WorldWideScience

Sample records for bioluminescent cyanobacterial bioreporter

  1. Bioluminescent bioreporter sensing of foodborne toxins

    Science.gov (United States)

    Fraley, Amanda C.; Ripp, Steven; Sayler, Gary S.

    2004-06-01

    Histamine is the primary etiological agent in the foodborne disease scombrotoxicosis, one of the most common food toxicities related to fish consumption. Procedures for detecting histamine in fish products are available, but are often too expensive or too complex for routine use. As an alternative, a bacterial bioluminescent bioreporter has been constructed to develop a biosensor system that autonomously responds to low levels of histamine. The bioreporter contains a promoterless Photorhabdus luminescens lux operon (luxCDABE) fused with the Vibrio anguillarum angR regulatory gene promoter of the anguibactin biosynthetic operon. The bioreporter emitted 1.46 times more bioluminescence than background, 30 minutes after the addition of 100mM histamine. However, specificity was not optimal, as this biosensor generated significant bioluminescence in the presence of L-proline and L-histidine. As a means towards improving histamine specificity, the promoter region of a histamine oxidase gene from Arthrobacter globiformis was cloned upstream of the promotorless lux operon from Photorhabdus luminescens. This recently constructed whole-cell, lux-based bioluminescent bioreporter is currently being tested for optimal performance in the presence of histamine in order to provide a rapid, simple, and inexpensive model sensor for the detection of foodborne toxins.

  2. A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples.

    Science.gov (United States)

    Jiang, Bo; Li, Guanghe; Xing, Yi; Zhang, Dayi; Jia, Jianli; Cui, Zhisong; Luan, Xiao; Tang, Hui

    2017-10-01

    Whole-cell bioreporters have emerged as promising tools for genotoxicity evaluation, due to their rapidity, cost-effectiveness, sensitivity and selectivity. In this study, a method for detecting genotoxicity in environmental samples was developed using the bioluminescent whole-cell bioreporter Escherichia coli recA::luxCDABE. To further test its performance in a real world scenario, the E. coli bioreporter was applied in two cases: i) soil samples collected from chromium(VI) contaminated sites; ii) crude oil contaminated seawater collected after the Jiaozhou Bay oil spill which occurred in 2013. The chromium(VI) contaminated soils were pretreated by water extraction, and directly exposed to the bioreporter in two phases: aqueous soil extraction (water phase) and soil supernatant (solid phase). The results indicated that both extractable and soil particle fixed chromium(VI) were bioavailable to the bioreporter, and the solid-phase contact bioreporter assay provided a more precise evaluation of soil genotoxicity. For crude oil contaminated seawater, the response of the bioreporter clearly illustrated the spatial and time change in genotoxicity surrounding the spill site, suggesting that the crude oil degradation process decreased the genotoxic risk to ecosystem. In addition, the performance of the bioreporter was simulated by a modified cross-regulation gene expression model, which quantitatively described the DNA damage response of the E. coli bioreporter. Accordingly, the bioluminescent response of the bioreporter was calculated as the mitomycin C equivalent, enabling quantitative comparison of genotoxicities between different environmental samples. This bioreporter assay provides a rapid and sensitive screening tool for direct genotoxicity assessment of environmental samples. Copyright © 2017. Published by Elsevier Ltd.

  3. Bioluminescent bioreporter for assessment of arsenic contamination ...

    Indian Academy of Sciences (India)

    2013-03-01

    Mar 1, 2013 ... maximum tolerance towards arsenic and was further used for the development of bioreporter bacteria. ... consisting of genetically engineered bacteria containing a .... ated in the forward and reverse primers respectively.

  4. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    International Nuclear Information System (INIS)

    Golberg, Karina; Elbaz, Amit; McNeil, Ronald; Kushmaro, Ariel; Geddes, Chris D.; Marks, Robert S.

    2014-01-01

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak

  5. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, Karina, E-mail: karingo@bgu.ac.il; Elbaz, Amit [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); McNeil, Ronald [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Kushmaro, Ariel [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); Geddes, Chris D. [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Marks, Robert S., E-mail: rsmarks@bgu.ac.il [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel)

    2014-12-15

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.

  6. Detection of organic compounds with whole-cell bioluminescent bioassays.

    Science.gov (United States)

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  7. Bioreporter pseudomonas fluorescens HK44 immobilized in a silica matrix

    Directory of Open Access Journals (Sweden)

    Trogl J.

    2003-01-01

    Full Text Available The bioluminescent bioreporter Pseudomonas fluorescens HK44, the whole cell bacterial biosensor that responds to naphthalene and its metabolites via the production of visible light, was immobilized into a silica matrix by the sol-gel technique. The bioluminescence intensities were measured in the maximum of the bioluminescence band at X = 500 nm. The immobilized cells (>105 cells per g silica matrix produced light after induction by salicylate (cone. > 10 g/l, naphthalene and aminobenzoic acid. The bioluminescence intensities induced by 2,3-dihydroxynaphthalene 3-hydroxybenzoic acid and 4-hydroxybenzoic acid were comparable to a negative control. The cells in the silica layers on glass slides produced light in response to the presence of an inductor at least 8 months after immobilization, and >50 induction cycles. The results showed that these test slides could be used as assays for the multiple determination of water pollution.

  8. Pseudomonas fluorescens HK44: Lessons Learned from a Model Whole-Cell Bioreporter with a Broad Application History

    Directory of Open Access Journals (Sweden)

    Gary S. Sayler

    2012-02-01

    Full Text Available Initially described in 1990, Pseudomonas fluorescens HK44 served as the first whole-cell bioreporter genetically endowed with a bioluminescent (luxCDABE phenotype directly linked to a catabolic (naphthalene degradative pathway. HK44 was the first genetically engineered microorganism to be released in the field to monitor bioremediation potential. Subsequent to that release, strain HK44 had been introduced into other solids (soils, sands, liquid (water, wastewater, and volatile environments. In these matrices, it has functioned as one of the best characterized chemically-responsive environmental bioreporters and as a model organism for understanding bacterial colonization and transport, cell immobilization strategies, and the kinetics of cellular bioluminescent emission. This review summarizes the characteristics of P. fluorescens HK44 and the extensive range of its applications with special focus on the monitoring of bioremediation processes and biosensing of environmental pollution.

  9. Preconcentration and Detection of Mercury with Bioluminescent Bioreporter E. coli ARL1.

    Czech Academy of Sciences Publication Activity Database

    Solovyev, Andrey; Koštejn, Martin; Kuncová, Gabriela; Dostálek, P.; Rohovec, Jan; Navrátil, Tomáš

    2015-01-01

    Roč. 99, č. 20 (2015), s. 8793-8802 ISSN 0175-7598 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : mercury detection * bioreporters * biosorbents Subject RIV: CC - Organic Chemistry Impact factor: 3.376, year: 2015

  10. Co-Cultured Continuously Bioluminescent Human Cells as Bioreporters for the Detection of Prodrug Therapeutic Impact Pre- and Post-Metabolism

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2017-12-01

    Full Text Available Modern drug discovery workflows require assay systems capable of replicating the complex interactions of multiple tissue types, but that can still function under high throughput conditions. In this work, we evaluate the use of substrate-free autobioluminescence in human cell lines to support the performance of these assays with reduced economical and logistical restrictions relative to substrate-requiring bioluminescent reporter systems. The use of autobioluminescence was found to support assay functionality similar to existing luciferase reporter targets. The autobioluminescent assay format was observed to correlate strongly with general metabolic activity markers such as ATP content and the presence of reactive oxygen species, but not with secondary markers such as glutathione depletion. At the transcriptional level, autobioluminescent dynamics were most closely associated with expression of the CYP1A1 phase I detoxification pathway. These results suggest constitutively autobioluminescent cells can function as general metabolic activity bioreporters, while pairing expression of the autobioluminescent phenotype to detoxification pathway specific promoters could create more specific sensor systems.

  11. Bioluminescent bioreporter pad biosensor for monitoring water toxicity.

    Science.gov (United States)

    Axelrod, Tim; Eltzov, Evgeni; Marks, Robert S

    2016-01-01

    Toxicants in water sources are of concern. We developed a tool that is affordable and easy-to-use for monitoring toxicity in water. It is a biosensor composed of disposable bioreporter pads (calcium alginate matrix with immobilized bacteria) and a non-disposable CMOS photodetector. Various parameters to enhance the sensor's signal have been tested, including the effect of alginate and bacterium concentrations. The effect of various toxicants, as well as, environmental samples were tested by evaluating their effect on bacterial luminescence. This is the first step in the creation of a sensitive and simple operative tool that may be used in different environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. New naphthalene whole-cell bioreporter for measuring and assessing naphthalene in polycyclic aromatic hydrocarbons contaminated site.

    Science.gov (United States)

    Sun, Yujiao; Zhao, Xiaohui; Zhang, Dayi; Ding, Aizhong; Chen, Cheng; Huang, Wei E; Zhang, Huichun

    2017-11-01

    A new naphthalene bioreporter was designed and constructed in this work. A new vector, pWH1274_Nah, was constructed by the Gibson isothermal assembly fused with a 9 kb naphthalene-degrading gene nahAD (nahAa nahAb nahAc nahAd nahB nahF nahC nahQ nahE nahD) and cloned into Acinetobacter ADPWH_lux as the host, capable of responding to salicylate (the central metabolite of naphthalene). The ADPWH_Nah bioreporter could effectively metabolize naphthalene and evaluate the naphthalene in natural water and soil samples. This whole-cell bioreporter did not respond to other polycyclic aromatic hydrocarbons (PAHs; pyrene, anthracene, and phenanthrene) and demonstrated a positive response in the presence of 0.01 μM naphthalene, showing high specificity and sensitivity. The bioluminescent response was quantitatively measured after a 4 h exposure to naphthalene, and the model simulation further proved the naphthalene metabolism dynamics and the salicylate-activation mechanisms. The ADPWH_Nah bioreporter also achieved a rapid evaluation of the naphthalene in the PAH-contaminated site after chemical spill accidents, showing high consistency with chemical analysis. The engineered Acinetobacter variant had significant advantages in rapid naphthalene detection in the laboratory and potential in situ detection. The state-of-the-art concept of cloning PAHs-degrading pathway in salicylate bioreporter hosts led to the construction and assembly of high-throughput PAH bioreporter array, capable of crude oil contamination assessment and risk management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Construction of a self- luminescent cyanobacterial bioreporter that detects a broad range of bioavailable heavy metals in aquatic environments

    Directory of Open Access Journals (Sweden)

    Keila eMartin-Betancor

    2015-03-01

    Full Text Available A self-luminescent bioreporter strain of the unicellular cyanobacterium Synechococcus sp. PCC 7942 was constructed by fusing the promoter region of the smt locus (encoding the transcriptional repressor SmtB and the metallothionein SmtA to luxCDABE from Photorhabdus luminescens; the sensor smtB gene controlling the expression of smtA was cloned in the same vector. The bioreporter performance was tested with a range of heavy metals and was shown to respond linearly to divalent Zn, Cd, Cu, Co, Hg and monovalent Ag. Chemical modelling was used to link bioreporter response with metal speciation and bioavailability. Limits of Detection (LODs, Maximum Permissive Concentrations (MPCs and dynamic ranges for each metal were calculated in terms of free ion concentrations. The ranges of detection varied from 11 to 72 pM for Hg2+ (the ion to which the bioreporter was most sensitive to 1.54-5.35 µM for Cd2+ with an order of decreasing sensitivity as follows: Hg2+ >> Cu2+ >> Ag+ > Co2+ ≥ Zn2+ > Cd2+. However, the maximum induction factor reached 75-fold in the case of Zn2+ and 56-fold in the case of Cd2+, implying that Zn2+ is the preferred metal in vivo for the SmtB sensor, followed by Cd2+, Ag+ and Cu2+ (around 45-50-fold induction, Hg2+ (30-fold and finally Co2+ (20-fold. The bioreporter performance was tested in real environmental samples with different water matrix complexity artificially contaminated with increasing concentrations of Zn, Cd, Ag and Cu, confirming its validity as a sensor of free heavy metal cations bioavailability in aquatic environments.

  14. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.

    Science.gov (United States)

    Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald

    2016-12-01

    Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a

  15. Bioreporters in microbial ecology

    NARCIS (Netherlands)

    Leveau, J.H.J.; Lindow, S.E.

    2002-01-01

    Bioreporters are effective research tools for gaining an understanding of a microbe's perception of the world. Fitted with a fusion of an environmentally responsive promoter to a suitable reporter gene, a bacterial or fungal bioreporter is able to communicate its metabolic or transcriptional

  16. The Evolution of the Bacterial Luciferase Gene Cassette (lux as a Real-Time Bioreporter

    Directory of Open Access Journals (Sweden)

    Gary Sayler

    2012-01-01

    Full Text Available The bacterial luciferase gene cassette (lux is unique among bioluminescent bioreporter systems due to its ability to synthesize and/or scavenge all of the substrate compounds required for its production of light. As a result, the lux system has the unique ability to autonomously produce a luminescent signal, either continuously or in response to the presence of a specific trigger, across a wide array of organismal hosts. While originally employed extensively as a bacterial bioreporter system for the detection of specific chemical signals in environmental samples, the use of lux as a bioreporter technology has continuously expanded over the last 30 years to include expression in eukaryotic cells such as Saccharomyces cerevisiae and even human cell lines as well. Under these conditions, the lux system has been developed for use as a biomedical detection tool for toxicity screening and visualization of tumors in small animal models. As the technologies for lux signal detection continue to improve, it is poised to become one of the first fully implantable detection systems for intra-organismal optical detection through direct marriage to an implantable photon-detecting digital chip. This review presents the basic biochemical background that allows the lux system to continuously autobioluminesce and highlights the important milestones in the use of lux-based bioreporters as they have evolved from chemical detection platforms in prokaryotic bacteria to rodent-based tumorigenesis study targets. In addition, the future of lux imaging using integrated circuit microluminometry to image directly within a living host in real-time will be introduced and its role in the development of dose/response therapeutic systems will be highlighted.

  17. Effect of Naphthalene and Salicylate Analogues on the Bioluminescence of Bioreporter Pseudomonas Fluorescens HK44.

    Czech Academy of Sciences Publication Activity Database

    Trögl, Josef; Kuncová, Gabriela; Kubicová, L.; Pařík, P.; Hálová, Jaroslava; Demnerová, K.; Ripp, S.; Sayler, G. S.

    2007-01-01

    Roč. 52, 1 (2007) , s. 3-14 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA104/05/2637; GA ČR(CZ) GA203/06/1244 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : pseudomonas fluorescens HK44 * bioluminescence * bioluminescence Subject RIV: CE - Biochemistry Impact factor: 0.989, year: 2007

  18. Smartphone-based low light detection for bioluminescence application

    Science.gov (United States)

    Kim, Huisung; Jung, Youngkee; Doh, Iyll-Joon; Lozano-Mahecha, Roxana Andrea; Applegate, Bruce; Bae, Euiwon

    2017-01-01

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an analyte. A simple cradle that houses the smartphone, sample tube, and collection lens supports the measuring platform, while noise reduction by ensemble averaging simultaneously lowers the background and enhances the signal from emitted photons. Five different types of smartphones, both Android and iOS devices, were tested, and the top two candidates were used to evaluate luminescence from the bioluminescent reporter Pseudomonas fluorescens M3A. The best results were achieved by OnePlus One (android), which was able to detect luminescence from ~106 CFU/mL of the bio-reporter, which corresponds to ~107 photons/s with 180 seconds of integration time.

  19. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J. IV; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S.

    2000-03-01

    Pseudomonas fluorescens HK44 represents the first genetically engineered microorganism approved for field testing in the United States for bioremediation purposes. Strain HK44 harbors an introduced lux gene fused within a naphthalene degradative pathway, thereby allowing this recombinant microbe to bioluminescent as it degrades specific polyaromatic hydrocarbons such as naphthalene. The bioremediation process can therefore be monitored by the detection of light. P. fluorescens HK44 was inoculated into the vadose zone of intermediate-scale, semicontained soil lysimeters contaminated with naphthalene, anthracene, and phenanthrene, and the population dynamics were followed over an approximate 2-year period in order to assess the long-term efficacy of using strain HK44 for monitoring and controlling bioremediation processes. Results showed that P. fluorescens HK44 was capable of surviving initial inoculation into both hydrocarbon contaminated and uncontaminated soils and was recoverable from these soils 660 days post inoculation. It was also demonstrated that strain HK44 was capable of generating bioluminescence in response to soil hydrocarbon bioavailability. Bioluminescence approaching 166,000 counts/s was detected in fiber optic-based biosensor devices responding to volatile polyaromatic hydrocarbons, while a portable photomultiplier module detected bioluminescence at an average of 4300 counts/s directly from soil-borne HK44 cells within localized treatment areas. The utilization of lux-based bioreporter microorganisms therefore promises to be a viable option for in situ determination of environmental contaminant bioavailability and biodegradation process monitoring and control.

  20. Improvement of bioreporter bacteria-based test systems for the analysis of arsenic in drinking water and the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kuppardt, Anke

    2010-02-05

    Contamination of drinking water with arsenic can be measured in laboratories with atom absorption spectrometry (AAS), mass spectrometry with inductive coupled plasma (ICP-MS) or atom fluorescence spectrometry (AFS) at the relevant concentrations below 50 {mu}g/L. Field test kits which easily and reliably measure arsenic concentrations are not yet available. Test systems on the basis of bioreporter bacteria offer an alternative. Based on the natural resistance mechanism of bacteria against arsenic compounds toxic for humans, bioreporter bacteria can be constructed that display arsenic concentrations with light emission (luminescence or fluorescence) or colour reactions. This is achieved by coupling the gene for the ArsR-protein and arsenic regulated promoters with suitable reporter genes. The resulting bioreporter bacteria report bioavailable arsenic in a dose dependent manner at the toxicologically relevant level of 2 to 80 {mu}g/L and are therewith suitable both for the guideline levels of the WHO of 10 {mu}g/L and for the national standards in South East Asia of 50 {mu}g/L. This alternative method has the advantage of being independent from sophisticated apparatus as by eye detection is feasible and offers the possibility of measuring directly the bioavailable fraction. Bioreporter bacteria are also suitable for in situ research. Yet, in order to apply such bioreporter bacteria as a low-cost analytical tool in a regular manner, open questions exist regarding the preservation of the specific activity, the vitality of bioreporter bacteria and the improvement of bioreporter test systems for layman. The aim of this thesis hence was to optimize and improve bioreporter based test systems to allow easy conservation, storage and transport, and also an application without the need of a sophisticated infrastructure. For that purpose it was intended (i) to develop and validate a method that allows arsenic detection without external calibration (chapter 2) and (ii) to

  1. Improvement of bioreporter bacteria-based test systems for the analysis of arsenic in drinking water and the rhizosphere

    International Nuclear Information System (INIS)

    Kuppardt, Anke

    2010-01-01

    Contamination of drinking water with arsenic can be measured in laboratories with atom absorption spectrometry (AAS), mass spectrometry with inductive coupled plasma (ICP-MS) or atom fluorescence spectrometry (AFS) at the relevant concentrations below 50 μg/L. Field test kits which easily and reliably measure arsenic concentrations are not yet available. Test systems on the basis of bioreporter bacteria offer an alternative. Based on the natural resistance mechanism of bacteria against arsenic compounds toxic for humans, bioreporter bacteria can be constructed that display arsenic concentrations with light emission (luminescence or fluorescence) or colour reactions. This is achieved by coupling the gene for the ArsR-protein and arsenic regulated promoters with suitable reporter genes. The resulting bioreporter bacteria report bioavailable arsenic in a dose dependent manner at the toxicologically relevant level of 2 to 80 μg/L and are therewith suitable both for the guideline levels of the WHO of 10 μg/L and for the national standards in South East Asia of 50 μg/L. This alternative method has the advantage of being independent from sophisticated apparatus as by eye detection is feasible and offers the possibility of measuring directly the bioavailable fraction. Bioreporter bacteria are also suitable for in situ research. Yet, in order to apply such bioreporter bacteria as a low-cost analytical tool in a regular manner, open questions exist regarding the preservation of the specific activity, the vitality of bioreporter bacteria and the improvement of bioreporter test systems for layman. The aim of this thesis hence was to optimize and improve bioreporter based test systems to allow easy conservation, storage and transport, and also an application without the need of a sophisticated infrastructure. For that purpose it was intended (i) to develop and validate a method that allows arsenic detection without external calibration (chapter 2) and (ii) to improve the

  2. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  3. Whole-cell bioreporters and risk assessment of environmental pollution: A proof-of-concept study using lead

    International Nuclear Information System (INIS)

    Zhang, Xiaokai; Qin, Boqiang; Deng, Jianming; Wells, Mona

    2017-01-01

    As the world burden of environmental contamination increases, it is of the utmost importance to develop streamlined approaches to environmental risk assessment in order to prioritize mitigation measures. Whole-cell biosensors or bioreporters and speciation modeling have both become of increasing interest to determine the bioavailability of pollutants, as bioavailability is increasingly in use as an indicator of risk. Herein, we examine whether bioreporter results are able to reflect expectations based on chemical reactivity and speciation modeling, with the hope to extend the research into a wider framework of risk assessment. We study a specific test case concerning the bioavailability of lead (Pb) in aqueous environments containing Pb-complexing ligands. Ligands studied include ethylene diamine tetra-acetic acid (EDTA), meso-2,3 dimercaptosuccinic acid (DMSA), leucine, methionine, cysteine, glutathione, and humic acid (HA), and we also performed experiments using natural water samples from Lake Tai (Taihu), the third largest lake in China. We find that EDTA, DMSA, cysteine, glutathione, and HA amendment significantly reduced Pb bioavailability with increasing ligand concentration according to a log-sigmoid trend. Increasing dissolved organic carbon in Taihu water also had the same effect, whereas leucine and methionine had no notable effect on bioavailability at the concentrations tested. We find that bioreporter results are in accord with the reduction of aqueous Pb 2+ that we expect from the relative complexation affinities of the different ligands tested. For EDTA and HA, for which reasonably accurate ionization and complexation constants are known, speciation modeling is in agreement with bioreporter response to within the level of uncertainty recognised as reasonable by the United States Environmental Protection Agency for speciation-based risk assessment applications. These findings represent a first step toward using bioreporter technology to streamline

  4. The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber.

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Ishizaki, Takayuki; Solovyev, Andrey; Trögl, J.; Ripp, S.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 467 ISSN 1996-1944 Institutional support: RVO:67985858 Keywords : bioluminescent biosensor * silica gel * encapsulation Subject RIV: CC - Organic Chemistry Impact factor: 2.654, year: 2016

  5. Whole-cell bioreporters and risk assessment of environmental pollution: A proof-of-concept study using lead.

    Science.gov (United States)

    Zhang, Xiaokai; Qin, Boqiang; Deng, Jianming; Wells, Mona

    2017-10-01

    As the world burden of environmental contamination increases, it is of the utmost importance to develop streamlined approaches to environmental risk assessment in order to prioritize mitigation measures. Whole-cell biosensors or bioreporters and speciation modeling have both become of increasing interest to determine the bioavailability of pollutants, as bioavailability is increasingly in use as an indicator of risk. Herein, we examine whether bioreporter results are able to reflect expectations based on chemical reactivity and speciation modeling, with the hope to extend the research into a wider framework of risk assessment. We study a specific test case concerning the bioavailability of lead (Pb) in aqueous environments containing Pb-complexing ligands. Ligands studied include ethylene diamine tetra-acetic acid (EDTA), meso-2,3 dimercaptosuccinic acid (DMSA), leucine, methionine, cysteine, glutathione, and humic acid (HA), and we also performed experiments using natural water samples from Lake Tai (Taihu), the third largest lake in China. We find that EDTA, DMSA, cysteine, glutathione, and HA amendment significantly reduced Pb bioavailability with increasing ligand concentration according to a log-sigmoid trend. Increasing dissolved organic carbon in Taihu water also had the same effect, whereas leucine and methionine had no notable effect on bioavailability at the concentrations tested. We find that bioreporter results are in accord with the reduction of aqueous Pb 2+ that we expect from the relative complexation affinities of the different ligands tested. For EDTA and HA, for which reasonably accurate ionization and complexation constants are known, speciation modeling is in agreement with bioreporter response to within the level of uncertainty recognised as reasonable by the United States Environmental Protection Agency for speciation-based risk assessment applications. These findings represent a first step toward using bioreporter technology to streamline

  6. Development of an online biosensor for in situ monitoring of chlorine dioxide gas disinfection efficacy

    Energy Technology Data Exchange (ETDEWEB)

    Del Busto-Ramos, M.; Budzik, M.; Corvalan, C.; Morgan, M.; Nivens, D.; Applegate, B. [Purdue Univ., West Lafayette, IN (United States). Dept. of Food Science; Turco, R. [Purdue Univ., West Lafayette, IN (United States). Dept. of Agronomy

    2008-03-15

    A prototype bioluminescence-based biosensor was designed and constructed to evaluate the antimicrobial efficacy of chlorine dioxide (ClO{sub 2}) gas under various treatment conditions. The biosensor consisted of a bioluminescent bioreporter (Pseudomonas fluorescens 5RL), an optical transducer (photomultiplier tube), and a light-tight chamber housing, the bioreporter and the transducer. The bioluminescent recombinant P. fluorescens 5RL in the biosensor allowed for online monitoring of bioluminescence during ClO{sub 2} gas disinfection. Experiments were performed to evaluate the effects of the two key physical parameters associated with ClO{sub 2} disinfection: relative humidity (40, 60, 80%) and ClO{sub 2} gas concentration (0.5, 1.0, 1.6, 2.1 mg/l) on the bioreporter. Results showed that increasing concentrations of ClO{sub 2} gas corresponded to a faster decrease in luminescence. The rates of luminescence decrease from P. fluorescens 5RL, and the log reduction time (LRT, time required to obtain 1-log reduction in luminescence) were calculated for each treatment tested. The LRT values of luminescence were 103, 78, 53, and 35 s for 0.5, 1.0, 1.6, and 2.1 mg/l of ClO{sub 2} gas treatment, respectively, at 78% relative humidity. The gas concentration which caused a tenfold change in LRT (z value) for luminescence of P. fluorescens 5RL was 3.4 mg/l of ClO{sub 2}. The prototype biosensor showed potential for many applications, such as monitoring real-time microbial inactivation and understanding parameters that influence the efficacy of gaseous decontamination procedures. (orig.)

  7. Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer.

    Science.gov (United States)

    Nishio, Koichi; Pornpitra, Tunanunkul; Izawa, Seiichiro; Nishiwaki-Ohkawa, Taeko; Kato, Souichiro; Hashimoto, Kazuhito; Nakanishi, Shuji

    2015-06-01

    Recent research on cellular circadian rhythms suggests that the coupling of transcription-translation feedback loops and intracellular redox oscillations is essential for robust circadian timekeeping. For clarification of the molecular mechanism underlying the circadian rhythm, methods that allow for the dynamic and simultaneous detection of transcription/translation and redox oscillations in living cells are needed. Herein, we report that the cyanobacterial circadian redox rhythm can be electrochemically detected based on extracellular electron transfer (EET), a process in which intracellular electrons are exchanged with an extracellular electrode. As the EET-based method is non-destructive, concurrent detection with transcription/translation rhythm using bioluminescent reporter strains becomes possible. An EET pathway that electrochemically connected the intracellular region of cyanobacterial cells with an extracellular electrode was constructed via a newly synthesized electron mediator with cell membrane permeability. In the presence of the mediator, the open circuit potential of the culture medium exhibited temperature-compensated rhythm with approximately 24 h periodicity. Importantly, such circadian rhythm of the open circuit potential was not observed in the absence of the electron mediator, indicating that the EET process conveys the dynamic information regarding the intracellular redox state to the extracellular electrode. These findings represent the first direct demonstration of the intracellular circadian redox rhythm of cyanobacterial cells. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Whole-Cell Optical Biosensor for Mercury – Operational Conditions in Saline Water

    Czech Academy of Sciences Publication Activity Database

    Solovyev, Andrey; Kuncová, Gabriela; Demnerová, K.

    2015-01-01

    Roč. 69, č. 1 (2015), s. 183-191 ISSN 0366-6352 R&D Projects: GA TA ČR TA03010544 Institutional support: RVO:67985858 Keywords : mercury detection assay * bioluminescent bioreporter * sea water Subject RIV: CA - Inorganic Chemistry Impact factor: 1.326, year: 2015

  9. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  10. Bioluminescent bacteria: lux genes as environmental biosensors

    Directory of Open Access Journals (Sweden)

    Nunes-Halldorson Vânia da Silva

    2003-01-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  11. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson,Vânia da Silva; Duran,Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  12. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.

    Directory of Open Access Journals (Sweden)

    Matthew P Davis

    Full Text Available Bioluminescence is primarily a marine phenomenon with 80% of metazoan bioluminescent genera occurring in the world's oceans. Here we show that bioluminescence has evolved repeatedly and is phylogenetically widespread across ray-finned fishes. We recover 27 independent evolutionary events of bioluminescence, all among marine fish lineages. This finding indicates that bioluminescence has evolved many more times than previously hypothesized across fishes and the tree of life. Our exploration of the macroevolutionary patterns of bioluminescent lineages indicates that the present day diversity of some inshore and deep-sea bioluminescent fish lineages that use bioluminescence for communication, feeding, and reproduction exhibit exceptional species richness given clade age. We show that exceptional species richness occurs particularly in deep-sea fishes with intrinsic bioluminescent systems and both shallow water and deep-sea lineages with luminescent systems used for communication.

  13. Bioluminescent organs of two deep-sea arrow worms, Eukrohnia fowleri and Caecosagitta macrocephala, with further observations on Bioluminescence in chaetognaths.

    Science.gov (United States)

    Thuesen, Erik V; Goetz, Freya E; Haddock, Steven H D

    2010-10-01

    Bioluminescence in the deep-sea chaetognath Eukrohnia fowleri is reported for the first time, and behavioral, morphological, and chemical characteristics of bioluminescence in chaetognaths are examined. Until this study, the only known species of bioluminescent chaetognath was Caecosagitta macrocephala. The luminescent organ of that species is located on the ventral edge of each anterior lateral fin, whereas that of E. fowleri runs across the center of the tail fin on both dorsal and ventral sides. Scanning electron microscopy showed that the bioluminescent organs of both species consist of hexagonal chambers containing elongate ovoid particles-the organelles holding bioluminescent materials. No other luminous organism is known to use hexagonal packing to hold bioluminescent materials. Transmission electron microscopy of particles from C. macrocephala revealed a densely packed paracrystalline matrix punctuated by globular inclusions, which likely correspond to luciferin and luciferase, respectively. Both species use unique luciferases in conjunction with coelenterazine for light emission. Luciferase of C. macrocephala becomes inactive after 30 min, but luciferase of E. fowleri is highly stable. Although C. macrocephala has about 90 times fewer particles than E. fowleri, it has a similar bioluminescent capacity (total particle volume) due to its larger particle size. In situ observations of C. macrocephala from a remotely operated vehicle revealed that the luminous particles are released to form a cloud. The discovery of bioluminescence in a second chaetognath phylogenetically distant from the first highlights the importance of bioluminescence among deep-sea organisms.

  14. Bioluminescent bioreporter for assessment of arsenic contamination ...

    Indian Academy of Sciences (India)

    In the present study the most efficient -factor controlling the ars operon was selected after screening of 39 Escherichia coli isolates by minimum inhibitory concentration test (MIC) studies from water samples of different geographical locations of India. Among all, strain isolated from Hooghly River (West Bengal) was found to ...

  15. Pseudomonas fluorescens HK44: Lessons Lerned from a Model Whole-Cell Bioreporter with a Broad Application History

    Czech Academy of Sciences Publication Activity Database

    Trögl, J.; Chauhan, A.; Ripp, S.; Layton, A.C.; Kuncová, Gabriela; Sayler, G.S.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 1544-1571 ISSN 1424-8220 R&D Projects: GA MŠk ME 892; GA MŠk ME 893 Grant - others:USDA(US) 2009-39210-20230 Institutional research plan: CEZ:AV0Z40720504 Keywords : bioluminiscence * bioreporter * biosensors Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.953, year: 2012

  16. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter.

    Science.gov (United States)

    Al-Anizi, Ali Adnan; Hellyer, Maria Theresa; Zhang, Dayi

    2014-06-01

    Moringa oleifera has been used as a coagulation reagent for drinking water purification, especially in developing countries such as Malawi. This research revealed the cytoxicity and genotoxicity of M. oleifera by Acinetobacter bioreporter. The results indicated that significant cytoxicity effects were observed when the powdered M. oleifera seeds concentration is from 1 to 50 mg/L. Through direct contact, ethanolic-water extraction and hexane extraction, the toxic effects of hydrophobic and hydrophilic components in M. oleifera seeds were distinguished. It suggested that the hydrophobic lipids contributed to the dominant cytoxicity, consequently resulting in the dominant genotoxicity in the water-soluble fraction due to limited dissolution when the M. oleifera seeds granule concentration was from 10 to 1000 mg/L. Based on cytoxicity and genotoxicity model, the LC50 and LC90 of M. oleifera seeds were 8.5 mg/L and 300 mg/L respectively and their genotoxicity was equivalent to 8.3 mg mitomycin C per 1.0 g dry M. oleifera seed. The toxicity of M. oleifera has also remarkable synergistic effects, suggesting whole cell bioreporter as an appropriate and complementary tool to chemical analysis for environmental toxicity assessment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A rapid and reagent-free bioassay for the detection of dioxin-like compounds and other aryl hydrocarbon receptor (AhR) agonists using autobioluminescent yeast.

    Science.gov (United States)

    Xu, Tingting; Young, Anna; Marr, Enolia; Sayler, Gary; Ripp, Steven; Close, Dan

    2018-02-01

    An autonomously bioluminescent Saccharomyces cerevisiae BLYAhS bioreporter was developed in this study for the simple and rapid detection of dioxin-like compounds (DLCs) and aryl hydrocarbon receptor (AhR) agonists. This recombinant yeast reporter was based on a synthetic bacterial luciferase reporter gene cassette (lux) that can produce the luciferase as well as the enzymes capable of self-synthesizing the requisite substrates for bioluminescent production from endogenous cellular metabolites. As a result, bioluminescent signal production is generated continuously and autonomously without cell lysis or exogenous reagent addition. By linking the expression of the autobioluminescent lux reporter cassette to AhR activation via the use of a dioxin-responsive promoter, the S. cerevisiae BLYAhS bioreporter emitted a bioluminescent signal in response to DLC exposure in a dose-responsive manner. The model dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), could be detected within 4 h with a half maximal effective concentration (EC 50 ) of ~ 8.1 nM and a lower detection limit of 500 pM. The autobioluminescent response of BLYAhS to other AhR agonists, including 2,3,7,8-tetrachlorodibenzofuran (TCDF), polychlorinated bisphenyl congener 126 (PCB-126) and 169 (PCB-169), 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin (HxCDD), 1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (HpCDD), benzo[a]pyrene (BaP), and β-naphthoflavone (bNF), were also characterized in this study. The non-destructive and reagent-free nature of the BLYAhS reporter assay facilitated near-continuous, automated signal acquisition without additional hands-on effort and cost, providing a simple and cost-effective method for rapid DLC detection.

  18. Eutrophication and warming boost cyanobacterial biomass and microcystins

    NARCIS (Netherlands)

    Lurling, Miguel; Oosterhout, Jean; Faassen, Els

    2017-01-01

    Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC) concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial

  19. Cyanobacterial flora from polluted industrial effluents.

    Science.gov (United States)

    Parikh, Amit; Shah, Vishal; Madamwar, Datta

    2006-05-01

    Effluents originating from pesticides, agro-chemicals, textile dyes and dyestuffs industries are always associated with high turbidity, colour, nutrient load, and heavy metals, toxic and persistent compounds. But even with such an anthropogenic nature, these effluents contain dynamic cyanobacterial communities. Documentation of cyanobacterial cultures along the water channels of effluents discharged by above mentioned industries along the west coast of India and their relationship with water quality is reported in this study. Intensity of pollution was evaluated by physico-chemical analysis of water. Higher load of solids, carbon and nutrients were found to be persistent throughout the analysis. Sediment and water samples were found to be colored in nature. Cyanobacterial community structure was found to be influenced by the anthropogenic pollution. 40 different cyanobacterial species were recorded from 14 genera of 5 families and an elevated occurrence of Phormidium, Oscillatoria and Chroococcus genera was observed in all the sampling sites.

  20. Repetitive Inductions of Bioluminescence of Pseudomonas putida TVA8 Immobilized by Adsorption on Optical Fibre.

    Czech Academy of Sciences Publication Activity Database

    Zajíc, J.; Bittner, M.; Brányik, T.; Solovyev, Andrey; Šabata, Stanislav; Kuncová, Gabriela; Pospíšilová, M.

    2016-01-01

    Roč. 70, č. 7 (2016), s. 877-887 ISSN 0366-6352 Institutional support: RVO:67985858 Keywords : whole-cell biosensor * bioluminiscent bioreporter * optical fibre sensor Subject RIV: CC - Organic Chemistry Impact factor: 1.258, year: 2016

  1. Effect of electromagnetic fields on the bacteria bioluminescent activity

    International Nuclear Information System (INIS)

    Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.

    1995-01-01

    The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs

  2. Use of bioreporters and deletion mutants reveals ionic silver and ROS to be equally important in silver nanotoxicity.

    Science.gov (United States)

    Joshi, Nimisha; Ngwenya, Bryne T; Butler, Ian B; French, Chris E

    2015-04-28

    The mechanism of antibacterial action of silver nanoparticles (AgNp) was investigated by employing a combination of microbiology and geochemical approaches to contribute to the realistic assessment of nanotoxicity. Our studies showed that suspending AgNp in media with different levels of chloride relevant to environmental conditions produced low levels of ionic silver thereby suggesting that dissolution of silver ions from nanoparticulate surface could not be the sole mechanism of toxicity. An Escherichia coli based bioreporter strain responsive to silver ions together with mutant strains of E. coli lacking specific protective systems were tested against AgNp. Deletion mutants lacking silver ion efflux systems and resistance mechanisms against oxidative stress showed an increased sensitivity to AgNp. However, the bioreporter did not respond to silver nanoparticles. Our results suggest that oxidative stress is a major toxicity mechanism and that this is at least partially associated with ionic silver, but that bulk dissolution of silver into the medium is not sufficient to account for the observed effects. Chloride ions do not appear to offer significant protection, indicating that chloride in receiving waters will not necessarily protect environmental bacteria from the toxic effects of nanoparticles in effluents. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  4. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    Directory of Open Access Journals (Sweden)

    Steinman Lawrence

    2008-02-01

    Full Text Available Abstract Background Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes. Methods Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc. Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis. Results Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease. Conclusion These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.

  5. In vivo cell tracking with bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Eun; Kalimuthu, Senthilkumar; Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of)

    2015-03-15

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

  6. Cyanobacterial lipopolysaccharides and human health – a review

    Directory of Open Access Journals (Sweden)

    Schluter Philip J

    2006-03-01

    Full Text Available Abstract Cyanobacterial lipopolysaccharide/s (LPS are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation.

  7. Bioluminescence lights the way to food safety

    Science.gov (United States)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2003-07-01

    The food industry is increasingly adopting food safety and quality management systems that are more proactive and preventive than those used in the past which have tended to rely on end product testing and visual inspection. The regulatory agencies in many countries are promoting one such management tool, Hazard Analysis Critical Control Point (HACCP), as a way to achieve a safer food supply and as a basis for harmonization of trading standards. Verification that the process is safe must involve microbiological testing but the results need not be generated in real-time. Of all the rapid microbiological tests currently available, the only ones that come close to offering real-time results are bioluminescence-based methods. Recent developments in application of bioluminescence for food safety issues are presented in the paper. These include the use of genetically engineered microorganisms with bioluminescent and fluorescent phenotypes as a real time indicator of physiological state and survival of food-borne pathogens in food and food processing environments as well as novel bioluminescent-based methods for rapid detection of pathogens in food and environmental samples. Advantages and pitfalls of the methods are discussed.

  8. In Vivo Bioluminescence Imaging for Longitudinal Monitoring of Inflammation in Animal Models of Uveitis.

    Science.gov (United States)

    Gutowski, Michal B; Wilson, Leslie; Van Gelder, Russell N; Pepple, Kathryn L

    2017-03-01

    We develop a quantitative bioluminescence assay for in vivo longitudinal monitoring of inflammation in animal models of uveitis. Three models of experimental uveitis were induced in C57BL/6 albino mice: primed mycobacterial uveitis (PMU), endotoxin-induced uveitis (EIU), and experimental autoimmune uveitis (EAU). Intraperitoneal injection of luminol sodium salt, which emits light when oxidized, provided the bioluminescence substrate. Bioluminescence images were captured by a PerkinElmer In Vivo Imaging System (IVIS) Spectrum and total bioluminescence was analyzed using Living Image software. Bioluminescence on day zero was compared to bioluminescence on the day of peak inflammation for each model. Longitudinal bioluminescence imaging was performed in EIU and EAU. In the presence of luminol, intraocular inflammation generates detectable bioluminescence in three mouse models of uveitis. Peak bioluminescence in inflamed PMU eyes (1.46 × 105 photons/second [p/s]) was significantly increased over baseline (1.47 × 104 p/s, P = 0.01). Peak bioluminescence in inflamed EIU eyes (3.18 × 104 p/s) also was significantly increased over baseline (1.09 × 104 p/s, P = 0.04), and returned to near baseline levels by 48 hours. In EAU, there was a nonsignificant increase in bioluminescence at peak inflammation. In vivo bioluminescence may be used as a noninvasive, quantitative measure of intraocular inflammation in animal models of uveitis. Primed mycobacterial uveitis and EIU are both acute models with robust anterior inflammation and demonstrated significant changes in bioluminescence corresponding with peak inflammation. Experimental autoimmune uveitis is a more indolent posterior uveitis and generated a more modest bioluminescent signal. In vivo imaging system bioluminescence is a nonlethal, quantifiable assay that can be used for monitoring inflammation in animal models of uveitis.

  9. Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity

    Science.gov (United States)

    Widder, E. A.

    2010-05-01

    From bacteria to fish, a remarkable variety of marine life depends on bioluminescence (the chemical generation of light) for finding food, attracting mates, and evading predators. Disparate biochemical systems and diverse phylogenetic distribution patterns of light-emitting organisms highlight the ecological benefits of bioluminescence, with biochemical and genetic analyses providing new insights into the mechanisms of its evolution. The origins and functions of some bioluminescent systems, however, remain obscure. Here, I review recent advances in understanding bioluminescence in the ocean and highlight future research efforts that will unite molecular details with ecological and evolutionary relationships.

  10. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    Codd, Geoffrey A.; Morrison, Louise F.; Metcalf, James S.

    2005-01-01

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  11. Bioluminescence imaging of Chlamydia muridarum ascending infection in mice.

    Directory of Open Access Journals (Sweden)

    Jessica Campbell

    Full Text Available Chlamydial pathogenicity in the upper genital tract relies on chlamydial ascending from the lower genital tract. To monitor chlamydial ascension, we engineered a luciferase-expressing C. muridarum. In cells infected with the luciferase-expressing C. muridarum, luciferase gene expression and enzymatic activity (measured as bioluminescence intensity correlated well along the infection course, suggesting that bioluminescence can be used for monitoring chlamydial replication. Following an intravaginal inoculation with the luciferase-expressing C. muridarum, 8 of 10 mice displayed bioluminescence signal in the lower with 4 also in the upper genital tracts on day 3 after infection. By day 7, all 10 mice developed bioluminescence signal in the upper genital tracts. The bioluminescence signal was maintained in the upper genital tract in 6 and 2 mice by days 14 and 21, respectively. The bioluminescence signal was no longer detectable in any of the mice by day 28. The whole body imaging approach also revealed an unexpected airway infection following the intravaginal inoculation. Although the concomitant airway infection was transient and did not significantly alter the genital tract infection time courses, caution should be taken during data interpretation. The above observations have demonstrated that C. muridarum can not only achieve rapid ascending infection in the genital tract but also cause airway infection following a genital tract inoculation. These findings have laid a foundation for further optimizing the C. muridarum intravaginal infection murine model for understanding chlamydial pathogenic mechanisms.

  12. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    Science.gov (United States)

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  13. Eutrophication and Warming Boost Cyanobacterial Biomass and Microcystins

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2017-02-01

    Full Text Available Eutrophication and warming are key drivers of cyanobacterial blooms, but their combined effects on microcystin (MC concentrations are less studied. We tested the hypothesis that warming promotes cyanobacterial abundance in a natural plankton community and that eutrophication enhances cyanobacterial biomass and MC concentrations. We incubated natural seston from a eutrophic pond under normal, high, and extreme temperatures (i.e., 20, 25, and 30 °C with and without additional nutrients added (eutrophication mimicking a pulse as could be expected from projected summer storms under climate change. Eutrophication increased algal- and cyanobacterial biomass by 26 and 8 times, respectively, and led to 24 times higher MC concentrations. This effect was augmented with higher temperatures leading to 45 times higher MC concentrations at 25 °C, with 11 times more cyanobacterial chlorophyll-a and 25 times more eukaryote algal chlorophyll-a. At 30 °C, MC concentrations were 42 times higher, with cyanobacterial chlorophyll-a being 17 times and eukaryote algal chlorophyll-a being 24 times higher. In contrast, warming alone did not yield more cyanobacteria or MCs, because the in situ community had already depleted the available nutrient pool. MC per potential MC producing cell declined at higher temperatures under nutrient enrichments, which was confirmed by a controlled experiment with two laboratory strains of Microcystis aeruginosa. Nevertheless, MC concentrations were much higher at the increased temperature and nutrient treatment than under warming alone due to strongly promoted biomass, lifting N-imitation and promotion of potential MC producers like Microcystis. This study exemplifies the vulnerability of eutrophic urban waters to predicted future summer climate change effects that might aggravate cyanobacterial nuisance.

  14. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  15. Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus

    NARCIS (Netherlands)

    Daghighi, Seyedmojtaba; Sjollema, Jelmer; Harapanahalli, Akshay; Dijkstra, Rene J. B.; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in

  16. Tailoring cyanobacterial cell factory for improved industrial properties.

    Science.gov (United States)

    Luan, Guodong; Lu, Xuefeng

    Photosynthetic biomanufacturing provides a promising solution for sustainable production of biofuels and biochemicals. Cyanobacteria are among the most promising microbial platforms for the construction of photosynthetic cell factories. Metabolic engineering of cyanobacteria has enabled effective photosynthetic synthesis of diverse natural or non-natural metabolites, while commercialization of photosynthetic biomanufacturing is usually restricted by process and economic feasibilities. In actual outdoor conditions, active cell growth and product synthesis is restricted to narrow light exposure windows of the day-night cycles and is threatened by diverse physical, chemical, and biological environmental stresses. For biomass harvesting and bioproduct recovery, energy and cost consuming processing and equipment is required, which further decreases the economic and environmental competitiveness of the entire process. To facilitate scaled photosynthetic biomanufacturing, lots of efforts have been made to engineer cyanobacterial cell properties required by robust & continual cultivation and convenient & efficient recovery. In this review, we specifically summarized recently reported engineering strategies on optimizing industrial properties of cyanobacterial cells. Through systematically re-editing the metabolism, morphology, mutualism interaction of cyanobacterial chassis cells, the adaptabilities and compatibilities of the cyanobacterial cell factories to the industrial process could be significantly improved. Cell growth and product synthesis of the tailored cyanobacterial cells could be expanded and maintained at night and in stressful environments, while convenient biomass harvesting could also be expected. For developing more feasible cyanobacterial photosynthetic biomanufacturing in large scale, we here propose the importance of tailoring industrial properties of cyanobacteria and outline the directions that should be exploited in the future. Copyright © 2018

  17. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  18. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hazrati, Mehrnaz Khodam; Kalies, Kai-Uwe; Martinetz, Thomas

    2011-01-01

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  19. New bioreactor for in situ simultaneous measurement of bioluminescence and cell density

    Science.gov (United States)

    Picart, Pascal; Bendriaa, Loubna; Daniel, Philippe; Horry, Habib; Durand, Marie-José; Jouvanneau, Laurent; Thouand, Gérald

    2004-03-01

    This article presents a new device devoted to the simultaneous measurement of bioluminescence and optical density of a bioluminescent bacterial culture. It features an optoelectronic bioreactor with a fully autoclavable module, in which the bioluminescent bacteria are cultivated, a modulated laser diode dedicated to optical density measurement, and a detection head for the acquisition of both bioluminescence and optical density signals. Light is detected through a bifurcated fiber bundle. This setup allows the simultaneous estimation of the bioluminescence and the cell density of the culture medium without any sampling. The bioluminescence is measured through a highly sensitive photomultiplier unit which has been photometrically calibrated to allow light flux measurements. This was achieved by considering the bioluminescence spectrum and the full optical transmission of the device. The instrument makes it possible to measure a very weak light flux of only a few pW. The optical density is determined through the laser diode and a photodiode using numerical synchronous detection which is based on the power spectrum density of the recorded signal. The detection was calibrated to measure optical density up to 2.5. The device was validated using the Vibrio fischeri bacterium which was cultivated under continuous culture conditions. A very good correlation between manual and automatic measurements processed with this instrument has been demonstrated. Furthermore, the optoelectronic bioreactor enables determination of the luminance of the bioluminescent bacteria which is estimated to be 6×10-5 W sr-1 m-2 for optical density=0.3. Experimental results are presented and discussed.

