, B; Dangendorf, V; Feldman, G; Goldberg, M B; Lindemann, M; Mor, I; Tittelmeier, K; Vartsky, D

    2010-01-01

    A stable reference light source based on an LED (Light Emission Diode) is presented for stabilizing the conversion gain of the opto-electronic system of a gamma- and fast-neutron radiographic and tomographic imaging device. A constant fraction of the LED light is transported to the image plane of the camera and provides a stable reference exposure. This is used to normalize the images during off-line image processing. We have investigated parameters influencing the stability of LEDs and developed procedures and criteria to prepare and select LEDs suitable for delivering stable light outputs for several 100 h of operation.

  8. Progress toward the development and testing of source reconstruction methods for NIF neutron imaging

    International Nuclear Information System (INIS)

    Development of analysis techniques for neutron imaging at the National Ignition Facility is an important and difficult task for the detailed understanding of high-neutron yield inertial confinement fusion implosions. Once developed, these methods must provide accurate images of the hot and cold fuels so that information about the implosion, such as symmetry and areal density, can be extracted. One method under development involves the numerical inversion of the pinhole image using knowledge of neutron transport through the pinhole aperture from Monte Carlo simulations. In this article we present results of source reconstructions based on simulated images that test the methods effectiveness with regard to pinhole misalignment.

  9. Compact laser sources for laser designation, ranging and active imaging

    Science.gov (United States)

    Goldberg, Lew; Nettleton, John; Schilling, Brad; Trussel, Ward; Hays, Alan

    2007-04-01

    Recent advances in compact solid sate lasers for laser designation, eye-safe range finding and active imaging are described. Wide temperature operation of a compact Nd:YAG laser was achieved by end pumping and the use of multi-λ diode stacks. Such lasers enabled construction of fully operational 4.7 lb laser designator prototypes generating over 50 mJ at 10-20 Hz PRF. Output pulse energy in excess of 100 mJ was demonstrated in a breadboard version of the end-pumped laser. Eye-safe 1.5 μm lasers based on flash-pumped, low PRF, Monoblock lasers have enabled compact STORM laser range finders that have recently been put into production. To achieve higher optical and electrical efficiency needed for higher PRF operation, Monoblock lasers were end-pumped by a laser diode stack. Laser diode end-pumped Monoblock lasers were operated at 10-20 Hz PRF over a wide temperature range (-20 to +50 °C). Compared with bulk compact solid state lasers, fiber lasers are characterized by lower pulse energy, higher PRF's, shorter pulses and higher electrical efficiency. An example of fiber lasers suitable for LIDAR, and atmospheric measurement applications is described. Eye-safe, low intensity diode pumped solid state green warning laser developed for US Army checkpoint and convoy applications is also described.

  10. A method for MREIT-based source imaging: simulation studies

    Science.gov (United States)

    Song, Yizhuang; Jeong, Woo Chul; Woo, Eung Je; Seo, Jin Keun

    2016-08-01

    This paper aims to provide a method for using magnetic resonance electrical impedance tomography (MREIT) to visualize local conductivity changes associated with evoked neuronal activities in the brain. MREIT is an MRI-based technique for conductivity mapping by probing the magnetic flux density induced by an externally injected current through surface electrodes. Since local conductivity changes resulting from evoked neural activities are very small (less than a few %), a major challenge is to acquire exogenous magnetic flux density data exceeding a certain noise level. Noting that the signal-to-noise ratio is proportional to the square root of the number of averages, it is important to reduce the data acquisition time to get more averages within a given total data collection time. The proposed method uses a sub-sampled k-space data set in the phase-encoding direction to significantly reduce the data acquisition time. Since the sub-sampled data violates the Nyquist criteria, we only get a nonlinearly wrapped version of the exogenous magnetic flux density data, which is insufficient for conductivity imaging. Taking advantage of the sparseness of the conductivity change, the proposed method detects local conductivity changes by estimating the time-change of the Laplacian of the nonlinearly wrapped data.

  11. Optimal Magnetic Sensor Vests for Cardiac Source Imaging.

    Science.gov (United States)

    Lau, Stephan; Petković, Bojana; Haueisen, Jens

    2016-01-01

    Magnetocardiography (MCG) non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics. PMID:27231910

  12. Optimal Magnetic Sensor Vests for Cardiac Source Imaging

    Directory of Open Access Journals (Sweden)

    Stephan Lau

    2016-05-01

    Full Text Available Magnetocardiography (MCG non-invasively provides functional information about the heart. New room-temperature magnetic field sensors, specifically magnetoresistive and optically pumped magnetometers, have reached sensitivities in the ultra-low range of cardiac fields while allowing for free placement around the human torso. Our aim is to optimize positions and orientations of such magnetic sensors in a vest-like arrangement for robust reconstruction of the electric current distributions in the heart. We optimized a set of 32 sensors on the surface of a torso model with respect to a 13-dipole cardiac source model under noise-free conditions. The reconstruction robustness was estimated by the condition of the lead field matrix. Optimization improved the condition of the lead field matrix by approximately two orders of magnitude compared to a regular array at the front of the torso. Optimized setups exhibited distributions of sensors over the whole torso with denser sampling above the heart at the front and back of the torso. Sensors close to the heart were arranged predominantly tangential to the body surface. The optimized sensor setup could facilitate the definition of a standard for sensor placement in MCG and the development of a wearable MCG vest for clinical diagnostics.

  13. The VSOP 5 GHz Active Galactic Nucleus Survey: V. Imaging Results for the Remaining 140 sources

    CERN Document Server

    Dodson, R; Wiik, K; Horiuchi, S; Hirabayashi, H; Edwards, P G; Murata, Y; Asaki, Y; Moellenbrock, G A; Scott, W K; Taylor, A R; Gurvits, L I; Paragi, Z; Frey, S; Shen, Z -Q; Lovell, J E J; Tingay, S J; Rioja, M J; Fodor, S; Lister, M L; Mosoni, L; Coldwell, G; Piner, B G; Yang, J

    2007-01-01

    In February 1997, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Programme (VSOP) mission. Approximately twenty-five percent of the mission time was dedicated to the VSOP Survey of bright compact Active Galactic Nuclei (AGN) at 5 GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in Paper III, which contained 102 sources. For most sources, the plots of the uv-coverage, the visibility amplitude versus uv-distance, and the high resolution image are presented. Model fit parameters to the major radio components are determined, and the brightness temperature of the core component for each source is calculated. The brightness temperature distributions for all of the sources in the VSOP AGN survey are discussed.

  14. Low-spatial-coherence broadband fiber source for speckle free imaging

    CERN Document Server

    Redding, Brandon; Mokan, Vadim; Seifert, Martin; Choma, Michael A; Cao, Hui

    2015-01-01

    We designed and demonstrate a fiber-based amplified spontaneous emission (ASE) source with low spatial coherence, low temporal coherence, and high power per mode. ASE is produced by optically pumping a large gain core multimode fiber while minimizing optical feedback to avoid lasing. The fiber ASE source provides 270 mW of continuous wave emission, centered at {\\lambda}=1055 nm with a full-width half-maximum bandwidth of 74 nm. The emission is distributed among as many as ~70 spatial modes, enabling efficient speckle suppression when combined with spectral compounding. Finally, we demonstrate speckle-free full field imaging using the fiber ASE source. The fiber ASE source provides a unique combination of high power per mode with both low spatial and low temporal coherence, making it an ideal source for full-field imaging and ranging applications.

  15. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    Energy Technology Data Exchange (ETDEWEB)

    Kilburn-Toppin, Fleur; Arthurs, Owen J.; Tasker, Angela D.; Set, Patricia A.K. [Addenbrooke' s Hospital, Cambridge University Teaching Hospitals NHS Foundation Trust, Department of Radiology, Box 219, Cambridge (United Kingdom)

    2013-07-15

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 {+-} 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 {+-} 43.7 s vs. 92.9 {+-} 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  16. Detection of pulmonary nodules at paediatric CT: maximum intensity projections and axial source images are complementary

    International Nuclear Information System (INIS)

    Maximum intensity projection (MIP) images might be useful in helping to differentiate small pulmonary nodules from adjacent vessels on thoracic multidetector CT (MDCT). The aim was to evaluate the benefits of axial MIP images over axial source images for the paediatric chest in an interobserver variability study. We included 46 children with extra-pulmonary solid organ malignancy who had undergone thoracic MDCT. Three radiologists independently read 2-mm axial and 10-mm MIP image datasets, recording the number of nodules, size and location, overall time taken and confidence. There were 83 nodules (249 total reads among three readers) in 46 children (mean age 10.4 ± 4.98 years, range 0.3-15.9 years; 24 boys). Consensus read was used as the reference standard. Overall, three readers recorded significantly more nodules on MIP images (228 vs. 174; P < 0.05), improving sensitivity from 67% to 77.5% (P < 0.05) but with lower positive predictive value (96% vs. 85%, P < 0.005). MIP images took significantly less time to read (71.6 ± 43.7 s vs. 92.9 ± 48.7 s; P < 0.005) but did not improve confidence levels. Using 10-mm axial MIP images for nodule detection in the paediatric chest enhances diagnostic performance, improving sensitivity and reducing reading time when compared with conventional axial thin-slice images. Axial MIP and axial source images are complementary in thoracic nodule detection. (orig.)

  17. Multimodal ophthalmic imaging using swept source spectrally encoded scanning laser ophthalmoscopy and optical coherence tomography

    Science.gov (United States)

    Malone, Joseph D.; El-Haddad, Mohamed T.; Tye, Logan A.; Majeau, Lucas; Godbout, Nicolas; Rollins, Andrew M.; Boudoux, Caroline; Tao, Yuankai K.

    2016-03-01

    Scanning laser ophthalmoscopy (SLO) and optical coherence tomography (OCT) benefit clinical diagnostic imaging in ophthalmology by enabling in vivo noninvasive en face and volumetric visualization of retinal structures, respectively. Spectrally encoding methods enable confocal imaging through fiber optics and reduces system complexity. Previous applications in ophthalmic imaging include spectrally encoded confocal scanning laser ophthalmoscopy (SECSLO) and a combined SECSLO-OCT system for image guidance, tracking, and registration. However, spectrally encoded imaging suffers from speckle noise because each spectrally encoded channel is effectively monochromatic. Here, we demonstrate in vivo human retinal imaging using a swept source spectrally encoded scanning laser ophthalmoscope and OCT (SSSESLO- OCT) at 1060 nm. SS-SESLO-OCT uses a shared 100 kHz Axsun swept source, shared scanner and imaging optics, and are detected simultaneously on a shared, dual channel high-speed digitizer. SESLO illumination and detection was performed using the single mode core and multimode inner cladding of a double clad fiber coupler, respectively, to preserve lateral resolution while improving collection efficiency and reducing speckle contrast at the expense of confocality. Concurrent en face SESLO and cross-sectional OCT images were acquired with 1376 x 500 pixels at 200 frames-per-second. Our system design is compact and uses a shared light source, imaging optics, and digitizer, which reduces overall system complexity and ensures inherent co-registration between SESLO and OCT FOVs. En face SESLO images acquired concurrent with OCT cross-sections enables lateral motion tracking and three-dimensional volume registration with broad applications in multivolume OCT averaging, image mosaicking, and intraoperative instrument tracking.

  18. A study of equivalent source techniques for high-resolution EEG imaging

    International Nuclear Information System (INIS)

    High-resolution EEG imaging has been an important topic in recent EEG research, and much work has been done on the two equivalent source imaging techniques: the equivalent distributed dipole-layer source imaging technique (EST) and the equivalent multipole source imaging technique (SAT). In this paper we first develop a forward density formula for a spherical equivalent distributed dipole layer of an arbitrary dipole in a three-concentric-sphere head model. It is clarified using the derived forward formula that the equivalent dipole-layer source and equivalent multipole source are interrelated in theory. Finally, simulation comparisons are conducted, the results of which suggest that EST has a higher spatial resolution than SAT when both of them are implemented by a truncated singular value decomposition algorithm. This is due to the different singularities of the inversion equations involved in the two techniques. An empirical VEP data study also shows that EST is better than SAT in providing higher spatial resolution EEG imaging. (author)

  19. Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source

    Energy Technology Data Exchange (ETDEWEB)

    Xu, De-Qin [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China); School of Science, Tianjin University of Technology and Education, Tianjin 300222 (China); Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun, E-mail: junxiong@bnu.edu.cn; Wang, Kaige, E-mail: wangkg@bnu.edu.cn [Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875 (China)

    2015-04-27

    It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.

  20. Comparison of two x-ray phase-contrast imaging methods with a microfocus source.

    Science.gov (United States)

    Zhou, T; Lundström, U; Thüring, T; Rutishauser, S; Larsson, D H; Stampanoni, M; David, C; Hertz, H M; Burvall, A

    2013-12-16

    We present a comparison for high-resolution imaging with a laboratory source between grating-based (GBI) and propagation-based (PBI) x-ray phase-contrast imaging. The comparison is done through simulations and experiments using a liquid-metal-jet x-ray microfocus source. Radiation doses required for detection in projection images are simulated as a function of the diameter of a cylindrical sample. Using monochromatic radiation, simulations show a lower dose requirement for PBI for small object features and a lower dose for GBI for larger object features. Using polychromatic radiation, such as that from a laboratory microfocus source, experiments and simulations show a lower dose requirement for PBI for a large range of feature sizes. Tested on a biological sample, GBI shows higher noise levels than PBI, but its advantage of quantitative refractive index reconstruction for multi-material samples becomes apparent. PMID:24514597

  1. Computation of radiative image formation in isolated source and collimated irradiation problems

    International Nuclear Information System (INIS)

    Due to the ray effect, it is not suitable to employ the discrete ordinates method to calculate the radiation field and the image-formation process in radiative problems with isolated radiative sources (such as point and line sources, isolated medium or boundary source). In this paper, a hybrid method, named Monte Carlo-discrete ordinates method (Macadam) is developed. Firstly, the Monte Carlo method is used to calculate the emission process. Secondly, the discrete ordinates method is employed to calculate the scattering process, correspondingly, an alternative energy partitioning method is proposed to combine the above two conventional methods. Thirdly, the DOS+ISW algorithm (JQSRT, 2003, 78: 437-453) is used to calculate the image-formation process. Finally, the MCDOM is applied to computing the image formation of an endoscope, which was used to study the hydrodynamics of circulating fluidized beds (Powder Technology, 2001;114:71-83)

  2. Computation of radiative image formation in isolated source and collimated irradiation problems

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongshun [School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)]. E-mail: lihs_hust@yahoo.com.cn; Werther, Joachim [Chemical Engineering I, Technical University Hamburg-Harburg, Denickestrasse 15, 21071 Hamburg (Germany)

    2006-01-15

    Due to the ray effect, it is not suitable to employ the discrete ordinates method to calculate the radiation field and the image-formation process in radiative problems with isolated radiative sources (such as point and line sources, isolated medium or boundary source). In this paper, a hybrid method, named Monte Carlo-discrete ordinates method (Macadam) is developed. Firstly, the Monte Carlo method is used to calculate the emission process. Secondly, the discrete ordinates method is employed to calculate the scattering process, correspondingly, an alternative energy partitioning method is proposed to combine the above two conventional methods. Thirdly, the DOS+ISW algorithm (JQSRT, 2003, 78: 437-453) is used to calculate the image-formation process. Finally, the MCDOM is applied to computing the image formation of an endoscope, which was used to study the hydrodynamics of circulating fluidized beds (Powder Technology, 2001;114:71-83)

  3. CT and MRI derived source localization error in a custom prostate phantom using automated image coregistration

    International Nuclear Information System (INIS)

    Dosimetric evaluation of completed brachytherapy implant procedures is crucial in developing proper technique. Additionally, accurate dosimetry may be useful in predicting the success of an implant. Accurate definition of the prostate gland and localization of the implanted radioactive sources are critical to attain meaningful dosimetric data. MRI is recognized as a superior imaging modality in delineating the prostate gland. More importantly, MRI can be used for source localization in postimplant prostates. However, the MRI derived source localization error bears further investigation. We present a useful tool in determining the source localization error as well as permitting the fusion, or coregistration, of selected data from multiple imaging modalities. We constructed a custom prostate phantom of hydrocolloid material precisely implanted with I-125 seeds. We obtained CT, the accepted modality, and MRI scans of the phantom. Subsequently, we developed an automated algorithm that employs a sequential translation of data sets to initially maximize coregistration and minimize error between data sets. This was followed by a noniterative solution for the necessary rotation transformation matrix using the Orthogonal Procrustes Solution. We applied this algorithm to CT and MRI scans of the custom phantom. CT derived source locations had source localization errors of 1.59 mm±0.64. MRI derived source locations produced similar results (1.67 mm±0.76). These errors may be attributed to the image digitization process

  4. Observation of image pair creation and annihilation from superluminal scattering sources

    CERN Document Server

    Clerici, Matteo; Warburton, Ryan E; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2015-01-01

    The invariance of the speed of light implies a series of consequences related to our perception of simultaneity and of time itself. Whilst these consequences are experimentally well studied for subluminal speeds, the kinematics of superluminal motion lack direct evidence. Using high temporal resolution imaging techniques, we demonstrate that if a source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backwards. If the source changes its speed, crossing the interface between sub- and super-luminal propagation, we observe image pair annihilation and creation. These results show that it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone.

  5. Adaptive optics OCT using 1060nm swept source and dual deformable lenses for human retinal imaging

    Science.gov (United States)

    Jian, Yifan; Lee, Sujin; Cua, Michelle; Miao, Dongkai; Bonora, Stefano; Zawadzki, Robert J.; Sarunic, Marinko V.

    2016-03-01

    Adaptive optics concepts have been applied to the advancement of biological imaging and microscopy. In particular, AO has also been very successfully applied to cellular resolution imaging of the retina, enabling visualization of the characteristic mosaic patterns of the outer retinal layers using flood illumination fundus photography, Scanning Laser Ophthalmoscopy (SLO), and Optical Coherence Tomography (OCT). Despite the high quality of the in vivo images, there has been a limited uptake of AO imaging into the clinical environment. The high resolution afforded by AO comes at the price of limited field of view and specialized equipment. The implementation of a typical adaptive optics imaging system results in a relatively large and complex optical setup. The wavefront measurement is commonly performed using a Hartmann-Shack Wavefront Sensor (HS-WFS) placed at an image plane that is optically conjugated to the eye's pupil. The deformable mirror is also placed at a conjugate plane, relaying the wavefront corrections to the pupil. Due to the sensitivity of the HS-WFS to back-reflections, the imaging system is commonly constructed from spherical mirrors. In this project, we present a novel adaptive optics OCT retinal imaging system with significant potential to overcome many of the barriers to integration with a clinical environment. We describe in detail the implementation of a compact lens based wavefront sensorless adaptive optics (WSAO) 1060nm swept source OCT human retinal imaging system with dual deformable lenses, and present retinal images acquired in vivo from research volunteers.

  6. On the joint source and channel coding of atomic image streams

    OpenAIRE

    Frossard, P.

    2004-01-01

    This paper presents an error resilient coding scheme for atomic image bitstreams, as generated by Matching Pursuit encoders. A joint source and channel coding algorithm is proposed, that takes benefit of both the flexibility in the image representation, and the progressive nature of the bitstream, in order to finely adapt the channel rate to the relative importance of the bitstream components. An optimization problem is proposed, and a fast search algorithm determines the best rate allocation...

  7. Spectral-Domain and Swept-Source OCT Imaging of Asteroid Hyalosis: A Case Report

    OpenAIRE

    Alasil, Tarek; Adhi, Mehreen; Jonathan J Liu; Fujimoto, James G.; Duker, Jay S.; Baumal, Caroline R.

    2014-01-01

    A 72-year-old man with diabetes was referred to the retina clinic for diabetic retinopathy. Detailed funduscopic examination of the left eye was limited by prominent asteroid hyalosis. Spectral-domain (SD) and swept-source (SS) optical coherence tomography (OCT) were utilized to examine the vitreous, vitreoretinal interface, and the morphology of the retina. Asteroid hyalosis induced artifacts of the OCT images, which resolved when the appropriate imaging protocols were applied. SS-OCT may sh...

  8. SPIM-fluid: open source light-sheet based platform for high-throughput imaging.

    Science.gov (United States)

    Gualda, Emilio J; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-11-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  9. Phase-Contrast Imaging of Nanostructures with Incoherent Femtosecond Laser Driven Soft X-Ray Source

    International Nuclear Information System (INIS)

    Application of polychromatic (1.5-15 nm) soft X-ray emission of a spatially large (>0.1 mm) bright femtosecond laser driven plasma source for propagation based phase contrast imaging of nanometer thick foils and biological samples is considered. Diffraction and phase contrast effects increased quality and contrast of the experimental images, registered by LiF crystal X-ray detector with submicron resolution.

  10. Spot size measurement of flash-radiography source utilizing the pinhole imaging method

    OpenAIRE

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jinming; Xie, Yutong; Liu, Yulong; Long, Quanhong

    2015-01-01

    The spot size of the x-ray source is a key parameter of a flash-radiography facility, which is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam is tuned by adjusting the curr...

  11. Installation of spectrally selective imaging system in RF negative ion source

    International Nuclear Information System (INIS)

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (Hα) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of Hα emission near the bias plate has been clearly observed. The same time trend on Hα intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed

  12. Visibility in differential phase-contrast imaging with partial coherence source

    Institute of Scientific and Technical Information of China (English)

    Liu Xin; Guo Jin-Chuan; Peng Xiang; Niu Han-Ben

    2007-01-01

    This paper gives theoretical analysis of visibility of fringes, which is influenced by distances, temporal and spatial coherence of source, in hard x-ray differential phase-contrast imaging with microfocus x-ray source. According to the character of longitudinal periodicity of the interferogram, the setup is insensitive to mechanical drift and vibrations. The effect of temporal coherence of x-ray source is investigated and its related bandwidth is derived. Based on the theory of partially coherent light, it shows that the requirement for the spatial coherence of x-ray source is not strict and can be met by the general microfocus x-ray tube for x-ray differential phase-contrast imaging.

  13. Quantification of bioluminescence images of point source objects using diffusion theory models

    International Nuclear Information System (INIS)

    A simple approach for estimating the location and power of a bioluminescent point source inside tissue is reported. The strategy consists of using a diffuse reflectance image at the emission wavelength to determine the optical properties of the tissue. Following this, bioluminescence images are modelled using a single point source and the optical properties from the reflectance image, and the depth and power are iteratively adjusted to find the best agreement with the experimental image. The forward models for light propagation are based on the diffusion approximation, with appropriate boundary conditions. The method was tested using Monte Carlo simulations, Intralipid tissue-simulating phantoms and ex vivo chicken muscle. Monte Carlo data showed that depth could be recovered within 6% for depth 4-12 mm, and the corresponding relative source power within 12%. In Intralipid, the depth could be estimated within 8% for depth 4-12 mm, and the relative source power, within 20%. For ex vivo tissue samples, source depths of 4.5 and 10 mm and their relative powers were correctly identified

  14. Change Detection with Multi-Source Defective Remote Sensing Images Based on Evidential Fusion

    Science.gov (United States)

    Chen, Xi; Li, Jing; Zhang, Yunfei; Tao, Liangliang

    2016-06-01

    Remote sensing images with clouds, shadows or stripes are usually considered as defective data which limit their application for change detection. This paper proposes a method to fuse a series of defective images as evidences for change detection. In the proposed method, post-classification comparison process is firstly performed on multi-source defective images. Then, the classification results of all the images, together with their corresponding confusion matrixes are used to calculate the Basic Belief Assignment (BBA) of each pixel. Further, based on the principle of Dempster-Shafer evidence theory, a BBA redistribution process is introduced to deal with the defective parts of multi-source data. At last, evidential fusion and decision making rules are applied on the pixel level, and the final map of change detection can be derived. The proposed method can finish change detection with data fusion and image completion in one integrated process, which makes use of the complementary and redundant information from the input images. The method is applied to a case study of landslide barrier lake formed in Aug. 3rd, 2014, with a series of multispectral images from different sensors of GF-1 satellite. Result shows that the proposed method can not only complete the defective parts of the input images, but also provide better change detection accuracy than post-classification comparison method with single pair of pre- and post-change images. Subsequent analysis indicates that high conflict degree between evidences is the main source of errors in the result. Finally, some possible reasons that result in evidence conflict on the pixel level are analysed.

  15. Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source

    International Nuclear Information System (INIS)

    A new approach to diffractive imaging using polychromatic diffraction data is described. The method is tested using simulated and experimental data and is shown to yield high-quality reconstructions. Diffraction data produced using a high-harmonic generation source are considered explicitly here. The formalism can be readily adapted, however, to any short-wavelength source producing a discrete spectrum and possessing sufficient spatial coherence.

  16. Shape from Two Images under Point Light Source Illumination and Perspective Projection

    OpenAIRE

    岩堀, 祐之||イワホリ, ユウジ||Iwahori, Yuji; 藤吉, 弘亘||フジヨシ, ヒロノブ||Fujiyoshi, Hironobu; 福井, 真二 ||フクイ, シンジ||Shinji, Fukui; 河中, 治樹||カワナカ, ハルキ||Kawanaka, Haruki

    2011-01-01

    This paper introduces one of the advanced researches of the research project 53-(b) in Information Science Research Institute, Chubu University. As a method to recover 3-D shape from shading images, Light Fall-off Stereo (LFS) has been proposed using the inverse square law for illuminance with point light source illumination. This paper extends the principle of light fall-off stereo and proposes a new approach under the assumption of both point light source illumination and perspective projec...

  17. Evidence of a novel source of random telegraph signal in CMOS image sensors

    OpenAIRE

    Goiffon, Vincent; Magnan, Pierre; Martin-Gonthier, Philippe; Virmontois, Cédric; Gaillardin, Marc

    2011-01-01

    This letter reports a new source of dark current random telegraph signal in CMOS image sensors due to meta-stable Shockley-Read-Hall generation mechanism at oxide interfaces. The role of oxide defects is discriminated thanks to the use of ionizing radiations. A dedicated RTS detection technique and several test conditions (radiation dose, temperature, integration time, photodiode bias) reveal the particularities of this novel source of RTS.

  18. Long exposure mixed-field imaging of a shielded neutron source

    International Nuclear Information System (INIS)

    The advent of real-time neutron - gamma-ray discrimination in liquid scintillators has allowed neutron and gamma-ray sources to be imaged simultaneously with a single detector. Exploiting the high penetration of fast-neutrons and their correlation with fissionable materials it may be possible to locate nuclear materials where a significant amount of moderating shielding is present using a passive, stand-off, long exposure imaging method. This scenario frequently presents itself in spent fuel ponds, or in nuclear accident situations such as the flooded BWRs at the Fukushima Daiichi site. Applications may also be relevant in medical imaging, and radiotherapy. The method described allows the independence of neutron imaging, and as a result could be successfully used to effect even in environments with high gamma-ray activity. The imaging system comprises a compact, lightweight probe containing a single, motor positioned, collimated detector; a radiation discrimination unit, data acquisition electronics and a laptop PC. The system is operated remotely and automatically accumulates data over several weeks in the case of this long exposure image. The location of radiation sources is determined from back-projection by an Algebraic Reconstruction Technique (ART) algorithm used in conjunction with the position of the collimator and the observed flux at each position. The imaging system was deployed to image a 252Cf source (1.0*107 neutrons per second) located in a central position of a 1 m3 water bath. On the exterior, the shielding is sufficient to reduce the dose rate to below 10 μSv/h. Image data was collected for a segment of a full image, the background radiation levels were also monitored during these measurements. Preliminary data suggest that a long exposure image, taken over several weeks, should be sufficient to image the neutron distribution inside the tank and determine the location of the Cf source, all of which will be presented in the full paper. This

  19. Achromatic approach to phase-based multi-modal imaging with conventional X-ray sources.

    Science.gov (United States)

    Endrizzi, Marco; Vittoria, Fabio A; Kallon, Gibril; Basta, Dario; Diemoz, Paul C; Vincenzi, Alessandro; Delogu, Pasquale; Bellazzini, Ronaldo; Olivo, Alessandro

    2015-06-15

    Compatibility with polychromatic radiation is an important requirement for an imaging system using conventional rotating anode X-ray sources. With a commercially available energy-resolving single-photon-counting detector we investigated how broadband radiation affects the performance of a multi-modal edge-illumination phase-contrast imaging system. The effect of X-ray energy on phase retrieval is presented, and the achromaticity of the method is experimentally demonstrated. Comparison with simulated measurements integrating over the energy spectrum shows that there is no significant loss of image quality due to the use of polychromatic radiation. This means that, to a good approximation, the imaging system exploits radiation in the same way at all energies typically used in hard-X-ray imaging. PMID:26193618

  20. Modelling of an imaging beamline at the ISIS pulsed neutron source

    International Nuclear Information System (INIS)

    A combined neutron imaging and neutron diffraction facility, IMAT, is currently being built at the pulsed neutron spallation source ISIS in the U.K. A supermirror neutron guide is required to combine imaging and diffraction modes at the sample position in order to obtain suitable time of flight resolutions for energy selective imaging and diffraction experiments. IMAT will make use of a straight neutron guide and we consider here the optimization of the supermirror guide dimensions and characterisation of the resulting beam characteristics, including the homogeneity of the flux distribution in space and energy and the average and peak neutron fluxes. These investigations take into account some main design criteria: to maximise the neutron flux, to minimise geometrical artefacts in the open beam image at the sample position and to obtain a good energy resolution whilst retaining a large neutron bandwidth. All of these are desirable beam characteristics for the proposed imaging and diffraction analysis modes of IMAT

  1. Exploratory studies on neutron radiography with a small neutron source using a nuclear scintillation imaging technique

    International Nuclear Information System (INIS)

    Neutron radiography based on mobile neutron sources need optimum utilization of available neutron fluxes which are usually lower compared to those available from reactors. For optimum utilization of such low flux devices, a sensitive neutron imaging technique is required. Such a neutron imaging system based on a Li6F-ZnS scintillator screen has been developed using a pair of image intensifier tubes and a charge coupled device. This detector system has been employed to study the feasibility of neutron radiography using low neutron fluences. The main feature of this imaging system is its ability to detect individual neutron scintillation events with a higher degree of spatial resolution. In order to test the efficiency of this imaging system, a small scale moderator-collimator assembly was designed using a Pu-Be neutron source of strength ∼2.107 n/s. Details of this imaging system and results of some exploratory experiments for low fluence neutron imaging are presented in this paper. (orig.)

  2. Factors affecting the repeatability of gamma camera calibration for quantitative imaging applications using a sealed source

    International Nuclear Information System (INIS)

    Several applications in nuclear medicine require absolute activity quantification of single photon emission computed tomography images. Obtaining a repeatable calibration factor that converts voxel values to activity units is essential for these applications. Because source preparation and measurement of the source activity using a radionuclide activity meter are potential sources of variability, this work investigated instrumentation and acquisition factors affecting repeatability using planar acquisition of sealed sources. The calibration factor was calculated for different acquisition and geometry conditions to evaluate the effect of the source size, lateral position of the source in the camera field-of-view (FOV), source-to-camera distance (SCD), and variability over time using sealed Ba-133 sources. A small region of interest (ROI) based on the source dimensions and collimator resolution was investigated to decrease the background effect. A statistical analysis with a mixed-effects model was used to evaluate quantitatively the effect of each variable on the global calibration factor variability. A variation of 1 cm in the measurement of the SCD from the assumed distance of 17 cm led to a variation of 1–2% in the calibration factor measurement using a small disc source (0.4 cm diameter) and less than 1% with a larger rod source (2.9 cm diameter). The lateral position of the source in the FOV and the variability over time had small impacts on calibration factor variability. The residual error component was well estimated by Poisson noise. Repeatability of better than 1% in a calibration factor measurement using a planar acquisition of a sealed source can be reasonably achieved. The best reproducibility was obtained with the largest source with a count rate much higher than the average background in the ROI, and when the SCD was positioned within 5 mm of the desired position. In this case, calibration source variability was limited by the quantum

  3. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources

    Science.gov (United States)

    Ignatyev, K.; Munro, P. R. T.; Chana, D.; Speller, R. D.; Olivo, A.

    2011-07-01

    This work analyzes the performance of the coded-aperture based x-ray phase contrast imaging approach, showing that it can be used at high x-ray energies with acceptable exposure times. Due to limitations in the used source, we show images acquired at tube voltages of up to 100 kVp, however, no intrinsic reason indicates that the method could not be extended to even higher energies. In particular, we show quantitative agreement between the contrast extracted from the experimental x-ray images and the theoretical one, determined by the behavior of the material's refractive index as a function of energy. This proves that all energies in the used spectrum contribute to the image formation, and also that there are no additional factors affecting image contrast as the x-ray energy is increased. We also discuss the method flexibility by displaying and analyzing the first set of images obtained while varying the relative displacement between coded-aperture sets, which leads to image variations to some extent similar to those observed when changing the crystal angle in analyzer-based imaging. Finally, we discuss the method's possible advantages in terms of simplification of the set-up, scalability, reduced exposure times, and complete achromaticity. We believe this would helpful in applications requiring the imaging of highly absorbing samples, e.g., material science and security inspection, and, in the way of example, we demonstrate a possible application in the latter.

  4. MULTI-SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine (SVM), using highspatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4. Firstly, the new method is established bybuilding a model of remote sensing image fusion based on SVM. Then by using SPIN-2 data and SPOT-4 data, image classification fusion is tested. Finally, an evaluation of the fusion result is made in two ways. 1 ) From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4. And it is clearly that the texture of thefused image is distinctive. 2) From quantitative analysis, the effect of classification fusion is better. As a whole, the result shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for application in remote sensing image fusion processes.

  5. MULTI—SOURCE REMOTE SENSING IMAGE FUSION BASED ON SUPPORT VECTOR MACHINE

    Institute of Scientific and Technical Information of China (English)

    ZHAOShu-he; FENGXue-zhi; 等

    2002-01-01

    Remote Sensing image fusion is an effective way to use the large volume of data from multi-source images.This paper introduces a new method of remote sensing image fusion based on support vector machine(SVM),using high spatial resolution data SPIN-2 and multi-spectral remote sensing data SPOT-4.Firstly,the new method is established by building a model of remote sensing image fusion based on SVM.Then by using SPIN-2 data and SPOT-4 data ,image classify-cation fusion in tested.Finally,and evaluation of the fusion result is made in two ways.1)From subjectivity assessment,the spatial resolution of the fused image is improved compared to the SPOT-4.And it is clearly that the texture of the fused image is distinctive.2)From quantitative analysis,the effect of classification fusion is better.As a whole ,the re-sult shows that the accuracy of image fusion based on SVM is high and the SVM algorithm can be recommended for applica-tion in remote sensing image fusion processes.

  6. On the variable color of the images of a single source in a gravitational mirage: consequences for the photometric redshift

    CERN Document Server

    Alard, C

    2010-01-01

    In gravitational lensing the average colors of the images are not identical to the average color of the source. The highly non-linear mapping of gravitational lensing does not preserve the color balance of the source, and this mapping is different for each image. The color distortion of the images is illustrated using HST images of the lens SL2SJ02140. It is shown that in this lens the color of the images is variable, reflecting the variable color of the source. The average color of the images in SL2SJ02140 are interpreted as a variable amplification of different sources regions with different colors. The variation of the average image colors affects the measurements of the photometric redshift of the images. This is especially true for SL2SJ02140 where the color variations due to the non-linear mapping of the lens simulates pseudo redshifts variations.

  7. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    OpenAIRE

    QUIET Collaboration; Huffenberger, K. M.; Araujo, D.; Bischoff, C; I. Buder; Y. Chinone; Cleary, K.; Kusaka, A.; Monsalve, R.; Næss, S. K.; Newburgh, L. B.; Reeves, R; Ruud, T. M.; Wehus, I. K.; Zwart, J.T.L.

    2014-01-01

    We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $\\sim$480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median...

  8. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    OpenAIRE

    Huffenberger, K. M.; Cleary, K.; Radford, S. J. E.; A. C. S. Readhead()

    2015-01-01

    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ~480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error ...

  9. A device for generating coded images, in particular radiographs, from a nuclear source

    International Nuclear Information System (INIS)

    The invention relates to a device for generating coded images. That devices comprises a plate with Fresnel zones, mounted between a source of nuclear radiation in a living-tissue and a position-detector adapted to move synchroneously with a screen provided with opaque stripes, placed at the detector outlet. This can be applied to medical exploration

  10. Description and validation of a combination of acoustical radiosity and the image source method

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Jeong, Cheol-Ho; Brunskog, Jonas;

    2014-01-01

    furthermore describes how a pressure impulse response is obtained from the energy based radios- ity model. Validation of the image source model with real-valued boundary conditions is done by comparison with the analytical Green’s function in an enclosure. The full model is compared with measurements done in...... a rectangular room with a highly absorbing ceilings...

  11. Imaging of an undulator source by phase circular Bragg-Fresnel lenses

    OpenAIRE

    Hartman, Ya.; Tarazona, E; Elleaume, P.; Snigireva, I.; Snigirev, A.

    1994-01-01

    Focusing properties and heatload resistance of a Bragg-Fresnel lens placed in an undulator beam have been demonstrated. The electron beam at an undulator source has been imaged by two setups using Bragg-Fresnel lenses. The first setup is a two-lenses telescope and the second one consists of one circular BFL and an asymmetrically cut crystal.