  20. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    Science.gov (United States)

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  1. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  2. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.

    Science.gov (United States)

    Gao, Xinyan; Sun, Tao; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-04-01

    To reduce dependence on fossil fuels and curb greenhouse effect, cyanobacteria have emerged as an important chassis candidate for producing biofuels and chemicals due to their capability to directly utilize sunlight and CO2 as the sole energy and carbon sources, respectively. Recent progresses in developing and applying various synthetic biology tools have led to the successful constructions of novel pathways of several dozen green fuels and chemicals utilizing cyanobacterial chassis. Meanwhile, it is increasingly recognized that in order to enhance productivity of the synthetic cyanobacterial systems, optimizing and engineering more robust and high-efficient cyanobacterial chassis should not be omitted. In recent years, numerous research studies have been conducted to enhance production of green fuels and chemicals through cyanobacterial chassis modifications involving photosynthesis, CO2 uptake and fixation, products exporting, tolerance, and cellular regulation. In this article, we critically reviewed recent progresses and universal strategies in cyanobacterial chassis engineering to make it more robust and effective for bio-chemicals production.

  3. Filtering and deconvolution for bioluminescence imaging of small animals; Filtrage et deconvolution en imagerie de bioluminescence chez le petit animal

    Energy Technology Data Exchange (ETDEWEB)

    Akkoul, S.

    2010-06-22

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  4. Methodological problems of direct bioluminescent ATP assay in platelets and erythrocytes.

    Science.gov (United States)

    Girotti, S; Ferri, E; Cascione, M L; Comuzio, S; Mazzuca, A; Orlandini, A; Breccia, A

    1989-07-01

    Direct bioluminescent ATP determination in platelets and erythrocytes involves the study of different parameters which are discussed here. Some parameters are linked to the bioluminescent reaction and to the analyte (ATP); others have regard to the biological matrix. The composition of bioluminescent reagents and the preparation and conservation of the ATP standard, also in the presence of excipients, are among the first given. Matrix problems involve cell characteristics related to age and form, lysis resistance and the possible formation of aggregates (platelets) that may inhibit the complete release of ATP. For these reasons we used the most efficient ATP release agent with the lowest inhibitory effect on luciferase. The data obtained correlate well with a bioluminescent method requiring extraction with ethanol/EDTA, and therefore more time, for ATP determination in platelets and erythrocytes.

  5. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter

  6. Symplectin evolved from multiple duplications in bioluminescent squid

    DEFF Research Database (Denmark)

    Francis, Warren R.; Christianson, Lynne M.; Haddock, Steven H.D.

    2017-01-01

    The squid Sthenoteuthis oualaniensis, formerly Symplectoteuthis oualaniensis, generates light using the luciferin coelenterazine and a unique enzyme, symplectin. Genetic information is limited for bioluminescent cephalopod species, so many proteins, including symplectin, occur in public databases...... functioning is conserved across essentially all members of the protein family, even those unlikely to be used for bioluminescence. Conversely, active site residues involved in pantetheinase catalysis are also conserved across essentially all of these proteins, suggesting that symplectin may have multiple...

  7. REVIEW ARTICLE: Bioluminescent signals and the role of reflectors

    Science.gov (United States)

    Herring, Peter J.

    2000-11-01

    Organisms in a well lit environment use optical signals derived from the selective reflection of ambient light. In a dim or dark environment it is very difficult (because of low photon numbers) to detect the contrast between light reflected from the organism and that from the background, and many organisms use bioluminescent signals instead. The use of such signals on land is largely restricted to sexual signalling by the luminous beetles, but in the deep ocean their use is widespread, involving both many different organisms and a range of uses which parallel those of reflective signals on land. Some bioluminescent signals rely almost entirely on an optically unmodified light source (e.g. a secretion) but others depend upon complex optical structures, particularly reflectors, in the light-emitting organs. Reflectors in the light organs of many shrimp, squid and fish are based on constructive interference systems but employ different biological materials. They and other structures modify the angular, spectral and intensity distributions of bioluminescent signals. The ready availability of highly efficient biological reflectors has been a formative influence in the evolution of bioluminescent signalling in the sea.

  8. Action of γ-radiation on bioluminescence of Noctiluca miliaris

    International Nuclear Information System (INIS)

    Tokarev, Yu.N.

    1976-01-01

    Results of the study in the action of various doses of irradiation on the bioluminescence of Noctiluca miliaris are presented. The doses are found that stimulate the bioluminescence and the dose - effect curves are obtained. It has been shown that stimulation of Noctiluca luminescence by γ-radiation is not of a constant character and extinguishes after a period of time determined by a dose rate

  9. Differential tolerance to cyanobacterial exposure between geographically distinct populations of Perca fluviatilis.

    Science.gov (United States)

    Persson, Karl-Johan; Bergström, Kristofer; Mazur-Marzec, Hannah; Legrand, Catherine

    2013-12-15

    Toxic cyanobacterial blooms are an important problem worldwide. Cyanobacteria may negatively impact young-of-the-year (YOY) fish directly (toxin production, turbidity, decrease in water quality) or indirectly (trophic toxin transfer, changes in prey species composition). Here we test whether there are any differences in cyanobacterial tolerance between four geographically distinct populations of European perch (Perca fluviatilis). We show that P. fluviatilis may develop tolerance against cyanobacteria demonstrated by the ability of individuals from a marine site (exposed to annual cyanobacterial blooms) to increase their detoxification more than individuals from an oligotrophic site (rarely exposed to cyanobacteria). Our results also revealed significant interaction effects between genotypes within a population and response to cyanobacterial exposure in terms of absolute growth and detoxification activity. This genotype by treatment interaction may result in local adaptations to cyanobacterial exposure in P. fluviatilis. Hence, the sensitivity against cyanobacterial exposure may differ between within species populations increasing the importance of local management of fish populations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Arsenic bioavailability in soils before and after soil washing: the use of Escherichia coli whole-cell bioreporters.

    Science.gov (United States)

    Yoon, Youngdae; Kang, Yerin; Chae, Yooeun; Kim, Sunghoon; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-02-01

    We investigated the quantification of bioavailable arsenic in contaminated soils and evaluation of soil-washing processes in the aspect of bioavailability using a novel bacterial bioreporter developed in present study. The whole-cell bioreporter (WCB) was genetically engineered by fusing the promoter of nik operon from Escherichia coli and green fluorescent protein as a sensing domain and reporter domain. Among eight well-known hazardous heavy metals and metalloid, this system responded specifically to arsenic, thereby inferring association of As(III) with NikR inhibits the repression. Moreover, the response was proportional to the concentration of As(III), thereby it was capable to determine the amount of bioavailable arsenic quantitatively in contaminated soils. The bioavailable portion of arsenic was 5.9 (3.46-10.96) and 0.9 (0.27-1.74) % of total from amended and site soils, respectively, suggesting the bioavailability of arsenic in soils was related to the soil properties and duration of aging. On the other hand, only 1.37 (0.21-2.97) % of total arsenic was extracted into soil solutions and 19.88 (11.86-28.27) % of arsenic in soil solution was bioavailable. This result showed that the soluble arsenic is not all bioavailable and most of bioavailable arsenic in soils is water non-extractable. In addition, the bioavailable arsenic was increased after soil-washing while total amount was decreased, thereby suggesting the soil-washing processes release arsenic associated with soil materials to be bioavailable. Therefore, it would be valuable to have a tool to assess bioavailability and the bioavailability should be taken into consideration for soil remediation plans.

  11. Functional profiling of cyanobacterial genomes and its role in ecological adaptations

    Directory of Open Access Journals (Sweden)

    Ratna Prabha

    2016-09-01

    Full Text Available With the availability of complete genome sequences of many cyanobacterial species, it is becoming feasible to study the broad prospective of the environmental adaptation and the overall changes at transcriptional and translational level in these organisms. In the evolutionary phase, niche-specific competitive forces have resulted in specific features of the cyanobacterial genomes. In this study, functional composition of the 84 different cyanobacterial genomes and their adaptations to different environments was examined by identifying the genomic composition for specific cellular processes, which reflect their genomic functional profile and ecological adaptation. It was identified that among cyanobacterial genomes, metabolic genes have major share over other categories and differentiation of genomic functional profile was observed for the species inhabiting different habitats. The cyanobacteria of freshwater and other habitats accumulate large number of poorly characterized genes. Strain specific functions were also reported in many cyanobacterial members, of which an important feature was the occurrence of phage-related sequences. From this study, it can be speculated that habitat is one of the major factors in giving the shape of functional composition of cyanobacterial genomes towards their ecological adaptations.

  12. Dynamics of a cyanobacterial bloom in a hypereutrophic reservoir ...

    African Journals Online (AJOL)

    Blooming and non-blooming periods between 2004 and 2006 in a hypereutrophic reservoir, where cyanobacterial blooms have previously been reported to be permanent, presented an opportunity to characterise factors that may favour cyanobacterial dominance. As a bloom developed in May 2004, a shift to dominance by ...

  13. First report of cyanobacterial diversity and microcystins in a ...

    African Journals Online (AJOL)

    The cyanobacterial diversity of Sidi Boughaba, a Moroccan coastal lagoon and Ramsar site, was evaluated and its potentially toxic species were isolated and characterised. This study was the first time that cyanobacterial diversity and cyanotoxin production have been characterised in a Moroccan coastal lagoon. Samples ...

  14. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  15. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  16. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Hara-Miyauchi, Chikako; Tsuji, Osahiko; Hanyu, Aki; Okada, Seiji; Yasuda, Akimasa; Fukano, Takashi; Akazawa, Chihiro; Nakamura, Masaya; Imamura, Takeshi; Matsuzaki, Yumi; Okano, Hirotaka James

    2012-01-01

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  17. Rapid Analysis of Eukaryotic Bioluminescence to Assess Potential Groundwater Contamination Events

    Directory of Open Access Journals (Sweden)

    Zacariah L. Hildenbrand

    2015-01-01

    Full Text Available Here we present data using a bioluminescent dinoflagellate, Pyrocystis lunula, in a toxicological bioassay to rapidly assess potential instances of groundwater contamination associated with natural gas extraction. P. lunula bioluminescence can be quantified using spectrophotometry as a measurement of organismal viability, with normal bioluminescent output declining with increasing concentration(s of aqueous toxicants. Glutaraldehyde and hydrochloric acid (HCl, components used in hydraulic fracturing and shale acidization, triggered significant toxicological responses in as little as 4 h. Conversely, P. lunula was not affected by the presence of arsenic, selenium, barium, and strontium, naturally occurring heavy metal ions potentially associated with unconventional drilling activities. If exogenous compounds, such as glutaraldehyde and HCl, are thought to have been introduced into groundwater, quantification of P. lunula bioluminescence after exposure to water samples can serve as a cost-effective detection and risk assessment tool to rapidly assess the impact of putative contamination events attributed to unconventional drilling activity.

  18. Cyanobacterial Occurrence and Diversity in Seagrass Meadows in ...

    African Journals Online (AJOL)

    Oscillatoria, Lyngbya and Spirulina were the dominant cyanobacterial genera. Cyanobacterial coverage was higher in Mjimwema (31–100%) than in Ocean Road (0–60%). The levels of nutrients in tidal pool waters at Ocean Road ranged from 0.45–1.03 μmol NO3 -N/l, 0.19–0.27 μmol NO2 -N/l and 0.03–0.09 μmol PO4 ...

  19. Filtering and deconvolution for bioluminescence imaging of small animals

    International Nuclear Information System (INIS)

    Akkoul, S.

    2010-01-01

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  20. Hv 1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence?

    Science.gov (United States)

    Kigundu, Gabriel; Cooper, Jennifer L; Smith, Susan M E

    2018-04-26

    Bioluminescence in dinoflagellates is controlled by H V 1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmed H V 1, and show that H V 1 is widely distributed in the dinoflagellate phylogeny including the basal species Oxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies of H V 1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express a H V 1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than one H V 1 gene. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Validating Bioluminescence Imaging as a High-Throughput, Quantitative Modality for Assessing Tumor Burden

    Directory of Open Access Journals (Sweden)

    Zain Paroo

    2004-04-01

    Full Text Available Bioluminescence imaging (BLI is a highly sensitive tool for visualizing tumors, neoplastic development, metastatic spread, and response to therapy. Although BLI has engendered much excitement due to its apparent simplicity and ease of implementation, few rigorous studies have been presented to validate the measurements. Here, we characterize the nature of bioluminescence output from mice bearing subcutaneous luciferase-expressing tumors over a 4-week period. Following intraperitoneal or direct intratumoral administration of luciferin substrate, there was a highly dynamic kinetic profile of light emission. Although bioluminescence was subject to variability, strong correlations (r > .8, p < .001 between caliper measured tumor volumes and peak light signal, area under light signal curve and light emission at specific time points were determined. Moreover, the profile of tumor growth, as monitored with bioluminescence, closely resembled that for caliper measurements. The study shows that despite the dynamic and variable nature of bioluminescence, where appropriate experimental precautions are taken, single time point BLI may be useful for noninvasive, high-throughput, quantitative assessment of tumor burden.

  2. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  3. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    Science.gov (United States)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  4. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion.

    Science.gov (United States)

    Wollenberg, M S; Preheim, S P; Polz, M F; Ruby, E G

    2012-03-01

    This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These 'dark' V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions that typically maximize light production in dim strains of luminous bacteria. Surprisingly, the entire lux locus (eight genes) was absent in over 97% of these dark V. fischeri strains. Although these strains were all collected from a Massachusetts (USA) estuary in 2007, phylogenetic reconstructions allowed us to reject the hypothesis that these newly described non-bioluminescent strains exhibit monophyly within the V. fischeri clade. These dark strains exhibited a competitive disadvantage against native bioluminescent strains when colonizing the light organ of the model V. fischeri host, the Hawaiian bobtail squid Euprymna scolopes. Significantly, we believe that the data collected in this study may suggest the first observation of a functional, parallel locus-deletion event among independent lineages of a non-pathogenic bacterial species. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  5. Cyanobacterial crust induction using two non-previously tested cyanobacterial inoculants: crusting capability and role of EPSs

    Science.gov (United States)

    Mugnai, Gianmarco; Rossi, Federico; De Philippis, Roberto

    2017-04-01

    The use of cyanobacteria as soil improvers and bio-conditioners (a technique often referred to as algalization) has been studied for decades. Several studies proved that cyanobacteria are feasible eco-friendly candidates to trigger soil fertilization and enrichment from agricultural to arid and hyper-arid systems. This approach can be successful to achieve stabilization and rehabilitation of degraded environments. Much of the effectiveness of algalization is due to the productivity and the characteristics of extracellular polysaccharides (EPSs) which, among their features, embed soil particles and promote the development of a first stable organo-mineral layer (cyanobacterial crusts). In natural settings, cyanobacterial crust induction represents a first step of a succession that may lead to the formation of mature biological soil crusts (Lan et al., 2014). The aim of this research was to investigate the crusting capabilities, and the characteristics of excreted EPSs by two newly tested non-heterocystous cyanobacterial inoculants, in microcosm experiments carried out using oligothrophic sand collected from sand dunes in Negev Desert, Israel. The cyanobacteria tested were Schizothrix AMPL1601, originally isolated from biocrusts collected in Hobq Desert, Inner Mongolia (China) and Leptolyngbia ohadii, originally isolated from biocrusts collected in Negev Desert, Israel. Inoculated microcosms were maintained at 30 °C in a growth chamber under continuous illumination and minimal water availability. Under such stressing conditions, and for a three-months incubation time, the growth and the colonization of the strains in the microcosms were monitored. At the same time, EPSs production and their chemical and macromolecular characteristics were determined by applying a methodology optimized for the purpose. Notably, EPSs were analyzed in two operationally-defined fractions, one more dispersed in the crust matrix (loosely bound EPSs, LB-EPSs) and one more condensed and

  6. A two-hour antibiotic susceptibility test by ATP-bioluminescence.

    Science.gov (United States)

    March Rosselló, Gabriel Alberto; García-Loygorri Jordán de Urries, María Cristina; Gutiérrez Rodríguez, María Purificación; Simarro Grande, María; Orduña Domingo, Antonio; Bratos Pérez, Miguel Ángel

    2016-01-01

    The antibiotic susceptibility test (AST) in Clinical Microbiology laboratories is still time-consuming, and most procedures take 24h to yield results. In this study, a rapid antimicrobial susceptibility test using ATP-bioluminescence has been developed. The design of method was performed using five ATCC collection strains of known susceptibility. This procedure was then validated against standard commercial methods on 10 strains of enterococci, 10 staphylococci, 10 non-fermenting gram negative bacilli, and 13 Enterobacteriaceae from patients. The agreement obtained in the sensitivity between the ATP-bioluminescence method and commercial methods (E-test, MicroScan and VITEK2) was 100%. In summary, the preliminary results obtained in this work show that the ATP-bioluminescence method could provide a fast and reliable AST in two hours. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Okubo, Toshiyuki; Tojo, Arinobu; Sekine, Rieko; Soda, Yasushi; Kobayashi, Seiichiro; Nomura, Akiko; Izawa, Kiyoko; Kitamura, Toshio; Ohtomo, Kuni

    2006-01-01

    The application of in vivo bioluminescence imaging to non-invasive, quantitative monitoring of tumour models relies on a positive correlation between the intensity of bioluminescence and the tumour burden. We conducted cell culture studies to investigate the relationship between bioluminescent signal intensity and viable cell numbers in murine leukaemia model cells. Interleukin-3 (IL-3)-dependent murine pro-B cell line Ba/F3 was transduced with firefly luciferase to generate cells expressing luciferase stably under the control of a retroviral long terminal repeat. The luciferase-expressing cells were transduced with p190 BCR-ABL to give factor-independent proliferation. The cells were cultured under various conditions, and bioluminescent signal intensity was compared with viable cell numbers and the cell cycle stage. The Ba/F3 cells showed autonomous growth as well as stable luciferase expression following transduction with both luciferase and p190 BCR-ABL, and in vivo bioluminescence imaging permitted external detection of these cells implanted into mice. The bioluminescence intensities tended to reflect cell proliferation and responses to imatinib in cell culture studies. However, the luminescence per viable cell was influenced by the IL-3 concentration in factor-dependent cells and by the stage of proliferation and imatinib concentration in factor-independent cells, thereby impairing the proportionality between viable cell number and bioluminescent signal intensity. Luminescence per cell tended to vary in association with the fraction of proliferating cells. Although in vivo bioluminescence imaging would allow non-invasive monitoring of leukaemia model animals, environmental factors and therapeutic interventions may cause some discrepancies between tumour burden and bioluminescence intensity. (orig.)

  8. Quantitative and Functional Requirements for Bioluminescent Cancer Models.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vermeulen, Stefan; Vandesompele, J O; Vanderheyden, Katrien; Messens, Kathy; Bracke, Marc; De Wever, Olivier

    2016-01-01

    Bioluminescent cancer models are widely used but detailed quantification of the luciferase signal and functional comparison with a non-transfected control cell line are generally lacking. In the present study, we provide quantitative and functional tests for luciferase-transfected cells. We quantified the luciferase expression in BLM and HCT8/E11 transfected cancer cells, and examined the effect of long-term luciferin exposure. The present study also investigated functional differences between parental and transfected cancer cells. Our results showed that quantification of different single-cell-derived populations are superior with droplet digital polymerase chain reaction. Quantification of luciferase protein level and luciferase bioluminescent activity is only useful when there is a significant difference in copy number. Continuous exposure of cell cultures to luciferin leads to inhibitory effects on mitochondrial activity, cell growth and bioluminescence. These inhibitory effects correlate with luciferase copy number. Cell culture and mouse xenograft assays showed no significant functional differences between luciferase-transfected and parental cells. Luciferase-transfected cells should be validated by quantitative and functional assays before starting large-scale experiments. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence.

    Science.gov (United States)

    Nackerdien, Zeena E; Keynan, Alexander; Bassler, Bonnie L; Lederberg, Joshua; Thaler, David S

    2008-02-27

    The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy. The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh) strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp) strain increased the growth rate of wild type Vh without significantly altering Vh's bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants. The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.

  10. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence.

    Directory of Open Access Journals (Sweden)

    Zeena E Nackerdien

    2008-02-01

    Full Text Available The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy.The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp strain increased the growth rate of wild type Vh without significantly altering Vh's bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants.The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.

  11. Bioorthogonal chemistry in bioluminescence imaging.

    Science.gov (United States)

    Godinat, Aurélien; Bazhin, Arkadiy A; Goun, Elena A

    2018-05-18

    Bioorthogonal chemistry has developed significant over the past few decades, to the particular benefit of molecular imaging. Bioluminescence imaging (BLI) along with other imaging modalities have significantly benefitted from this chemistry. Here, we review bioorthogonal reactions that have been used to signific antly broaden the application range of BLI. Copyright © 2018. Published by Elsevier Ltd.

  12. Cyanobacterial Oxygenic Photosynthesis is Protected by Flavodiiron Proteins

    Directory of Open Access Journals (Sweden)

    Yagut Allahverdiyeva

    2015-03-01

    Full Text Available Flavodiiron proteins (FDPs, also called flavoproteins, Flvs are modular enzymes widely present in Bacteria and Archaea. The evolution of cyanobacteria and oxygenic photosynthesis occurred in concert with the modulation of typical bacterial FDPs. Present cyanobacterial FDPs are composed of three domains, the β-lactamase-like, flavodoxin-like and flavin-reductase like domains. Cyanobacterial FDPs function as hetero- and homodimers and are involved in the regulation of photosynthetic electron transport. Whilst Flv2 and Flv4 proteins are limited to specific cyanobacterial species (β-cyanobacteria and function in photoprotection of Photosystem II, Flv1 and Flv3 proteins, functioning in the “Mehler-like” reaction and safeguarding Photosystem I under fluctuating light conditions, occur in nearly all cyanobacteria and additionally in green algae, mosses and lycophytes. Filamentous cyanobacteria have additional FDPs in heterocyst cells, ensuring a microaerobic environment for the function of the nitrogenase enzyme under the light. Here, the evolution, occurrence and functional mechanisms of various FDPs in oxygenic photosynthetic organisms are discussed.

  13. Bioluminescent Antibodies for Point-of-Care Diagnostics.

    Science.gov (United States)

    Xue, Lin; Yu, Qiuliyang; Griss, Rudolf; Schena, Alberto; Johnsson, Kai

    2017-06-12

    We introduce a general method to transform antibodies into ratiometric, bioluminescent sensor proteins for the no-wash quantification of analytes. Our approach is based on the genetic fusion of antibody fragments to NanoLuc luciferase and SNAP-tag, the latter being labeled with a synthetic fluorescent competitor of the antigen. Binding of the antigen, here synthetic drugs, by the sensor displaces the tethered fluorescent competitor from the antibody and disrupts bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. The semisynthetic sensors display a tunable response range (submicromolar to submillimolar) and large dynamic range (ΔR max >500 %), and they permit the quantification of analytes through spotting of the samples onto paper followed by analysis with a digital camera. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Cyanobacterial Farming for Environment Friendly Sustainable Agriculture Practices: Innovations and Perspectives

    Directory of Open Access Journals (Sweden)

    Jainendra Pathak

    2018-02-01

    Full Text Available Sustainable supply of food and energy without posing any threat to environment is the current demand of our society in view of continuous increase in global human population and depletion of natural resources of energy. Cyanobacteria have recently emerged as potential candidates who can fulfill abovementioned needs due to their ability to efficiently harvest solar energy and convert it into biomass by simple utilization of CO2, water and nutrients. During conversion of radiant energy into chemical energy, these biological systems produce oxygen as a by-product. Cyanobacterial biomass can be used for the production of food, energy, biofertilizers, secondary metabolites of nutritional, cosmetics, and medicinal importance. Therefore, cyanobacterial farming is proposed as environment friendly sustainable agricultural practice which can produce biomass of very high value. Additionally, cyanobacterial farming helps in decreasing the level of greenhouse gas, i.e., CO2, and it can be also used for removing various contaminants from wastewater and soil. However, utilization of cyanobacteria for resolving the abovementioned problems is subjected to economic viability. In this review, we provide details on different aspects of cyanobacterial system that can help in developing sustainable agricultural practices. We also describe different large-scale cultivation systems for cyanobacterial farming and discuss their merits and demerits in terms of economic profitability.

  15. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks.

    Directory of Open Access Journals (Sweden)

    Julien M Claes

    Full Text Available The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai and one dalatiid species (Squaliolus aliae]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax fall within the range 484-491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent

  16. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks.

    Science.gov (United States)

    Claes, Julien M; Partridge, Julian C; Hart, Nathan S; Garza-Gisholt, Eduardo; Ho, Hsuan-Ching; Mallefet, Jérôme; Collin, Shaun P

    2014-01-01

    The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484-491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep

  17. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used

  18. The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools.

    Science.gov (United States)

    Rees, J F; de Wergifosse, B; Noiset, O; Dubuisson, M; Janssens, B; Thompson, E M

    1998-04-01

    Bioluminescence, the emission of ecologically functional light by living organisms, emerged independently on several occasions, yet the evolutionary origins of most bioluminescent systems remain obscure. We propose that the luminescent substrates of the luminous reactions (luciferins) are the evolutionary core of most systems, while luciferases, the enzymes catalysing the photogenic oxidation of the luciferin, serve to optimise the expression of the endogenous chemiluminescent properties of the luciferin. Coelenterazine, a luciferin occurring in many marine bioluminescent groups, has strong antioxidative properties as it is highly reactive with reactive oxygen species such as the superoxide anion or peroxides. We suggest that the primary function of coelenterazine was originally the detoxification of the deleterious oxygen derivatives. The functional shift from its antioxidative to its light-emitting function might have occurred when the strength of selection for antioxidative defence mechanisms decreased. This might have been made possible when marine organisms began colonising deeper layers of the oceans, where exposure to oxidative stress is considerably reduced because of reduced light irradiance and lower oxygen levels. A reduction in metabolic activity with increasing depth would also have decreased the endogenous production of reactive oxygen species. Therefore, in these organisms, mechanisms for harnessing the chemiluminescence of coelenterazine in specialised organs could have developed, while the beneficial antioxidative properties were maintained in other tissues. The full range of graded irradiance in the mesopelagic zone, where the majority of organisms are bioluminescent, would have provided a continuum for the selection and improvement of proto-bioluminescence. Although the requirement for oxygen or reactive oxygen species observed in bioluminescent systems reflects the high energy required to produce visible light, it may suggest that oxygen

  19. Effect of irradiation on detection of bacteria in dehydrated vegetables with ATP bioluminescence assay

    International Nuclear Information System (INIS)

    Xiao Huan; Luo Shishi; Wang Zegang; Feng Min; Zhu Jiating; Chen Xiulan; Zhai Jianqing

    2011-01-01

    ATP bioluminescence intensity of 4 kinds of irradiated dehydrated vegetables was inconsistent with the bacteria number, the reasons were investigated in this paper. Results showed that irradiation had little effect on background luminescence, and there was no effect on luciferase-luminous system. When irradiation killed the bacteria, the ATPase activity also decreased. As a result, the ATP content in bacteria didn't decreased with the killed of bacteria, which contributed to the increase of free ATP in ATP extract and finally led to the disagreement between the bioluminescence intensity and the actual number of bacteria. When the free ATP in the dehydrated vegetable was removed, the bioluminescence intensity of ATP extract was consistent with the actual number of bacteria in irradiated dehydrated vegetable and ATP bioluminescence technology could be used in bacteria detection of irradiated samples. (authors)

  20. Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Drahorad, Sylvie L; Berkowicz, Simon M; Felix-Henningsen, Peter; Kaplan, Aaron

    2015-07-01

    Cyanobacteria occur worldwide but play an important role in the formation and primary activity of biological soil crusts (BSCs) in arid and semi-arid ecosystems. The cyanobacterial diversity in BSCs of the northwest Negev desert of Israel was surveyed at three fixed sampling stations situated along a precipitation gradient in the years 2010 to 2012. The three stations also are characterized by marked differences in soil features such as soil carbon, nitrogen, or electrical conductivity. The cyanobacterial biodiversity was analyzed by sequencing inserts of clone libraries harboring partial 16S rRNA gene sequences obtained with cyanobacteria-specific primers. Filamentous, non-diazotrophic strains (subsection III), particularly Microcoleus-like, dominated the cyanobacterial community (30% proportion) in all years. Specific cyanobacterial groups showed increased (e.g., Chroococcidiopsis, Leptolyngbya, and Nostoc strains) or decreased (e.g., unicellular strains belonging to the subsection I and Scytonema strains) abundances with declining water availability at the most arid, southern station, whereas many cyanobacterial strains were frequently found in the soils of all three stations. The cyanobacterial diversity at the three sampling stations appears dependent on the available precipitation, whereas the differences in soil chemistry were of lower importance.

  1. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review

    International Nuclear Information System (INIS)

    Wiegand, C.; Pflugmacher, S.

    2005-01-01

    Cyanobacteria are one of the most diverse groups of gram-negative photosynthetic prokaryotes. Many of them are able to produce a wide range of toxic secondary metabolites. These cyanobacterial toxins can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). Cyanobacterial blooms are hazardous due to this production of secondary metabolites and endotoxins, which could be toxic to animals and plants. Many of the freshwater cyanobacterial blooms include species of the toxigenic genera Microcystis, Anabaena, or Plankthotrix. These compounds differ in mechanisms of uptake, affected organs, and molecular mode of action. In this review, the main focus is the aquatic environment and the effects of these toxins to the organisms living there. Some basic toxic mechanisms will be discussed in comparison to the mammalian system

  2. Cyanobacterial Biofuels: Strategies and Developments on Network and Modeling.

    Science.gov (United States)

    Klanchui, Amornpan; Raethong, Nachon; Prommeenate, Peerada; Vongsangnak, Wanwipa; Meechai, Asawin

    Cyanobacteria, the phototrophic microorganisms, have attracted much attention recently as a promising source for environmentally sustainable biofuels production. However, barriers for commercial markets of cyanobacteria-based biofuels concern the economic feasibility. Miscellaneous strategies for improving the production performance of cyanobacteria have thus been developed. Among these, the simple ad hoc strategies resulting in failure to optimize fully cell growth coupled with desired product yield are explored. With the advancement of genomics and systems biology, a new paradigm toward systems metabolic engineering has been recognized. In particular, a genome-scale metabolic network reconstruction and modeling is a crucial systems-based tool for whole-cell-wide investigation and prediction. In this review, the cyanobacterial genome-scale metabolic models, which offer a system-level understanding of cyanobacterial metabolism, are described. The main process of metabolic network reconstruction and modeling of cyanobacteria are summarized. Strategies and developments on genome-scale network and modeling through the systems metabolic engineering approach are advanced and employed for efficient cyanobacterial-based biofuels production.

  3. Characterization of an anthraquinone fluor from the bioluminescent, pelagic polychaete Tomopteris

    Science.gov (United States)

    Francis, Warren R; Powers, Meghan L; Haddock, Steven H D

    2014-01-01

    Tomopteris is a cosmopolitan genus of polychaetes. Many species produce yellow luminescence in the parapodia when stimulated. Yellow bioluminescence is rare in the ocean, and the components of this luminescent reaction have not been identified. Only a brief description, half a century ago, noted fluorescence in the parapodia with a remarkably similar spectrum to the bioluminescence, which suggested that it may be the luciferin or terminal light-emitter. Here, we report the isolation of the fluorescent yellow–orange pigment found in the luminous exudate and in the body of the animals. Liquid chromatography-mass spectrometry revealed the mass to be 270 m/z with a molecular formula of C15H10O5, which ultimately was shown to be aloe-emodin, an anthraquinone previously found in plants. We speculate that aloe-emodin could be a factor for resonant-energy transfer or the oxyluciferin for Tomopteris bioluminescence. PMID:24760626

  4. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    Science.gov (United States)

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our

  5. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae).

    Science.gov (United States)

    Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M

    2017-02-01

    Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Bioluminescent imaging: a critical tool in pre-clinical oncology research.

    LENUS (Irish Health Repository)

    O'Neill, Karen

    2010-02-01

    Bioluminescent imaging (BLI) is a non-invasive imaging modality widely used in the field of pre-clinical oncology research. Imaging of small animal tumour models using BLI involves the generation of light by luciferase-expressing cells in the animal following administration of substrate. This light may be imaged using an external detector. The technique allows a variety of tumour-associated properties to be visualized dynamically in living models. The increasing use of BLI as a small-animal imaging modality has led to advances in the development of xenogeneic, orthotopic, and genetically engineered animal models expressing luciferase genes. This review aims to provide insight into the principles of BLI and its applications in cancer research. Many studies to assess tumour growth and development, as well as efficacy of candidate therapeutics, have been performed using BLI. More recently, advances have also been made using bioluminescent imaging in studies of protein-protein interactions, genetic screening, cell-cycle regulators, and spontaneous cancer development. Such novel studies highlight the versatility and potential of bioluminescent imaging in future oncological research.

  7. Structural studies of cyanobacterial PSII

    International Nuclear Information System (INIS)

    Da Fonseca, Paula Cristina Alves

    2001-01-01

    Photosystem II (PSII) is the photosynthetic transmembrane protein-pigment complex which utilises light energy to drive the splitting of water and release of oxygen, a unique reaction in biological systems. The determination of the structure of PSII at high resolution is required in order to understand its mechanisms of reaction. For this reason, methods have been developed to purify highly active PSII complexes from the thermophilic cyanobacterium Synechococcus elongate These complexes have been studied by high resolution electron microscopy, using both single particle analysis and electron crystallography. A 30A three-dimensional map of the cyanobacterial PSII complex was obtained by single particle analysis. The comparison of this map with structural data from the spinach PSII core dimer revealed that both complexes share similar overall size and shape. These data also allowed a discussion on the organisation and positioning of the extrinsic lumenal proteins within the cyanobacterial PSII complex. A Synechococcus elongatus PSII projection map, at a resolution of 20A, was determined by image processing of two-dimensional crystals formed by the in vitro reconstitution method. This was the first projection map obtained by electron crystallography of a cyanobacterial highly active PSII complex, with all the extrinsic subunits retained. The analysis of this map and its comparison with a 10A three-dimensional map recently obtained from the spinach PSII core dimer revealed a similar organisation of the main transmembrane subunits. Moreover, at the level of resolution of the present data it is possible to identify differences which can be related to the content and organisation of the small subunits forming the PSII complex from both organisms. Cytochrome b559, an important but incompletely understood PSII subunit, was purified and subjected to crystallisation trials in order to aid the interpretation of intermediate resolution PSII structural data. Small crystals were

  8. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  9. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  10. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta ...

    African Journals Online (AJOL)

    Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude Oil) by four bioluminescent bacteria (Vibrio harveyi, V. fisheri, Photobacterium leiognathi and P. Phosphoreum isolated from the Bonny estuary in the Niger Delta, Nigeria was investigated. Microbial utilization was monitored ...

  11. Cyanobacterial-algal cenoses in ordinary chernozems under the impact of different phytoameliorants

    Science.gov (United States)

    Dubovik, I. E.; Suyundukov, Ya. T.; Khasanova, R. F.; Shalygina, R. R.

    2016-04-01

    General ecological and taxonomic characteristics of cyanobacterial-algal cenoses in ordinary chernozems under different ameliorative plants (phytoameliorants) were studied in the Trans-Ural region of the Republic of Bashkortostan. A comparative analysis of the taxa of studied cenoses in the soils under leguminous herbs and grasses was performed. The phytoameliorative effect of different herbs and their relationships with cyanobacterial-algal cenoses were examined. Overall, 134 cyanoprokaryotic and algal species belonging to 70 genera, 36 families, 15 orders, and 9 classes were identified. Cyanobacterial-algal cenoses included the divisions of Chlorophyta, Cyanoprokaryota, Xanthophyta, Bacillariophyta, and Euglenophyta. Representatives of Ch-, X-, CF-, and P-forms were the leading ecobiomorphs in the studied cenoses.

  12. Genome-wide comparative analysis of codon usage bias and codon context patterns among cyanobacterial genomes.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Sinha, Swati; Ahmad, Khurshid; Rai, Anil

    2017-04-01

    With the increasing accumulation of genomic sequence information of prokaryotes, the study of codon usage bias has gained renewed attention. The purpose of this study was to examine codon selection pattern within and across cyanobacterial species belonging to diverse taxonomic orders and habitats. We performed detailed comparative analysis of cyanobacterial genomes with respect to codon bias. Our analysis reflects that in cyanobacterial genomes, A- and/or T-ending codons were used predominantly in the genes whereas G- and/or C-ending codons were largely avoided. Variation in the codon context usage of cyanobacterial genes corresponded to the clustering of cyanobacteria as per their GC content. Analysis of codon adaptation index (CAI) and synonymous codon usage order (SCUO) revealed that majority of genes are associated with low codon bias. Codon selection pattern in cyanobacterial genomes reflected compositional constraints as major influencing factor. It is also identified that although, mutational constraint may play some role in affecting codon usage bias in cyanobacteria, compositional constraint in terms of genomic GC composition coupled with environmental factors affected codon selection pattern in cyanobacterial genomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Detection of phosphatase activity in aquatic and terrestrial cyanobacterial strains

    Directory of Open Access Journals (Sweden)

    Babić Olivera B.

    2013-01-01

    Full Text Available Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 μmolpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 μmolpNP/s/dm3. The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 μmolpNP/s/dm3 compared to the activity of alkaline phosphatases (1.11-5.96 μmolpNP/s/dm3. Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions. [Projekat Ministarstva nauke Republike

  14. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    International Nuclear Information System (INIS)

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-01-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour

  15. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  16. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  17. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    Science.gov (United States)

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Proteomic Analysis of Hepatic Tissue of Cyprinus carpio L. Exposed to Cyanobacterial Blooms in Lake Taihu, China

    Science.gov (United States)

    Jiang, Jinlin; Wang, Xiaorong; Shan, Zhengjun; Yang, Liuyan; Zhou, Junying; Bu, Yuanqin

    2014-01-01

    With the rapid development of industry and agriculture and associated pollution, the cyanobacterial blooms in Lake Taihu have become a major threat to aquatic wildlife and human health. In this study, the ecotoxicological effects of cyanobacterial blooms on cage-cultured carp (Cyprinus carpio L.) in Meiliang Bay of Lake Taihu were investigated. Microcystins (MCs), major cyanobacterial toxins, have been detected in carp cultured at different experimental sites of Meiliang Bay. We observed that the accumulation of MCs in carp was closely associated with several environmental factors, including temperature, pH value, and density of cyanobacterial blooms. The proteomic profile of carp liver exposed to cyanobacterial blooms was analyzed using two-dimensional difference in-gel electrophoresis (2D-DIGE) and mass spectrometry. The toxic effects of cyanobacterial blooms on carp liver were similar to changes caused by MCs. MCs were transported into liver cells and induced the excessive production of reactive oxygen species (ROS). MCs and ROS inhibited protein phosphatase and aldehyde dehydrogenase (ALDH), directly or indirectly resulting in oxidative stress and disruption of the cytoskeleton. These effects further interfered with metabolic pathways in the liver through the regulation of series of related proteins. The results of this study indicated that cyanobacterial blooms pose a major threat to aquatic wildlife in Meiliang Bay in Lake Taihu. These results provided evidence of the molecular mechanisms underlying liver damage in carp exposed to cyanobacterial blooms. PMID:24558380

  19. Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities.

    Science.gov (United States)

    Lan, Shubin; Zhang, Qingyi; Wu, Li; Liu, Yongding; Zhang, Delu; Hu, Chunxiang

    2014-01-01

    Desertification has been recognized as a global environmental problem, and one region experiencing ongoing desertification is the eastern edge of Qubqi Desert (Inner Mongolia). To investigate the facilitating effects of cyanobacterial inoculation technology on the desertification control along this steppe-desert transition region, artificial cyanobacterial crusts were constructed with two filamentous cyanobacteria 3 and 8 years ago combined with Salix planting. The results showed that no crusts formed after 3 years of fixation only with Salix planting, whereas after cyanobacterial inoculation, the crusts formed quickly and gradually succeed to moss crusts. During that course, topsoil environments were gradually improved, providing the necessary material basis for the regeneration of vascular plants. In this investigation, total 27 species of vascular plants had regenerated in the experimental region, mainly belonging to Asteraceae, Poaceae, Chenopodiaceae and Leguminosae. Using space time substitution, the dominant species along with the application of cyanobacterial inoculation technology succeeded from Agriophyllum squarrosum ultimately to Leymus chinensis. In addition, it was found that the shady side of the dunes is more conducive to crust development and succession of vegetation communities. Conclusively, our results indicate artificial cyanobacterial inoculation technology is an effective and desirable path for desertification control.

  20. The Use of Stimulable Bioluminescence From Dinoflagellates as a Means of Detecting Toxicity in the Marine Environment

    Science.gov (United States)

    1993-03-01

    AND SSTýTL FUNDINCG NUMI)) W, TIHE USE OF STIMt LABILE BIOLUMINESCENCE FROM DI NOIFLAGELLATk. PH: M1E69 AS A MEAN’S OF DETrECTING ToxicITY IN THE...bioluminescence dinoflagellates for asseossmnent of toxic effects when exposed to a single tox~icant or mixture. Successful use of this type of bioassav... tributyltin chloride (TFITCI), Copper (11) Sulfate (CuSO 4 I. zinc sulfate (ZnSO4 ), or storm drain effluent. Stimulable bioluminescence was measured at

  1. Smartphone-based low light detection for bioluminescence application

    Science.gov (United States)

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation ...

  2. Potential use of cyanobacterial species in bioremediation of ...

    African Journals Online (AJOL)

    Potential use of cyanobacterial species in bioremediation of industrial effluents. ... African Journal of Biotechnology ... Abstract. This study investigated the potential degradation of industrial effluents by environmental species of cyanobacteria.

  3. Genotoxicity and potential carcinogenicity of cyanobacterial toxins - a review.

    Science.gov (United States)

    Zegura, Bojana; Straser, Alja; Filipič, Metka

    2011-01-01

    The occurrence of cyanobacterial blooms has increased significantly in many regions of the world in the last century due to water eutrophication. These blooms are hazardous to humans, animals, and plants due to the production of cyanotoxins, which can be classified in five different groups: hepatotoxins, neurotoxins, cytotoxins, dermatotoxins, and irritant toxins (lipopolysaccharides). There is evidence that certain cyanobacterial toxins are genotoxic and carcinogenic; however, the mechanisms of their potential carcinogenicity are not well understood. The most frequently occurring and widespread cyanotoxins in brackish and freshwater blooms are the cyclic heptapeptides, i.e., microcystins (MCs), and the pentapeptides, i.e., nodularins (NODs). The main mechanism associated with potential carcinogenic activity of MCs and NOD is the inhibition of protein phosphatases, which leads to the hyperphosphorylation of cellular proteins, which is considered to be associated with their tumor-promoting activity. Apart from this, MCs and NOD induce increased formation of reactive oxygen species and, consequently, oxidative DNA damage. There is also evidence that MCs and NOD induce micronuclei, and NOD was shown to have aneugenic activity. Both cyanotoxins interfere with DNA damage repair pathways, which, along with DNA damage, is an important factor involved in the carcinogenicity of these agents. Furthermore, these toxins increase the expression of TNF-α and early-response genes, including proto-oncogenes, genes involved in the response to DNA damage, cell cycle arrest, and apoptosis. Rodent studies indicate that MCs and NOD are tumor promotors, whereas NOD is thought to have also tumor-initiating activity. Another cyanobacterial toxin, cylindrospermopsin (CYN), which has been neglected for a long time, is lately being increasingly found in the freshwater environment. The principal mechanism of its toxicity is the irreversible inhibition of protein synthesis. It is pro

  4. Molecular phylogeny of Neotropical bioluminescent beetles (Coleoptera: Elateroidea) in southern and central Brazil.

    Science.gov (United States)

    Amaral, D T; Arnoldi, F G C; Rosa, S P; Viviani, V R

    2014-08-01

    Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.

  5. Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes

    Directory of Open Access Journals (Sweden)

    Casey A Maguire

    2013-01-01

    Full Text Available Bioluminescence imaging (BLI has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc and Renilla or Gaussia (Gluc luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and D-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL delivered using an adeno-associated viral vector (AAV on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.

  6. Bacteria as part of bioluminescence emission at the deep ANTARES station (North-Western Mediterranean Sea) during a one-year survey

    Science.gov (United States)

    Martini, S.; Michotey, V.; Casalot, L.; Bonin, P.; Guasco, S.; Garel, M.; Tamburini, C.

    2016-10-01

    Bioluminescent bacteria have been studied during a one-year survey in 2011 at the deep ANTARES site (Northwestern Mediterranean Sea, 2000 m depth). The neutrino underwater telescope ANTARES, located at this station, has been used to record the bioluminescence at the same depth. Together with these data, environmental variables (potential temperature, salinity, nutrients, dissolved organic carbon and oxygen) have been characterized in water samples. The year 2011 was characterized by relatively stable conditions, as revealed by minor variability in the monitored oceanographic variables, by low bioluminescence and low current speed. This suggests weak eukaryote participation and mainly non-stimulated light emission. Hence, no processes of dense water have affected the ANTARES station during this survey. Abundance of bioluminescent bacteria belonging to Photobacterium genus, measured by qPCR of the luxF gene, ranged from 1.4×102 to 7.2×102 genes mL-1. Their effective activity was confirmed through mRNA luxF quantification. Our results reveal that bioluminescent bacteria appeared more active than the total counterpart of bacteria, suggesting an ecological benefit of this feature such as favoring interaction with macro-organisms. Moreover, these results show that part of the bioluminescence, recorded at 2000 m depth over one year, could be due to bioluminescent bacteria in stable hydrological conditions.

  7. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  8. Fast in vivo bioluminescence tomography using a novel pure optical imaging technique

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    2017-05-01

    Full Text Available Bioluminescence tomography (BLT is a novel optical molecular imaging technique that advanced the conventional planar bioluminescence imaging (BLI into a quantifiable three-dimensional (3D approach in preclinical living animal studies in oncology. In order to solve the inverse problem and reconstruct tumor lesions inside animal body accurately, the prior structural information is commonly obtained from X-ray computed tomography (CT. This strategy requires a complicated hybrid imaging system, extensive post imaging analysis and involvement of ionizing radiation. Moreover, the overall robustness highly depends on the fusion accuracy between the optical and structural information. Here, we present a pure optical bioluminescence tomographic (POBT system and a novel BLT workflow based on multi-view projection acquisition and 3D surface reconstruction. This method can reconstruct the 3D surface of an imaging subject based on a sparse set of planar white-light and bioluminescent images, so that the prior structural information can be offered for 3D tumor lesion reconstruction without the involvement of CT. The performance of this novel technique was evaluated through the comparison with a conventional dual-modality tomographic (DMT system and a commercialized optical imaging system (IVIS Spectrum using three breast cancer xenografts. The results revealed that the new technique offered comparable in vivo tomographic accuracy with the DMT system (P>0.05 in much shorter data analysis time. It also offered significantly better accuracy comparing with the IVIS system (P<0.04 without sacrificing too much time.

  9. Autonomously bioluminescent mammalian cells for continuous and real-time monitoring of cytotoxicity.

    Science.gov (United States)

    Xu, Tingting; Close, Dan M; Webb, James D; Ripp, Steven A; Sayler, Gary S

    2013-10-28

    Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures. This independence from external stimulation places the burden for maintaining the bioluminescent reaction solely on the cell, meaning that the resultant signal is only detected during active metabolism. This characteristic makes the lux-expressing cell line an excellent candidate for use as a biosentinel against cytotoxic effects because changes in bioluminescent production are indicative of adverse effects on cellular growth and metabolism. Similarly, the autonomous nature and lack of required sample destruction permits repeated imaging of the same sample in real-time throughout the period of toxicant exposure and can be performed across multiple samples using existing imaging equipment in an automated fashion.