  12. Imaging of an undulator source by phase circular Bragg-Fresnel lenses

    International Nuclear Information System (INIS)

    Focusing properties and heatload resistance of a Bragg-Fresnel lens placed in an undulator beam have been demonstrated. The electron beam at an undulator source has been imaged by two setups using Bragg-Fresnel lenses. The first setup is a two-lenses telescope and the second one consists of one circular BFL and an asymmetrically cut crystal. (orig.)

  13. Integrating Data-Mining Support into a Brain-Image Database Using Open-Source Components

    International Nuclear Information System (INIS)

    Purpose: Previously, we described our implementation of a brain-image database (braid), based on the proprietary object-relational database-management system (ORDBMS). In conjunction with our collaborators, we have used this database to manage and analyze image and clinical data from what we call image-based clinical trials (IBCTs). Herein we describe the results of redesigning braid using open-source components, and integrating support for mining image and clinical data from braids user interface. Material and Methods: We re-designed and re-implemented BRAID using open-source components, including PostgreSQL, gcc, and PHP. We integrated data-mining algorithms into braid, based on PL/R, a PostgreSQL package to support efficient communication between R and PostgreSQL. Results: We present a sample clinical study to demonstrate how clinicians can perform queries for visualization, statistical analysis, and data mining, using a web-based interface. Conclusion: We have developed a database system with data-mining capabilities for managing, querying, analyzing and visualizing brain-MR images. We implemented this system using open-source components, with the express goal of wide dissemination throughout the neuroimaging research community. (authors)

  14. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ

    Science.gov (United States)

    Müller, Marcel; Mönkemöller, Viola; Hennig, Simon; Hübner, Wolfgang; Huser, Thomas

    2016-03-01

    Super-resolved structured illumination microscopy (SR-SIM) is an important tool for fluorescence microscopy. SR-SIM microscopes perform multiple image acquisitions with varying illumination patterns, and reconstruct them to a super-resolved image. In its most frequent, linear implementation, SR-SIM doubles the spatial resolution. The reconstruction is performed numerically on the acquired wide-field image data, and thus relies on a software implementation of specific SR-SIM image reconstruction algorithms. We present fairSIM, an easy-to-use plugin that provides SR-SIM reconstructions for a wide range of SR-SIM platforms directly within ImageJ. For research groups developing their own implementations of super-resolution structured illumination microscopy, fairSIM takes away the hurdle of generating yet another implementation of the reconstruction algorithm. For users of commercial microscopes, it offers an additional, in-depth analysis option for their data independent of specific operating systems. As a modular, open-source solution, fairSIM can easily be adapted, automated and extended as the field of SR-SIM progresses.

  15. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    Science.gov (United States)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  16. Imaging an Event Horizon: Mitigation of Source Variability of Sagittarius A*

    CERN Document Server

    Lu, Ru-Sen; Fish, Vincent L; Shiokawa, Hotaka; Doeleman, Sheperd S; Gammie, Charles F; Falcke, Heino; Krichbaum, Thomas P; Zensus, J Anton

    2015-01-01

    The black hole in the center of the Galaxy, associated with the compact source Sagittarius A* (Sgr A*), is predicted to cast a shadow upon the emission of the surrounding plasma flow, which encodes the influence of general relativity in the strong-field regime. The Event Horizon Telescope (EHT) is a Very Long Baseline Interferometry (VLBI) network with a goal of imaging nearby supermassive black holes (in particular Sgr A* and M87) with angular resolution sufficient to observe strong gravity effects near the event horizon. General relativistic magnetohydrodynamic (GRMHD) simulations show that radio emission from Sgr A* exhibits vari- ability on timescales of minutes, much shorter than the duration of a typical VLBI imaging experiment, which usually takes several hours. A changing source structure during the observations, however, violates one of the basic assumptions needed for aperture synthesis in radio interferometry imaging to work. By simulating realistic EHT observations of a model movie of Sgr A*, we d...

  17. Source-Search Sensitivity of a Large-Area, Coded-Aperture, Gamma-Ray Imager

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, K P; Collins, J W; Craig, W W; Fabris, L; Lanza, R C; Gallagher, S; Horn, B P; Madden, N W; Smith, E; Woodring, M L

    2004-10-27

    We have recently completed a large-area, coded-aperture, gamma-ray imager for use in searching for radiation sources. The instrument was constructed to verify that weak point sources can be detected at considerable distances if one uses imaging to overcome fluctuations in the natural background. The instrument uses a rank-19, one-dimensional coded aperture to cast shadow patterns onto a 0.57 m{sup 2} NaI(Tl) detector composed of 57 individual cubes each 10 cm on a side. These are arranged in a 19 x 3 array. The mask is composed of four-centimeter thick, one-meter high, 10-cm wide lead blocks. The instrument is mounted in the back of a small truck from which images are obtained as one drives through a region. Results of first measurements obtained with the system are presented.

  18. 23 kHz MEMS based swept source for optical coherence tomography imaging.

    Science.gov (United States)

    Vuong, Barry; Sun, Cuiru; Harduar, Mark K; Mariampillai, Adrian; Isamoto, Keiji; Chong, Changho; Standish, Beau A; Yang, Victor X D

    2011-01-01

    The transition from benchtop to clinical system often requires the medical technology to be robust, portable and accurate. This poses a challenge to current swept source optical coherence tomography imaging systems, as the bulk of the systems footprint is due to laser components. With the recent advancement of micromachining technology, we demonstrate the characterization of a microelectromechanical system (MEMS) swept source laser for optical coherence tomography imaging (OCT). This laser utilizes a 2 degree of freedom MEMS scanning mirror and a diffraction grating, which are arranged in a Littrow configuration. This resulted in a swept source laser that was capable of scanning at 23.165 kHz (bidirectional) or 11.582 kHz (unidirectional). The free spectral range of the laser was ≈ 100 nm with a central wavelength of ≈ 1330 nm. The 6 dB roll off depth was measured to be at 2.5 mm. Furthermore, the structural morphology of a human finger and tadpole (Xenopus laevis) were evaluated. The overall volumetric footprint of the laser source was measured to be 70 times less than non-MEMS swept sources. Continued work on the miniaturization of OCT system is on going. It is hypothesized that the overall laser size can be reduced for suitable OCT imaging for a point of care application. PMID:22255739

  19. Spitzer MIPS 24 and 70 micron Imaging near the South Ecliptic Pole: Maps and Source Catalogs

    CERN Document Server

    Scott, Kimberly S; Braglia, Filiberto G; Borys, Colin; Chapin, Edward L; Devlin, Mark J; Marsden, Gaelen; Scott, Douglas; Truch, Matthew D P; Valiante, Elisabetta; Viero, Marco P

    2010-01-01

    We have imaged an 11.5 sq. deg. region of sky towards the South Ecliptic Pole (RA = 04h43m, Dec = -53d40m, J2000) at 24 and 70 microns with MIPS, the Multiband Imaging Photometer for Spitzer. This region is coincident with a field mapped at longer wavelengths by the Balloon-borne Large Aperture Submillimeter Telescope. We discuss our data reduction and source extraction procedures. The median depths of the maps are 47 microJy/beam at 24 micron and 4.3 mJy/beam at 70 micron. At 24 micron, we identify 93098 point sources with signal-to-noise ratio (SNR) >5, and an additional 63 resolved galaxies; at 70 micron, we identify 891 point sources with SNR >6. From simulations, we determine a false detection rate of 1.8% (1.1%) for the 24 micron (70 micron) catalog. The 24 and 70 micron point-source catalogs are 80% complete at 230 microJy and 11 mJy, respectively. These mosaic images and source catalogs will be available to the public through the NASA/IPAC Infrared Science Archive.

  20. 20cm VLA radio-continuum study of M31: Images and point source catalogues

    Directory of Open Access Journals (Sweden)

    Galvin T.J.

    2012-01-01

    Full Text Available We present a series of new high-sensitivity and high-resolution radio-continuum images of M31 at λ=20 cm (ν=1.4 GHz. These new images were produced by merging archived 20 cm radio-continuum observations from the Very Large Array (VLA telescope. Images presented here are sensitive to rms=60 μJy and feature high angular resolution (<10’’. A complete sample of discrete radio sources have been catalogued and analyzed across 17 individual VLA projects. We identified a total of 864 unique discrete radio sources across the field of M31. One of the most prominent regions in M31 is the ring feature for which we estimated total integrated flux of 706 mJy at λ=20 cm. We compare here detected sources to those listed in Gelfand et al. (2004 at λ=92 cm and find 118 sources in common to both surveys. The majority (61% of these sources exhibit a spectral index of α <-0.6 indicating that their emission is predominantly non-thermal in nature, that is more typical for background objects.

  1. Imaging the anterior eye with dynamic-focus swept-source optical coherence tomography

    Science.gov (United States)

    Su, Johnny P.; Li, Yan; Tang, Maolong; Liu, Liang; Pechauer, Alex D.; Huang, David; Liu, Gangjun

    2015-12-01

    A custom-built dynamic-focus swept-source optical coherence tomography (SS-OCT) system with a central wavelength of 1310 nm was used to image the anterior eye from the cornea to the lens. An electrically tunable lens was utilized to dynamically control the positions of focusing planes over the imaging range of 10 mm. The B-scan images were acquired consecutively at the same position but with different focus settings. The B-scan images were then registered and averaged after filtering the out-of-focus regions using a Gaussian window. By fusing images obtained at different depth focus locations, high-resolution and high signal-strength images were obtained over the entire imaging depth. In vivo imaging of human anterior segment was demonstrated. The performance of the system was compared with two commercial OCT systems. The human eye ciliary body was better visualized with the dynamic-focusing SS-OCT system than using the commercial 840 and 1310 nm OCT systems. The sulcus-to-sulcus distance was measured, and the result agreed with that acquired with ultrasound biomicroscopy.

  2. Application of synchrotron source based DEI method in guinea pig cochleae imaging

    Institute of Scientific and Technical Information of China (English)

    YIN Hongxia; LIU Bo; GAO Xin; GAO Xiulai; LUO Shuqian

    2007-01-01

    Hard X-ray diffraction enhanced imaging (DEI), which is based on a synchrotron source and monochromator-analyzercrystal system, is an effective method for imaging X-ray phase shift. Utilizing an analyzer crystal with high angular sensitivity of micro-radian, DEI can measure the transmitted, refracted and scattered X-rays when projecting onto a sample. It dramatically improves the contrast and spatial resolution of the resultant images. At the topography station of Beijing Synchrotron Radiation Facilities (BSRF), we implemented DEI method in guinea pig cochleae imaging and acquired a series of DEI images. Based on these images, the apparent absorption and refraction images were calculated. The DEI images revealed the holistic spiral structures and inner details of guinea pig cochleae clearly, even including the structures at the cellular level, such as the static cilia of hairy cells and the limbus of Hansen cell. Due to the advanrages of high contrast, high spatial resolution and distinct edge-enhanced effect, DEI method promises extensive applications in biology,medicine and clinic in the near future.

  3. Novel multi-beam X-ray source for vacuum electronics enabled medical imaging applications

    Science.gov (United States)

    Neculaes, V. Bogdan

    2013-10-01

    For almost 100 of years, commercial medical X-ray applications have relied heavily on X-ray tube architectures based on the vacuum electronics design developed by William Coolidge at the beginning of the twentieth century. Typically, the Coolidge design employs one hot tungsten filament as the electron source; the output of the tube is one X-ray beam. This X-ray source architecture is the state of the art in today's commercial medical imaging applications, such as Computed Tomography. Recently, GE Global Research has demonstrated the most dramatic extension of the Coolidge vacuum tube design for Computed Tomography (CT) in almost a century: a multi-beam X-ray source containing thirty two cathodes emitting up to 1000 mA, in a cathode grounded - anode at potential architecture (anode up to 140 kV). This talk will present the challenges of the X-ray multi-beam vacuum source design - space charge electron gun design, beam focusing to compression ratios needed in CT medical imaging applications (image resolution is critically dependent on how well the electron beam is focused in vacuum X-ray tubes), electron emitter choice to fit the aggressive beam current requirements, novel electronics for beam control and focusing, high voltage and vacuum solutions, as well as vacuum chamber design to sustain the considerable G forces typically encountered on a CT gantry (an X-ray vacuum tube typically rotates on the CT gantry at less than 0.5 s per revolution). Consideration will be given to various electron emitter technologies available for this application - tungsten emitters, dispenser cathodes and carbon nano tubes (CNT) - and their tradeoffs. The medical benefits potentially enabled by this unique vacuum multi-beam X-ray source are: X-ray dose reduction, reduction of image artifacts and improved image resolution. This work was funded in part by NIH grant R01EB006837.

  4. Achieving accurate radiochromic optical-CT imaging when using a polychromatic light source

    International Nuclear Information System (INIS)

    Optical-CT performed with a broad spectrum light source can lead to inaccurate reconstructed attenuation coefficients (and hence dose) due to 'spectral warping' as the beam passes through the dosimeter. Some wavelengths will be attenuated more strongly than others depending on the absorption spectrum of the radiochromic dosimeter. A simulation was run to characterize the error introduced by the spectrum warping phenomena. Simulations of a typical dosimeter and delivered dose (6cm diameter, 2 Gy irradiation) showed reconstructed attenuation coefficients can be in error by >12% when compared to those obtained from a monochromatic scan. A method to correct for these errors is presented and preliminary data suggests that with the correction, polychromatic imaging can yield imaging results equal in accuracy to those of monochromatic imaging. The advantage is that polychromatic imaging may be less sensitive to prominent schlerring artefacts that are often observed in telecentric optical-CT scanning systems with tight bandwidth filters applied.

  5. Image Processing on Geological Data in Vector Format and Multi-Source Spatial Data Fusion

    Institute of Scientific and Technical Information of China (English)

    Liu Xing; Hu Guangdao; Qiu Yubao

    2003-01-01

    The geological data are constructed in vector format in geographical information system(GIS) while other data such as remote sensing images, geographical data and geochemical data are saved in raster ones. This paper converts the vector data into 8 bit images according to their importance to mineralization each by programming. We can communicate the geological meaning with the raster images by this method. The paper also fuses geographical data and geochemical data with the programmed strata data. The result shows that image fusion can express different intensities effectively and visualize the structure characters in 2 dimensions. Furthermore, it also can produce optimized information from multi-source data and express them more directly.

  6. EpiTools: An Open-Source Image Analysis Toolkit for Quantifying Epithelial Growth Dynamics

    Science.gov (United States)

    Heller, Davide; Hoppe, Andreas; Restrepo, Simon; Gatti, Lorenzo; Tournier, Alexander L.; Tapon, Nicolas; Basler, Konrad; Mao, Yanlan

    2016-01-01

    Summary Epithelia grow and undergo extensive rearrangements to achieve their final size and shape. Imaging the dynamics of tissue growth and morphogenesis is now possible with advances in time-lapse microscopy, but a true understanding of their complexities is limited by automated image analysis tools to extract quantitative data. To overcome such limitations, we have designed a new open-source image analysis toolkit called EpiTools. It provides user-friendly graphical user interfaces for accurately segmenting and tracking the contours of cell membrane signals obtained from 4D confocal imaging. It is designed for a broad audience, especially biologists with no computer-science background. Quantitative data extraction is integrated into a larger bioimaging platform, Icy, to increase the visibility and usability of our tools. We demonstrate the usefulness of EpiTools by analyzing Drosophila wing imaginal disc growth, revealing previously overlooked properties of this dynamic tissue, such as the patterns of cellular rearrangements. PMID:26766446

  7. A Novel Light Source Design for Spectral Tuning in Biomedical Imaging

    CERN Document Server

    Basu, Chandrajit; Meinhardt-Wollweber, Merve; Roth, Bernhard

    2014-01-01

    We propose a novel architecture with a remote phosphor based modular and compact light source in a non-contact dermoscope prototype for skin cancer screening. The spectrum and color temperature of the output light can easily and significantly be changed depending on spectral absorption characteristics of the tissues being imaged. The new system has several advantages compared to state-of-the-art phosphor converted ultra-bright white LEDs, used in a wide range of medical imaging devices, which have a fixed spectrum and color temperature at a given operating point. In particular, the system can more easily be adapted to the requirements originating from different tissues in the human body which have wavelength dependent absorption and reflectivity. This leads to improved contrast for different kinds of imaged tissue components. The concept of such a lighting architecture can be vastly utilized in many other medical imaging devices including endoscopic systems.

  8. A tunable continuous wave (CW) and short-pulse optical source for THz brain imaging applications

    International Nuclear Information System (INIS)

    We demonstrate recent advances toward the development of a novel 2D THz imaging system for brain imaging applications both at the macroscopic and at the bimolecular level. A frequency-synthesized THz source based on difference frequency generation between optical wavelengths is presented, utilizing supercontinuum generation in a highly nonlinear optical fiber with subsequent spectral carving by means of a fiber Fabry–Perot filter. Experimental results confirm the successful generation of THz radiation in the range of 0.2–2 THz, verifying the enhanced frequency tunability properties of the proposed system. Finally, the roadmap toward capturing functional brain information by exploiting THz imaging technologies is discussed, outlining the unique advantages offered by THz frequencies and their complementarity with existing brain imaging techniques

  9. On System-Dependent Sources of Uncertainty and Bias in Ultrasonic Quantitative Shear-Wave Imaging.

    Science.gov (United States)

    Deng, Yufeng; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2016-03-01

    Ultrasonic quantitative shear-wave imaging methods have been developed over the last decade to estimate tissue elasticity by measuring the speed of propagating shear waves following acoustic radiation force excitation. This work discusses eight sources of uncertainty and bias arising from ultrasound system-dependent parameters in ultrasound shear-wave speed (SWS) measurements. Each of the eight sources of error is discussed in the context of a linear, isotropic, elastic, homogeneous medium, combining previously reported analyses with Field II simulations, full-wave 2-D acoustic propagation simulations, and experimental studies. Errors arising from both spatial and temporal sources lead to errors in SWS measurements. Arrival time estimation noise, speckle bias, hardware fluctuations, and phase aberration cause uncertainties (variance) in SWS measurements, while pulse repetition frequency (PRF) and beamforming errors, as well as coupling medium sound speed mismatch, cause biases in SWS measurements (accuracy errors). Calibration of the sources of bias is an important step in the development of shear-wave imaging systems. In a well-calibrated system, where the sources of bias are minimized, and averaging over a region of interest (ROI) is employed to reduce the sources of uncertainty, an SWS error can be expected. PMID:26886980

  10. Under-sampling in PET scanners as a source of image blurring

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, C.J. [Montreal Neurological Institute and Medical Physics Unit, McGill University, Montreal, PQ (Canada)]. E-mail: christopher.thompson@mcgill.ca; James, S.St. [Montreal Neurological Institute and Medical Physics Unit, McGill University, Montreal, PQ (Canada); Tomic, N. [Montreal Neurological Institute and Medical Physics Unit, McGill University, Montreal, PQ (Canada)

    2005-06-11

    The spatial resolution of PET scanners is degraded by a number of causes, both fundamental to the nature of positron decay, and to detectors. The crystal dimensions, their placement in the block and readout all contribute to the loss of resolution. We investigated the relative effects of sampling of the image space by the detectors, and the use of block detectors in a whole body PET scanner on resolution degradation. Three sources were mounted on a linear translation stage which moved them trans-axially through the central field of a Siemens CTI HR+ PET scanner. A 140 frame study was acquired as the sources moved horizontally 0.5mm between frames. The vertical projection from each frame was summed over all slices. The FWHM of each source's representation was estimated in each frame in the summed projections. The response functions were much sharper from crystals at the edge of the detector blocks, than from those from the central crystals. They were consistent with the effects of source size, non-collinearity, and crystal dimensions. The response from the central crystals were degraded by an additional term of 1.2mm added in quadrature to the other blurring effects. The intensity of the image of a small source depended on the source location, as did the FWHM of the response of the central crystals in the block detectors. The response functions of edge crystals were found to be sharper than those of the central crystals in the block detectors. However, a more interesting finding is that when very small sources are imaged in PET scanners their apparent intensity and their associated response functions depend on their location along any projection. This under-sampling results in resolution loss equivalent to about 12 of the crystal width.

  11. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  12. Ultrahigh resolution optical coherence tomography imaging of lung structure using Gaussian shaped super continuum sources

    Science.gov (United States)

    Nishizawa, N.; Ishida, S.; Ohta, T.; Itoh, K.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.

    2011-03-01

    Optical coherence tomography (OCT) is an emerging technology for non-invasive cross-sectional imaging of biological tissue and material with um resolution. In the field of pulmonary medicine, non-invasive high resolution cross-sectional imaging is desired for investigation of diseases in lung. So far, a few works have been reported about OCT imaging of lung. Since the lung consists of alveoli separated by thin wall, ultrahigh resolution (UHR) OCT is supposed to be effective for the imaging of fine structure in lung tissue. In this work, ex vivo cross-sectional imaging of isolated rat and hamster lungs was demonstrated using UHR-OCT. A 120 nm-wide, high-power, Gaussian-like supercontinuum (SC) was generated at wavelength of 0.8 um region. The generated SC was used in a time-domain OCT system, and UHR-OCT imaging was demonstrated. An ultrahigh resolution of 2.9 um in air and 2.1 um in tissue was obtained. The achieved sensitivity was 105 dB. Using this system, ex vivo UHR-OCT imaging of isolated rat and hamster lungs was demonstrated for the first time. The structures of the trachea, visceral pleura, and alveoli were observed clearly. When saline was instilled into the lung, the penetration depth was improved, and clear images of the fine structure of the lung, including alveoli, were observed owing to the index matching effect. We have also demonstrated the UHR-OCT imaging of lung tissue using 1.3 um and 1.7 um SC sources. As the results, owing to the precise structures of lung tissues and index matching by saline, the finest images were observed with 0.8 um UHR-OCT system.

  13. Observation of image pair creation and annihilation from superluminal scattering sources

    Science.gov (United States)

    Clerici, Matteo; Spalding, Gabriel C.; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M.; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-01-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena.

  14. 28 MHz swept source at 1.0 μm for ultrafast quantitative phase imaging.

    Science.gov (United States)

    Wei, Xiaoming; Lau, Andy K S; Xu, Yiqing; Tsia, Kevin K; Wong, Kenneth K Y

    2015-10-01

    Emerging high-throughput optical imaging modalities, in particular those providing phase information, necessitate a demanding speed regime (e.g. megahertz sweep rate) for those conventional swept sources; while an effective solution is yet to be demonstrated. We demonstrate a stable breathing laser as inertia-free swept source (BLISS) operating at a wavelength sweep rate of 28 MHz, particularly for the ultrafast interferometric imaging modality at 1.0 μm. Leveraging a tunable dispersion compensation element inside the laser cavity, the wavelength sweep range of BLISS can be tuned from ~10 nm to ~63 nm. It exhibits a good intensity stability, which is quantified by the ratio of standard deviation to the mean of the pulse intensity, i.e. 1.6%. Its excellent wavelength repeatability, <0.05% per sweep, enables the single-shot imaging at an ultrafast line-scan rate without averaging. To showcase its potential applications, it is applied to the ultrafast (28-MHz line-scan rate) interferometric time-stretch (iTS) microscope to provide quantitative morphological information on a biological specimen at a lateral resolution of 1.2 μm. This fiber-based inertia-free swept source is demonstrated to be robust and broadband, and can be applied to other established imaging modalities, such as optical coherence tomography (OCT), of which an axial resolution better than 12 μm can be achieved. PMID:26504636

  15. Observation of image pair creation and annihilation from superluminal scattering sources.

    Science.gov (United States)

    Clerici, Matteo; Spalding, Gabriel C; Warburton, Ryan; Lyons, Ashley; Aniculaesei, Constantin; Richards, Joseph M; Leach, Jonathan; Henderson, Robert; Faccio, Daniele

    2016-04-01

    The invariance of the speed of light is one of the foundational pillars of our current understanding of the universe. It implies a series of consequences related to our perception of simultaneity and, ultimately, of time itself. Whereas these consequences are experimentally well studied in the case of subluminal motion, the kinematics of superluminal motion lack direct evidence or even a clear experimental approach. We investigate kinematic effects associated with the superluminal motion of a light source. By using high-temporal-resolution imaging techniques, we directly demonstrate that if the source approaches an observer at superluminal speeds, the temporal ordering of events is inverted and its image appears to propagate backward. Moreover, for a source changing its speed and crossing the interface between subluminal and superluminal propagation regions, we observe image pair annihilation and creation, depending on the crossing direction. These results are very general and show that, regardless of the emitter speed, it is not possible to unambiguously determine the kinematics of an event from imaging and time-resolved measurements alone. This has implications not only for light, but also, for example, for sound and other wave phenomena. PMID:27152347

  16. Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings

    Science.gov (United States)

    Kim, Jongyul; Lee, Kye Hong; Lim, Chang Hwy; Kim, Taejoo; Ahn, Chi Won; Cho, Gyuseong; Lee, Seung Wook

    2013-06-01

    The fabrication of gratings including metal deposition processes for highly neutron absorbing lines is a critical issue to achieve a good visibility of the grating-based phase imaging system. The source grating for a neutron Talbot-Lau interferometer is an array of Gadolinium (Gd) structures that are generally made by sputtering, photo-lithography, and chemical wet etching. However, it is very challenging to fabricate a Gd structure with sufficient neutron attenuation of approximately more than 20 μm using a conventional metal deposition method because of the slow Gd deposition rate, film stress, high material cost, and so on. In this article, we fabricated the source gratings for neutron Talbot-Lau interferometers by filling the silicon structure with Gadox particles. The new fabrication method allowed us a very stable and efficient way to achieve a much higher Gadox filled structure than a Gd film structure, and is even more suitable for thermal polychromatic neutrons, which are more difficult to stop than cold neutrons. The newly fabricated source gratings were tested at the polychromatic thermal neutron grating interferometer system of HANARO at the Korea Atomic Energy Research Institute, and the visibilities and images from the neutron phase imaging system with the new source gratings were compared with those fabricated by a Gd deposition method.

  17. Fabrication and characterization of the source grating for visibility improvement of neutron phase imaging with gratings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongyul [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Kye Hong; Lim, Chang Hwy; Kim, Taejoo [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Ahn, Chi Won [Nano Fusion Technology Division, National Nanofab Center, Daejeon 305-701 (Korea, Republic of); Cho, Gyuseong [Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Lee, Seung Wook [School of Mechanical Engineering, Pusan National University, Pusan 609-735 (Korea, Republic of)

    2013-06-15

    The fabrication of gratings including metal deposition processes for highly neutron absorbing lines is a critical issue to achieve a good visibility of the grating-based phase imaging system. The source grating for a neutron Talbot-Lau interferometer is an array of Gadolinium (Gd) structures that are generally made by sputtering, photo-lithography, and chemical wet etching. However, it is very challenging to fabricate a Gd structure with sufficient neutron attenuation of approximately more than 20 {mu}m using a conventional metal deposition method because of the slow Gd deposition rate, film stress, high material cost, and so on. In this article, we fabricated the source gratings for neutron Talbot-Lau interferometers by filling the silicon structure with Gadox particles. The new fabrication method allowed us a very stable and efficient way to achieve a much higher Gadox filled structure than a Gd film structure, and is even more suitable for thermal polychromatic neutrons, which are more difficult to stop than cold neutrons. The newly fabricated source gratings were tested at the polychromatic thermal neutron grating interferometer system of HANARO at the Korea Atomic Energy Research Institute, and the visibilities and images from the neutron phase imaging system with the new source gratings were compared with those fabricated by a Gd deposition method.

  18. Development of a remote defect imaging system with the scanning laser source technique

    International Nuclear Information System (INIS)

    Laser ultrasonics have been studying for many years as a promising technique for evaluating industrial materials. The non-contact technique, however, still have some problems in practical use for large structures such as pipes, tanks, bridges, etc. Authors have adopted the scanning laser source technique for imaging defects in a plate-like structure to solve one of the problems that elastic wave cannot be measured stably with laser interferometry due to the unstable detection of scattering light at rough and inclined surfaces of existing structures. In this study, a remote experimental system of the defect imaging technique with the scanning laser source, which does not require cables between receiving transducers and experimental equipments, was developed. In the experimental system, laser emission signal detected by a photo-detector was used as trigger signal that requires quick response for accurate measurements. The other data that does not require such quick responses were transferred with local area network (LAN) communications. Using the remote defect imaging system, we confirmed that defect images can be obtained clearly as the conventional cablewired experimental system was used. Moreover, we obtained defect images at the distances of 2.6 m and 7.6 m between the plate specimen and laser equipment. (author)

  19. A scanning point source for quality control of FOV uniformity in GC-PET imaging

    International Nuclear Information System (INIS)

    Aim: PET imaging with coincidence cameras (GC-PET) requires additional quality control procedures to check the function of coincidence circuitry and detector zoning. In particular, the uniformity response over the field of view needs special attention since it is known that coincidence counting mode may suffer from non-uniformity effects not present in single photon mode. Materials and methods: An inexpensive linear scanner with a stepper motor and a digital interface to a PC with software allowing versatile scanning modes was developed. The scanner is used with a source holder containing a Sodium-22 point source. While moving the source along the axis of rotation of the GC-PET system, a tomographic acquisition takes place. The scan covers the full axial field of view of the 2-D or 3-D scatter frame. Depending on the acquisition software, point source scanning takes place continuously while only one projection is acquired or is done in step-and-shoot mode with the number of positions equal to the number of gantry steps. Special software was developed to analyse the resulting list mode acquisition files and to produce an image of the recorded coincidence events of each head. Results: Uniformity images of coincidence events were obtained after further correction for systematic sensitivity variations caused by acquisition geometry. The resulting images are analysed visually and by calculating NEMA uniformity indices as for a planar flood field. The method has been applied successfully to two different brands of GC-PET capable gamma cameras. Conclusion: Uniformity of GC-PET can be tested quickly and accurately with a routine QC procedure, using a Sodium-22 scanning point source and an inexpensive mechanical scanning device. The method can be used for both 2-D and 3-D acquisition modes and fills an important gap in the quality control system for GC-PET

  20. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  1. A MST algorithm for source detection in gamma-ray images

    CERN Document Server

    Campana, Riccardo; Gasparrini, Dario; Cutini, Sara; Tramacere, Andrea

    2007-01-01

    We developed a source detection algorithm based on the Minimal Spanning Tree (MST), that is a graph-theoretical method useful for finding clusters in a given set of points. This algorithm is applied to gamma-ray bidimensional images where the points correspond to the arrival direction of photons, and the possible sources are associated with the regions where they clusterize. Some filters to select these clusters and to reduce the spurious detections are introduced. An empirical study of the statistical properties of MST on random fields is carried in order to derive some criteria to estimate the best filter values. We introduce also two parameters useful to verify the goodness of candidate sources. To show how the MST algorithm works in the practice, we present an application to an EGRET observation of the Virgo field, at high galactic latitude and with a low and rather uniform background, in which several sources are detected.

  2. Monte Carlo modeling of neutron imaging at the SINQ spallation source

    International Nuclear Information System (INIS)

    Modeling of the Swiss Spallation Neutron Source (SINQ) has been used to demonstrate the neutron radiography capability of the newly released MPI-version of the MCNPX Monte Carlo code. A detailed MCNPX model was developed of SINQ and its associated neutron transmission radiography (NEUTRA) facility. Preliminary validation of the model was performed by comparing the calculated and measured neutron fluxes in the NEUTRA beam line, and a simulated radiography image was generated for a sample consisting of steel tubes containing different materials. This paper describes the SINQ facility, provides details of the MCNPX model, and presents preliminary results of the neutron imaging. (authors)

  3. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    International Nuclear Information System (INIS)

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  4. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    Science.gov (United States)

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  5. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter

  6. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien, E-mail: sboutet@slac.stanford.edu [Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2015-04-15

    Description of the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source. Recent scientific highlights illustrate the femtosecond crystallography, high power density and extreme matter capabilities of the CXI instrument. The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter.

  7. Cancellation technique of external noise inside a magnetically shielded room used for biomagnetic measurements

    Science.gov (United States)

    Kandori, Akihiko; Miyashita, Tsuyoshi; Tsukada, Keiji

    2000-05-01

    First-order gradiometers inside a magnetically shielded room (MSR) were used to cancel magnetic-field noise. However, the magnetic field inside a MSR is distorted when the amount of external noise is large. This distortion is caused by the low-pass filter property of the MSR. Therefore, the time constants of the frequency-dependent attenuation of the MSR vary spatially and this variation must be taken into account. To investigate noise cancellation, we used a multichannel superconducting quantum interference device consisting of four gradiometers measuring a source signal and two gradiometers as a reference. To compensate for the different magnitudes of the gradiometer wave forms, which differed because of slight differences in their pickup-coil cancel rates, we calculated a fitting parameter. The noise-cancellation method consisted of two processes: reduction of ambient noise caused by the differences in the cancel rate of the gradiometers and a gradient magnetic field inside the MSR, and cancellation of wave-form distortion caused by the spatial variation of the time constants inside the MSR. This cancellation method provides additional attenuation of over 20-30 dB in addition to the balance (>46 dB) of a first-order gradiometer. However, the remaining noise, especially a spike (<2 pT) at the beginning of a large ambient noise step, could not be completely canceled. This noise was caused by the slight difference between the time constants at the reference sensor position and at the signal sensor position. Except for this noise spike, however, the noise cancellation enabled clear magnetocardiogram wave forms to be measured without being affected by strong external noise.

  8. Imaging of Scattered Wavefields in Passive and Controlled-source Seismology

    KAUST Repository

    AlTheyab, Abdullah

    2015-12-01

    Seismic waves are used to study the Earth, exploit its hydrocarbon resources, and understand its hazards. Extracting information from seismic waves about the Earth’s subsurface, however, is becoming more challenging as our questions become more complex and our demands for higher resolution increase. This dissertation introduces two new methods that use scattered waves for improving the resolution of subsurface images: natural migration of passive seismic data and convergent full-waveform inversion. In the first part of this dissertation, I describe a method where the recorded seismic data are used to image subsurface heterogeneities like fault planes. This method, denoted as natural migration of backscattered surface waves, provides higher resolution images for near-surface faults that is complementary to surface-wave tomography images. Our proposed method differ from contemporary methods in that it does not (1) require a velocity model of the earth, (2) assumes weak scattering, or (3) have a high computational cost. This method is applied to ambient noise recorded by the US-Array to map regional faults across the American continent. Natural migration can be formulated as a least-squares inversion to furtherer enhance the resolution and the quality of the fault images. This inversion is applied to ambient noise recorded in Long Beach, California to reveal a matrix of shallow subsurface faults. The second part of this dissertation describes a convergent full waveform inversion method for controlled source data. A controlled source excites waves that scatter from subsurface reflectors. The scattered waves are recorded by a large array of geophones. These recorded waves can be inverted for a high-resolution image of the subsurface by FWI, which is typically convergent for transmitted arrivals but often does not converge for deep reflected events. I propose a preconditioning approach that extends the ability of FWI to image deep parts of the velocity model, which

  9. Ultrahigh resolution optical coherence tomography imaging of diseased rat lung using Gaussian shaped super continuum sources

    Science.gov (United States)

    Nishizawa, N.; Ishida, S.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.

    2012-02-01

    We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) imaging of lung tissues using fiber super continuum sources. The high power, low-noise, Gaussian shaped supercontinuum generated with ultrashort pulses and optical fibers at several wavelengths were used as the broadband light sources for UHR-OCT. For the 800 nm wavelength region, the axial resolution was 3.0 um in air and 2.0 um in tissue. Since the lung consists of tiny alveoli which are separated by thin wall, the UHR-OCT is supposed to be effective for lung imaging. The clear images of alveoli of rat were observed with and without index matching effects by saline. In this work, we investigated the UHR-OCT imaging of lung disease model. The lipopolysaccharide (LPS) induced acute lung injury / acute respiratory distress syndrome (ALI/ARDS) model of rat was prepared as the sample with disease and the UHR-OCT imaging of the disease part was demonstrated. The increment of signal intensity by pleural thickening was observed. The accumulation of exudative fluid in alveoli was also observed for two samples. By the comparison with normal lung images, we can obviously show the difference in the ALI/ARDS models. Since the lung consists of alveolar surrounded by capillary vessels, the effect of red-blood cells (RBC) is considered to be important. In this work, ex-vivo UHR-OCT imaging of RBC was demonstrated. Each RBC was able to be observed individually using UHR-OCT. The effect of RBC was estimated with the rat lung perfused with PBS.

  10. Neutron imaging with coded sources: new challenges and the implementation of a simultaneous iterative reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Villalobos, Hector J [ORNL; Bingham, Philip R [ORNL; Gregor, Jens [University of Tennessee, Knoxville (UTK)

    2013-01-01

    The limitations in neutron flux and resolution (L/D) of current neutron imaging systems can be addressed with a Coded Source Imaging system with magnification (xCSI). More precisely, the multiple sources in an xCSI system can exceed the flux of a single pinhole system for several orders of magnitude, while maintaining a higher L/D with the small sources. Moreover, designing for an xCSI system reduces noise from neutron scattering, because the object is placed away from the detector to achieve magnification. However, xCSI systems are adversely affected by correlated noise such as non-uniform illumination of the neutron source, incorrect sampling of the coded radiograph, misalignment of the coded masks, mask transparency, and the imperfection of the system Point Spread Function (PSF). We argue that a model-based reconstruction algorithm can overcome these problems and describe the implementation of a Simultaneous Iterative Reconstruction Technique algorithm for coded sources. Design pitfalls that preclude a satisfactory reconstruction are documented.

  11. The VSOP 5 GHz AGN Survey: III. Imaging Results for the First 102 Sources

    OpenAIRE

    Scott, W. K.; Fomalont, E. B.; Horiuchi, S.; Lovell, J. E. J.; Moellenbrock, G. A.; Dodson, R. G.; Edwards, P. G.; Coldwell, G. V.; Fodor, S.; Frey, S.; Gurvits, L. I.; Hirabayashi, H.; Lister, M. L.; Mosoni, L.; Murata, Y.

    2004-01-01

    The VSOP mission is a Japanese-led project to study radio sources with sub-milliarcsec resolution using an orbiting 8 m telescope, HALCA, along with global arrays of Earth-based telescopes. Approximately 25% of the observing time is devoted to a survey of compact AGN which are stronger than 1 Jy at 5 GHz-the VSOP AGN Survey. This paper, the third in the series, presents the results from the analysis of the first 102 Survey sources. We present high resolution images and plots of visibility amp...

  12. Smartphones Get Emotional: Mind Reading Images and Reconstructing the Neural Sources

    DEFF Research Database (Denmark)

    Petersen, Michael Kai; Stahlhut, Carsten; Stopczynski, Arkadiusz;

    2011-01-01

    Combining a 14 channel neuroheadset with a smartphone to capture and process brain imaging data, we demonstrate the ability to distinguish among emotional responses re ected in dierent scalp potentials when viewing pleasant and unpleasant pictures compared to neutral content. Clustering independent...... components across subjects we are able to remove artifacts and identify common sources of synchronous brain activity, consistent with earlier ndings based on conventional EEG equipment. Applying a Bayesian approach to reconstruct the neural sources not only facilitates dierentiation of emotional responses...

  13. Spot size measurement of a flash-radiography source using the pinhole imaging method

    Science.gov (United States)

    Wang, Yi; Li, Qin; Chen, Nan; Cheng, Jin-Ming; Xie, Yu-Tong; Liu, Yun-Long; Long, Quan-Hong

    2016-07-01

    The spot size of the X-ray source is a key parameter of a flash-radiography facility, and is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam are tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  14. Spot size measurement of flash-radiography source utilizing the pinhole imaging method

    CERN Document Server

    Wang, Yi; Chen, Nan; Cheng, Jinming; Xie, Yutong; Liu, Yulong; Long, Quanhong

    2015-01-01

    The spot size of the x-ray source is a key parameter of a flash-radiography facility, which is usually quoted as an evaluation of the resolving power. The pinhole imaging technique is applied to measure the spot size of the Dragon-I linear induction accelerator, by which a two-dimensional spatial distribution of the source spot is obtained. Experimental measurements are performed to measure the spot image when the transportation and focusing of the electron beam is tuned by adjusting the currents of solenoids in the downstream section. The spot size of full-width at half maximum and that defined from the spatial frequency at half peak value of the modulation transfer function are calculated and discussed.

  15. Noninterferometric phase-contrast images obtained with incoherent x-ray sources

    International Nuclear Information System (INIS)

    We report on what are believed to be the first full-scale images obtained with the coded aperture concept, which uses conventional x-ray sources without the need to collimate/aperture their output. We discuss the differences in the underpinning physical principles with respect to other methods, and explain why these might lead to a more efficient use of the source. In particular, we discuss how the evaluation of the first imaging system provided promising indications on the method's potential to detect details invisible to conventional absorption methods, use an increased average x-ray energy, and reduce exposure times--all important aspects with regards to real-world implementations.

  16. Installation of spectrally selective imaging system in RF negative ion source

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K., E-mail: ikeda.katsunori@lhd.nifs.ac.jp; Kisaki, M.; Nagaoka, K.; Nakano, H.; Osakabe, M.; Tsumori, K.; Kaneko, O.; Takeiri, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Wünderlich, D.; Fantz, U.; Heinemann, B. [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Geng, S. [SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi, Toki 509-5292 (Japan)

    2016-02-15

    A spectrally selective imaging system has been installed in the RF negative ion source in the International Thermonuclear Experimental Reactor-relevant negative ion beam test facility ELISE (Extraction from a Large Ion Source Experiment) to investigate distribution of hydrogen Balmer-α emission (H{sub α}) close to the production surface of hydrogen negative ion. We selected a GigE vision camera coupled with an optical band-path filter, which can be controlled remotely using high speed network connection. A distribution of H{sub α} emission near the bias plate has been clearly observed. The same time trend on H{sub α} intensities measured by the imaging diagnostic and the optical emission spectroscopy is confirmed.

  17. X-ray scattering in the elastic regime as source for 3D imaging reconstruction technique

    Science.gov (United States)

    Kocifaj, Miroslav; Mego, Michal

    2015-11-01

    X-ray beams propagate across a target object before they are projected onto a regularly spaced array of detectors to produce a routine X-ray image. A 3D attenuation coefficient distribution is obtained by tomographic reconstruction where scattering is usually regarded as a source of parasitic signals which increase the level of electromagnetic noise that is difficult to eliminate. However, the elastically scattered radiation could be a valuable source of information, because it can provide a 3D topology of electron densities and thus contribute significantly to the optical characterization of the scanned object. The scattering and attenuation data form a complementary base for concurrent retrieval of both electron density and attenuation coefficient distributions. In this paper we developed the 3D reconstruction method that combines both data inputs and produces better image resolution compared to traditional technology.

  18. Conception and data transfer analysis of an open-source digital image archive designed for radiology

    International Nuclear Information System (INIS)

    Purpose: Implementation of a self-designed, web-based digital image archive incorporating the existing DICOM infrastructure to assure distribution of digital pictures and reports and to optimize work flow. Assessment after three years. Materials and methods: Open-source software was used to guarantee highest reliability and cost effectiveness. In view of rapidly increasing capacity and decreasing costs of hard discs (HDs), HDs were preferred over slower and expensive magneto-optical disk (MOD) or tape storage systems. The number of installed servers increased from one to 12. By installing HDs with increased capacities, the number of servers should be kept constant. Entry and access of data were analyzed over two 4-month periods (after 1.5 and 2 years of continuous operations). Results: Our digital image archive was found to be very reliable, cost effective and suitable for its designated tasks. As judged from the measured access volume, the average utilization of the system increased by 160%. In the period from January to April 2002, the users accessed 239.8 gigabyte of the stored 873.7 gigabyte image data (27%). The volume of the stored data added 20%, mainly due to an increase in cross-section imaging. Conclusion: The challenge of developing a digital image archive with limited financial resources resulted in a practicable and expandable solution. The utilization, number of active users and volume of transferred data have increased significantly. Our concept of utilizing HDs for image storage proved to be successful. (orig.)

  19. Dual-source computed tomography in patients with acute chest pain: feasibility and image quality

    Energy Technology Data Exchange (ETDEWEB)

    Schertler, Thomas; Scheffel, Hans; Frauenfelder, Thomas; Desbiolles, Lotus; Leschka, Sebastian; Stolzmann, Paul; Marincek, Borut; Alkadhi, Hatem [University Hospital Zurich, Department of Medical Radiology, Institute of Diagnostic Radiology, Zurich (Switzerland); Seifert, Burkhardt [University of Zurich, Department of Biostatistics, Zurich (Switzerland); Flohr, Thomas G. [Computed Tomography CTE PA, Siemens Medical Solutions, Forchheim (Germany)

    2007-12-15

    The aim of this study was to determine the feasibility and image quality of dual-source computed tomography angiography (DSCTA) in patients with acute chest pain for the assessment of the lung, thoracic aorta, and for pulmonary and coronary arteries. Sixty consecutive patients (32 female, 28 male, mean age 58.1{+-}16.3 years) with acute chest pain underwent contrast-enhanced electrocardiography-gated DSCTA without prior beta-blocker administration. Vessel attenuation of different thoracic vascular territories was measured, and image quality was semi-quantitatively analyzed by two independent readers. Image quality of the thoracic aorta was diagnostic in all 60 patients, image quality of pulmonary arteries was diagnostic in 59, and image quality of coronary arteries was diagnostic in 58 patients. Pairwise intraindividual comparisons of attenuation values were small and ranged between 1{+-}6 HU comparing right and left coronary artery and 56{+-}9 HU comparing the pulmonary trunk and left ventricle. Mean attenuation was 291{+-}65 HU in the ascending aorta, 334{+-}93 HU in the pulmonary trunk, and 285{+-}66 HU and 268{+-}67 HU in the right and left coronary artery, respectively. DSCTA is feasible and provides diagnostic image quality of the thoracic aorta, pulmonary and coronary arteries in patients with acute chest pain. (orig.)

  20. Preliminary study of single contrast enhanced dual energy heart imaging using dual-source CT

    International Nuclear Information System (INIS)

    Objective: To evaluate the feasibility and preliminary applications of single contrast enhanced dual energy heart imaging using dual-source CT (DSCT). Methods: Thirty patients underwent dual energy heart imaging with DSCT, of which 6 cases underwent SPECT or DSA within one week. Two experienced radiologists assessed image quality of coronary arteries and iodine map of myocardium. and correlated the coronary artery stenosis with the perfusion distribution of iodine map. Results: l00% (300/300) segments reached diagnostic standards. The mean score of image for all patients was 4.68±0.57. Mural coronary artery was present in 10 segments in S cases, atherosclerotic plaques in 32 segments in 12 cases, of which 20 segments having ≥50% stenosis, 12 segments ≤50% stenosis; dual energy CT coronary angiography was consistent with the DSA in 3 patients. 37 segmental perfusion abnormalities on iodine map were found in 15 cases, including 28 coronary blood supply segment narrow segment and 9 no coronary stenosis (including three negative segments in SPECD. Conclusion: Single contrast enhanced dual energy heart imaging can provide good coronary artery and myocardium perfusion images in the patients with appropriate heart rate, which has a potential to be used in the clinic and further studies are needed. (authors)

  1. On Sparsity in Bayesian Blind Source Separation for Dynamic Medical Imaging

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ondřej

    Praha : Katedra metematiky, FSv ČVUT, 2014, s. 20-21. [Rektorysova Soutěž. Praha (CZ), 3.12.2014] R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : blind source separation * dynamic medical imaging * sparsity constraint Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2014/AS/tichy-0436843.pdf

  2. The VSOP 5 GHz active galactic nucleus survey. V. Imaging results for the remaining 140 sources

    OpenAIRE

    Dodson, R.; Fomalont, E. B.; Wiik, K.; Horiuchi, S.; Hirabayashi, H.; Edwards, P. G.; Murata, Y.; Asaki, Y.; Moellenbrock, G. A.; Scott, W. K.; Taylor, A. R.; Gurvits, L. I.; Paragi, Z.; Frey, S.; Shen, Z. Q.

    2008-01-01

    In 1997 February, the Japanese radio astronomy satellite HALCA was launched to provide the space-bourne element for the VLBI Space Observatory Program (VSOP) mission. Approximately 25% of the mission time was dedicated to the VSOP survey of bright compact active galactic nuclei (AGNs) at 5 GHz. This paper, the fifth in the series, presents images and models for the remaining 140 sources not included in the third p...

  3. Fiber delivered two-color picosecond source through nonlinear spectral transformation for coherent Raman scattering imaging

    OpenAIRE

    Wang, Ke; Xu, Chris

    2012-01-01

    We demonstrate a two-color, fiber-delivered picosecond source for coherent Raman scattering (CRS) imaging through nonlinear spectral transformation. The wavelength tunable picosecond pump is generated by nonlinear spectral compression of a prechirped femtosecond pulse in a fiber wavelength division multiplexer (WDM). The 1064-nm synchronized picosecond Stokes pulse is generated through pulse carving of a continuous wave laser, nonlinear spectral broadening in 100-m standard single-mode fiber,...

  4. Calibration of the Sensitivity of Imaging Atmospheric Cherenkov Telescopes using a Reference Light Source

    OpenAIRE

    Frass, A.; Koehler, C.; Hermann, G.; Hess, M.; Hofmann, W.

    1997-01-01

    The sensitivity of an Imaging Atmospheric Cherenkov telescope is calibrated by shining, from a distant pulsed monochromatic light source, a defined photon flux onto the mirror. The light pulse is captured and reconstructed by the telescope in an identical fashion as real Cherenkov light. The intensity of the calibration light pulse is monitored via a calibrated sensor at the telescope; in order to account for the lower sensitivity of this sensor compared to the Cherenkov telescope, an attenua...

  5. X-ray phase-contrast imaging with polychromatic sources and the concept of effective energy

    OpenAIRE

    Munro, P. R. T.; A. Olivo

    2013-01-01

    Grating-based quantitative polychromatic x-ray phase imaging is currently a very active area of research. It has already been shown that, in such systems, the retrieved differential phase depends upon the spectral properties of the source, the gratings, the detector, and the sample. In this paper, we show that the retrieved sample absorption also depends upon the spectral properties of the gratings. Further, we compare the spectral dependence of both retrieved phase and absorption for the gra...

  6. Faint Radio Sources in the NOAO Bootes Field. VLBA Imaging And Optical Identifications

    Energy Technology Data Exchange (ETDEWEB)

    Wrobel, J.M.; /NRAO, Socorro; Taylor, Greg B.; /NRAO, Socorro /KIPAC, Menlo Park; Rector, T.A.; /NRAO, Socorro /Alaska U.; Myers, S.T.; /NRAO, Socorro; Fassnacht, C.D.; /UC,

    2005-06-13

    As a step toward investigating the parsec-scale properties of faint extragalactic radio sources, the Very Long Baseline Array (VLBA) was used at 5.0 GHz to obtain phase-referenced images of 76 sources in the NOAO Booetes field. These 76 sources were selected from the FIRST catalog to have peak flux densities above 10 mJy at 5'' resolution and deconvolved major diameters of less than 3'' at 1.4 GHz. Fifty-five of these faint radio sources were identified with accretion-powered radio galaxies and quasars brighter than 25.5 mag in the optical I band. On VLA scales at 1.4 GHz, a measure of the compactness of the faint sources (the ratio of the peak flux density from FIRST to the integrated flux density from the NVSS catalog) spans the full range of possibilities arising from source-resolution effects. Thirty of the faint radio sources, or 39{sub -7}{sup +9}%, were detected with the VLBA at 5.0 GHz with peak flux densities above 6 {sigma} {approx} 2 mJy at 2 mas resolution. The VLBA detections occur through the full range of compactness ratios. The stronger VLBA detections can themselves serve as phase-reference calibrators, boding well for opening up much of the radio sky to VLBA imaging. For the adopted cosmology, the VLBA resolution corresponds to 17 pc or finer. Most VLBA detections are unresolved or slightly resolved but one is diffuse and five show either double or core-jet structures; the properties of these latter six are discussed in detail. Eight VLBA detections are unidentified and fainter than 25.5 mag in the optical I band; their properties are highlighted because they likely mark optically-obscured active nuclei at high redshift.

  7. 4D in vivo imaging of subpleural lung parenchyma by swept source optical coherence tomography

    Science.gov (United States)

    Meissner, S.; Tabuchi, A.; Mertens, M.; Homann, H.; Walther, J.; Kuebler, W. M.; Koch, E.

    2009-07-01

    In this feasibility study we present a method for 4D imaging of healthy and injured subpleural lung tissue in a mouse model. We used triggered swept source optical coherence tomography with an A-scan frequency of 20 kHz to image murine subpleural alveoli during the ventilation cycle. The data acquisition was gated to the pulmonary airway pressure to take one B-scan in each ventilation cycle for different pressure levels. The acquired B-scans were combined offline to one C-scan for each pressure level. Due to the high acquisition rate of the used optical coherence tomography system, we are also able to perform OCT Doppler imaging of the alveolar arterioles. We demonstrated that OCT is a useful tool to investigate the alveolar dynamics in spatial dimensions and to analyze the alveolar blood flow by using Doppler OCT.

  8. Low-Complexity Compression Algorithm for Hyperspectral Images Based on Distributed Source Coding

    Directory of Open Access Journals (Sweden)

    Yongjian Nian

    2013-01-01

    Full Text Available A low-complexity compression algorithm for hyperspectral images based on distributed source coding (DSC is proposed in this paper. The proposed distributed compression algorithm can realize both lossless and lossy compression, which is implemented by performing scalar quantization strategy on the original hyperspectral images followed by distributed lossless compression. Multilinear regression model is introduced for distributed lossless compression in order to improve the quality of side information. Optimal quantized step is determined according to the restriction of the correct DSC decoding, which makes the proposed algorithm achieve near lossless compression. Moreover, an effective rate distortion algorithm is introduced for the proposed algorithm to achieve low bit rate. Experimental results show that the compression performance of the proposed algorithm is competitive with that of the state-of-the-art compression algorithms for hyperspectral images.

  9. Uncertainties and biases of source masses derived from fits of integrated fluxes or image intensities

    CERN Document Server

    Men'shchikov, Alexander

    2016-01-01

    Fitting spectral distributions of total fluxes or image intensities are two standard methods for estimating the masses of starless cores and protostellar envelopes. The major source and basis of our knowledge of the origin and evolution of self-gravitating cores and protostars, such mass estimates are uncertain. In this model-based study, a grid of radiative transfer models of starless cores and protostellar envelopes was computed and their total fluxes and image intensities were fitted to derive the model masses. To investigate intrinsic effects related to the physical objects, all observational complications were explicitly ignored. Known true values of the numerical models allow us to assess the qualities of the methods and fitting models, as well as the effects of nonuniform temperatures, far-infrared opacity slope, selected subsets of wavelengths, background subtraction, and angular resolutions. The method of fitting image intensities gives more accurate masses for more resolved objects than the method o...

  10. Longitudinal Evaluation of Cornea With Swept-Source Optical Coherence Tomography and Scheimpflug Imaging Before and After Lasik

    OpenAIRE

    Tommy C. Y. Chan; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal

    2015-01-01

    Abstract Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and S...

  11. Comparison of Open Source Compression Algorithms on Vhr Remote Sensing Images for Efficient Storage Hierarchy

    Science.gov (United States)

    Akoguz, A.; Bozkurt, S.; Gozutok, A. A.; Alp, G.; Turan, E. G.; Bogaz, M.; Kent, S.

    2016-06-01

    High resolution level in satellite imagery came with its fundamental problem as big amount of telemetry data which is to be stored after the downlink operation. Moreover, later the post-processing and image enhancement steps after the image is acquired, the file sizes increase even more and then it gets a lot harder to store and consume much more time to transmit the data from one source to another; hence, it should be taken into account that to save even more space with file compression of the raw and various levels of processed data is a necessity for archiving stations to save more space. Lossless data compression algorithms that will be examined in this study aim to provide compression without any loss of data holding spectral information. Within this objective, well-known open source programs supporting related compression algorithms have been implemented on processed GeoTIFF images of Airbus Defence & Spaces SPOT 6 & 7 satellites having 1.5 m. of GSD, which were acquired and stored by ITU Center for Satellite Communications and Remote Sensing (ITU CSCRS), with the algorithms Lempel-Ziv-Welch (LZW), Lempel-Ziv-Markov chain Algorithm (LZMA & LZMA2), Lempel-Ziv-Oberhumer (LZO), Deflate & Deflate 64, Prediction by Partial Matching (PPMd or PPM2), Burrows-Wheeler Transform (BWT) in order to observe compression performances of these algorithms over sample datasets in terms of how much of the image data can be compressed by ensuring lossless compression.

  12. High-resolution X-ray imaging for microbiology at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and their associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria (∼1 microm x 4 microm in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies

  13. High-speed, digitally refocused retinal imaging with line-field parallel swept source OCT

    Science.gov (United States)

    Fechtig, Daniel J.; Kumar, Abhishek; Ginner, Laurin; Drexler, Wolfgang; Leitgeb, Rainer A.

    2015-03-01

    MHz OCT allows mitigating undesired influence of motion artifacts during retinal assessment, but comes in state-of-the-art point scanning OCT at the price of increased system complexity. By changing the paradigm from scanning to parallel OCT for in vivo retinal imaging the three-dimensional (3D) acquisition time is reduced without a trade-off between speed, sensitivity and technological requirements. Furthermore, the intrinsic phase stability allows for applying digital refocusing methods increasing the in-focus imaging depth range. Line field parallel interferometric imaging (LPSI) is utilizing a commercially available swept source, a single-axis galvo-scanner and a line scan camera for recording 3D data with up to 1MHz A-scan rate. Besides line-focus illumination and parallel detection, we mitigate the necessity for high-speed sensor and laser technology by holographic full-range imaging, which allows for increasing the imaging speed by low sampling of the optical spectrum. High B-scan rates up to 1kHz further allow for implementation of lable-free optical angiography in 3D by calculating the inter B-scan speckle variance. We achieve a detection sensitivity of 93.5 (96.5) dB at an equivalent A-scan rate of 1 (0.6) MHz and present 3D in vivo retinal structural and functional imaging utilizing digital refocusing. Our results demonstrate for the first time competitive imaging sensitivity, resolution and speed with a parallel OCT modality. LPSI is in fact currently the fastest OCT device applied to retinal imaging and operating at a central wavelength window around 800 nm with a detection sensitivity of higher than 93.5 dB.

  14. In-line phase-contrast imaging with a laser-based hard x-ray source

    International Nuclear Information System (INIS)

    We demonstrate the feasibility of phase-contrast imaging with an ultrafast laser-based hard x-ray source. Hard x rays are generated during the interaction of a high-intensity femtosecond laser pulse (10 TW, 60 fs, 10 Hz) focused onto solid target in a very small spot (3 μm diam). Such a novel x-ray source has a number of advantages over other sources previously used for phase-contrast imaging: It is very compact and much cheaper than a synchrotron, it has higher power and better x-ray spectrum control than a microfocal x-ray tube, and it has much higher repetition rate than an x-pinch source. The Kα line at 17 keV produced using a solid Mo target, and the in-line imaging geometry have been utilized in this study. Phase-contrast images of test objects and biological samples have been realized. The characteristics of the images are the significant enhancement of interfaces due to an x-ray phase shift that reveal details that were hardly observable, or even undetectable, in absorption images and suppression of optically dense structures well defined in the absorption images. Our study indicates that the absorption and the phase-contrast images obtained with an ultrafast laser-based x-ray source provide complementary information about the imaged objects, thus enriching our arsenal of research tools for laboratory or clinic-based biomedical imaging

  15. Analyzer-based phase-contrast imaging system using a micro focus x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wei [BME Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Majidi, Keivan; Brankov, Jovan G., E-mail: brankov@iit.edu [ECE Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2014-08-15

    Here we describe a new in-laboratory analyzer based phase contrast-imaging (ABI) instrument using a conventional X-ray tube source (CXS) aimed at bio-medical imaging applications. Phase contrast-imaging allows visualization of soft tissue details usually obscured in conventional X-ray imaging. The ABI system design and major features are described in detail. The key advantage of the presented system, over the few existing CXS ABI systems, is that it does not require high precision components, i.e., CXS, X-ray detector, and electro-mechanical components. To overcome a main problem introduced by these components, identified as temperature stability, the system components are kept at a constant temperature inside of three enclosures, thus minimizing the electrical and mechanical thermal drifts. This is achieved by using thermoelectric (Peltier) cooling/heating modules that are easy to control precisely. For CXS we utilized a microfocus X-ray source with tungsten (W) anode material. In addition the proposed system eliminates tungsten's multiple spectral lines by selecting monochromator crystal size appropriately therefore eliminating need for the costly mismatched, two-crystal monochromator. The system imaging was fine-tuned for tungsten Kα{sub 1} line with the energy of 59.3 keV since it has been shown to be of great clinical significance by a number of researchers at synchrotron facilities. In this way a laboratory system that can be used for evaluating and quantifying tissue properties, initially explored at synchrotron facilities, would be of great interest to a larger research community. To demonstrate the imaging capability of our instrument we use a chicken thigh tissue sample.

  16. OsiriX: an open-source software for navigating in multidimensional DICOM images.

    Science.gov (United States)

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-09-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking advantage of any hardware graphic accelerator boards available. In the design of the software special attention was given to adapt the user interface to the specific and complex tasks of navigating through large sets of image data. An interactive jog-wheel device widely used in the video and movie industry was implemented to allow users to navigate in the different dimensions of an image set much faster than with a traditional mouse or on-screen cursors and sliders. The program can easily be adapted for very specific tasks that require a limited number of functions, by adding and removing tools from the program's toolbar and avoiding an overwhelming number of unnecessary tools and functions. The processing and image rendering tools of the software are based on the open-source libraries ITK and VTK. This ensures that all new developments in image processing that could emerge from other academic institutions using these libraries can be directly ported to the OsiriX program. OsiriX is provided free of charge under the GNU open-source licensing agreement at http://homepage.mac.com/rossetantoine/osirix. PMID:15534753

  17. Electromagnetic 3D subsurface imaging with source sparsity for a synthetic object

    CERN Document Server

    Pursiainen, Sampsa

    2016-01-01

    This paper concerns electromagnetic 3D subsurface imaging in connection with sparsity of signal sources. We explored an imaging approach that can be implemented in situations that allow obtaining a large amount of data over a surface or a set of orbits but at the same time require sparsity of the signal sources. Characteristic to such a tomography scenario is that it necessitates the inversion technique to be genuinely three-dimensional: For example, slicing is not possible due to the low number of sources. Here, we primarily focused on astrophysical subsurface exploration purposes. As an example target of our numerical experiments we used a synthetic small planetary object containing three inclusions, e.g. voids, of the size of the wavelength. A tetrahedral arrangement of source positions was used, it being the simplest symmetric point configuration in 3D. Our results suggest that somewhat reliable inversion results can be produced within the present a priori assumptions, if the data can be recorded at a spe...

  18. The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    CERN Document Server

    Huffenberger, K M; Bischoff, C; Buder, I; Chinone, Y; Cleary, K; Kusaka, A; Monsalve, R; Næss, S K; Newburgh, L B; Reeves, R; Ruud, T M; Wehus, I K; Zwart, J T L; Dickinson, C; Eriksen, H K; Gaier, T; Gundersen, J O; Hasegawa, M; Hazumi, M; Miller, A D; Radford, S J E; Readhead, A C S; Staggs, S T; Tajima, O; Thompson, K L

    2014-01-01

    We present polarization measurements of extragalactic radio sources observed during the Cosmic Microwave Background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, $>$40 mJy catalog of the Australia Telescope (AT20G) survey. There are $\\sim$480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30--40 mJy per Stokes parameter. At S/N $> 3$ significance, we detect linear polarization for seven sources in Q-band and six in W-band; only $1.3 \\pm 1.1$ detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization meas...

  19. The VSOP 5 GHz AGN Survey: III. Imaging Results for the First 102 Sources

    CERN Document Server

    Scott, W K; Horiuchi, S; Lovell, J E J; Moellenbrock, G A; Dodson, R G; Edwards, P G; Coldwell, G V; Fodor, Z; Frey, S; Gurvits, L I; Hirabayashi, H; Lister, M L; Mosoni, L; Murata, Y; Paragi, Z; Piner, B G; Shen, Z Q; Taylor, A R; Tingay, S J

    2004-01-01

    The VSOP mission is a Japanese-led project to study radio sources with sub-milliarcsec resolution using an orbiting 8 m telescope, HALCA, along with global arrays of Earth-based telescopes. Approximately 25% of the observing time is devoted to a survey of compact AGN which are stronger than 1 Jy at 5 GHz-the VSOP AGN Survey. This paper, the third in the series, presents the results from the analysis of the first 102 Survey sources. We present high resolution images and plots of visibility amplitude versus projected baseline length. In addition, model-fit parameters to the primary radio components are listed, and from these the angular size and brightness temperature for the radio cores are calculated. For those sources for which we were able to determine the source frame core brightness temperature, a significant fraction (53 out of 98) have a source frame core brightness temperature in excess of 10^12 K. The maximum source frame core brightness temperature we observed was 1.2 X 10^13 K. Explaining a brightne...

  20. The first VLBI image of an infrared-faint radio source

    Science.gov (United States)

    Middelberg, E.; Norris, R. P.; Tingay, S.; Mao, M. Y.; Phillips, C. J.; Hotan, A. W.

    2008-11-01

    Context: We investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  1. The first VLBI image of an Infrared-Faint Radio Source

    CERN Document Server

    Middelberg, E; Tingay, S; Mao, M Y; Phillips, C J; Hotan, A W

    2008-01-01

    Context: To investigate the joint evolution of active galactic nuclei and star formation in the Universe. Aims: In the 1.4 GHz survey with the Australia Telescope Compact Array of the Chandra Deep Field South and the European Large Area ISO Survey - S1 we have identified a class of objects which are strong in the radio but have no detectable infrared and optical counterparts. This class has been called Infrared-Faint Radio Sources, or IFRS. 53 sources out of 2002 have been classified as IFRS. It is not known what these objects are. Methods: To address the many possible explanations as to what the nature of these objects is we have observed four sources with the Australian Long Baseline Array. Results: We have detected and imaged one of the four sources observed. Assuming that the source is at a high redshift, we find its properties in agreement with properties of Compact Steep Spectrum sources. However, due to the lack of optical and infrared data the constraints are not particularly strong.

  2. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    Science.gov (United States)

    Altabella, L.; Boschi, F.; Spinelli, A. E.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5-6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure.

  3. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    Science.gov (United States)

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  4. Design of Programmable LED Controller with a Variable Current Source for 3D Image Display

    Directory of Open Access Journals (Sweden)

    Kyung-Ryang Lee

    2014-12-01

    Full Text Available Conventional fluorescent light sources, as well as incandescent light sources are gradually being replaced by Light Emitting Diodes (LEDs for reducing power consumption in the image display area for multimedia application. An LED light source requires a controller with a low-power operation. In this paper, a low-power technique using adiabatic operation is applied for the implementation of LED controller with a stable constant-current, a low-power and low-heat function. From the simulation result, the power consumption of the proposed LED controller using adiabatic operation was reduced to about 87% in comparison with conventional operation with a constant VDD. The proposed circuit is expected to be an alternative LED controller which is sensitive to external conditions such as heat.

  5. Coherent diffractive imaging microscope with a high-order harmonic source.

    Science.gov (United States)

    Dinh, Khuong Ba; Le, Hoang Vu; Hannaford, Peter; Dao, Lap Van

    2015-06-10

    We report the generation of highly coherent extreme ultraviolet sources with wavelengths around 30 and 10 nm by phase-matched high-order harmonic generation (HHG) in a gas cell filled with argon and helium, respectively. We then perform coherent diffractive imaging (CDI) by using a focused narrow-bandwidth HHG source with wavelength around 30 nm as an illumination beam for two kinds of samples. The first is a transmission sample and the second is a absorption sample. In addition, we report the successful reconstruction of a complex absorption sample using a tabletop high-harmonic source. This will open the path to the realization of a compact soft x-ray microscope to investigate biological samples such as membrane proteins. PMID:26192827

  6. High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG.

    Science.gov (United States)

    Leijten, Frans S S; Huiskamp, Geert-Jan M; Hilgersom, Irene; Van Huffelen, Alexander C

    2003-01-01

    Magnetic source imaging is claimed to have a high accuracy in epileptic focus localization and may be a guide for epilepsy surgery. Non-lesional mesiotemporal lobe epilepsy (MTLE), the most common form of epilepsy operated on, has different etiologies, which may affect the choice of surgical approach. The authors compared whole-head magnetoencephalography (MEG) with high-resolution EEG for source identification in MTLE. Nineteen patients with unilateral, nonlesional MTLE underwent a simultaneous 151-channel CTF MEG (CTF Systems, Inc., Port Coquitlam, British Columbia, Canada) and 64-channel EEG recordings with sleep induction. Three independent observers selected spikes from the EEG and MEG recordings separately. Only when there was interobserver agreement (kappa>0.4) on the presence of spikes in recordings were consensus spikes averaged. EEG and MEG equivalent current dipoles (ECD) were then integrated in the head model of the patient reconstructed from MRI. The results were compared with intraoperative electrocorticography findings. Spikes were detected in 32% of MEGs and 42% of EEGs. No patient showed MEG spikes only. Equivalent current dipole modeling correctly localized the source to the temporal lobe in four out of five MEG and three out of eight EEG recordings. MEG localized sources were more superficial and EEG localized sources were deeper. Unfortunately, basal temporal lobe areas were only partially covered by the sensor helmet of the MEG setup. Best correlation between EEG or MEG findings and electrocorticography findings was between horizontal EEG dipole orientation and prominent neocortical spiking; these patients also had a less favorable prognosis. Magnetic source imaging is currently unlikely to alter the surgical management of MTLE. The yield of spikes is too low, and ECD modeling shows only partial correlation with electrocorticography findings. Moreover, the whole-head MEG helmet provides insufficient coverage of the temporal lobe. PMID:14530735

  7. New monoenergetic X ray medical digital imaging system based in gamma sources and low radiation dose

    International Nuclear Information System (INIS)

    A method for X ray medical imaging, based on gamma sources and low radiation dose was investigated. A radiographic technique with extensive monoenergetic X rays sources is proposed in the present work, these sources produce only characteristic X rays by means of photo-excitation with gamma sources. A selection of suitable materials for photo-stimulate with a Co-57 source was made. The ones with high fluorescence yield wk , and a useful X ray energy for medicine use, were selected: Mo, Ag, Sn , I, Ba, Ce, W, Au, Pb, Bi. A detailed study of the properties of emission for these materials was made with tables and a Monte Carlo simulation tool (MCNP). This simulation showed us the behavior of the materials about several parameters as: material thickness, incidence angle of radiation, Kα and Kβ characteristic X ray flux emitted, total production of X photons in bulk of material, Bremsstrahlung radiation flux and Compton scattering. Spectral graphics were obtained, too. These data allowed us to optimize variables as thickness and incidence angle of radiation for each material in order to maximize the wanted X ray flux and minimize the Compton scattering. For example, when photons impinge on a foil of Mo with a grazing angle of 2.8 deg., we obtained the results depicted. The maximum efficiency of X ray production can be as high as 58% for Bi. The design of the geometrical form of the source implied a new work of optimization (maximum X ray flux, minimum γ-ray scattering and minimum physical dimensions). We tested various geometrical forms: pills, cones and several types of arrays of shells, in order to improve X ray emission and maintain a low level of γ ray scattering. Optimization of the geometrical forms increased the flux of X rays by a factor of 6 over the simpler pill form. In order to obtain a reasonable photon flux, these sources must have finite dimensions far from the point geometry, avoiding blurring in the image taking place. We developed a new image

  8. Detection of point sources on two-dimensional images based on peaks

    CERN Document Server

    Lopez-Caniego, M; Sanz, J L; Barreiro, R B

    2005-01-01

    This article considers the detection of point sources in two dimensional astronomical images. The detection scheme we propose is based on peak statistics. We discuss the example of the detection of far galaxies in Cosmic Microwave Background experiments throughout the paper, although the method we present is totally general and can be used in many other fields of data analysis. We assume sources with a Gaussian profile --that is a fair approximation of the profile of a point source convolved with the detector beam in microwave experiments-- on a background modeled by a homogeneous and isotropic Gaussian random field characterized by a scale-free power spectrum. Point sources are enhanced with respect to the background by means of linear filters. After filtering, we identify local maxima and apply our detection scheme, a Neyman-Pearson detector that defines our region of acceptance based on the a priori pdf of the sources and the ratio of number densities. We study the different performances of some linear fil...

  9. Detection of trace gas emissions from point sources using shortwave infrared imaging spectrometry

    Science.gov (United States)

    Thorpe, A. K.; Roberts, D. A.; Dennison, P. E.; Bradley, E. S.; Funk, C. C.

    2011-12-01

    Existing spaceborne remote sensing provides an effective means of detecting continental-scale variation in trace gas concentrations, but does not permit mapping of local emissions from point sources. Point source emissions of methane (CH4), nitrous oxide (N2O) and particulates, often associated with combustion and carbon dioxide (CO2) emissions, have significant impacts on air quality. Using Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) data and a cluster-tuned matched filter technique, we have mapped local CH4, N2O and CO2 emissions from terrestrial sources in the Los Angeles basin. CH4 anomalies were in close proximity to known and probable emission sources, including hydrocarbon storage tanks and gas flares. Multiple N2O and CH4 anomalies were detected at a wastewater treatment facility, while CH4 and CO2 anomalies were also identified at a large oil refinery. We discuss ongoing efforts to estimate CH4 concentrations using radiative transfer modeling and potential application of this technique to additional trace gasses with distinct absorption features. This method could be applied to data from existing airborne sensors and planned satellite missions like HyspIRI, thereby improving high resolution mapping of trace gasses and better constraining local sources.