  10. Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions

    Directory of Open Access Journals (Sweden)

    Alberto A. Esteves-Ferreira

    2017-03-01

    Full Text Available Abstract Cyanobacteria is a remarkable group of prokaryotic photosynthetic microorganisms, with several genera capable of fixing atmospheric nitrogen (N2 and presenting a wide range of morphologies. Although the nitrogenase complex is not present in all cyanobacterial taxa, it is spread across several cyanobacterial strains. The nitrogenase complex has also a high theoretical potential for biofuel production, since H2 is a by-product produced during N2 fixation. In this review we discuss the significance of a relatively wide variety of cell morphologies and metabolic strategies that allow spatial and temporal separation of N2 fixation from photosynthesis in cyanobacteria. Phylogenetic reconstructions based on 16S rRNA and nifD gene sequences shed light on the evolutionary history of the two genes. Our results demonstrated that (i sequences of genes involved in nitrogen fixation (nifD from several morphologically distinct strains of cyanobacteria are grouped in similarity with their morphology classification and phylogeny, and (ii nifD genes from heterocytous strains share a common ancestor. By using this data we also discuss the evolutionary importance of processes such as horizontal gene transfer and genetic duplication for nitrogenase evolution and diversification. Finally, we discuss the importance of H2 synthesis in cyanobacteria, as well as strategies and challenges to improve cyanobacterial H2 production.

  11. Assessing the bioavailability of organic contaminants using a novel bioluminescent biosensor

    International Nuclear Information System (INIS)

    Keane, A.; Phoenix, P.; Lau, P.C.K.; Ghoshal, S.

    2002-01-01

    The limited rate and extent of biodegradation in contaminated soils is often attributed to a lack of bioavailability of hydrophobic organic compounds. To date, the majority of studies aimed at assessing bioavailability and modes of bacterial uptake have relied upon quantification of microbial degradation rates in comparison to rates of dissolution or desorption in corresponding abiotic systems. Several studies have indicated the possibility of a direct uptake mechanism for sorbed or separate phase compounds. However, there is a lack of direct evidence to support these claims. To address the need for a direct measurement technique for microbial bioavailability, we have constructed a whole-cell bioluminescent biosensor, Pseudomonas putida F1G4 (PpF1G4), by fusing lux genes that encode for bioluminescence to the solvent efflux pump (sep) promoter element in PpF1G4, which is induced by the presence of target organic compounds. When the biosensor microorganism is exposed to an inducing compound, the bioluminescence system is activated and the cell produces an intensity of visible light (λ = 495 nm) that is directly related to the level of exposure to the contaminant. Batch experiments were carried out to assess whether the biosensor is able to sense the presence of toluene, a representative target compound, contained in a NAPL. Preliminary results show that while PpF1G4 responds to toluene in the aqueous phase, the biosensor does not appear to emit a significant bioluminescence signal in response to the toluene present in the NAPL. Ongoing research is focusing on optimizing the experimental procedure to fully explore this issue. (author)

  12. The application of superweak bioluminescence on freshness degree of chicken egg

    International Nuclear Information System (INIS)

    Zhao Hongxia; Li Guochen; Li Qiangzheng; Li Juan

    2007-01-01

    The luminescence of chicken egg in storage is studied by a detection system of superweak bioluminescence. The results show that egg has the strongest vigour on the third day after it is laid, subsequently the luminescence presents decay with oscillation. These eggs, which have been stored for 3 days, are most suitable for hatching. Different eggs have different luminescence intensities depending on the vigour of the egg. The stronger the vigour of the egg is, the more intensive the luminescence is. Superweak bioluminescence as a comprehensive index of biology and biochemistry response can be used for inspecting the freshness degree of the egg, and the test is nondestructive and sensitive

  13. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium

    Directory of Open Access Journals (Sweden)

    Hannah M. Read

    2016-06-01

    Full Text Available Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC and enterohaemorrhagic E. coli (EHEC infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169 in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.

  14. Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property

    OpenAIRE

    Side, Domenico Delle; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Di Salvo, Marco; Talà, Adelfia; Chechkin, Aleksei; Seno, Flavio; Trovato, Antonio

    2017-01-01

    We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distri...

  15. Influence of Cyanobacterial Bloom on Freshwater Biocoenosis. Use of Bioassays for Cyanobacterial Microcystins Toxicity Assessment

    Science.gov (United States)

    Piontek, Marlena; Czyżewska, Wanda

    2017-03-01

    The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river), which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina) and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens). Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50) for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50) 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR). The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.

  16. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    Science.gov (United States)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  17. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  18. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dominjon, A., E-mail: a.dominjon@ipnl.in2p3.fr [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Ageron, M. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Billault, M.; Brunner, J. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Calabria, P. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Chabanat, E. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Chaize, D.; Doan, Q.T.; Guerin, C.; Houles, J.; Vagneron, L. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France)

    2012-12-11

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  19. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  20. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  1. Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review

    NARCIS (Netherlands)

    Ibelings, B.W.; Chorus, I.

    2007-01-01

    This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in “seafood” collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and

  2. The Geographic Distribution of Liver Cancer in Canada Does Not Associate with Cyanobacterial Toxin Exposure

    Directory of Open Access Journals (Sweden)

    Meaghan A. Labine

    2015-11-01

    Full Text Available Background: The incidence of liver cancer has been increasing in Canada over the past decade, as has cyanobacterial contamination of Canadian freshwater lakes and drinking water sources. Cyanotoxins released by cyanobacteria have been implicated in the pathogenesis of liver cancer. Objective: To determine whether a geographic association exists between liver cancer and surrogate markers of cyanobacterial contamination of freshwater lakes in Canada. Methods: A negative binomial regression model was employed based on previously identified risk factors for liver cancer. Results: No association existed between the geographic distribution of liver cancer and surrogate markers of cyanobacterial contamination. As predicted, significant associations existed in areas with a high prevalence of hepatitis B virus infection, large immigrant populations and urban residences. Discussion and Conclusions: The results of this study suggest that cyanobacterial contamination of freshwater lakes does not play an important role in the increasing incidence of liver cancer in Canada.

  3. A novel earth observation based ecological indicator for cyanobacterial blooms

    Science.gov (United States)

    Anttila, Saku; Fleming-Lehtinen, Vivi; Attila, Jenni; Junttila, Sofia; Alasalmi, Hanna; Hällfors, Heidi; Kervinen, Mikko; Koponen, Sampsa

    2018-02-01

    Cyanobacteria form spectacular mass occurrences almost annually in the Baltic Sea. These harmful algal blooms are the most visible consequences of marine eutrophication, driven by a surplus of nutrients from anthropogenic sources and internal processes of the ecosystem. We present a novel Cyanobacterial Bloom Indicator (CyaBI) targeted for the ecosystem assessment of eutrophication in marine areas. The method measures the current cyanobacterial bloom situation (an average condition of recent 5 years) and compares this to the estimated target level for 'good environmental status' (GES). The current status is derived with an index combining indicative bloom event variables. As such we used seasonal information from the duration, volume and severity of algal blooms derived from earth observation (EO) data. The target level for GES was set by using a remote sensing based data set named Fraction with Cyanobacterial Accumulations (FCA; Kahru & Elmgren, 2014) covering years 1979-2014. Here a shift-detection algorithm for time series was applied to detect time-periods in the FCA data where the level of blooms remained low several consecutive years. The average conditions from these time periods were transformed into respective CyaBI target values to represent target level for GES. The indicator is shown to pass the three critical factors set for marine indicator development, namely it measures the current status accurately, the target setting can be scientifically proven and it can be connected to the ecosystem management goal. An advantage of the CyaBI method is that it's not restricted to the data used in the development work, but can be complemented, or fully applied, by using different types of data sources providing information on cyanobacterial accumulations.

  4. Close Link Between Harmful Cyanobacterial Dominance and Associated Bacterioplankton in a Tropical Eutrophic Reservoir

    Directory of Open Access Journals (Sweden)

    Iame A. Guedes

    2018-03-01

    Full Text Available Cyanobacteria tend to become the dominant phytoplankton component in eutrophic freshwater environments during warmer seasons. However, general observations of cyanobacterial adaptive advantages in these circumstances are insufficient to explain the prevalence of one species over another in a bloom period, which may be related to particular strategies and interactions with other components of the plankton community. In this study, we present an integrative view of a mixed cyanobacterial bloom occurring during a warm, rainy period in a tropical hydropower reservoir. We used high-throughput sequencing to follow temporal shifts in the dominance of cyanobacterial genera and shifts in the associated heterotrophic bacteria community. The bloom occurred during late spring-summer and included two distinct periods. The first period corresponded to Microcystis aeruginosa complex (MAC dominance with a contribution from Dolichospermum circinale; this pattern coincided with high water retention time and low transparency. The second period corresponded to Cylindrospermopsis raciborskii and Synechococcus spp. dominance, and the reservoir presented lower water retention time and higher water transparency. The major bacterial phyla were primarily Cyanobacteria and Proteobacteria, followed by Actinobacteria, Bacteroidetes, Verrucomicrobia, and Planctomycetes. Temporal shifts in the dominance of cyanobacterial genera were not only associated with physical features of the water but also with shifts in the associated heterotrophic bacteria. The MAC bloom was associated with a high abundance of Bacteroidetes, particularly Cytophagales. In the second bloom period, Planctomycetes increased in relative abundance, five Planctomycetes OTUs were positively correlated with Synechococcus or C. raciborskii OTUs. Our results suggest specific interactions of the main cyanobacterial genera with certain groups of the heterotrophic bacterial community. Thus, considering biotic

  5. An integrated method for removal of harmful cyanobacterial blooms in eutrophic lakes

    International Nuclear Information System (INIS)

    Wang Zhicong; Li Dunhai; Qin Hongjie; Li Yinxia

    2012-01-01

    As the eutrophication of lakes becomes an increasingly widespread phenomenon, cyanobacterial blooms are occurring in many countries. Although some research has been reported, there is currently no good method for bloom removal. We propose here a new two-step integrated approach to resolve this problem. The first step is the inactivation of the cyanobacteria via the addition of H 2 O 2 . We found 60 mg/L was the lowest effective dose for a cyanobacterial concentration corresponding to 100 μg/L chlorophyll-a. The second step is the flocculation and sedimentation of the inactivated cyanobacteria. We found the addition of lake sediment clay (2 g/L) plus polymeric ferric sulfate (20 mg/L) effectively deposited them on the lake bottom. Since algaecides and flocculants had been used separately in previous reports, we innovatively combined these two types of reagents to remove blooms from the lake surface and to improve the dissolved oxygen content of lake sediments. - Graphical abstract: The mechanism for the removal of cyanobacterial blooms by using H 2 O 2 , polymeric ferric sulfate (PFS) and lake sediment clay. Display Omitted Highlights: ► We combined algaecide and flocculants together to control cyanobacterial blooms. ► H 2 O 2 was used to irreversibly inactivate the photosynthesis of cyanobacteria. ► Lake sediment clay and polymeric ferric sulfate were used to deposit cyanobacteria. ► Removal rate was very high and re-suspension rate was very low under disturbance. ► The inactivated cyanobacteria could not serve as a seed source for the next bloom. - Inactivation by H 2 O 2 and sedimentation using polymeric ferric sulfate and sediment clay demonstrated high integrated efficiency in removal of cyanobacterial blooms.

  6. Carotenoids assist in cyanobacterial Photosystem II assembly and function

    Directory of Open Access Journals (Sweden)

    Tomas eZakar

    2016-03-01

    Full Text Available Carotenoids (carotenes and xanthophylls are ubiquitous constituents of living organisms. They are protective agents against oxidative stresses and serve as modulators of membrane microviscosity. As antioxidants they can protect photosynthetic organisms from free radicals like reactive oxygen species that originate from water splitting, the first step of photosynthesis. We summarize the structural and functional roles of carotenoids in connection with cyanobacterial Photosystem II. Although carotenoids are hydrophobic molecules, their complexes with proteins also allow cytoplasmic localization. In cyanobacterial cells such complexes are called orange carotenoid proteins, and they protect Photosystem II and Photosystem I by preventing their overexcitation through phycobilisomes. Recently it has been observed that carotenoids are not only required for the proper functioning, but also for the structural stability of phycobilisomes.

  7. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Yu, Jingjing [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); School of Physics and Information Technology, Shaanxi Normal University, Shaanxi (China); Eslami, Sohrab; Iordachita, Iulian [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland (United States); Reyes, Juvenal; Malek, Reem [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Department of Oncology and Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland (United States); Patterson, Michael S. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario (Canada); Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States)

    2016-04-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  8. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    International Nuclear Information System (INIS)

    Zhang, Bin; Wang, Ken Kang-Hsin; Yu, Jingjing; Eslami, Sohrab; Iordachita, Iulian; Reyes, Juvenal; Malek, Reem; Tran, Phuoc T.; Patterson, Michael S.; Wong, John W.

    2016-01-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  9. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    Science.gov (United States)

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  10. Characterization of cyanobacterial communities from high-elevation lakes in the Bolivian Andes

    Science.gov (United States)

    Fleming, Erich D.; Prufert-Bebout, Leslie

    2010-06-01

    The Bolivian Altiplano is a harsh environment for life with high solar irradiation (visible and UVR), below freezing temperatures, and some of the lowest precipitation rates on the planet. However, microbial life is visibly abundant in small isolated refugia of spring or snowmelt-fed lakes. In this study, we characterized the cyanobacterial composition of a variety of microbial mats present in three lake systems: Laguna Blanca, Laguna Verde (elevation 4300 m), and a summit lake in the Licancabur Volcano cone (elevation 5970 m). These lakes and their adjacent geothermal springs present an interesting diversity of environments within a geographically small region (5 km2). From these sites, 78 cyanobacterial cultures were isolated in addition to ˜400 cyanobacterial 16S rRNA gene sequences from environmental genomic DNA. Based on microscopy, cultivation, and molecular analyses, these communities contained many heterocytous, nitrogen-fixing cyanobacteria (e.g., Calothrix, Nostoc, Nodularia) as well as a large number of cyanobacteria belonging to the form-genus Leptolyngbya. More than a third (37%) of all taxa in this study were new species (≤96% 16S rRNA gene sequence identity), and 11% represented new and novel taxa distantly related (≤93% identity) to any known cyanobacteria. This is one of the few studies to characterize cyanobacterial communities based on both cultivation-dependent and cultivation-independent analyses.

  11. Molecular Diffusion through Cyanobacterial Septal Junctions.

    Science.gov (United States)

    Nieves-Morión, Mercedes; Mullineaux, Conrad W; Flores, Enrique

    2017-01-03

    Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N 2 -fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO 2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP) assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the "septal junctions" (formerly known as "microplasmodesmata") linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans. Although bacteria are frequently considered just as unicellular organisms, there are bacteria that behave as true multicellular organisms. The heterocyst-forming cyanobacteria grow as filaments in which cells communicate. Intercellular molecular exchange is thought to be mediated by septal junctions. Here, we show that intercellular transfer of fluorescent markers in the cyanobacterial filament has the physical properties of simple diffusion. Thus, cyanobacterial septal junctions are functionally analogous to metazoan gap junctions

  12. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea

    Science.gov (United States)

    Baba, Kenkichi; Davidson, Alec J.; Tosini, Gianluca

    2015-01-01

    Purpose Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Methods Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. Results A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Conclusions Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock. PMID:26207312

  13. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut Desert, Northwestern China.

    Science.gov (United States)

    Zhang, Bingchang; Li, Renhui; Xiao, Peng; Su, Yangui; Zhang, Yuanming

    2016-03-01

    Cyanobacteria are the primary colonizers and form a dominant component of soil photosynthetic communities in biological soil crusts. They are crucial in improving soil environments, namely accumulating soil carbon and nitrogen. Many classical studies have examined cyanobacterial diversity in desert crusts, but relatively few comprehensive molecular surveys have been conducted. We used 454 pyrosequencing of 16S rRNA to investigate cyanobacterial composition and distribution on regional scales in the Gurbantunggut Desert. The relationship between cyanobacterial distribution and environmental factors was also explored. A total of 24,973 cyanobacteria partial 16S rRNA gene sequences were obtained, and 507OTUs were selected, as most OTUs had very few reads. Among these, 347 OTU sequences were of cyanobacteria origin, belonging to Oscillatoriales, Nostocales, Chroococcales, and uncultured cyanobacterium clone, respectively. Microcoleus vaginatus, Chroococcidiopsis spp. and M. steenstrupii were the dominant species in most areas of the Gurbantunggut Desert. Compared with other desert, the Gurbantunggut Desert differed in the prominence of Chroococcidiopsis spp. and lack of Pseudanabaenales. Species composition and abundance of cyanobacteria also showed distinct variations. Soil texture, precipitation, and nutrients and salt levels affected cyanobacterial distribution. Increased precipitation was helpful in improving cyanobacterial diversity. A higher content of coarse sand promoted the colonization and growth of Oscillatoriales and some phylotypes of Chroococcales. The fine-textured soil with higher nutrients and salts supported more varied populations of cyanobacteria, namely some heterocystous cyanobacteria. The results suggested that the Gurbantunggut Desert was rich in cyanobacteria and that precipitation was a primary regulating factor for cyanobacterial composition on a regional scale. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of Cyanobacterial Bloom on Freshwater Biocoenosis. Use of Bioassays for Cyanobacterial Microcystins Toxicity Assessment

    Directory of Open Access Journals (Sweden)

    Piontek Marlena

    2017-03-01

    Full Text Available The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river, which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens. Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50 for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR. The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.

  15. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment.

    Science.gov (United States)

    Hoeger, Stefan J; Dietrich, Daniel R; Hitzfeld, Bettina C

    2002-01-01

    Water treatment plants faced with toxic cyanobacteria have to be able to remove cyanotoxins from raw water. In this study we investigated the efficacy of ozonation coupled with various filtration steps under different cyanobacterial bloom conditions. Cyanobacteria were ozonated in a laboratory-scale batch reactor modeled on a system used by a modern waterworks, with subsequent activated carbon and sand filtration steps. The presence of cyanobacterial toxins (microcystins) was determined using the protein phosphatase inhibition assay. We found that ozone concentrations of at least 1.5 mg/L were required to provide enough oxidation potential to destroy the toxin present in 5 X 10(5 )Microcystis aeruginosa cells/mL [total organic carbon (TOC), 1.56 mg/L]. High raw water TOC was shown to reduce the efficiency of free toxin oxidation and destruction. In addition, ozonation of raw waters containing high cyanobacteria cell densities will result in cell lysis and liberation of intracellular toxins. Thus, we emphasize that only regular and simultaneous monitoring of TOC/dissolved organic carbon and cyanobacterial cell densities, in conjunction with online residual O(3) concentration determination and efficient filtration steps, can ensure the provision of safe drinking water from surface waters contaminated with toxic cyanobacterial blooms. PMID:12417484

  16. Dive Activities for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Bioluminescence 2009" expedition, July 20 through 31, 2009. Additional information was...

  17. Transcriptional and posttranscriptional regulation of cyanobacterial photosynthesis.

    Science.gov (United States)

    Wilde, Annegret; Hihara, Yukako

    2016-03-01

    Cyanobacteria are well established model organisms for the study of oxygenic photosynthesis, nitrogen metabolism, toxin biosynthesis, and salt acclimation. However, in comparison to other model bacteria little is known about regulatory networks, which allow cyanobacteria to acclimate to changing environmental conditions. The current work has begun to illuminate how transcription factors modulate expression of different photosynthetic regulons. During the past few years, the research on other regulatory principles like RNA-based regulation showed the importance of non-protein regulators for bacterial lifestyle. Investigations on modulation of photosynthetic components should elucidate the contributions of all factors within the context of a larger regulatory network. Here, we focus on regulation of photosynthetic processes including transcriptional and posttranscriptional mechanisms, citing examples from a limited number of cyanobacterial species. Though, the general idea holds true for most species, important differences exist between various organisms, illustrating diversity of acclimation strategies in the very heterogeneous cyanobacterial clade. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Attenuated Bioluminescent Brucella melitensis Mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) Confer Protection in Mice

    OpenAIRE

    Rajashekara, Gireesh; Glover, David A.; Banai, Menachem; O'Callaghan, David; Splitter, Gary A.

    2006-01-01

    In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B....

  19. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies

    OpenAIRE

    Ramos, Vitor; Morais, Jo?o; Vasconcelos, Vitor M.

    2017-01-01

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes st...

  20. Dynamics of cyanobacterial bloom formation during short-term hydrodynamic fluctuation in a large shallow, eutrophic, and wind-exposed Lake Taihu, China.

    Science.gov (United States)

    Wu, Tingfeng; Qin, Boqiang; Zhu, Guangwei; Luo, Liancong; Ding, Yanqing; Bian, Geya

    2013-12-01

    Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.

  1. Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection

    Science.gov (United States)

    Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie

    2012-03-01

    Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.

  2. Bioluminescent bacteria have potential as a marker of drowning in seawater: two immersed cadavers retrieved near estuaries.

    Science.gov (United States)

    Kakizaki, Eiji; Kozawa, Shuji; Sakai, Masahiro; Yukawa, Nobuhiro

    2009-03-01

    We detected numerous bioluminescent bacteria in blood samples from two cadavers that had been immersed in estuarine environments. Autopsy, diatomaceous and toxicological findings indicated death by drowning, which agreed with environmental aspects and the findings of police investigations. Bioluminescent bacteria appeared in blood samples cultured on selective agar containing 2%, 3% and 4% NaCl after about 18h. Blood from the left side of the heart, the right side of the heart and the femoral vein generated 7.0 x 10(2), 2.0 x 10(4) and 8.0 x 10(2) cfu/ml of blood (case 1), and 1.8 x 10(4), 1.1 x 10(3) and 2.5 x 10(1) cfu/ml (case 2) of bioluminescent colonies, respectively, in agar containing 4% NaCl. Homologous analysis based on the 16S rRNA gene also identified the bioluminescent colonies as Vibrio fischeri and V. harveyi, which normally inhabit seawater. This simple assay might serve as an additional indicator to support a conclusion of death by drowning together with the diatom test.

  3. Fatty Acid Composition of Six Freshwater Wild Cyanobacterial Species

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Dor, I.; Prell, Aleš; Dembitský, V. M.

    2003-01-01

    Roč. 48, č. 1 (2003), s. 71-75 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : cyanobacterial spcies * freshwater wild Subject RIV: EE - Microbiology, Virology Impact factor: 0.857, year: 2003

  4. Mitigating cyanobacterial blooms: how effective are 'effective microorganisms'?

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Tolman, Y.; Euwe, M.

    2009-01-01

    This study examined the effects of 'Effective Microorganisms (EM)' on the growth of cyanobacteria, and their ability to terminate cyanobacterial blooms. The EM was tested in the form of 'mudballs' or 'Bokashi-balls', and as a suspension (EM-A) in laboratory experiments. No growth inhibition was

  5. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    Science.gov (United States)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  6. Aerosolization of cyanobacterial cells across ecosystem boundaries in the McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Trout-Haney, J.; Heindel, R. C.; Virginia, R. A.

    2017-12-01

    Cyanobacteria play a major ecological role in polar freshwaters, occurring predominately as small single cells in the water column, i.e., picocyanobacteria, or large multicellular colonies and mats that reside on the lake bottom. Cyanobacteria are also present in terrestrial polar habitats, including within soils, soil crusts, rocks, and glacial ice. Despite their predominance in polar ecosystems, the extent to which cyanobacteria move between terrestrial and aquatic landscape units remains poorly understood. In polar deserts such as the McMurdo Dry Valleys, aeolian processes influence terrestrial landscape morphology and drive the transport of sediments and other particles. Water surfaces can also act as a source of aerosolized particles, such as the production of sea spray aerosols through wave breaking in marine environments. However, aerosolization from freshwater bodies has been far less studied, especially in polar regions. We conducted a field-study to examine the transport of aerosolized cyanobacterial cells from ponds and soils in the McMurdo Dry Valleys. We used highly portable aerosol collection devices fitted with GF/F filters combusted at 500°C (0.3 µm) to collect small particles, such as picocyanobacteria (0.2 - 2 µm), from near-shore water and adjacent soil. We used epifluorescence microscopy to quantify aerosolized cells, with excitation filters for chlorophyll a (435 nm) and phycobilin pigments (572 nm), to distinguish cyanobacterial cells. We detected aerosolized picocyanobacterial cells from all ponds and soils sampled, indicating that these cells may be quite mobile and transported across ecosystem boundaries. We observed cyanobacterial cells individually, clustered, and associated with other organic material, suggesting multiple modes of cell transport. Further, we investigated the potential for aerosolization of toxin-producing cyanobacterial taxa (or unbound cyanotoxins), and the ecological and ecosystem-scale implications of

  7. Ship track for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and Atmospheric Administration (NOAA) Office of...

  8. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca

    NARCIS (Netherlands)

    Eremeeva, Elena V.; Bartsev, Sergey I.; Berkel, van Willem J.H.; Vysotski, Eugene S.

    2017-01-01

    Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated

  9. Cyanobacterial diversity and halotolerance in a variable hypersaline environment.

    Science.gov (United States)

    Kirkwood, Andrea E; Buchheim, Julie A; Buchheim, Mark A; Henley, William J

    2008-04-01

    The Great Salt Plains (GSP) in north-central Oklahoma, USA is an expansive salt flat (approximately 65 km(2)) that is part of the federally protected Salt Plains National Wildlife Refuge. The GSP serves as an ideal environment to study the microbial diversity of a terrestrial, hypersaline system that experiences wide fluctuations in freshwater influx and diel temperature. Our study assessed cyanobacterial diversity at the GSP by focusing on the taxonomic and physiological diversity of GSP isolates, and the 16S rRNA phylogenetic diversity of isolates and environmental clones from three sites (north, central, and south). Taxonomic diversity of isolates was limited to a few genera (mostly Phormidium and Geitlerinema), but physiological diversity based on halotolerance ranges was strikingly more diverse, even between strains of the same phylotype. The phylogenetic tree revealed diversity that spanned a number of cyanobacterial lineages, although diversity at each site was dominated by only a few phylotypes. Unlike other hypersaline systems, a number of environmental clones from the GSP were members of the heterocystous lineage. Although a number of cyanobacterial isolates were close matches with prevalent environmental clones, it is not certain if these clones reflect the same halotolerance ranges of their matching isolates. This caveat is based on the notable disparities we found between strains of the same phylotype and their inherent halotolerance. Our findings support the hypothesis that variable or poikilotrophic environments promote diversification, and in particular, select for variation in ecotype more than phylotype.

  10. Nutrient control of cyanobacterial blooms in the Baltic Sea

    NARCIS (Netherlands)

    Stal, L.J.; Staal, M.J.; Villbrandt, M.

    1999-01-01

    Cyanobacterial blooms in the Baltic Sea were investigated with respect to growth Limitation and nitrogen fixation. The community was composed predominantly of Synechococcus spp., and large, heterocystous, nitrogen-fixing cyanobacteria (Aphanizomenon spp, and Nodularia spp.), that usually formed

  11. Bioluminescence imaging: a shining future for cardiac regeneration

    Science.gov (United States)

    Roura, Santiago; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2013-01-01

    Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright. PMID:23402217

  12. Cyanobacterial populations in biological soil crusts of the northwest Negev Desert, Israel - effects of local conditions and disturbance.

    Science.gov (United States)

    Hagemann, Martin; Henneberg, Manja; Felde, Vincent J M N L; Berkowicz, Simon M; Raanan, Hagai; Pade, Nadin; Felix-Henningsen, Peter; Kaplan, Aaron

    2016-11-02

    Biological soil crusts (BSCs) fulfill numerous ecological functions in arid and semiarid areas. Cyanobacteria are important BSC organisms, which are responsible for carbon fixation, N 2 -fixation, and binding of soil via extracellular polysaccharides. The cyanobacterial populations were characterized in different sampling plots established in three experimental stations along a rainfall gradient within NW Negev Desert, Israel. Cyanobacterial crust thickness and osmolyte accumulation therein decreased in plots with lower moisture. The cyanobacterial population structure also changed in different plots. We observed an increase of subsection III cyanobacteria such as Microcoleus spp. and Leptolyngbya sp. and a decreasing proportion of strains belonging to subsections I and IV in drier areas on the rainfall gradient. This population shift was also observed in the sampling plots, which were situated at various relief positions within the sand dune experimental sites. We also characterized the cyanobacterial populations within mechanically disturbed plots. After four years, they reached between 80 and 50% of the control populations in the northern-most and southern stations, respectively. Our results suggest that the cyanobacterial population is sensitive not only to macroscale factors but may also be subject to local climate variations and that four years were insufficient for complete recovery of the cyanobacterial population. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Cyanobacterial composition of microbial mats from an Australian thermal spring: a polyphasic evaluation.

    Science.gov (United States)

    McGregor, Glenn B; Rasmussen, J Paul

    2008-01-01

    Cyanobacterial composition of microbial mats from an alkaline thermal spring issuing at 43-71 degrees C from tropical north-eastern Australia are described using a polyphasic approach. Eight genera and 10 species from three cyanobacterial orders were identified based on morphological characters. These represented taxa previously known as thermophilic from other continents. Ultrastructural analysis of the tower mats revealed two filamentous morphotypes contributed the majority of the biomass. Both types had ultrastructural characteristics of the family Pseudanabaenaceae. DNA extracts were made from sections of the tentaculiform towers and the microbial community analysed by 16S cyanobacteria-specific PCR and denaturing-gradient gel electrophoresis. Five significant bands were identified and sequenced. Two bands clustered closely with Oscillatoria amphigranulata isolated from New Zealand hot springs; one unique phylotype had only moderate similarity to a range of Leptolyngbya species; and one phylotype was closely related to a number of Geitlerinema species. Generally the approaches yielded complementary information, however the results suggest that species designation based on morphological and ultrastructural criteria alone often fails to recognize their true phylogenetic position. Conversely some molecular techniques may fail to detect rare taxa suggesting that the widest possible suite of techniques be applied when conducting analyses of cyanobacterial diversity of natural populations. This is the first polyphasic evaluation of thermophilic cyanobacterial communities from the Australian continent.

  14. Cyanobacterial defense mechanisms against foreign DNA transfer and their impact on genetic engineering

    Directory of Open Access Journals (Sweden)

    Karina Stucken

    2013-01-01

    Full Text Available Cyanobacteria display a large diversity of cellular forms ranging from unicellular to complex multicellular filaments or aggregates. Species in the group present a wide range of metabolic characteristics including the fixation of atmospheric nitrogen, resistance to extreme environments, production of hydrogen, secondary metabolites and exopolysaccharides. These characteristics led to the growing interest in cyanobacteria across the fields of ecology, evolution, cell biology and biotechnology. The number of available cyanobacterial genome sequences has increased considerably in recent years, with more than 140 fully sequenced genomes to date. Genetic engineering of cyanobacteria is widely applied to the model unicellular strains Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. However the establishment of transformation protocols in many other cyanobacterial strains is challenging. One obstacle to the development of these novel model organisms is that many species have doubling times of 48 h or more, much longer than the bacterial models E. coli or B. subtilis. Furthermore, cyanobacterial defense mechanisms against foreign DNA pose a physical and biochemical barrier to DNA insertion in most strains. Here we review the various barriers to DNA uptake in the context of lateral gene transfer among microbes and the various mechanisms for DNA acquisition within the prokaryotic domain. Understanding the cyanobacterial defense mechanisms is expected to assist in the development and establishment of novel transformation protocols that are specifically suitable for this group.

  15. Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms.

    Science.gov (United States)

    Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G

    2009-01-01

    The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.

  16. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    NARCIS (Netherlands)

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García-García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and

  17. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    Science.gov (United States)

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  18. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.

    Directory of Open Access Journals (Sweden)

    Ji-Woon Park

    Full Text Available A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: < 1 min of indoor bioaerosol concentrations with ATP bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations.

  19. The presence of the cyanobacterial toxin microcystin in black band disease of corals.

    Science.gov (United States)

    Richardson, Laurie L; Sekar, Raju; Myers, Jamie L; Gantar, Miroslav; Voss, Joshua D; Kaczmarsky, Longin; Remily, Elizabeth R; Boyer, Gregory L; Zimba, Paul V

    2007-07-01

    Black band disease (BBD) is a migrating, cyanobacterial dominated, sulfide-rich microbial mat that moves across coral colonies lysing coral tissue. While it is known that BBD sulfate-reducing bacteria contribute to BBD pathogenicity by production of sulfide, additional mechanisms of toxicity may be involved. Using HPLC/MS, the cyanotoxin microcystin was detected in 22 field samples of BBD collected from five coral species on nine reefs of the wider Caribbean (Florida Keys and Bahamas). Two cyanobacterial cultures isolated from BBD, Geitlerinema and Leptolyngbya sp. contained microcystin based on HPLC/MS, with toxic activity confirmed using the protein phosphatase inhibition assay. The gene mcyA from the microcystin synthesis complex was detected in two field samples and from both BBD cyanobacterial cultures. Microcystin was not detected in six BBD samples from a different area of the Caribbean (St Croix, USVI) and the Philippines, suggesting regional specificity for BBD microcystin. This is the first report of the presence of microcystin in a coral disease.

  20. Production of anatoxin-a by cyanobacterial strains isolated from Portuguese fresh water systems.

    Science.gov (United States)

    Osswald, Joana; Rellán, Sandra; Gago-Martinez, Ana; Vasconcelos, Vítor

    2009-11-01

    The occurrence of anatoxin-a in several freshwater systems in Portugal and its production by Portuguese cyanobacterial strains, after cultivation in laboratory, were studied. Surface water samples from 9 water bodies, for recreational and human consumption usage, were surveyed for anatoxin-a presence and for obtaining cultures of pure cyanobacterial strains. Anatoxin-a analysis was performed by high performance liquid chromatography (HPLC) with fluorescence detection (FLD) followed by Mass Spectrometry (MS) confirmation. No anatoxin-a was detected in all the natural water samples (limit of detection (LOD) = 25 ng l(-1)) but among the 22 isolated cyanobacterial strains, 13 could produce anatoxin-a in laboratory conditions (LOD = 3 ng g(-1) dw). This proportion of anatoxin-a producing strains (59.1%) in laboratory is discussed considering the hypothesis that anatoxin-a is a more frequent metabolite in cyanobacteria than it was thought before and making its occurrence in Portuguese freshwaters almost certain. Therefore, health and ecological risks caused by anatoxin-a in Portugal, should be seriously considered.

  1. Controls on O2 Production in Cyanobacterial Mats and Implications for Earth's Oxygenation

    Science.gov (United States)

    Dick, Gregory J.; Grim, Sharon L.; Klatt, Judith M.

    2018-05-01

    Cyanobacterial mats are widely assumed to have been globally significant hot spots of biogeochemistry and evolution during the Archean and Proterozoic, but little is known about their quantitative contributions to global primary productivity or Earth's oxygenation. Modern systems show that mat biogeochemistry is the outcome of concerted activities and intimate interactions between various microbial metabolisms. Emerging knowledge of the regulation of oxygenic and sulfide-driven anoxygenic photosynthesis by versatile cyanobacteria, and their interactions with sulfur-oxidizing bacteria and sulfate-reducing bacteria, highlights how ecological and geochemical processes can control O2 production in cyanobacterial mats in unexpected ways. This review explores such biological controls on O2 production. We argue that the intertwined effects of light availability, redox geochemistry, regulation and competition of microbial metabolisms, and biogeochemical feedbacks result in emergent properties of cyanobacterial mat communities that are all critical yet largely overlooked mechanisms to potentially explain the protracted nature of Earth's oxygenation.

  2. An Experimental-Numerical Study of Small Scale Flow Interaction with Bioluminescent Plankton

    National Research Council Canada - National Science Library

    Latz, Michael

    1998-01-01

    Numerical and experimental approaches were used to investigate the effects of quantified flow stimuli on bioluminescence sUmulatidn at the small length and time scales appropriate for individual plankton...

  3. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry.

    Science.gov (United States)

    Mueller-Klieser, W; Schaefer, C; Walenta, S; Rofstad, E K; Fenton, B M; Sutherland, R M

    1990-03-15

    The energy and oxygenation status of tumors from two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) were assessed using three independent techniques. Tumor energy metabolism was investigated in vivo by 31P nuclear magnetic resonance spectroscopy. After nuclear magnetic resonance measurements, tumors were frozen in liquid nitrogen to determine the tissue ATP concentration by imaging bioluminescence and to register the intracapillary oxyhemoglobin (HbO2) saturation using the cryospectrophotometric method. There was a positive correlation between the nucleoside triphosphate beta/total resonance ratio or a negative correlation between the Pi/total resonance ratio and the model ATP concentration obtained by bioluminescence, respectively. This was true for small tumors with no extended necrosis irrespective of tumor type. Moreover, a positive correlation was obtained between the HbO2 saturations and the ATP concentration measured with bioluminescence. The results demonstrate the potential of combined studies using noninvasive, integrating methods and high-resolution imaging techniques for characterizing the metabolic milieu in tumors.

  4. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils.

    Directory of Open Access Journals (Sweden)

    Youngdae Yoon

    Full Text Available It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency.

  5. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils.

    Science.gov (United States)

    Yoon, Youngdae; Kim, Sunghoon; Chae, Yooeun; Kang, Yerin; Lee, Youngshim; Jeong, Seung-Woo; An, Youn-Joo

    2016-01-01

    It is important to have tools to measure the bioavailability to assess the risks of pollutants because the bioavailability is defined as the portions of pollutants showing the biological effects on living organisms. This study described the construction of tunable Escherichia coli whole-cell bioreporter (WCB) using the promoter region of zinc-inducible operon and its application on contaminated soils. It was verified that this WCB system showed specific and sensitive responses to cadmium rather than zinc in the experimental conditions. It was inferred that Cd(II) associates stronger with ZntR, a regulatory protein of zinc-inducible operon, than other metal ions. Moreover, the expression of reporter genes, egfp and mcherry, were proportional to the concentration of cadmium, thereby being a quantitative sensor to monitor bioavailable cadmium. The capability to determine bioavailable cadmium was verified with Cd(II) amended LUFA soils, and then the applicability on environmental systems was investigated with field soils collected from smelter area in Korea before and after soil-washing. The total amount of cadmium was decreased after soil washing, while the bioavailability was increased. Consequently, it would be valuable to have tools to assess bioavailability and the effectiveness of soil remediation should be evaluated in the aspect of bioavailability as well as removal efficiency.

  6. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    Science.gov (United States)

    2010-09-30

    photodiode array are simultaneously burst sampled through integrating transimpedance amplifiers with an integration period of 0.1 s. 64-bursts are...clear acrylic test section to reduce the optical path length and reducing integrator capacitance to increase transimpedance gain. A later improvement...gain, higher resolution analog to digital conversion, and greater transimpedance gain. Figure 5 Bioluminescence intensities from Pyrocystis

  7. Rapid development of cyanobacterial crust in the field for combating desertification.

    Science.gov (United States)

    Park, Chan-Ho; Li, Xin Rong; Zhao, Yang; Jia, Rong Liang; Hur, Jae-Seoun

    2017-01-01

    Desertification is currently a major concern, and vast regions have already been devastated in the arid zones of many countries. Combined application of cyanobacteria with soil fixing chemicals is a novel method of restoring desertified areas. Three cyanobacteria, Nostoc sp. Vaucher ex Bornet & Flahault, Phormidium sp. Kützing ex Gomont and Scytonema arcangeli Bornet ex Flahault were isolated and tested in this study. Tacki-SprayTM (TKS7), which consists of bio-polysaccharides and tackifiers, was used as a soil fixing agent. In addition, superabsorbent polymer (SAP) was applied to the soil as a water-holding material and nutrient supplement. Application of cyanobacteria with superabsorbent polymer and TKS7 (CST) remarkably improved macro-aggregate stability against water and erodibility against wind after 12 months of inoculation when compared to the control soil. The mean weight diameter and threshold friction velocity of the CST treated soil were found to be 75% and 88% of those of the approximately 20-year-old natural cyanobacterial crust (N-BSC), respectively, while these values were 68% and 73% of those of the N-BSC soil after a single treatment of cyanobacteria alone (CY). Interestingly, biological activities of CST were similar to those of CY. Total carbohydrate contents, cyanobacterial biomass, microbial biomass, soil respiration, carbon fixation and effective quantum yield of CST treated soil were enhanced by 50-100% of the N-BSC, while those of control soil were negligible. Our results suggest that combined application of cyanobacteria with soil fixing chemicals can rapidly develop cyanobacterial crust formation in the field within 12 months. The physical properties and biological activities of the inoculated cyanobacterial crust were stable during the study period. The novel method presented herein serves as another approach for combating desertification in arid regions.

  8. Rapid development of cyanobacterial crust in the field for combating desertification.

    Directory of Open Access Journals (Sweden)

    Chan-Ho Park

    Full Text Available Desertification is currently a major concern, and vast regions have already been devastated in the arid zones of many countries. Combined application of cyanobacteria with soil fixing chemicals is a novel method of restoring desertified areas. Three cyanobacteria, Nostoc sp. Vaucher ex Bornet & Flahault, Phormidium sp. Kützing ex Gomont and Scytonema arcangeli Bornet ex Flahault were isolated and tested in this study. Tacki-SprayTM (TKS7, which consists of bio-polysaccharides and tackifiers, was used as a soil fixing agent. In addition, superabsorbent polymer (SAP was applied to the soil as a water-holding material and nutrient supplement. Application of cyanobacteria with superabsorbent polymer and TKS7 (CST remarkably improved macro-aggregate stability against water and erodibility against wind after 12 months of inoculation when compared to the control soil. The mean weight diameter and threshold friction velocity of the CST treated soil were found to be 75% and 88% of those of the approximately 20-year-old natural cyanobacterial crust (N-BSC, respectively, while these values were 68% and 73% of those of the N-BSC soil after a single treatment of cyanobacteria alone (CY. Interestingly, biological activities of CST were similar to those of CY. Total carbohydrate contents, cyanobacterial biomass, microbial biomass, soil respiration, carbon fixation and effective quantum yield of CST treated soil were enhanced by 50-100% of the N-BSC, while those of control soil were negligible. Our results suggest that combined application of cyanobacteria with soil fixing chemicals can rapidly develop cyanobacterial crust formation in the field within 12 months. The physical properties and biological activities of the inoculated cyanobacterial crust were stable during the study period. The novel method presented herein serves as another approach for combating desertification in arid regions.

  9. Analysis of Microcystins in Cyanobacterial Blooms from Freshwater Bodies in England

    Directory of Open Access Journals (Sweden)

    Andrew D. Turner

    2018-01-01

    Full Text Available Cyanobacterial blooms in freshwater bodies in England are currently monitored reactively, with samples containing more than 20,000 cells/mL of potentially toxin-producing species by light microscopy resulting in action by the water body owner. Whilst significantly reducing the risk of microcystin exposure, there is little data describing the levels of these toxins present in cyanobacterial blooms. This study focused on the quantitative LC-MS/MS analysis of microcystins in freshwater samples, collected across England during 2016 and found to contain potentially toxin-producing cyanobacteria. More than 50% of samples contained quantifiable concentrations of microcystins, with approximately 13% exceeding the WHO medium health threshold of 20 μg/L. Toxic samples were confirmed over a nine-month period, with a clear increase in toxins during late summer, but with no apparent geographical patterns. No statistical relationships were found between total toxin concentrations and environmental parameters. Complex toxin profiles were determined and profile clusters were unrelated to cyanobacterial species, although a dominance of MC-RR was determined in water samples from sites associated with lower rainfall. 100% of samples with toxins above the 20 μg/L limit contained cell densities above 20,000 cells/mL or cyanobacterial scum, showing the current regime is suitable for public health. Conversely, with only 18% of cell density threshold samples having total microcystins above 20 μg/L, there is the potential for reactive water closures to unnecessarily impact upon the socio-economics of the local population. In the future, routine analysis of bloom samples by LC-MS/MS would provide a beneficial confirmatory approach to the current microscopic assessment, aiding both public health and the needs of water users and industry.

  10. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Touzet, N., E-mail: touzet.nicolas@itsligo.ie [Centre for Environmental Research, Innovation and Sustainability, School of Science, Department of Environmental Science, Institute of Technology Sligo, Sligo (Ireland); McCarthy, D.; Gill, A.; Fleming, G.T.A. [Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway (Ireland)

    2016-05-15

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  11. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland

    International Nuclear Information System (INIS)

    Touzet, N.; McCarthy, D.; Gill, A.; Fleming, G.T.A.

    2016-01-01

    The eutrophication of lakes is typically associated with high biomass proliferations of potentially toxic cyanobacteria. At a regional level, the sustainable management of water resources necessitates an approach that recognises the interconnectivity of multiple water systems within river catchments. This study examined the dynamics in summer diversity of planktonic cyanobacterial communities and microcystin toxin concentrations in two inter-connected lakes from the west of Ireland prone to nutrient enrichment. DGGE analysis of 16S rRNA gene amplicons of genotype-I cyanobacteria (typically spherical) showed changes in the communities of both Lough Corrib and Ballyquirke Lough throughout the summer, and identified cyanobacterial genotypes both unique and shared to both lakes. Microcystin concentrations, estimated via the protein phosphatase 2A inhibition assay, were greater in August than in July and June in both lakes. This was concomitant to the increased occurrence of Microcystis as evidenced by DGGE band excision and subsequent sequencing and BLAST analysis. RFLP analysis of PCR amplified mcy-A/E genes clustered together the August samples of both lakes, highlighting a potential change in microcystin producers across the two lakes. Finally, the multiple factor analysis of the combined environmental data set for the two lakes highlighted the expected pattern opposing greater water temperature and chlorophyll concentration against macronutrient concentrations, but also indicated a negative relationship between microcystin concentration and cyanobacterial diversity, possibly underlining allelopathic interactions. Despite some element of connectivity, the dissimilarity in the composition of the cyanobacterial assemblages and the timing of community change in the two lakes likely were a reflexion of niche differences determined by meteorologically-forced variation in physico-chemical parameters in the two water bodies. - Highlights: • DGGE highlighted

  12. ATP bioluminescence: Surface hygiene monitoring in milk preparation room of neonatal intensive care unit

    Science.gov (United States)

    Mohamad, Mahirah; Ishak, Shareena; Jaafar, Rohana; Sani, Norrakiah Abdullah

    2018-04-01

    ATP Bioluminescence application and standard microbiological analyses were used to evaluate the cleanliness of milk contact surfaces and non-milk contact surfaces in milk preparation room of neonatal intensive care unit (NICU) of Universiti Kebangsaan Malaysia Medical Centre (UKMMC). A total of 44 samples including the breast pump, milk bottle, milk bottle screw top and screw ring, teats, measuring cups, waterless warmer, refrigerator, dishwasher and pasteurizer inner wall were tested on May 2017. 3M Clean and Trace Hygiene Monitoring (UXL100 ATP Test swabs) and the bioluminescence reader Clean-Trace NG Luminometer (3M) were used to measure the Relative Light Unit (RLU) and microbiological analysis using 3M Quick Swab and 3MTM PetrifilmTM for enumeration of aerobic count, Staphylococcus aureus, Enterobacteriaceae, coliform and detection of Escherichia coli (CFU /100cm2 or utensil/item). The RLU values were from 11 to 194 and passed the ATP benchmark for intensive care unit (ICU), < 250 RLU as recommended. Aerobic colony count was only found in waterless warmer (0.05±0.01 mean log CFU/warmer). None of S. aureus, Enterobacteriaceae, E. coli and coliform was detected in all samples. A weak correlation was found between bioluminescence measurements RLU and the microbiological analysis (CFU). However, the use of ATP bioluminescence in monitoring milk preparation room cleanliness can be a useful method for assessing rapidly the surface hygiene as well as to verify the Sanitation Standard Operating Procedure (SSOP) prior to implementation of Hazard Analysis and Critical Control Points (HACCP) in milk preparation room.

  13. Light and vision in the deep-sea benthos: I. Bioluminescence at 500-1000 m depth in the Bahamian islands.

    Science.gov (United States)

    Johnsen, Sönke; Frank, Tamara M; Haddock, Steven H D; Widder, Edith A; Messing, Charles G

    2012-10-01

    Bioluminescence is common and well studied in mesopelagic species. However, the extent of bioluminescence in benthic sites of similar depths is far less studied, although the relatively large eyes of benthic fish, crustaceans and cephalopods at bathyal depths suggest the presence of significant biogenic light. Using the Johnson-Sea-Link submersible, we collected numerous species of cnidarians, echinoderms, crustaceans, cephalopods and sponges, as well as one annelid from three sites in the northern Bahamas (500-1000 m depth). Using mechanical and chemical stimulation, we tested the collected species for light emission, and photographed and measured the spectra of the emitted light. In addition, in situ intensified video and still photos were taken of different benthic habitats. Surprisingly, bioluminescence in benthic animals at these sites was far less common than in mesopelagic animals from similar depths, with less than 20% of the collected species emitting light. Bioluminescent taxa comprised two species of anemone (Actinaria), a new genus and species of flabellate Parazoanthidae (formerly Gerardia sp.) (Zoanthidea), three sea pens (Pennatulacea), three bamboo corals (Alcyonacea), the chrysogorgiid coral Chrysogorgia desbonni (Alcyonacea), the caridean shrimp Parapandalus sp. and Heterocarpus ensifer (Decapoda), two holothuroids (Elasipodida and Aspidochirota) and the ophiuroid Ophiochiton ternispinus (Ophiurida). Except for the ophiuroid and the two shrimp, which emitted blue light (peak wavelengths 470 and 455 nm), all the species produced greener light than that measured in most mesopelagic taxa, with the emissions of the pennatulaceans being strongly shifted towards longer wavelengths. In situ observations suggested that bioluminescence associated with these sites was due primarily to light emitted by bioluminescent planktonic species as they struck filter feeders that extended into the water column.