  10. The image-guided surgery toolkit IGSTK: an open source C++ software toolkit.

    Science.gov (United States)

    Enquobahrie, Andinet; Cheng, Patrick; Gary, Kevin; Ibanez, Luis; Gobbi, David; Lindseth, Frank; Yaniv, Ziv; Aylward, Stephen; Jomier, Julien; Cleary, Kevin

    2007-11-01

    This paper presents an overview of the image-guided surgery toolkit (IGSTK). IGSTK is an open source C++ software library that provides the basic components needed to develop image-guided surgery applications. It is intended for fast prototyping and development of image-guided surgery applications. The toolkit was developed through a collaboration between academic and industry partners. Because IGSTK was designed for safety-critical applications, the development team has adopted lightweight software processes that emphasizes safety and robustness while, at the same time, supporting geographically separated developers. A software process that is philosophically similar to agile software methods was adopted emphasizing iterative, incremental, and test-driven development principles. The guiding principle in the architecture design of IGSTK is patient safety. The IGSTK team implemented a component-based architecture and used state machine software design methodologies to improve the reliability and safety of the components. Every IGSTK component has a well-defined set of features that are governed by state machines. The state machine ensures that the component is always in a valid state and that all state transitions are valid and meaningful. Realizing that the continued success and viability of an open source toolkit depends on a strong user community, the IGSTK team is following several key strategies to build an active user community. These include maintaining a users and developers' mailing list, providing documentation (application programming interface reference document and book), presenting demonstration applications, and delivering tutorial sessions at relevant scientific conferences. PMID:17703338

  11. High speed imaging of dynamic processes with a switched source x-ray CT system

    International Nuclear Information System (INIS)

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data. (paper)

  12. Two dimensional imaging of the virtual source of a supersonic beam: helium at 125 K.

    Science.gov (United States)

    Eder, S D; Bracco, G; Kaltenbacher, T; Holst, B

    2014-01-01

    Here we present the first two-dimensional images of the virtual source of a supersonic helium expansion. The images were obtained using a free-standing Fresnel zone plate with an outermost zone width of 50 nm as imaging lens and a beam cooled to around 125 K. The nozzle diameter was 10 μm. The virtual source diameter was found to increase with stagnation pressure from 140 ± 30 μm at po = 21 bar up to 270 ± 25 μm at po = 101 bar. The experimental results are compared to a theoretical model based on the solution of the Boltzmann equation by the method of moments. The quantum mechanical cross sections used in the model have been calculated for the Lennard-Jones (LJ) and the Hurly-Moldover (HM) potentials. By using a scaling of the perpendicular temperature that parametrizes the perpendicular velocity distribution based on a continuum expansion approach, the LJ potential shows a good overall agreement with the experiment. However, at higher pressures the data points lie in between the two theoretical curves and the slope of the trend is more similar to the HM curve. Real gas corrections to enthalpy are considered but they affect the results less than the experimental errors. PMID:24328311

  13. Self characterization of a coded aperture array for neutron source imaging

    International Nuclear Information System (INIS)

    The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the stagnation stage of inertial confinement fusion implosions. Since the neutron source is small (∼100 μm) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-μm resolution are 20-cm long, triangular tapers machined in gold foils. These gold foils are stacked to form an array of 20 apertures for pinhole imaging and three apertures for penumbral imaging. These apertures must be precisely aligned to accurately place the field of view of each aperture at the design location, or the location of the field of view for each aperture must be measured. In this paper we present a new technique that has been developed for the measurement and characterization of the precise location of each aperture in the array. We present the detailed algorithms used for this characterization and the results of reconstructed sources from inertial confinement fusion implosion experiments at NIF

  14. A potential X-pinch based point X-ray source for phase contrast imaging of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Phase contrast X-ray imaging is necessary to monitor and validate the DT ice layer inside a cryo-ignition target. Presently available sources require a minute long exposure for imaging, thus contributing to blurring of images at the edges. An X-pinch is a bright, pulsed X-ray source that produces pulses of X-rays duration < 1 ns thus eliminating such blurring. Our preliminary results show that with an optimized detection system an X-pinch generated image could be used to locate the ice layer with the accuracy demanded by the NIF (national ignition facility) specifications. (authors)

  15. Quantitative evaluation of single-shot inline phase contrast imaging using an inverse compton x-ray source

    International Nuclear Information System (INIS)

    Inverse compton scattering (ICS) x-ray sources are of current interest in biomedical imaging. We present an experimental demonstration of inline phase contrast imaging using a single picosecond pulse of the ICS source located at the BNL Accelerator Test Facility. The phase contrast effect is clearly observed. Its qualities are shown to be in agreement with the predictions of theoretical models through comparison of experimental and simulated images of a set of plastic wires of differing composition and size. Finally, we display an application of the technique to a biological sample, confirming the possibility of time-resolved imaging on the picosecond scale.

  16. A technique to consider mismatches between fMRI and EEG/MEG sources for fMRI-constrained EEG/MEG source imaging: a preliminary simulation study

    International Nuclear Information System (INIS)

    fMRI-constrained EEG/MEG source imaging can be a powerful tool in studying human brain functions with enhanced spatial and temporal resolutions. Recent studies on the combination of fMRI and EEG/MEG have suggested that fMRI prior information could be readily implemented by simply imposing different weighting factors to cortical sources overlapping with the fMRI activations. It has been also reported, however, that such a hard constraint may cause severe distortions or elimination of meaningful EEG/MEG sources when there are distinct mismatches between the fMRI activations and the EEG/MEG sources. If one wants to obtain the actual EEG/MEG source locations and uses the fMRI prior information as just an auxiliary tool to enhance focality of the distributed EEG/MEG sources, it is reasonable to weaken the strength of fMRI constraint when severe mismatches between fMRI and EEG/MEG sources are observed. The present study suggests an efficient technique to automatically adjust the strength of fMRI constraint according to the mismatch level. The use of the proposed technique rarely affects the results of conventional fMRI-constrained EEG/MEG source imaging if no major mismatch between the two modalities is detected; while the new results become similar to those of typical EEG/MEG source imaging without fMRI constraint if the mismatch level is significant. A preliminary simulation study using realistic EEG signals demonstrated that the proposed technique can be a promising tool to selectively apply fMRI prior information to EEG/MEG source imaging

  17. Two-mode squeezed light source for quantum illumination and quantum imaging

    Science.gov (United States)

    Masada, Genta

    2015-09-01

    We started to research quantum illumination radar and quantum imaging by utilizing high quality continuous-wave two-mode squeezed light source as a quantum entanglement resource. Two-mode squeezed light is a macroscopic quantum entangled state of the electro-magnetic field and shows strong correlation between quadrature phase amplitudes of each optical field. One of the most effective methods to generate two-mode squeezed light is combining two independent single-mode squeezed lights by using a beam splitter with relative phase of 90 degrees between each optical field. As a first stage of our work we are developing two-mode squeezed light source for exploring the possibility of quantum illumination radar and quantum imaging. In this article we introduce current development of experimental investigation of single-mode squeezed light. We utilize a sub-threshold optical parametric oscillator with bow-tie configuration which includes a periodically-polled potassium titanyl phosphate crystal as a nonlinear optical medium. We observed the noise level of squeezed quadrature -3.08+/-0.13 dB and anti-squeezed quadrature at 9.29+/-0.13 dB, respectively. We also demonstrated the remote tuning of squeezing level of the light source which leads to the technology for tuning the quantum entanglement in order to adapt to the actual environmental condition.

  18. Bioluminescence imaging of point sources implanted in small animals post mortem: evaluation of a method for estimating source strength and depth

    International Nuclear Information System (INIS)

    The performance of a simple approach for the in vivo reconstruction of bioluminescent point sources in small animals was evaluated. The method uses the diffusion approximation as a forward model of light propagation from a point source in a homogeneous tissue to find the source depth and power. The optical properties of the tissue are estimated from reflectance images obtained at the same location on the animal. It was possible to localize point sources implanted in mice, 2-8 mm deep, to within 1 mm. The same performance was achieved for sources implanted in rat abdomens when the effects of tissue surface curvature were eliminated. The source power was reconstructed within a factor of 2 of the true power for the given range of depths, even though the apparent brightness of the source varied by several orders of magnitude. The study also showed that reconstructions using optical properties measured in situ were superior to those based on data in the literature

  19. High-resolution room-temperature sample scanning superconducting quantum interference device microscope configurable for geological and biomagnetic applications

    International Nuclear Information System (INIS)

    We have developed a scanning superconducting quantum interference device (SQUID) microscope system with interchangeable sensor configurations for imaging magnetic fields of room-temperature (RT) samples with submillimeter resolution. The low-critical-temperature (Tc) niobium-based monolithic SQUID sensors are mounted on the tip of a sapphire and thermally anchored to the helium reservoir. A 25 μm sapphire window separates the vacuum space from the RT sample. A positioning mechanism allows us to adjust the sample-to-sensor spacing from the top of the Dewar. We achieved a sensor-to-sample spacing of 100 μm, which could be maintained for periods of up to four weeks. Different SQUID sensor designs are necessary to achieve the best combination of spatial resolution and field sensitivity for a given source configuration. For imaging thin sections of geological samples, we used a custom-designed monolithic low-Tc niobium bare SQUID sensor, with an effective diameter of 80 μm, and achieved a field sensitivity of 1.5 pT/Hz1/2 and a magnetic moment sensitivity of 5.4x10-18 A m2/Hz1/2 at a sensor-to-sample spacing of 100 μm in the white noise region for frequencies above 100 Hz. Imaging action currents in cardiac tissue requires a higher field sensitivity, which can only be achieved by compromising spatial resolution. We developed a monolithic low-Tc niobium multiloop SQUID sensor, with sensor sizes ranging from 250 μm to 1 mm, and achieved sensitivities of 480-180 fT/Hz1/2 in the white noise region for frequencies above 100 Hz, respectively. For all sensor configurations, the spatial resolution was comparable to the effective diameter and limited by the sensor-to-sample spacing. Spatial registration allowed us to compare high-resolution images of magnetic fields associated with action currents and optical recordings of transmembrane potentials to study the bidomain nature of cardiac tissue or to match petrography to magnetic field maps in thin sections of geological

  20. Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Ketelsen, D.; Werner, M.K.; Thomas, C.; Tsiflikas, I.; Reimann, A.; Claussen, C.D.; Heuschmid, M. [Tuebingen Univ. (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Koitschev, A. [Tuebingen Univ. (Germany). Abt. fuer Hals-Nasen-Ohrenheilkunde

    2009-01-15

    Purpose: Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Materials and Methods: Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). Results: In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 {+-} 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 {+-} 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). Conclusion: MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential. (orig.)

  1. Image quality analysis to reduce dental artifacts in head and neck imaging with dual-source computed tomography

    International Nuclear Information System (INIS)

    Purpose: Important oropharyngeal structures can be superimposed by metallic artifacts due to dental implants. The aim of this study was to compare the image quality of multiplanar reconstructions and an angulated spiral in dual-source computed tomography (DSCT) of the neck. Materials and Methods: Sixty-two patients were included for neck imaging with DSCT. MPRs from an axial dataset and an additional short spiral parallel to the mouth floor were acquired. Leading anatomical structures were then evaluated with respect to the extent to which they were affected by dental artifacts using a visual scale, ranging from 1 (least artifacts) to 4 (most artifacts). Results: In MPR, 87.1 % of anatomical structures had significant artifacts (3.12 ± 0.86), while in angulated slices leading anatomical structures of the oropharynx showed negligible artifacts (1.28 ± 0.46). The diagnostic growth due to primarily angulated slices concerning artifact severity was significant (p < 0.01). Conclusion: MPRs are not capable of reducing dental artifacts sufficiently. In patients with dental artifacts overlying the anatomical structures of the oropharynx, an additional short angulated spiral parallel to the floor of the mouth is recommended and should be applied for daily routine. As a result of the static gantry design of DSCT, the use of a flexible head holder is essential. (orig.)

  2. Imaging pulse wave velocity in mouse retina using swept-source OCT (Conference Presentation)

    Science.gov (United States)

    Song, Shaozhen; Wei, Wei; Wang, Ruikang K.

    2016-03-01

    Blood vessel dynamics has been a significant subject in cardiology and internal medicine, and pulse wave velocity (PWV) on artery vessels is a classic evaluation of arterial distensibility, and has never been ascertained as a cardiovascular risk marker. The aim of this study is to develop a high speed imaging technique to capture the pulsatile motion on mouse retina arteries with the ability to quantify PWV on any arterial vessels. We demonstrate a new non-invasive method to assess the vessel dynamics on mouse retina. A Swept-source optical coherence tomography (SS-OCT) system is used for imaging micro-scale blood vessel motion. The phase-stabilized SS-OCT provides a typical displacement sensitivity of 20 nm. The frame rate of imaging is ~16 kHz, at A-line rate of ~1.62 MHz, which allows the detection of transient pulse waves with adequate temporal resolution. Imaging volumes with repeated B-scans are obtained on mouse retina capillary bed, and the mouse oxymeter signal is recorded simultaneously. The pulse wave on artery and vein are resolved, and with the synchronized heart beat signal, the temporal delay on different vessel locations is determined. The vessel specific measurement of PWV is achieved for the first time with SS-OCT, for pulse waves propagating more than 100 cm/s. Using the novel methodology of retinal PWV assessment, it is hoped that the clinical OCT scans can provide extended diagnostic information of cardiology functionalities.

  3. Imaging C. elegans Embryos using an Epifluorescent Microscope and Open Source Software

    Science.gov (United States)

    Verbrugghe, Koen J. C.; Chan, Raymond C.

    2011-01-01

    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples1,2. Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage3, thus providing an ideal experiment model for studying questions in cell biology4,5and development6-9. C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis10,11) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis12-15). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters16,17. These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo18-21. In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process. PMID:21490567

  4. Beamlines of the Biomedical Imaging and Therapy Facility at the Canadian Light Source - Part 2

    International Nuclear Information System (INIS)

    The BioMedical Imaging and Therapy (BMIT) facility provides a world class facility with unique synchrotron-specific imaging and therapy capabilities. This paper describes Insertion Device (ID) beamline 05ID-2 with the beam terminated in the first experimental hutch: POE-2. The experimental methods available in POE-2 include: Microbeam Radiation Therapy (MRT), Synchrotron Stereotactic Radiation Therapy (SSRT) and absorption imaging (projection and Computed Tomography (CT)). The source for the ID beamline is a multi-pole superconductive 4.3 T wiggler, which can generate ∼30 kW of radiative power and deliver dose as high as 3000 Gy/s required for MRT program. The optics in POE-1 hutch prepares either monochromatic or filtered white beam that is used in POE-2. The Double Crystal (DC), bent Laue monochromator will prepare a beam over 10 cm wide at sample point, while spanning an energy range appropriate for imaging studies of animals (20-100+ keV). The experimental hutch will have a flexible positioning system that can handle subjects up to 120 kg. Several different cameras will be available with resolutions ranging from 4 μm to 150 μm. The latest update on the status of 05B1-1 bending magnet (BM) beamline, described in Part 1 [1], is also included.

  5. OPEN SOURCE IMAGE-PROCESSING TOOLS FOR LOW-COST UAV-BASED LANDSLIDE INVESTIGATIONS

    Directory of Open Access Journals (Sweden)

    U. Niethammer

    2012-09-01

    Full Text Available In recent years, the application of unmanned aerial vehicles (UAVs has become more common and the availability of lightweight digital cameras has enabled UAV-systems to represent affordable and practical remote sensing platforms, allowing flexible and high- resolution remote sensing investigations. In the course of numerous UAV-based remote sensing campaigns significant numbers of airborne photographs of two different landslides have been acquired. These images were used for ortho-mosaic and digital terrain model (DTM generation, thus allowing for high-resolution landslide monitoring. Several new open source image- and DTM- processing tools are now providing a complete remote sensing working cycle with the use of no commercial hard- or software.

  6. OnEarth: An Open Source Solution for Efficiently Serving High-Resolution Mapped Image Products

    Science.gov (United States)

    Thompson, C. K.; Plesea, L.; Hall, J. R.; Roberts, J. T.; Cechini, M. F.; Schmaltz, J. E.; Alarcon, C.; Huang, T.; McGann, J. M.; Chang, G.; Boller, R. A.; Ilavajhala, S.; Murphy, K. J.; Bingham, A. W.

    2013-12-01

    This presentation introduces OnEarth, a server side software package originally developed at the Jet Propulsion Laboratory (JPL), that facilitates network-based, minimum-latency geolocated image access independent of image size or spatial resolution. The key component in this package is the Meta Raster Format (MRF), a specialized raster file extension to the Geospatial Data Abstraction Library (GDAL) consisting of an internal indexed pyramid of image tiles. Imagery to be served is converted to the MRF format and made accessible online via an expandable set of server modules handling requests in several common protocols, including the Open Geospatial Consortium (OGC) compliant Web Map Tile Service (WMTS) as well as Tiled WMS and Keyhole Markup Language (KML). OnEarth has recently transitioned to open source status and is maintained and actively developed as part of GIBS (Global Imagery Browse Services), a collaborative project between JPL and Goddard Space Flight Center (GSFC). The primary function of GIBS is to enhance and streamline the data discovery process and to support near real-time (NRT) applications via the expeditious ingestion and serving of full-resolution imagery representing science products from across the NASA Earth Science spectrum. Open source software solutions are leveraged where possible in order to utilize existing available technologies, reduce development time, and enlist wider community participation. We will discuss some of the factors and decision points in transitioning OnEarth to a suitable open source paradigm, including repository and licensing agreement decision points, institutional hurdles, and perceived benefits. We will also provide examples illustrating how OnEarth is integrated within GIBS and other applications.

  7. Variational Blind Source Separation Toolbox and its Application to Hyperspectral Image Data

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ondřej; Šmídl, Václav

    Piscataway: IEEE Computer Society, 2015, s. 1336-1340. ISBN 978-0-9928626-4-0. ISSN 2076-1465. [23rd European Signal Processing Conference (EUSIPCO). Nice (FR), 31.08.2015-04.09.2015] R&D Projects: GA ČR GA13-29225S Institutional support: RVO:67985556 Keywords : Blind source separation * Variational Bayes method * Sparse prior * Hyperspectral image Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2015/AS/tichy-0447094.pdf

  8. Open Source software and social networks: Disruptive alternatives for medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ratib, Osman, E-mail: osman.ratib@hcuge.ch [Department of Medical Imaging and Information Sciences, University Hospital of Geneva, 24, rue Micheli-du-Crest, 1205 Geneva (Switzerland); Rosset, Antoine; Heuberger, Joris [Department of Medical Imaging and Information Sciences, University Hospital of Geneva, 24, rue Micheli-du-Crest, 1205 Geneva (Switzerland)

    2011-05-15

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. Methods: This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Observations: Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily

  9. Open Source software and social networks: Disruptive alternatives for medical imaging

    International Nuclear Information System (INIS)

    In recent decades several major changes in computer and communication technology have pushed the limits of imaging informatics and PACS beyond the traditional system architecture providing new perspectives and innovative approach to a traditionally conservative medical community. Disruptive technologies such as the world-wide-web, wireless networking, Open Source software and recent emergence of cyber communities and social networks have imposed an accelerated pace and major quantum leaps in the progress of computer and technology infrastructure applicable to medical imaging applications. Methods: This paper reviews the impact and potential benefits of two major trends in consumer market software development and how they will influence the future of medical imaging informatics. Open Source software is emerging as an attractive and cost effective alternative to traditional commercial software developments and collaborative social networks provide a new model of communication that is better suited to the needs of the medical community. Observations: Evidence shows that successful Open Source software tools have penetrated the medical market and have proven to be more robust and cost effective than their commercial counterparts. Developed by developers that are themselves part of the user community, these tools are usually better adapted to the user's need and are more robust than traditional software programs being developed and tested by a large number of contributing users. This context allows a much faster and more appropriate development and evolution of the software platforms. Similarly, communication technology has opened up to the general public in a way that has changed the social behavior and habits adding a new dimension to the way people communicate and interact with each other. The new paradigms have also slowly penetrated the professional market and ultimately the medical community. Secure social networks allowing groups of people to easily communicate

  10. Identification of radiation induced dark current sources in pinned photodiode CMOS image sensors

    International Nuclear Information System (INIS)

    This paper presents an investigation of Total Ionizing Dose (TID) induced dark current sources in Pinned Photodiodes (PPD) CMOS Image Sensors based on pixel design variations. The influence of several layout parameters is studied. Only one parameter is changed at a time enabling the direct evaluation of its contribution to the observed device degradation. By this approach, the origin of radiation induced dark current in PPD is localized on the pixel layout. The PPD peripheral shallow trench isolation does not seem to play a role in the degradation. The PPD area and a transfer gate contribution independent of the pixel dimensions appear to be the main sources of the TID induced dark current increase. This study also demonstrates that applying a negative voltage on the transfer gate during integration strongly reduces the radiation induced dark current. (authors)

  11. Multiple source associated particle imaging for simultaneous capture of multiple projections

    Science.gov (United States)

    Bingham, Philip R; Hausladen, Paul A; McConchi, Seth M; Mihalczo, John T; Mullens, James A

    2013-11-19

    Disclosed herein are representative embodiments of methods, apparatus, and systems for performing neutron radiography. For example, in one exemplary method, an object is interrogated with a plurality of neutrons. The plurality of neutrons includes a first portion of neutrons generated from a first neutron source and a second portion of neutrons generated from a second neutron source. Further, at least some of the first portion and the second portion are generated during a same time period. In the exemplary method, one or more neutrons from the first portion and one or more neutrons from the second portion are detected, and an image of the object is generated based at least in part on the detected neutrons from the first portion and the detected neutrons from the second portion.

  12. Imaging the Sources and Full Extent of the Sodium Tail of the Planet Mercury

    Science.gov (United States)

    Baumgardner, Jeffrey; Wilson, Jody; Mendillo, Michael

    2008-01-01

    Observations of sodium emission from Mercury can be used to describe the spatial and temporal patterns of sources and sinks in the planet s surface-boundary-exosphere. We report on new data sets that provide the highest spatial resolution of source regions at polar latitudes, as well as the extraordinary length of a tail of escaping Na atoms. The tail s extent of approx.1.5 degrees (nearly 1400 Mercury radii) is driven by radiation pressure effects upon Na atoms sputtered from the surface in the previous approx.5 hours. Wide-angle filtered-imaging instruments are thus capable of studying the time history of sputtering processes of sodium and other species at Mercury from ground-based observatories in concert with upcoming satellite missions to the planet. Plasma tails produced by photo-ionization of Na and other gases in Mercury s neutral tails may be observable by in-situ instruments.

  13. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone.

    Science.gov (United States)

    Cole, J M; Wood, J C; Lopes, N C; Poder, K; Abel, R L; Alatabi, S; Bryant, J S J; Jin, A; Kneip, S; Mecseki, K; Symes, D R; Mangles, S P D; Najmudin, Z

    2015-01-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications. PMID:26283308

  14. Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone

    Science.gov (United States)

    Cole, J. M.; Wood, J. C.; Lopes, N. C.; Poder, K.; Abel, R. L.; Alatabi, S.; Bryant, J. S. J.; Jin, A.; Kneip, S.; Mecseki, K.; Symes, D. R.; Mangles, S. P. D.; Najmudin, Z.

    2015-08-01

    A bright μm-sized source of hard synchrotron x-rays (critical energy Ecrit > 30 keV) based on the betatron oscillations of laser wakefield accelerated electrons has been developed. The potential of this source for medical imaging was demonstrated by performing micro-computed tomography of a human femoral trabecular bone sample, allowing full 3D reconstruction to a resolution below 50 μm. The use of a 1 cm long wakefield accelerator means that the length of the beamline (excluding the laser) is dominated by the x-ray imaging distances rather than the electron acceleration distances. The source possesses high peak brightness, which allows each image to be recorded with a single exposure and reduces the time required for a full tomographic scan. These properties make this an interesting laboratory source for many tomographic imaging applications.

  15. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    International Nuclear Information System (INIS)

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  16. Beamlines of the biomedical imaging and therapy facility at the Canadian light source – part 3

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W., E-mail: bmit@lightsource.ca [Canadian Light Source, Saskatoon, SK (Canada); Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physics, University of Helsinki (Finland); Thomlinson, William [Department of Physics, University of Saskatchewan, Saskatoon, SK (Canada)

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1–4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6–9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20–100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to –7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT

  17. Beamlines of the biomedical imaging and therapy facility at the Canadian light source - part 3

    Science.gov (United States)

    Wysokinski, Tomasz W.; Chapman, Dean; Adams, Gregg; Renier, Michel; Suortti, Pekka; Thomlinson, William

    2015-03-01

    The BioMedical Imaging and Therapy (BMIT) facility provides synchrotron-specific imaging and radiation therapy capabilities [1-4]. We describe here the Insertion Device (ID) beamline 05ID-2 with the beam terminated in the SOE-1 (Secondary Optical Enclosure) experimental hutch. This endstation is designed for imaging and therapy research primarily in animals ranging in size from mice to humans to horses, as well as tissue specimens including plants. Core research programs include human and animal reproduction, cancer imaging and therapy, spinal cord injury and repair, cardiovascular and lung imaging and disease, bone and cartilage growth and deterioration, mammography, developmental biology, gene expression research as well as the introduction of new imaging methods. The source for the ID beamline is a multi-pole superconducting 4.3 T wiggler [5]. The high field gives a critical energy over 20 keV. The high critical energy presents shielding challenges and great care must be taken to assess shielding requirements [6-9]. The optics in the POE-1 and POE-3 hutches [4,10] prepare a monochromatic beam that is 22 cm wide in the last experimental hutch SOE-1. The double crystal bent-Laue or Bragg monochromator, or the single-crystal K-edge subtraction (KES) monochromator provide an energy range appropriate for imaging studies in animals (20-100+ keV). SOE-1 (excluding the basement structure 4 m below the experimental floor) is 6 m wide, 5 m tall and 10 m long with a removable back wall to accommodate installation and removal of the Large Animal Positioning System (LAPS) capable of positioning and manipulating animals as large as a horse [11]. This end-station also includes a unique detector positioner with a vertical travel range of 4.9 m which is required for the KES imaging angle range of +12.3° to -7.3°. The detector positioner also includes moveable shielding integrated with the safety shutters. An update on the status of the other two end-stations at BMIT, described

  18. Deep hard X-ray source counts from a fluctuation analysis of ASCA SIS images

    CERN Document Server

    Gendreau, K C; Fabian, A C

    1997-01-01

    An analysis of the spatial fluctuations in 15 deep ASCA SIS0 images has been conducted in order to probe the 2-10 keV X-ray source counts down to a flux limit 2E-14 erg/cm2/s. Special care has been taken in modelling the fluctuations in terms of the sensitivity maps of every one of the 16 regions (5.6 x 5.6 arcmin2 each) in which the SIS0 has been divided, by means of raytracing simulations with improved optical constants in the X-ray telescope. The very extended `side lobes' (extending up to a couple of degrees) exhibited by these sensitivity maps make our analysis sensitive to both faint on-axis sources and brighter off-axis ones, the former being dominant. The source counts in the range (2-12)E-14 erg/cm2/s are found to be close to a euclidean form which extrapolates well to previous results from higher fluxes and in reasonable agreement with some recent ASCA surveys. However, our results disagree with the deep survey counts by Georgantopoulos et al. (1997). The possibility that the source counts flatten t...

  19. Design, development and first experiments on the X-ray imaging beamline at Indus-2 synchrotron source RRCAT, India.

    Science.gov (United States)

    Agrawal, A K; Singh, B; Kashyap, Y S; Shukla, M; Sarkar, P S; Sinha, Amar

    2015-11-01

    A full-field hard X-ray imaging beamline (BL-4) was designed, developed, installed and commissioned recently at the Indus-2 synchrotron radiation source at RRCAT, Indore, India. The bending-magnet beamline is operated in monochromatic and white beam mode. A variety of imaging techniques are implemented such as high-resolution radiography, propagation- and analyzer-based phase contrast imaging, real-time imaging, absorption and phase contrast tomography etc. First experiments on propagation-based phase contrast imaging and micro-tomography are reported. PMID:26524319

  20. Experimental observation of spatial jitters of a triple-pulse x-ray source based on the pinhole imaging technique

    OpenAIRE

    Wang, Yi; Yang, Zhiyong; Jing, Xiaobing; Li, Qin; Ding, Hengsong; Dai, Zhiyong

    2015-01-01

    In high-energy flash radiography, scattered photons will degrade the acquiring image, which limits the resolving power of the interface and density of the dense object. The application of large anti-scatter grid is capable of remarkably decreasing scattered photons, whereas requires a very stable source position in order to reduce the loss of signal photons in the grid structure. The pinhole imaging technique is applied to observe spatial jitters of a triple-pulse radiographic source produced...

  1. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization.

    Science.gov (United States)

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  2. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    Directory of Open Access Journals (Sweden)

    Gregor Strobbe

    2016-01-01

    Full Text Available Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time

  3. X-ray imaging using a tunable coherent X-ray source based on parametric X-ray radiation

    International Nuclear Information System (INIS)

    A novel X-ray source based on parametric X-ray radiation (PXR) has been employed for X-ray imaging at the Laboratory for Electron Beam Research and Application (LEBRA), Nihon University. Notable features of PXR are tunable energy, monochromaticity with spatial chirp, narrow local bandwidth and spatial coherence. Since the X-ray beam from the PXR system has a large irradiation area with uniform flux density, the PXR-based source is suited for X-ray imaging, especially for application to phase-contrast imaging. Despite the cone-like X-ray beam, diffraction-enhanced imaging (DEI) can be employed as a phase contrast imaging technique. DEI experiments were performed using 14- to 34-keV X-rays and the phase-gradient images were obtained. The results demonstrated the capability of PXR as an X-ray source for phase-contrast imaging with a large irradiation field attributed to the cone-beam effect. Given the significant properties of the LEBRA-PXR source, the result suggests the possible construction of a compact linac-driven PXR-Imaging instrument and its application to medical diagnoses

  4. Towards Complete, Geo-Referenced 3d Models from Crowd-Sourced Amateur Images

    Science.gov (United States)

    Hartmann, W.; Havlena, M.; Schindler, K.

    2016-06-01

    Despite a lot of recent research, photogrammetric reconstruction from crowd-sourced imagery is plagued by a number of recurrent problems. (i) The resulting models are chronically incomplete, because even touristic landmarks are photographed mostly from a few "canonical" viewpoints. (ii) Man-made constructions tend to exhibit repetitive structure and rotational symmetries, which lead to gross errors in the 3D reconstruction and aggravate the problem of incomplete reconstruction. (iii) The models are normally not geo-referenced. In this paper, we investigate the possibility of using sparse GNSS geo-tags from digital cameras to address these issues and push the boundaries of crowd-sourced photogrammetry. A small proportion of the images in Internet collections (≍ 10 %) do possess geo-tags. While the individual geo-tags are very inaccurate, they nevertheless can help to address the problems above. By providing approximate geo-reference for partial reconstructions they make it possible to fuse those pieces into more complete models; the capability to fuse partial reconstruction opens up the possibility to be more restrictive in the matching phase and avoid errors due to repetitive structure; and collectively, the redundant set of low-quality geo-tags can provide reasonably accurate absolute geo-reference. We show that even few, noisy geo-tags can help to improve architectural models, compared to puristic structure-from-motion only based on image correspondence.

  5. MOIRCS Deep Survey. IX. Deep Near-Infrared Imaging Data and Source Catalog

    CERN Document Server

    Kajisawa, Masaru; Tanaka, Ichi; Yamada, Toru; Akiyama, Masayuki; Suzuki, Ryuji; Tokoku, Chihiro; Uchimoto, Yuka Katsuno; Konishi, Masahiro; Yoshikawa, Tomohiro; Nishimura, Tetsuo; Omata, Koji; Ouchi, Masami; Iwata, Ikuru; Hamana, Takashi; Onodera, Masato

    2010-01-01

    We present deep J-, H-, and Ks-band imaging data of the MOIRCS Deep Survey (MODS), which was carried out with Multi-Object Infrared Camera and Spectrograph (MOIRCS) mounted on the Subaru telescope in the GOODS-North region. The data reach 5sigma total limiting magnitudes for point sources of J=23.9, H=22.8, and Ks=22.8 (Vega magnitude) over 103 arcmin^2 (wide field). In 28 arcmin^2 of the survey area, which is ultra deep field of the MODS (deep field), the data reach the 5sigma depths of J=24.8, H=23.4, and Ks=23.8. The spatial resolutions of the combined images are FWHM ~ 0.6 arcsec and ~ 0.5 arcsec for the wide and deep fields in all bands, respectively. Combining the MODS data with the multi-wavelength public data taken with the HST, Spitzer, and other ground-based telescopes in the GOODS field, we construct a multi-wavelength photometric catalog of Ks-selected sources. Using the catalog, we present Ks-band number counts and near-infrared color distribution of the detected objects, and demonstrate some sel...

  6. Improvement of dem Generation from Aster Images Using Satellite Jitter Estimation and Open Source Implementation

    Science.gov (United States)

    Girod, L.; Nuth, C.; Kääb, A.

    2015-12-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) system embarked on the Terra (EOS AM-1) satellite has been a source of stereoscopic images covering the whole globe at a 15m resolution at a consistent quality for over 15 years. The potential of this data in terms of geomorphological analysis and change detection in three dimensions is unrivaled and needs to be exploited. However, the quality of the DEMs and ortho-images currently delivered by NASA (ASTER DMO products) is often of insufficient quality for a number of applications such as mountain glacier mass balance. For this study, the use of Ground Control Points (GCPs) or of other ground truth was rejected due to the global "big data" type of processing that we hope to perform on the ASTER archive. We have therefore developed a tool to compute Rational Polynomial Coefficient (RPC) models from the ASTER metadata and a method improving the quality of the matching by identifying and correcting jitter induced cross-track parallax errors. Our method outputs more accurate DEMs with less unmatched areas and reduced overall noise. The algorithms were implemented in the open source photogrammetric library and software suite MicMac.

  7. Sources

    International Nuclear Information System (INIS)

    This paper discusses the sources of radiation in the narrow perspective of radioactivity and the even narrow perspective of those sources that concern environmental management and restoration activities at DOE facilities, as well as a few related sources. Sources of irritation, Sources of inflammatory jingoism, and Sources of information. First, the sources of irritation fall into three categories: No reliable scientific ombudsman to speak without bias and prejudice for the public good, Technical jargon with unclear definitions exists within the radioactive nomenclature, and Scientific community keeps a low-profile with regard to public information. The next area of personal concern are the sources of inflammation. This include such things as: Plutonium being described as the most dangerous substance known to man, The amount of plutonium required to make a bomb, Talk of transuranic waste containing plutonium and its health affects, TMI-2 and Chernobyl being described as Siamese twins, Inadequate information on low-level disposal sites and current regulatory requirements under 10 CFR 61, Enhanced engineered waste disposal not being presented to the public accurately. Numerous sources of disinformation regarding low level radiation high-level radiation, Elusive nature of the scientific community, The Federal and State Health Agencies resources to address comparative risk, and Regulatory agencies speaking out without the support of the scientific community

  8. Multimodal Imaging Using a 11B(d,nγ)12C Source

    Science.gov (United States)

    Nattress, Jason; Rose, Paul; Mayer, Michal; Wonders, Marc; Wilhelm, Kyle; Erickson, Anna; Jovanovic, Igor; Multimodal Imaging; Nuclear Detection (MIND) in Active Interrogation Collaboration

    2016-03-01

    Detection of shielded special nuclear material (SNM) still remains one of the greatest challenges facing nuclear security, where small signal-to-background ratios result from complex, challenging configurations of practical objects. Passive detection relies on the spontaneous radioactive decay, whereas active interrogation (AI) uses external probing radiation to identify and characterize the material. AI provides higher signal intensity, providing a more viable method for SNM detection. New and innovative approaches are needed to overcome specific application constraints, such as limited scanning time. We report on a new AI approach that integrates both neutron and gamma transmission signatures to deduce specific material properties that can be utilized to aid SNM identification. The approach uses a single AI source, single detector type imaging system based on the 11B(d,nγ)12C reaction and an array of eight EJ-309 liquid scintillators, respectively. An integral transmission imaging approach has been employed initially for both neutrons and photons, exploiting the detectors' particle discrimination properties. Representative object images using neutrons and photons will be presented.

  9. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  10. Longitudinal study of arteriogenesis with swept source optical coherence tomography and hyperspectral imaging

    Science.gov (United States)

    Poole, Kristin M.; Patil, Chetan A.; Nelson, Christopher E.; McCormack, Devin R.; Madonna, Megan C.; Duvall, Craig L.; Skala, Melissa C.

    2014-03-01

    Peripheral arterial disease (PAD) is an atherosclerotic disease of the extremities that leads to high rates of myocardial infarction and stroke, increased mortality, and reduced quality of life. PAD is especially prevalent in diabetic patients, and is commonly modeled by hind limb ischemia in mice to study collateral vessel development and test novel therapies. Current techniques used to assess recovery cannot obtain quantitative, physiological data non-invasively. Here, we have applied hyperspectral imaging and swept source optical coherence tomography (OCT) to study longitudinal changes in blood oxygenation and vascular morphology, respectively, intravitally in the diabetic mouse hind limb ischemia model. Additionally, recommended ranges for controlling physiological variability in blood oxygenation with respect to respiration rate and body core temperature were determined from a control animal experiment. In the longitudinal study with diabetic mice, hyperspectral imaging data revealed the dynamics of blood oxygenation recovery distally in the ischemic footpad. In diabetic mice, there is an early increase in oxygenation that is not sustained in the long term. Quantitative analysis of vascular morphology obtained from Hessian-filtered speckle variance OCT volumes revealed temporal dynamics in vascular density, total vessel length, and vessel diameter distribution in the adductor muscle of the ischemic limb. The combination of hyperspectral imaging and speckle variance OCT enabled acquisition of novel functional and morphological endpoints from individual animals, and provides a more robust platform for future preclinical evaluations of novel therapies for PAD.

  11. Land use mapping from CBERS-2 images with open source tools by applying different classification algorithms

    Science.gov (United States)

    Sanhouse-García, Antonio J.; Rangel-Peraza, Jesús Gabriel; Bustos-Terrones, Yaneth; García-Ferrer, Alfonso; Mesas-Carrascosa, Francisco J.

    2016-02-01

    Land cover classification is often based on different characteristics between their classes, but with great homogeneity within each one of them. This cover is obtained through field work or by mean of processing satellite images. Field work involves high costs; therefore, digital image processing techniques have become an important alternative to perform this task. However, in some developing countries and particularly in Casacoima municipality in Venezuela, there is a lack of geographic information systems due to the lack of updated information and high costs in software license acquisition. This research proposes a low cost methodology to develop thematic mapping of local land use and types of coverage in areas with scarce resources. Thematic mapping was developed from CBERS-2 images and spatial information available on the network using open source tools. The supervised classification method per pixel and per region was applied using different classification algorithms and comparing them among themselves. Classification method per pixel was based on Maxver algorithms (maximum likelihood) and Euclidean distance (minimum distance), while per region classification was based on the Bhattacharya algorithm. Satisfactory results were obtained from per region classification, where overall reliability of 83.93% and kappa index of 0.81% were observed. Maxver algorithm showed a reliability value of 73.36% and kappa index 0.69%, while Euclidean distance obtained values of 67.17% and 0.61% for reliability and kappa index, respectively. It was demonstrated that the proposed methodology was very useful in cartographic processing and updating, which in turn serve as a support to develop management plans and land management. Hence, open source tools showed to be an economically viable alternative not only for forestry organizations, but for the general public, allowing them to develop projects in economically depressed and/or environmentally threatened areas.

  12. JHelioviewer: Open-Source Software for Discovery and Image Access in the Petabyte Age

    Science.gov (United States)

    Mueller, D.; Dimitoglou, G.; Garcia Ortiz, J.; Langenberg, M.; Nuhn, M.; Dau, A.; Pagel, S.; Schmidt, L.; Hughitt, V. K.; Ireland, J.; Fleck, B.

    2011-12-01

    The unprecedented torrent of data returned by the Solar Dynamics Observatory is both a blessing and a barrier: a blessing for making available data with significantly higher spatial and temporal resolution, but a barrier for scientists to access, browse and analyze them. With such staggering data volume, the data is accessible only from a few repositories and users have to deal with data sets effectively immobile and practically difficult to download. From a scientist's perspective this poses three challenges: accessing, browsing and finding interesting data while avoiding the proverbial search for a needle in a haystack. To address these challenges, we have developed JHelioviewer, an open-source visualization software that lets users browse large data volumes both as still images and movies. We did so by deploying an efficient image encoding, storage, and dissemination solution using the JPEG 2000 standard. This solution enables users to access remote images at different resolution levels as a single data stream. Users can view, manipulate, pan, zoom, and overlay JPEG 2000 compressed data quickly, without severe network bandwidth penalties. Besides viewing data, the browser provides third-party metadata and event catalog integration to quickly locate data of interest, as well as an interface to the Virtual Solar Observatory to download science-quality data. As part of the ESA/NASA Helioviewer Project, JHelioviewer offers intuitive ways to browse large amounts of heterogeneous data remotely and provides an extensible and customizable open-source platform for the scientific community. In addition, the easy-to-use graphical user interface enables the general public and educators to access, enjoy and reuse data from space missions without barriers.

  13. HST/ACS Imaging of Omega Centauri: Optical Counterparts of Chandra X-Ray Sources

    CERN Document Server

    Cool, Adrienne M; Arias, Tersi; Brochmann, Michelle; Dorfman, Jason; Gafford, April; White, Vivian; Anderson, Jay

    2012-01-01

    We present results of a search for optical counterparts of X-ray sources in and toward the globular cluster Omega Centauri (NGC 5139) using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The ACS data consist of a mosaic of Wide Field Channel (WFC) images obtained using F625W, F435W, and F658N filters; with 9 pointings we cover the central ~10'x10' of the cluster and encompass 109 known Chandra sources. We find promising optical counterparts for 59 of the sources, ~40 of which are likely to be associated with the cluster. These include 27 candidate cataclysmic variables (CVs), 24 of which are reported here for the first time. Fourteen of the CV candidates are very faint, with absolute magnitudes in the range M_625 = 10.4 - 12.6, making them comparable in brightness to field CVs near the period minimum discovered in the SDSS (Gansicke et al. 2009). Additional optical counterparts include three BY Dra candidates, a possible blue straggler, and a previously-reported quiescent low-mass X-ray ...

  14. High-resolution computational ghost diffraction with shaped incoherent sources and its applicability in coherent diffraction imaging

    Science.gov (United States)

    Luo, Chun-Ling

    2016-01-01

    Computational ghost diffraction (CGD) with a higher-order cosh-Gaussian modulated incoherent source is investigated theoretically. The corresponding numerical simulations are given to see clearly the effects of the parameters of the higher-order cosh-Gaussian source on the imaging quality. Our results show that the resolution of the CGD patterns can be significantly improved by properly varying the source parameters. In addition, we numerically study the effect of the propagation distances in the CGD system and explore the CGD applicability in coherent diffraction imaging. These results may be helpful for implementation of high-resolution x-ray diffraction.

  15. Experimental observation of spatial jitters of a triple-pulse x-ray source based on the pinhole imaging technique

    CERN Document Server

    Wang, Yi; Jing, Xiaobing; Li, Qin; Ding, Hengsong; Dai, Zhiyong

    2015-01-01

    In high-energy flash radiography, scattered photons will degrade the acquiring image, which limits the resolving power of the interface and density of the dense object. The application of large anti-scatter grid is capable of remarkably decreasing scattered photons, whereas requires a very stable source position in order to reduce the loss of signal photons in the grid structure. The pinhole imaging technique is applied to observe spatial jitters of a triple-pulse radiographic source produced by a linear induction accelerator. Numerical simulations are taken to analyze the performance of the imaging technique with same or close parameters of the pinhole object and experimental alignment Experiments are carried out to observe spatial jitters of the source between different measurements. Deviations of the source position between different pulses are also measured in each experiment.

  16. Influence of tube voltage and current on in-line phase contrast imaging using a microfocus x-ray source

    Institute of Scientific and Technical Information of China (English)

    Li Zheng; Yu Ai-Min; Li Cheng-Quan

    2007-01-01

    In-line x-ray phase contrast imaging has attracted much attention due to two major advantages:its effectiveness in imaging weakly absorbing materials,and the simplicity of its facilities.In this paper a comprehensive theory based on Wigner distribution developed by Wu and Liu [Med.Phys.31 2378-2384(2004)] is reviewed.The influence of x-ray source and detector on the image is discussed.Experiments using a microfocus x-ray source and a CCD detector are conducted,which show the role of two key factors on imaging:the tube voltage and tube current.High tube current and moderate tube voltage are suggested for imaging.

  17. Virtual Monochromatic Images from Dual-Energy Multidetector CT: Variance in CT Numbers from the Same Lesion between Single-Source Projection-based and Dual-Source Image-based Implementations.

    Science.gov (United States)

    Mileto, Achille; Barina, Andrew; Marin, Daniele; Stinnett, Sandra S; Roy Choudhury, Kingshuk; Wilson, Joshua M; Nelson, Rendon C

    2016-04-01

    Purpose To determine the variance in virtual monochromatic computed tomography (CT) numbers from the same lesion, comparing the two clinically available dual-energy multidetector CT hardware implementations (single-source projection-based and dual-source image-based), in a phantom-based simulated abdominal environment. Materials and Methods This phantom-based study was exempt from institutional review board oversight. Polyethylene terephthalate spheres (15 and 18 mm) with two iodine-to-saline dilutions (0.8 and 1.2 mg of iodine per millilliter) were serially suspended in a cylindrical polypropylene bottle filled with diluted iodinated contrast material. The bottle was placed into a 36-cm-wide torso-shaped water phantom simulating the abdomen of a medium-sized patient. Dual-energy (80/140 kVp) and single-energy (100 and 120 kVp) scans were obtained with single-source and dual-source multidetector CT implementations. Virtual monochromatic images were reconstructed at energy levels of 40-140 keV (in 10-keV increments) in either the projection-space or image-space domain. A multivariate regression analysis approach was used to investigate the effect of energy level, lesion size, lesion iodine content, and implementation type on measured CT numbers. Results There were significant differences in the attenuation values measured in the simulated lesions with the single-source projection-based platform and the dual-source image-based implementation (P platforms respond differently to changes in investigated variables (P virtual monochromatic CT numbers from the same lesion examined with single-source projection-based and dual-source image-based implementations. The magnitude of the variance is a function of the selected energy level and the lesion iodine content. (©) RSNA, 2015 Online supplemental material is available for this article. PMID:26536403

  18. Open source deformable image registration system for treatment planning and recurrence CT scans

    DEFF Research Database (Denmark)

    Zukauskaite, Ruta; Brink, Carsten; Hansen, Christian Rønn;

    2016-01-01

    manually contoured eight anatomical regions-of-interest (ROI) twice on pCT and once on rCT. METHODS: pCT and rCT images were deformably registered using the open source software elastix. Mean surface distance (MSD) and Dice similarity coefficient (DSC) between contours were used for validation of DIR. A...... measure for delineation uncertainty was estimated by assessing MSD from the re-delineations of the same ROI on pCT. DIR and manual contouring uncertainties were correlated with tissue volume and rigidity. RESULTS: MSD varied 1-3 mm for different ROIs for DIR and 1-1.5 mm for re-delineated ROIs performed...

  19. Non-contact time-resolved diffuse reflectance imaging at null source-detector separation.

    Science.gov (United States)

    Mazurenka, M; Jelzow, A; Wabnitz, H; Contini, D; Spinelli, L; Pifferi, A; Cubeddu, R; Mora, A Dalla; Tosi, A; Zappa, F; Macdonald, R

    2012-01-01

    We report results of the proof-of-principle tests of a novel non-contact tissue imaging system. The system utilizes a quasi-null source-detector separation approach for time-domain near-infrared spectroscopy, taking advantage of an innovative state-of-the-art fast-gated single photon counting detector. Measurements on phantoms demonstrate the feasibility of the non-contact approach for the detection of optically absorbing perturbations buried up to a few centimeters beneath the surface of a tissue-like turbid medium. The measured depth sensitivity and spatial resolution of the new system are close to the values predicted by Monte Carlo simulations for the inhomogeneous medium and an ideal fast-gated detector, thus proving the feasibility of the non-contact approach for high density diffuse reflectance measurements on tissue. Potential applications of the system are also discussed. PMID:22274351

  20. Advanced Laser-Compton Gamma-Ray Sources for Nuclear Materials Detection, Assay and Imaging

    Science.gov (United States)

    Barty, C. P. J.

    2015-10-01

    Highly-collimated, polarized, mono-energetic beams of tunable gamma-rays may be created via the optimized Compton scattering of pulsed lasers off of ultra-bright, relativistic electron beams. Above 2 MeV, the peak brilliance of such sources can exceed that of the world's largest synchrotrons by more than 15 orders of magnitude and can enable for the first time the efficient pursuit of nuclear science and applications with photon beams, i.e. Nuclear Photonics. Potential applications are numerous and include isotope-specific nuclear materials management, element-specific medical radiography and radiology, non-destructive, isotope-specific, material assay and imaging, precision spectroscopy of nuclear resonances and photon-induced fission. This review covers activities at the Lawrence Livermore National Laboratory related to the design and optimization of mono-energetic, laser-Compton gamma-ray systems and introduces isotope-specific nuclear materials detection and assay applications enabled by them.

  1. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Science.gov (United States)

    Krenkel, Martin; Töpperwien, Mareike; Dullin, Christian; Alves, Frauke; Salditt, Tim

    2016-03-01

    We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  2. Soft x-ray source for nanostructure imaging using femtosecond-laser-irradiated clusters

    International Nuclear Information System (INIS)

    The intense soft x-ray light source using the supersonic expansion of the mixed gas of He and CO2, when irradiated by a femtosecond Ti:sapphire laser pulse, is observed to enhance the radiation of soft x-rays from the CO2 clusters. Using this soft x-ray emissions, nanostructure images of 100-nm-thick Mo foils in a wide field of view (mm2 scale) with high spatial resolution (800 nm) are obtained with high dynamic range LiF crystal detectors. The local inhomogeneities of soft x-ray absorption by the nanometer-thick foils is measured with an accuracy of less than ±3%

  3. APERO, AN OPEN SOURCE BUNDLE ADJUSMENT SOFTWARE FOR AUTOMATIC CALIBRATION AND ORIENTATION OF SET OF IMAGES

    Directory of Open Access Journals (Sweden)

    M. Pierrot Deseilligny

    2012-09-01

    Full Text Available IGN has developed a set of photogrammetric tools, APERO and MICMAC, for computing 3D models from set of images. This software, developed initially for its internal needs are now delivered as open source code. This paper focuses on the presentation of APERO the orientation software. Compared to some other free software initiatives, it is probably more complex but also more complete, its targeted user is rather professionals (architects, archaeologist, geomophologist than people. APERO uses both computer vision approach for estimation of initial solution and photogrammetry for a rigorous compensation of the total error; it has a large library of parametric model of distortion allowing a precise modelization of all the kind of pinhole camera we know, including several model of fish-eye; there is also several tools for geo-referencing the result. The results are illustrated on various application, including the data-set of 3D-Arch workshop.

  4. Propagation-based phase-contrast tomography for high-resolution lung imaging with laboratory sources

    Directory of Open Access Journals (Sweden)

    Martin Krenkel

    2016-03-01

    Full Text Available We have performed high-resolution phase-contrast tomography on whole mice with a laboratory setup. Enabled by a high-brilliance liquid-metal-jet source, we show the feasibility of propagation-based phase contrast in local tomography even in the presence of strongly absorbing surrounding tissue as it is the case in small animal imaging of the lung. We demonstrate the technique by reconstructions of the mouse lung for two different fields of view, covering the whole organ, and a zoom to the local finer structure of terminal airways and alveoli. With a resolution of a few micrometers and the wide availability of the technique, studies of larger biological samples at the cellular level become possible.

  5. Low Dose X-Ray Sources and High Quantum Efficiency Sensors: The Next Challenge in Dental Digital Imaging?

    International Nuclear Information System (INIS)

    Objective(s). The major challenge encountered to decrease the milliamperes (mA) level in X-ray imaging systems is the quantum noise phenomena. This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI) prototype comprising a low mA X-ray source and a novel microlens-based sensor relative to current imaging technologies. Study Design. A LDXI in static (group 1) and dynamic (group 2) modes was compared to medical fluoroscopy (group 3), digital intraoral radiography (group 4), and CBCT scan (group 5) using a dental phantom. Results. The Mann-Whitney test showed no statistical significance (α = 0.01) in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds) between groups 1 and 5 and 2 and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5. Conclusions. The LDXI proved the concept for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector level principles with microlens could be applied to current imaging technologies to considerably reduce dose exposure without compromising image resolution in the near future

  6. Low Dose X-Ray Sources and High Quantum Efficiency Sensors: The Next Challenge in Dental Digital Imaging?

    International Nuclear Information System (INIS)

    Objective(s). The major challenge encountered to decrease the milli amperes (mA) level in X-ray imaging systems is the quantum noise phenomena. This investigation evaluated dose exposure and image resolution of a low dose X-ray imaging (LDXI) prototype comprising a low mA X-ray source and a novel micro lens-based sensor relative to current imaging technologies. Study Design. A LDXI in static (group 1) and dynamic (group 2) modes was compared to medical fluoroscopy (group 3), digital intraoral radiography (group 4), and CBCT scan (group 5) using a dental phantom. Results. The Mann-Whitney test showed no statistical significance (α=0.01) in dose exposure between groups 1 and 3 and 1 and 4 and timing exposure (seconds) between groups 1 and 5 and 2 and 3. Image resolution test showed group 1 > group 4 > group 2 > group 3 > group 5. Conclusions. The LDXI proved the concept for obtaining a high definition image resolution for static and dynamic radiography at lower or similar dose exposure and smaller pixel size, respectively, when compared to current imaging technologies. Lower mA at the X-ray source and high QE at the detector level principles with micro lens could be applied to current imaging technologies to considerably reduce dose exposure without compromising image resolution in the near future.

  7. The Role of Skull Modeling in EEG Source Imaging for Patients with Refractory Temporal Lobe Epilepsy.

    Science.gov (United States)

    Montes-Restrepo, Victoria; Carrette, Evelien; Strobbe, Gregor; Gadeyne, Stefanie; Vandenberghe, Stefaan; Boon, Paul; Vonck, Kristl; Mierlo, Pieter van

    2016-07-01

    We investigated the influence of different skull modeling approaches on EEG source imaging (ESI), using data of six patients with refractory temporal lobe epilepsy who later underwent successful epilepsy surgery. Four realistic head models with different skull compartments, based on finite difference methods, were constructed for each patient: (i) Three models had skulls with compact and spongy bone compartments as well as air-filled cavities, segmented from either computed tomography (CT), magnetic resonance imaging (MRI) or a CT-template and (ii) one model included a MRI-based skull with a single compact bone compartment. In all patients we performed ESI of single and averaged spikes marked in the clinical 27-channel EEG by the epileptologist. To analyze at which time point the dipole estimations were closer to the resected zone, ESI was performed at two time instants: the half-rising phase and peak of the spike. The estimated sources for each model were validated against the resected area, as indicated by the postoperative MRI. Our results showed that single spike analysis was highly influenced by the signal-to-noise ratio (SNR), yielding estimations with smaller distances to the resected volume at the peak of the spike. Although averaging reduced the SNR effects, it did not always result in dipole estimations lying closer to the resection. The proposed skull modeling approaches did not lead to significant differences in the localization of the irritative zone from clinical EEG data with low spatial sampling density. Furthermore, we showed that a simple skull model (MRI-based) resulted in similar accuracy in dipole estimation compared to more complex head models (based on CT- or CT-template). Therefore, all the considered head models can be used in the presurgical evaluation of patients with temporal lobe epilepsy to localize the irritative zone from low-density clinical EEG recordings. PMID:26936594

  8. Profile of new green fluorescent protein transgenic Jinhua pigs as an imaging source

    Science.gov (United States)

    Kawarasaki, Tatsuo; Uchiyama, Kazuhiko; Hirao, Atsushi; Azuma, Sadahiro; Otake, Masayoshi; Shibata, Masatoshi; Tsuchiya, Seiko; Enosawa, Shin; Takeuchi, Koichi; Konno, Kenjiro; Hakamata, Yoji; Yoshino, Hiroyuki; Wakai, Takuya; Ookawara, Shigeo; Tanaka, Hozumi; Kobayashi, Eiji; Murakami, Takashi

    2009-09-01

    Animal imaging sources have become an indispensable material for biological sciences. Specifically, gene-encoded biological probes serve as stable and high-performance tools to visualize cellular fate in living animals. We use a somatic cell cloning technique to create new green fluorescent protein (GFP)-expressing Jinhua pigs with a miniature body size, and characterized the expression profile in various tissues/organs and ex vivo culture conditions. The born GFP-transgenic pig demonstrate an organ/tissue-dependent expression pattern. Strong GFP expression is observed in the skeletal muscle, pancreas, heart, and kidney. Regarding cellular levels, bone-marrow-derived mesenchymal stromal cells, hepatocytes, and islet cells of the pancreas also show sufficient expression with the unique pattern. Moreover, the cloned pigs demonstrate normal growth and fertility, and the introduced GFP gene is stably transmitted to pigs in subsequent generations. The new GFP-expressing Jinhua pigs may be used as new cellular/tissue light resources for biological imaging in preclinical research fields such as tissue engineering, experimental regenerative medicine, and transplantation.

  9. Novel source follower transistor structure without lightly doped drain for high performance CMOS image sensor

    Science.gov (United States)

    Song, Hyeong-Sub; Kwon, Sung-Kyu; Jeon, So-Ra; Oh, Dong-Jun; Lee, Ga-Won; Lee, Hi-Deok

    2016-08-01

    To realize high-resolution pixels in the CMOS image sensor, it is necessary to reduce low-frequency noise, particularly random telegraph signal (RTS) noise of the source-follower transistor (SFT). To achieve less relative variation of drain noise current, ΔI D/I D, a metal–oxide–semiconductor field-effect transistor structure without the lightly doped drain (LDD) for the SFT transistor is proposed. Then, a comparison of RTS noise characteristics between the proposed SFT structure without LDD and the conventional SFT structure with LDD was conducted. Although the RTS noise occurrence probability of the proposed SFT structure without LDD is somewhat greater than that of the conventional SFT structure with LDD, the amplitude of relative variation of drain noise current of the proposed SFT structure is significantly less than that of the conventional SFT. Despite changes in several factors in the proposed SFT, such as effective channel length, trap depth profile in gate oxide, and random dopant fluctuation (RDF), it is believed that the change of trap depth profile is a primary factor for the improved RTS characteristic. Therefore, the proposed SFT is highly desirable for the high-resolution CMOS image sensor.

  10. Implementation of an imaging spectrometer for localization and identification of radioactive sources

    International Nuclear Information System (INIS)

    Spatial localization of radioactive sources is currently a main issue interesting nuclear industry as well as homeland security applications and can be achieved using gamma cameras. For several years, CEA LIST has been designing a new system, called GAMPIX, with improved sensitivity, portability and ease of use. The main remaining limitation of this system is the lack of spectrometric information, preventing the identification of radioactive materials. This article describes the development of an imaging spectrometer based on the GAMPIX technology. Experimental tests have been carried out according to both spectrometric methods enabled by the pixelated Timepix chip used in the GAMPIX gamma camera. The first method is based on the size of the impacts produced by a gamma-ray energy deposition in the detection matrix. The second one uses the Time over Threshold (ToT) mode of the Timepix chip and deals with time spent by pulses generated by charge preamplifiers over a user-specified threshold. Both energy resolution and sensitivity studies demonstrated the superiority of the ToT approach which will consequently be further explored. Energy calibration, tests of different pixel sizes for the Timepix chip and use of the Medipix3 chip are future milestones to improve performances of the newly implemented imaging spectrometer

  11. Study of phase contrast imaging for carbon fiber, polystyrene and lung tissue using monochromatic and polychromatic X-ray sources

    International Nuclear Information System (INIS)

    Phase contrast imaging is a new method of radiography in which the information of change in phase of the X-rays as it passes through the object gets reflected in the intensity. This leads to a better sensitivity and contrast than the conventional absorption radiography. In this paper we discuss the simulation studies of phase contrast imaging using monochromatic and polychromatic X-ray point source for simple two- and three-dimensional objects like circular and spherical objects (made up of carbon-fiber, polystyrene and lung tissue). The advantages of refraction contrast images are discussed in terms of contrast and resolution, and a comparison is made with absorption images. The result obtained shows considerable improvement in contrast with phase contrast imaging as compared to conventional absorption radiography. These results also guide us in proper selection of source to object distance, object to detector distance, etc. These results are proposed to be used in our experiment on phase contrast imaging with microfocus X-rays. The technique is going to be very useful in improving the resolution in the X-ray imaging for the composites, and in detection of cracks at micron level resolution. Moreover, if the doses can be controlled by proper selection of the detector or the source, it can have clinical application in the mammography

  12. Dual-source spiral CT with pitch up to 3.2 and 75 ms temporal resolution: Image reconstruction and assessment of image quality

    Energy Technology Data Exchange (ETDEWEB)

    Flohr, Thomas G.; Leng Shuai; Yu Lifeng; Allmendinger, Thomas; Bruder, Herbert; Petersilka, Martin; Eusemann, Christian D.; Stierstorfer, Karl; Schmidt, Bernhard; McCollough, Cynthia H. [Siemens Healthcare, Computed Tomography, 91301 Forchheim, Germany and Department of Diagnostic Radiology, Eberhard-Karls-Universitaet, 72076 Tuebingen (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States); Siemens Healthcare, Computed Tomography, 91301 Forchheim (Germany); Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2009-12-15

    Purpose: To present the theory for image reconstruction of a high-pitch, high-temporal-resolution spiral scan mode for dual-source CT (DSCT) and evaluate its image quality and dose. Methods: With the use of two x-ray sources and two data acquisition systems, spiral CT exams having a nominal temporal resolution per image of up to one-quarter of the gantry rotation time can be acquired using pitch values up to 3.2. The scan field of view (SFOV) for this mode, however, is limited to the SFOV of the second detector as a maximum, depending on the pitch. Spatial and low contrast resolution, image uniformity and noise, CT number accuracy and linearity, and radiation dose were assessed using the ACR CT accreditation phantom, a 30 cm diameter cylindrical water phantom or a 32 cm diameter cylindrical PMMA CTDI phantom. Slice sensitivity profiles (SSPs) were measured for different nominal slice thicknesses, and an anthropomorphic phantom was used to assess image artifacts. Results were compared between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2. In addition, image quality and temporal resolution of an ECG-triggered version of the DSCT high-pitch spiral scan mode were evaluated with a moving coronary artery phantom, and radiation dose was assessed in comparison with other existing cardiac scan techniques. Results: No significant differences in quantitative measures of image quality were found between single-source scans at pitch=1.0 and dual-source scans at pitch=3.2 for spatial and low contrast resolution, CT number accuracy and linearity, SSPs, image uniformity, and noise. The pitch value (1.6{<=}pitch{<=}3.2) had only a minor impact on radiation dose and image noise when the effective tube current time product (mA s/pitch) was kept constant. However, while not severe, artifacts were found to be more prevalent for the dual-source pitch=3.2 scan mode when structures varied markedly along the z axis, particularly for head scans. Images of the moving

  13. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    Science.gov (United States)

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. PMID:27484945

  14. Combined Source-Channel Coding of Images under Power and Bandwidth Constraints

    Directory of Open Access Journals (Sweden)

    Fossorier Marc

    2007-01-01

    Full Text Available This paper proposes a framework for combined source-channel coding for a power and bandwidth constrained noisy channel. The framework is applied to progressive image transmission using constant envelope -ary phase shift key ( -PSK signaling over an additive white Gaussian noise channel. First, the framework is developed for uncoded -PSK signaling (with . Then, it is extended to include coded -PSK modulation using trellis coded modulation (TCM. An adaptive TCM system is also presented. Simulation results show that, depending on the constellation size, coded -PSK signaling performs 3.1 to 5.2 dB better than uncoded -PSK signaling. Finally, the performance of our combined source-channel coding scheme is investigated from the channel capacity point of view. Our framework is further extended to include powerful channel codes like turbo and low-density parity-check (LDPC codes. With these powerful codes, our proposed scheme performs about one dB away from the capacity-achieving SNR value of the QPSK channel.

  15. Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging

    Science.gov (United States)

    Vidal, F. P.; Létang, J. M.; Peix, G.; Cloetens, P.

    2005-06-01

    Qualitative and quantitative use of volumes reconstructed by computed tomography (CT) can be compromised due to artefacts which corrupt the data. This article illustrates a method based on virtual X-ray imaging to investigate sources of artefacts which occur in microtomography using synchrotron radiation. In this phenomenological study, different computer simulation methods based on physical X-ray properties, eventually coupled with experimental data, are used in order to compare artefacts obtained theoretically to those present in a volume acquired experimentally, or to predict them for a particular experimental setup. The article begins with the presentation of a synchrotron microtomographic slice of a reinforced fibre composite acquired at the European Synchrotron Radiation Facility (ESRF) containing streak artefacts. This experimental context is used as the motive throughout the paper to illustrate the investigation of some artefact sources. First, the contribution of direct radiation is compared to the contribution of secondary radiations. Then, the effect of some methodological aspects are detailed, including under-sampling, sample and camera misalignment, sample extending outside of the field of view and photonic noise. The effect of harmonic components present in the experimental spectrum are also simulated. Afterwards, detector properties, such as its impulse response or defective pixels, are taken into account. Finally, the importance of phase contrast effects is evaluated. In the last section, this investigation is discussed by putting emphasis on the experimental context which is used throughout this paper.

  16. Lithographic VCSEL array multimode and single mode sources for sensing and 3D imaging

    Science.gov (United States)

    Leshin, J.; Li, M.; Beadsworth, J.; Yang, X.; Zhang, Y.; Tucker, F.; Eifert, L.; Deppe, D. G.

    2016-05-01

    Sensing applications along with free space data links can benefit from advanced laser sources that produce novel radiation patterns and tight spectral control for optical filtering. Vertical-cavity surface-emitting lasers (VCSELs) are being developed for these applications. While oxide VCSELs are being produced by most companies, a new type of oxide-free VCSEL is demonstrating many advantages in beam pattern, spectral control, and reliability. These lithographic VCSELs offer increased power density from a given aperture size, and enable dense integration of high efficiency and single mode elements that improve beam pattern. In this paper we present results for lithographic VCSELs and describes integration into military systems for very low cost pulsed applications, as well as continuouswave applications in novel sensing applications. The VCSELs are being developed for U.S. Army for soldier weapon engagement simulation training to improve beam pattern and spectral control. Wavelengths in the 904 nm to 990 nm ranges are being developed with the spectral control designed to eliminate unwanted water absorption bands from the data links. Multiple beams and radiation patterns based on highly compact packages are being investigated for improved target sensing and transmission fidelity in free space data links. These novel features based on the new VCSEL sources are also expected to find applications in 3-D imaging, proximity sensing and motion control, as well as single mode sensors such as atomic clocks and high speed data transmission.

  17. Investigation of artefact sources in synchrotron microtomography via virtual X-ray imaging

    International Nuclear Information System (INIS)

    Qualitative and quantitative use of volumes reconstructed by computed tomography (CT) can be compromised due to artefacts which corrupt the data. This article illustrates a method based on virtual X-ray imaging to investigate sources of artefacts which occur in microtomography using synchrotron radiation. In this phenomenological study, different computer simulation methods based on physical X-ray properties, eventually coupled with experimental data, are used in order to compare artefacts obtained theoretically to those present in a volume acquired experimentally, or to predict them for a particular experimental setup. The article begins with the presentation of a synchrotron microtomographic slice of a reinforced fibre composite acquired at the European Synchrotron Radiation Facility (ESRF) containing streak artefacts. This experimental context is used as the motive throughout the paper to illustrate the investigation of some artefact sources. First, the contribution of direct radiation is compared to the contribution of secondary radiations. Then, the effect of some methodological aspects are detailed, including under-sampling, sample and camera misalignment, sample extending outside of the field of view and photonic noise. The effect of harmonic components present in the experimental spectrum are also simulated. Afterwards, detector properties, such as its impulse response or defective pixels, are taken into account. Finally, the importance of phase contrast effects is evaluated. In the last section, this investigation is discussed by putting emphasis on the experimental context which is used throughout this paper

  18. Sources

    OpenAIRE

    2015-01-01

    Sources Fondation Pablo Iglesias. Alcala de Henares. Sections : Archives privées de Manuel ArijaArchives extérieuresArchives FNJS de EspañaPrensa Archives Générales de l’Administration. Alcala de Henares. Sections : Opposition au franquismeSig. 653 Sig TOP 82/68.103-68.602.Índice de las cartas colectivas, Relaciones, Cartas al Ministro de Información de Marzo de 1965. c.662. Sources cinématographiques Filmothèque Nationale d’Espagne.NO.DO. N° 1157C. 08/03/1965.aguirre Javier, Blanco vertical....

  19. Simulation-based validation for four- dimensional multi-channel ultrasound current source density imaging.

    Science.gov (United States)

    Wang, Zhaohui; Witte, Russell S

    2014-03-01

    Ultrasound current source density imaging (UCSDI), which has application to the heart and brain, exploits the acoustoelectric (AE) effect and Ohm's law to detect and map an electrical current distribution. In this study, we describe 4-D UCSDI simulations of a dipole field for comparison and validation with bench-top experiments. The simulations consider the properties of the ultrasound pulse as it passes through a conductive medium, the electric field of the injected dipole, and the lead field of the detectors. In the simulation, the lead fields of detectors and electric field of the dipole were calculated by the finite element (FE) method, and the convolution and correlation in the computation of the detected AE voltage signal were accelerated using 3-D fast Fourier transforms. In the bench-top experiment, an electric dipole was produced in a bath of 0.9% NaCl solution containing two electrodes, which injected an ac pulse (200 Hz, 3 cycles) ranging from 0 to 140 mA. Stimulating and recording electrodes were placed in a custom electrode chamber made on a rapid prototype printer. Each electrode could be positioned anywhere on an x-y grid (5 mm spacing) and individually adjusted in the depth direction for precise control of the geometry of the current sources and detecting electrodes. A 1-MHz ultrasound beam was pulsed and focused through a plastic film to modulate the current distribution inside the saline-filled tank. AE signals were simultaneously detected at a sampling frequency of 15 MHz on multiple recording electrodes. A single recording electrode is sufficient to form volume images of the current flow and electric potentials. The AE potential is sensitive to the distance from the dipole, but is less sensitive to the angle between the detector and the dipole. Multi-channel UCSDI potentially improves 4-D mapping of bioelectric sources in the body at high spatial resolution, which is especially important for diagnosing and guiding treatment of cardiac and

  20. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  1. Country of origin image attributes as a source of competitive advantage: study in international brazilian fashion industry

    Directory of Open Access Journals (Sweden)

    Mariana Bassi Sutter

    2014-08-01

    Full Text Available The study sought to understand which attributes of the country of origin image are source of international competitive advantage in the context of Brazilian fashion. From the theoretical framework related to competitive advantage, country of origin image, Brazilianness and their attributes in fashion, we conducted exploratory research with a qualitative approach. The results suggest that the image of Brazil is understood by the international fashion market in accordance with the attributes of the literature. However (i in fashion, market still does not have a steady concept on the image of Brazil, (ii Brazilianness attributes in fashion can be a source of competitive advantage in international trades if they are communicated, promoted and understood by the international market; finally, (iii among the eight Brazilianness trendy attributes identified in the literature, four were highlighted as differentiators: shape and volumes, colors, prints and lifestyle.

  2. Phase contrast medical imaging with compact X-ray sources at the Munich-Centre for Advance Photonics (MAP)

    Energy Technology Data Exchange (ETDEWEB)

    Coan, P. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany)], E-mail: paola.coan@esrf.fr; Gruener, F. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany); Glaser, C.; Schneider, T. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility, Grenoble (France); Munich-Centre for Advance Photonics, Munich (Germany); Reiser, M. [Munich-Centre for Advance Photonics, Munich (Germany); Institut of Clinical Radiology, Klinikum Ludwig-Maximilians-Universitaet, Munich (Germany); Habs, D. [Munich-Centre for Advance Photonics, Munich (Germany); Department of Physics, Ludwig-Maximilians-Universitaet Munich, Garching (Germany)

    2009-09-01

    In this paper, the excellence cluster 'Munich-Centre for Advance Photonics' (MAP) is presented. One of the aims of the project is the development of innovative X-ray-based diagnostics imaging techniques to be implemented at an ultra-compact high-energy and high-brilliance X-ray source. The basis of the project and the developments towards the clinical application of phase contrast imaging applied to mammography and cartilage studies will be presented and discussed.

  3. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography

    OpenAIRE

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N.; Braun, Natalie N.; Saba, Osama; Williamson, Eric E.; Harmsen, W. Scott; Mandrekar, Jayawant N.; McCollough, Cynthia H.

    2009-01-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (≤ 70 beats per minute- bpm) and 30 high heart rate (>70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded imag...

  4. Development of tomographic imaging systems using carbon-nanotube-based field-emission x-ray sources

    Science.gov (United States)

    Zhang, Jian

    2005-11-01

    Conventional thermionic x-ray sources use hot filament cathodes to generate electrons for x-ray production. The thermionic technology has several inherent limitations such as high operating temperature, slow response time, and difficulty for miniaturization. On the other hand, field emission provides an alternative to generate electrons without all these limitations. The concept of field emission x-ray source has been proposed and tested in the early 1970s. Unfortunately all of the early field emission x-ray systems failed due primarily to the limitations on the electron field emitters. Carbon nanotubes (CNT) have recently emerged as a promising class of electron emissive materials and field emission x-ray source based on CNTs are expected to have significantly improved properties. We have recently developed a CNT-based field emission micro-focus x-ray source. It shows stable tube current under high operating voltage, extraordinary dynamic imaging capability, and excellent potential for miniaturization. All of these new features make it very attractive for various potential industrial and medical applications. In order to demonstrate its applications, two sets of x-ray imaging systems using this field emission x-ray source were constructed in our lab. One is a micro-computed tomographic (micro-CT) imaging system using a single field emission x-ray source for dynamic radiographic and tomographic imaging applications. It shows great potential for the future development of dynamic micro-CT scanner. The other one is a multi-beam field emission x-ray source with multiple addressable focal spots which can provide scanning x-ray beams without mechanical movement. It can lead to fast data acquisition rates for future tomographic imaging systems with a simplified experimental set-up.

  5. Longitudinal Evaluation of Cornea With Swept-Source Optical Coherence Tomography and Scheimpflug Imaging Before and After Lasik.