  14. Chlorophyll f distribution and dynamics in cyanobacterial beachrock biofilms.

    Science.gov (United States)

    Trampe, Erik; Kühl, Michael

    2016-12-01

    Chlorophyll (Chl) f, the most far-red (720-740 nm) absorbing Chl species, was discovered in cyanobacterial isolates from stromatolites and subsequently in other habitats as well. However, the spatial distribution and temporal dynamics of Chl f in a natural habitat have so far not been documented. Here, we report the presence of Chl f in cyanobacterial beachrock biofilms. Hyperspectral imaging on cross-sections of beachrock from Heron Island (Great Barrier Reef, Australia), showed a strong and widely distributed signature of Chl f absorption in an endolithic layer below the dense cyanobacterial surface biofilm that could be localized to aggregates of Chroococcidiopsis-like unicellular cyanobacteria packed within a thick common sheath. High-pressure liquid chromatography-based pigment analyses showed in situ ratios of Chl f to Chl a of 5% in brown-pigmented zones of the beachrock, with lower ratios of ~0.5% in the black- and pink-pigmented biofilm zones. Enrichment experiments with black beachrock biofilm showed stimulated synthesis of Chl f and Chl d when grown under near-infrared radiation (NIR; 740 nm), with a Chl f to Chl a ratio increasing 4-fold to 2%, whereas the Chl d to Chl a ratio went from 0% to 0.8%. Enrichments grown under white light (400-700 nm) produced no detectable amounts of either Chl d or Chl f. Beachrock cyanobacteria thus exhibited characteristics of far-red light photoacclimation, enabling Chl f -containing cyanobacteria to thrive in optical niches deprived of visible light when sufficient NIR is prevalent. © 2016 Phycological Society of America.

  15. A single phosphorus treatment doubles growth of cyanobacterial lichen transplants.

    Science.gov (United States)

    McCune, Bruce; Caldwell, Bruce A

    2009-02-01

    Lichens are reputedly slow growing and become unhealthy or die in response to supplements of the usual limiting resources, such as water and nitrogen. We found, however, that the tripartite cyanobacterial lichen Lobaria pulmonaria doubled in annual biomass growth after a single 20-minute immersion in a phosphorus solution (K2HPO4), as compared to controls receiving no supplemental phosphorus. This stimulation of cyanolichens by phosphorus has direct relevance to community and population ecology of lichens, including improving models of lichen performance in relation to air quality, improving forest management practices affecting old-growth associated cyanolichens, and understanding the distribution and abundance of cyanolichens on the landscape. Phosphorus may be as important a stimulant to cyanobacterial-rich lichen communities as it is to cyanobacteria in aquatic ecosystems.

  16. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  17. Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts

    Science.gov (United States)

    Bowker, M.A.; Reed, S.C.; Belnap, J.; Phillips, S.L.

    2002-01-01

    Summers on the Colorado Plateau (USA) are typified by harsh conditions such as high temperatures, brief soil hydration periods, and high UV and visible radiation. We investigated whether community composition, physiological status, and pigmentation might vary in biological soil crusts as a result of such conditions. Representative surface cores were sampled at the ENE, WSW, and top microaspects of 20 individual soil crust pedicels at a single site in Canyonlands National Park, Utah, in spring and fall of 1999. Frequency of cyanobacterial taxa, pigment concentrations, and dark adapted quantum yield (Fv/Fm) were measured for each core. The frequency of major cyanobacterial taxa was lower in the fall compared to spring. The less-pigmented cyanobacterium Microcoleus vaginatus showed significant mortality when not in the presence of Nostoc spp. and Scytonema myochrous (Dillw.) Agardh. (both synthesizers of UV radiation-linked pigments) but had little or no mortality when these species were abundant. We hypothesize that the sunscreen pigments produced by Nostoc and Scytonema in the surface of crusts protect other, less-pigmented taxa. When fall and spring samples were compared, overall cyanobacterial frequency was lower in fall, while sunscreen pigment concentrations, chlorophyll a concentration, and Fv/Fm were higher in fall. The ratio of cyanobacterial frequency/chlorophyll a concentrations was 2-3 times lower in fall than spring. Because chlorophyll a is commonly used as a surrogate measure of soil cyanobacterial biomass, these results indicate that seasonality needs to be taken into consideration. In the fall sample, most pigments associated with UV radiation protection or repair were at their highest concentrations on pedicel tops and WSW microaspects, and at their lowest concentrations on ENE microaspects. We suggest that differential pigment concentrations between microaspects are induced by varying UV radiation dosage at the soil surface on these different

  18. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    Science.gov (United States)

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Ship Sensor Observations for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and...

  20. [Determination of minimal concentrations of biocorrosion inhibitors by a bioluminescence method in relation to bacteria, participating in biocorrosion].

    Science.gov (United States)

    Efremenko, E N; Azizov, R E; Makhlis, T A; Abbasov, V M; Varfolomeev, S D

    2005-01-01

    By using a bioluminescence ATP assay, we have determined the minimal concentrations of some biocorrosion inhibitors (Katon, Khazar, VFIKS-82, Nitro-1, Kaspii-2, and Kaspii-4) suppressing most common microbial corrosion agents: Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Pseudomonas putida, Pseudomonas fluorescens, and Acidithiobacillus ferrooxidans. The cell titers determined by the bioluminescence method, including not only dividing cells but also their dormant living counterparts, are two- to sixfold greater than the values determined microbiologically. It is shown that the bioluminescence method can be applied to determination of cell titers in samples of oil-field waters in the presence of iron ions (up to 260 mM) and iron sulfide (to 186 mg/l) and in the absence or presence of biocidal corrosion inhibitors.

  1. Smartphone-based low light detection for bioluminescence application

    OpenAIRE

    Kim, Huisung; Jung, Youngkee; Doh, Iyll-Joon; Lozano-Mahecha, Roxana Andrea; Applegate, Bruce; Bae, Euiwon

    2017-01-01

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an an...

  2. Chasing after Non-cyanobacterial Nitrogen Fixation in Marine Pelagic Environments

    Directory of Open Access Journals (Sweden)

    Pia H. Moisander

    2017-09-01

    Full Text Available Traditionally, cyanobacterial activity in oceanic photic layers was considered responsible for the marine pelagic dinitrogen (N2 fixation. Other potentially N2-fixing bacteria and archaea have also been detected in the pelagic water column, however, the activity and importance of these non-cyanobacterial diazotrophs (NCDs remain poorly constrained. In this perspective we summarize the N2 fixation rates from recently published studies on photic and aphotic layers that have been attributed to NCD activity via parallel molecular measurements, and discuss the status, challenges, and data gaps in estimating non-cyanobacterial N2 fixation NCNF in the ocean. Rates attributed to NCNF have generally been near the detection limit thus far (<1 nmol N L−1 d−1. Yet, if considering the large volume of the dark ocean, even low rates of NCNF could make a significant contribution to the new nitrogen input to the ocean. The synthesis here shows that nifH transcription data for NCDs have been reported in only a few studies where N2 fixation rates were detected in the absence of diazotrophic cyanobacteria. In addition, high apparent diversity and regional variability in the NCDs complicate investigations of these communities. Future studies should focus on further investigating impacts of environmental drivers including oxygen, dissolved organic matter, and dissolved inorganic nitrogen on NCNF. Describing the ecology of NCDs and accurately measuring NCNF rates, are critical for a future evaluation of the contribution of NCNF to the marine nitrogen budget.

  3. Sensitive in situ monitoring of a recombinant bioluminescent Yersinia enterocolitica reporter mutant in real time on Camembert cheese.

    Science.gov (United States)

    Maoz, Ariel; Mayr, Ralf; Bresolin, Geraldine; Neuhaus, Klaus; Francis, Kevin P; Scherer, Siegfried

    2002-11-01

    Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10 degrees C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm(2). Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a "real-product" status, and at a low temperature.

  4. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming

    2014-04-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge\\'s mild intercellular environment. 2014 Gao et al.

  5. Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont "Candidatus Synechococcus pongiarum"

    KAUST Repository

    Gao, Zhao-Ming; Wang, Yong; Tian, Ren-Mao; Wong, Yue Him; Batang, Zenon B.; Al-Suwailem, Abdulaziz M.; Bajic, Vladimir B.; Qian, Pei-Yuan

    2014-01-01

    "Candidatus Synechococcus spongiarum" is a cyanobacterial symbiont widely distributed in sponges, but its functions at the genome level remain unknown. Here, we obtained the draft genome (1.66 Mbp, 90% estimated genome recovery) of "Ca. Synechococcus spongiarum" strain SH4 inhabiting the Red Sea sponge Carteriospongia foliascens. Phylogenomic analysis revealed a high dissimilarity between SH4 and free-living cyanobacterial strains. Essential functions, such as photosynthesis, the citric acid cycle, and DNA replication, were detected in SH4. Eukaryoticlike domains that play important roles in sponge-symbiont interactions were identified exclusively in the symbiont. However, SH4 could not biosynthesize methionine and polyamines and had lost partial genes encoding low-molecular-weight peptides of the photosynthesis complex, antioxidant enzymes, DNA repair enzymes, and proteins involved in resistance to environmental toxins and in biosynthesis of capsular and extracellular polysaccharides. These genetic modifications imply that "Ca. Synechococcus spongiarum" SH4 represents a low-light-adapted cyanobacterial symbiont and has undergone genome streamlining to adapt to the sponge's mild intercellular environment. 2014 Gao et al.

  6. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters.

    Science.gov (United States)

    Rogers, Kelly L; Stinnakre, Jacques; Agulhon, Cendra; Jublot, Delphine; Shorte, Spencer L; Kremer, Eric J; Brûlet, Philippe

    2005-02-01

    Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca(2+)-sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260-7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable 'real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell-cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.

  7. Limnology and cyanobacterial diversity of high altitude lakes of ...

    Indian Academy of Sciences (India)

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ...

  8. Aequorin fusion proteins as bioluminescent tracers for competitive immunoassays

    Science.gov (United States)

    Mirasoli, Mara; Michelini, Elisa; Deo, Sapna K.; Dikici, Emre; Roda, Aldo; Daunert, Sylvia

    2004-06-01

    The use of bio- and chemiluminescence for the development of quantitative binding assays offers undoubted advantages over other detection systems, such as spectrophotometry, fluorescence, or radioactivity. Indeed, bio- and chemiluminescence detection provides similar, or even better, sensitivity and detectability than radioisotopes, while avoiding the problems of health hazards, waste disposal, and instability associated with the use of radioisotopes. Among bioluminescent labels, the calcium-activated photoprotein aequorin, originally isolated from Aequorea victoria and today available as a recombinant product, is characterized by very high detectability, down to attomole levels. It has been used as a bioluminescent label for developing a variety of highly sensitive immunoassays, using various analyte-aequorin conjugation strategies. When the analyte is a protein or a peptide, genetic engineering techniques can be used to produce protein fusions where the analyte is in-frame fused with aequorin, thus producing homogeneous one-to-one conjugation products, available in virtually unlimited amount. Various assays were developed using this strategy: a short review of the most interesting applications is presented, as well as the cloning, purification and initial characterization of an endothelin-1-aequorin conjugate suitable for developing a competitive immunoassay for endothelin-1, a potent vasoconstrictor peptide, involved in hypertension.

  9. A genetic screen for bioluminescence genes in the fungus Armillaria mellea, through the use of Agrobacterium tumefaciens-mediated random insertional mutagenesis

    Science.gov (United States)

    Bioluminescence is reported from 71 saprobic species of fungi from four, distant lineages in the order Agaricales. Analyses of the fungal luminescent chemistry shows that all four lineages share a functionally conserved substrate and luciferase, indicating that the bioluminescent pathway is likely c...

  10. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  11. Image Reconstruction For Bioluminescence Tomography From Partial Measurement

    OpenAIRE

    Jiang, M.; Zhou, T.; Cheng, J. T.; Cong, W. X.; Wang, Ge

    2007-01-01

    The bioluminescence tomography is a novel molecular imaging technology for small animal studies. Known reconstruction methods require the completely measured data on the external surface, although only partially measured data is available in practice. In this work, we formulate a mathematical model for BLT from partial data and generalize our previous results on the solution uniqueness to the partial data case. Then we extend two of our reconstruction methods for BLT to this case. The first m...

  12. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  13. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats.

    Science.gov (United States)

    Pessi, Igor Stelmach; Maalouf, Pedro De Carvalho; Laughinghouse, Haywood Dail; Baurain, Denis; Wilmotte, Annick

    2016-06-01

    The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High-throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline-dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub-Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub-Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity-dependent community structure at the phylotype level. © 2016 Phycological Society of America.

  14. Bioluminescence determination of active caspase-3 in single apoptotic cells

    Czech Academy of Sciences Publication Activity Database

    Lišková, Marcela; Klepárník, Karel; Matalová, Eva; Hegrová, Jitka; Přikryl, Jan; Švandová, Eva; Foret, František

    2013-01-01

    Roč. 34, č. 12 (2013), s. 1772-1777 ISSN 0173-0835 R&D Projects: GA ČR GAP206/11/2377 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:68081715 ; RVO:67985904 Keywords : apoptosis * bioluminescence * caspase-3 Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  15. Book review: Handbook of cyanobacterial monitoring and cyanotoxin analysis

    Science.gov (United States)

    Graham, Jennifer L.; Loftin, Keith A.

    2018-01-01

    Review of Meriluoto, Jussi, Lisa Spoof, and GeoffreyA. Codd [eds.]. 2017. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis. John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, ISBN 978‐1‐119‐06868‐6 (978‐1‐119‐06876‐1 eBook), DOI 10.1002/9781119068761.

  16. Insights from Cyanobacterial Genomes for the Development of Extraterrestrial Photoautotrophic Biotechnologies

    Science.gov (United States)

    Brown, I. I.; Bryant, D. A.; Tringe, S. G.; Malley, K.; Sosa, O.; Sarkisova, S. A.; Garrison, D. H.; McKay, D. S.

    2010-04-01

    Using genomic and metagenomic analysis, Fe-tolerant cyanobacterial species with a large and diverse set of stress-tolerant genes, were identified as prime candidates for in situ resource utilization in a biogeoreactor at extraterrestrial outposts.

  17. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Gregory M Shackleford

    Full Text Available Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP cells, which are cells of origin for the sonic hedgehog (SHH subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and

  18. Dual-color bioluminescent sensor proteins for therapeutic drug monitoring of antitumor antibodies

    NARCIS (Netherlands)

    van Rosmalen, M.; Ni, Y.; Vervoort, D.F.M.; Arts, R.; Ludwig, S.K.J.; Merkx, M.

    2018-01-01

    Monitoring the levels of therapeutic antibodies in individual patients would allow patient-specific dose optimization, with the potential for major therapeutic and financial benefits. Our group recently developed a new platform of bioluminescent sensor proteins (LUMABS; LUMinescent AntiBody Sensor)

  19. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source.

    Science.gov (United States)

    Duan, Hongtao; Tao, Min; Loiselle, Steven Arthur; Zhao, Wei; Cao, Zhigang; Ma, Ronghua; Tang, Xiaoxian

    2017-10-01

    The occurrence and related risks from cyanobacterial blooms have increased world-wide over the past 40 years. Information on the abundance and distribution of cyanobacteria is fundamental to support risk assessment and management activities. In the present study, an approach based on Empirical Orthogonal Function (EOF) analysis was used to estimate the concentrations of chlorophyll a (Chla) and the cyanobacterial biomarker pigment phycocyanin (PC) using data from the MODerate resolution Imaging Spectroradiometer (MODIS) in Lake Chaohu (China's fifth largest freshwater lake). The approach was developed and tested using fourteen years (2000-2014) of MODIS images, which showed significant spatial and temporal variability of the PC:Chla ratio, an indicator of cyanobacterial dominance. The results had unbiased RMS uncertainties of MODIS Chla and PC products were then used for cyanobacterial risk mapping with a decision tree classification model. The resulting Water Quality Decision Matrix (WQDM) was designed to assist authorities in the identification of possible intake areas, as well as specific months when higher frequency monitoring and more intense water treatment would be required if the location of the present intake area remained the same. Remote sensing cyanobacterial risk mapping provides a new tool for reservoir and lake management programs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Proteomic approaches in research of cyanobacterial photosynthesis.

    Science.gov (United States)

    Battchikova, Natalia; Angeleri, Martina; Aro, Eva-Mari

    2015-10-01

    Oxygenic photosynthesis in cyanobacteria, algae, and plants is carried out by a fabulous pigment-protein machinery that is amazingly complicated in structure and function. Many different approaches have been undertaken to characterize the most important aspects of photosynthesis, and proteomics has become the essential component in this research. Here we describe various methods which have been used in proteomic research of cyanobacteria, and demonstrate how proteomics is implemented into on-going studies of photosynthesis in cyanobacterial cells.

  1. Submersible Data (Dive Waypoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during seventeen dives of the 2009 "Bioluminescence" expedition...

  2. Response of cyanobacterial mats to nutrient and salinity changes

    Czech Academy of Sciences Publication Activity Database

    Rejmánková, E.; Komárková, Jaroslava

    2005-01-01

    Roč. 83, č. 2 (2005), s. 87-107 ISSN 0304-3770. [INTECOL International Wetlands Conference /7./. Utrecht, 25.07.2004-30.7.2004] Grant - others:NSF(US) 0089211 Institutional research plan: CEZ:AV0Z60170517 Keywords : cyanobacterial mats * Belize * P-N impact Subject RIV: EH - Ecology, Behaviour Impact factor: 1.344, year: 2005

  3. Linking cascading effects of fish predation and zooplankton grazing to reduced cyanobacterial biomass and toxin levels following biomanipulation.

    Directory of Open Access Journals (Sweden)

    Mattias K Ekvall

    Full Text Available Eutrophication has been one of the largest environmental problems in aquatic ecosystems during the past decades, leading to dense, and often toxic, cyanobacterial blooms. In a way to counteract these problems many lakes have been subject to restoration through biomanipulation. Here we combine 13 years of monitoring data with experimental assessment of grazing efficiency of a naturally occurring zooplankton community and a, from a human perspective, desired community of large Daphnia to assess the effects of an altered trophic cascade associated with biomanipulation. Lake monitoring data show that the relative proportion of Daphnia spp. grazers in June has increased following years of biomanipulation and that this increase coincides with a drop in cyanobacterial biomass and lowered microcystin concentrations compared to before the biomanipulation. In June, the proportion of Daphnia spp. (on a biomass basis went from around 3% in 2005 (the first year of biomanipulation up to around 58% in 2012. During months when the proportion of Daphnia spp. remained unchanged (July and August no effect on lower trophic levels was observed. Our field grazing experiment revealed that Daphnia were more efficient in controlling the standing biomass of cyanobacteria, as grazing by the natural zooplankton community never even compensated for the algal growth during the experiment and sometimes even promoted cyanobacterial growth. Furthermore, although the total cyanobacterial toxin levels remained unaffected by both grazer communities in the experimental study, the Daphnia dominated community promoted the transfer of toxins to the extracellular, dissolved phase, likely through feeding on cyanobacteria. Our results show that biomanipulation by fish removal is a useful tool for lake management, leading to a top-down mediated trophic cascade, through alterations in the grazer community, to reduced cyanobacterial biomass and lowered cyanobacterial toxin levels. This

  4. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Durand, Marie-Jose; Jouanneau, Sulivan; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Dion, Michel [UMR CNRS 6204, Nantes University, PRES UNAM, Biotechnologie, Biocatalyse, Bioregulation, 2, Rue de la Houssiniere, BP 92208, Nantes cedex 3 (France); Pernetti, Mimma; Poncelet, Denis [ONIRIS-ENITIAA, UMR CNRS GEPEA, Rue de la Geraudiere, BP 82225, Nantes cedex 3 (France)

    2011-05-15

    This study describes the construction of inducible bioluminescent strains via genetic engineering along with their characterization and optimization in the detection of heavy metals. Firstly, a preliminary comparative study enabled us to select a suitable carbon substrate from pyruvate, glucose, citrate, diluted Luria-Bertani, and acetate. The latter carbon source provided the best induction ratios for comparison. Results showed that the three constructed inducible strains, Escherichia coli DH1 pBzntlux, pBarslux, and pBcoplux, were usable when conducting a bioassay after a 14-h overnight culture at 30 C. Utilizing these sensors gave a range of 12 detected heavy metals including several cross-detections. Detection limits for each metal were often close to and sometimes lower than the European standards for water pollution. Finally, in order to maintain sensitive bacteria within the future biosensor-measuring cell, the agarose immobilization matrix was compared to polyvinyl alcohol (PVA). Agarose was selected because the detection limits of the bioluminescent strains were not affected, in contrast to PVA. Specific detection and cross-detection ranges determined in this study will form the basis of a multiple metals detection system by the new multi-channel Lumisens3 biosensor. (orig.)

  5. Accumulation of cyanobacterial toxins in freshwater 'seafood' and its consequences for public health: A review

    International Nuclear Information System (INIS)

    Ibelings, Bas W.; Chorus, Ingrid

    2007-01-01

    This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in 'seafood' collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and the likelihood of bioaccumulation discussed; (b) we derive cyanotoxin doses likely to occur through seafood consumption and propose guideline values for seafood and compare these to guidelines for drinking water; and (c) we discuss means to assess, control or mitigate the risks of exposure to cyanotoxins through seafood consumption. This is discussed in the context of two specific procedures, the food specific HACCP-approach and the water-specific Water Safety Plan approach by the WHO. Risks of exposure to cyanotoxins in food are sometimes underestimated. Risk assessments should acknowledge this and investigate the partitioning of exposure between drinking-water and food, which may vary depending on local circumstances. - Accumulation of cyanobacterial toxins in freshwater 'seafood'

  6. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi.

    Science.gov (United States)

    Anetzberger, Claudia; Pirch, Torsten; Jung, Kirsten

    2009-07-01

    Quorum sensing (QS) refers to the ability of bacterial populations to read out the local environment for cell density and to collectively activate gene expression. Vibrio harveyi, one of the best characterized model organisms in QS, was used to address the question how single cells behave within a QS-activated community in a homogeneous environment. Analysis of the QS-regulated bioluminescence of a wild type strain revealed that even at high cell densities only 69% of the cells of the population produced bioluminescence, 25% remained dark and 6% were dead. Moreover, light intensities greatly varied from cell to cell at high population density. Addition of autoinducer to a bright liquid culture of V. harveyi increased the percentage of luminescent cells up to 98%, suggesting that V. harveyi produces and/or keeps the autoinducers at non-saturating concentrations. In contrast, all living cells of a constitutive QS-active mutant (DeltaluxO) produced light. We also found that QS affects biofilm formation in V. harveyi. Our data provide first evidence that a heterogeneous population produces more biofilm than a homogeneous one. It is suggested that even a QS-committed population of V. harveyi takes advantage of heterogeneity, which extends the current view of QS-regulated uniformity.

  7. Structure of fungal oxyluciferin, the product of the bioluminescence reaction.

    Science.gov (United States)

    Purtov, K V; Osipova, Z M; Petushkov, V N; Rodionova, N S; Tsarkova, A S; Kotlobay, A A; Chepurnykh, T V; Gorokhovatsky, A Yu; Yampolsky, I V; Gitelson, J I

    2017-11-01

    The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.

  8. Observations and Measurements of Planktonic Bioluminescence in and Around a Milky Sea

    Science.gov (United States)

    1988-03-01

    malticharnel analysers operating in the multiscaler mode. The details of both the onboard underway system and the LPTC systems have been published (Lapota...the Arabian Sea during the southwest monsoon. No nutrient data was collected during our study, yet phosphates, nitrates , and trace BIOLUMINESCENCE IN

  9. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes

    Czech Academy of Sciences Publication Activity Database

    Tóth, T. N.; Chukhutsina, V.; Knoppová, Jana; Komenda, Josef; Kis, M.; Lenart, Z.; Garab, G.; Kovács, L.; Gombos, Z.; van Amerongen, H.

    2015-01-01

    Roč. 1847, č. 10 (2015), s. 1153-1165 ISSN 0005-2728 R&D Projects: GA ČR GBP501/12/G055; GA MŠk LO1416 Institutional support: RVO:61388971 Keywords : Carotenoid deficiency * Cyanobacterial photosynthesis * Phycobilisome Subject RIV: CE - Biochemistry Impact factor: 4.864, year: 2015

  10. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    Science.gov (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  11. Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy.

    Science.gov (United States)

    Suzuki, Kazushi; Onishi, Takahito; Nakada, Chieko; Takei, Shunsuke; Daniels, Matthew J; Nakano, Masahiro; Matsuda, Tomoki; Nagai, Takeharu

    2018-05-18

    Cardiomyocytes derived from human-induced pluripotent stem cells are a powerful platform for high-throughput drug screening in vitro. However, current modalities for drug testing, such as electrophysiology and fluorescence imaging have inherent drawbacks. To circumvent these problems, we report the development of a bioluminescent Ca 2+ indicator GmNL(Ca 2+ ), and its application in a customized microscope for high-throughput drug screening. GmNL(Ca 2+ ) gives a 140% signal change with Ca 2+ , and can image drug-induced changes of Ca 2+ dynamics in cultured cells. Since bioluminescence requires application of a chemical substrate, which is consumed over ~ 30 min we made a dedicated microscope with automated drug dispensing inside a light-tight box, to control drug addition. To overcome thermal instability of the luminescent substrate, or small molecule, dual climate control enables distinct temperature settings in the drug reservoir and the biological sample. By combining GmNL(Ca 2+ ) with this adaptation, we could image spontaneous Ca 2+ transients in cultured cardiomyocytes and phenotype their response to well-known drugs without accessing the sample directly. In addition, the bioluminescent strategy demonstrates minimal perturbation of contractile parameters and long-term observation attributable to lack of phototoxicity and photobleaching. Overall, bioluminescence may enable more accurate drug screening in a high-throughput manner.

  12. Three-dimensional structure and cyanobacterial activity within a desert biological soil crust.

    Science.gov (United States)

    Raanan, Hagai; Felde, Vincent J M N L; Peth, Stephan; Drahorad, Sylvie; Ionescu, Danny; Eshkol, Gil; Treves, Haim; Felix-Henningsen, Peter; Berkowicz, Simon M; Keren, Nir; Horn, Rainer; Hagemann, Martin; Kaplan, Aaron

    2016-02-01

    Desert biological soil crusts (BSCs) are formed by adhesion of soil particles to polysaccharides excreted by filamentous cyanobacteria, the pioneers and main producers in this habitat. Biological soil crust destruction is a central factor leading to land degradation and desertification. We study the effect of BSC structure on cyanobacterial activity. Micro-scale structural analysis using X-ray microtomography revealed a vesiculated layer 1.5-2.5 mm beneath the surface in close proximity to the cyanobacterial location. Light profiles showed attenuation with depth of 1%-5% of surface light within 1 mm but also revealed the presence of 'light pockets', coinciding with the vesiculated layer, where the irradiance was 10-fold higher than adjacent crust parts at the same depth. Maximal photosynthetic activity, examined by O2 concentration profiles, was observed 1 mm beneath the surface and another peak in association with the 'light pockets'. Thus, photosynthetic activity may not be visible to currently used remote sensing techniques, suggesting that BSCs' contribution to terrestrial productivity is underestimated. Exposure to irradiance higher than 10% full sunlight diminished chlorophyll fluorescence, whereas O2 evolution and CO2 uptake rose, indicating that fluorescence did not reflect cyanobacterial photosynthetic activity. Our data also indicate that although resistant to high illumination, the BSC-inhabiting cyanobacteria function as 'low-light adapted' organisms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  14. Dual monitoring using 124I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    International Nuclear Information System (INIS)

    Lee, T. S.; Kim, J. H.; Kwon, H. C.

    2007-01-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[ 124 I] iodouracil ( 124 I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ( 124 I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, 124 I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, 124 I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by 124 I-FIAU PET imaging. 124 I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. 124 I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials

  15. Nucleic acid detection using BRET-beacons based on bioluminescent protein-DNA hybrids

    NARCIS (Netherlands)

    Engelen, W.; van de Wiel, K.M.; Meijer, L.H.H.; Saha, B.; Merkx, M.

    2017-01-01

    Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor. While classical molecular beacons are hampered by background fluorescence and scattering, these BRET-beacons allow detection of low pM

  16. The antibiotic resistome of free-living and particle-attached bacteria under a reservoir cyanobacterial bloom.

    Science.gov (United States)

    Guo, Yunyan; Liu, Min; Liu, Lemian; Liu, Xuan; Chen, Huihuang; Yang, Jun

    2018-05-04

    In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom

  17. Investigation of Processes and Factors Regulating the Generation, Maintenance and Breakdown of Bioluminescent Thin Layers

    National Research Council Canada - National Science Library

    Widder, Edith

    2001-01-01

    .... Katz's submersible holographic camera mounted on the upper work platform. Thin layers were located using real-time sensor feedback from intensified video recordings of stimulated bioluminescence...

  18. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    Science.gov (United States)

    Williams, Wendy; Büdel, Burkhard; Williams, Stephen

    2018-04-01

    The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0-1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be ˜ 5.2 kg ha-1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018) provide important contributions to multifunctional microprocesses and soil fertility.

  19. The current status of cyanobacterial nomenclature under the "prokaryotic" and the "botanical" code.

    Science.gov (United States)

    Oren, Aharon; Ventura, Stefano

    2017-10-01

    Cyanobacterial taxonomy developed in the botanical world because Cyanobacteria/Cyanophyta have traditionally been identified as algae. However, they possess a prokaryotic cell structure, and phylogenetically they belong to the Bacteria. This caused nomenclature problems as the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN; the "Botanical Code") differ from those of the International Code of Nomenclature of Prokaryotes (ICNP; the "Prokaryotic Code"). While the ICN recognises names validly published under the ICNP, Article 45(1) of the ICN has not yet been reciprocated in the ICNP. Different solutions have been proposed to solve the current problems. In 2012 a Special Committee on the harmonisation of the nomenclature of Cyanobacteria was appointed, but its activity has been minimal. Two opposing proposals to regulate cyanobacterial nomenclature were recently submitted, one calling for deletion of the cyanobacteria from the groups of organisms whose nomenclature is regulated by the ICNP, the second to consistently apply the rules of the ICNP to all cyanobacteria. Following a general overview of the current status of cyanobacterial nomenclature under the two codes we present five case studies of genera for which nomenclatural aspects have been discussed in recent years: Microcystis, Planktothrix, Halothece, Gloeobacter and Nostoc.

  20. An overview of cyanobacterial bloom occurrences and research in Africa over the last decade.

    Science.gov (United States)

    Ndlela, L L; Oberholster, P J; Van Wyk, J H; Cheng, P H

    2016-12-01

    Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa's delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12°C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the

  1. Tropical cyanobacterial blooms: a review of prevalence, problem taxa, toxins and influencing environmental factors

    Directory of Open Access Journals (Sweden)

    Maxine A.D. Mowe

    2014-12-01

    Full Text Available Toxic cyanobacterial blooms are a major issue in freshwater systems in many countries. The potentially toxic species and their ecological causes are likely to be different in tropical zones from those in temperate water bodies; however, studies on tropical toxic cyanobacterial blooms are sporadic and currently there is no global synthesis. In this review, we examined published information on tropical cyanobacterial bloom occurrence and toxin production to investigate patterns in their growth and distribution. Microcystis was the most frequently occurring bloom genus throughout tropical Asia, Africa and Central America, while Cylindrospermopsis and Anabaena blooms occurred in various locations in tropical Australia, America and Africa. Microcystis blooms were more prevalent during the wet season while Cylindrospermopsis blooms were more prevalent during the dry period. Microcystin was the most encountered toxin throughout the tropics. A meta-analysis of tropical cyanobacterial blooms showed that Microcystis blooms were more associated with higher total nitrogen concentrations, while Cylindrospermopsis blooms were more associated with higher maximum temperatures. Meta-analysis also showed a positive linear relationship between levels of microcystin and N:P (nitrate:phosphate ratio. Tropical African Microcystis blooms were found to have the lowest microcystin levels in relation to biomass and N:P (nitrate:phosphate compared to tropical Asian, Australian and American blooms. There was also no significant correlation between microcystin concentration and cell concentration for tropical African blooms as opposed to tropical Asian and American blooms. Our review illustrates that some cyanobacteria and toxins are more prevalent in tropical areas. While some tropical countries have considerable information regarding toxic blooms, others have few or no reported studies. 

  2. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  3. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado

    Directory of Open Access Journals (Sweden)

    ETELVINO J.H. BECHARA

    Full Text Available ABSTRACT Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera belonging to the Lampyridae (fireflies, Elateridae (click-beetles, and Phengodidae (railroad-worms families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the “luminous termite mounds” in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  4. Factors Influencing Quantification of in Vivo Bioluminescence Imaging: Application to Assessment of Pancreatic Islet Transplants

    Directory of Open Access Journals (Sweden)

    John Virostko

    2004-10-01

    Full Text Available The aim of this study is to determine and characterize factors influencing in vivo bioluminescence imaging (BLI and apply them to the specific application of imaging transplanted pancreatic islets. Noninvasive quantitative assessment of transplanted pancreatic islets poses a formidable challenge. Murine pancreatic islets expressing firefly luciferase were transplanted under the renal capsule or into the portal vein of nonobese diabetic–severe combined immunodeficiency mice and the bioluminescence was quantified with a cooled charge coupled device camera and digital photon image analysis. The important, but often neglected, effects of wound healing, mouse positioning, and transplantation site on bioluminescence measurements were investigated by imaging a constant emission, isotropic light-emitting bead (λ = 600 implanted at the renal or hepatic site. The renal beads emitted nearly four times more light than hepatic beads with a smaller spot size, indicating that light absorption and scatter are greatly influenced by the transplant site and must be accounted for in BLI measurements. Detected luminescence decreased with increasing angle between the mouse surface normal and optical axis. By defining imaging parameters such as postsurgical effects, animal positioning, and light attenuation as a function of transplant site, this study develops BLI as a useful imaging modality for quantitative assessment of islets post-transplantation.

  5. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado.

    Science.gov (United States)

    Bechara, Etelvino J H; Stevani, Cassius V

    2018-01-01

    Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera) belonging to the Lampyridae (fireflies), Elateridae (click-beetles), and Phengodidae (railroad-worms) families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the "luminous termite mounds" in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  6. Flexible Measurement of Bioluminescent Reporters Using an Automated Longitudinal Luciferase Imaging Gas- and Temperature-optimized Recorder (ALLIGATOR).

    Science.gov (United States)

    Crosby, Priya; Hoyle, Nathaniel P; O'Neill, John S

    2017-12-13

    Luciferase-based reporters of cellular gene expression are in widespread use for both longitudinal and end-point assays of biological activity. In circadian rhythms research, for example, clock gene fusions with firefly luciferase give rise to robust rhythms in cellular bioluminescence that persist over many days. Technical limitations associated with photomultiplier tubes (PMT) or conventional microscopy-based methods for bioluminescence quantification have typically demanded that cells and tissues be maintained under quite non-physiological conditions during recording, with a trade-off between sensitivity and throughput. Here, we report a refinement of prior methods that allows long-term bioluminescence imaging with high sensitivity and throughput which supports a broad range of culture conditions, including variable gas and humidity control, and that accepts many different tissue culture plates and dishes. This automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR) also allows the observation of spatial variations in luciferase expression across a cell monolayer or tissue, which cannot readily be observed by traditional methods. We highlight how the ALLIGATOR provides vastly increased flexibility for the detection of luciferase activity when compared with existing methods.

  7. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    Directory of Open Access Journals (Sweden)

    Flor-Henry Michel

    2004-11-01

    Full Text Available Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.

  8. The history of cyanobacterial blooms in the Baltic Sea.

    Science.gov (United States)

    Finni, T; Kononen, K; Olsonen, R; Wallström, K

    2001-08-01

    Long-term information on possible changes in cyanobacterial blooms in the Baltic Sea, formed mainly by Nodularia spumigena and Aphanizomenon sp., was sought in published records in historical (years 1887-1938) and modern (years 1974-1998) phytoplankton data sets. Old and new sampling methods and fixatives were tested to improve the comparison of data that had been collected and analyzed in different ways. A hundred years ago, plankton was mainly of interest as a source of fish food; eutrophication problems were only locally reported from the coast, mainly in southern haffs and the receiving waters of larger cities. There were few recordings of open-sea blooms before World War II. Abundances of Nodularia spumigena and Aphanizomenon sp. were low in the old material, and 137 summer samples from 1887-1938 showed no peak abundance. High abundances are common in the new material, and the range of the numbers of both taxa has increased markedly relative to the old material. Since the 1960s, cyanobacterial blooms have been common in the open sea in both the Baltic proper and the Gulf of Finland, indicating high availability of nutrients.

  9. Cyanobacterial bloom in the world largest freshwater lake Baikal

    Science.gov (United States)

    Namsaraev, Zorigto; Melnikova, Anna; Ivanov, Vasiliy; Komova, Anastasia; Teslyuk, Anton

    2018-02-01

    Lake Baikal is a UNESCO World Heritage Site and holds 20% of the world’s freshwater reserves. On July 26, 2016, a cyanobacterial bloom of a green colour a few kilometers in size with a bad odor was discovered by local people in the Barguzinsky Bay on the eastern shore of Lake Baikal. Our study showed very high concentration of chlorophyll a (41.7 g/m3) in the sample of bloom. We found that the bloom was dominated by a nitrogen-fixing heterocystous cyanobacteria of the genus Dolichospermum. The mass accumulation of cyanobacteria in the lake water with an extremely high chlorophyll a concentration can be explained by a combination of several factors: the discharge of biologicaly-available nutrients, including phosphorus, into the water of Lake Baikal; low wind speed and weak water mixing; buoyant cyanobacterial cells on the lake surface, which drifted towards the eastern coast, where the maximum concentration of chlorophyll a was recorded. In the center of the Barguzinsky Bay and in the open part of Lake Baikal, according to satellite data, the chlorophyll a concentration is several orders of magnitude lower than at the shoreline.

  10. Late Archean mineralised cyanobacterial mats and their modern analogs

    Science.gov (United States)

    Kazmierczak, J.; Altermann, W.; Kremer, B.; Kempe, S.; Eriksson, P. G.

    2008-09-01

    Abstract Reported are findings of Neoarchean benthic colonial coccoid cyanobacteria preserved as abundant remnants of mineralized capsules and sheaths visible in SEM images as characteristic patterns after etching highly polished carbonate rock platelets. The samples described herein were collected from the Nauga Formation at Prieska (Kaapvaal craton, South Africa). The stratigraphic position of the sampling horizon (Fig. 1) is bracketed by single zircon ages from intercalated tuffs, of 2588±6 Ma and 2549±7Ma [1]. The cyanobacteria-bearing samples are located within sedimentary sequence which begins with Peritidal Member displaying increasingly transgressive character, passing upward into the Chert Member and followed by the Proto-BIF Member and by the Naute Shale Member of the Nauga Formation successively. All three latter members were deposited below the fair weather wave base. As in our previous report [2], the samples are taken from lenses of massive micritic flat pebble conglomerate occurring in otherwise finely laminated siliceous shales intercalating with thin bedded platy limestone. This part of the Nauga Formation is about 30 m thick. The calcareous, cyanobacteria-bearing flat pebble conglomerate and thin intercalations of fine-grained detrital limestones embedded in the clayey sapropel-rich deposits are interpreted as carbonate sediments winnowed during stormy weather from the nearby located peritidal carbonate platform. The mass occurrence and exceptional preservation of mineralised cyanobacterial remains in the micritic carbonate (Mg-calcite) of the redeposited flat pebbles can be explained by their sudden burial in deeper, probably anoxic clay- and sapropel-rich sediments. When examined with standard petrographic optical microscopic technique, the micritic carbonates show rather obscure structure (Fig. 2a), whereas under the SEM, polished and slightly etched platelets of the same samples reveal surprisingly well preserved patterns (Fig. 2b

  11. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone

    NARCIS (Netherlands)

    Arts, R.; den Hartog, I.; Zijlema, S.E.; Thijssen, V.; van der Beelen, S.H.E.; Merkx, M.

    2016-01-01

    Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies

  12. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.

    Science.gov (United States)

    Merel, Sylvain; Walker, David; Chicana, Ruth; Snyder, Shane; Baurès, Estelle; Thomas, Olivier

    2013-09-01

    Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earth's atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surface and drinking water, including economic impacts and research needs. Cyanobacterial blooms usually occur according to a combination of environmental factors e.g., nutrient concentration, water temperature, light intensity, salinity, water movement, stagnation and residence time, as well as several other variables. These environmental variables, in turn, have promoted the evolution and biosynthesis of strain-specific, gene-controlled metabolites (cyanotoxins) that are often harmful to aquatic and terrestrial life, including humans. Cyanotoxins are primarily produced intracellularly during the exponential growth phase. Release of toxins into water can occur during cell death or senescence but can also be due to evolutionary-derived or environmentally-mediated circumstances such as allelopathy or relatively sudden nutrient limitation. Consequently, when cyanobacterial blooms occur in drinking water resources, treatment has to remove both cyanobacteria (avoiding cell lysis and subsequent toxin release) and aqueous cyanotoxins previously released. Cells are usually removed with limited lysis by physical processes such as clarification or membrane filtration. However, aqueous toxins are usually removed by both physical retention, through adsorption on activated carbon or reverse osmosis, and chemical oxidation, through ozonation or chlorination. While the efficient oxidation of the more common cyanotoxins (microcystin, cylindrospermopsin, anatoxin and saxitoxin) has been extensively reported, the chemical

  13. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  14. Temperature effects explain continental scale distribution of cyanobacterial toxins

    OpenAIRE

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and li...

  15. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation

    DEFF Research Database (Denmark)

    Möllers, K Benedikt; Canella, D.; Jørgensen, Henning

    2014-01-01

    cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. Results: The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic...... cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used...... hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that p...

  16. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Voogd, J.A.

    1991-09-01

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of Photobacter phosphoreum (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs

  17. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay.

    Science.gov (United States)

    Sajayan, Arya; Seghal Kiran, G; Priyadharshini, S; Poulose, Navya; Selvin, Joseph

    2017-09-01

    A bioflocculant-producing bacterial strain, designated MSI021, was isolated from the marine sponge Dendrilla nigra and demonstrated 94% flocculation activity in a kaolin clay suspension. MSI021 was identified as Bacillus cereus based on phylogenetic affiliation and biochemical characteristics. The purified extra-cellular bioflocculant was chemically elucidated as a polysaccharide molecule. The polysaccharide bioflocculant was stable under both acidic and alkaline conditions (pH 2.0-10.0) and temperatures up to 100 °C. The purified bioflocculant efficiently nucleated the formation of silver nanoparticles which showed broad spectrum antibacterial activity. The ability of the bioflocculant to remediate heavy metal toxicity was evaluated by measuring the inhibition of bioluminescence expression in Vibrio harveyi. Enrichment of heavy metals such as zinc, mercury and copper at concentrations of 1, 2 and 3 mM in culture media showed significant reduction of bioluminescence in Vibrio, whereas media enriched with heavy metals and bioflocculant showed dose dependent improvement in the expression of bioluminescence. The assay results demonstrated that the polysaccharide bioflocculant effectively mitigates heavy metal toxicity, thereby improving the expression of bioluminescence in Vibrio. This bioluminescence reporter assay can be developed into a high-throughput format to monitor and evaluate of heavy metal toxicity. The findings of this study revealed that a novel polysaccharide bioflocculant produced by a marine B. cereus demonstrated strong flocculating performance and was effective in nucleating the formation antibacterial silver nanoparticles and removing heavy metals. These results suggest that the MSI021 polysaccharide bioflocculant can be used to develop greener waste water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Effects of two different high-fidelity DNA polymerases on genetic analysis of the cyanobacterial community structure in a subtropical deep freshwater reservoir

    DEFF Research Database (Denmark)

    Zhen, Zhuo; Liu, Jingwen; Rensing, Christopher Günther T

    2017-01-01

    and diversity analysis. In this study, two clone libraries were constructed with two different DNA polymerases, Q5 high-fidelity DNA polymerase and exTaq polymerase, to compare the differences in their capability to accurately reflect the cyanobacterial community structure and diversity in a subtropical deep......-fidelity DNA polymerase. It is noteworthy that so far Q5 high-fidelity DNA polymerase was the first time to be employed in the genetic analysis of cyanobacterial community. And it is for the first time that the cyanobacterial community structure in Dongzhen reservoir was analyzed using molecular methods...

  19. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    Directory of Open Access Journals (Sweden)

    W. Williams

    2018-04-01

    Full Text Available The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0–1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be  ∼  5.2 kg ha−1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018 provide important contributions to multifunctional microprocesses and soil fertility.

  20. Development of immobilized cyanobacterial amendments for reclamation of microbiotic soil crusts

    Czech Academy of Sciences Publication Activity Database

    Kubečková, Klára; Johansen, J. R.; Warren, S. D.; Sparks, R.

    2003-01-01

    Roč. 148, č. 109 (2003), s. 341-362 ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research/15./. Barcelona, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR KSK6005114 Keywords : cyanobacteria * cyanobacterial amendments * desert soil Subject RIV: EF - Botanics

  1. Characterization of the cyanobacterial biocenosis of a freshwater reservoir in Italy

    Czech Academy of Sciences Publication Activity Database

    Mugnai, M. A.; Turicchia, S.; Margheri, M. C.; Sili, C.; Gugger, M.; Tedioli, G.; Komárek, Jiří; Ventura, S.

    2003-01-01

    Roč. 148, č. 109 (2003), s. 403-419 ISSN 0342-1120. [Symposium of the International Association for Cyanophyte Research /15./. Barcelona, 03.09.2001-07.09.2001] R&D Projects: GA AV ČR KSK6005114 Keywords : freshwater reservoir * cyanobacterial diversity * morphology Subject RIV: EF - Botanics

  2. BIOLUMINESCENCE: TEACHING BIOCHEMISTRY BEYOND THE UNIVERSITY WALLS

    Directory of Open Access Journals (Sweden)

    Ana Paula Jesus de Almeida

    2016-11-01

    Full Text Available INTRODUCTION: The use of video in teaching and learning processes provides a challenging environment, able to stimulate the intellect and facilitate understanding in life science studies. Videos can be of extraordinary importance in education and dissemination of knowledge, contributing to greater learning, but is rarely used and exploited properly, especially for teaching biochemistry. Biochemistry is considered complex because it involves many molecular structures and processes, especially considering the number of events and molecules involved in the metabolism. OBJECTIVES: This study aimed to introduce biochemistry for the students of basic education using the theme "Light, Science and Life" in a playful and fun way. MATERIALS AND METHODS: A video about bioluminescence was designed and prepared aiming to use it as a support for learning biochemistry by students of basic education of public schools located in Salvador, Bahia. In order to prepare the video, undergraduate students initially revised the literature in order to acquire proper knowledge, and along with their teacher advisor worked the elaboration of texts, textbook and questionnaire and applied at school. DISCUSSION AND RESULTS: Analysis the qualitative results of the experiment on the preparation and use of the video about "Bioluminescence" focused mainly on the content of biochemistry linked to theme Light, Science and Life, and demonstrated the importance of such work in the teaching-learning process. The dynamics used allowed greater interaction between students and teacher, and the teaching of biochemistry in a fun way beyond the university walls. CONCLUSION: The teaching through recreational resources, e.g. videos and other educational strategies that foster learning should be encouraged from basic education, always bearing in order to transmit through these teaching methods the main concepts covered in biochemistry.

  3. Estimates of global cyanobacterial biomass and its distribution

    Science.gov (United States)

    Garcia-Pichel, Ferran; Belnap, Jayne; Neuer, Susanne; Schanz, Ferdinand

    2003-01-01

    We estimated global cyanobacterial biomass in the main reservoirs of cyanobacteria on Earth: marine and freshwater plankton, arid land soil crusts, and endoliths. Estimates were based on typical population density values as measured during our research, or as obtained from literature surveys, which were then coupled with data on global geographical area coverage. Among the marine plankton, the global biomass of Prochlorococcus reaches 120 × 1012 grams of carbon (g C), and that of Synechoccus some 43 × 1012 g C. This makes Prochlorococcus and Synechococcus, in that order, the most abundant cyanobacteria on Earth. Tropical marine blooms of Trichodesmium account for an additional 10 × 1012 g C worldwide. In terrestrial environments, the mass of cyanobacteria in arid land soil crusts is estimated to reach 54 × 1012 g C and that of arid land endolithic communities an additional 14 × 1012 g C. The global biomass of planktic cyanobacteria in lakes is estimated to be around 3 × 1012 g C. Our conservative estimates, which did not include some potentially significant biomass reservoirs such as polar and subarctic areas, topsoils in subhumid climates, and shallow marine and freshwater benthos, indicate that the total global cyanobacterial biomass is in the order of 3 × 1014 g C, surpassing a thousand million metric tons (1015 g) of wet biomass.

  4. Catchment-fed cyanobacterial blooms in brownified temperate lakes

    Science.gov (United States)

    Senar, O.; Creed, I. F.

    2017-12-01

    One of the most significant impacts of global atmospheric change is the alteration of hydrological regimes and the associated disruption of hydrological connectivity within watersheds. We show how changes in the frequency, magnitude, and duration of hydrological connectivity and disconnectivity is compromising the capacity of forest soils to store organic carbon, and increasing its export to both aquatic and atmospheric systems. Increases in dissolved organic matter (DOM) loads from forested landscapes to aquatic systems and the shift of the DOM pool to a more refractory mixture of organic compounds, a process known as brownification, alters the physical and chemical characteristics of lake environments. Furthermore, by characterizing the stages of brownification (from low to high concentrations of refractory DOM), we show a shift in the limiting factors for phytoplankton growth from macronutrients (nitrogen -N- and phosphorus -P) to micronutrients (iron -Fe) and light availability. This shift is driven by the low concentrations of DOM supplying N and P in early stages of brownification, to the strong Fe-binding capacity of refractory DOM in brownified lakes. As lakes undergo brownification, cyanobacteria adapted to scavenge Fe from DOM-Fe complexes have a competitive advantage leading to the formation of cyanobacterial blooms. Our findings provide evidence that brownification is a driving force leading to cyanobacterial blooms in lakes on forested landscapes, with expected cascading consequences to lake food webs.

  5. Dual monitoring using {sup 124}I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. S.; Kim, J. H.; Kwon, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[{sup 124}I] iodouracil ({sup 124}I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ({sup 124}I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, {sup 124}I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, {sup 124}I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by {sup 124}I-FIAU PET imaging. {sup 124}I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. {sup 124}I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials.

  6. What Orthopaedic Operating Room Surfaces Are Contaminated With Bioburden? A Study Using the ATP Bioluminescence Assay.

    Science.gov (United States)

    Richard, Raveesh Daniel; Bowen, Thomas R

    2017-07-01

    Contaminated operating room surfaces can increase the risk of orthopaedic infections, particularly after procedures in which hardware implantation and instrumentation are used. The question arises as to how surgeons can measure surface cleanliness to detect increased levels of bioburden. This study aims to highlight the utility of adenosine triphosphate (ATP) bioluminescence technology as a novel technique in detecting the degree of contamination within the sterile operating room environment. What orthopaedic operating room surfaces are contaminated with bioburden? When energy is required for cellular work, ATP breaks down into adenosine biphosphate (ADP) and phosphate (P) and in that process releases energy. This process is inherent to all living things and can be detected as light emission with the use of bioluminescence assays. On a given day, six different orthopaedic surgery operating rooms (two adult reconstruction, two trauma, two spine) were tested before surgery with an ATP bioluminescence assay kit. All of the cases were considered clean surgery without infection, and this included the previously performed cases in each sampled room. These rooms had been cleaned and prepped for surgery but the patients had not been physically brought into the room. A total of 13 different surfaces were sampled once in each room: the operating room (OR) preparation table (both pre- and postdraping), OR light handles, Bovie machine buttons, supply closet countertops, the inside of the Bair Hugger™ hose, Bair Hugger™ buttons, right side of the OR table headboard, tourniquet machine buttons, the Clark-socket attachment, and patient positioners used for total hip and spine positioning. The relative light units (RLUs) obtained from each sample were recorded and data were compiled and averaged for analysis. These values were compared with previously published ATP benchmark values of 250 to 500 RLUs to define cleanliness in both the hospital and restaurant industries. All

  7. Cyanobacterial pigments as natural anti-hyperglycemic agents: An in vitro study

    Directory of Open Access Journals (Sweden)

    Tonmoy Ghosh

    2016-08-01

    Full Text Available Traditional medicines for controlling postprandial hyperglycemia includes herbs and plant extracts as well as synthetic drugs like acarbose. Synthetic drug molecules frequently have side effects such as flatulence and diarrhea. Cyanobacterial pigments have excellent anti-oxidant and free radical scavenging properties. Thus, α-amylase and α-glucosidase inhibiting activities of purified pigments and crude extracts from three cyanobacterial species, Lyngbya, Microcoleus and Synechocystis sp., were investigated. Lyngbya extract had the highest total anti-oxidant activity (TAC before digestion (48.26 ± 0.04 µg AAE ml-1 while purified lycopene had the highest TAC after digestion (154.16 ± 0.96 µg AAE ml-1. The Microcoleus extract had the highest ABTS scavenging activity before digestion (98.23 ± 0.25 % while purified C-phycocyanin (C-PC had the highest ABTS scavenging after digestion (99.69 ±0.04 %. None of the digested or undigested extracts performed better than acarbose in inhibiting α-amylase but the digested Microcoleus extract was able to inhibit its activity by ~35 %. The purified pigments gave inhibitory activities ranging from ~ 8 – 16 %. The Lyngbya extract had the highest inhibitory activity against α-glucosidase both before and after digestion (62.22 ± 0.02 and 97.82 ± 0.03 % respectively. Purified C-phycoerythrin (C-PE, C-PC, lycopene and myxoxanthophyll could inhibit α-glucosidase in a range of ~83 – 96 %. Considering the potent inhibitory activities of purified pigments against both α-amylase and α-glucosidase, cyanobacterial pigments could be used as food additives for their dual advantage of anti-oxidant and anti-hyperglycemic activities.

  8. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand.

    Science.gov (United States)

    Hongmei, Jing; Aitchison, Jonathan C; Lacap, Donnabella C; Peerapornpisal, Yuwadee; Sompong, Udomluk; Pointing, Stephen B

    2005-08-01

    Most community molecular studies of thermophilic cyanobacterial mats to date have focused on Synechococcus occurring at temperatures of approximately 50-65 degrees C. These reveal that molecular diversity exceeds that indicated by morphology, and that phylogeographic lineages exist. The moderately thermophilic and generally filamentous cyanobacterial mat communities occurring at lower temperatures have not previously been investigated at the community molecular level. Here we report community diversity in mats of 42-53 degrees C recovered from previously unstudied geothermal locations. Separation of 16S rRNA gene-defined genotypes from community DNA was achieved by DGGE. Genotypic diversity was greater than morphotype diversity in all mats sampled, although genotypes generally corresponded to observed morphotypes. Thirty-six sequences were recovered from DGGE bands. Phylogenetic analyses revealed these to form novel thermophilic lineages distinct from their mesophilic counterparts, within Calothrix, Cyanothece, Fischerella, Phormidium, Pleurocapsa, Oscillatoria and Synechococcus. Where filamentous cyanobacterial sequences belonging to the same genus were recovered from the same site, these were generally closely affiliated. Location-specific sequences were observed for some genotypes recovered from geochemically similar yet spatially separated sites, thus providing evidence for phylogeographic lineages that evolve in isolation. Other genotypes were more closely affiliated to geographically remote counterparts from similar habitats suggesting that adaptation to certain niches is also important.

  9. Accumulation of cyanobacterial toxins in freshwater 'seafood' and its consequences for public health: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ibelings, Bas W. [Eawag, Swiss Federal Institute of Aquatic Sciences and Technology, Centre of Ecology, Evolution and Biogeochemistry, Seestrasse 79, CH-6047 Kastanienbaum (Switzerland); Netherlands Institute of Ecology, Centre for Limnology, Rijksstraatweg 6, 3631 AC, Nieuwersluis (Netherlands)], E-mail: bas.ibelings@eawag.ch; Chorus, Ingrid [German Federal Environment Agency, Corrensplatz 1, 14195 Berlin (Germany)], E-mail: ingrid.chorus@uba.de

    2007-11-15

    This review summarizes and discusses the current understanding of human exposure to cyanobacterial toxins in 'seafood' collected from freshwater and coastal areas. The review consists of three parts: (a) the existing literature on concentrations of cyanobacterial toxins in seafood is reviewed, and the likelihood of bioaccumulation discussed; (b) we derive cyanotoxin doses likely to occur through seafood consumption and propose guideline values for seafood and compare these to guidelines for drinking water; and (c) we discuss means to assess, control or mitigate the risks of exposure to cyanotoxins through seafood consumption. This is discussed in the context of two specific procedures, the food specific HACCP-approach and the water-specific Water Safety Plan approach by the WHO. Risks of exposure to cyanotoxins in food are sometimes underestimated. Risk assessments should acknowledge this and investigate the partitioning of exposure between drinking-water and food, which may vary depending on local circumstances. - Accumulation of cyanobacterial toxins in freshwater 'seafood'.

  10. Review of 130 years of research on cyanobacteria in aquatic ecosystems in Serbia presented in a Serbian Cyanobacterial Database

    Directory of Open Access Journals (Sweden)

    Zorica Svirčev

    2017-05-01

    Full Text Available The presence of toxic cyanobacteria in aquatic ecosystems in the territory of the Republic of Serbia was surveyed over a period of several decades. Increasing attention is being paid to some negative consequences that may be caused by these microorganisms. Information from available literary sources regarding the distribution and frequency of cyanobacteria and their toxins over a period of 130 years, together with the effects on humans and wildlife in aquatic ecosystems, were gathered and incorporated into a Serbian Cyanobacterial Database created for the CYANOCOST Action. This database encompasses information on 65 aquatic ecosystems, including rivers, lakes, ponds, canals, irrigation reservoirs, reservoirs used for drinking water supply and reservoirs used for other purposes. Cyanobacterial blooms were found in almost 80% of the investigated aquatic ecosystems. The analysis of the research showed the presence of more than 70 species, including blooms of 24 species from 13 genera. Five species of cyanobacteria: Microcystis aeruginosa, Aphanizomenon flos-aquae, Planktothrix agardhii, Microcystis flos-aquae and Planktothrix rubescens frequently formed blooms in the investigated waterbodies and cyanotoxins were also detected in some of them, which had certain negative effects. Here, we present an overview of data contained in the Serbian Cyanobacterial Database, concerning cyanobacterial distribution, cyanotoxin production and associated biological effects in different types of water bodies from the Republic of Serbia. Also, recent important and major cases of cyanobacterial blooming in reservoirs used for drinking water supply: at Vrutci and Ćelije, the Aleksandrovac irrigation reservoir, the Ponjavica River and Lake Palić, including systematic research on the Lake Ludoš and few fishponds are further described. It can be concluded that cyanobacteria and cyanotoxins are omnipresent in different water bodies throughout the Republic of Serbia

  11. Observations of volatile organic compounds over the North Atlantic Ocean: relationships to dominant cyanobacterial populations.

    Science.gov (United States)

    Swarthout, R.; Rossell, R.; Sive, B. C.; Zhou, Y.; Reddy, C. M.; Valentine, D. L.; Cox, D.

    2017-12-01

    Marine cyanobacteria are abundant primary producers that can have a major influence on the oceanic biogeochemical cycles. In particular, the prominent cyanobacterial genera Prochlorococcus, Synechococcus, and Trichodesmium can impact the air-sea flux of volatile organic compounds (VOCs) including reactive compounds, such as isoprene, that control the oxidative capacity of the atmosphere and climate-relevant compounds, such as dimethyl sulfide. These groups of cyanobacteria have been estimated to increase in abundance by up to 29% by the end of the century as a result of rising sea surface temperatures and dissolved carbon dioxide concentrations. Given their current and predicted future abundance, understanding the role of different cyanobacterial populations on VOC emissions from the ocean is critical in understanding the future oxidative capacity of the remote atmosphere and climate feedback cycles. During the May 2017 Phosphorus, Hydrocarbons, and Transcriptomics cruise aboard the R/V Neil Armstrong, 160 whole air canister samples were collected along a transect through the North Atlantic from Woods Hole, MA to Bermuda and back with 24-hour stops at nine stations encompassing different nutrient regimes and cyanobacterial populations. At each station, a diurnal time series of samples was collected and higher frequency sampling was conducted during transits of the north wall. Canister samples were analyzed on a five-detector gas chromatography system for over 80 individual VOCs including biogenics, aromatics, chlorinated and brominated compounds, and sulfur containing compounds. Trends in reactive and climate-relevant VOCs will be discussed as a function of the predominant cyanobacterial populations at each sample location. These data provide increased information on the spatial and diurnal variability of trace gases associated with these globally important photosynthetic cyanobacteria.

  12. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP

    International Nuclear Information System (INIS)

    Nilsson, L.E.; Hoffner, S.E.; Ansehn, S.

    1988-01-01

    Mycobacterial growth was monitored by bioluminescence assay of mycobacterial ATP. Cultures of Mycobacterium tuberculosis H37Rv and of 25 clinical isolates of the same species were exposed to serial dilutions of ethambutol, isoniazid, rifampin, and streptomycin. A suppression of ATP, indicating growth inhibition, occurred for susceptible but not resistant strains within 5 to 7 days of incubation. Breakpoint concentrations between susceptibility and resistance were determined by comparing these results with those obtained by reference techniques. Full agreement was found in 99% of the assays with the resistance ratio method on Lowenstein-Jensen medium, and 98% of the assays were in full agreement with the radiometric system (BACTEC). A main advantage of the bioluminescence method is its rapidity, with results available as fast as with the radiometric system but at a lower cost and without the need for radioactive culture medium. The method provides kinetic data concerning drug effects within available in vivo drug concentrations and has great potential for both rapid routine susceptibility testing and research applications in studies of drug effects on mycobacteria

  13. Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection

    Science.gov (United States)

    Chen, Xueli; Yang, Defu; Qu, Xiaochao; Hu, Hao; Liang, Jimin; Gao, Xinbo; Tian, Jie

    2012-06-01

    Bioluminescence tomography (BLT) has been successfully applied to the detection and therapeutic evaluation of solid cancers. However, the existing BLT reconstruction algorithms are not accurate enough for cavity cancer detection because of neglecting the void problem. Motivated by the ability of the hybrid radiosity-diffusion model (HRDM) in describing the light propagation in cavity organs, an HRDM-based BLT reconstruction algorithm was provided for the specific problem of cavity cancer detection. HRDM has been applied to optical tomography but is limited to simple and regular geometries because of the complexity in coupling the boundary between the scattering and void region. In the provided algorithm, HRDM was first applied to three-dimensional complicated and irregular geometries and then employed as the forward light transport model to describe the bioluminescent light propagation in tissues. Combining HRDM with the sparse reconstruction strategy, the cavity cancer cells labeled with bioluminescent probes can be more accurately reconstructed. Compared with the diffusion equation based reconstruction algorithm, the essentiality and superiority of the HRDM-based algorithm were demonstrated with simulation, phantom and animal studies. An in vivo gastric cancer-bearing nude mouse experiment was conducted, whose results revealed the ability and feasibility of the HRDM-based algorithm in the biomedical application of gastric cancer detection.

  14. Engineering Cyanobacterial Cell Morphology for Enhanced Recovery and Processing of Biomass.

    Science.gov (United States)

    Jordan, Adam; Chandler, Jenna; MacCready, Joshua S; Huang, Jingcheng; Osteryoung, Katherine W; Ducat, Daniel C

    2017-05-01

    Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this

  15. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhagen, Jason Alan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K+ and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol

  16. Cyanobacterial diversity in extreme environments in Baja California, Mexico: a polyphasic study.

    Science.gov (United States)

    López-Cortés, A; García-Pichel, F; Nübel, U; Vázquez-Juárez, R

    2001-12-01

    Cyanobacterial diversity from two geographical areas of Baja California Sur, Mexico, were studied: Bahia Concepcion, and Ensenada de Aripez. The sites included hypersaline ecosystems, sea bottom, hydrothermal springs, and a shrimp farm. In this report we describe four new morphotypes, two are marine epilithic from Bahia Concepcion, Dermocarpa sp. and Hyella sp. The third, Geitlerinema sp., occurs in thermal springs and in shrimp ponds, and the fourth, Tychonema sp., is from a shrimp pond. The partial sequences of the 16S rRNA genes and the phylogenetic relationship of four cyanobacterial strains (Synechococcus cf. elongatus, Leptolyngbya cf. thermalis, Leptolyngbya sp., and Geitlerinema sp.) are also presented. Polyphasic studies that include the combination of light microscopy, cultures and the comparative analysis of 16S rRNA gene sequences provide the most powerful approach currently available to establish the diversity of these oxygenic photosynthetic microorganisms in culture and in nature.

  17. A Fluorescent Bioreporter for Acetophenone and 1-Phenylethanol derived from a Specifically Induced Catabolic Operon.

    Science.gov (United States)

    Muhr, Enrico; Leicht, Oliver; González Sierra, Silvia; Thanbichler, Martin; Heider, Johann

    2015-01-01

    The β-proteobacterium Aromatoleum aromaticum degrades the aromatic ketone acetophenone, a key intermediate of anaerobic ethylbenzene metabolism, either aerobically or anaerobically via a complex ATP-dependent acetophenone carboxylase and a benzoylacetate-CoA ligase. The genes coding for these enzymes (apcABCDE and bal) are organized in an apparent operon and are expressed in the presence of the substrate acetophenone. To study the conditions under which this operon is expressed in more detail, we constructed a reporter strain by inserting a gene fusion of apcA, the first gene of the apc-bal operon, with the gene for the fluorescent protein mCherry into the chromosome of A. aromaticum. The fusion protein indeed accumulated consistently with the expression pattern of the acetophenone-metabolic enzymes under various growth conditions. After evaluating and quantifying the data by fluorescence microscopy, fluorescence-based flow cytometry and immunoblot analysis, mCherry production was found to be proportional to the applied acetophenone concentrations. The reporter strain allowed quantification of acetophenone within a concentration range of 50 μM (detection limit) to 250 μM after 12 and 24 h. Moreover, production of the Apc-mCherry fusion protein in the reporter strain was highly specific and responded to acetophenone and both enantiomers of 1-phenylethanol, which are easily converted to acetophenone. Other analogous substrates showed either a significantly weaker response or none at all. Therefore, the reporter strain provides a basis for the development of a specific bioreporter system for acetophenone with an application potential reaching from environmental monitoring to petroleum prospecting.

  18. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  19. Feasibility study on production of a matrix reference material for cyanobacterial toxins.

    Science.gov (United States)

    Hollingdale, Christie; Thomas, Krista; Lewis, Nancy; Békri, Khalida; McCarron, Pearse; Quilliam, Michael A

    2015-07-01

    The worldwide increase in cyanobacterial contamination of freshwater lakes and rivers is of great concern as many cyanobacteria produce potent hepatotoxins and neurotoxins (cyanotoxins). Such toxins pose a threat to aquatic ecosystems, livestock, and drinking water supplies. In addition, dietary supplements prepared from cyanobacteria can pose a risk to consumers if they contain toxins. Analytical monitoring for toxins in the environment and in consumer products is essential for the protection of public health. Reference materials (RMs) are an essential tool for the development and validation of analytical methods and are necessary for ongoing quality control of monitoring operations. Since the availability of appropriate RMs for cyanotoxins has been very limited, the present study was undertaken to examine the feasibility of producing a cyanobacterial matrix RM containing various cyanotoxins. The first step was large-scale culturing of various cyanobacterial cultures that produce anatoxins, microcystins, and cylindrospermopsins. After harvesting, the biomass was lyophilized, blended, homogenized, milled, and bottled. The moisture content and physical characteristics were assessed in order to evaluate the effectiveness of the production process. Toxin levels were measured by liquid chromatography with tandem mass spectrometry and ultraviolet detection. The reference material was found to be homogeneous for toxin content. Stability studies showed no significant degradation of target toxins over a period of 310 days at temperatures up to +40 °C except for the anatoxin-a, which showed some degradation at +40 °C. These results show that a fit-for-purpose matrix RM for cyanotoxins can be prepared using the processes and techniques applied in this work.

  20. Bioluminescence imaging in a medium-sized animal by local injection of d-luciferin

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Kim, Sung Mi; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of); Oh, Suk Jung; Kang, Han Saem; Kim, Kwang Yoon [ECOBIO INC., Gwangju (Korea, Republic of); Kim, Young Ho [Chosun University, Gwangju (Korea, Republic of)

    2005-07-01

    Luciferase is one of the most commonly used reporter enzymes in the field of molecular imaging. D-luciferin is known as the substrate for luciferase enzyme and its cost is very expensive. Therefore, the bioluminescence molecular imaging study has been allowed in small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase. And then was performed different method of chondrocyte cell injection and transplantation into the knee of rabbits. The rabbits underwent imaging by cooled CCD camera after local injection of D-luciferin (3mg) into experimental knee joint as well as contralateral normal knee joint on days 1, 5, 7, 9. We sought whether optimal imaging signal was acquired by using cooled CCD camera after local injection of D-luciferin. We successfully visualized injected or transplanted cells in knee joint by local injection of D-luciferin. Total photon flux (7.86E+08 p/s/cm{sup 2}/sr) from the knee joint transplanted with cells approximately increased 10-fold more than (9.43E+07p/s/cm{sup 2}/sr) that from injected knee joints until 7 day. Imaging signal was observed in transplanted joints until day 9 after surgery while signal from injected knee was observed by day 7 after injection. We successfully carried out bioluminescence imaging study with medium sized animal by local injection of small amount of D-luciferin. Survival of chondrocytes were prolonged when surgically transplanted in joints than when directly injected in joint space.

  1. Predicting cyanobacterial abundance, microcystin, and geosmin in a eutrophic drinking-water reservoir using a 14-year dataset

    Science.gov (United States)

    Harris, Ted D.; Graham, Jennifer L.

    2017-01-01

    Cyanobacterial blooms degrade water quality in drinking water supply reservoirs by producing toxic and taste-and-odor causing secondary metabolites, which ultimately cause public health concerns and lead to increased treatment costs for water utilities. There have been numerous attempts to create models that predict cyanobacteria and their secondary metabolites, most using linear models; however, linear models are limited by assumptions about the data and have had limited success as predictive tools. Thus, lake and reservoir managers need improved modeling techniques that can accurately predict large bloom events that have the highest impact on recreational activities and drinking-water treatment processes. In this study, we compared 12 unique linear and nonlinear regression modeling techniques to predict cyanobacterial abundance and the cyanobacterial secondary metabolites microcystin and geosmin using 14 years of physiochemical water quality data collected from Cheney Reservoir, Kansas. Support vector machine (SVM), random forest (RF), boosted tree (BT), and Cubist modeling techniques were the most predictive of the compared modeling approaches. SVM, RF, and BT modeling techniques were able to successfully predict cyanobacterial abundance, microcystin, and geosmin concentrations <60,000 cells/mL, 2.5 µg/L, and 20 ng/L, respectively. Only Cubist modeling predicted maxima concentrations of cyanobacteria and geosmin; no modeling technique was able to predict maxima microcystin concentrations. Because maxima concentrations are a primary concern for lake and reservoir managers, Cubist modeling may help predict the largest and most noxious concentrations of cyanobacteria and their secondary metabolites.

  2. Organic matter degradation drives benthic cyanobacterial mat abundance on caribbean coral reefs

    NARCIS (Netherlands)

    Brocke, Hannah J.; Polerecky, Lubos; De Beer, Dirk; Weber, Miriam; Claudet, Joachim; Nugues, Maggy M.

    2015-01-01

    Benthic cyanobacterial mats (BCMs) are impacting coral reefs worldwide. However, the factors and mechanisms driving their proliferation are unclear. We conducted a multi-year survey around the Caribbean island of Curaçao, which revealed highest BCM abundance on sheltered reefs close to urbanised

  3. Toxic Cyanobacterial Bloom Triggers in Missisquoi Bay, Lake Champlain, as Determined by Next-Generation Sequencing and Quantitative PCR

    Directory of Open Access Journals (Sweden)

    Nathalie Fortin

    2015-05-01

    Full Text Available Missisquoi Bay (MB is a temperate eutrophic freshwater lake that frequently experiences toxic Microcystis-dominated cyanobacterial blooms. Non-point sources are responsible for the high concentrations of phosphorus and nitrogen in the bay. This study combined data from environmental parameters, E. coli counts, high-throughput sequencing of 16S rRNA gene amplicons, quantitative PCR (16S rRNA and mcyD genes and toxin analyses to identify the main bloom-promoting factors. In 2009, nutrient concentrations correlated with E. coli counts, abundance of total cyanobacterial cells, Microcystis 16S rRNA and mcyD genes and intracellular microcystin. Total and dissolved phosphorus also correlated significantly with rainfall. The major cyanobacterial taxa were members of the orders Chroococcales and Nostocales. The genus Microcystis was the main mcyD-carrier and main microcystin producer. Our results suggested that increasing nutrient concentrations and total nitrogen:total phosphorus (TN:TP ratios approaching 11:1, coupled with an increase in temperature, promoted Microcystis-dominated toxic blooms. Although the importance of nutrient ratios and absolute concentrations on cyanobacterial and Microcystis dynamics have been documented in other laboratories, an optimum TN:TP ratio for Microcystis dominance has not been previously observed in situ. This observation provides further support that nutrient ratios are an important determinant of species composition in natural phytoplankton assemblages.

  4. Correlations between cyanobacterial density and bacterial transformation to the viable but nonculturable (VBNC) state in four freshwater water bodies.

    Science.gov (United States)

    Chen, Huirong; Shen, Ju; Pan, Gaoshan; Liu, Jing; Li, Jiancheng; Hu, Zhangli

    2015-10-01

    Nutrient concentrations, phytoplankton density and community composition, and the viable but nonculturable (VBNC) state of heterotrophic bacteria were investigated in three connected reservoirs and a small isolated lake in South China to study the relationship between biotic and abiotic factors and the VBNC state in bacteria. Nutrient concentrations in the reservoirs increased in the direction of water flow, whereas Wenshan Lake was more eutrophic. Cyanobacterial blooms occurred in all four water bodies, with differing seasonal trends and dominant species. In Xili and Tiegang Reservoirs, the VBNC ratio (percent of VBNC state bacteria over total viable bacteria) was high for most of the year and negatively correlated with cyanobacterial density. Laboratory co-culture experiments were performed with four heterotrophic bacterial species isolated from Wenshan Lake (Escherichia coli, Klebsiella peneumoniae, Bacillus megaterium and Bacillus cereus) and the dominant cyanobacterial species (Microcystis aeruginosa). For the first three bacterial species, the presence of M. aeruginosa induced the VBNC state and the VBNC ratio was positively correlated with M. aeruginosa density. However, B. cereus inhibited M. aeruginosa growth. These results demonstrate that cyanobacteria could potentially regulate the transformation to the VBNC state of waterborne bacteria, and suggest a role for bacteria in cyanobacterial bloom initiation and termination.

  5. A look at some systemic properties of self-bioluminescent emission

    Science.gov (United States)

    Creath, Katherine

    2008-08-01

    Self-bioluminescent emission (SBE) is a type of biological chemiluminescence where photons are emitted as part of chemical reactions occurring during metabolic processes. This emission is also known as biophoton emission, ultraweak photon emission and ultraweak bioluminescence. This paper outlines research over the past century on some systemic properties of SBE as measured with biological detectors, photomultiplier detectors and ultra-sensitive imaging arrays. There is an apparent consensus in the literature that emission in the deep blue and ultraviolet (150-450nm) is related to DNA / RNA processes while emission in the red and near infrared (600-1000nm) is related to mitochondria and oxidative metabolisms involving reactive oxygen species, singlet oxygen and free radicals in plant, animal and human cells along with chlorophyll fluorescent decay in plants. Additionally, there are trends showing that healthy, unstressed and uninjured samples have less emission than samples that are unhealthy, stressed or injured. Mechanisms producing this emission can be narrowed down by isolating the wavelength region of interest and waiting for short-term fluorescence to decay leaving the ultraweak long-term metabolic emission. Examples of imaging this emission in healthy versus unhealthy, stressed versus unstressed, and injured versus uninjured plant parts are shown. Further discussion poses questions still to be answered related to properties such as coherence, photon statistics, and methodological means of isolating mechanisms.

  6. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    Directory of Open Access Journals (Sweden)

    Yujie Lv

    2007-01-01

    Full Text Available To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT, the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs and a priori permissible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT reconstruction.

  7. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA in Shark Fins

    Directory of Open Access Journals (Sweden)

    John Pablo

    2012-02-01

    Full Text Available Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA.

  8. Occurrence and elimination of cyanobacterial toxins in drinking water treatment plants

    International Nuclear Information System (INIS)

    Hoeger, Stefan J.; Hitzfeld, Bettina C.; Dietrich, Daniel R.

    2005-01-01

    Toxin-producing cyanobacteria (blue-green algae) are abundant in surface waters used as drinking water resources. The toxicity of one group of these toxins, the microcystins, and their presence in surface waters used for drinking water production has prompted the World Health Organization (WHO) to publish a provisional guideline value of 1.0 μg microcystin (MC)-LR/l drinking water. To verify the efficiency of two different water treatment systems with respect to reduction of cyanobacterial toxins, the concentrations of MC in water samples from surface waters and their associated water treatment plants in Switzerland and Germany were investigated. Toxin concentrations in samples from drinking water treatment plants ranged from below 1.0 μg MC-LR equiv./l to more than 8.0 μg/l in raw water and were distinctly below 1.0 μg/l after treatment. In addition, data to the worldwide occurrence of cyanobacteria in raw and final water of water works and the corresponding guidelines for cyanobacterial toxins in drinking water worldwide are summarized

  9. THE TRPV1 RECEPTOR: THE INTERAGENCY, INTERNATION SYMPOSIUM ON CYANOBACTERIAL HARMFUL ALGAL BLOOMS.

    Science.gov (United States)

    Background and Significance Evidence indicates that the frequency of occurrence of cyanobacterial harmful algal blooms (CHABs) is increasing in spatial and temporal extent in the US and worldwide. Cyanotoxins are among the most potent toxins known, causing death through ...

  10. Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: insights into the evolution of bioluminescence in Elateridae.

    Science.gov (United States)

    Sagegami-Oba, Reiko; Oba, Yuichi; Ohira, Hitoo

    2007-02-01

    Although the taxonomy of click beetles (family Elateridae) has been studied extensively, inconsistencies remain. We examine here the relationships between species of Elateridae based on partial sequences of nuclear 28S ribosomal DNA. Specimens were collected primarily from Japan, while luminous click beetles were also sampled from Central and South America to investigate the origins of bioluminescence in Elateridae. Neighbor-joining, maximum-parsimony, and maximum-likelihood analyses produced a consistent basal topology with high statistical support that is partially congruent with the results of previous investigations based on the morphological characteristics of larvae and adults. The most parsimonious reconstruction of the "luminous" and "nonluminous" states, based on the present molecular phylogeny, indicates that the ancestral state of Elateridae was nonluminous. This suggests that the bioluminescence in click beetle evolved independent of that of other luminous beetles, such as Lampyridae, despite their common mechanisms of bioluminescence.

  11. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Burakova, Ludmila P.; Natashin, Pavel V.; Markova, Svetlana V.; Eremeeva, Elena V.; Malikova, Natalia P.; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S.

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  12. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.

  13. Oculogryphus chenghoiyanae sp. n. (Coleoptera, Lampyridae: a new ototretine firefly from Hong Kong with descriptions of its bioluminescent behavior and ultraviolet-induced fluorescence in females

    Directory of Open Access Journals (Sweden)

    Vor Yiu

    2018-02-01

    Full Text Available The first Oculogryphus species with associated males and female was found in Hong Kong and is described as new: O. chenghoiyanae sp. n. Adults of both sexes were collected live in the field and their bioluminescent behavior is reported for the first time in the genus. The captive males emit weak and continuous light from a pair of light spots on abdominal ventrite 6 or do so when disturbed. The larviform (highly paedomorphic females can glow brightly from a pair of light-emitting organs on the abdomen. The females of Oculogryphus and Stenocladius are to date the only documented representatives of paedomorphism in ototretine fireflies. The finding is consistent with the evidence from male morphology and bioluminescent behavior, supporting the close relationship between the two genera. A key to the Oculogryphus species is provided. The Oculogryphus females can fluoresce with a blue-green light through the whole body under ultraviolet illumination, a phenomenon reported in the Lampyridae for the first time. The co-occurrence of bioluminescence and fluorescence is rare in terrestrial ecosystems, previously known only in some millipedes (Diplopoda. The fluorescence and bioluminescence abilities of Oculogryphus females are functionally independent: abdominal light-emitting organs producing bright yellowish green light while the body wall fluoresces with blue-green light. In contrast, fluorescence and bioluminescence in millipedes are biochemically linked, like in some jellyfish (Cnidaria: Medusozoa.

  14. Emerging health issues of cyanobacterial blooms

    Directory of Open Access Journals (Sweden)

    Maura Manganelli

    2012-12-01

    Full Text Available This paper describes emerging issue related to cyanobacterial dynamics and toxicity and human health risks. Data show an increasing cyanobacteria expansion and dominance in many environments. However there are still few information on the toxic species fitness, or on the effects of specific drivers on toxin production. Open research fields are related to new exposure scenario (cyanotoxins in water used for haemodialysis and in food supplements; to new patterns of co-exposure between cyanotoxins and algal toxins and/or anthropogenic chemicals; to dynamics affecting toxicity and production of different cyanotoxin variants under environmental stress; to the accumulation of cyanotoxins in the food web. In addition, many data gaps exist in the characterization of the toxicological profiles, especially about long term effects.

  15. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  16. Frequency of inhibitors of daphnid trypsin in the widely distributed cyanobacterial genus Planktothrix

    DEFF Research Database (Denmark)

    Rohrlack, T.; Christoffersen, K.; Friberg-Jensen, U.

    2005-01-01

    on the frequency of such compounds in the widely distributed cyanobacterial genus Planktothrix. Of the 89 Planktothrix strains analysed, about 70% produced inhibitors of daphnid trypsin. The strains tested positive represented three common Planktothrix species and were isolated from diverse localities...

  17. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins.

    Science.gov (United States)

    Testai, Emanuela; Scardala, Simona; Vichi, Susanna; Buratti, Franca M; Funari, Enzo

    2016-01-01

    Cyanobacteria are ubiquitous photosynthetic micro-organisms forming blooms and scums in surface water; among them some species can produce cyanotoxins giving rise to some concern for human health and animal life. To date, more than 65 cyanobacterial neurotoxins have been described, of which the most studied are the groups of anatoxins and saxitoxins (STXs), comprising many different variants. In freshwaters, the hepatotoxic microcystins represent the most frequently detected cyanotoxin: on this basis, it could appear that neurotoxins are less relevant, but the low frequency of detection may partially reflect an a priori choice of target analytes, the low method sensitivity and the lack of certified standards. Cyanobacterial neurotoxins target cholinergic synapses or voltage-gated ion channels, blocking skeletal and respiratory muscles, thus leading to death by respiratory failure. This review reports and analyzes the available literature data on environmental occurrence of cyanobacterial neurotoxic alkaloids, namely anatoxins and STXs, their biosynthesis, toxicology and epidemiology, derivation of guidance values and action limits. These data are used as the basis to assess the risk posed to human health, identify critical exposure scenarios and highlight the major data gaps and research needs.

  18. Combined exposure of carps (Cyprinus carpio L.) to cyanobacterial biomass and white spot disease.

    Science.gov (United States)

    Palikova, Miroslava; Navratil, Stanislav; Papezikova, Ivana; Ambroz, Petr; Vesely, Tomas; Pokorova, Dagmar; Mares, Jan; Adamovsky, Ondrej; Navratil, Lukas; Kopp, Radovan

    2012-01-01

    Under environmental conditions, fish can be exposed to multiple stressors including natural toxins and infectious agents at the same time. This study brings new knowledge on the effects of controlled exposure to multiple stressors in fish. The aim of this study was to test the hypothesis that influence of cyanobacterial biomass and an infection agent represented by the white spot disease can combine to enhance the effects on fish. Common carps were divided into four groups, each with 40 specimens for 20 days: control group, cyanobacterial biomass exposed group, Ichthyophthirius multifiliis-infected fish (Ich) and cyanobacterial biomass-exposed fish + Ichthyophthirius multifiliis-infected fish. During the experiment we evaluated the clinical signs, mortality, selected haematological parameters, immune parameters and toxin accumulation. There was no mortality in control fish and cyanobacterial biomass-exposed fish. One specimen died in Ichthyophthirius multifiliis-infected fish and the combined exposure resulted in the death of 13 specimens. The whole leukocyte counts (WBC) of the control group did not show any significant differences. Cyanobacteria alone caused a significant increase of the WBC on day 13 (p≤0.05) and on day 20 (p≤0.01). Also, I. multifiliis caused a significant elevation of WBC (p≤0.01) on day 20. Co-exposition resulted in WBC increased on day 13 and decrease on day 20, but the changes were not significant. It is evident from the differential leukocyte counts that while the increase of WBC in the group exposed to cyanobacteria was caused by elevation of lymphocytes, the increase in the group infected by I. multifiliis was due to the increase of myeloid cells. It well corresponds with the integral of chemiluminescence in the group infected by I. multifiliis, which is significantly elevated on day 20 in comparison with all other groups. We can confirm additive action of different agents on the immune system of fish. While single agents seemed to

  19. Light Regimes Shape Utilization of Extracellular Organic C and N in a Cyanobacterial Biofilm

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Rhona K.; Mayali, Xavier; Boaro, Amy A.; Zemla, Adam; Everroad, R. Craig; Nilson, Daniel; Weber, Peter K.; Lipton, Mary; Bebout, Brad M.; Pett-Ridge, Jennifer; Thelen, Michael P.

    2016-06-28

    Although it is becoming clear that many microbial primary producers can also play a role as organic consumers, we know very little about the metabolic regulation of photoautotroph organic matter consumption. Cyanobacteria in phototrophic biofilms can reuse extracellular organic carbon, but the metabolic drivers of extracellular processes are surprisingly complex. We investigated the metabolic foundations of organic matter reuse by comparing exoproteome composition and incorporation of13C-labeled and15N-labeled cyanobacterial extracellular organic matter (EOM) in a unicyanobacterial biofilm incubated using different light regimes. In the light and the dark, cyanobacterial direct organic C assimilation accounted for 32% and 43%, respectively, of all organic C assimilation in the community. Under photosynthesis conditions, we measured increased excretion of extracellular polymeric substances (EPS) and proteins involved in micronutrient transport, suggesting that requirements for micronutrients may drive EOM assimilation during daylight hours. This interpretation was supported by photosynthesis inhibition experiments, in which cyanobacteria incorporated N-rich EOM-derived material. In contrast, under dark, C-starved conditions, cyanobacteria incorporated C-rich EOM-derived organic matter, decreased excretion of EPS, and showed an increased abundance of degradative exoproteins, demonstrating the use of the extracellular domain for C storage. Sequence-structure modeling of one of these exoproteins predicted a specific hydrolytic activity that was subsequently detected, confirming increased EOM degradation in the dark. Associated heterotrophic bacteria increased in abundance and upregulated transport proteins under dark relative to light conditions. Taken together, our results indicate that biofilm cyanobacteria are successful competitors for organic C and N and that cyanobacterial nutrient and energy requirements control the use of EOM.

  20. Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria.

    Science.gov (United States)

    Thouand, Gérald; Daniel, Philippe; Horry, Habib; Picart, Pascal; Durand, Marie José; Killham, Ken; Knox, Oliver G G; DuBow, Michael S; Rousseau, Michel

    2003-01-01

    The purpose of the present paper was to study the influence of bacteria harbouring the luciferase-encoding Vibrio harveyi luxAB genes upon the spectral emission during growth in batch-culture conditions. In vivo bioluminescence spectra were compared from several bioluminescent strains, either naturally luminescent (Vibrio fischeri and Vibrio harveyi) or in recombinant strains (two Gram-negative Escherichia coli::luxAB strains and a Gram-positive Bacillus subtilis::luxAB strain). Spectral emission was recorded from 400 nm to 750 nm using a highly sensitive spectrometer initially devoted to Raman scattering. Two peaks were clearly identified, one at 491-500 nm (+/- 5 nm) and a second peak at 585-595 (+/- 5 nm) with the Raman CCD. The former peak was the only one detected with traditional spectrometers with a photomultiplier detector commonly used for spectral emission measurement, due to their lack of sensitivity and low resolution in the 550-650 nm window. When spectra were compared between all the studied bacteria, no difference was observed between natural or recombinant cells, between Gram-positive and Gram-negative strains, and growth conditions and growth medium were not found to modify the spectrum of light emission. Copyright 2003 John Wiley & Sons, Ltd.

  1. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    Directory of Open Access Journals (Sweden)

    Giulia eSiciliano

    2015-05-01

    Full Text Available The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  2. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    Science.gov (United States)

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  3. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins.

    OpenAIRE

    Merel , Sylvain; Walker , David; Chicana , Ruth; Snyder , Shane; Baurès , Estelle; Thomas , Olivier

    2013-01-01

    International audience; Cyanobacteria are ubiquitous microorganisms considered as important contributors to the formation of Earth's atmosphere and nitrogen fixation. However, they are also frequently associated with toxic blooms. Indeed, the wide range of hepatotoxins, neurotoxins and dermatotoxins synthesized by these bacteria is a growing environmental and public health concern. This paper provides a state of the art on the occurrence and management of harmful cyanobacterial blooms in surf...

  4. A fluorescent bioreporter for acetophenone and 1-phenylethanol derived from a specifically induced catabolic operon

    Directory of Open Access Journals (Sweden)

    Enrico eMuhr

    2016-01-01

    Full Text Available The β-proteobacterium Aromatoleum aromaticum degrades the aromatic ketone acetophenone, a key intermediate of anaerobic ethylbenzene metabolism, either aerobically or anaerobically via a complex ATP-dependent acetophenone carboxylase and a benzoylacetate-CoA ligase. The genes coding for these enzymes (apcABCDE and bal are organized in an apparent operon and are expressed in the presence of the substrate acetophenone. To study the conditions under which this operon is expressed in more detail, we constructed a reporter strain by inserting a gene fusion of apcA, the first gene of the apc-bal operon, with the gene for the fluorescent protein mCherry into the chromosomal DNA of A. aromaticum. The mCherry fusion protein indeed responded consistently with the expression pattern of the acetophenone-metabolic enzymes under various growth conditions. After evaluating and quantifying the data by fluorescence microscopy, fluorescence based flow cytometry and immunoblot analysis, the recorded amounts of mCherry production were found to be proportional to the applied acetophenone concentrations. The reporter strain allowed quantification of acetophenone within a concentration range of 50 µM (detection limit to 250 µM after 12 and 24 hours. Moreover, production of the Apc-mCherry fusion protein in the reporter strain was highly specific and responded to acetophenone and both enantiomers of 1-phenylethanol, which are easily converted to acetophenone. Other analogous substrates showed either a significantly weaker response or none at all. Therefore, the reporter strain provides a basis for the development of a specific bioreporter system for acetophenone with application potentials reaching from environmental monitoring to petroleum prospecting.

  5. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial 'mobilome'.

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-11-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The approximately 108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  6. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals

    NARCIS (Netherlands)

    Klerk, Clara P. W.; Overmeer, Renée M.; Niers, Tatjana M. H.; Versteeg, Henri H.; Richel, Dick J.; Buckle, Tessa; van Noorden, Cornelis J. F.; van Tellingen, Olaf

    2007-01-01

    A relatively new strategy to longitudinally monitor tumor load in intact animals and the effects of therapy is noninvasive bioluminescence imaging (BLI). The validity of BLI for quantitative assessment of tumor load in small animals is critically evaluated in the present review. Cancer cells are

  7. Epilithic Cyanobacterial Communities of a Marine Tropical Beach Rock (Heron Island, Great Barrier Reef): Diversity and Diazotrophy▿

    Science.gov (United States)

    Díez, Beatriz; Bauer, Karolina; Bergman, Birgitta

    2007-01-01

    The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification “microbialite” origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria

  8. Lipid production in association of filamentous fungi with genetically modified cyanobacterial cells.

    Science.gov (United States)

    Miranda, Ana F; Taha, Mohamed; Wrede, Digby; Morrison, Paul; Ball, Andrew S; Stevenson, Trevor; Mouradov, Aidyn

    2015-01-01

    Numerous strategies have evolved recently for the generation of genetically modified or synthetic microalgae and cyanobacteria designed for production of ethanol, biodiesel and other fuels. In spite of their obvious attractiveness there are still a number of challenges that can affect their economic viability: the high costs associated with (1) harvesting, which can account for up to 50 % of the total biofuel's cost, (2) nutrients supply and (3) oil extraction. Fungal-assisted bio-flocculation of microalgae is gaining increasing attention due to its high efficiency, no need for added chemicals and low energy inputs. The implementation of renewable alternative carbon, nitrogen and phosphorus sources from agricultural wastes and wastewaters for growing algae and fungi makes this strategy economically attractive. This work demonstrates that the filamentous fungi, Aspergillus fumigatus can efficiently flocculate the unicellular cyanobacteria Synechocystis PCC 6803 and its genetically modified derivatives that have been altered to enable secretion of free fatty acids into growth media. Secreted free fatty acids are potentially used by fungal cells as a carbon source for growth and ex-novo production of lipids. For most of genetically modified strains the total lipid yields extracted from the fungal-cyanobacterial pellets were found to be higher than additive yields of lipids and total free fatty acids produced by fungal and Synechocystis components when grown in mono-cultures. The synergistic effect observed in fungal-Synechocystis associations was also found in bioremediation rates when animal husbandry wastewater was used an alternative source of nitrogen and phosphorus. Fungal assisted flocculation can complement and assist in large scale biofuel production from wild-type and genetically modified Synechocystis PCC 6803 strains by (1) efficient harvesting of cyanobacterial cells and (2) producing of high yields of lipids accumulated in fungal-cyanobacterial pellets.

  9. Adenosina trifosfato bioluminescência para avaliação da limpeza de superfícies: uma revisão integrativa

    OpenAIRE

    Oliveira, Adriana Cristina de; Viana, Roberta El Hariri

    2014-01-01

    Objetivo: Identificar na literatura indicações e controvérsias do ATP bioluminescência para avaliação da efetividade da limpeza de superfícies em estabelecimentos de saúde. Método: Revisão integrativa da literatura, entre 2000 e 2012, nas bases de dados MEDLINE, LILACS, Science Direct, SCOPUS e Isi Web of Knowledge. Resultados: Selecionou-se para esta revisão 15 artigos. O ATP bioluminescência foi apontado como importante recurso educacional e método complementar à inspeção visual e às anális...

  10. Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Heizir F. De Castro

    2013-07-01

    Full Text Available Five non-toxin producing cyanobacterial isolates from the genera Synechococcus, Trichormus, Microcystis, Leptolyngbya and Chlorogloea were examined in terms of quantity and quality as lipid feedstock for biofuel production. Under the conditions used in this study, the biomass productivity ranged from 3.7 to 52.7 mg·L−1·day−1 in relation to dry biomass, while the lipid productivity varied between 0.8 and 14.2 mg·L−1·day−1. All cyanobacterial strains evaluated yielded lipids with similar fatty acid composition to those present in the seed oils successfully used for biodiesel synthesis. However, by combining biomass and lipid productivity parameters, the greatest potential was found for Synechococcus sp. PCC7942, M. aeruginosa NPCD-1 and Trichormus sp. CENA77. The chosen lipid samples were further characterized using Fourier Transform Infrared spectroscopy (FTIR, viscosity and thermogravimetry and used as lipid feedstock for biodiesel synthesis by heterogeneous catalysis.

  11. A curated database of cyanobacterial strains relevant for modern taxonomy and phylogenetic studies.

    Science.gov (United States)

    Ramos, Vitor; Morais, João; Vasconcelos, Vitor M

    2017-04-25

    The dataset herein described lays the groundwork for an online database of relevant cyanobacterial strains, named CyanoType (http://lege.ciimar.up.pt/cyanotype). It is a database that includes categorized cyanobacterial strains useful for taxonomic, phylogenetic or genomic purposes, with associated information obtained by means of a literature-based curation. The dataset lists 371 strains and represents the first version of the database (CyanoType v.1). Information for each strain includes strain synonymy and/or co-identity, strain categorization, habitat, accession numbers for molecular data, taxonomy and nomenclature notes according to three different classification schemes, hierarchical automatic classification, phylogenetic placement according to a selection of relevant studies (including this), and important bibliographic references. The database will be updated periodically, namely by adding new strains meeting the criteria for inclusion and by revising and adding up-to-date metadata for strains already listed. A global 16S rDNA-based phylogeny is provided in order to assist users when choosing the appropriate strains for their studies.

  12. Ship track for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the 2002 "Islands in the Stream - Pharmaceutical Discovery, Vision, and Bioluminescence" expedition sponsored by the...