    Science.gov (United States)

    Chan, Tommy C Y; Biswas, Sayantan; Yu, Marco; Jhanji, Vishal

    2015-07-01

    Swept-source optical coherence tomography (OCT) is the latest advancement in anterior segment imaging. There are limited data regarding its performance after laser in situ keratomileusis (LASIK). We compared the reliability of swept-source OCT and Scheimpflug imaging for evaluation of corneal parameters in refractive surgery candidates with myopia or myopic astigmatism. Three consecutive measurements were obtained preoperatively and 1 year postoperatively using swept-source OCT and Scheimpflug imaging. The study parameters included central corneal thickness (CCT), thinnest corneal thickness (TCT), keratometry at steep (Ks) and flat (Kf) axes, mean keratometry (Km), and, anterior and posterior best fit spheres (Ant and Post BFS). The main outcome measures included reliability of measurements before and after LASIK was evaluated using intraclass correlation coefficient (ICC) and reproducibility coefficients (RC). Association between the mean value of corneal parameters with age, spherical equivalent (SEQ), and residual bed thickness (RBT) and association of variance heterogeneity of corneal parameters and these covariates were analyzed. Twenty-six right eyes of 26 participants (mean age, 32.7 ± 6.9 yrs; mean SEQ, -6.27 ± 1.67 D) were included. Preoperatively, swept-source OCT demonstrated significantly higher ICC for Ks, CCT, TCT, and Post BFS (P ≤ 0.016), compared with Scheimpflug imaging. Swept-source OCT demonstrated significantly smaller RC values for CCT, TCT, and Post BFS (P ≤ 0.001). After LASIK, both devices had significant differences in measurements for all corneal parameters (P ≤ 0.015). Swept-source OCT demonstrated a significantly higher ICC and smaller RC for all measurements, compared with Scheimpflug imaging (P ≤ 0.001). Association of variance heterogeneity was only found in pre-LASIK Ant BFS and post-LASIK Post BFS for swept-source OCT, whereas significant association of variance heterogeneity was noted for all measurements except Ks and

  6. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source

    Energy Technology Data Exchange (ETDEWEB)

    Herzen, Julia [Helmholtz-Zentrum Geesthacht, 21502 Geesthacht (Germany); Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching (Germany); Donath, Tilman [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Dectris AG, 5400 Baden (Switzerland); Beckmann, Felix; Ogurreck, Malte; Schreyer, Andreas [Helmholtz-Zentrum Geesthacht, 21502 Geesthacht (Germany); David, Christian [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Mohr, Juergen [Institute of Microstructure Technology, Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany); Pfeiffer, Franz [Physics Department and Institute for Medical Engineering, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2011-11-15

    X-ray phase-contrast radiography and tomography enable to increase contrast for weakly absorbing materials. Recently, x-ray grating interferometers were developed that extend the possibility of phase-contrast imaging from highly brilliant radiation sources like third-generation synchrotron sources to non-coherent conventional x-ray tube sources. Here, we present the first installation of a three grating x-ray interferometer at a low-coherence wiggler source at the beamline W2 (HARWI II) operated by the Helmholtz-Zentrum Geesthacht at the second-generation synchrotron storage ring DORIS (DESY, Hamburg, Germany). Using this type of the wiggler insertion device with a millimeter-sized source allows monochromatic phase-contrast imaging of centimeter sized objects with high photon flux. Thus, biological and materials-science imaging applications can highly profit from this imaging modality. The specially designed grating interferometer currently works in the photon energy range from 22 to 30 keV, and the range will be increased by using adapted x-ray optical gratings. Our results of an energy-dependent visibility measurement in comparison to corresponding simulations demonstrate the performance of the new setup.

  7. Imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA

    CERN Document Server

    Ghara, Raghunath; Datta, Kanan K; Choudhuri, Samir

    2016-01-01

    Understanding properties of the first sources in the Universe using the redshifted \\HI ~21-cm signal is one of the major aims of present and upcoming low-frequency experiments. We investigate the possibility of imaging the redshifted 21-cm pattern around the first sources during the cosmic dawn using the SKA1-low. We model the \\HI ~21-cm image maps, appropriate for the SKA1-low, around the first sources consisting of stars and X-ray sources within galaxies. In addition to the system noise, we account also for the astrophysical foregrounds by adding them to the signal maps. We find that after subtracting the foregrounds using a polynomial fit and suppressing the noise by smoothing the maps over $10^{'} - 30^{'}$ angular scale, the isolated sources at $z \\sim 15$ are detectable with $\\sim 4 - 9 \\, \\sigma$ confidence level in 2000 h of observation with the SKA1-low. Although the 21-cm profiles around the sources get altered because of the Gaussian smoothing, the images can still be used to extract some of the so...

  8. Experimental Component Characterization, Monte-Carlo-Based Image Generation and Source Reconstruction for the Neutron Imaging System of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, C A; Moran, M J

    2007-08-21

    The Neutron Imaging System (NIS) is one of seven ignition target diagnostics under development for the National Ignition Facility. The NIS is required to record hot-spot (13-15 MeV) and downscattered (6-10 MeV) images with a resolution of 10 microns and a signal-to-noise ratio (SNR) of 10 at the 20% contour. The NIS is a valuable diagnostic since the downscattered neutrons reveal the spatial distribution of the cold fuel during an ignition attempt, providing important information in the case of a failed implosion. The present study explores the parameter space of several line-of-sight (LOS) configurations that could serve as the basis for the final design. Six commercially available organic scintillators were experimentally characterized for their light emission decay profile and neutron sensitivity. The samples showed a long lived decay component that makes direct recording of a downscattered image impossible. The two best candidates for the NIS detector material are: EJ232 (BC422) plastic fibers or capillaries filled with EJ399B. A Monte Carlo-based end-to-end model of the NIS was developed to study the imaging capabilities of several LOS configurations and verify that the recovered sources meet the design requirements. The model includes accurate neutron source distributions, aperture geometries (square pinhole, triangular wedge, mini-penumbral, annular and penumbral), their point spread functions, and a pixelated scintillator detector. The modeling results show that a useful downscattered image can be obtained by recording the primary peak and the downscattered images, and then subtracting a decayed version of the former from the latter. The difference images need to be deconvolved in order to obtain accurate source distributions. The images are processed using a frequency-space modified-regularization algorithm and low-pass filtering. The resolution and SNR of these sources are quantified by using two surrogate sources. The simulations show that all LOS

  9. Searching for Conservation Laws in Brain Dynamics—BOLD Flux and Source Imaging

    Directory of Open Access Journals (Sweden)

    Henning U. Voss

    2014-07-01

    Full Text Available Blood-oxygen-level-dependent (BOLD imaging is the most important noninvasive tool to map human brain function. It relies on local blood-flow changes controlled by neurovascular coupling effects, usually in response to some cognitive or perceptual task. In this contribution we ask if the spatiotemporal dynamics of the BOLD signal can be modeled by a conservation law. In analogy to the description of physical laws, which often can be derived from some underlying conservation law, identification of conservation laws in the brain could lead to new models for the functional organization of the brain. Our model is independent of the nature of the conservation law, but we discuss possible hints and motivations for conservation laws. For example, globally limited blood supply and local competition between brain regions for blood might restrict the large scale BOLD signal in certain ways that could be observable. One proposed selective pressure for the evolution of such conservation laws is the closed volume of the skull limiting the expansion of brain tissue by increases in blood volume. These ideas are demonstrated on a mental motor imagery fMRI experiment, in which functional brain activation was mapped in a group of volunteers imagining themselves swimming. In order to search for local conservation laws during this complex cognitive process, we derived maps of quantities resulting from spatial interaction of the BOLD amplitudes. Specifically, we mapped fluxes and sources of the BOLD signal, terms that would appear in a description by a continuity equation. Whereas we cannot present final answers with the particular analysis of this particular experiment, some results seem to be non-trivial. For example, we found that during task the group BOLD flux covered more widespread regions than identified by conventional BOLD mapping and was always increasing during task. It is our hope that these results motivate more work towards the search for conservation

  10. Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Jonathan J Liu

    Full Text Available To describe enhanced vitreous imaging for visualization of anatomic features and microstructures within the posterior vitreous and vitreoretinal interface in healthy eyes using swept-source optical coherence tomography (SS-OCT. The study hypothesis was that long-wavelength, high-speed, volumetric SS-OCT with software registration motion correction and vitreous window display or high-dynamic-range (HDR display improves detection sensitivity of posterior vitreous and vitreoretinal features compared to standard OCT logarithmic scale display.Observational prospective cross-sectional study.Multiple wide-field three-dimensional SS-OCT scans (500×500A-scans over 12×12 mm2 were obtained using a prototype instrument in 22 eyes of 22 healthy volunteers. A registration motion-correction algorithm was applied to compensate motion and generate a single volumetric dataset. Each volumetric dataset was displayed in three forms: (1 standard logarithmic scale display, enhanced vitreous imaging using (2 vitreous window display and (3 HDR display. Each dataset was reviewed independently by three readers to identify features of the posterior vitreous and vitreoretinal interface. Detection sensitivities for these features were measured for each display method.Features observed included the bursa premacularis (BPM, area of Martegiani, Cloquet's/BPM septum, Bergmeister papilla, posterior cortical vitreous (hyaloid detachment, papillomacular hyaloid detachment, hyaloid attachment to retinal vessel(s, and granular opacities within vitreous cortex, Cloquet's canal, and BPM. The detection sensitivity for these features was 75.0% (95%CI: 67.8%-81.1% using standard logarithmic scale display, 80.6% (95%CI: 73.8%-86.0% using HDR display, and 91.9% (95%CI: 86.6%-95.2% using vitreous window display.SS-OCT provides non-invasive, volumetric and measurable in vivo visualization of the anatomic microstructural features of the posterior vitreous and vitreoretinal interface. The

  11. Sources

    OpenAIRE

    2011-01-01

    A. SOURCES STATISTIQUES 1. Statistiques générales Annuaire statistique international, SDN (à partir de 1926). Mémorandum sur le commerce international et sur les balances des paiements, annuel à partir de 1927 (numéros rétrospectifs 1912-1926, 1913-1927), [3 volumes : aperçu général ; balances des paiements ; statistiques du commerce extérieur ; utilise les données nationales disponibles. Très utile]. Annuaire statistique de la France. Annuaire statistique de la Belgique. Statistiques économi...

  12. Sources

    OpenAIRE

    2013-01-01

    I–SOURCES MANUSCRITES Archivio di Stato di Roma (ASR) Presidenza dell’Annona e Grascia : bb. 67-68, Lista dei misuratori del grano, 1658-1660. bb. 352-377, Nota dei grani introdotti e venduti in Roma, 1657-1715. bb. 412-419, Ristretto delle assegne dei grani date dai mercanti, 1680-1687. b. 1470, Registro delle lettere del Prefetto dell’Annona, 1659-1660. b. 1706, Libri di entrata e uscita dei grani dell’abbondanza (Ripetta), 16581670. bb. 1930-1931, Debiti e crediti dei fornai, 1658-1660. b....

  13. Sources

    OpenAIRE

    2014-01-01

    Sources éditées : ABADAL i de VINYALS, Ramon d', Catalunya carolingia, II, Els diplomes carolingis a Catalunya, 2 vol., Barcelone, 1926-1952, cit. CC. ACHERY, D', Luc, Spicilegium sive collectio veterum aliquot scriptorum..., E. Baluze et E. Martène éd., Paris, 1723, tome 3. ALART, Bernard, Privilèges et titres relatifs aux franchises, institutions et propriétés communales de Roussillon et de Cerdagne depuis le xie siècle jusqu 'à l'an 1660... Première partie, Perpignan, 1878. ALART, Bernard,...

  14. Contaminant source apportionment by PIMMS lead isotope analysis and SEM-image analysis.

    Science.gov (United States)

    McGill, R A; Pearce, J M; Fortey, N J; Watt, J; Ault, L; Parrish, R R

    2003-03-01

    By combining scanning electron microscopy (SEM) image analysis and laser ablation plasma ionisation multi-collector mass spectrometry (LA-PIMMS), high precision lead isotope analyses can be obtained from individual metal-rich particles. Soils from Wolverhampton and Nottingham were sampled on the basis of high Pb concentrations or brownfield location. Pressed powder pellets of each were rastered by LA-PIMMS to obtain a bulk Pb-isotope signature. The results plot along an apparent mixing line between the major sources of lead contamination in the UK, that is UK ore deposits and alkyl-lead from petrol additives (Australian ore). Two particularly lead-rich soils were chosen to investigate the lead distribution and isotope variability between size and density fractions. The fine-grained and low-density fractions contained most of the lead and have Pb-isotope ratios comparable with the bulk soils. By contrast, the small, lead-enriched denser fractions contained only a minor proportion of the total lead but Pb-isotope signatures indicating relative enrichment in one or other of the end-members from the mixing line. Further characterisation of individual Pb-rich grains is in progress. PMID:12901075

  15. Imaging of cardiovascular dynamics in early mouse embryos with swept source optical coherence tomography

    Science.gov (United States)

    Larina, Irina V.; Liebling, Michael; Dickinson, Mary E.; Larin, Kirill V.

    2009-02-01

    Congenital cardiovascular defects are very common, occurring in 1% of live births, and cardiovascular failures are the leading cause of birth defect-related deaths in infants. To improve diagnostics, prevention and treatment of cardiovascular abnormalities, we need to understand not only how cells form the heart and vessels but also how physical factors such as heart contraction and blood flow influence heart development and changes in the circulatory network. Mouse models are an excellent resource for studying cardiovascular development and disease because of the resemblance to humans, rapid generation time, and availability of mutants with cardiovascular defects linked to human diseases. In this work, we present results on development and application of Doppler Swept Source Optical Coherence Tomography (DSS-OCT) for imaging of cardiovascular dynamics and blood flow in the mouse embryonic heart and vessels. Our studies demonstrated that the spatial and temporal resolution of the DSS-OCT makes it possible to perform sensitive measurements of heart and vessel wall movements and to investigate how contractile waves facilitate the movement of blood through the circulatory system.

  16. Measuring the acoustoelectric interaction constant using ultrasound current source density imaging

    International Nuclear Information System (INIS)

    Ultrasound current source density imaging (UCSDI) exploits the acoustoelectric (AE) effect, an interaction between ultrasound pressure and electrical resistivity, to map electrical conduction in the heart. The conversion efficiency for UCSDI is determined by the AE interaction constant K, a fundamental property of all materials; K directly affects the magnitude of the detected voltage signal in UCSDI. This paper describes a technique for measuring K in biological tissue, and reports its value for the first time in cadaver hearts. A custom chamber was designed and fabricated to control the geometry for estimating K, which was measured in different ionic salt solutions and seven cadaver rabbit hearts. We found K to be strongly dependent on concentration for the divalent salt CuSO4, but not for the monovalent salt NaCl, consistent with their different chemical properties. In the rabbit heart, K was determined to be 0.041±0.012%/MPa, similar to the measurement of K in physiological saline (0.034±0.003%/MPa). This study provides a baseline estimate of K for modeling and experimental studies that involve UCSDI to map cardiac conduction and reentry currents associated with arrhythmias. (paper)

  17. Photostimulated phosphor based image plate detection system for HRVUV beamline at Indus-1 synchrotron radiation source

    CERN Document Server

    Haris, K; Shastri, Aparna; K., Sunanda; K., Babita; Rao, S V N Bhaskara; Ahmad, Shabbir; Tauheed, A

    2014-01-01

    A high resolution vacuum ultraviolet (HRVUV) beamline based on a 6.65 meter off-plane Eagle spectrometer is in operation at the Indus-1 synchrotron radiation source, RRCAT, Indore, India. To facilitate position sensitive detection and fast spectral recording, a new BaFBr:Eu2+ phosphor based image plate (IP) detection system interchangeable with the existing photomultiplier (PMT) scanning system has been installed on this beamline. VUV photoabsorption studies on Xe, O2, N2O and SO2 are carried out to evaluate the performance of the IP detection system. An FWHM of ~ 0.5 {\\AA} is achieved for the Xe atomic line at 1469.6 {\\AA}. Reproducibility of spectra is found to be within the experimental resolution. Compared to the PMT scanning system, the IP shows several advantages in terms of sensitivity, recording time and S/N ratio, which are highlighted in the paper. This is the first report of incorporation of an IP detection system in a VUV beamline using synchrotron radiation. Commissioning of the new detection sys...

  18. Forward model with space-variant of source size for reconstruction on x-ray radiographic image

    CERN Document Server

    Liu, Jin; Jing, Yue-feng; Xiao, Bo; Wei, Cai-hua; Guan, Yong-hong; Zhang, Xuan

    2016-01-01

    Forward imaging technique is the base of combined method on density reconstruction with the forward calculation and inverse problem solution. In the paper, we introduced the projection equation for the radiographic system with areal source blur and detector blur, gained the projecting matrix from any point source to any detector pixel with x-ray trace technique, proposed the ideal on gridding the areal source as many point sources with different weights, and used the blurring window as the effect of the detector blur. We used the forward projection equation to gain the same deviation information about the object edge as the experimental image. Our forward projection equation is combined with Constrained Conjugate Gradient method to form a new method for density reconstruction, XTRACE-CCG. The new method worked on the simulated image of French Test Object and experimental image. The same results have been concluded the affecting range of the blur is decreased and can be controlled to one or two pixels. The met...

  19. Zero source insertion technique to account for undersampling in GPR imaging

    Science.gov (United States)

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  20. Thermographic imaging of material loss in boiler water-wall tubing by application of scanning line source

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2000-06-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a 'spot check' approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  1. Rapid Automatic Lighting Control of a Mixed Light Source for Image Acquisition using Derivative Optimum Search Methods

    Directory of Open Access Journals (Sweden)

    Kim HyungTae

    2015-01-01

    Full Text Available Automatic lighting (auto-lighting is a function that maximizes the image quality of a vision inspection system by adjusting the light intensity and color.In most inspection systems, a single color light source is used, and an equal step search is employed to determine the maximum image quality. However, when a mixed light source is used, the number of iterations becomes large, and therefore, a rapid search method must be applied to reduce their number. Derivative optimum search methods follow the tangential direction of a function and are usually faster than other methods. In this study, multi-dimensional forms of derivative optimum search methods are applied to obtain the maximum image quality considering a mixed-light source. The auto-lighting algorithms were derived from the steepest descent and conjugate gradient methods, which have N-size inputs of driving voltage and one output of image quality. Experiments in which the proposed algorithm was applied to semiconductor patterns showed that a reduced number of iterations is required to determine the locally maximized image quality.

  2. Performance Analysis of GPU-Accelerated Filter-Based Source Finding for HI Spectral Line Image Data

    CERN Document Server

    Westerlund, Stefan

    2015-01-01

    Searching for sources of electromagnetic emission in spectral-line radio astronomy interferometric data is a computationally intensive process. Parallel programming techniques and High Performance Computing hardware may be used to improve the computational performance of a source finding program. However, it is desirable to further reduce the processing time of source finding in order to decrease the computational resources required for the task. GPU acceleration is a method that may achieve significant increases in performance for some source finding algorithms, particularly for filtering image data. This work considers the application of GPU acceleration to the task of source finding and the techniques used to achieve the best performance, such as memory management. We also examine the changes in performance, where the algorithms that were GPU accelerated achieved a speedup of around 3.2 times the 12 core per node CPU-only performance, while the program as a whole experienced a speedup of 2.0 times.

  3. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13–17 MeV) and down-scattered (6–12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms.

  4. Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments.

    Science.gov (United States)

    Guler, N; Volegov, P; Danly, C R; Grim, G P; Merrill, F E; Wilde, C H

    2012-10-01

    Inertial confinement fusion experiments at the National Ignition Facility are designed to understand the basic principles of creating self-sustaining fusion reactions by laser driven compression of deuterium-tritium (DT) filled cryogenic plastic capsules. The neutron imaging diagnostic provides information on the distribution of the central fusion reaction region and the surrounding DT fuel by observing neutron images in two different energy bands for primary (13-17 MeV) and down-scattered (6-12 MeV) neutrons. From this, the final shape and size of the compressed capsule can be estimated and the symmetry of the compression can be inferred. These experiments provide small sources with high yield neutron flux. An aperture design that includes an array of pinholes and penumbral apertures has provided the opportunity to image the same source with two different techniques. This allows for an evaluation of these different aperture designs and reconstruction algorithms. PMID:23126842

  5. Discovery of new objects in the Orion nebula on HST images - Shocks, compact sources, and protoplanetary disks

    Science.gov (United States)

    O'Dell, C. R.; Wen, Zheng; Hu, Xihai

    1993-01-01

    We have reduced and analyzed a set of narrow-band HST images of a portion of M42 south of the Trapezium. Many new emission-line sources were found, some quite long but so narrow that they are not seen on ground-based images. These include thin shells which are high-ionization shocks. The structure around Orion HH 3 is resolved into multiple components. Slit spectroscopy data establish the high expansion velocities of all these regions. The other objects seen are compact sources. Although some had been detected in VLA surveys and several had been seen from the ground optically, the new images show previously undetected structure and clearly establish that most are protoplanetary disks, which are neutral disks surrounding low-mass pre-main-sequence stars and are ionized from the outside by Theta sup 1 C and Theta sup 2 A Ori.

  6. Single-Volume Neutron Scatter Camera for High-Efficiency Neutron Imaging and Source Characterization. Year 2 of 3 Summary

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, Erik [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    The neutron scatter camera (NSC), an imaging spectrometer for fission energy neutrons, is an established and proven detector for nuclear security applications such as weak source detection of special nuclear material (SNM), arms control treaty verification, and emergency response. Relative to competing technologies such as coded aperture imaging, time-encoded imaging, neutron time projection chamber, and various thermal neutron imagers, the NSC provides excellent event-by-event directional information for signal/background discrimination, reasonable imaging resolution, and good energy resolution. Its primary drawback is very low detection efficiency due to the requirement for neutron elastic scatters in two detector cells. We will develop a singlevolume double-scatter neutron imager, in which both neutron scatters can occur in the same large active volume. If successful, the efficiency will be dramatically increased over the current NSC cell-based geometry. If the detection efficiency approaches that of e.g. coded aperture imaging, the other inherent advantages of double-scatter imaging would make it the most attractive fast neutron detector for a wide range of security applications.

  7. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    International Nuclear Information System (INIS)

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  8. Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: Image quality, radiation dose and diagnostic performance

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hao, E-mail: sunhao_robert@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Hou, Xin-Yi, E-mail: hxy_pumc@126.com [Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Xue, Hua-Dan, E-mail: bjdanna95@hotmail.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Li, Xiao-Guang, E-mail: xglee88@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Jin, Zheng-Yu, E-mail: zhengyu_jin@126.com [Department of Radiology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Wangfujing Street, Dongcheng District, Beijing 100730 (China); Qian, Jia-Ming, E-mail: qjiaming57@gmail.com [Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Yu, Jian-Chun, E-mail: yu-jch@163.com [Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China); Zhu, Hua-Dong, E-mail: huadongzhu@hotmail.com [Department of Emergency, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing (China)

    2015-05-15

    Highlights: • GIB is a common gastrointestinal emergency with a high mortality rate. • Detection and localization of GIB source are important for imaging modality. • DSDECTA using a dual-phase scan protocol is clinically feasible. • DSDECTA with VNE and iodine map images can diagnose the active GIB source accurately. • DSDECTA can reduce radiation dose compared with conventional CT examination in GIB. - Abstract: Objectives: To evaluate the clinical feasibility of dual-source dual-energy CT angiography (DSDECTA) with virtual non-enhanced images and iodine map for active gastrointestinal bleeding (GIB). Methods: From June 2010 to December 2012, 112 consecutive patients with clinical signs of active GIB underwent DSDECTA with true non-enhanced (TNE), arterial phase with single-source mode, and portal-venous phase with dual-energy mode (100 kVp/230 mAs and Sn 140 kVp/178 mAs). Virtual non-enhanced CT (VNE) image sets and iodine map were reformatted from ‘Liver VNC’ software. The mean CT number, noise, signal to noise ratio (SNR), image quality and radiation dose were compared between TNE and VNE image sets. Two radiologists, blinded to clinical data, interpreted images from DSDECTA with TNE (protocol 1), and DSDECTA with VNE and iodine map (protocol 2) respectively, with discordant interpretation resolved by consensus. The standards of reference included digital subtraction angiography, endoscopy, surgery, or final pathology reports. Receiver–operating characteristic (ROC) analysis was undertaken and the area under the curve (AUC) calculated for CT protocols 1 and 2, respectively. Results: There was no significant difference in mean CT numbers of all organs (including liver, pancreas, spleen, kidney, abdominal aorta, and psoas muscle) (P > 0.05). Lower noise and higher SNR were found on VNE images than TNE images (P < 0.05). Image quality of VNE was lower than that of TNE without significant difference (P > 0.05). The active GIB source was identified

  9. National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    ... Diagnostic and Interventional Structural Biology Magnetic, Biomagnetic and Bioelectric Devices Micro- and Nano- Systems; Platform Technologies Rehabilitation Engineering Surgical Tools, Techniques and Systems Mathematical Modeling, Simulation ...

  10. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    International Nuclear Information System (INIS)

    In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet

  11. Ultrahigh phase-stable swept-source optical coherence tomography as a cardiac imaging platform (Conference Presentation)

    Science.gov (United States)

    Ling, Yuye; Hendon, Christine P.

    2016-02-01

    Functional extensions to optical coherence tomography (OCT) provide useful imaging contrasts that are complementary to conventional OCT. Our goal is to characterize tissue types within the myocardial due to remodeling and therapy. High-speed imaging is necessary to extract mechanical properties and dynamics of fiber orientation changes in a beating heart. Functional extensions of OCT such as polarization sensitive and optical coherence elastography (OCE) require high phase stability of the system, which is a drawback of current mechanically tuned swept source OCT systems. Here we present a high-speed functional imaging platform, which includes an ultrahigh-phase-stable swept source equipped with KTN deflector from NTT-AT. The swept source does not require mechanical movements during the wavelength sweeping; it is electrically tuned. The inter-sweep phase variance of the system was measured to be less than 300 ps at a path length difference of ~2 mm. The axial resolution of the system is 20 µm and the -10 dB fall-off depth is about 3.2 mm. The sample arm has an 8 mmx8 mm field of view with a lateral resolution of approximately 18 µm. The sample arm uses a two-axis MEMS mirror, which is programmable and capable of scanning arbitrary patterns at a sampling rate of 50 kHz. Preliminary imaging results showed differences in polarization properties and image penetration in ablated and normal myocardium. In the future, we will conduct dynamic stretching experiments with strips of human myocardial tissue to characterize mechanical properties using OCE. With high speed imaging of 200 kHz and an all-fiber design, we will work towards catheter-based functional imaging.

  12. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Kühne Titus

    2010-07-01

    Full Text Available Abstract Background In magnetic resonance (MR imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. Results After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. Conclusions MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.

  13. En face projection imaging of the human choroidal layers with tracking SLO and swept source OCT angiography methods

    Science.gov (United States)

    Gorczynska, Iwona; Migacz, Justin; Zawadzki, Robert J.; Sudheendran, Narendran; Jian, Yifan; Tiruveedhula, Pavan K.; Roorda, Austin; Werner, John S.

    2015-07-01

    We tested and compared the capability of multiple optical coherence tomography (OCT) angiography methods: phase variance, amplitude decorrelation and speckle variance, with application of the split spectrum technique, to image the choroiretinal complex of the human eye. To test the possibility of OCT imaging stability improvement we utilized a real-time tracking scanning laser ophthalmoscopy (TSLO) system combined with a swept source OCT setup. In addition, we implemented a post- processing volume averaging method for improved angiographic image quality and reduction of motion artifacts. The OCT system operated at the central wavelength of 1040nm to enable sufficient depth penetration into the choroid. Imaging was performed in the eyes of healthy volunteers and patients diagnosed with age-related macular degeneration.

  14. Propagation based differential phase contrast imaging and tomography of murine tissue with a laser plasma x-ray source

    International Nuclear Information System (INIS)

    An ultrafast, laser-driven x-ray source with a liquid mercury target has been used for phase contrast imaging of an excised murine liver and for computed tomography of an electronic component. The x-ray spectrum emitted at 5 kHz repetition rate is found to be similar to that of a 2.5 W, 30 kV microfocus x-ray tube with a tungsten anode. The images of the excised liver show the venous network with approximately 20 μm spatial resolution. Phase contrast features in the tomographic images of the electronic component, transferred to the orthogonal cross sections upon reconstruction, show the internal components of the device with high contrast. Adequate signal-to-noise ratios in the images were achieved with exposure times between 1 and 3 min

  15. A game-based platform for crowd-sourcing biomedical image diagnosis and standardized remote training and education of diagnosticians

    Science.gov (United States)

    Feng, Steve; Woo, Minjae; Chandramouli, Krithika; Ozcan, Aydogan

    2015-03-01

    Over the past decade, crowd-sourcing complex image analysis tasks to a human crowd has emerged as an alternative to energy-inefficient and difficult-to-implement computational approaches. Following this trend, we have developed a mathematical framework for statistically combining human crowd-sourcing of biomedical image analysis and diagnosis through games. Using a web-based smart game (BioGames), we demonstrated this platform's effectiveness for telediagnosis of malaria from microscopic images of individual red blood cells (RBCs). After public release in early 2012 (http://biogames.ee.ucla.edu), more than 3000 gamers (experts and non-experts) used this BioGames platform to diagnose over 2800 distinct RBC images, marking them as positive (infected) or negative (non-infected). Furthermore, we asked expert diagnosticians to tag the same set of cells with labels of positive, negative, or questionable (insufficient information for a reliable diagnosis) and statistically combined their decisions to generate a gold standard malaria image library. Our framework utilized minimally trained gamers' diagnoses to generate a set of statistical labels with an accuracy that is within 98% of our gold standard image library, demonstrating the "wisdom of the crowd". Using the same image library, we have recently launched a web-based malaria training and educational game allowing diagnosticians to compare their performance with their peers. After diagnosing a set of ~500 cells per game, diagnosticians can compare their quantified scores against a leaderboard and view their misdiagnosed cells. Using this platform, we aim to expand our gold standard library with new RBC images and provide a quantified digital tool for measuring and improving diagnostician training globally.

  16. Implementation of improved interactive image analysis at the Advanced Photon Source (APC) linac

    International Nuclear Information System (INIS)

    An image-analysis system, based on commercially available data visualization software (IDL [1]), allows convenient interaction with image data while still providing calculated beam parameters at a rate of up to 2 Hz. Image data are transferred from the IOC to the workstation via EPICS [2] channel access. A custom EPICS record was created in order to overcome the channel access limit of 16k bytes per array. The user can conveniently calibrate optical transition radiation (OTR) and fluorescent screens, capture background images, acquire and average a series of images, and specify several other filtering and viewing options. The images can be saved in either IDL format or APS-standard format (SDDS [3]), allowing for rapid postprocessing of image data by numerous other software tools

  17. A simple non-parametric statistical thresholding for MEG spatial-filter source reconstruction images

    OpenAIRE

    Sekihara, Kensuke; Sahani, Maneesh; Nagarajan, Srikantan S.

    2005-01-01

    This paper proposes a simple statistical method for extracting target source activities from spatio-temporal source activities reconstructed from MEG measurements. The method requires measurements in a control condition, which contains only non-target source activities. The method derives, at each pixel location, an empirical probability distribution of the non-target source activity using the time-course reconstruction obtained from the control period. The statistical threshold that can extr...

  18. Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography

    OpenAIRE

    Lu, Zenghai; Kasaragod, Deepa K.; Matcher, Stephen J.

    2011-01-01

    Recently the effects of reduced bit-depth acquisition on swept-source optical coherence tomography (SS-OCT) image quality have been evaluated by using simulations and empirical studies, showing that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. However, in these studies the 8-bit data is actually 12- or 14-bit ADC data numerically truncated to 8 bits. In practice, a native 8-bit ADC c...

  19. The effect of stimulus bandwidth and subject position on horizontal-plane localization with virtual source images

    Science.gov (United States)

    Grantham, D. Wesley; Ashmead, Daniel H.; Wall, Robert S.; Frampton, Kenneth D.; Willhite, J. Andrew

    2003-04-01

    In an anechoic chamber normal-hearing subjects performed a localization task in the frontal horizontal plane. The stimulus was a 200-ms burst of filtered noise. Within a block of trials, half of the presentations (randomly determined) were ``real''-presented from single loudspeakers-and the other half were ``phantoms''-produced by the simultaneous activation of two loudspeakers at +/-30° using a virtual source imaging technique [Takeuchi et al., J. Acoust. Soc. Am. 109, 958-971 (2001)]. Both phantom and real sources spanned the azimuthal range +/-80°. When the stimulus was a 4 kHz low-pass filtered noise, rms error was only slighly higher for phantom (D=7.1°) than for real (D=5.5°) sources. For 8 kHz low-pass filtered noise, performance remained about the same for real sources, but increased for phantom sources (D=11.5°). Data will also be reported for conditions in which the subject's position is systematically varied outside the ``sweet spot.'' Results will be discussed in terms of robustness of the virtual imaging technique to stimulus and position factors and its potential usefulness as a tool for the investigation of human auditory spatial perception in static and dynamic environments. [Work supported by NIDCD.

  20. Magnetic resonance imaging of the shoulder: a review of potential sources of diagnostic errors

    International Nuclear Information System (INIS)

    Shoulder magnetic resonance (MR) imaging and MR arthrography are frequently utilized in the evaluation of shoulder pain and instability. The clinical scenario and imaging findings may be confusing to clinicians and radiologists and may present diagnostic challenges for those involved in evaluating and treating shoulder pathology. Often rotator cuff and labral abnormalities may be coexistent, clinical manifestations of denervation syndromes may be confusing to clinicians, and normal anatomic variations, imaging pitfalls, and various artifacts may cause dilemmas for the radiologist. This article will review the most frequently encountered mimickers and pitfalls of MR imaging of the shoulder. (orig.)

  1. Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography.

    Science.gov (United States)

    Lu, Zenghai; Kasaragod, Deepa K; Matcher, Stephen J

    2011-01-01

    Recently the effects of reduced bit-depth acquisition on swept-source optical coherence tomography (SS-OCT) image quality have been evaluated by using simulations and empirical studies, showing that image acquisition at 8-bit depth allows high system sensitivity with only a minimal drop in the signal-to-noise ratio compared to higher bit-depth systems. However, in these studies the 8-bit data is actually 12- or 14-bit ADC data numerically truncated to 8 bits. In practice, a native 8-bit ADC could actually possess a true bit resolution lower than this due to the electronic jitter in the converter etc. We compare true 8- and 14-bit-depth imaging of SS-OCT and polarization-sensitive SS-OCT (PS-SS-OCT) by using two hardware-synchronized high-speed data acquisition (DAQ) boards. The two DAQ boards read exactly the same imaging data for comparison. The measured system sensitivity at 8-bit depth is comparable to that for 14-bit acquisition when using the more sensitive of the available full analog input voltage ranges of the ADC. Ex-vivo structural and birefringence images of equine tendon indicate no significant differences between images acquired by the two DAQ boards suggesting that 8-bit DAQ boards can be employed to increase imaging speeds and reduce storage in clinical SS-OCT/PS-SS-OCT systems. One possible disadvantage is a reduced imaging dynamic range which can manifest itself as an increase in image artifacts due to strong Fresnel reflection. PMID:21483604

  2. The ascending aortic image quality and the whole aortic radiation dose of high-pitch dual-source CT angiography

    OpenAIRE

    Liu, Ying; Xu, Jian; Jian LI; Ren, Jing; LIU, HONGTAO; Xu, Junqing; Wei, Mengqi; Hao, Yuewen; Zheng, Minwen

    2013-01-01

    Background Aortic dissection is a lift-threatening medical emergency associated with high rates of morbidity and mortality. The incidence rate of aortic dissection is estimated at 5 to 30 per 1 million people per year. The prompt and correct diagnosis of aortic dissection is critical. This study was to compare the ascending aortic image quality and the whole aortic radiation dose of high-pitch dual-source CT angiography and conventional dual-source CT angiography. Methods A total of 110 conse...