  13. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study

    Directory of Open Access Journals (Sweden)

    Vitor M. C. Ramos

    2017-06-01

    Full Text Available Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil, we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99% with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as “loner” sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.

  14. Cyanobacterial Diversity in Microbial Mats from the Hypersaline Lagoon System of Araruama, Brazil: An In-depth Polyphasic Study.

    Science.gov (United States)

    Ramos, Vitor M C; Castelo-Branco, Raquel; Leão, Pedro N; Martins, Joana; Carvalhal-Gomes, Sinda; Sobrinho da Silva, Frederico; Mendonça Filho, João G; Vasconcelos, Vitor M

    2017-01-01

    Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.

  15. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    NARCIS (Netherlands)

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Al-Najjar, Mohammad A.A.

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution

  16. Cyanobacterial crusts linked to soil productivity under different grazing management practices in Northern Australia

    Science.gov (United States)

    Alchin, Bruce; Williams, Wendy

    2015-04-01

    In arid and semi-arid Australia, the central role of healthy soil ecosystems in broad-acre grazing lands may be attributed to the widespread presence of cyanobacterial crusts. In terms of soil nutrient cycling and stability their role is particularly crucial in a climate dominated by annual dry seasons and variable wet seasons. In this study, we aimed to measure the contribution of cyanobacteria to soil nutrient cycling under contrasting levels of disturbance associated with grazing management. Field sampling was carried out on six paired sites (twelve properties) located across an east-west 3,000 km transect that covered different rangeland types on grazing properties in northern Australia (Queensland, Northern Territory and Western Australia). At each location paired sites were established and two different management systems were assessed, cell-paddock rotations (25-400 ha) and continuous grazing (200-2,000 ha). Cyanobacterial soil crusts were recorded from all of the twelve sites and cyanobacteria with the capacity to fix nitrogen were found at ten of the twelve sites. The overall diversity of cyanobacteria varied from three to ten species under any type of grazing system. As field work was conducted in the dry season, it is likely that the diversity may be greater in the wet season than the initial data may indicate. The average cyanobacterial soil crust cover across soil surfaces, between grass tussocks, during the dry season was estimated to be 50.9% and, 42.6% in the early wet season. This reflected longer established crust cover (dry season) versus newly established crusts. There was a high level of variability in the biomass of cyanobacteria however; the grazing system did not have any marked effect on the biomass for any one rangeland type. The grazing system differences did not appear to significantly influence the diversity at any location except on a floodplain in the Pilbara (WA). Biological nitrogen fixation by cyanobacteria was recorded at all

  17. An application of cellular organic matter to coagulation of cyanobacterial cells (Merismopedia tenuissima)

    Czech Academy of Sciences Publication Activity Database

    Barešová, Magdalena; Pivokonský, Martin; Novotná, Kateřina; Načeradská, Jana; Brányik, T.

    2017-01-01

    Roč. 122, October (2017), s. 70-77 ISSN 0043-1354 Institutional support: RVO:67985874 Keywords : algal cellular organic matter * coagulation * cyanobacterial cells * Merismopedia tenuissima * water treatment Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 6.942, year: 2016

  18. Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice.

    Science.gov (United States)

    Rajashekara, Gireesh; Glover, David A; Banai, Menachem; O'Callaghan, David; Splitter, Gary A

    2006-05-01

    In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B. melitensis mutants, GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091), and the dynamics of bioluminescent virulent bacterial infection following vaccination with these mutants. The virB4, galE, and BMEI1090-BMEI1091 mutants were attenuated in interferon regulatory factor 1-deficient (IRF-1(-/-)) mice; however, only the GR019 (virB4) mutant was attenuated in cultured macrophages. Therefore, in vivo imaging provides a comprehensive approach to identify virulence genes that are relevant to in vivo pathogenesis. Our results provide greater insights into the role of galE in virulence and also suggest that BMEI1090 and downstream genes constitute a novel set of genes involved in Brucella virulence. Survival of the vaccine strain in the host for a critical period is important for effective Brucella vaccines. The galE mutant induced no changes in liver and spleen but localized chronically in the tail and protected IRF-1(-/-) and wild-type mice from virulent challenge, implying that this mutant may serve as a potential vaccine candidate in future studies and that the direct visualization of Brucella may provide insight into selection of improved vaccine candidates.

  19. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance

    Science.gov (United States)

    Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.

    2007-11-01

    Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.

  20. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    Science.gov (United States)

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  1. Bioluminescence : the potential of a non-invasive bio-optical imaging technique and improvement of animal research

    NARCIS (Netherlands)

    Hesselink, J. W.; van Dam, G. M.

    2007-01-01

    Bioluminescence is an optical imaging technique that exploits the emission of photons at specific wavelengths based on energy-dependent reactions catalysed by luciferases. The technique makes it possible to monitor measure, and track biological processes in living animals. A short review is

  2. The genome and structural proteome of an ocean siphovirus: a new window into the cyanobacterial ‘mobilome’

    Science.gov (United States)

    Sullivan, Matthew B; Krastins, Bryan; Hughes, Jennifer L; Kelly, Libusha; Chase, Michael; Sarracino, David; Chisholm, Sallie W

    2009-01-01

    Prochlorococcus, an abundant phototroph in the oceans, are infected by members of three families of viruses: myo-, podo- and siphoviruses. Genomes of myo- and podoviruses isolated on Prochlorococcus contain DNA replication machinery and virion structural genes homologous to those from coliphages T4 and T7 respectively. They also contain a suite of genes of cyanobacterial origin, most notably photosynthesis genes, which are expressed during infection and appear integral to the evolutionary trajectory of both host and phage. Here we present the first genome of a cyanobacterial siphovirus, P-SS2, which was isolated from Atlantic slope waters using a Prochlorococcus host (MIT9313). The P-SS2 genome is larger than, and considerably divergent from, previously sequenced siphoviruses. It appears most closely related to lambdoid siphoviruses, with which it shares 13 functional homologues. The ∼108 kb P-SS2 genome encodes 131 predicted proteins and notably lacks photosynthesis genes which have consistently been found in other marine cyanophage, but does contain 14 other cyanobacterial homologues. While only six structural proteins were identified from the genome sequence, 35 proteins were detected experimentally; these mapped onto capsid and tail structural modules in the genome. P-SS2 is potentially capable of integration into its host as inferred from bioinformatically identified genetic machinery int, bet, exo and a 53 bp attachment site. The host attachment site appears to be a genomic island that is tied to insertion sequence (IS) activity that could facilitate mobility of a gene involved in the nitrogen-stress response. The homologous region and a secondary IS-element hot-spot in Synechococcus RS9917 are further evidence of IS-mediated genome evolution coincident with a probable relic prophage integration event. This siphovirus genome provides a glimpse into the biology of a deep-photic zone phage as well as the ocean cyanobacterial prophage and IS element

  3. In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models.

    Science.gov (United States)

    Asadzadeh, Fatemeh; Ferrucci, Veronica; DE Antonellis, Pasqualino; Zollo, Massimo

    2017-03-01

    Medulloblastoma is a cerebellar neoplasia of the central nervous system. Four molecular subgrups have been identified (MBWNT, MBSHH, MBgroup3 and MBgroup4) with distinct genetics and clinical outcome. Among these, MBgroup3-4 are highly metastatic with the worst prognosis. The current standard therapy includes surgery, radiation and chemotherapy. Thus, specific treatments adapted to cure those different molecular subgroups are needed. The use of orthotopic xenograft models, together with the non-invasive in vivo biolumiscence imaging (BLI) technology, is emerging during preclinical studies to test novel therapeutics for medulloblastoma treatment. Orthotopic MB xenografts were performed by injection of Daoy-luc cells, that had been previously infected with lentiviral particles to stably express luciferase gene, into the fourth right ventricle of the cerebellum of ten nude mice. For the implantation, specific stereotactic coordinates were used. Seven days after the implantation the mice were imaged by acquisitions of bioluminescence imaging (BLI) using IVIS 3D Illumina Imaging System (Xenogen). Tumor growth was evaluated by quantifying the bioluminescence signals using the integrated fluxes of photons within each area of interest using the Living Images Software Package 3.2 (Xenogen-Perkin Elmer). Finally, histological analysis using hematoxylin-eosin staining was performed to confirm the presence of tumorigenic cells into the cerebellum of the mice. We describe a method to use the in vivo bioluminescent imaging (BLI) showing the potential to be used to investigate the potential antitumorigenic effects of a drug for in vivo medulloblastoma treatment. We also discuss other studies in which this technology has been applied to obtain a more comprehensive knowledge of medulloblastoma using orthotopic xenograft mouse models. There is a need to develop patient's derived-xenograft (PDX) model systems to test novel drugs for medulloblastoma treatment within each molecular sub

  4. Efficient assimilation of cyanobacterial nitrogen by water hyacinth.

    Science.gov (United States)

    Qin, Hongjie; Zhang, Zhiyong; Liu, Minhui; Wang, Yan; Wen, Xuezheng; Yan, Shaohua; Zhang, Yingying; Liu, Haiqin

    2017-10-01

    A 15 N labeling technique was used to study nitrogen transfer from cyanobacterium Microcystis aeruginosa to water hyacinth. 15 N atom abundance in M. aeruginosa peaked (15.52%) after cultivation in 15 N-labeled medium for 3weeks. Over 87% of algal nitrogen was transferred into water hyacinth after the 4-week co-cultivation period. The nitrogen quickly super-accumulated in the water hyacinth roots, and the labeled nitrogen was re-distributed to different organs (i.e., roots, stalks, and leaves). This study provides a new strategy for further research on cyanobacterial bloom control, nitrogen migration, and nitrogen cycle in eutrophic waters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms

    Czech Academy of Sciences Publication Activity Database

    Jančula, Daniel; Maršálek, Blahoslav

    2011-01-01

    Roč. 85, č. 9 (2011), s. 1415-1422 ISSN 0045-6535 R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Keywords : algicide * bloom management * cyanobacterial blooms Subject RIV: EF - Botanics Impact factor: 3.206, year: 2011

  6. Transgenic tobacco plants with improved cyanobacterial Rubisco expression but no extra assembly factors grow at near wild-type rates if provided with elevated CO2.

    Science.gov (United States)

    Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J

    2016-01-01

    Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  7. Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater.

    Science.gov (United States)

    Forlani, Giuseppe; Prearo, Valentina; Wieczorek, Dorota; Kafarski, Paweł; Lipok, Jacek

    2011-03-07

    The ability of Spirulina spp. to metabolize the recalcitrant xenobiotic Dequest 2054(®) [hexamethylenediamine-N,N,N',N'-tetrakis(methylphosphonic acid)], a CaSO(4) inhibitor used for boiler treatment and reverse osmosis desalination, was investigated. The compound served as sole source of phosphorus, but not of nitrogen, for cyanobacterial growth. In vivo utilization was followed by (31)P NMR analysis. The disappearance of the polyphosphonate proceeded only with actively dividing cells, and no release of inorganic phosphate was evident. However, no difference was found between P-starved and P-fed cultures. Maximal utilization reached 1.0 ± 0.2 mmoll(-1), corresponding to 0.56 ± 0.11 mmol g(-1) dry biomass, thus residual amounts were still present in the exhausted medium when the compound was supplied at higher initial concentrations. At low substrate levels metabolism rates were lower, suggesting that a concentration-driven uptake may represent a limiting step during the biodegradation process. The compound was not retained by biocolumns made with immobilized cyanobacterial cells, either alive or dead. A lab-scale pilot plant, consisting of a series of sequentially connected vessels containing an actively proliferating algal culture, was built and tested for wastewater treatment. Results showed 50% removal of the polyphosphonate added to an initial concentration of 2.5mM. Although further optimization will be required, data strengthen the possibility of using cyanobacterial strains for bioremediation purposes. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Inhibition of gap-junctional intercellular communication and activation of mitogen-activated protein kinases by cyanobacterial extracts--indications of novel tumor-promoting cyanotoxins?

    Science.gov (United States)

    Bláha, Ludĕk; Babica, Pavel; Hilscherová, Klára; Upham, Brad L

    2010-01-01

    Toxicity and liver tumor promotion of cyanotoxins microcystins have been extensively studied. However, recent studies document that other metabolites present in the complex cyanobacterial water blooms may also have adverse health effects. In this study we used rat liver epithelial stem-like cells (WB-F344) to examine the effects of cyanobacterial extracts on two established markers of tumor promotion, inhibition of gap-junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) - ERK1/2. Extracts of cyanobacteria (laboratory cultures of Microcystis aeruginosa and Aphanizomenon flos-aquae and water blooms dominated by these species) inhibited GJIC and activated MAPKs in a dose-dependent manner (effective concentrations ranging 0.5-5mgd.w./mL). Effects were independent of the microcystin content and the strongest responses were elicited by the extracts of Aphanizomenon sp. Neither pure microcystin-LR nor cylindrospermopsin inhibited GJIC or activated MAPKs. Modulations of GJIC and MAPKs appeared to be specific to cyanobacterial extracts since extracts from green alga Chlamydomonas reinhardtii, heterotrophic bacterium Klebsiella terrigena, and isolated bacterial lipopolysaccharides had no comparable effects. Our study provides the first evidence on the existence of unknown cyanobacterial toxic metabolites that affect in vitro biomarkers of tumor promotion, i.e. inhibition of GJIC and activation of MAPKs.

  9. Growth kinetic and fuel quality parameters as selective criterion for screening biodiesel producing cyanobacterial strains.

    Science.gov (United States)

    Gayathri, Manickam; Shunmugam, Sumathy; Mugasundari, Arumugam Vanmathi; Rahman, Pattanathu K S M; Muralitharan, Gangatharan

    2018-01-01

    The efficiency of cyanobacterial strains as biodiesel feedstock varies with the dwelling habitat. Fourteen indigenous heterocystous cyanobacterial strains from rice field ecosystem were screened based on growth kinetic and fuel parameters. The highest biomass productivity was obtained in Nostoc punctiforme MBDU 621 (19.22mg/L/day) followed by Calothrix sp. MBDU 701 (13.43mg/L/day). While lipid productivity and lipid content was highest in Nostoc spongiaeforme MBDU 704 (4.45mg/L/day and 22.5%dwt) followed by Calothrix sp. MBDU 701 (1.54mg/L/day and 10.75%dwt). Among the tested strains, Nostoc spongiaeforme MBDU 704 and Nostoc punctiforme MBDU 621 were selected as promising strains for good quality biodiesel production by Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms

    International Nuclear Information System (INIS)

    Dixon, Mike B.; Richard, Yann; Ho, Lionel; Chow, Christopher W.K.; O'Neill, Brian K.; Newcombe, Gayle

    2011-01-01

    Cyanobacteria are a major problem for the world wide water industry as they can produce metabolites toxic to humans in addition to taste and odour compounds that make drinking water aesthetically displeasing. Removal of cyanobacterial toxins from drinking water is important to avoid serious illness in consumers. This objective can be confidently achieved through the application of the multiple barrier approach to drinking water quality and safety. In this study the use of a multiple barrier approach incorporating coagulation, powdered activated carbon (PAC) and ultrafiltration (UF) was investigated for the removal of intracellular and extracellular cyanobacterial toxins from two naturally occurring blooms in South Australia. Also investigated was the impact of these treatments on the UF flux. In this multibarrier approach, coagulation was used to remove the cells and thus the intracellular toxin while PAC was used for extracellular toxin adsorption and finally the UF was used for floc, PAC and cell removal. Cyanobacterial cells were completely removed using the UF membrane alone and when used in conjunction with coagulation. Extracellular toxins were removed to varying degrees by PAC addition. UF flux deteriorated dramatically during a trial with a very high cell concentration; however, the flux was improved by coagulation and PAC addition.

  11. Diversification of DnaA dependency for DNA replication in cyanobacterial evolution.

    Science.gov (United States)

    Ohbayashi, Ryudo; Watanabe, Satoru; Ehira, Shigeki; Kanesaki, Yu; Chibazakura, Taku; Yoshikawa, Hirofumi

    2016-05-01

    Regulating DNA replication is essential for all living cells. The DNA replication initiation factor DnaA is highly conserved in prokaryotes and is required for accurate initiation of chromosomal replication at oriC. DnaA-independent free-living bacteria have not been identified. The dnaA gene is absent in plastids and some symbiotic bacteria, although it is not known when or how DnaA-independent mechanisms were acquired. Here, we show that the degree of dependency of DNA replication on DnaA varies among cyanobacterial species. Deletion of the dnaA gene in Synechococcus elongatus PCC 7942 shifted DNA replication from oriC to a different site as a result of the integration of an episomal plasmid. Moreover, viability during the stationary phase was higher in dnaA disruptants than in wild-type cells. Deletion of dnaA did not affect DNA replication or cell growth in Synechocystis sp. PCC 6803 or Anabaena sp. PCC 7120, indicating that functional dependency on DnaA was already lost in some nonsymbiotic cyanobacterial lineages during diversification. Therefore, we proposed that cyanobacteria acquired DnaA-independent replication mechanisms before symbiosis and such an ancestral cyanobacterium was the sole primary endosymbiont to form a plastid precursor.

  12. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    Science.gov (United States)

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  13. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    OpenAIRE

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have bee...

  14. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Science.gov (United States)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP3) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  15. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    International Nuclear Information System (INIS)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP 3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP 3 ) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions

  16. Application de la bioluminescence au dénombrement des microorganismes vivants dans les vins

    Directory of Open Access Journals (Sweden)

    Aline Lonvaud-Funel

    1982-12-01

    Bioluminescence was applied to enumerate the microorganisms present in wine. An excellent correlation is obtained by counting colonies grown in Petri dishes. The simplicity of the manipulations and the rapid obtention of results are the principal benefits of this method. Research is still necessary both in the differentiation of yeasts and bacteria and the reduction of the threshold of detection.

  17. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  18. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

    Science.gov (United States)

    D'Amelio, E. D.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8-0.9 micrometer wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300-1200 micrometers, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur

  19. Controlling internal phosphorus loading in lakes by physical methods to reduce cyanobacterial blooms: a review

    Czech Academy of Sciences Publication Activity Database

    Bormans, M.; Maršálek, Blahoslav; Jančula, Daniel

    2016-01-01

    Roč. 50, č. 3 (2016), s. 407-422 ISSN 1386-2588 Institutional support: RVO:67985939 Keywords : internal P loading * cyanobacterial control * physical in-lake restoration methods * adverse impacts on biota Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.500, year: 2016

  20. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking water sources

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of expos...

  1. The Holocene sedimentary record of cyanobacterial glycolipids in the Baltic Sea: an evaluation of their application as tracers of past nitrogen fixation

    Directory of Open Access Journals (Sweden)

    M. Sollai

    2017-12-01

    Full Text Available Heterocyst glycolipids (HGs are lipids exclusively produced by heterocystous dinitrogen-fixing cyanobacteria. The Baltic Sea is an ideal environment to study the distribution of HGs and test their potential as biomarkers because of its recurring summer phytoplankton blooms, dominated by a few heterocystous cyanobacterial species of the genera Nodularia and Aphanizomenon. A multi-core and a gravity core from the Gotland Basin were analyzed to determine the abundance and distribution of a suite of selected HGs at a high resolution to investigate the changes in past cyanobacterial communities during the Holocene. The HG distribution of the sediments deposited during the Modern Warm Period (MoWP was compared with those of cultivated heterocystous cyanobacteria, including those isolated from Baltic Sea waters, revealing high similarity. However, the abundance of HGs dropped substantially with depth, and this may be caused by either a decrease in the occurrence of the cyanobacterial blooms or diagenesis, resulting in partial destruction of the HGs. The record also shows that the HG distribution has remained stable since the Baltic turned into a brackish semi-enclosed basin ∼ 7200 cal. yr BP. This suggests that the heterocystous cyanobacterial species composition remained relatively stable as well. During the earlier freshwater phase of the Baltic (i.e., the Ancylus Lake and Yoldia Sea phases, the distribution of the HGs varied much more than in the subsequent brackish phase, and the absolute abundance of HGs was much lower than during the brackish phase. This suggests that the cyanobacterial community adjusted to the different environmental conditions in the basin. Our results confirm the potential of HGs as a specific biomarker of heterocystous cyanobacteria in paleo-environmental studies.

  2. Detection of Antibodies in Blood Plasma Using Bioluminescent Sensor Proteins and a Smartphone.

    Science.gov (United States)

    Arts, Remco; den Hartog, Ilona; Zijlema, Stefan E; Thijssen, Vito; van der Beelen, Stan H E; Merkx, Maarten

    2016-04-19

    Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.

  3. Impacts of microcystin, a cyanobacterial toxin, on laboratory rodents in vivo

    Directory of Open Access Journals (Sweden)

    Andrea Ziková

    2008-01-01

    Full Text Available Cyanobacterial water blooms became a global problem/issue because beside a dramatic deterioration of water quality parameters they also produce cyanobacterial toxins being harmful for animals and humans. Cyanotoxins especially the most prominent one, microcystin-LR (MC-LR, are of major concern and they have been reported to cause even death of mammals following ingestion or ingurgitation due to hepatotoxic modes of action. The aim of the recent study is to summarize briefly the impacts of microcystin on laboratory rodents, mice and rats, being used as models for other mammals including human beings. Most experimental approaches used intraperitoneal rather than oral and intratracheal application of microcystins, especially MC-LR, being the most efficient way to induce adverse impacts on different target organs. However, no matter how the exposure of rodents was performed, microcystins induced severe harmful impacts on the different target organs, preferentially the liver, for instances hemorrhages and apoptosis in liver, liver tumours, adverse effects on gut, kidney, testis and epididymis including spermatogenesis, on lung, on serum parameters and on progeny. In addition to these histological findings, microcystin was found to affect specifically biochemical parameters of target organs such as enzymes e.g. GST, CAT, GR, GPX, SOD, AST, ALT, γ-GT, protein phosphatases, SDH, SoDH and LDH or stress proteins such as HSP-70 and further parameters such as hepatic sulfhydryl content, GSH depletion, total bilirubin, urea nitrogen, and creatinine. Gene array analyses revealed that microcystin affects genes related to actin organization, cell cycle, apoptosis, cellular redox potential, cell signalling, albumin metabolism, glucose homeostasis pathway and organic anion transport polypeptide system. In combination with a further proteomics approach the proteomic analyses indicate that liver apoptosis induced by microcystin can be induced by two pathways: the

  4. A census of nuclear cyanobacterial recruits in the plant kingdom.

    Directory of Open Access Journals (Sweden)

    Szabolcs Makai

    Full Text Available The plastids and mitochondria of the eukaryotic cell are of endosymbiotic origin. These events occurred ~2 billion years ago and produced significant changes in the genomes of the host and the endosymbiont. Previous studies demonstrated that the invasion of land affected plastids and mitochondria differently and that the paths of mitochondrial integration differed between animals and plants. Other studies examined the reasons why a set of proteins remained encoded in the organelles and were not transferred to the nuclear genome. However, our understanding of the functional relations of the transferred genes is insufficient. In this paper, we report a high-throughput phylogenetic analysis to identify genes of cyanobacterial origin for plants of different levels of complexity: Arabidopsis thaliana, Chlamydomonas reinhardtii, Physcomitrella patens, Populus trichocarpa, Selaginella moellendorffii, Sorghum bicolor, Oryza sativa, and Ostreococcus tauri. Thus, a census of cyanobacterial gene recruits and a study of their function are presented to better understand the functional aspects of plastid symbiogenesis. From algae to angiosperms, the GO terms demonstrated a gradual expansion over functionally related genes in the nuclear genome, beginning with genes related to thylakoids and photosynthesis, followed by genes involved in metabolism, and finally with regulation-related genes, primarily in angiosperms. The results demonstrate that DNA is supplied to the nuclear genome on a permanent basis with no regard to function, and only what is needed is kept, which thereby expands on the GO space along the related genes.

  5. Dissection of Microbial Community Functions during a Cyanobacterial Bloom in the Baltic Sea via Metatranscriptomics

    Directory of Open Access Journals (Sweden)

    Carlo Berg

    2018-02-01

    Full Text Available Marine and brackish surface waters are highly dynamic habitats that undergo repeated seasonal variations in microbial community composition and function throughout time. While succession of the various microbial groups has been well investigated, little is known about the underlying gene-expression of the microbial community. We investigated microbial interactions via metatranscriptomics over a spring to fall seasonal cycle in the brackish Baltic Sea surface waters, a temperate brackish water ecosystem periodically promoting massive cyanobacterial blooms, which have implications for primary production, nutrient cycling, and expansion of hypoxic zones. Network analysis of the gene expression of all microbes from 0.22 to 200 μm in size and of the major taxonomic groups dissected the seasonal cycle into four components that comprised genes peaking during different periods of the bloom. Photoautotrophic nitrogen-fixing Cyanobacteria displayed the highest connectivity among the microbes, in contrast to chemoautotrophic ammonia-oxidizing Thaumarchaeota, while heterotrophs dominated connectivity among pre- and post-bloom peaking genes. The network was also composed of distinct functional connectivities, with an early season balance between carbon metabolism and ATP synthesis shifting to a dominance of ATP synthesis during the bloom, while carbon degradation, specifically through the glyoxylate shunt, characterized the post-bloom period, driven by Alphaproteobacteria as well as by Gammaproteobacteria of the SAR86 and SAR92 clusters. Our study stresses the exceptionally strong biotic driving force executed by cyanobacterial blooms on associated microbial communities in the Baltic Sea and highlights the impact cyanobacterial blooms have on functional microbial community composition.

  6. Experimental additions of aluminum sulfate and ammonium nitrate to in situ mesocosms to reduce cyanobacterial biovolume and microcystin concentration

    Science.gov (United States)

    Harris, Ted D.; Wilhelm, Frank M.; Graham, Jennifer L.; Loftin, Keith A.

    2014-01-01

    Recent studies suggest that nitrogen additions to increase the total nitrogen:total phosphorus (TN:TP) ratio may reduce cyanobacterial biovolume and microcystin concentration in reservoirs. In systems where TP is >100 μg/L, however, nitrogen additions to increase the TN:TP ratio could cause ammonia, nitrate, or nitrite toxicity to terrestrial and aquatic organisms. Reducing phosphorus via aluminum sulfate (alum) may be needed prior to nitrogen additions aimed at increasing the TN:TP ratio. We experimentally tested this sequential management approach in large in situ mesocosms (70.7 m3) to examine effects on cyanobacteria and microcystin concentration. Because alum removes nutrients and most seston from the water column, alum treatment reduced both TN and TP, leaving post-treatment TN:TP ratios similar to pre-treatment ratios. Cyanobacterial biovolume was reduced after alum addition, but the percent composition (i.e., relative) cyanobacterial abundance remained unchanged. A single ammonium nitrate (nitrogen) addition increased the TN:TP ratio 7-fold. After the TN:TP ratio was >50 (by weight), cyanobacterial biovolume and abundance were reduced, and chrysophyte and cryptophyte biovolume and abundance increased compared to the alum treatment. Microcystin was not detectable until the TN:TP ratio was <50. Although both treatments reduced cyanobacteria, only the nitrogen treatment seemed to stimulate energy flow from primary producers to zooplankton, which suggests that combining alum and nitrogen treatments may be a viable in-lake management strategy to reduce cyanobacteria and possibly microcystin concentrations in high-phosphorus systems. Additional studies are needed to define best management practices before combined alum and nitrogen additions are implemented as a reservoir management strategy.

  7. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms.

    Science.gov (United States)

    Groendahl, Sophie; Fink, Patrick

    2017-05-18

    Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.

  8. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    International Nuclear Information System (INIS)

    Shao, Jihai; Gu, Ji-Dong; Peng, Liang; Luo, Si; Luo, Huili; Yan, Zhiyong; Wu, Genyi

    2014-01-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO 4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO 4 . Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO 4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH 4 NO 3 and EDTA as desorbent. The results presented in this study suggest that KMnO 4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water

  9. Rapid detection of E. Coli O157:H7 by IFAST and ATP bioluminescence assay for water analysis

    CSIR Research Space (South Africa)

    Ngamsom, B

    2016-10-01

    Full Text Available The present investigation reports isolation and detection of E. coli O157:H7 employing a simple and portable microfluidic device based on immiscible filtration assisted by surface tension (IFAST) and adenosine triphosphate (ATP) bioluminescence...

  10. Infection routes of Aeromonas salmonicida in rainbow trout monitored in vivo by real-time bioluminescence imaging

    DEFF Research Database (Denmark)

    Bartkova, Simona; Kokotovic, Branko; Dalsgaard, Inger

    2017-01-01

    Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach that helps to visualize dissemination of pathogens within the same animal over several time points. Here...

  11. A miniaturized device for bioluminescence analysis of caspase-3/7 5 activity in a single apoptotic cell

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Lišková, Marcela; Matalová, E.; Klepárník, Karel

    Roč. 406 , č. 22 (2014), s. 5389-5394 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : apoptosis * bioluminescence * single-cell analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.436, year: 2014

  12. A miniaturized device for bioluminescence analysis of caspase-3/7 5 activity in a single apoptotic cell

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Lišková, Marcela; Matalová, E.; Klepárník, Karel

    2014-01-01

    Roč. 406, č. 22 (2014), s. 5389-5394 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : apoptosis * bioluminescence * single-cell analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.436, year: 2014

  13. Assessment of the mutagenic potential of cyanobacterial extracts and pure cyanotoxins.

    Science.gov (United States)

    Sieroslawska, Anna

    2013-11-01

    The aim of the study was to assess the mutagenic potential of extracts obtained from the cyanobacterial bloom-forming cells harvested from the water body located in Lubelszczyzna region of southeastern Poland. Three cyanotoxins, microcystin-LR, cylindrospermopsin and anatoxin-a were detected in some of the studied samples in different concentrations. All extracts were assessed for their potential mutagenic effects with the use of a short-term bacterial assay, the Ames test. Mutagenic activity was observed in four of all ten studied extracts, mainly toward the Salmonella typhimurium TA100 strain. On the contrary, the cyanotoxins in purified forms occurred not to be mutagenic or cytotoxic towards S. typhimurium TA98, TA100, TA1535, TA1537 and Escherichia coli WP2 uvrA and WP2 [pKM101] up to a concentration of 10 μg/ml. Similarly, there were no effects after bacteria exposure to the mixture of purified toxins. It has been also detected that after fractionation, genotoxic impact of previously mutagenic extracts was weaker and the highest potency in revertant induction possessed fractions containing very hydrophilic compounds. The results indicate, that while tested cyanotoxins were not directly responsible for the observed mutagenicity of the extracts analysed, some synergistic interactions with other unidentified cyanobacterial-derived factors involved in the process are possible. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Hybrid radiosity-SP{sub 3} equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Zhang, Qitan; Yang, Defu; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-01-14

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP{sub 3} equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP{sub 3}) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  15. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.

    Science.gov (United States)

    Gabriel, Gabriele V M; Viviani, Vadim R

    2016-12-01

    Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

  16. Cyanobacterial diversity and a new acaryochloris-like symbiont from Bahamian sea-squirts.

    Directory of Open Access Journals (Sweden)

    Susanna López-Legentil

    Full Text Available Symbiotic interactions between ascidians (sea-squirts and microbes are poorly understood. Here we characterized the cyanobacteria in the tissues of 8 distinct didemnid taxa from shallow-water marine habitats in the Bahamas Islands by sequencing a fragment of the cyanobacterial 16S rRNA gene and the entire 16S-23S rRNA internal transcribed spacer region (ITS and by examining symbiont morphology with transmission electron (TEM and confocal microscopy (CM. As described previously for other species, Trididemnum spp. mostly contained symbionts associated with the Prochloron-Synechocystis group. However, sequence analysis of the symbionts in Lissoclinum revealed two unique clades. The first contained a novel cyanobacterial clade, while the second clade was closely associated with Acaryochloris marina. CM revealed the presence of chlorophyll d (chl d and phycobiliproteins (PBPs within these symbiont cells, as is characteristic of Acaryochloris species. The presence of symbionts was also observed by TEM inside the tunic of both the adult and larvae of L. fragile, indicating vertical transmission to progeny. Based on molecular phylogenetic and microscopic analyses, Candidatus Acaryochloris bahamiensis nov. sp. is proposed for this symbiotic cyanobacterium. Our results support the hypothesis that photosymbiont communities in ascidians are structured by host phylogeny, but in some cases, also by sampling location.

  17. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Hwang, Jeng-Jong [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw; Ting, G. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Tseng, Y.-L. [Taiwan Liposome Company, Taipei 115, Taiwan (China); Wang, S.-J. [Department of Nuclear Medicine, Veterans General Hospital, Taipei 112, Taiwan (China); Whang-Peng, J. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China)

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R {sup 2}=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm{sup 3} (R {sup 2}=0.907). {gamma} Scintigraphy combined with [{sup 131}I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  18. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hwang, Jeng-Jong; Ting, G.; Tseng, Y.-L.; Wang, S.-J.; Whang-Peng, J.

    2007-01-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R 2 =0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 (R 2 =0.907). γ Scintigraphy combined with [ 131 I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs

  19. Modeling Chemical Reactions by QM/MM Calculations: The Case of the Tautomerization in Fireflies Bioluminescent Systems.

    Science.gov (United States)

    Berraud-Pache, Romain; Garcia-Iriepa, Cristina; Navizet, Isabelle

    2018-01-01

    In less than half a century, the hybrid QM/MM method has become one of the most used technique to model molecules embedded in a complex environment. A well-known application of the QM/MM method is for biological systems. Nowadays, one can understand how enzymatic reactions work or compute spectroscopic properties, like the wavelength of emission. Here, we have tackled the issue of modeling chemical reactions inside proteins. We have studied a bioluminescent system, fireflies, and deciphered if a keto-enol tautomerization is possible inside the protein. The two tautomers are candidates to be the emissive molecule of the bioluminescence but no outcome has been reached. One hypothesis is to consider a possible keto-enol tautomerization to treat this issue, as it has been already observed in water. A joint approach combining extensive MD simulations as well as computation of key intermediates like TS using QM/MM calculations is presented in this publication. We also emphasize the procedure and difficulties met during this approach in order to give a guide for this kind of chemical reactions using QM/MM methods.

  20. Modelling chemical reactions by QM/MM calculations: the case of the tautomerization in fireflies bioluminescent systems

    Science.gov (United States)

    Berraud-Pache, Romain; Garcia-Iriepa, Cristina; Navizet, Isabelle

    2018-04-01

    In less than half a century, the hybrid QM/MM method has become one of the most used technique to model molecules embedded in a complex environment. A well-known application of the QM/MM method is for biological systems. Nowadays, one can understand how enzymatic reactions work or compute spectroscopic properties, like the wavelength of emission. Here, we have tackled the issue of modelling chemical reactions inside proteins. We have studied a bioluminescent system, fireflies, and deciphered if a keto-enol tautomerization is possible inside the protein. The two tautomers are candidates to be the emissive molecule of the bioluminescence but no outcome has been reached. One hypothesis is to consider a possible keto-enol tautomerization to treat this issue, as it has been already observed in water. A joint approach combining extensive MD simulations as well as computation of key intermediates like TS using QM/MM calculations is presented in this publication. We also emphasize the procedure and difficulties met during this approach in order to give a guide for this kind of chemical reactions using QM/MM methods.

  1. The effect of radiation on bioluminescent bacteria: possible use of luminescent bacteria as a biological dosemeter

    International Nuclear Information System (INIS)

    Mantel, J.; Freidin, M.; Perry, H.

    1983-01-01

    The purpose of the study was to investigate the response of the bioluminescent Photobacterium phosphoreum to radiation, and the possible use of the bacteria as a biological radiation dosemeter, i.e. a water-equivalent biological system that will compare beams not merely on the basis of absorbed dose, but also have intrinsic RBE values for different radiation beams. Samples were irradiated by a 12 MeV electron beam at a dose rate of 3.0 Gy min -1 , by 60 Co gamma rays at 2.85 Gy min -1 , and by 100 kVsub(p) x-rays at a dose rate of 2.13 Gy min -1 . To study dose-rate dependence, the survival fraction was obtained for a 12 MeV electron beam at 0.50 and 12 Gy min -1 for 20.0 Gy. The survival fraction proved to be independent of dose rate in this range. The results presented in this work indicate that by using bioluminescent bacteria, RBE measurements can be markedly simplified and the results interpreted unequivocally. (U.K.)

  2. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II)

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region (Hong Kong); Peng, Liang; Luo, Si; Luo, Huili [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Yan, Zhiyong, E-mail: zhyyan111@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Wu, Genyi, E-mail: wugenyi99@163.com [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China)

    2014-05-01

    Highlights: • Potassium permanganate removed microcystins in the cyanobacterial bloom-derived biomass (CBDB). • Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB. • Manganese dioxide was formed on the surface of CBDB. • Potassium permanganate oxidation process increased the adsorption capacity of CBDB toward Cd(II). - Abstract: Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO{sub 4} was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO{sub 4}. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO{sub 4} concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2 g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH{sub 4}NO{sub 3} and EDTA as desorbent. The results presented in this study suggest that KMnO{sub 4} modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.

  3. A novel mouse model of soft-tissue infection using bioluminescence imaging allows noninvasive, real-time monitoring of bacterial growth.

    Science.gov (United States)

    Yoshioka, Kenji; Ishii, Ken; Kuramoto, Tetsuya; Nagai, Shigenori; Funao, Haruki; Ishihama, Hiroko; Shiono, Yuta; Sasaki, Aya; Aizawa, Mamoru; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Matsumoto, Morio

    2014-01-01

    Musculoskeletal infections, including surgical-site and implant-associated infections, often cause progressive inflammation and destroy areas of the soft tissue. Treating infections, especially those caused by multi-antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge. Although there are a few animal models that enable the quantitative evaluation of infection in soft tissues, these models are not always reproducible or sustainable. Here, we successfully established a real-time, in vivo, quantitative mouse model of soft-tissue infection in the superficial gluteus muscle (SGM) using bioluminescence imaging. A bioluminescent strain of MRSA was inoculated into the SGM of BALB/c adult male mice, followed by sequential measurement of bacterial photon intensity and serological and histological analyses of the mice. The mean photon intensity in the mice peaked immediately after inoculation and remained stable until day 28. The serum levels of interleukin-6, interleukin-1 and C-reactive protein at 12 hours after inoculation were significantly higher than those prior to inoculation, and the C-reactive protein remained significantly elevated until day 21. Histological analyses showed marked neutrophil infiltration and abscesses containing necrotic and fibrous tissues in the SGM. With this SGM mouse model, we successfully visualized and quantified stable bacterial growth over an extended period of time with bioluminescence imaging, which allowed us to monitor the process of infection without euthanizing the experimental animals. This model is applicable to in vivo evaluations of the long-term efficacy of novel antibiotics or antibacterial implants.

  4. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  5. Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803

    Science.gov (United States)

    Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander

    2015-01-01

    Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471

  6. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  7. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing..

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying...

  8. Spatiotemporal expression of heme oxygenase-1 detected by in vivo bioluminescence after hepatic ischemia in HO-1/luc mice

    NARCIS (Netherlands)

    Su, Huawei; van Dam, Gooitzen M.; Buis, Carlijn I.; Visser, Dorien S.; Hesselink, Jan Willem; Schuurs, Theo A.; Leuvenink, Henri G. D.; Contag, Christopher H.; Porte, Robert J.

    Upregulation of heme oxygenase-1 (HO-1) has been proposed as a critical mechanism protecting against cellular stress during liver transplantation, providing a potential target for new therapeutic interventions. We investigated the feasibility of in vivo bioluminescence imaging (BLI) to noninvasively

  9. Comparison of the Light-Harvesting Networks of Plant and Cyanobacterial Photosystem I

    Science.gov (United States)

    Şener, Melih K.; Jolley, Craig; Ben-Shem, Adam; Fromme, Petra; Nelson, Nathan; Croce, Roberta; Schulten, Klaus

    2005-01-01

    With the availability of structural models for photosystem I (PSI) in cyanobacteria and plants it is possible to compare the excitation transfer networks in this ubiquitous photosystem from two domains of life separated by over one billion years of divergent evolution, thus providing an insight into the physical constraints that shape the networks' evolution. Structure-based modeling methods are used to examine the excitation transfer kinetics of the plant PSI-LHCI supercomplex. For this purpose an effective Hamiltonian is constructed that combines an existing cyanobacterial model for structurally conserved chlorophylls with spectral information for chlorophylls in the Lhca subunits. The plant PSI excitation migration network thus characterized is compared to its cyanobacterial counterpart investigated earlier. In agreement with observations, an average excitation transfer lifetime of ∼49 ps is computed for the plant PSI-LHCI supercomplex with a corresponding quantum yield of 95%. The sensitivity of the results to chlorophyll site energy assignments is discussed. Lhca subunits are efficiently coupled to the PSI core via gap chlorophylls. In contrast to the chlorophylls in the vicinity of the reaction center, previously shown to optimize the quantum yield of the excitation transfer process, the orientational ordering of peripheral chlorophylls does not show such optimality. The finding suggests that after close packing of chlorophylls was achieved, constraints other than efficiency of the overall excitation transfer process precluded further evolution of pigment ordering. PMID:15994896

  10. Temperature and cyanobacterial bloom biomass influence phosphorous cycling in eutrophic lake sediments.

    Directory of Open Access Journals (Sweden)

    Mo Chen

    Full Text Available Cyanobacterial blooms frequently occur in freshwater lakes, subsequently, substantial amounts of decaying cyanobacterial bloom biomass (CBB settles onto the lake sediments where anaerobic mineralization reactions prevail. Coupled Fe/S cycling processes can influence the mobilization of phosphorus (P in sediments, with high releases often resulting in eutrophication. To better understand eutrophication in Lake Taihu (PRC, we investigated the effects of CBB and temperature on phosphorus cycling in lake sediments. Results indicated that added CBB not only enhanced sedimentary iron reduction, but also resulted in a change from net sulfur oxidation to sulfate reduction, which jointly resulted in a spike of soluble Fe(II and the formation of FeS/FeS2. Phosphate release was also enhanced with CBB amendment along with increases in reduced sulfur. Further release of phosphate was associated with increases in incubation temperature. In addition, CBB amendment resulted in a shift in P from the Fe-adsorbed P and the relatively unreactive Residual-P pools to the more reactive Al-adsorbed P, Ca-bound P and organic-P pools. Phosphorus cycling rates increased on addition of CBB and were higher at elevated temperatures, resulting in increased phosphorus release from sediments. These findings suggest that settling of CBB into sediments will likely increase the extent of eutrophication in aquatic environments and these processes will be magnified at higher temperatures.

  11. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom.

    Science.gov (United States)

    Andreote, Ana P D; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C E; Barbiero, Laurent; Rezende-Filho, Ary T; Fiore, Marli F

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii . This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  12. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Science.gov (United States)

    Andreote, Ana P. D.; Dini-Andreote, Francisco; Rigonato, Janaina; Machineski, Gabriela Silva; Souza, Bruno C. E.; Barbiero, Laurent; Rezende-Filho, Ary T.; Fiore, Marli F.

    2018-01-01

    Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600) potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake) and by no record of cyanobacterial blooms (Salina Preta, black-water lake). The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes. PMID:29520256

  13. Contrasting the Genetic Patterns of Microbial Communities in Soda Lakes with and without Cyanobacterial Bloom

    Directory of Open Access Journals (Sweden)

    Ana P. D. Andreote

    2018-02-01

    Full Text Available Soda lakes have high levels of sodium carbonates and are characterized by salinity and elevated pH. These ecosystems are found across Africa, Europe, Asia, Australia, North, Central, and South America. Particularly in Brazil, the Pantanal region has a series of hundreds of shallow soda lakes (ca. 600 potentially colonized by a diverse haloalkaliphilic microbial community. Biological information of these systems is still elusive, in particular data on the description of the main taxa involved in the biogeochemical cycling of life-important elements. Here, we used metagenomic sequencing to contrast the composition and functional patterns of the microbial communities of two distinct soda lakes from the sub-region Nhecolândia, state of Mato Grosso do Sul, Brazil. These two lakes differ by permanent cyanobacterial blooms (Salina Verde, green-water lake and by no record of cyanobacterial blooms (Salina Preta, black-water lake. The dominant bacterial species in the Salina Verde bloom was Anabaenopsis elenkinii. This cyanobacterium altered local abiotic parameters such as pH, turbidity, and dissolved oxygen and consequently the overall structure of the microbial community. In Salina Preta, the microbial community had a more structured taxonomic profile. Therefore, the distribution of metabolic functions in Salina Preta community encompassed a large number of taxa, whereas, in Salina Verde, the functional potential was restrained across a specific set of taxa. Distinct signatures in the abundance of genes associated with the cycling of carbon, nitrogen, and sulfur were found. Interestingly, genes linked to arsenic resistance metabolism were present at higher abundance in Salina Verde and they were associated with the cyanobacterial bloom. Collectively, this study advances fundamental knowledge on the composition and genetic potential of microbial communities inhabiting tropical soda lakes.

  14. Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions

    International Nuclear Information System (INIS)

    Yokawa, Satoru; Suzuki, Takahiro; Inouye, Satoshi; Inoh, Yoshikazu; Suzuki, Ryo; Kanamori, Takao; Furuno, Tadahide; Hirashima, Naohide

    2017-01-01

    We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase from the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion. - Highlights: • The fused protein of proglucagon to Gaussia luciferase was used as a reporter. • The fusion protein was highly expressed using a preferred human-codon optimized gene. • Glucagon secretion stimulated by depolarization was determined by luminescence. • Glucagon secretion in α cells was visualized by bioluminescence imaging. • Glucagon secretion sites were localized in the intercellular contact regions.

  15. Synergistic and species-specific effects of climate change and water colour on cyanobacterial toxicity and bloom formation

    NARCIS (Netherlands)

    Ekvall, M.K.; Faassen, E.J.; Gustafsson, J.A.; Lurling, M.; Hansson, L.

    2013-01-01

    Cyanobacterial blooms are a worldwide phenomenon in both marine and freshwater ecosystems and are predicted to occur more frequently due to global climate change. However, our future water resources may also simultaneously suffer from other environmental threats such as elevated amounts of humic

  16. Degradation Mechanism of Cyanobacterial Toxin Cylindrospermopsin by Hydroxyl Radicals in Homogeneous UV/H2O2 Process

    Science.gov (United States)

    The degradation of cylindrospermopsin (CYN), a widely distributed and highly toxic cyanobacterial toxin (cyanotoxin), remains poorly elucidated. In this study, the mechanism of CYN destruction by UV-254 nm/H2O2 advanced oxidation process (AOP) was investigated by mass spectrometr...

  17. Some like it high! Phylogenetic diversity of high-elevation cyanobacterial community from biological soil crusts of Western Himalaya.

    Czech Academy of Sciences Publication Activity Database

    Čapková, K.; Hauer, T.; Řeháková, Klára; Doležal, J.

    2016-01-01

    Roč. 71, č. 1 (2016), s. 113-123 ISSN 0095-3628 Institutional support: RVO:60077344 Keywords : soil crusts * cyanobacterial diversity * Western Himalayas * high-elevation * desert * phosphorus Subject RIV: EH - Ecology, Behaviour Impact factor: 3.630, year: 2016

  18. Modulation of Biochemical and Haematological Indices of Silver Carp (Hypophthalmichthys molitrix Val.) Exposed to Toxic Cyanobacterial Water Bloom

    Czech Academy of Sciences Publication Activity Database

    Kopp, Radovan; Palíková, M.; Navrátil, S.; Kubíček, Z.; Ziková, A.; Mareš, J.

    2010-01-01

    Roč. 79, č. 1 (2010), s. 135-146 ISSN 0001-7213 Institutional research plan: CEZ:AV0Z60050516 Keywords : silver carp * cyanobacterial water blooms * haematological indices Subject RIV: EF - Botanics Impact factor: 0.534, year: 2010

  19. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination ▿

    Science.gov (United States)

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  20. Survival of bioluminescent Listeria monocytogenes and Escherichia coli O157:H7 in soft cheeses.

    Science.gov (United States)

    Ramsaran, H; Chen, J; Brunke, B; Hill, A; Griffiths, M W

    1998-07-01

    Pasteurized and raw milks that had been inoculated at 10(4) cfu/ml with bioluminescent strains of Listeria monocytogenes and Escherichia coli O157:H7 were used in the manufacture of Camembert and Feta cheeses with or without nisin-producing starter culture. Survival of both organisms was determined during the manufacture and storage of Camembert and Feta cheeses at 2 +/- 1 degree C for 65 and 75 d, respectively. Bacterial bioluminescence was used as an indicator to enumerate the colonies plated on selective Listeria agar and on MacConkey agar. Escherichia coli O157:H7 survived the manufacturing process of both cheeses and was present at the end of the storage period in greater numbers than in the initial inoculum. At the end of 75 d of storage, E. coli O157:H7 was found in the brine of Feta cheese. The counts of L. monocytogenes increased as the pH of the Camembert cheese increased, and there were significant differences between the counts from samples taken from the inside and the counts from samples obtained near the surface of the cheese. The Feta cheese that contained nisin was the only cheese in which L. monocytogenes was at the level of the initial inoculum after 75 d of storage.

  1. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  2. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  3. The cyanobacterial nitrogen fixation paradox in natural waters [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Hans Paerl

    2017-03-01

    Full Text Available Nitrogen fixation, the enzymatic conversion of atmospheric N (N2 to ammonia (NH3, is a microbially mediated process by which “new” N is supplied to N-deficient water bodies. Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence, they are able to circumvent N limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce oxygen in photosynthesis, they are faced with a paradoxical situation, where one critically important (for supporting growth biochemical process is inhibited by another. N2-fixing cyanobacterial taxa have developed an array of biochemical, morphological, and ecological adaptations to minimize the “oxygen problem”; however, none of these allows N2 fixation to function at a high enough efficiency so that it can supply N needs at the ecosystem scale, where N losses via denitrification, burial, and advection often exceed the inputs of “new” N by N2 fixation. As a result, most marine and freshwater ecosystems exhibit chronic N limitation of primary production. Under conditions of perpetual N limitation, external inputs of N from human sources (agricultural, urban, and industrial play a central role in determining ecosystem fertility and, in the case of N overenrichment, excessive primary production or eutrophication. This points to the importance of controlling external N inputs (in addition to traditional phosphorus controls as a means of ensuring acceptable water quality and safe water supplies. Nitrogen fixation, the enzymatic conversion of atmospheric N2 to ammonia (NH3 is a  microbially-mediated process by which “new” nitrogen is supplied to N-deficient water bodies.  Certain bloom-forming cyanobacterial species are capable of conducting N2 fixation; hence they are able to circumvent nitrogen limitation in these waters. However, this anaerobic process is highly sensitive to oxygen, and since cyanobacteria produce

  4. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    International Nuclear Information System (INIS)

    Gerard, Claudia; Poullain, Virginie

    2005-01-01

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor

  5. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors

    Energy Technology Data Exchange (ETDEWEB)

    Gerard, Claudia [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)]. E-mail: claudia.gerard@univ-rennes1.fr; Poullain, Virginie [UMR CNRS Ecobio 6553, Equipe Physiologie et Ecophysiologie, Universite de Rennes 1, Avenue du General Leclerc, 35042 Rennes cedex (France)

    2005-11-15

    In the context of increasing freshwater pollution, the impact on life-traits (survival, growth and fecundity) and locomotion of Potamopyrgus antipodarum of a 5-week field-concentration exposure to the cyanobacterial toxin microcystin-LR and the triazine herbicide, atrazine was studied. Whatever the age of exposed snails (juveniles, subadults, adults), microcystin-LR induced a decrease in survival, growth and fecundity but had no effect on locomotion. Atrazine induced a decrease in locomotory activity but had no significant effect on the life-traits. These results are discussed in terms of consequences to field populations. - At concentrations relevant to the field, cyanobacterial toxins (natural) and atrazine (anthropogenic) are detrimental to the gastropod Potamopyrgus antipodarum, with a greater toxicity for the natural (vs anthropogenic) stressor.

  6. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc

    International Nuclear Information System (INIS)

    Xu, Kui; Juneau, Philippe

    2016-01-01

    Highlights: • The response mechanisms to high zinc was investigated among three cyanobacterial strains grown under two light regimes. • Photosystem II is more sensitive to high zinc compared to Photosystem I in the three studied strains. • High light increases the zinc uptake in two Microcystis aeruginosa strains, but not in Synechocystis sp.. • Combined high light and high zinc treatment is lethal for the toxic M. aeruginosa CPCC299. - Abstract: Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate—suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (Φ_M) and operational (Φ'_M) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299 > CPCC632 > FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios decreased with high

  7. TH-EF-207A-07: An Integrated X-Ray/bioluminescence Tomography System for Radiation Guidance and Tumor Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J; Udayakumar, T; Wang, Z; Dogan, N; Pollack, A; Yang, Y [University of Miami School of Medicine, Miami, FL (United States)

    2016-06-15

    Purpose: CT is not able to differentiate tumors from surrounding soft tissue. This study is to develop a bioluminescence tomography (BLT) system that is integrated onto our previously developed CT guided small animal arc radiation treatment system (iSMAART) to guide radiation, monitor tumor growth and evaluate therapeutic response. Methods: The BLT system employs a CCD camera coupled with a high speed lens, and is aligned orthogonally to the x-ray beam central axis. The two imaging modalities, CT and BLT, are physically registered through geometrical calibration. The CT anatomy provides an accurate contour of animal surface which is used to construct 3D mesh for BLT reconstruction. Bioluminescence projections are captured from multiple angles, once every 45 degree rotation. The diffusion equation based on analytical Kirchhoff approximation is adopted to model the photon propagation in tissues. A discrete cosine transform based reweighted L1-norm regularization (DCT-re-L1) algorithm is used for BLT reconstruction. Experiments are conducted on a mouse orthotopic prostate tumor model (n=12) to evaluate the BLT performance, in terms of its robustness and accuracy in locating and quantifying the bioluminescent tumor cells. Iodinated contrast agent was injected intravenously to delineate the tumor in CT. The tumor location and volume obtained from CT also serve as a benchmark against BLT. Results: With our cutting edge reconstruction algorithm, BLT is able to accurately reconstruct the orthotopic prostate tumors. The tumor center of mass in BLT is within 0.5 mm radial distance of that in CT. The tumor volume in BLT is significantly correlated with that in CT (R2 = 0.81). Conclusion: The BLT can differentiate, localize and quantify tumors. Together with CT, BLT will provide precision radiation guidance and reliable treatment assessment in preclinical cancer research.

  8. Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts.

    Science.gov (United States)

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; Deweese, Theodore L; Herman, Joseph M

    2012-04-01

    We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.

  9. RNA-seq based identification and mutant validation of gene targets related to ethanol resistance in cyanobacterial Synechocystis sp. PCC 6803

    Directory of Open Access Journals (Sweden)

    Wang Jiangxin

    2012-12-01

    Full Text Available Abstract Background Fermentation production of biofuel ethanol consumes agricultural crops, which will compete directly with the food supply. As an alternative, photosynthetic cyanobacteria have been proposed as microbial factories to produce ethanol directly from solar energy and CO2. However, the ethanol productivity from photoautotrophic cyanobacteria is still very low, mostly due to the low tolerance of cyanobacterial systems to ethanol stress. Results To build a foundation necessary to engineer robust ethanol-producing cyanobacterial hosts, in this study we applied a quantitative transcriptomics approach with a next-generation sequencing technology, combined with quantitative reverse-transcript PCR (RT-PCR analysis, to reveal the global metabolic responses to ethanol in model cyanobacterial Synechocystis sp. PCC 6803. The results showed that ethanol exposure induced genes involved in common stress responses, transporting and cell envelope modification. In addition, the cells can also utilize enhanced polyhydroxyalkanoates (PHA accumulation and glyoxalase detoxication pathway as means against ethanol stress. The up-regulation of photosynthesis by ethanol was also further confirmed at transcriptional level. Finally, we used gene knockout strains to validate the potential target genes related to ethanol tolerance. Conclusion RNA-Seq based global transcriptomic analysis provided a comprehensive view of cellular response to ethanol exposure. The analysis provided a list of gene targets for engineering ethanol tolerance in cyanobacterium Synechocystis.

  10. Molecular Diffusion through Cyanobacterial Septal Junctions

    Directory of Open Access Journals (Sweden)

    Mercedes Nieves-Morión

    2017-01-01

    Full Text Available Heterocyst-forming cyanobacteria grow as filaments in which intercellular molecular exchange takes place. During the differentiation of N2-fixing heterocysts, regulators are transferred between cells. In the diazotrophic filament, vegetative cells that fix CO2 through oxygenic photosynthesis provide the heterocysts with reduced carbon and heterocysts provide the vegetative cells with fixed nitrogen. Intercellular molecular transfer has been traced with fluorescent markers, including calcein, 5-carboxyfluorescein, and the sucrose analogue esculin, which are observed to move down their concentration gradient. In this work, we used fluorescence recovery after photobleaching (FRAP assays in the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 to measure the temperature dependence of intercellular transfer of fluorescent markers. We find that the transfer rate constants are directly proportional to the absolute temperature. This indicates that the “septal junctions” (formerly known as “microplasmodesmata” linking the cells in the filament allow molecular exchange by simple diffusion, without any activated intermediate state. This constitutes a novel mechanism for molecular transfer across the bacterial cytoplasmic membrane, in addition to previously characterized mechanisms for active transport and facilitated diffusion. Cyanobacterial septal junctions are functionally analogous to the gap junctions of metazoans.

  11. Reefs under Siege—the Rise, Putative Drivers, and Consequences of Benthic Cyanobacterial Mats

    Directory of Open Access Journals (Sweden)

    Amanda K. Ford

    2018-02-01

    Full Text Available Benthic cyanobacteria have commonly been a small but integral component of coral reef ecosystems, fulfilling the critical function of introducing bioavailable nitrogen to an inherently oligotrophic environment. Though surveys may have previously neglected benthic cyanobacteria, or grouped them with more conspicuous benthic groups, emerging evidence strongly indicates that they are becoming increasingly prevalent on reefs worldwide. Some species can form mats comprised by a diverse microbial consortium which allows them to exist across a wide range of environmental conditions. This review evaluates the putative driving factors of increasing benthic cyanobacterial mats, including climate change, declining coastal water quality, iron input, and overexploitation of key consumer and ecosystem engineer species. Ongoing global environmental change can increase growth rates and toxin production of physiologically plastic benthic cyanobacterial mats, placing them at a considerable competitive advantage against reef-building corals. Once established, strong ecological feedbacks [e.g., inhibition of coral recruitment, release of dissolved organic carbon (DOC] reinforce reef degradation. The review also highlights previously overlooked implications of mat proliferation, which can extend beyond reef health and affect human health and welfare. Though identifying (opportunistic consumers of mats remains a priority, their perceived low palatability implies that herbivore management alone may be insufficient to control their proliferation and must be accompanied by local measures to improve water quality and watershed management.

  12. In vivo quantitative imaging of point-like bioluminescent and fluorescent sources: Validation studies in phantoms and small animals post mortem

    Science.gov (United States)

    Comsa, Daria Craita

    2008-10-01

    There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative

  13. Limnology and cyanobacterial diversity of high altitude lakes of Lahaul-Spiti in Himachal Pradesh, India.

    Science.gov (United States)

    Singh, Y; Khattar, Jis; Singh, D P; Rahi, P; Gulati, A

    2014-09-01

    Limnological data of four high altitude lakes from the cold desert region of Himachal Pradesh, India, has been correlated with cyanobacterial diversity. Physico-chemical characteristics and nutrient contents of the studied lakes revealed that Sissu Lake is mesotrophic while Chandra Tal, Suraj Tal and Deepak Tal are ultra-oligotrophic. Based on morphology and 16S rRNA gene sequence, a total of 20 cyanobacterial species belonging to 11 genera were identified. Canonical correspondence analysis distinguished three groups of species with respect to their occurrence and nutrient/physical environment demand. The first group, which included Nostoc linckia, N. punctiforme, Nodularia sphaerocarpa, Geitlerinema acutissimum, Limnothrix redekii, Planktothrix agardhii and Plank. clathrata, was characteristic of water with high nutrient content and high temperature. The second group, including Gloeocapsopsis pleurocapsoides, Leptolyngbya antarctica, L. frigida, Pseudanabaena frigida and N. spongiaeforme, occurred in oligotrophic water with high pH and low temperature. The distribution of third group of Cyanobium parvum, Synechocystis pevalekii, L. benthonica, L. foveolarum, L. lurida, L. valderiana, Phormidium autumnale and P. chalybeum could not be associated with a particular environmental condition because of their presence in all sampling sites.

  14. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern united states

    Science.gov (United States)

    Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C.

    2010-01-01

    The mixtures of toxins and taste-and-odor compounds present during cyanobacterial blooms are not well characterized and of particular concern when evaluating potential human health risks. Cyanobacterial blooms were sampled in twenty-three Midwestern United States lakes and analyzed for community composition, thirteen cyanotoxins by liquid chromatography/mass spectrometry and immunoassay, and two taste-and-odor compounds by gas chromatography/mass spectrometry. Aphanizomenon, Cylindrospermopsis and/or Microcystis were dominant in most (96%) blooms, but community composition was not strongly correlated with toxin and taste-and-odor occurrence. Microcystins occurred in all blooms. Total microcystin concentrations measured by liquid chromatography/mass spectrometry and immunoassay were linearly related (rs = 0.76, p cyanotoxins occurred in 48% of blooms and 95% had multiple microcystin variants. Toxins and taste-and-odor compounds frequently co-occurred (91% of blooms), indicating odor may serve as a warning that cyanotoxins likely are present. However, toxins occurred more frequently than taste-and-odor compounds, so odor alone does not provide sufficient warning to ensure human-health protection. ?? This article not subject to U.S. Copyright. Published 2010 by the American Chemical Society.

  15. In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms.

    Directory of Open Access Journals (Sweden)

    Mireia Burnat

    Full Text Available BACKGROUND: Biomass has been studied as biomarker to evaluate the effect of heavy metals on microbial communities. Nevertheless, the most important methodological problem when working with natural and artificial microbial mats is the difficulty to evaluate changes produced on microorganism populations that are found in thicknesses of just a few mm depth. METHODOLOGY/PRINCIPAL FINDINGS: Here, we applied for first time a recently published new method based on confocal laser scanning microscopy and image-program analysis to determine in situ the effect of Pb and Cu stress in cyanobacterial populations. CONCLUSIONS/SIGNIFICANCE: The results showed that both in the microcosm polluted by Cu and by Pb, a drastic reduction in total biomass for cyanobacterial and Microcoleus sp. (the dominant filamentous cyanobacterium in microbial mats was detected within a week. According to the data presented in this report, this biomass inspection has a main advantage: besides total biomass, diversity, individual biomass of each population and their position can be analysed at microscale level. CLSM-IA could be a good method for analyzing changes in microbial biomass as a response to the addition of heavy metals and also to other kind of pollutants.

  16. In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms.

    Science.gov (United States)

    Burnat, Mireia; Diestra, Elia; Esteve, Isabel; Solé, Antonio

    2009-07-10

    Biomass has been studied as biomarker to evaluate the effect of heavy metals on microbial communities. Nevertheless, the most important methodological problem when working with natural and artificial microbial mats is the difficulty to evaluate changes produced on microorganism populations that are found in thicknesses of just a few mm depth. Here, we applied for first time a recently published new method based on confocal laser scanning microscopy and image-program analysis to determine in situ the effect of Pb and Cu stress in cyanobacterial populations. The results showed that both in the microcosm polluted by Cu and by Pb, a drastic reduction in total biomass for cyanobacterial and Microcoleus sp. (the dominant filamentous cyanobacterium in microbial mats) was detected within a week. According to the data presented in this report, this biomass inspection has a main advantage: besides total biomass, diversity, individual biomass of each population and their position can be analysed at microscale level. CLSM-IA could be a good method for analyzing changes in microbial biomass as a response to the addition of heavy metals and also to other kind of pollutants.

  17. Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine microbial mats

    Directory of Open Access Journals (Sweden)

    Arjun eChennu

    2015-12-01

    Full Text Available Desiccated cyanobacterial mats are the dominant biological feature in the Earth's arid zones. While the response of desiccated cyanobacteria to rehydration is well documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 minutes after rehydration chlorophyll a concentrations increased 2-5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min – 48 h involved migration of the reactivated cyanobacteria towards the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and aquatic origin. However the response of upward migration and its triggering factor appears to be mat-specific and likely linked to other factors.

  18. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun

    2015-12-24

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  19. Rapid Reactivation of Cyanobacterial Photosynthesis and Migration upon Rehydration of Desiccated Marine Microbial Mats

    KAUST Repository

    Chennu, Arjun; Grinham, Alistair; Polerecky, Lubos; de Beer, Dirk; Alnajjar, Mohammad Ahmad

    2015-01-01

    Desiccated cyanobacterial mats are the dominant biological feature in the Earth’s arid zones. While the response of desiccated cyanobacteria to rehydration is well-documented for terrestrial systems, information about the response in marine systems is lacking. We used high temporal resolution hyperspectral imaging, liquid chromatography, pulse-amplitude fluorometry, oxygen microsensors, and confocal laser microscopy to study this response in a desiccated microbial mat from Exmouth Gulf, Australia. During the initial 15 min after rehydration chlorophyll a concentrations increased 2–5 fold and cyanobacterial photosynthesis was re-established. Although the mechanism behind this rapid increase of chlorophyll a remains unknown, we hypothesize that it involves resynthesis from a precursor stored in desiccated cyanobacteria. The subsequent phase (15 min–48 h) involved migration of the reactivated cyanobacteria toward the mat surface, which led, together with a gradual increase in chlorophyll a, to a further increase in photosynthesis. We conclude that the response involving an increase in chlorophyll a and recovery of photosynthetic activity within minutes after rehydration is common for cyanobacteria from desiccated mats of both terrestrial and marine origin. However, the response of upward migration and its triggering factor appear to be mat-specific and likely linked to other factors.

  20. Importance of climate change-physical forcing on the increase of cyanobacterial blooms in a small, stratified lake

    Directory of Open Access Journals (Sweden)

    Dolores Planas

    2016-03-01

    Full Text Available The community structure of planktonic cyanobacteria was studied in a dimictic lake in which recurrent summer surface algal blooms have frequently occurred since the beginning of this millennium. In eutrophic-hypereutrophic lakes, epilimnetic cyanobacterial blooms are promoted by increased ambient temperatures and water column thermal stability, which favour the vertical migration of buoyancy-regulating cyanobacteria. Here we propose that intensified external energy (wind that alters thermocline stability could explain the occurence of heavy blooms in the surface of lakes with low external nutrient loading. Specifically, we hypothesized that: i in small stratified lakes with low external nutrient sources, cyanobacterial growth primarily occurs near the lake bottom, where phosphorus is more abundant and light is available; ii we additionally hypothesized that turbulence induced by strong winds increases the amplitude and energy of metalimnetic internal waves and entrains meta- and hypolimnetic water,  rich in nutrients and cyanobacteria, into the epilimnion. The study was done in a small lake (45 Ha, maximum and mean depth 7.2 m and 4.3 m, respectively with mean epilimnetic dissolved phosphorus concentrations ≈ 4 μg L-1 and chlorophyll α ≈ 8 μg L-1.  Vertical temperature profiles during the open season were continuously registered using thermistors.  Weekly vertical profiles of light transmission, phytoplankton distribution and water chemistry were also taken. On one occasion, these variables were measured throughout a continuous 24 h cycle. Results demonstrated that summer cyanobacterial blooms were dominated by Plankthotrix spp., which began their cycle in late spring at the bottom of the lake, and grew to form dense metalimnetic biomass peaks. Time series analysis of isotherms and the Lake number indicated that internal metalimnetic waves (seiches were present through the summer. During the diel sampling cycle, we found that medium to

  1. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya

    Czech Academy of Sciences Publication Activity Database

    Čapková, Kateřina; Hauer, Tomáš; Řeháková, Klára; Doležal, Jiří

    2016-01-01

    Roč. 71, č. 1 (2016), s. 113-123 ISSN 0095-3628 R&D Projects: GA ČR GA13-13368S Institutional support: RVO:67985939 Keywords : Soil crusts * Cyanobacterial diversity * Western Himalayas Subject RIV: EH - Ecology , Behaviour Impact factor: 3.630, year: 2016

  2. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  3. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  4. Unraveling the Primary Isomerization Dynamics in Cyanobacterial Phytochrome Cph1 with Multi-pulse Manipulations

    OpenAIRE

    Kim, Peter W.; Rockwell, Nathan C.; Freer, Lucy H.; Chang, Che-Wei; Martin, Shelley S.; Lagarias, J. Clark; Larsen, Delmar S.

    2013-01-01

    The ultrafast mechanisms underlying the initial photoisomerization (Pr → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-...

  5. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes

    Directory of Open Access Journals (Sweden)

    Francisco eVelazquez Escobar

    2015-07-01

    Full Text Available Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerisation of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PB and a phycocyanobilin (PCB, respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e. Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr. The present study aimed to improve our understanding of the specific reactivity of various PB- and PCB-binding phytochromes in the Pfr state by analyzing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II forming a temperature-dependent conformational equilibrium. The two sub-states - found in all phytochromes studied, albeit with different relative contributions - differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10o compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.

  6. Estrogenic Activities of Food Supplements and Beers as Assessed by a Yeast Bioreporter Assay.

    Science.gov (United States)

    Omoruyi, Iyekhoetin Matthew; Pohjanvirta, Raimo

    2017-10-31

    Mounting evidence of the effects of endocrine-disrupting chemicals (EDCs) in humans has led to assaying a vast array of food items (processed or packaged) as possible sources of human exposure to estrogens. In this study, we investigated the current situation in this respect of different food supplements and beer brands. Eleven food supplements and 24 beer brands were obtained from Helsinki, Finland. Sample preparation was carried out by established methods while estrogenic activities were assessed by a yeast bioluminescent assay, using two recombinant yeast strains (Saccharomyces cerevisiae BMAEREluc/ERα and S. cerevisiae BMA64/luc). All the food supplements as well as 81% of the beer samples tested were found to be estrogenic, with estradiol equivalent concentrations of food supplements and beer brands ranging from 7.5 to 11.5 µg/ml and from below detection limits to 43.6 ng/ml, respectively. The estrogenic activities detected in beer samples were not dependent on the beer's alcoholic content, the country of production, or the size of the production brewery. The results of our study imply that both food supplements and beers can be a significant source of human exposure to estrogens. Therefore, further studies and regular surveillance are warranted.

  7. The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase.

    Directory of Open Access Journals (Sweden)

    Katie J Herbst

    2009-05-01

    Full Text Available Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA.We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc variants in a population of cells and also in single cells. Using 10 microM of luciferase substrate and 10 microM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (+/-15% and 54% (+/-14% of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8.The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell

  8. Cellular responses in the cyanobacterial symbiont during its vertical transfer between plant generations in the Azolla microphylla symbiosis.

    Science.gov (United States)

    Zheng, Weiwen; Bergman, Birgitta; Chen, Bin; Zheng, Siping; Guan, Xiong; Xiang, Guan; Rasmussen, Ulla

    2009-01-01

    The nitrogen-fixing symbiosis between cyanobacteria and the water fern Azolla microphylla is, in contrast to other cyanobacteria-plant symbioses, the only one of a perpetual nature. The cyanobacterium is vertically transmitted between the plant generations, via vegetative fragmentation of the host or sexually within megasporocarps. In the latter process, subsets of the cyanobacterial population living endophytically in the Azolla leaves function as inocula for the new plant generations. Using electron microscopy and immunogold-labeling, the fate of the cyanobacterium during colonization and development of the megasporocarp was revealed. On entering the indusium chamber of the megasporocarps as small-celled motile cyanobacterial filaments (hormogonia), these differentiated into large thick-walled akinetes (spores) in a synchronized manner. This process was accompanied by cytoplasmic reorganizations and the release of numerous membrane vesicles, most of which contained DNA, and the formation of a highly structured biofilm. Taken together the data revealed complex adaptations in the cyanobacterium during its transition between plant generations.

  9. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters

    CSIR Research Space (South Africa)

    Matthews, MW

    2012-09-01

    Full Text Available A novel algorithm is presented for detecting trophic status (chlorophyll-a), cyanobacterial blooms (cyano-blooms), surface scum and floating vegetation in coastal and inland waters using top-ofatmosphere data from the Medium Resolution Imaging...

  10. Cyanobacterial water bloom of Limnoraphis robusta in the Lago Mayor of Lake Titicaca. Can it develop?

    Czech Academy of Sciences Publication Activity Database

    Komárková, Jaroslava; Montoya, H.; Komárek, J.

    2016-01-01

    Roč. 764, č. 1 (2016), s. 249-258 ISSN 0018-8158. [Workshop of the International Association for Phytoplankton Taxonomy and Ecology (IAP) /17./. Kastoria, 14.09.2014-21.09.2014] Institutional support: RVO:60077344 Keywords : Titicaca Lake * cyanobacterial water bloom * Limnoraphis robusta * Diazocytes * Atitlán Lake * N:P ratio Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.056, year: 2016

  11. Eco-epidemiological and pathological features of wildlife mortality events related to cyanobacterial bio-intoxication in the Kruger National Park, South Africa

    Directory of Open Access Journals (Sweden)

    Roy Bengis

    2016-10-01

    Full Text Available Over the past decade, several clustered, multispecies, wildlife mortality events occurred in the vicinity of two man-made earthen dams in the southern and south central regions of the Kruger National Park, South Africa. On field investigation, heavy cyanobacterial blooms were visible in these impoundments and analysis of water samples showed the dominance of Microcystis spp. (probably Microcystis aeruginosa. Macroscopic lesions seen at necropsy and histopathological lesions were compatible with a diagnosis of cyanobacterial intoxication. Laboratory toxicity tests and assays also confirmed the presence of significant levels of microcystins in water from the two dams. These outbreaks occurred during the dry autumn and early winter seasons when water levels in these dams were dropping, and a common feature was that all the affected dams were supporting a large number of hippopotamuses (Hippopotamus amphibius. It is hypothesised that hippopotamus’ urine and faeces, together with agitation of the sediments, significantly contributed to internal loading of phosphates and nitrogen – leading to eutrophication of the water in these impoundments and subsequent cyanobacterial blooms. A major cause for concern was that a number of white rhinoceros (Ceratotherium simum were amongst the victims of these bio-intoxication events. This publication discusses the eco-epidemiology and pathology of these clustered mortalities, as well as the management options considered and eventually used to address the problem.

  12. Toxicity of complex cyanobacterial samples and their fractions in Xenopus laevis embryos and the role of microcystins

    Czech Academy of Sciences Publication Activity Database

    Buryšková, B.; Hilscherová, Klára; Babica, Pavel; Vršková, D.; Maršálek, Blahoslav; Bláha, Luděk

    2006-01-01

    Roč. 80, č. 4 (2006), s. 346-354 ISSN 0166-445X R&D Projects: GA MŠk 1M0571; GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : FETAX * Xenopus laevis * malformations * cyanobacterial fractions * biomarkers Subject RIV: EF - Botanics Impact factor: 2.964, year: 2006

  13. Microcystin in cyanobacterial blooms in a Chilean lake.

    Science.gov (United States)

    Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Wirsing, B; Neumann, U; Weckesser, J

    1999-05-01

    Cyanobacterial blooms dominated by Microcystis sp. occurred in lake Rocuant ("marisma", near Concepción/Chile) in February 1995 and 1996. In the bloom samples collected in both years the hepatotoxin microcystin was detected by RP-HPLC in both samples and in the sample of 1995 also by a toxicity assay using primary rat hepatocytes. In the bloom of 1995, the microcystin content of the dry bloom biomass was determined to be 130 micrograms/g on the basis of the RP-HPLC peak area and 800 micrograms/g on the basis of the rat hepatotoxicity assay, respectively. In the bloom of 1996, RP-HPLC analysis revealed a microcystin content of 8.13 micrograms/g bloom material dry weight. In this year no hepatotoxicity was measured using a concentration range up to 0.8 mg (d. w.) of bloom material per ml in the rat hepatotoxicity assay. This is the first report on the detection of microcystins in Chilean water bodies.

  14. Quantitative iTRAQ LC-MS/MS proteomics reveals metabolic responses to biofuel ethanol in cyanobacterial Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Qiao, Jianjun; Wang, Jiangxin; Chen, Lei; Tian, Xiaoxu; Huang, Siqiang; Ren, Xiaoyue; Zhang, Weiwen

    2012-11-02

    Recent progress in metabolic engineering has led to autotrophic production of ethanol in various cyanobacterial hosts. However, cyanobacteria are known to be sensitive to ethanol, which restricts further efforts to increase ethanol production levels in these renewable host systems. To understand the mechanisms of ethanol tolerance so that engineering more robust cyanobacterial hosts can be possible, in this study, the responses of model cyanobacterial Synechocystis sp. PCC 6803 to ethanol were determined using a quantitative proteomics approach with iTRAQ LC-MS/MS technologies. The resulting high-quality proteomic data set consisted of 24,887 unique peptides corresponding to 1509 identified proteins, a coverage of approximately 42% of the predicted proteins in the Synechocystis genome. Using a cutoff of 1.5-fold change and a p-value less than 0.05, 135 and 293 unique proteins with differential abundance levels were identified between control and ethanol-treated samples at 24 and 48 h, respectively. Functional analysis showed that the Synechocystis cells employed a combination of induced common stress response, modifications of cell membrane and envelope, and induction of multiple transporters and cell mobility-related proteins as protection mechanisms against ethanol toxicity. Interestingly, our proteomic analysis revealed that proteins related to multiple aspects of photosynthesis were up-regulated in the ethanol-treated Synechocystis cells, consistent with increased chlorophyll a concentration in the cells upon ethanol exposure. The study provided the first comprehensive view of the complicated molecular mechanisms against ethanol stress and also provided a list of potential gene targets for further engineering ethanol tolerance in Synechocystis PCC 6803.

  15. Different physiological and photosynthetic responses of three cyanobacterial strains to light and zinc

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Kui; Juneau, Philippe, E-mail: juneau.philippe@uqam.ca

    2016-01-15

    Highlights: • The response mechanisms to high zinc was investigated among three cyanobacterial strains grown under two light regimes. • Photosystem II is more sensitive to high zinc compared to Photosystem I in the three studied strains. • High light increases the zinc uptake in two Microcystis aeruginosa strains, but not in Synechocystis sp.. • Combined high light and high zinc treatment is lethal for the toxic M. aeruginosa CPCC299. - Abstract: Zinc pollution of freshwater aquatic ecosystems is a problem in many countries, although its specific effects on phytoplankton may be influenced by other environmental factors. Light intensity varies continuously under natural conditions depending on the cloud cover and the season, and the response mechanisms of cyanobacteria to high zinc stress under different light conditions are not yet well understood. We investigated the effects of high zinc concentrations on three cyanobacterial strains (Microcystis aeruginosa CPCC299, M. aeruginosa CPCC632, and Synechocystis sp. FACHB898) grown under two light regimes. Under high light condition (HL), the three cyanobacterial strains increased their Car/Chl a ratios and non-photochemical quenching (NPQ), with CPCC299 showing the highest growth rate—suggesting a greater ability to adapt to those conditions as compared to the other two strains. Under high zinc concentrations the values of maximal (Φ{sub M}) and operational (Φ'{sub M}) photosystem II quantum yields, photosystem I quantum yield [Y(I)], and NPQ decreased. The following order of sensitivity to high zinc was established for the three strains studied: CPCC299 > CPCC632 > FACHB898. These different sensitivities can be partly explained by the higher internal zinc content observed in CPCC299 as compared to the other two strains. HL increased cellular zinc content and therefore increased zinc toxicity in both M. aeruginosa strains, although to a greater extent in CPCC299 than in CPCC632. Car/Chl a ratios

  16. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.

    Science.gov (United States)

    Voorhies, A A; Biddanda, B A; Kendall, S T; Jain, S; Marcus, D N; Nold, S C; Sheldon, N D; Dick, G J

    2012-05-01

    Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.

  17. USE OF PHOSPHOLIPID FATTY ACID PROFILES TO STUDY THE MICROBIAL COMPOSITION OF CYANOBACTERIAL MATS IN CABO ROJO SOLAR SALTERNS

    Science.gov (United States)

    The Cabo Rojo Saltern located in the West side of Puerto Rico is a hypersaline ecosystem that consists of crystallizer ponds surrounded by series of cyanobacterial mats. Although this ecosystem harbors a variety of microorganisms not much is known about their identity and relati...

  18. Detection of the onset of ischemia and carcinogenesis by hypoxia-inducible transcription factor-based in vivo bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kadonosono

    Full Text Available An animal model for the early detection of common fatal diseases such as ischemic diseases and cancer is desirable for the development of new drugs and treatment strategies. Hypoxia-inducible factor 1 (HIF-1 is a transcription factor that regulates oxygen homeostasis and plays key roles in a number of diseases, including cancer. Here, we established transgenic (Tg mice that carry HRE/ODD-luciferase (HOL gene, which generates bioluminescence in an HIF-1-dependent manner and was successfully used in this study to monitor HIF-1 activity in ischemic tissues. To monitor carcinogenesis in vivo, we mated HOL mice with rasH2 Tg mice, which are highly sensitive to carcinogens and are used for short-term carcinogenicity assessments. After rasH2-HOL Tg mice were treated with N-methyl-N-nitrosourea, bioluminescence was detected noninvasively as early as 9 weeks in tissues that contained papillomas and malignant lesions. These results suggest that the Tg mouse lines we established hold significant potential for monitoring the early onset of both ischemia and carcinogenesis and that these lines will be useful for screening chemicals for carcinogenic potential.

  19. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Chapeau, Cyrille [Biolumine, Biokar Diagnostic, Rue des Quarante Mines ZAC de Ther-Allonne, Beauvais Cedex (France); Bendria, Loubna; Daniel, Philippe [UMR CNRS 6087 LPEC, Universite du Maine, Av Olivier Messiaen, Le Mans cedex 9 (France); Picart, Pascal [UMR CNRS 6613 IAM-LAUM, Ecole Nationale des Ingenieurs du Mans, Universite du Maine, Le Mans Cedex 9 (France)

    2011-05-15

    This research study deals with the on-line detection of heavy metals and toxicity within the context of environmental pollution monitoring. It describes the construction and the proof of concept of a multi-channel bioluminescent bacterial biosensor in immobilized phase: Lumisens3. This new versatile device, designed for the non-stop analysis of water pollution, enables the insertion of any bioluminescent strains (inducible or constitutive), immobilized in a multi-well removable card. The technical design of Lumisens3 has benefited from both a classical and a robust approach and includes four main parts: (1) a dedicated removable card contains 64 wells, 3 mm in depth, arranged in eight grooves within which bacteria are immobilized, (2) this card is incubated on a Pelletier block with a CCD cooled camera on top for bioluminescence monitoring, (3) a fluidic network feeds the card with the sample to be analyzed and finally (4) a dedicated computer interface, BIOLUX 1.0, controls all the elements of the biosensor, allowing it to operate autonomously. The proof of concept of this biosensor was performed using a set of four bioluminescent bacteria (Escherichia coli DH1 pBzntlux, pBarslux, pBcoplux, and E. coli XL1 pBfiluxCDABE) in the on-line detection of CdCl{sub 2} 0.5 {mu}M and As{sub 2}O{sub 3} 5 {mu}M from an influent. When considering metals individually, the ''fingerprints'' from the biosensor were as expected. However, when metals were mixed together, cross reaction and synergistic effects were detected. This biosensor allowed us to demonstrate the simultaneous on-line cross detection of one or several heavy metals as well as the measurement of the overall toxicity of the sample. (orig.)

  20. The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation.

    Science.gov (United States)

    Naceradska, Jana; Pivokonsky, Martin; Pivokonska, Lenka; Baresova, Magdalena; Henderson, Rita K; Zamyadi, Arash; Janda, Vaclav

    2017-05-01

    The study investigates the effect of permanganate pre-oxidation on the coagulation of peptides/proteins of Microcystis aeruginosa which comprise a major proportion of the organic matter during cyanobacterial bloom decay. Four different permanganate dosages (0.1, 0.2, 0.4 and 0.6 mg KMnO 4 mg -1 DOC) were applied prior to coagulation by ferric sulphate. Moreover, changes in sample characteristics, such as UV 254 , DOC content and molecular weight distribution, after pre-oxidation were monitored. The results showed that permanganate pre-oxidation led to a reduction in coagulant dose, increased organic matter removals by coagulation (by 5-12% depending on permanganate dose), microcystin removal (with reductions of 91-96%) and a shift of the optimum pH range from 4.3 to 6 without to 5.5-7.3 with pre-oxidation. Degradation of organic matter into inorganic carbon and adsorption of organic matter onto hydrous MnO 2 are suggested as the main processes responsible for coagulation improvement. Moreover, permanganate prevented the formation of Fe-peptide/protein complexes that inhibit coagulation at pH about 6.2 without pre-oxidation. The study showed that carefully optimized dosing of permanganate improves cyanobacterial peptide/protein removal, with the benefit of microcystin elimination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Advances in cyanobacterial polyhydroxyalkanoates production.

    Science.gov (United States)

    Singh, Akhilesh Kumar; Mallick, Nirupama

    2017-11-01

    Polyhydroxyalkanoates (PHAs) have received much attention in the current scenario due to their attractive material properties, namely biodegradability, biocompatibility, thermoplasticity, hydrophobicity, piezoelectricity and stereospecificity. All these properties make them highly competitive for various industrial applications similar to non-degradable conventional plastics. In PHA biosynthesis, PHA synthase acts as a natural catalyst for PHA polymerization process using the (R)-hydroxyacyl-CoA as substrate. Cyanobacteria can accumulate PHAs under photoautotrophic and/or mixotrophic growth conditions with organic substrates such as acetate, glucose, propionate, valerate, and so on. The natural incidence of PHA accumulation by the cyanobacteria is known since 1966. Nevertheless, PHA accumulation in cyanobacteria based on the cell biomass and volumetric productivity is critically lower than the heterotrophic bacteria. Consequently, cyanobacteria are nowadays not considered for commercial production of PHAs. Thus, strain improvements by genetic modification, new cultivation and harvesting techniques, advanced photobioreactor development, efficient and sustainable downstream processes, alternate economical carbon sources and usage of various metabolic inhibitors are suggested for enhancing cyanobacterial PHA accumulation. In addition, identification of transcriptional regulators like RNA polymerase sigma factor (SigE) and a response regulator (Rre37) together with the recent major scientific breakthrough on the existence of complete Krebs cycle in cyanobacteria would be helpful in taking PHA production from cyanobacteria to a new-fangled height in near future. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  3. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  4. Using ATP-driven bioluminescence assay to monitor microbial safety in a contemporary human cadaver laboratory.

    Science.gov (United States)

    Benninger, Brion; Maier, Thomas

    2015-03-01

    The objective of this study was to utilize a cost-effective method for assessing the levels of bacterial, yeast, and mold activity during a human dissection laboratory course. Nowadays, compliance with safety regulations is policed by institutions at higher standards than ever before. Fear of acquiring an unknown infection is one of the top concerns of professional healthcare students, and it provokes anti-laboratory anxiety. Human cadavers are not routinely tested for bacteria and viruses prior to embalming. Human anatomy dissecting rooms that house embalmed cadavers are normally cleaned after the dissected cadavers have been removed. There is no evidence that investigators have ever assessed bacterial and fungal activities using adenosine triphosphate (ATP)-driven bioluminescence assays. A literature search was conducted on texts, journals, and websites regarding bacterial, yeast, and mold activities in an active cadaver laboratory. Midway into a clinical anatomy course, ATP bioluminescence assays were used to swab various sites within the dissection room, including entrance and exiting door handles, water taps, cadaver tables, counter tops, imaging material, X-ray box switches, and the cadaver surfaces. The results demonstrated very low activities on cadaver tables, washing up areas, and exiting door handles. There was low activity on counter tops and X-ray boxes. There was medium activity on the entrance door handles. These findings suggest an inexpensive and accurate method for monitoring safety compliance and microbial activity. Students can feel confident and safe in the environment in which they work. © 2014 Wiley Periodicals, Inc.

  5. Bioluminescence and the Actin Cytoskeleton in the Dinoflagellate Pyrocystis fusiformis: An Examination of Organelle Transport and Mechanotransduction

    OpenAIRE

    McDougall, Carrie A.

    2002-01-01

    Bioluminescence (BL), light produced by organisms, is a diverse and widespread marine phenomenon. yet little studied by researchers. Major contributors to sea surface BL displays are dinoflagellates, which produce rapid BL flashes upon fluid motion; mechanical stimulation triggers a 200-ms flash within 20 ms, representing one of the most rapid sensor-effector transduction systems described. In some dinoflagellate species the sensor-effector link is not constant throughout a 24-hour period. Me...

  6. Practices that Prevent the Formation of Cyanobacterial Blooms in Water Resources and remove Cyanotoxins during Physical Treatment of Drinking Water

    Science.gov (United States)

    This book chapter presents findings of different studies on the prevention and elimination of cyanobacterial blooms in raw water resources as well as the removal of cyanotoxins during water treatment with physical processes. Initially,treatments that can be applied at the source ...

  7. Occurrence and origin of mono-, di- and trimethylalkanes in modern and Holocene cyanobacterial mats from Abu Dhabi, United Arab Emirates

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kenig, F.; Kock-van Dalen, A.C.; Rijpstra, W.I.C.; Huc, A.Y.; Leeuw, J.W. de

    1995-01-01

    n-Alkanes, highly branched isoprenoids, monomethylalkanes (MMAs), dimethylalkanes (DMAs), and trimethylalkanes (TMAs) are the most abundant components in the hydrocarbon fractions of extracts of four modern and two Holocene cyanobacterial mats (1500 and 5110 ± 170 y ) collected in Abu Dhabi (United

  8. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    Science.gov (United States)

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923

  9. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  10. Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry.

    Science.gov (United States)

    Corbitt, A J; Bennion, N; Forsythe, S J

    2000-06-01

    Fourteen food residues, Escherichia coli O157:H7 and Staphylococcus aureus on stainless steel surfaces were detected using a combined assay with adenylate kinase as a cellular marker and ATP bioluminescence. The limit of sensitivity ranged from 0.02 to 708 microg for minced meat and broccoli, respectively. Both methods gave the same detection limit (105 cfu) for E. coli and Staph. aureus on stainless steel surfaces. The combined adenylate kinase-ATP assay is applicable to monitor the hygiene of work surfaces, especially those prone to contamination by meat and vegetable residues.

  11. Engraftment and bone mass are enhanced by PTHrP 1-34 in ectopically transplanted vertebrae (vossicle model) and can be non-invasively monitored with bioluminescence and fluorescence imaging.

    Science.gov (United States)

    Hildreth, Blake Eason; Williams, Michelle M; Dembek, Katarzyna A; Hernon, Krista M; Rosol, Thomas J; Toribio, Ramiro E

    2015-12-01

    Evidence exists that parathyroid hormone-related protein (PTHrP) 1-34 may be more anabolic in bone than parathyroid hormone 1-34. While optical imaging is growing in popularity, scant information exists on the relationships between traditional bone imaging and histology and bioluminescence (BLI) and fluorescence (FLI) imaging. We aimed to evaluate the effects of PTHrP 1-34 on bone mass and determine if relationships existed between radiographic and histologic findings in bone and BLI and FLI indices. Vertebrae (vossicles) from mice coexpressing luciferase and green fluorescent protein were implanted subcutaneously into allogenic nude mice. Transplant recipients were treated daily with saline or PTHrP 1-34 for 4 weeks. BLI, FLI, radiography, histology, and µCT of the vossicles were performed over time. PTHrP 1-34 increased bioluminescence the most after 2 weeks, fluorescence at all time points, and decreased the time to peak bioluminescence at 4 weeks (P ≤ 0.027), the latter of which suggesting enhanced engraftment. PTHrP 1-34 maximized vertebral body volume at 4 weeks (P bone observed histologically increased in both groups at 2 and 4 weeks (P ≤ 0.002); however, PTHrP 1-34 exceeded time-matched controls (P ≤ 0.044). A positive linear relationship existed between the percentage of trabecular bone and (1) total bioluminescence (r = 0.595; P = 0.019); (2) total fluorescence (r = 0.474; P = 0.074); and (3) max fluorescence (r = 0.587; P = 0.021). In conclusion, PTHrP 1-34 enhances engraftment and bone mass, which can be monitored non-invasively by BLI and FLI.

  12. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Science.gov (United States)

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  13. Some Like it High! Phylogenetic Diversity of High-Elevation Cyanobacterial Community from Biological Soil Crusts of Western Himalaya.

    Science.gov (United States)

    Čapková, Kateřina; Hauer, Tomáš; Řeháková, Klára; Doležal, Jiří

    2016-01-01

    The environment of high-altitudinal cold deserts of Western Himalaya is characterized by extensive development of biological soil crusts, with cyanobacteria as dominant component. The knowledge of their taxonomic composition and dependency on soil chemistry and elevation is still fragmentary. We studied the abundance and the phylogenetic diversity of the culturable cyanobacteria and eukaryotic microalgae in soil crusts along altitudinal gradients (4600-5900 m) at two sites in the dry mountains of Ladakh (SW Tibetan Plateau and Eastern Karakoram), using both microscopic and molecular approaches. The effects of environmental factors (altitude, mountain range, and soil physico-chemical parameters) on the composition and biovolume of phototrophs were tested by multivariate redundancy analysis and variance partitioning. Both phylogenetic diversity and composition of morphotypes were similar between Karakorum and Tibetan Plateau. Phylogenetic analysis of 16S rRNA gene revealed strains belonging to at least five genera. Besides clusters of common soil genera, e.g., Microcoleus, Nodosilinea, or Nostoc, two distinct clades of simple trichal taxa were newly discovered. The most abundant cyanobacterial orders were Oscillatoriales and Nostacales, whose biovolume increased with increasing elevation, while that of Chroococales decreased. Cyanobacterial species richness was low in that only 15 morphotypes were detected. The environmental factors accounted for 52 % of the total variability in microbial data, 38.7 % of which was explained solely by soil chemical properties, 14.5 % by altitude, and 8.4 % by mountain range. The elevation, soil phosphate, and magnesium were the most important predictors of soil phototrophic communities in both mountain ranges despite their different bedrocks and origin. The present investigation represents a first record on phylogenetic diversity of the cyanobacterial community of biological soil crusts from Western Himalayas and first record

  14. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea.

    Science.gov (United States)

    Moradi, Masoud

    2014-10-15

    Medium Resolution Imaging Spectrometer (MERIS) data, Moderate Resolution Imaging Spectroradiometer (MODIS) data, and hydro-biological measurements were used to detect two very severe blooms in the southern Caspian Sea in 2005 and 2010. The MERIS Cyanobacteria Index (CIMERIS) was more reliable for detecting cyanobacterial blooms. The CIMERIS and MODIS cyanobacteria indices (CIMODIS) were compared in an effort to find a reliable method for detecting future blooms, as MERIS data were not available after April 2012. The CIMODIS had a linear relationship with and similar spatial patterns to the CIMERIS. On the CIMODIS images, extremely high biomass cyanobacteria patches were masked. A comparison of classified in situ data with the CIMODIS and Floating Algal Index (FAI) from four images of a severe bloom event in 2005 showed that the FAI is a reliable index for bloom detection over extremely dense patches. The corrected CIMODIS, the MODIS FAI and in situ data are adequate tools for cyanobacterial bloom monitoring in the southern Caspian Sea. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    Science.gov (United States)

    Nham, Toan; Filali, Sofia; Danne, Camille; Derbise, Anne; Carniel, Elisabeth

    2012-01-01

    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response. PMID:22496846

  16. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Toan Nham

    Full Text Available Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba, followed by a colonization of the draining inguinal lymph node(s, and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response.

  17. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting.

    Directory of Open Access Journals (Sweden)

    Michelle Cronin

    Full Text Available The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v. administered to mice bearing subcutaneous (s.c FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and μCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.

  18. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  19. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  20. Seasonal dynamics in dissolved organic matter, hydrogen peroxide, and cyanobacterial blooms in Lake Erie

    Directory of Open Access Journals (Sweden)

    Rose M. Cory

    2016-04-01

    Full Text Available Hydrogen peroxide (H2O2 has been suggested to influence cyanobacterial community structure and toxicity. However, no study has investigated H2O2 concentrations in freshwaters relative to cyanobacterial blooms when sources and sinks of H2O2 may be highly variable. For example, photochemical production of H2O2 from chromophoric dissolved organic matter (CDOM may vary over the course of the bloom with changing CDOM and UV light in the water column, while microbial sources and sinks of H2O2 may change with community biomass and composition. To assess relationships between H2O2 and harmful algal blooms dominated by toxic cyanobacteria in the western basin of Lake Erie, we measured H2O2 weekly at six stations from June – November, 2014 and 2015, with supporting physical, chemical, and biological water quality data. Nine additional stations across the western, eastern, and central basins of Lake Erie were sampled during August and October, 2015. CDOM sources were quantified from the fluorescence fraction of CDOM using parallel factor analysis (PARAFAC. CDOM concentration and source were significantly correlated with specific conductivity, demonstrating that discharge of terrestrially-derived CDOM from rivers can be tracked in the lake. Autochthonous sources of CDOM in the lake increased over the course of the blooms. Concentrations of H2O2 in Lake Erie ranged from 47 ± 16 nM to 1570 ± 16 nM (average of 371 ± 17 nM; n = 225, and were not correlated to CDOM concentration or source, UV light, or estimates of photochemical production of H2O2 by CDOM. Temporal patterns in H2O2 were more closely aligned with bloom dynamics in the lake. In 2014 and 2015, maximum concentrations of H2O2 were observed prior to peak water column respiration and chlorophyll a, coinciding with the onset of the widespread Microcystis blooms in late July. The spatial and temporal patterns in H2O2 concentrations suggested that production and decay of H2O2 from aquatic

  1. Effect of different cyanobacterial biomasses and their fractions with variable microcystin content on embryonal development of carp (Cyprinus carpio L.)