  3. Comparison of seismic sources for imaging geologic structures on the Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    In this study, five non-invasive swept sources, three non-invasive impulsive sources and one invasive impulsive source were compared. Previous shallow seismic source tests (Miller and others, 1986, 1992, 1994) have established that site characteristics should be considered in determining the optimal source. These studies evaluated a number of invasive sources along with a few non-invasive impulsive sources. Several sources (particularly the high frequency vibrators) that were included in the ORR test were not available or not practical during previous tests, cited above. This study differs from previous source comparisons in that it (1) includes many swept sources, (2) is designed for a greater target depth, (3) was conducted in a very different geologic environment, and (4) generated a larger and more diverse data set (including high fold CMP sections and walkaway vertical seismic profiles) for each source. The test site is centered around test injection well HF-2, between the southern end of Waste Area Grouping 5 (WAG 5) and the High Flux Isotope Reactor (HFIR)

  4. The high temperature superconductor YBa2Cu3O7-δ: symmetry of the order parameter, and gradiometers for biomagnetic applications

    International Nuclear Information System (INIS)

    The cuprate YBa2Cu3O7-δ is the material that drives the majority of the technological applications of high transition temperature (Tc) superconductors, particularly in the area of superconducting electronics. Despite the widespread use of high-Tc superconducting materials in a variety of applications, the nature of the superconducting state in these materials remains unknown since their discovery more than a decade ago. Many properties of the high-Tc superconductors are determined by their order parameter, which is a wavefunction describing the superconducting condensate. The symmetry of the order parameter in cuprates has been the subject of intensive investigation, leading to conflicting sets of results. Some experiments supported conventional, s-wave symmetry of the order parameter, while others indicated an unconventional, d-wave symmetry. The first part of this thesis is an experimental study of the symmetry of the order parameter in YBa2Cu3O7-δ. A new class of phase sensitive experiments is described that involve Josephson tunneling along the c-axis of twinned crystals of YBa2Cu3O7-δ. These experiments showed that an s-wave component must reverse sign across the twin boundary, providing direct evidence for a mixed, s+d symmetry of the order parameter in YBa2Cu3O7-δ, and thereby reconciling two conflicting sets of previous findings and establishing the dominant d-wave pairing symmetry. The second part of the thesis focuses on practical applications of YBa2Cu3O7-δ in superconducting electronics. The authors introduce a novel Superconducting Quantum Interference Device (SQUID) gradiometer. The principle of operation of these long baseline high-Tc SQUID gradiometers is based on the inductive coupling of the input coil of a planar flux transformer to the pickup up loop of a directly coupled magnetometer. The long baseline of the gradiometer, 48 mm, and the intrinsic. Balance of better than 1 part in 100 make it an ideal candidate for operation in biomagnetic

  5. The high temperature superconductor YBa(2)Cu(3)O(7-delta): Symmetry of the order parameter, and gradiometers for biomagnetic applications

    Science.gov (United States)

    Kouznetsov, Konstantin Alexander

    biomagnetic systems in an unshielded environment. We demonstrate a practical multichannel SQUID system for MagnetoCardioGraphy. Using this system, we are able to detect magnetic signals from the human heart in an unshielded environment, thereby demonstrating the applicability of our technology to practical applications. Our gradiometers are readily manufacturable devices that could be used in clinical applications in the near future.

  6. The magnetic source imaging of pattern reversal stimuli of various visual fields

    International Nuclear Information System (INIS)

    Objective: To have acknowledgement of characteristics of normal volunteers visual evoked fields about full field, vertical half field and quadrant field and their dipole location by magnetoencephalography. Methods: The visual evoked fields of full field, vertical half field and quadrant field were detected with 13 subjects. The latency, dipole strength and dipoles' location on x, y and z axis were analyzed. The exact locations of the dipoles were detected by overlapping on MR images. Results: The isocontour map of M100 of full field stimulation demonstrated two separate sources. The two M100 dipoles had same peak latency and different strength. And for vertical half field and quadrant field stimulation, evoked magnetic fields of M100 distributed contralateral to the stimulated side. The M100 dipoles on the z-axis to the lower quadrant field stimulation were located significantly higher than those to the upper quadrant field stimulation. The Z value median of left upper quadrant was 49.6 (35.1-72.8) mm. The Z value median of left lower quadrant was 53.5 (44.8-76.3) mm. The different of two left quadrant medians, 3.9 mm, was significant (P<0.05). The Z value median of right upper quadrant was 40.0 (34.8-44.6) mm. The Z value median of right lower quadrant was 53.8 (40.6-61.3) mm. The different of two right quadrant medians, 13.8 mm, was also significant (P<0.05). Although each of the visual evoked fields waveforms and dipole locations demonstrated large intra- and inter-individual variations, the dipole of M100 was mainly located at area Brodmann 17, which includes superior lingual gyrus, posterior cuneus-lingual gyrus and inferior cuneus gyms. Conclusion: The M100 of visual evoked fields of pattern reversal stimulation is mainly generated by the neurons of striate cortex of contralateral to the stimulated side, which is at the lateral bottom of the calcarine fissure. (authors)

  7. New open source medical imaging tools released by CERN and University of Bath collaboration

    CERN Document Server

    Anaïs Rassat, KT group

    2016-01-01

    New toolbox has applications in medical imaging and cancer diagnosis.   3D X-ray imaging of a patient’s lungs and thorax. The TIGRE toolbox provides a high resolution image with only 1/30th of the radiation for the patient. (Image: Ander Biguri) CERN and the University of Bath have released a new toolbox for fast, accurate 3D X-ray image reconstruction with applications in medical imaging and cancer diagnosis. The software offers a very simple and affordable way to improve imaging and potentially reduce radiation doses for patients. The toolbox is based on Cone Beam Computed Tomography (CBCT), a type of scanning process that takes a series of 2D X-ray pictures and that then processes them into a 3D image. As part of the collaborative project between CERN and the University of Bath, Ander Biguri, a PhD student at Bath, has reviewed a broad range of published CBCT algorithms and adapted them to be faster. Ander Biguri modified the algorithms to run on a laptop fitted with a GPU &ndash...

  8. Cortical network dynamics during source memory retrieval: current density imaging with individual MRI.

    Science.gov (United States)

    Kim, Young Youn; Roh, Ah Young; Namgoong, Yoon; Jo, Hang Joon; Lee, Jong-Min; Kwon, Jun Soo

    2009-01-01

    We investigated the neural correlates of source memory retrieval using low-resolution electromagnetic tomography (LORETA) with 64 channels EEG and individual MRI as a realistic head model. Event-related potentials (ERPs) were recorded while 13 healthy subjects performed the source memory task for the voice of the speaker in spoken words. The source correct condition of old words elicited more positive-going potentials than the correct rejection condition of new words at 400-700 ms post-stimulus and the old/new effects also appeared in the right anterior region between 1,000 and 1,200 ms. We conducted source reconstruction at mean latencies of 311, 604, 793, and 1,100 ms and used statistical parametric mapping for the statistical analysis. The results of source analysis suggest that the activation of the right inferior parietal region may reflect retrieval of source information. The source elicited by the difference ERPs between the source correct and source incorrect conditions exhibited dynamic change of current density activation in the overall cortices with time during source memory retrieval. These results indicate that multiple neural systems may underlie the ability to recollect context. PMID:17979123

  9. Instability of Solution of Phase Retrieval in Direct Diffraction Phase-Contrast Imaging with Partially Coherent X-Ray Source

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; HAN Shen-Sheng

    2006-01-01

    The theoretical model of direct diffraction phase-contrast imaging with partially coherent x-ray source is expressedby an operator of multiple integral. It is presented that the integral operator is linear. The problem of its phaseretrieval is described by solving an operator equation of multiple integral. It is demonstrated that the solution ofthe phase retrieval is unstable. The numerical simulation is performed and the result validates that the solutionof the phase retrieval is unstable.

  10. Femtosecond-laser-driven cluster-based debris-free soft x-ray source for nanostructure imaging

    International Nuclear Information System (INIS)

    Intense soft X-ray emission was obtained from the plasma produced by the irradiation of the clusters (10% CO2 +90% He gas mixture) by femtosecond laser pulses. Soft X-ray flux of the strongest Oxygen spectral lines (∼1.9 nm) reaches 2.8x1010 photons/(sr·pulse) (∼ 3 μJ) and corresponds to the brightness 1.6x1023 ph/s/mm2/mrad2/0.1%BW. Modeling of the radiation spectrum shows that the total X-ray flux of this polychromatic source in the 1-30 nm spectral regions is 2 - 3 orders of magnitude higher than the flux of the single Oxygen spectral line. Absorption images of the samples with micro- and nanoscale features illuminated by the developed source were recorded by the LiF crystal soft X-ray detector. Radiography experiments show that this debris-free plasma source could be particularly useful for the imaging of the ultrathin (nanoscale) foils or biological structures. Even if the foil is essentially transparent for the soft X-ray radiation (like 100 nm thick Zr foil) image contrast could be significantly increased due to the influence of phase-contrast effect by placing the detector at the proper distance from the sample. (author)

  11. Overview of the Conceptual Design of the Future VENUS Neutron Imaging Beam Line at the Spallation Neutron Source

    Science.gov (United States)

    Bilheux, Hassina; Herwig, Ken; Keener, Scott; Davis, Larry

    VENUS (Versatile Neutron Imaging Beam line at the Spallation Neutron Source) will be a world-class neutron-imaging instrument that will uniquely utilize the Spallation Neutron Source (SNS) time-of-flight (TOF) capabilities to measure and characterize objects across several length scales (mm to μm). When completed, VENUS will provide academia, industry and government laboratories with the opportunity to advance scientific research in areas such as energy, materials, additive manufacturing, geosciences, transportation, engineering, plant physiology, biology, etc. It is anticipated that a good portion of the VENUS user community will have a strong engineering/industrial research focus. Installed at Beam line 10 (BL10), VENUS will be a 25-m neutron imaging facility with the capability to fully illuminate (i.e., umbra illumination) a 20 cm x 20 cm detector area. The design allows for a 28 cm x 28 cm field of view when using the penumbra to 80% of the full illumination flux. A sample position at 20 m will be implemented for magnification measurements. The optical components are comprised of a series of selected apertures, T0 and bandwidth choppers, beam scrapers, a fast shutter to limit sample activation, and flight tubes filled with Helium. Techniques such as energy selective, Bragg edge and epithermal imaging will be available at VENUS.

  12. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beitzke, D.; Berger-Kulemann, V.; Unterhumer, S.; Loewe, C.; Wolf, F. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Cardiovascular and Interventional Radiology, Vienna (Austria); Schoepf, V. [Medical University Vienna, Department of Biomedical Imaging and Image Guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Vienna (Austria); Spitzer, E. [Bern University Hospital, Department of Cardiology, Bern (Switzerland); Feuchtner, G.M. [Innsbruck Medical University, Department of Radiology II, Innsbruck (Austria); Gyoengyoesi, M. [Medical University Vienna, Department of Cardiology, Vienna (Austria); Uyanik-Uenal, K.; Zuckermann, A. [Medical University Vienna, Department of Cardiac Surgery, Vienna (Austria)

    2015-08-15

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  13. Dual-source cardiac computed tomography angiography (CCTA) in the follow-up of cardiac transplant: comparison of image quality and radiation dose using three different imaging protocols

    International Nuclear Information System (INIS)

    To prospectively evaluate image quality (IQ) and radiation dose of dual-source cardiac computed tomography (CCTA) using different imaging protocols. CCTA was performed in 150 patients using the retrospective ECG-gated spiral technique (rECG) the prospective ECG-gated technique (pECG), or the prospective ECG-gated technique with systolic imaging and automated tube voltage selection (pECGsys). IQ was rated using a 16-segment coronary artery model. Techniques were compared for overall IQ, IQ of the large and the small coronary artery segments. Effective dose was used for comparison of radiation dose. Overall IQ and IQ of the large segments showed no differences between the groups. IQ analysis of the small segments showed lowered IQ in pECGsys compared to rECG (p = 0.02), but not to pECG (p = 0.6). Effective dose did not differ significantly between rECG and pECG (p = 0.13), but was significantly lower for pECGsys (p < 0.001 vs. rECG and pECG). Radiation dose of dual-source CCTA in heart transplant recipients is significantly reduced by using prospective systolic scanning and automated tube voltage selection, while overall IQ and IQ of the large coronary segments are maintained. IQ appears to be lower compared to retrospective techniques with regard to small coronary segments. (orig.)

  14. SU-E-J-42: Customized Deformable Image Registration Using Open-Source Software SlicerRT

    International Nuclear Information System (INIS)

    Purpose: SlicerRT is a flexible platform that allows the user to incorporate the necessary images registration and processing tools to improve clinical workflow. This work validates the accuracy and the versatility of the deformable image registration algorithm of the free open-source software SlicerRT using a deformable physical pelvic phantom versus available commercial image fusion algorithms. Methods: Optical camera images of nonradiopaque markers implanted in an anatomical pelvic phantom were used to measure the ground-truth deformation and evaluate the theoretical deformations for several DIR algorithms. To perform the registration, full and empty bladder computed tomography (CT) images of the phantom were obtained and used as fixed and moving images, respectively. The DIR module, found in SlicerRT, used a B-spline deformable image registration with multiple optimization parameters that allowed customization of the registration including a regularization term that controlled the amount of local voxel displacement. The virtual deformation field at the center of the phantom was obtained and compared to the experimental ground-truth values. The parameters of SlicerRT were then varied to improve spatial accuracy. To quantify image similarity, the mean absolute difference (MAD) parameter using Hounsfield units was calculated. In addition, the Dice coefficient of the contoured rectum was evaluated to validate the strength of the algorithm to transfer anatomical contours. Results: Overall, SlicerRT achieved one of the lowest MAD values across the algorithm spectrum, but slightly smaller mean spatial errors in comparison to MIM software (MIM). On the other hand, SlicerRT created higher mean spatial errors than Velocity Medical Solutions (VEL), although obtaining an improvement on the DICE to 0.91. The large spatial errors were attributed to the poor contrast in the prostate bladder interface of the phantom. Conclusion: Based phantom validation, SlicerRT is capable of

  15. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects—a correlation study

    International Nuclear Information System (INIS)

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between the mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between the mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with the application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in the MGG and in mucosal electrodes (r = 0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes. (paper)

  16. Development of a high-speed camera system for neutron imaging at a pulsed neutron source

    International Nuclear Information System (INIS)

    A neutron energy resolved imaging system with a time-of-flight technique has been newly developed and installed at Japan Proton Accelerator Research Complex (J-PARC) with the aim to investigate more preciously and rapidly a spatial distribution of several elements and crystals in various kinds of materials or substances. A high-speed video camera (CMOS, 1300 k frame/s) equipped system allows to obtain TOF images consecutively resolved into narrow energy ranges with a single pulsed neutrons while conventional CCD camera imaging system could obtain only one TOF image in an arbitral neutron energy region in the pulsed neutron energy region from 0.01 eV to a few keV. Qualities of the images obtained with the system, such as spatial resolution (defined by modulation transfer function, 0.8 line-pairs/mm at En∼0.01 eV), dependence of the brightness on the neutron energy and measurement errors (∼2%) of the system were examined experimentally and evaluated by comparison with those of conventional imaging system. The results obtained in the experiments show that the system can visualize the neutron energy resolved images within a small error even at high speed.

  17. Imaging of primary and secondary radiation—Modelling and experimental results of a radioactive source and a water phantom

    International Nuclear Information System (INIS)

    In this paper the contribution of primary and secondary radiation from a water phantom to a pinhole volume, as a result of three neutron sources (Cf, AmBe and 5 MeV mono-energetic) and two gamma sources (Cs and Co), is separately estimated using the PTRAC particle tracking option available in MCNP. Also in this paper imaging of the mixed radiation field produced by a Van de Graaf accelerator (when a water phantom is present) is described. In the model, a spherical tally volume, 2 cm in diameter, was placed equidistantly from a radioactive source and 30×30×15 cm3 water phantom. Monte Carlo simulations have been carried out to investigate the level of primary and secondary radiation contributing to the pinhole volume directly from the source and from interactions in the phantom respectively. The spatial distribution of counts clearly discriminated the source and the phantom. The results have shown that the percentage of neutrons reflected from the phantom with energies above 1 MeV increases with mean energy of the source. This method has significant potential to characterise secondary radiation in proton therapy, where it would help to verify the location and the energy delivered during the treatment

  18. Seismic imaging and analysis of source and migration within an integrated hydrocarbon system study: Northern Gulf of Mexico Basin

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Oliver P.; Hood, Kenneth C.; Harrison, Stanley C. [Exxon Exploration Co., Houston, TX (United States); Wenger, Lloyd M. [Exxon Production Research Co., Houston, TX (United States)

    1995-12-31

    The sources for hydrocarbons in young Tertiary reservoirs of the offshore Gulf of Mexico have been enigmatic in the past due to the lack of source rock penetration in offshore drilling. Exxon formed a multidisciplinary team to address source, maturation, and migration in the northern Gulf of Mexico. The study was initiated in a pilot area east of the Mississippi River Delta where the complete hydrocarbon system can be seismically imaged, then expanded to the west across much of the shelf and slope. Hydrocarbons from seeps and reservoirs were geochemically characterized across the entire northern Gulf of Mexico Basin, and direct oil to source rock correlations were made both offshore (in pilot area) and onshore. Modern 2-D and 3-D seismic was used to develop a geologic framework and to map potential offshore source intervals. The major sources identified offshore are centered on the Eocene, Turonian, Tithonian, and Oxfordian, and correspond to second-order sequence stratigraphic transgressions. (author). 1 fig., 1 tab

  19. Ultra-sensitive sensors for weak electromagnetic fields using high-Tc SQUIDS for biomagnetism, NDE, and corrosion currents

    International Nuclear Information System (INIS)

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The research has directly contributed to a new DOE supported project, three patents (one granted and two submitted), and several potential opportunities for new program funding at the Laboratory. The authors report significant developments extending from basic understanding of and fabrication techniques for high critical-temperature (high-Tc) SQUID devices to the development of high-level applications such as the SQUID Microscope. The development of ramp edge geometry and silver-doped YBa2Cu3O7-x (YBCO) electrodes has tremendously improved the performance of high-Tc SQUIDS. Recent experiments have proven and quantified the LANL-patented superconducting imaging plane gradiometry concept. A SQUID microscope, developed largely under this project, has recently acquired data that demonstrated exceptional sensitivity and resolution. New techniques for background noise suppression, needed to use the extraordinarily sensitive SQUID sensors in unshielded environments, have also been developed. Finally, initial investigations to use SQUIDs in a basic physics experiment to measure the electric dipole moment of the neutron were very successful

  20. OsiriX: An Open-Source Software for Navigating in Multidimensional DICOM Images

    OpenAIRE

    Rosset, Antoine; Spadola, Luca; Ratib, Osman

    2004-01-01

    A multidimensional image navigation and display software was designed for display and interpretation of large sets of multidimensional and multimodality images such as combined PET-CT studies. The software is developed in Objective-C on a Macintosh platform under the MacOS X operating system using the GNUstep development environment. It also benefits from the extremely fast and optimized 3D graphic capabilities of the OpenGL graphic standard widely used for computer games optimized for taking...

  1. Evaluation of the middle and inner ear structures: comparison of hybrid rendering, virtual endoscopy and axial 2D source images

    International Nuclear Information System (INIS)

    Recent developments in 3D reconstructions can enhance the quality and diagnostic value of axial 2D image data sets with direct benefits for clinical practice. To show the possible advantages of a hybrid rendering method [color-coded 3D shaded-surface display (SSD)- and volume rendering method] with the possibility of virtual endoscopy we have specifically highlighted the use in relation to the middle and inner ear structures. We examined 12 patients with both normal findings and postoperative changes, using image data sets from high-resolution spiral computed tomography (HRSCT). The middle and inner ear was segmented using an interactive threshold interval density volume-growing method and visualized with a color-coded SSD rendering method. The temporal bone was visualized using a transparent volume rendering method. The 3D- and virtual reconstructions were compared with the axial 2D source images. The evaluated middle and inner ear structures could be seen in their complete form and correct topographical relationship, and the 3D- and virtual reconstructions indicated an improved representation and spatial orientation of these structures. A hybrid and virtual endoscopic method could add information and improve the value of imaging in the diagnosis and management of patients with middle or inner ear diseases making the understanding and interpretation of axial 2D CT image data sets easier. The introduction of an improved rendering algorithm aids radiological diagnostics, medical education, surgical planning, surgical training, and postoperative assessment. (orig.)

  2. Images

    Data.gov (United States)

    National Aeronautics and Space Administration — Images for the website main pages and all configurations. The upload and access points for the other images are: Website Template RSW images BSCW Images HIRENASD...

  3. Characterization and optimization of images acquired by a compact soft X-ray microscope based on a double stream gas-puff target source

    International Nuclear Information System (INIS)

    Using a table-top size soft X-ray (SXR) microscope, based on a laser plasma source with a double stream gas-puff target and a Fresnel zone plate objective, series of images of test samples were acquired. Characterization and optimization of the acquisition parameters were studied and evaluated in terms of signal to noise ratio (SNR). Conclusions for the optimization of SXR imaging were reached. Similar SNR measurements might be performed to characterize other SXR imaging systems as well. Software enabling live calculation of the SNR during the image acquisition might be introduced in future in the compact imaging systems for optimal image acquisition or for benchmarking purposes

  4. Characterization and optimization of images acquired by a compact soft X-ray microscope based on a double stream gas-puff target source

    Science.gov (United States)

    Torrisi, A.; Wachulak, P.; Fahad Nawaz, M.; Bartnik, A.; Węgrzyński, L.; Jancarek, A.; Fiedorowicz, H.

    2016-04-01

    Using a table-top size soft X-ray (SXR) microscope, based on a laser plasma source with a double stream gas-puff target and a Fresnel zone plate objective, series of images of test samples were acquired. Characterization and optimization of the acquisition parameters were studied and evaluated in terms of signal to noise ratio (SNR). Conclusions for the optimization of SXR imaging were reached. Similar SNR measurements might be performed to characterize other SXR imaging systems as well. Software enabling live calculation of the SNR during the image acquisition might be introduced in future in the compact imaging systems for optimal image acquisition or for benchmarking purposes.

  5. Experimental results and first 22Na source image reconstruction by two prototype modules in coincidence of a liquid xenon positron emission tomograph for small animal imaging

    International Nuclear Information System (INIS)

    A detector with a very specific design using liquid Xenon (LXe) in the scintillation mode is studied for Positron Emission Tomography (PET) of small animals. Two prototype modules equipped with Position Sensitive Photo Multiplier Tubes (PSPMTs) operating in the VUV range (178 nm) and at 165 K were built and studied in coincidence. This paper reports on energy, time and spatial resolution capabilities of this experimental test bench. Furthermore, these experimental results were used to perform the first image reconstruction of a 22Na source placed in the experimental setup.

  6. Evaluating emissions of HCHO, HONO, NO2, and SO2 from point sources using portable Imaging DOAS

    Science.gov (United States)

    Pikelnaya, O.; Tsai, C.; Herndon, S. C.; Wood, E. C.; Fu, D.; Lefer, B. L.; Flynn, J. H.; Stutz, J.

    2011-12-01

    Our ability to quantitatively describe urban air pollution to a large extent depends on an accurate understanding of anthropogenic emissions. In areas with a high density of individual point sources of pollution, such as petrochemical facilities with multiple flares or regions with active commercial ship traffic, this is particularly challenging as access to facilities and ships is often restricted. Direct formaldehyde emissions from flares may play an important role for ozone chemistry, acting as an initial radical precursor and enhancing the degradation of co-emitted hydrocarbons. HONO is also recognized as an important OH source throughout the day. However, very little is known about direct HCHO and HONO emissions. Imaging Differential Optical Absorption Spectroscopy (I-DOAS), a relatively new remote sensing technique, provides an opportunity to investigate emissions from these sources from a distance, making this technique attractive for fence-line monitoring. In this presentation, we will describe I-DOAS measurements during the FLAIR campaign in the spring/summer of 2009. We performed measurements outside of various industrial facilities in the larger Houston area as well as in the Houston Ship Channel to visualize and quantify the emissions of HCHO, NO2, HONO, and SO2 from flares of petrochemical facilities and ship smoke stacks. We will present the column density images of pollutant plumes as well as fluxes from individual flares calculated from I-DOAS observations. Fluxes from individual flares and smoke stacks determined from the I-DOAS measurements vary widely in time and by the emission sources. We will also present HONO/NOx ratios in ship smoke stacks derived from the combination of I-DOAS and in-situ measurements, and discuss other trace gas ratios in plumes derived from the I-DOAS observations. Finally, we will show images of HCHO, NO2 and SO2 plumes from control burn forest fires observed in November of 2009 at Vandenberg Air Force Base, Santa Maria

  7. Focusing and imaging sharp line x-ray and gamma-ray sources using variable-metric diffraction crystals

    International Nuclear Information System (INIS)

    A new method has been devised for focusing and imaging the radiation from sharp-line sources of x-rays and gamma-rays, which makes use of variable-metric diffraction crystals. A variable-metric diffraction crystal is one in which the spacings between the crystalline planes is varied as a function of position in the crystal by either the application of a thermal gradient or by changing the composition of a two component or multiple component crystal. This change in planar spacing changes the Bragg diffraction angle for monochromatic radiation as a function of position in the crystal and makes it possible to obtain focusing and in some cases imaging of a sharp-line point source or parallel beam source. This new approach to focusing x-rays and gamma-rays is used to design a number of gamma ray telescopes suitable for focusing the 511 keV annihilation radiation from the strong source of the center of our galaxy. The new designs are surprisingly efficient with approximately 20% of the radiation incident on the variable-metric diffraction crystals being focused on the image spot. Crystals of Ge, Ge + Si, Si, and quartz are used with mosaic widths of 10 arc sec. The size of the telescope can be scaled up or down without affecting the angular resolution or the energy resolution. The largest model described is 50 m long and has 10 crystal diffraction ring assembles with radii between 71 and 200 cm. The total area of the diffraction crystal is 24,610 cm2 and the effective area (total x diffraction coefficient x transmission) is 4745 cm2. An example of a smaller telescope is also given that is only 12.5 m long and has an effective area of 297 cm2

  8. Beamlines of the biomedical imaging and therapy facility at the Canadian light source-Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Wysokinski, Tomasz W. [Canadian Light Source, Saskatoon, SK (Canada)], E-mail: tomasz.wysokinski@lightsource.ca; Chapman, Dean [Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK (Canada); Adams, Gregg [Western College of Veterinary Medicine, Saskatoon, SK (Canada); Renier, Michel [European Synchrotron Radiation Facility, Grenoble (France); Suortti, Pekka [Department of Physical Sciences, University of Helsinki (Finland); Thomlinson, William [Canadian Light Source, Saskatoon, SK (Canada)

    2007-11-11

    The BioMedical Imaging and Therapy (BMIT) Facility will provide synchrotron-specific imaging and therapy capabilities. This paper describes one of the BMIT beamlines: the bend magnet (BM) beamline 05B1-1. It plays a complementary role to the insertion device (ID) beamline 051D-2 and allows either monochromatic or filtered white beam to be used in the experimental hutch. The monochromatic spectral range will span 8-40 keV, and the beam is more than 200 mm wide in the experimental hutch for imaging studies of small and medium-size animals (up to sheep size). The experimental hutch will have a positioning system that will allow imaging (computed tomography and planar imaging) as well as radiation therapy applications with both filtered white and monochromatic X-ray beams and will handle subjects up to 120 kg. Several different focal plane detectors (cameras) will be available with resolutions ranging from 10 to 150 {mu}m.

  9. Detection of potential mosquito breeding sites based on community sourced geotagged images

    Science.gov (United States)

    Agarwal, Ankit; Chaudhuri, Usashi; Chaudhuri, Subhasis; Seetharaman, Guna

    2014-06-01

    Various initiatives have been taken all over the world to involve the citizens in the collection and reporting of data to make better and informed data-driven decisions. Our work shows how the geotagged images collected through the general population can be used to combat Malaria and Dengue by identifying and visualizing localities that contain potential mosquito breeding sites. Our method first employs image quality assessment on the client side to reject the images with distortions like blur and artifacts. Each geotagged image received on the server is converted into a feature vector using the bag of visual words model. We train an SVM classifier on a histogram-based feature vector obtained after the vector quantization of SIFT features to discriminate images containing either a small stagnant water body like puddle, or open containers and tires, bushes etc. from those that contain flowing water, manicured lawns, tires attached to a vehicle etc. A geographical heat map is generated by assigning a specific location a probability value of it being a potential mosquito breeding ground of mosquito using feature level fusion or the max approach presented in the paper. The heat map thus generated can be used by concerned health authorities to take appropriate action and to promote civic awareness.

  10. Experimental validation of a kV source model and dose computation method for CBCT imaging in an anthropomorphic phantom.

    Science.gov (United States)

    Poirier, Yannick; Tambasco, Mauro

    2016-01-01

    We present an experimental validation of a kilovoltage (kV) X-ray source characterization model in an anthropomorphic phantom to estimate patient-specific absorbed dose from kV cone-beam computed tomography (CBCT) imaging procedures and compare these doses to nominal weighted CT-dose index (CTDIw) dose estimates. We simulated the default Varian on-board imager 1.4 (OBI) default CBCT imaging protocols (i.e., standard-dose head, low-dose thorax, pelvis, and pelvis spotlight) using our previously developed and easy to implement X-ray point-source model and source characterization approach. We used this characterized source model to compute absorbed dose in homogeneous and anthropomorphic phantoms using our previously validated in-house kV dose computation software (kVDoseCalc). We compared these computed absorbed doses to doses derived from ionization chamber measurements acquired at several points in a homogeneous cylindrical phantom and from thermoluminescent detectors (TLDs) placed in the anthropomorphic phantom. In the homogeneous cylindrical phantom, computed values of absorbed dose relative to the center of the phantom agreed with measured values within ≤2% of local dose, except in regions of high-dose gradient where the distance to agreement (DTA) was 2 mm. The computed absorbed dose in the anthropomorphic phantom generally agreed with TLD measurements, with an average percent dose difference ranging from 2.4% ± 6.0% to 5.7% ± 10.3%, depending on the characterized CBCT imaging protocol. The low-dose thorax and the standard dose scans showed the best and worst agreement, respectively. Our results also broadly agree with published values, which are approximately twice as high as the nominal CTDIw would suggest. The results demonstrate that our previously developed method for modeling and characterizing a kV X-ray source could be used to accurately assess patient-specific absorbed dose from kV CBCT procedures within reasonable accuracy, and serve as further

  11. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    Science.gov (United States)

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  12. Development of a prototype apparatus visualizing on a screen the gamma sources superimposed on the image of the vision field

    Energy Technology Data Exchange (ETDEWEB)

    Imbard, G.; Lemaire, J.E. [CEA Centre d`Etudes de la Vallee du Rhone, 30 - Marcoule (France). Dept. d`Exploitation du Retraitement et de Demantelement; Carcreff, H.; Marchand, L.; Thellier, G. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Reacteurs Experimentaux

    1994-12-31

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for {sup 60} Co and 0.8 deg. for {sup 137} Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h{sup -1}. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs.

  13. Development of a prototype apparatus visualizing on a screen the gamma sources superimposed on the image of the vision field

    International Nuclear Information System (INIS)

    Mapping the gamma activity of irradiating zones is often an important prerequisite in dismantling nuclear facilities. The operation is necessary to define a suitable decommissioning strategy before any work begins; it is also required during the procedure to measure the residual activity wherever dose rates are too high to allow human intervention. This report summarizes the work carried out under CEC contract FIED-0055, covering a prototype imaging system designed to display radioactive sources superimposed in real time over a visible light image on a video monitor. This project was developed from an earlier off-line system. The gamma photons are collimated by a double cone system. The imaging system comprises a transparent scintillator bonded to the fiber-optic window of an ultrasensitive camera. The camera was miniaturized to meet specification requirements: with its radiological shielding, the gamma camera weighs 40 kg and is 120 mm in diameter. The processing system is compatible with a realtime camera, and small enough for use at any nuclear. The point-source angular resolution is 1.4 deg. for 60 Co and 0.8 deg. for 137 Cs. The dose rate sensitivity limit is approximately 0.01 mGy.h-1. Process reliability was confirmed by tests in a high-level radio-metallurgy cell at actual decommissioning site. (authors). 7 figs

  14. Dynamic myocardial stress perfusion imaging using fast dual-source CT with alternating table positions: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Bamberg, Fabian; Becker, Christoph R.; Wintersperger, Bernd J.; Reiser, Maximilian F. [Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); Klotz, Ernst; Flohr, Thomas; Schmidt, Bernhard [Siemens Healthcare, Forchheim (Germany); Becker, Alexander [Ludwig Maximilians University, Department of Cardiology, Munich (Germany); Nikolaou, Konstantin [Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); University of Munich - Grosshadern Campus, Department of Clinical Radiology, Munich (Germany)

    2010-05-15

    To detail the principles of using model-based determination of regional myocardial blood flow (MBF) by computed tomography (CT) and demonstrate its in vivo applicability. Dual-source CT was performed with a dynamic protocol comprising acquisition with alternating table positions in ECG-triggered end-systolic timing every second for 30 s. The results of two reconstructions were merged into one final image stack (coverage 73 mm), with low spatial frequency components from a 360 reconstruction and high spatial frequency components from a dual-source cardiac partial image reconstruction. A parametric deconvolution technique was used to fit the time-attenuation curves (TAC), the maximum slope of which was used to derive MBF. One study participant underwent dynamic myocardial stress perfusion imaging (9.6 mSv) followed by invasive coronary angiography and measurement of fractional flow reserve as the gold standard. MBF was 159 ml/100 ml/min in the non-ischaemic anterolateral and 86 ml/100 ml/min in the inferoseptal ischaemic wall. This first evaluation indicates that mathematical modelling of voxel TACs can potentially be used to quantify differences in MBF in a clinical setting. If confirmed in feasibility studies, cardiac CT may allow for parallel assessment of morphology and haemodynamic relevance of coronary artery disease. (orig.)

  15. The spatial distribution of dust sources in Iraq by using satellite images

    Directory of Open Access Journals (Sweden)

    Kamal H.Lateef, Azhaar K.Mishaal, Ahmed M.Abud

    2015-01-01

    Full Text Available Dust storms phenomenon occurs in the most regions of Iraq during the year, this paper is study this phenomenon by using the technique of satellite images, it has been used satellite images (Meteosat-9 with the sensor (SEVERI and selected different dates of dust storms in 2012, geographic information system programs (ERDAS-GIS has been used to discrimination the regions that cause this phenomena within the study area to prepare the images to read the real geographic coordinates and determines the regions that caused the occurrence of the dust storms represented by geographical location (Lon/Lat and making Iraqi map describes these regions for year 2012 and compared with maps for previous years.

  16. Photoplus: auxiliary information for printed images based on distributed source coding

    Science.gov (United States)

    Samadani, Ramin; Mukherjee, Debargha

    2008-01-01

    A printed photograph is difficult to reuse because the digital information that generated the print may no longer be available. This paper describes a mechanism for approximating the original digital image by combining a scan of the printed photograph with small amounts of digital auxiliary information kept together with the print. The auxiliary information consists of a small amount of digital data to enable accurate registration and color-reproduction, followed by a larger amount of digital data to recover residual errors and lost frequencies by distributed Wyner-Ziv coding techniques. Approximating the original digital image enables many uses, including making good quality reprints from the original print, even when they are faded many years later. In essence, the print itself becomes the currency for archiving and repurposing digital images, without requiring computer infrastructure.

  17. Compact X-pinch based point x-ray source for phase contrast imaging of inertial confinement fusion capsules

    International Nuclear Information System (INIS)

    Results from experiments performed to characterize plastic capsules containing foam layers are presented. A compact X-pinch pulser with a footprint 2 having a peak current of 80 kA and a rise time of 50 ns was used. Various wire materials including tungsten, molybdenum, and aluminum were employed. Results with plastic capsules (1 mm diameter, 20 μm thick wall with 80 μm foam inside the capsule) show phase contrast effects at the edges of the wall due to the foam, which mimics the ice inside the shell. The sharpness of the image reveals a source less than 2 μm in size and x-ray diodes show a pulse length of ∼10 ns. The small source size allows high-resolution phase contrast imaging of capsules. The x-ray pulse from an X-pinch is sufficiently short to avoid the motional blurring due to cryogenic system vibrations, which is not possible with low flux sources

  18. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array

    Science.gov (United States)

    Zhang, Lei; Yuan, Hong; Burk, Laurel M.; Inscoe, Christy R.; Hadsell, Michael J.; Chtcheprov, Pavel; Lee, Yueh Z.; Lu, Jianping; Chang, Sha; Zhou, Otto

    2014-03-01

    Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors.

  19. Image-guided microbeam irradiation to brain tumour bearing mice using a carbon nanotube x-ray source array

    International Nuclear Information System (INIS)

    Microbeam radiation therapy (MRT) is a promising experimental and preclinical radiotherapy method for cancer treatment. Synchrotron based MRT experiments have shown that spatially fractionated microbeam radiation has the unique capability of preferentially eradicating tumour cells while sparing normal tissue in brain tumour bearing animal models. We recently demonstrated the feasibility of generating orthovoltage microbeam radiation with an adjustable microbeam width using a carbon nanotube based x-ray source array. Here we report the preliminary results from our efforts in developing an image guidance procedure for the targeted delivery of the narrow microbeams to the small tumour region in the mouse brain. Magnetic resonance imaging was used for tumour identification, and on-board x-ray radiography was used for imaging of landmarks without contrast agents. The two images were aligned using 2D rigid body image registration to determine the relative position of the tumour with respect to a landmark. The targeting accuracy and consistency were evaluated by first irradiating a group of mice inoculated with U87 human glioma brain tumours using the present protocol and then determining the locations of the microbeam radiation tracks using γ-H2AX immunofluorescence staining. The histology results showed that among 14 mice irradiated, 11 received the prescribed number of microbeams on the targeted tumour, with an average localization accuracy of 454 µm measured directly from the histology (537 µm if measured from the registered histological images). Two mice received one of the three prescribed microbeams on the tumour site. One mouse was excluded from the analysis due to tissue staining errors. (paper)

  20. Alternative technique using dual source CT imaging for assessment of myocardial perfusion

    Directory of Open Access Journals (Sweden)

    Amgad S. Abdel-Rahman

    2015-06-01

    Conclusion: We propose that comprehensive evaluation of coronary artery morphology and myocardial perfusion in patients with CAD could be achieved by single reproducible non-invasive contrast enhanced CT acquisition using DSCT scanners while operated in single energy mode with high sensitivity, specificity and diagnostic accuracy, it also has the potential to be the first, independent and stand out imaging choice in such field.

  1. First evidence of phase-contrast imaging with laboratory sources and active pixel sensors

    International Nuclear Information System (INIS)

    The aim of the present work is to achieve a first step towards combining the advantages of an innovative X-ray imaging technique-phase-contrast imaging (XPCi)-with those of a new class of sensors, i.e. CMOS-based active pixel sensors (APSs). The advantages of XPCi are well known and include increased image quality and detection of details invisible to conventional techniques, with potential application fields encompassing the medical, biological, industrial and security areas. Vanilla, one of the APSs developed by the MI-3 collaboration (see (http://mi3.shef.ac.uk)), was thoroughly characterised and an appropriate scintillator was selected to provide X-ray sensitivity. During this process, a set of phase-contrast images of different biological samples was acquired by means of the well-established free-space propagation XPCi technique. The obtained results are very encouraging and are in optimum agreement with the predictions of a simulation recently developed by some of the authors thus further supporting its reliability. This paper presents these preliminary results in detail and discusses in brief both the background to this work and its future developments

  2. Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Hansen, Sofie Therese; Stahlhut, Carsten

    2013-01-01

    EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and...

  3. Mobile real-time EEG imaging Bayesian inference with sparse, temporally smooth source priors

    DEFF Research Database (Denmark)

    Hansen, Lars Kai; Hansen, Sofie Therese; Stahlhut, Carsten

    EEG based real-time imaging of human brain function has many potential applications including quality control, in-line experimental design, brain state decoding, and neuro-feedback. In mobile applications these possibilities are attractive as elements in systems for personal state monitoring and ...

  4. Images as representations : Visual sources on education and childhood in the past

    NARCIS (Netherlands)

    Dekker, Jeroen J.H.

    2015-01-01

    The challenge of using images for the history of education and childhood will be addressed in this article by looking at them as representations. Central is the relationship between representations and reality. The focus is on the power of paintings as representations of aspects of realities. First

  5. Three-dimensional localization of in vivo bioluminescent source based on multispectral imaging

    Science.gov (United States)

    Feng, Jinchao; Jia, Kebin; Tian, Jie; Yan, Guorui; Zhu, Shouping

    2009-02-01

    Bioluminescence tomography (BLT) is a novel in vivo technique in small animal studies, which can reveal the molecular and cellular information at the whole-body small animal level. At present, there is an increasing interest in multispectral bioluminescence tomography, since multispectral data acquisition could improve the BLT performance significantly. In view to the ill-posedness of BLT problem, we develop an optimal permissible source region strategy to constrain the possible solution of the source by utilizing spectrum character of bioluminescent source. Then a linear system to link the measured data with the unknown light source variables is established by utilizing the optimal permissible region strategy based on adaptive finite element analysis. Furthermore, singular value decomposition analysis is used for data dimensionality reduction and improving computational efficiency in multispectral case. The reconstructed speed and stability benefit from adaptive finite element, the permissible region strategy and singular value decomposition. In the numerical simulation, the heterogeneous phantom experiment has been used to evaluate the performance of the proposed algorithm with the Monte Carlo based synthetic data. The reconstruction results demonstrate the merits and potential of our methodology for localizing bioluminescent source.

  6. Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography.

    Science.gov (United States)

    Araoz, Philip A; Kirsch, Jacobo; Primak, Andrew N; Braun, Natalie N; Saba, Osama; Williamson, Eric E; Harmsen, W Scott; Mandrekar, Jayawant N; McCollough, Cynthia H

    2009-12-01

    The purpose of this study was to determine the cardiac phase having the highest coronary sharpness for low and high heart rate patients scanned with dual source CT (DSCT) and to compare coronary image sharpness over different cardiac phases. DSCT coronary CT scans for 30 low heart rate (70 bpm) patients were reconstructed into different cardiac phases, starting at 30% and increasing at 5% increments until 70%. A blinded observer graded image sharpness per coronary segment, from which sharpness scores were produced for the right (RCA), left main (LM), left anterior descending (LAD), and circumflex (Cx) coronary arteries. For each coronary artery, the phase with maximal image sharpness was identified with repeated measures analysis of variance. Comparison of coronary sharpness between low and high heart rate patients was made using generalized estimating equations. For low heart rates the highest sharpness scores for all four vessels (RCA, LM, LAD, and Cx) were at the 65 or 70% phase, which are end-diastolic cardiac phases. For high heart rates the highest sharpness scores were between the 35 and 45% phases, which are end-systolic phases. Low heart rate patients had higher coronary sharpness at most cardiac phases; however, patients with high heart rates had higher coronary sharpness in the 45% phase for all four vessels (P < 0.0001). Using DSCT scanning, optimal image sharpness is obtained in end-diastole at low heart rates and in end-systole in high heart rates. PMID:19669664

  7. Intra-cavity upconversion to 631 nm of images illuminated by an eye-safe ASE source at 1550 nm.

    Science.gov (United States)

    Torregrosa, A J; Maestre, H; Capmany, J

    2015-11-15

    We report an image wavelength upconversion system. The system mixes an incoming image at around 1550 nm (eye-safe region) illuminated by an amplified spontaneous emission (ASE) fiber source with a Gaussian beam at 1064 nm generated in a continuous-wave diode-pumped Nd(3+):GdVO(4) laser. Mixing takes place in a periodically poled lithium niobate (PPLN) crystal placed intra-cavity. The upconverted image obtained by sum-frequency mixing falls around the 631 nm red spectral region, well within the spectral response of standard silicon focal plane array bi-dimensional sensors, commonly used in charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) video cameras, and of most image intensifiers. The use of ASE illumination benefits from a noticeable increase in the field of view (FOV) that can be upconverted with regard to using coherent laser illumination. The upconverted power allows us to capture real-time video in a standard nonintensified CCD camera. PMID:26565863

  8. Pancreatic dual-source dual-energy CT: Is it time to discard unenhanced imaging?

    International Nuclear Information System (INIS)

    Aim: To compare pancreatic virtual unenhanced (VUE) and true unenhanced (TUE) images and to calculate the potential dose reduction by omitting the conventional unenhanced scan. Materials and methods: Fifty-one patients with known or suspected pancreatic masses underwent contrast-enhanced computed-tomography (CT) during unenhanced and portal venous phases acquired in single-energy (SE) mode, and pancreatic parenchymal phase acquired in dual-energy (DE) mode. The image quality (IQ) and image noise (IN) of TUE and VUE images were evaluated. The effective dose of a combined DE/SE dual-phase protocol was compared with that of a theoretical standard SE triple-phase protocol. The results were tested for statistical significance using the Cohen’s k, the Wilcoxon’s signed rank test, and the paired t-test; p-values of less than 0.05 were considered significant. Results: Mean TUE and VUE IQ were 1.5 ± 0.6 and 1.6 ± 0.6 (k = 0.891), with no significant difference (p > 0.05). Mean TUE and VUE IN were 12.3 ± 1.6 and 10.3 ± 1.5 HU, and resulted significantly different (p < 0.001). Mean effective doses for a combined DE/SE dual-phase protocol and SE triple-phase protocol were 8.9 ± 2.4 mSv (range 4.8–16.2 mSv) and 12.1 ± 3.1 mSv (range 6.4–21.1 mSv). The calculated mean dose reduction achievable by omitting the unenhanced scan was 26.7 ± 9.7% (range 10–46.1; p < 0.001). Conclusion: VUE images are feasible for pancreatic abdominal CT. A combined DE/SE dual-phase protocol permits a significant reduction in dose exposure to patients.

  9. Imaging polar and dipolar sources of geophysical anomalies by probability tomography. Part II: Application to the Vesuvius volcanic area

    CERN Document Server

    Mauriello, P; Mauriello, Paolo; Patella, Domenico

    2006-01-01

    In the previous part I, we have developed the generalized theory of the probability tomography method to image polar and dipolar sources of a vector or scalar geophysical anomaly field. The purpose of the new method was to improve the core-and-boundary resolution of the most probable buried sources of the anomalies detected in a datum domain. In this paper, which constitutes the part II of the same study, an application of the new approach to the Vesuvius volcano (Naples, Italy) is illustrated in detail by analyzing geoelectrical, self-potential and gravity datasets collected over the whole volcanic area. The purpose is to get new insights into the shallow structure and hydrothermal system of Vesuvius, and the deep geometry of the tectonic depression within which the volcano grew.

  10. Mapping Woody Plant Encroachment in Grassland Using Multiple Source Remote Sensing images: Case Study in Oklahoma

    Science.gov (United States)

    Wang, J.; Xiao, X.; Qin, Y.; Dong, J.; Zhang, G.; Zhang, Y.; Zou, Z.; Zhou, Y.; Wu, X.; Bajgain, R.

    2015-12-01

    Woody plant encroachment (mainly Juniperus virginiana, a coniferous evergreen tree) in the native grassland has been rapidly increasing in the U.S. Southern Great Plains, largely triggered by overgrazing domestic livestock, fire suppression, and changing rainfall regimes. Increasing dense woody plants have significant implications for local grassland ecosystem dynamics, such as carbon storage, soil nutrient availability, herbaceous forage production, livestock, watershed hydrology and wildlife habitats. However, very limited data are available about the spatio-temporal dynamics of woody plant encroachment to the native grassland at regional scale. Data from remotes sensing could potentially provide relevant information and improve the conversion of native grassland to woody plant encroachment. Previous studies on woody detection in grassland mainly conducted at rangeland scale using airborne or high resolution images, which is sufficient to monitor the dynamics of woody plant encroachment in local grassland. This study examined the potential of medium resolution images to detect the woody encroachment in tallgrass prairie. We selected Cleveland county, Oklahoma, US. as case study area, where eastern area has higher woody coverage than does the western area. A 25-m Phased Array Type L-band Synthetic Aperture Radar (PALSAR, N36W98) image was used to map the trees distributed in the grassland. Then, maximum enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) in the winter calculated from time-series Landsat images was used to identify the invaded woody species (Juniperus virginiana) through phenology-based algorithm. The resulting woody plant encroachment map was compared with the results extracted from the high resolution images provided by the National Agriculture Imagery Program (NAIP). Field photos were also used to validate the accuracy. These results showed that integrating PALSAR and Landsat had good performance to identify the

  11. Source camera identification for heavily JPEG compressed low resolution still images

    NARCIS (Netherlands)

    E.J. Alles; Z.J.M.H. Geradts; C.J. Veenman

    2009-01-01

    In this research, we examined whether fixed pattern noise or more specifically Photo Response Non-Uniformity (PRNU) can be used to identify the source camera of heavily JPEG compressed digital photographs of resolution 640 × 480 pixels. We extracted PRNU patterns from both reference and questioned i

  12. Identifying constituent spectra sources in multispectral images to quantify and locate cervical neoplasia

    Science.gov (United States)

    Baker, Kevin C.; Bambot, Shabbir

    2011-02-01

    Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.

  13. Images of innovation in discourses of free and open source software

    NARCIS (Netherlands)

    Dafermos, G.; Van Eeten, M.J.G.

    2014-01-01

    In this study, we examine the relationship between innovation and free/open source software (FOSS) based on the views of contributors to FOSS projects, using Q methodology as a method of discourse analysis to make visible the positions held by FOSS contributors and identify the discourses encountere

  14. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tohme, Michel S; Qi Jinyi [Department of Biomedical Engineering, University of California, Davis, CA 95616 (United States)], E-mail: qi@ucdavis.edu

    2009-06-21

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 x 3 line phantom, an ultra-micro resolution phantom and a {sup 22}Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  15. Iterative Image Reconstruction for Positron Emission Tomography Based on Detector Response Function Estimated from Point Source Measurements

    Science.gov (United States)

    Tohme, Michel S.; Qi, Jinyi

    2009-01-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can be easily applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2-D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3-by-3 line phantom, an ultra-micro resolution phantom, and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  16. Iterative image reconstruction for positron emission tomography based on a detector response function estimated from point source measurements

    Science.gov (United States)

    Tohme, Michel S.; Qi, Jinyi

    2009-06-01

    The accuracy of the system model in an iterative reconstruction algorithm greatly affects the quality of reconstructed positron emission tomography (PET) images. For efficient computation in reconstruction, the system model in PET can be factored into a product of a geometric projection matrix and sinogram blurring matrix, where the former is often computed based on analytical calculation, and the latter is estimated using Monte Carlo simulations. Direct measurement of a sinogram blurring matrix is difficult in practice because of the requirement of a collimated source. In this work, we propose a method to estimate the 2D blurring kernels from uncollimated point source measurements. Since the resulting sinogram blurring matrix stems from actual measurements, it can take into account the physical effects in the photon detection process that are difficult or impossible to model in a Monte Carlo (MC) simulation, and hence provide a more accurate system model. Another advantage of the proposed method over MC simulation is that it can easily be applied to data that have undergone a transformation to reduce the data size (e.g., Fourier rebinning). Point source measurements were acquired with high count statistics in a relatively fine grid inside the microPET II scanner using a high-precision 2D motion stage. A monotonically convergent iterative algorithm has been derived to estimate the detector blurring matrix from the point source measurements. The algorithm takes advantage of the rotational symmetry of the PET scanner and explicitly models the detector block structure. The resulting sinogram blurring matrix is incorporated into a maximum a posteriori (MAP) image reconstruction algorithm. The proposed method has been validated using a 3 × 3 line phantom, an ultra-micro resolution phantom and a 22Na point source superimposed on a warm background. The results of the proposed method show improvements in both resolution and contrast ratio when compared with the MAP

  17. A new method for imaging faint objects nearby a bright source

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In astronomical observation, it is difficult to obtain the image of faint objects in the peripheral area around a bright celestial body. In order to solve the problem, a new method is designed and experimented, which is called the separation readout technique (SRT). SRT is different from either the traditional coronagraphy or the newly-developed anti-blooming CCD technique, and allows an enough-long exposure to the faint objects in the area around a bright celestial body with the well-preserved bright body's image in one frame. This paper describes in detail the principle of SRT, the computer simulation, the experimental devising and result of SRT observation on a telescope.

  18. Study of the vortex-induced pressure excitation source in a Francis turbine draft tube by particle image velocimetry

    Science.gov (United States)

    Favrel, A.; Müller, A.; Landry, C.; Yamamoto, K.; Avellan, F.

    2015-12-01

    Francis turbines operating at part-load experience the development of a precessing cavitation vortex rope at the runner outlet, which acts as an excitation source for the hydraulic system. In case of resonance, the resulting pressure pulsations seriously compromise the stability of the machine and of the electrical grid to which it is connected. As such off-design conditions are increasingly required for the integration of unsteady renewable energy sources into the existing power system, an accurate assessment of the hydropower plant stability is crucial. However, the physical mechanisms driving this excitation source remain largely unclear. It is for instance essential to establish the link between the draft tube flow characteristics and the intensity of the excitation source. In this study, a two-component particle image velocimetry system is used to investigate the flow field at the runner outlet of a reduced-scale physical model of a Francis turbine. The discharge value is varied from 55 to 81 % of the value at the best efficiency point. A particular set-up is designed to guarantee a proper optical access across the complex geometry of the draft tube elbow. Based on phase-averaged velocity fields, the evolution of the vortex parameters with the discharge, such as the trajectory and the circulation, is determined for the first time. It is shown that the rise in the excitation source intensity is induced by an enlargement of the vortex trajectory and a simultaneous increase in the precession frequency, as well as the vortex circulation. Below a certain value of discharge, the structure of the vortex abruptly changes and loses its coherence, leading to a drastic reduction in the intensity of the induced excitation source.

  19. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures.

    Directory of Open Access Journals (Sweden)

    Lydia Elshoff

    Full Text Available The concept of focal epilepsies includes a seizure origin in brain regions with hyper synchronous activity (epileptogenic zone and seizure onset zone and a complex epileptic network of different brain areas involved in the generation, propagation, and modulation of seizures. The purpose of this work was to study functional and effective connectivity between regions involved in networks of epileptic seizures. The beginning and middle part of focal seizures from ictal surface EEG data were analyzed using dynamic imaging of coherent sources (DICS, an inverse solution in the frequency domain which describes neuronal networks and coherences of oscillatory brain activities. The information flow (effective connectivity between coherent sources was investigated using the renormalized partial directed coherence (RPDC method. In 8/11 patients, the first and second source of epileptic activity as found by DICS were concordant with the operative resection site; these patients became seizure free after epilepsy surgery. In the remaining 3 patients, the results of DICS / RPDC calculations and the resection site were discordant; these patients had a poorer post-operative outcome. The first sources as found by DICS were located predominantly in cortical structures; subsequent sources included some subcortical structures: thalamus, Nucl. Subthalamicus and cerebellum. DICS seems to be a powerful tool to define the seizure onset zone and the epileptic networks involved. Seizure generation seems to be related to the propagation of epileptic activity from the primary source in the seizure onset zone, and maintenance of seizures is attributed to the perpetuation of epileptic activity between nodes in the epileptic network. Despite of these promising results, this proof of principle study needs further confirmation prior to the use of the described methods in the clinical praxis.

  20. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

    International Nuclear Information System (INIS)

    We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4 alpha) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 muA D/T ion beam current accelerated to 80 kV. The generator utilizes a RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively-coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80percent can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results, such as the current density, atomic ion fraction, electron temperature, and electron density, from ion source testing will be discussed.

  1. Characteristics of a RF-Driven Ion Source for a Neutron Generator Used For Associated Particle Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ying; Hurley, John P.; Ji, Qing; Kwan, Joe; Leung, Ka-Ngo

    2008-08-08

    We present recent work on a prototype compact neutron generator for associated particle imaging (API). API uses alpha particles that are produced simultaneously with neutrons in the deuterium-tritium (2D(3T,n)4 alpha) fusion reaction to determine the direction of the neutrons upon exiting the reaction. This method determines the spatial position of each neutron interaction and requires the neutrons to be generated from a small spot in order to achieve high spatial resolution. The ion source for API is designed to produce a focused ion beam with a beam spot diameter of 1-mm or less on the target. We use an axial type neutron generator with a predicted neutron yield of 108 n/s for a 50 muA D/T ion beam current accelerated to 80 kV. The generator utilizes a RF planar spiral antenna at 13.56 MHz to create a highly efficient inductively-coupled plasma at the ion source. Experimental results show that beams with an atomic ion fraction of over 80percent can be obtained while utilizing only 100 watts of RF power in the ion source. A single acceleration gap with a secondary electron suppression electrode is used in the tube. Experimental results, such as the current density, atomic ion fraction, electron temperature, and electron density, from ion source testing will be discussed.

  2. The Coherent X-ray Imaging instrument at the Linac Coherent Light Source

    Science.gov (United States)

    Liang, Mengning; Williams, Garth J.; Messerschmidt, Marc; Seibert, M. Marvin; Montanez, Paul A.; Hayes, Matt; Milathianaki, Despina; Aquila, Andrew; Hunter, Mark S.; Koglin, Jason E.; Schafer, Donald W.; Guillet, Serge; Busse, Armin; Bergan, Robert; Olson, William; Fox, Kay; Stewart, Nathaniel; Curtis, Robin; Miahnahri, Alireza Alan; Boutet, Sébastien

    2015-01-01

    The Coherent X-ray Imaging (CXI) instrument specializes in hard X-ray, in-vacuum, high power density experiments in all areas of science. Two main sample chambers, one containing a 100 nm focus and one a 1 µm focus, are available, each with multiple diagnostics, sample injection, pump–probe and detector capabilities. The flexibility of CXI has enabled it to host a diverse range of experiments, from biological to extreme matter. PMID:25931062

  3. Quantitative time resolved neutron imaging methods at the high flux neutron source FRM-II

    OpenAIRE

    Brunner, Johannes

    2007-01-01

    In the current work various new experimental methods and computation procedures in the field of neutron imaging are presented. These methods have a significant technical importance in non-destructive material investigations. With stroboscopic neutron radiography periodic processes can be investigated on a sub-millisecond time scale. This opens great opportunities for the study and the development of combustion engines. Energy selective time of flight neutron radiography at neutron spallation ...

  4. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  5. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chun-Yueh [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Chang, Wei-Tse; Chen, Yi-Sheng; Hwu, En-Te; Chang, Chia-Seng; Hwang, Ing-Shouh, E-mail: ishwang@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan (China); Hsu, Wei-Hao [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2016-03-15

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å){sup −1} were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage.

  6. Low-kilovolt coherent electron diffractive imaging instrument based on a single-atom electron source

    International Nuclear Information System (INIS)

    In this work, a transmission-type, low-kilovolt coherent electron diffractive imaging instrument was constructed. It comprised a single-atom field emitter, a triple-element electrostatic lens, a sample holder, and a retractable delay line detector to record the diffraction patterns at different positions behind the sample. It was designed to image materials thinner than 3 nm. The authors analyzed the asymmetric triple-element electrostatic lens for focusing the electron beams and achieved a focused beam spot of 87 nm on the sample plane at the electron energy of 2 kV. High-angle coherent diffraction patterns of a suspended graphene sample corresponding to (0.62 Å)−1 were recorded. This work demonstrated the potential of coherent diffractive imaging of thin two-dimensional materials, biological molecules, and nano-objects at a voltage between 1 and 10 kV. The ultimate goal of this instrument is to achieve atomic resolution of these materials with high contrast and little radiation damage

  7. 3D synthetic aperture imaging using a virtual source element in the elevation plane

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt

    2000-01-01

    . However, the resolution in the elevation plane is determined by the fixed mechanical elevation focus. This paper suggests to post-focus the RF lines from several adjacent planes in the elevation direction using the elevation focal point of the transducer as a virtual source element, in order to obtain...... passed through a second beamformer, in which the fixed focal points in the elevation plane are treated as virtual sources of spherical waves. Synthetic aperture focusing is applied on them. The -6 dB resolution in the elevation plane is increased from 7 mm to 2 mm. This gives a uniform point spread...... scatterer was positioned 96 mm from the transducer surface. The transducer was translated in the elevation direction from -13 to +13 mm over the scatterer at steps of 0.375 mm. Each of the 70 planes is scanned using synthetic transmit aperture with 8 emissions. The beam-formed RF lines from the planes are...

  8. Point Source Scatter Contributions From Finite Size Objects In Radioisotope Imaging

    Science.gov (United States)

    Bieszk, J. A.; Lim, C. B.

    1982-11-01

    A Monte Carlo simulation was developed to study scatter contributions from a 140 keV point source at various depths and for different energy windows in finite water phantoms. Photoelectric and Compton interactions were considered. Scatter fractions, energy spectra, and radial spread functions of three approximately patientsized phantoms (rectangular prism, elliptical cylinder, and a sphere) were examined as a function of point-source depth and detector energy-window width. For a 100% energy window, energy spectra are characterized by a high energy region, a backscatter peak region, and a low energy, multi-scatter region. Depth dependent spatial limitations to the radial spread functions occur with decreasing window width. Scatter fractions for the sphere are much smaller than those of the other two phantoms, but approach their values as the size of the energy window decreases.

  9. Images of innovation in discourses of free and open source software

    OpenAIRE

    Dafermos, George; van Eeten, Michel J.G.

    2014-01-01

    In this study, we examine the relationship between innovation and free/open source software (FOSS) based on the views of contributors to FOSS projects, using Q methodology as a method of discourse analysis to make visible the positions held by FOSS contributors and identify the discourses encountered in the FOSS community. In specific, our analysis reveals four discourses: four ways of expressing oneself used by FOSS contributors, which, aside from certain commonalities, postulate fundamental...

  10. Outflow Structure and Velocity Field of Orion Source I: ALMA Imaging of SiO Isotopologue Maser and Thermal Emission

    CERN Document Server

    Niederhofer, Florian; Goddi, Ciriaco

    2012-01-01

    Using Science Verification data from the Atacama Large Millimeter/Submillimeter Array (ALMA), we have identified and imaged five rotational transitions (J=5-4 and J=6-5) of the three silicon monoxide isotopologues 28SiO v=0, 1, 2 and 29SiO v=0 and 28Si18O v=0 in the frequency range from 214 to 246 GHz towards the Orion BN/KL region. The emission of the ground-state 28SiO, 29SiO and 28Si18O shows an extended bipolar shape in the northeast-southwest direction at the position of Radio Source I, indicating that these isotopologues trace an outflow (~18 km/s, P.A. ~50deg, ~5000 AU in diameter) that is driven by this embedded high-mass young stellar object (YSO). Whereas on small scales (10-1000 AU) the outflow from Source I has a well-ordered spatial and velocity structure, as probed by Very Long Baseline Interferometry (VLBI) imaging of SiO masers, the large scales (500-5000 AU) probed by thermal SiO with ALMA reveal a complex structure and velocity field, most likely related to the effects of the environment of ...

  11. Minimal spanning tree algorithm for gamma-ray source detection in sparse photon images: cluster parameters and selection strategies

    CERN Document Server

    Campana, R; Massaro, E; Tinebra, F; Tosti, G

    2013-01-01

    The minimal spanning tree (MST) algorithm is a graph-theoretical cluster-finding method. We previously applied it to gamma-ray bidimensional images, showing that it is quite sensitive in finding faint sources. Possible sources are associated with the regions where the photon arrival directions clusterize. MST selects clusters starting from a particular "tree" connecting all the point of the image and performing a cut based on the angular distance between photons, with a number of events higher than a given threshold. In this paper, we show how a further filtering, based on some parameters linked to the cluster properties, can be applied to reduce spurious detections. We find that the most efficient parameter for this secondary selection is the magnitude M of a cluster, defined as the product of its number of events by its clustering degree. We test the sensitivity of the method by means of simulated and real Fermi-Large Area Telescope (LAT) fields. Our results show that sqrt(M) is strongly correlated with oth...

  12. A Python-Based Open Source System for Geographic Object-Based Image Analysis (GEOBIA Utilizing Raster Attribute Tables

    Directory of Open Access Journals (Sweden)

    Daniel Clewley

    2014-06-01

    Full Text Available A modular system for performing Geographic Object-Based Image Analysis (GEOBIA, using entirely open source (General Public License compatible software, is presented based around representing objects as raster clumps and storing attributes as a raster attribute table (RAT. The system utilizes a number of libraries, developed by the authors: The Remote Sensing and GIS Library (RSGISLib, the Raster I/O Simplification (RIOS Python Library, the KEA image format and TuiView image viewer. All libraries are accessed through Python, providing a common interface on which to build processing chains. Three examples are presented, to demonstrate the capabilities of the system: (1 classification of mangrove extent and change in French Guiana; (2 a generic scheme for the classification of the UN-FAO land cover classification system (LCCS and their subsequent translation to habitat categories; and (3 a national-scale segmentation for Australia. The system presented provides similar functionality to existing GEOBIA packages, but is more flexible, due to its modular environment, capable of handling complex classification processes and applying them to larger datasets.

  13. Tetralogy of Fallot Cardiac Function Evaluation and Intelligent Diagnosis Based on Dual-Source Computed Tomography Cardiac Images.

    Science.gov (United States)

    Cai, Ken; Rongqian, Yang; Li, Lihua; Xie, Zi; Ou, Shanxing; Chen, Yuke; Dou, Jianhong

    2016-05-01

    Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) of the cyanotic type. Studies on ventricular functions have received an increasing amount of attention as the development of diagnosis and treatment technology for CHD continues to advance. Reasonable options for imaging examination and accurate assessment of preoperative and postoperative left ventricular functions of TOF patients are important in improving the cure rate of TOF radical operation, therapeutic evaluation, and judgment prognosis. Therefore, with the aid of dual-source computed tomography (DSCT), cardiac images with high temporal resolution and high definition, we measured the left ventricular time-volume curve using image data and calculating the left ventricular function parameters to conduct the preliminary evaluation on TOF patients. To comprehensively evaluate the cardiac function, the segmental ventricular wall function parameters were measured, and the measurement results were mapped to a bull's eye diagram to realize the standardization of segmental ventricular wall function evaluation. Finally, we introduced a new clustering method based on auto-regression model parameters and combined this method with Euclidean distance measurements to establish an intelligent diagnosis of TOF. The results of this experiment show that the TOF evaluation and the intelligent diagnostic methods proposed in this article are feasible. PMID:26496001

  14. The micro-imaging station of the TopoTomo beamline at the ANKA synchrotron light source

    International Nuclear Information System (INIS)

    The TopoTomo bending magnet beamline at the ANKA synchrotron facility in Karlsruhe (Germany) operates in the hard X-ray regime (above 6 keV). Recently, an X-ray micro-imaging station has been installed at TopoTomo. For typical imaging applications, a filtered white beam or from 2009 on a double-multilayer monochromator is used. In order to optimize the field of view and the resolution of the available indirect pixel detectors, different optical systems have been installed, adapted, respectively, to a large field of view (macroscope) and to high spatial resolution (microscope). They can be combined with different camera systems, ranging from 14-bit dynamic range CCDs to fast CMOS cameras. The spatial resolution can be brought substantially beyond the micrometer limit by using a Bragg magnifier. Due to the moderate flux of the beamline compared to insertion-device beamlines on third generation light sources, special emphasis has been put on the efficiency of the detectors via a dedicated scintillator concept. The layout of the beamline optics makes optimal use of the coherence properties. Thus, absorption contrast, phase-contrast and analyzer-based imaging can be applied. Additionally, white beam synchrotron topography is performed, using digital indirect X-ray pixel detectors as well as X-ray film.

  15. Web-based spatial analysis with the ILWIS open source GIS software and satellite images from GEONETCast

    Science.gov (United States)

    Lemmens, R.; Maathuis, B.; Mannaerts, C.; Foerster, T.; Schaeffer, B.; Wytzisk, A.

    2009-12-01

    This paper involves easy accessible integrated web-based analysis of satellite images with a plug-in based open source software. The paper is targeted to both users and developers of geospatial software. Guided by a use case scenario, we describe the ILWIS software and its toolbox to access satellite images through the GEONETCast broadcasting system. The last two decades have shown a major shift from stand-alone software systems to networked ones, often client/server applications using distributed geo-(web-)services. This allows organisations to combine without much effort their own data with remotely available data and processing functionality. Key to this integrated spatial data analysis is a low-cost access to data from within a user-friendly and flexible software. Web-based open source software solutions are more often a powerful option for developing countries. The Integrated Land and Water Information System (ILWIS) is a PC-based GIS & Remote Sensing software, comprising a complete package of image processing, spatial analysis and digital mapping and was developed as commercial software from the early nineties onwards. Recent project efforts have migrated ILWIS into a modular, plug-in-based open source software, and provide web-service support for OGC-based web mapping and processing. The core objective of the ILWIS Open source project is to provide a maintainable framework for researchers and software developers to implement training components, scientific toolboxes and (web-) services. The latest plug-ins have been developed for multi-criteria decision making, water resources analysis and spatial statistics analysis. The development of this framework is done since 2007 in the context of 52°North, which is an open initiative that advances the development of cutting edge open source geospatial software, using the GPL license. GEONETCast, as part of the emerging Global Earth Observation System of Systems (GEOSS), puts essential environmental data at the

  16. Energy response of an imaging plate exposed to standard beta sources

    International Nuclear Information System (INIS)

    Imaging plates (IPs) are a reusable media, which when exposed to ionizing radiation, store a latent image that can be read out with a red laser as photostimulated luminescence (PSL). They are widely used as a substitute for X-ray films for diagnostic studies. In diagnostic radiology this technology is known as computed radiography. In this work, the energy response of a commercial IP to beta-particle reference radiation fields used for calibrations at the National Institute of Standards and Technology was investigated. The absorbed dose in the active storage phosphor layer was calculated following the scaling procedure for depth dose for high Z materials with reference to water. It was found that the beta particles from Pm-147 and Kr-85 gave 68% and 24% higher PSL responses than that induced by Sr-90, respectively, which was caused by the different PSL detection efficiencies. In addition, normalized response curves of the IPs as a function of depth in polystyrene were measured and compared with the data measured using extrapolation chamber techniques. The difference between both sets of data resulted from the continuous energy change as the beta particle travels across the material, which leads to a different PSL response

  17. Imaging spatial and temporal seismic source variations at Sierra Negra Volcano, Galapagos Islands using back-projection methods

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.; Ebinger, C. J.

    2013-12-01

    Imaging spatial and temporal seismic source variations at Sierra Negra Volcano, Galapagos Islands using back-projection methods Cyndi Kelly1, Jesse F. Lawrence1, Cindy Ebinger2 1Stanford University, Department of Geophysics, 397 Panama Mall, Stanford, CA 94305, USA 2University of Rochester, Department of Earth and Environmental Science, 227 Hutchison Hall, Rochester, NY 14627, USA Low-magnitude seismic signals generated by processes that characterize volcanic and hydrothermal systems and their plumbing networks are difficult to observe remotely. Seismic records from these systems tend to be extremely 'noisy', making it difficult to resolve 3D subsurface structures using traditional seismic methods. Easily identifiable high-amplitude bursts within the noise that might be suitable for use with traditional seismic methods (i.e. eruptions) tend to occur relatively infrequently compared to the length of an entire eruptive cycle. Furthermore, while these impulsive events might help constrain the dynamics of a particular eruption, they shed little insight into the mechanisms that occur throughout an entire eruption sequence. It has been shown, however, that the much more abundant low-amplitude seismic 'noise' in these records (i.e. volcanic or geyser 'tremor') actually represents a series of overlapping low-magnitude displacements that can be directly linked to magma, fluid, and volatile movement at depth. This 'noisy' data therefore likely contains valuable information about the processes occurring in the volcanic or hydrothermal system before, during and after eruption events. In this study, we present a new method to comprehensively study how the seismic source distribution of all events - including micro-events - evolves during different phases of the eruption sequence of Sierra Negra Volcano in the Galapagos Islands. We apply a back-projection search algorithm to image sources of seismic 'noise' at Sierra Negra Volcano during a proposed intrusion event. By analyzing

  18. Michael Lucken, 1945 – Hiroshima : les images sources

    OpenAIRE

    Wuillème, Tanguy

    2009-01-01

    Dans son roman L’immortalité (trad. du tchèque par Éva Bloch, Paris, Gallimard, 1990), Milan Kundera affirme que « la mémoire ne filme pas, la mémoire photographie » (p. 83). Si l’Histoire épouse le mouvement des êtres et des choses, la mémoire comporte un aspect statique, elle engrange des images avec lesquelles il est difficile de reconstruire le film. Les manuels d’histoire n’ont longtemps montré de l’explosion des bombes atomiques d’Hiroshima et de Nagasaki qu’un champignon grossi dans un...

  19. Multi-source remote sensing image fusion classification based on DS evidence theory

    Science.gov (United States)

    Liu, Chunping; Ma, Xiaohu; Cui, Zhiming

    2007-11-01

    A new adaptive remote sensing image fusion classification based on the Dempster-Shafer theory of evidence is presented. This method uses a limited number of prototypes as items of evidence, which is automatically generated by modified Fuzzy Kohonen Clustering Network (FKCN). The class fuzzy membership of each prototype is also determined using reference pattern set. For each input vector a basic probability assignment (BPA) function are computed based on these distances and on the degree of membership of prototypes to each class. And lastly this evidence is combined using Dempster's rule. This proposed method can be implemented in a modified FKCN with specific architecture consisting of one input layer, a prototype layer, a BPA layer, a combination and output layer, and decision layer. The experimental results show that the excellent performance of classification as compared to existing FKCN and basic DS fusion techniques.

  20. Multi-slice and dual-source CT in cardiac imaging. Principles - protocols - indications - outlook. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Ohnesorge, B.M. [Siemens Medical Solutions Group China, Beijing (China); Flohr, T.G. [Siemens Medical Solutions, Forchheim (Germany). Div. CT Physics and Applications Development; Becker, C.R.; Reiser, M.F. [Muenchen Univ. Klinikum Grosshadern (Germany). Dept. of Clinical Radiology; Knez, A [Muenchen Univ. Klinikum Grosshadern (Germany). Section Head Imaging

    2007-07-01

    Cardiac diseases, and in particular coronary artery disease, are the leading cause of death and morbidity in industrialized countries. The development of non-invasive imaging techniques for the heart and the coronary arteries has been considered a key element in improving patient care. A breakthrough in cardiac imaging using CT occurred in 1998, with the introduction of multi-slice computed tomography (CT). Since then, amazing advances in performance have taken place with scanners that acquire up to 64 slices per rotation. This book discusses the state-of-the-art developments in multi-slice CT for cardiac imaging as well as those that can be anticipated in the future. It serves as a comprehensive work that covers all aspects of this technology, from the technical fundamentals and image evaluation all the way to clinical indications and protocol recommendations. This fully reworked second edition draws on the most recent clinical experience obtained with 16- and 64-slice CT scanners by world-leading experts from Europe and the United States. It also includes 'hands-on' experience in the form of 10 representative clinical case studies, which are included on the accompanying CD. As a further highlight, the latest results of the very recently introduced dual-source CT, which may soon represent the CT technology of choice for cardiac applications, are presented. This book will not only convince the reader that multi-slice cardiac CT has arrived in clinical practice, it will also make a significant contribution to the education of radiologists, cardiologists, technologists, and physicists-whether newcomers, experienced users, or researchers. (orig.)