    Czech Academy of Sciences Publication Activity Database

    Palíková, M.; Krejčí, R.; Hilscherová, Klára; Babica, Pavel; Navrátil, S.; Kopp, R.; Bláha, Luděk

    2007-01-01

    Roč. 81, č. 3 (2007), s. 312-318 ISSN 0166-445X R&D Projects: GA AV ČR KJB6005411 Institutional research plan: CEZ:AV0Z60050516 Keywords : cyanobacterial biomass * embryonal development * common carp Subject RIV: EF - Botanics Impact factor: 2.975, year: 2007

  2. The Effect of Cyanobacterial Biomass Enrichment by Centrifugation and GF/C Filtration on Subsequent Microcystin Measurement

    Directory of Open Access Journals (Sweden)

    Shelley Rogers

    2015-03-01

    Full Text Available Microcystins are cyclic peptides produced by multiple cyanobacterial genera. After accumulation in the liver of animals they inhibit eukaryotic serine/threonine protein phosphatases, causing liver disease or death. Accurate detection/quantification of microcystins is essential to ensure safe water resources and to enable research on this toxin. Previous methodological comparisons have focused on detection and extraction techniques, but have not investigated the commonly used biomass enrichment steps. These enrichment steps could modulate toxin production as recent studies have demonstrated that high cyanobacterial cell densities cause increased microcystin levels. In this study, three microcystin-producing strains were processed using no cell enrichment steps (by direct freezing at three temperatures and with biomass enrichment (by centrifugation or GF/C filtration. After extraction, microcystins were analyzed using liquid chromatography-tandem mass spectrometry. All processing methods tested, except GF/C filtration, resulted in comparable microcystin quotas for all strains. The low yields observed for the filtration samples were caused by adsorption of arginine-containing microcystins to the GF/C filters. Whilst biomass enrichment did not affect microcystin metabolism over the time-frame of normal sample processing, problems associated with GF/C filtration were identified. The most widely applicable processing method was direct freezing of samples as it could be utilized in both field and laboratory environments.

  3. The production of cyanobacterial carbon under nitrogen-limited cultivation and its potential for nitrate removal.

    Science.gov (United States)

    Huang, Yingying; Li, Panpan; Chen, Guiqin; Peng, Lin; Chen, Xuechu

    2018-01-01

    Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification. Under nitrogen-limited conditions, the common cyanobacterium, Microcystis, efficiently used nitrate, and had a higher intracellular C/N ratio. More importantly, organic carbons easily leached from its dry powder; these leachates were biodegradable and contained a larger amount of dissolved organic carbon (DOC) and carbohydrates, but a smaller amount of dissolved total nitrogen (DTN) and proteins. When applied to an anoxic system with a sediment-water interface, a significant increase of the specific NO X - -N removal rate was observed that was 14.2 times greater than that of the control. This study first suggests that nitrogen-limited cultivation is an efficient way to induce organic and carbohydrate accumulation in cyanobacteria, as well as a high C/N ratio, and that these cyanobacteria can act as a promising carbon source for denitrification. The results indicate that application as a carbon source is not only a new way to utilize cyanobacteria, but it also contributes to nitrogen removal in aquatic ecosystems, further limiting the proliferation of CyanoHABs. Copyright © 2017. Published by Elsevier Ltd.

  4. The cyanobacterial bicarbonate transporter BicA: its physiological role and the implications of structural similarities with human SLC26 transporters.

    Science.gov (United States)

    Price, G Dean; Howitt, Susan M

    2011-04-01

    The cyanobacterial Na+-dependent HCO3- transporter BicA is a member of the ubiquitous and important SulP/SLC26 family of anion transporters found in eukaryotes and prokaryotes. BicA is an important component of the cyanobacterial CO2 concentrating mechanism, an adaptation that contributes to cyanobacteria being able to achieve an estimated 25% of global primary productivity, largely in the oceans. The human SLC26 members are involved in a range of key cellular functions involving a diverse range of anion transport activities including Cl-/HCO3-, I-/HCO3-, and SO42-/HCO3- exchange; mutations in SLC26 members are known to be associated with debilitating diseases such as Pendred syndrome, chondrodysplasias, and congenital chloride diarrhoea. We have recently experimentally determined the membrane topology of BicA using the phoA-lacZ reporter system and here consider some of the extrapolated implications for topology of the human SLC26 family and the Sultr plant sulphate transporters.

  5. Detection and quantitation of circulating tumor cell dynamics by bioluminescence imaging in an orthotopic mammary carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Circulating tumor cells (CTCs have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1-1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10-15 cells/100 µL and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients.

  6. The Use of Stimulable Bioluminescence from Marine Dinoflagellates as a Means of Detecting Toxicity in the Marine Environment

    Science.gov (United States)

    1993-04-01

    FROM MARINE PR: ME65 DINOFLAGELLATES AS A MEANS OF DETECTING TOXICITY IN THE PE: 060372N MARINE ENVIRONMENT WU: DN288604 6ý AUTHOR(S) Accesion For I...measure the acute and sublethal effects of heavy metals ( tributyltin , copper, and zinc) and storm drain effluent on the light output from marine...Grovhoug 3 THE USE OF STIM1ULABLE BIOLUMINESCENCE FROM MARINE DINOFLAGELLATES AS A MEANS OF DETECTING TOXICITY IN THE MARINE ENVIRONMENT. REFERENCE

  7. Extraction and applications of cyanotoxins and other cyanobacterial secondary metabolites.

    Science.gov (United States)

    Haque, Fatima; Banayan, Sara; Yee, Josephine; Chiang, Yi Wai

    2017-09-01

    The rapid proliferation of cyanobacteria in bodies of water has caused cyanobacterial blooms, which have become an increasing cause of concern, largely due to the presence of toxic secondary metabolites (or cyanotoxins). Cyanotoxins are the toxins produced by cyanobacteria that may be harmful to surrounding wildlife. They include hepatotoxins, neurotoxins and dermatotoxins, and are classified based on the organs they affect. There are also non-toxic secondary metabolites that include chelators and UV-absorbing compounds. This paper summarizes the optimal techniques for secondary metabolite extraction and the possible useful products that can be obtained from cyanobacteria, with additional focus given to products derived from secondary metabolites. It becomes evident that the potential for their use as biocides, chelators, biofuels, biofertilizers, pharmaceuticals, food and feed, and cosmetics has not yet been comprehensively studied or extensively implemented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Novel peptide chemistry in terrestrial animals: natural luciferin analogues from the bioluminescent earthworm Fridericia heliota.

    Science.gov (United States)

    Dubinnyi, Maxim A; Tsarkova, Aleksandra S; Petushkov, Valentin N; Kaskova, Zinaida M; Rodionova, Natalja S; Kovalchuk, Sergey I; Ziganshin, Rustam H; Baranov, Mikhail S; Mineev, Konstantin S; Yampolsky, Ilia V

    2015-03-02

    We report isolation and structure elucidation of AsLn5, AsLn7, AsLn11 and AsLn12: novel luciferin analogs from the bioluminescent earthworm Fridericia heliota. They were found to be highly unusual modified peptides, comprising either of the two tyrosine-derived chromophores, CompX or CompY and a set of amino acids, including threonine, gamma-aminobutyric acid, homoarginine, and unsymmetrical N,N-dimethylarginine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and rise novel questions concerning their biosynthetic origin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

    Science.gov (United States)

    Gehringer, Michelle M; Adler, Lewis; Roberts, Alexandra A; Moffitt, Michelle C; Mihali, Troco K; Mills, Toby J T; Fieker, Claus; Neilan, Brett A

    2012-10-01

    The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. 'Macrozamia riedlei 65.1' and Nostoc sp. 'Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg-1 chlorophyll a in Nostoc sp. 'Macrozamia riedlei 65.1' and 12.5±8.4 ng μg-1 Chl a in Nostoc sp. 'Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har(2)] nodularin, which contains L-homoarginine instead of L-arginine. Nodularin was also present at 1.34±0.74 ng ml(-1) (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har(2)] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har(2)] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta.

  10. Developmental and Microbiological Analysis of the Inception of Bioluminescent Symbiosis in the Marine Fish Nuchequula nuchalis (Perciformes: Leiognathidae)▿

    OpenAIRE

    Dunlap, Paul V.; Davis, Kimberly M.; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi

    2008-01-01

    Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as ...

  11. Multilocus and SSU rRNA gene phylogenetic analyses of available cyanobacterial genomes, and their relation to the current taxonomic system

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jan

    2018-01-01

    Roč. 811, č. 1 (2018), s. 19-34 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GA15-11912S Institutional support: RVO:67985939 Keywords : 16S rRNA * Cyanobacterial orders * Multilocus phylogeny Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 2.056, year: 2016

  12. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad; Ramette, Alban; Kü hl, Michael; Hamza, Waleed; Klatt, Judith M.; Polerecky, Lubos

    2014-01-01

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  13. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2014-08-06

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats\\' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  14. Cyanobacterial Neurotoxin BMAA and Mercury in Sharks

    Directory of Open Access Journals (Sweden)

    Neil Hammerschlag

    2016-08-01

    Full Text Available Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg, because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA, a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds.

  15. Cyanobacterial Neurotoxin BMAA and Mercury in Sharks.

    Science.gov (United States)

    Hammerschlag, Neil; Davis, David A; Mondo, Kiyo; Seely, Matthew S; Murch, Susan J; Glover, William Broc; Divoll, Timothy; Evers, David C; Mash, Deborah C

    2016-08-16

    Sharks have greater risk for bioaccumulation of marine toxins and mercury (Hg), because they are long-lived predators. Shark fins and cartilage also contain β-N-methylamino-l-alanine (BMAA), a ubiquitous cyanobacterial toxin linked to neurodegenerative diseases. Today, a significant number of shark species have found their way onto the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. Many species of large sharks are threatened with extinction due in part to the growing high demand for shark fin soup and, to a lesser extent, for shark meat and cartilage products. Recent studies suggest that the consumption of shark parts may be a route to human exposure of marine toxins. Here, we investigated BMAA and Hg concentrations in fins and muscles sampled in ten species of sharks from the South Atlantic and Pacific Oceans. BMAA was detected in all shark species with only seven of the 55 samples analyzed testing below the limit of detection of the assay. Hg concentrations measured in fins and muscle samples from the 10 species ranged from 0.05 to 13.23 ng/mg. These analytical test results suggest restricting human consumption of shark meat and fins due to the high frequency and co-occurrence of two synergistic environmental neurotoxic compounds.

  16. Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms

    Science.gov (United States)

    Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis

    2015-01-01

    Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510

  17. The Course of Toxicity in the Pregnant Mouse after Exposure to the Cyanobacterial Toxin, Cylindrospermopsin: Clinical Effects, Serum Chemistries, Hematology and Histopathology

    Science.gov (United States)

    Cylindrospermopsin (CYN) is a toxin produced by a wide variety of fresh water cyanobacterial species worldwide and induces significant adverse effects in both livestock and humans. This study investigated the course of CYN-induced toxicity in pregnant mice exposed during either t...

  18. The cyanobacterial metabolite nocuolin a is a natural oxadiazine that triggers apoptosis in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Kateřina Voráčová

    Full Text Available Oxadiazines are heterocyclic compounds containing N-N-O or N-N-C-O system within a six membered ring. These structures have been up to now exclusively prepared via organic synthesis. Here, we report the discovery of a natural oxadiazine nocuolin A (NoA that has a unique structure based on 1,2,3-oxadiazine. We have identified this compound in three independent cyanobacterial strains of genera Nostoc, Nodularia, and Anabaena and recognized the putative gene clusters for NoA biosynthesis in their genomes. Its structure was characterized using a combination of NMR, HRMS and FTIR methods. The compound was first isolated as a positive hit during screening for apoptotic inducers in crude cyanobacterial extracts. We demonstrated that NoA-induced cell death has attributes of caspase-dependent apoptosis. Moreover, NoA exhibits a potent anti-proliferative activity (0.7-4.5 μM against several human cancer lines, with p53-mutated cell lines being even more sensitive. Since cancers bearing p53 mutations are resistant to several conventional anti-cancer drugs, NoA may offer a new scaffold for the development of drugs that have the potential to target tumor cells independent of their p53 status. As no analogous type of compound was previously described in the nature, NoA establishes a novel class of bioactive secondary metabolites.

  19. Rapid drug susceptibility test of mycobacterium tuberculosis by bioluminescence sensor

    Science.gov (United States)

    Lu, Bin; Xu, Shunqing; Chen, Zifei; Zhou, Yikai

    2001-09-01

    With the persisting increase of drug-resistant stains of M. Tuberculosis around the world, rapid and sensitive detection of antibiotic of M. Tuberculosis is becoming more and more important. In the present study, drug susceptibility of M. tuberculosis were detected by recombination mycobacteriophage combined with bioluminescence sensor. It is based on the use of recombination mycobacteriophage which can express firefly luciferase when it infects viable mycobacteria, and can effectively produce quantifiable photon. Meanwhile, in mycobacterium cells treated with active antibiotic, no light is observed. The emitted light is recorded by a bioluminscence sensor, so the result of drug-resistant test can be determined by the naked eye. 159 stains of M. tuberculosis were applied to this test on their resistant to rifampin, streptomycin and isoniazid. It is found that the agreement of this assay with Liewenstein- Jensen slat is: rifampin 95.60 percent, isoniazid 91.82 percent, streptomycin 88.68 percent, which showed that it is a fast and practical method to scene and detect drug resistant of mycobacterium stains.

  20. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  1. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsun Su, Yen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, Chia-Yun; Chang, Chung-Chien [Science and Technology of Accelerator Light Source, Hsinchu 300, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Tu, Sheng-Lung; Shen, Yun-Hwei [Department of Resource Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  2. Effects of the cyanobacterial neurotoxin B-N-methylamino-L-alamine (BMAA) on the survival, mobility and reproduction of Daphnia magna

    NARCIS (Netherlands)

    Lürling, M.F.L.L.W.; Faassen, E.J.; Eenennaam, van J.S.

    2011-01-01

    In short-term tests and chronic life table assays, Daphnia magna was exposed to the cyanobacterial neurotoxic non-protein amino acid ß-N-methylamino-l-alanine (BMAA). BMAA was not acutely lethal to Daphnia (LC50–48h > 10 000 µg L-1), but reduced mobility (IC50–48h 40 µg L-1) and affected life

  3. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change

    International Nuclear Information System (INIS)

    Paerl, Hans W.; Hall, Nathan S.; Calandrino, Elizabeth S.

    2011-01-01

    Harmful (toxic, food web altering, hypoxia generating) cyanobacterial algal blooms (CyanoHABs) are proliferating world-wide due to anthropogenic nutrient enrichment, and they represent a serious threat to the use and sustainability of our freshwater resources. Traditionally, phosphorus (P) input reductions have been prescribed to control CyanoHABs, because P limitation is widespread and some CyanoHABs can fix atmospheric nitrogen (N 2 ) to satisfy their nitrogen (N) requirements. However, eutrophying systems are increasingly plagued with non N 2 fixing CyanoHABs that are N and P co-limited or even N limited. In many of these systems N loads are increasing faster than P loads. Therefore N and P input constraints are likely needed for long-term CyanoHAB control in such systems. Climatic changes, specifically warming, increased vertical stratification, salinization, and intensification of storms and droughts play additional, interactive roles in modulating CyanoHAB frequency, intensity, geographic distribution and duration. In addition to having to consider reductions in N and P inputs, water quality managers are in dire need of effective tools to break the synergy between nutrient loading and hydrologic regimes made more favorable for CyanoHABs by climate change. The more promising of these tools make affected waters less hospitable for CyanoHABs by 1) altering the hydrology to enhance vertical mixing and/or flushing and 2) decreasing nutrient fluxes from organic rich sediments by physically removing the sediments or capping sediments with clay. Effective future CyanoHAB management approaches must incorporate both N and P loading dynamics within the context of altered thermal and hydrologic regimes associated with climate change. - Research Highlights: → Toxic cyanobacterial blooms (CyanoHABs) increasingly threaten global water supplies. → Human (nutrient) and climate (hydrology, temperature) changes synergistically promote CyanoHABs. → CyanoHAB control

  4. Isolation and screening of heterocystous cyanobacterial strains for biodiesel production by evaluating the fuel properties from fatty acid methyl ester (FAME) profiles.

    Science.gov (United States)

    Anahas, Antonyraj Matharasi Perianaika; Muralitharan, Gangatharan

    2015-05-01

    This study reports on the biodiesel quality parameters of eleven heterocystous cyanobacterial strains based on fatty acid methyl esters (FAME) profiles. The biomass productivity of the tested cyanobacterial strains ranged from 9.33 to 20.67 mg L(-1) d(-1) while the lipid productivity varied between 0.65 and 2.358 mg L(-1) d(-1). The highest biomass and lipid productivity was observed for Calothrix sp. MBDU 013 but its lipid content is only 11.221 in terms of percent dry weight, next to the Anabaena sphaerica MBDU 105, whose lipid content is high. To identify the most competent isolate, a multi-criteria decision analyses (MCDA) was performed by including the key chemical and physical parameters of biodiesel calculated from FAME profiles. The isolate A.sphaerica MBDU 105 is the most promising biodiesel feed stock based on decision vector through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. a Study of the Bioluminescence of Larger Zooplankton and the Effects of Low-Level Light Changes on Their Behavior.

    Science.gov (United States)

    van Keuren, Jeffrey Robert

    A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple

  6. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

    International Nuclear Information System (INIS)

    Ponomarev, Vladimir; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Tourkova, Vilia; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Ivanova, Anna; Blasberg, Ronald; Balatoni, Julius; Bornmann, William; Gelovani Tjuvajev, Juri

    2004-01-01

    Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Δ45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Δ45HSV1-tk/GFP/luciferase (Δ45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Δ45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Δ45-TGL cells compared to nontransduced control cells. The Ki of 14 C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [ 131 I]FIAU (7.4 MBq/animal) or [ 124 I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity

  7. The effect of environmental parameters and cyanobacterial blooms on phytoplankton dynamics of a Portuguese temperate lake

    DEFF Research Database (Denmark)

    De Figueiredo, Daniela R.; P. S. Reboleira, Ana Sofia; Antunes, Sara C.

    2006-01-01

    The increasing occurrence of cyanobacterial blooms in freshwaters is of great concern due to the ability of many cyanobacteria to produce cyanotoxins. In the present work, the eutrophied Vela Lake (Central Portugal), used for recreational purposes and as a water source for agriculture, was monito...... for the phytoplanktonic assemblage during the study period was increased in about 7% achieving a total of 61.0%, indicating a correlation that may be due to the known competitive advantage and/or allelopathy of the bloom-forming cyanobacteria towards microalgae....

  8. Adenosina trifosfato bioluminescência para avaliação da limpeza de superfícies: uma revisão integrativa

    Directory of Open Access Journals (Sweden)

    Adriana Cristina de Oliveira

    2014-12-01

    Full Text Available Objetivo: Identificar na literatura indicações e controvérsias do ATP bioluminescência para avaliação da efetividade da limpeza de superfícies em estabelecimentos de saúde. Método: Revisão integrativa da literatura, entre 2000 e 2012, nas bases de dados MEDLINE, LILACS, Science Direct, SCOPUS e Isi Web of Knowledge. Resultados: Selecionou-se para esta revisão 15 artigos. O ATP bioluminescência foi apontado como importante recurso educacional e método complementar à inspeção visual e às análises microbiológicas na avaliação da efetividade da limpeza. A impossibilidade de indicar a contaminação da superfície por micro-organismos viáveis, a interferência por substâncias químicas e a dificuldade de interpretação dos resultados constituem as principais controvérsias para o uso deste nos serviços de saúde. Conclusão: Apesar de constituir importante recurso na avaliação da limpeza de superfícies, mais estudos são necessários para incorporação efetiva do método nos serviços de saúde.

  9. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  10. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  11. Cadmium uptake capacity of an indigenous cyanobacterial strain, Nostoc entophytum ISC32: new insight into metal uptake in microgravity-simulating conditions.

    Science.gov (United States)

    Alidoust, Leila; Soltani, Neda; Modiri, Sima; Haghighi, Omid; Azarivand, Aisan; Khajeh, Khosro; Shahbani Zahiri, Hossein; Vali, Hojatollah; Akbari Noghabi, Kambiz

    2016-02-01

    Among nine cyanobacterial strains isolated from oil-contaminated regions in southern Iran, an isolate with maximum cadmium uptake capacity was selected and identified on the basis of analysis of morphological criteria and 16S rRNA gene sequence similarity as Nostoc entophytum (with 99% similarity). The isolate was tentatively designated N. entophytum ISC32. The phylogenetic affiliation of the isolates was determined on the basis of their 16S rRNA gene sequence. The maximum amount of Cd(II) adsorbed by strain ISC32 was 302.91 mg g(-1) from an initial exposure to a solution with a Cd(II) concentration of 150 mg l(-1). The cadmium uptake by metabolically active cells of cyanobacterial strain N. entophytum ISC32, retained in a clinostat for 6 days to simulate microgravity conditions, was examined and compared with that of ground control samples. N. entophytum ISC32 under the influence of microgravity was able to take up cadmium at amounts up to 29% higher than those of controls. The activity of antioxidant enzymes including catalase and peroxidase was increased in strain ISC32 exposed to microgravity conditions in a clinostat for 6 days, as catalase activity of the cells was more than three times higher than that of controls. The activity of the peroxidase enzyme increased by 36% compared with that of the controls. Membrane lipid peroxidation was also increased in the cells retained under microgravity conditions, up to 2.89-fold higher than in non-treated cells. Images obtained using scanning electron microscopy showed that cyanobacterial cells form continuous filaments which are drawn at certain levels, while the cells placed in a clinostat appeared as round-shaped, accumulated together and distorted to some extent.

  12. Nodularin, a cyanobacterial toxin, is synthesized in planta by symbiotic Nostoc sp.

    Science.gov (United States)

    Gehringer, Michelle M; Adler, Lewis; Roberts, Alexandra A; Moffitt, Michelle C; Mihali, Troco K; Mills, Toby J T; Fieker, Claus; Neilan, Brett A

    2012-01-01

    The nitrogen-fixing bacterium, Nostoc, is a commonly occurring cyanobacterium often found in symbiotic associations. We investigated the potential of cycad cyanobacterial endosymbionts to synthesize microcystin/nodularin. Endosymbiont DNA was screened for the aminotransferase domain of the toxin biosynthesis gene clusters. Five endosymbionts carrying the gene were screened for bioactivity. Extracts of two isolates inhibited protein phosphatase 2A and were further analyzed using electrospray ionization mass spectrometry (ESI-MS)/MS. Nostoc sp. ‘Macrozamia riedlei 65.1' and Nostoc sp. ‘Macrozamia serpentina 73.1' both contained nodularin. High performance liquid chromatography (HPLC) HESI-MS/MS analysis confirmed the presence of nodularin at 9.55±2.4 ng μg−1 chlorophyll a in Nostoc sp. ‘Macrozamia riedlei 65.1' and 12.5±8.4 ng μg−1 Chl a in Nostoc sp. ‘Macrozamia serpentina 73.1' extracts. Further scans indicated the presence of the rare isoform [L-Har2] nodularin, which contains ℒ-homoarginine instead of ℒ-arginine. Nodularin was also present at 1.34±0.74 ng ml−1 (approximately 3 pmol per g plant ww) in the methanol root extracts of M. riedlei MZ65, while the presence of [L-Har2] nodularin in the roots of M. serpentina MZ73 was suggested by HPLC HESI-MS/MS analysis. The ndaA-B and ndaF genomic regions were sequenced to confirm the presence of the hybrid polyketide/non-ribosomal gene cluster. A seven amino-acid insertion into the NdaA-C1 domain of N. spumigena NSOR10 protein was observed in all endosymbiont-derived sequences, suggesting the transfer of the nda cluster from N. spumigena to terrestrial Nostoc species. This study demonstrates the synthesis of nodularin and [L-Har2] nodularin in a non-Nodularia species and the production of cyanobacterial hepatotoxin by a symbiont in planta. PMID:22456448

  13. Identification of a common cyanobacterial symbiont associated with Azolla spp. through molecular and morphological characterization of free-living and symbiotic cyanobacteria.

    Science.gov (United States)

    Gebhardt, J S; Nierzwicki-Bauer, S A

    1991-01-01

    Symbiotically associated cyanobacteria from Azolla mexicana and Azolla pinnata were isolated and cultured in a free-living state. Morphological analyses revealed differences between the free-living isolates and their symbiotic counterparts, as did restriction fragment length polymorphism (RFLP) analyses with both single-copy glnA and rbcS gene probes and a multicopy psbA gene probe. RFLP analyses with Anabaena sp. strain PCC 7120 nifD excision element probes, including an xisA gene probe, detected homologous sequences in DNA extracted from the free-living isolates. Sequences homologous to these probes were not detected in DNA from the symbiotically associated cyanobacteria. These analyses indicated that the isolates were not identical to the major cyanobacterial symbiont species residing in leaf cavities of Azolla spp. Nevertheless, striking similarities between several free-living isolates were observed. In every instance, the isolate from A. pinnata displayed banding patterns virtually identical to those of free-living cultures previously isolated from Azolla caroliniana and Azolla filiculoides. These results suggest the ubiquitous presence of a culturable minor cyanobacterial symbiont in at least three species of Azolla. Images PMID:1685078

  14. Dry limit to photosynthesis and cyanobacterial spatial pattern in the Atacama Desert

    Science.gov (United States)

    Warren-Rhodes, K. A.; Pointing, S. B.; Ewing, S.; Lacap, D.; Gomez-Silva, B.; Amundson, R.; Friedmann, E. I.; McKay, C. P.

    2005-12-01

    Hypolithic autotrophs inhabit translucent rocks in the world`'s most extreme hot and cold deserts. Across a rainfall gradient in the Atacama, we measured a three-fold decline in the molecular diversity of cyanobacterial communities and a drop in their abundance from 28% in relatively wet sites to 0.08% in the driest core. Like plants, hypoliths appear to exhibit traits of self-organized patchiness (aggregated spatial patterns) that tightly correlate with rainfall. Rare cyanobacteria in the core live slowly (3,200 y turnover times) and survive in spatially isolated patches of self-augmented fertility, with the dry limit to their survival occurring at ~Mars but may have existed in rare oases in the past. The spatial distributions of terrestrial desert microbes should be considered in the remote search for life on Mars.

  15. Two Marine Cyanobacterial Aplysiatoxin Polyketides, Neo-debromoaplysiatoxin A and B, with K+ Channel Inhibition Activity.

    Science.gov (United States)

    Han, Bing-Nan; Liang, Ting-Ting; Keen, Lawrence Jordan; Fan, Ting-Ting; Zhang, Xiao-Dan; Xu, Lin; Zhao, Qi; Wang, Shu-Ping; Lin, Hou-Wen

    2018-02-02

    The isolation and structure elucidation of two cyanobacterial debromoaplysiatoxin (DAT) analogues, neo-debromoaplysiatoxin A (1) and neo-debromoaplysiatoxin B (2), were reported and found to possess 6/10/6 and 6/6/6 fused-ring systems, respectively, which are rarely seen among aplysiatoxins. Both compounds exhibited potent blocking activity against Kv1.5 with IC 50 values of 6.94 ± 0.26 and 0.30 ± 0.05 μM, respectively. These findings suggest the potential of aplysiatoxin analogues in modulating ionic channels and also provide links between the DAT target, protein kinase C, and cell regulation.

  16. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    OpenAIRE

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. B...

  17. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    Science.gov (United States)

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma

  18. Advancing Molecular Therapies through In Vivo Bioluminescent Imaging

    Directory of Open Access Journals (Sweden)

    Anton McCaffrey

    2003-04-01

    Full Text Available Effective development of therapeutics that target the molecular basis of disease is dependent on testing new therapeutic moieties and delivery strategies in animal models of human disease. Accelerating the analyses of these models and improving their predictive value through whole animal imaging methods, which provide data in real time and are sensitive to the subtle changes, are crucial for rapid advancement of these approaches. Modalities based on optics are rapid, sensitive, and accessible methods for in vivo analyses with relatively low instrumentation costs. In vivo bioluminescent imaging (BLI is one of these optically based imaging methods that enable rapid in vivo analyses of a variety of cellular and molecular events with extreme sensitivity. BLI is based on the use of light-emitting enzymes as internal biological light sources that can be detected externally as biological indicators. BLI has been used to test spatio-temporal expression patterns of both target and therapeutic genes in living laboratory animals where the contextual influences of whole biological systems are preserved. BLI has also been used to analyze gene delivery, immune cell therapies, and the in vivo efficacy of inhibitory RNAs. New tools for BLI are being developed that will offer greater flexibility in detection and analyses. BLI can be used to accelerate the evaluation of experimental therapeutic strategies and whole body imaging offers the opportunity of revealing the effects of novel approaches on key steps in disease processes.

  19. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    Science.gov (United States)

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. How physiological and physical processes contribute to the phenology of cyanobacterial blooms in large shallow lakes: A new Euler-Lagrangian coupled model.

    Science.gov (United States)

    Feng, Tao; Wang, Chao; Wang, Peifang; Qian, Jin; Wang, Xun

    2018-09-01

    Cyanobacterial blooms have emerged as one of the most severe ecological problems affecting large and shallow freshwater lakes. To improve our understanding of the factors that influence, and could be used to predict, surface blooms, this study developed a novel Euler-Lagrangian coupled approach combining the Eulerian model with agent-based modelling (ABM). The approach was subsequently verified based on monitoring datasets and MODIS data in a large shallow lake (Lake Taihu, China). The Eulerian model solves the Eulerian variables and physiological parameters, whereas ABM generates the complete life cycle and transport processes of cyanobacterial colonies. This model ensemble performed well in fitting historical data and predicting the dynamics of cyanobacterial biomass, bloom distribution, and area. Based on the calculated physical and physiological characteristics of surface blooms, principal component analysis (PCA) captured the major processes influencing surface bloom formation at different stages (two bloom clusters). Early bloom outbreaks were influenced by physical processes (horizontal transport and vertical turbulence-induced mixing), whereas buoyancy-controlling strategies were essential for mature bloom outbreaks. Canonical correlation analysis (CCA) revealed the combined actions of multiple environment variables on different bloom clusters. The effects of buoyancy-controlling strategies (ISP), vertical turbulence-induced mixing velocity of colony (VMT) and horizontal drift velocity of colony (HDT) were quantitatively compared using scenario simulations in the coupled model. VMT accounted for 52.9% of bloom formations and maintained blooms over long periods, thus demonstrating the importance of wind-induced turbulence in shallow lakes. In comparison, HDT and buoyancy controlling strategies influenced blooms at different stages. In conclusion, the approach developed here presents a promising tool for understanding the processes of onshore/offshore algal

  1. Satellite monitoring of cyanobacterial harmful algal bloom ...

    Science.gov (United States)

    Cyanobacterial harmful algal blooms (cyanoHABs) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern because of their dense biomass and the risk of exposure to toxins in both recreational waters and drinking source waters. Successful cyanoHAB assessment by satellites may provide a first-line of defense indicator for human and ecological health protection. In this study, assessment methods were developed to determine the utility of satellite technology for detecting cyanoHAB occurrence frequency at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent Sentinel-3 Ocean and Land Colour Imager (OLCI) launched in 2016. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, there were 275,897 lakes and reservoirs greater than 1 hectare in the 48 U.S. states. Results from this evaluation show that 5.6 % of waterbodies were resolvable by satellites with 300 m single pixel resolution and 0.7 % of waterbodies were resolvable when a 3x3 pixel array was applied based on minimum Euclidian distance from shore. Satellite data was also spatially joined to US public water surface intake (PWSI) locations, where single pixel resolution resolved 57% of PWSI and a 3x3 pixel array resolved 33% of

  2. Bioluminescence-based cytotoxicity assay for simultaneous evaluation of cell viability and membrane damage in human hepatoma HepG2 cells.

    Science.gov (United States)

    Uno, Katsuhiro; Murotomi, Kazutoshi; Kazuki, Yasuhiro; Oshimura, Mitsuo; Nakajima, Yoshihiro

    2018-05-01

    We have developed a bioluminescence-based non-destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)-targeted copepod luciferase (GLuc-KDEL), respectively, by using multi-integrase mouse artificial chromosome (MI-MAC) vector. We have demonstrated that the time-dependent concentration response curves of ELuc luminescence intensity and WST-1 assay, and GLuc-KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant-treated ELuc- and GLuc-KDEL-expressing HepG2 stable cell lines. We have clarified that the increase of GLuc-KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc-KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc-KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc-KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Unraveling the Primary Isomerization Dynamics in Cyanobacterial Phytochrome Cph1 with Multi-pulse Manipulations.

    Science.gov (United States)

    Kim, Peter W; Rockwell, Nathan C; Freer, Lucy H; Chang, Che-Wei; Martin, Shelley S; Lagarias, J Clark; Larsen, Delmar S

    2013-07-20

    The ultrafast mechanisms underlying the initial photoisomerization (P r → Lumi-R) in the forward reaction of the cyanobacterial photoreceptor Cph1 were explored with multipulse pump-dump-probe transient spectroscopy. A recently postulated multi-population model was used to fit the transient pump-dump-probe and dump-induced depletion signals. We observed dump-induced depletion of the Lumi-R photoproduct, demonstrating that photoisomerization occurs via evolution on both the excited- and ground-state electronic surfaces. Excited-state equilibrium was not observed, as shown via the absence of a dump-induced excited-state "Le Châtelier redistribution" of excited-state populations. The importance of incorporating the inhomogeneous dynamics of Cph1 in interpreting measured transient data is discussed.

  4. Cyanobacterial effects in Lake Ludoš, Serbia - Is preservation of a degraded aquatic ecosystem justified?

    Science.gov (United States)

    Tokodi, Nada; Drobac, Damjana; Meriluoto, Jussi; Lujić, Jelena; Marinović, Zoran; Važić, Tamara; Nybom, Sonja; Simeunović, Jelica; Dulić, Tamara; Lazić, Gospava; Petrović, Tamaš; Vuković-Gačić, Branka; Sunjog, Karolina; Kolarević, Stoimir; Kračun-Kolarević, Margareta; Subakov-Simić, Gordana; Miljanović, Branko; Codd, Geoffrey A; Svirčev, Zorica

    2018-04-20

    Cyanobacteria are present in many aquatic ecosystems in Serbia. Lake Ludoš, a wetland area of international significance and an important habitat for waterbirds, has become the subject of intense research interest because of practically continuous blooming of cyanobacteria. Analyses of water samples indicated a deterioration of ecological condition and water quality, and the presence of toxin-producing cyanobacteria (the most abundant Limnothrix redekei, Pseudanabaena limnetica, Planktothrix agardhii and Microcystis spp.). Furthermore, microcystins were detected in plants and animals from the lake: in macrophyte rhizomes (Phragmites communis, Typha latifolia and Nymphaea elegans), and in the muscle, intestines, kidneys, gonads and gills of fish (Carassius gibelio). Moreover, histopathological deleterious effects (liver, kidney, gills and intestines) and DNA damage (liver and gills) were observed in fish. A potential treatment for the reduction of cyanobacterial populations employing hydrogen peroxide was tested during this study. The treatment was not effective in laboratory tests although further in-lake trials are needed to make final conclusions about the applicability of the method. Based on our observations of the cyanobacterial populations and cyanotoxins in the water, as well as other aquatic organisms and, a survey of historical data on Lake Ludoš, it can be concluded that the lake is continuously in a poor ecological state. Conservation of the lake in order to protect the waterbirds (without urgent control of eutrophication) actually endangers them and the rest of the biota in this wetland habitat, and possibly other ecosystems. Thus, urgent measures for restoration are required, so that the preservation of this Ramsar site would be meaningful. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Use of Ion-Channel Modulating Agents to Study Cyanobacterial Na+ - K+ Fluxes

    Directory of Open Access Journals (Sweden)

    Pomati Francesco

    2004-01-01

    Full Text Available Here we describe an experimental design aimed to investigate changes in total cellular levels of Na+ and K+ ions in cultures of freshwater filamentous cyanobacteria. Ion concentrations were measured in whole cells by flame photometry. Cellular Na+ levels increased exponentially with rising alkalinity, with K+ levels being maximal for optimal growth pH (~8. At standardized pH conditions, the increase in cellular Na+, as induced by NaCl at 10 mM, was coupled by the two sodium channel-modulating agents lidocaine hydrochloride at 1 &mgr;M and veratridine at 100 &mgr;M. Both the channel-blockers amiloride (1 mM and saxitoxin (1 &mgr;M, decreased cell-bound Na+ and K+ levels. Results presented demonstrate the robustness of well-defined channel blockers and channel-activators in the study of cyanobacterial Na+- K+ fluxes.

  6. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

    Science.gov (United States)

    He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie

    2010-11-22

    In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

  7. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  8. Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy.

    Science.gov (United States)

    Xiong, Wei; Tang, Yiming; Shao, Changyu; Zhao, Yueqi; Jin, Biao; Huang, Tingting; Miao, Ya'nan; Shu, Lei; Ma, Weimin; Xu, Xurong; Tang, Ruikang

    2017-11-07

    Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited. Inspired by diatoms with naturally generated silica shells, we found that silica nanoparticles can be spontaneously incorporated onto cyanobacteria in the presence of poly(diallyldimethylammonium chloride), a cationic polyelectrolyte that can simulate biosilicification proteins. The resulting cyanobacteria-SiO 2 complexes can remain sedimentary in water. This strategy significantly inhibited the photoautotrophic growth of the cyanobacteria and decreased their biomass accumulation, which could effectively suppress harmful bloom events. Consequently, several of the adverse consequences of cyanobacteria blooms in water bodies, including oxygen consumption and microcystin release, were significantly alleviated. Based on the above results, we propose that the silica nanoparticle treatment has the potential for use as an efficient strategy for preventing cyanobacteria blooms.

  9. [Identification of two cyanobacterial strains isolated from the Kotel'nikovskii hot spring of the Baikal rift].

    Science.gov (United States)

    Sorokovnikova, E G; Tikhonova, I V; Belykh, O I; Klimenkov, I V; Likhoshvaĭ, E V

    2008-01-01

    Two cyanobacterial strains, Pseudanabaena sp. 0411 and Synechococcus sp. 0431, were isolated from a sample collected in the Kotel'nikovskii hot spring of the Baikal rift. According to the results of light and transmission electron microscopy, as well as of the phylogenetic analysis of the 16S rRNA gene, these cyanobacteria were classified as Pseudanabaena sp. nov. and Synechococcus bigranulatus Skuja. The constructed phylogenetic tree shows that the studied strains are positioned in the clades of cyanobacteria isolated from hydrothermal vents of Asia and New Zealand, separately from marine and freshwater members of these genera, including those isolated from Lake Baikal.

  10. Dominance of cyanobacterial and cryptophytic assemblage correlated to CDOM at heavy metal contamination sites of Gujarat, India.

    Science.gov (United States)

    Patidar, Shailesh Kumar; Chokshi, Kaumeel; George, Basil; Bhattacharya, Sourish; Mishra, Sandhya

    2015-01-01

    Industrial clusters of Gujarat, India, generate high quantity of effluents which are received by aquatic bodies such as estuary and coastal water. In the present study, microalgal assemblage, heavy metals, and physico-chemical variables were studied from different habitats. Principal component analysis revealed that biovolume of cyanobacterial and cryptophytic community positively correlated with the heavy metal concentration (Hg, As, Zn, Fe, Mo, Ni, and Co) and chromophoric dissolved organic matter (CDOM) under hypoxic environment. Green algae and diatoms dominated at comparatively lower nitrate concentration which was positively associated with Pb and Mn.

  11. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms

    OpenAIRE

    Groendahl, Sophie; Fink, Patrick

    2017-01-01

    Background Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consu...

  12. Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change

    Energy Technology Data Exchange (ETDEWEB)

    Paerl, Hans W., E-mail: hpaerl@email.unc.edu; Hall, Nathan S.; Calandrino, Elizabeth S.

    2011-04-15

    Harmful (toxic, food web altering, hypoxia generating) cyanobacterial algal blooms (CyanoHABs) are proliferating world-wide due to anthropogenic nutrient enrichment, and they represent a serious threat to the use and sustainability of our freshwater resources. Traditionally, phosphorus (P) input reductions have been prescribed to control CyanoHABs, because P limitation is widespread and some CyanoHABs can fix atmospheric nitrogen (N{sub 2}) to satisfy their nitrogen (N) requirements. However, eutrophying systems are increasingly plagued with non N{sub 2} fixing CyanoHABs that are N and P co-limited or even N limited. In many of these systems N loads are increasing faster than P loads. Therefore N and P input constraints are likely needed for long-term CyanoHAB control in such systems. Climatic changes, specifically warming, increased vertical stratification, salinization, and intensification of storms and droughts play additional, interactive roles in modulating CyanoHAB frequency, intensity, geographic distribution and duration. In addition to having to consider reductions in N and P inputs, water quality managers are in dire need of effective tools to break the synergy between nutrient loading and hydrologic regimes made more favorable for CyanoHABs by climate change. The more promising of these tools make affected waters less hospitable for CyanoHABs by 1) altering the hydrology to enhance vertical mixing and/or flushing and 2) decreasing nutrient fluxes from organic rich sediments by physically removing the sediments or capping sediments with clay. Effective future CyanoHAB management approaches must incorporate both N and P loading dynamics within the context of altered thermal and hydrologic regimes associated with climate change. - Research Highlights: {yields} Toxic cyanobacterial blooms (CyanoHABs) increasingly threaten global water supplies. {yields} Human (nutrient) and climate (hydrology, temperature) changes synergistically promote CyanoHABs. {yields

  13. Effect of Different Growth Conditions on Certain Biochemical Parameters of Different Cyanobacterial Strains

    Directory of Open Access Journals (Sweden)

    Hammouda, O. E.

    2012-01-01

    Full Text Available Aims: Variation in the traditional growth medium conditions to enhance the production of lipids, carbohydrates, protein and the free amino acids content of three cyanobacterial species. Methodology and Results: Three species of cyanobacteria (Anabaena laxa, Anabaena fertilissima and Nostoc muscorum were collected from the culture collection of Soils, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt, to investigate their biochemical composition under different growth conditions, using BG110 (nitrogen free as growth medium. These conditions were represented by control medium, static glucose medium with (1%, w/v, aerated medium (aerated by bubbling technique depending on CO2 normally existed in air with a concentration of 0.03%, molasses medium (0.7%, v/v and aerated medium enriched with glucose (1%, w/v. Lipid content, total carbohydrates, soluble proteins and free amino acids were determined at the previous conditions. Glucose at 0.7% (w/v was the most favorable for lipid production in A. laxa, where it exhibited the highest lipid content (427 μg/g fresh wt.. Increasing molasses concentration up to 0.7% (v/v produced an increase in lipid contents of the tested cyanobacterial strains. The highest lipid content of both N. muscorum (366.2 μg/g fresh wt. and A. laxa (357.4 μg/g fresh wt. were recorded at molasses concentrations of 0.1 and 0.7% (v/v, respectively. A. laxa expressed high significant values for both proteins (31.6 μg/mL and free amino acids (40.5 mg/g dry wt. after 6 days of incubation period under aerated enriched glucose condition (1%, w/v. Also, at the same growth conditions, A. fertilissima exhibited high significant values for carbohydrates at 4th day (876.8 mg/g dry wt.. Conclusion, significance and impact of study: Aerated enriched glucose medium (1%, w/v was the best growth medium condition used in the present study.

  14. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    Science.gov (United States)

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  15. Nitrogenase genes in non-cyanobacterial plankton: prevalence, diversity, and regulation in marine waters

    DEFF Research Database (Denmark)

    Riemann, Lasse; Farnelid, H.; Steward, G.F.

    2010-01-01

    Marine waters are generally considered to be nitrogen (N) limited and are therefore favourable environments for diazotrophs, i.e. organisms converting atmospheric N2 into ammonium or nitrogen oxides available for growth. In some regions, this import of N supports up to half of the primary...... productivity. Diazotrophic Cyanobacteria appear to be the major contributors to marine N2 fixation in surface waters, whereas the contribution of heterotrophic or chemoautotrophic diazotrophs to this process is usually regarded inconsequential. Culture-independent studies reveal that non......-cyanobacterial diazotrophs are diverse, widely distributed, and actively expressing the nitrogenase gene in marine and estuarine environments. The detection of nifH genes and nifH transcripts, even in N-replete marine waters, suggests that N2 fixation is an ecologically important process throughout the oceans. Because...

  16. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models.

    Science.gov (United States)

    Kuklin, Nelly A; Pancari, Gregory D; Tobery, Timothy W; Cope, Leslie; Jackson, Jesse; Gill, Charles; Overbye, Karen; Francis, Kevin P; Yu, Jun; Montgomery, Donna; Anderson, Annaliesa S; McClements, William; Jansen, Kathrin U

    2003-09-01

    Staphylococcal infections associated with catheter and prosthetic implants are difficult to eradicate and often lead to chronic infections. Development of novel antibacterial therapies requires simple, reliable, and relevant models for infection. Using bioluminescent Staphylococcus aureus, we have adapted the existing foreign-body and deep-wound mouse models of staphylococcal infection to allow real-time monitoring of the bacterial colonization of catheters or tissues. This approach also enables kinetic measurements of bacterial growth and clearance in each infected animal. Persistence of infection was observed throughout the course of the study until termination of the experiment at day 16 in a deep-wound model and day 21 in the foreign-body model, providing sufficient time to test the effects of antibacterial compounds. The usefulness of both animal models was assessed by using linezolid as a test compound and comparing bioluminescent measurements to bacterial counts. In the foreign-body model, a three-dose antibiotic regimen (2, 5, and 24 h after infection) resulted in a decrease in both luminescence and bacterial counts recovered from the implant compared to those of the mock-treated infected mice. In addition, linezolid treatment prevented the formation of subcutaneous abscesses, although it did not completely resolve the infection. In the thigh model, the same treatment regimen resulted in complete resolution of the luminescent signal, which correlated with clearance of the bacteria from the thighs.

  17. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.La mayoría de las investigaciones sobre los hongos bioluminiscentes se ha centrado en relaciones taxonómicas. Los aspectos básicos de la historia natural y relaciones ecológicas de este grupo son poco conocidos. En este estudio, comparamos la distribución de hongos bioluminiscentes entre el bosque primario y el secundario en la Estación Biológica La Selva, Costa Rica en relación con cuatro tipos de suelo. El estudio se realizó durante la estación lluviosa

  18. The responses of photosynthesis and oxygen consumption to short-term changes in temperature and irradiance in a cyanobacterial mat (Ebro Delta, Spain)

    DEFF Research Database (Denmark)

    Epping, E.H.G.; Kühl, Michael

    2000-01-01

    We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat was incu......We have evaluated the effects of short-term changes in incident irradiance and temperature on oxygenic photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat from the Ebro Delta, Spain, in which Microcoleus chthonoplastes was the dominant phototrophic organism. The mat...... was incubated in the laboratory at 15, 20, 25 and 308C at incident irradiances ranging from 0 to 1000 mmol photons m22 s21. Oxygen microsensors were used to measure steady-state oxygen profiles and the rates of gross photosynthesis, which allowed the calculation of areal gross photosynthesis, areal net oxygen...... production, and oxygen consumption in the aphotic layer of the mat. The lowest surface irradiance that resulted in detectable rates of gross photosynthesis increased with increasing temperature from 50 mmol photons m22 s21 at 158C to 500 mmol photons m22 s21 at 308C. These threshold irradiances were also...

  19. Volatile organic chemicals of a shore-dwelling cyanobacterial mat community.

    Science.gov (United States)

    Evans, W G

    1994-02-01

    The main components of a cyanobacterial mat community of a hypersaline lake shore consist of edaphic, mat-forming strains (ecophenes), and littoral strains ofOscillatoria animalis Agardh andO. subbrevis Schmidle, other microorganisms associated with these cyanobacteria, several species ofBembidion (Carabidae: Coleoptera), and two halophytic flowering plants:Puccinellia nuttalliana (salt meadow grass) andSalicornia europaea rubra (samphire). The volatile organic compounds of this community are a blend of those emitted by each of these components such as the C17 alka(e)nes, geosmin, 2-methylisoborneol,β-cyclocitral,β-ionone, dimethyl sulfide, and dimethyl trisulfide of cyanobacteria and associated microorganisms; alcohols, esters, and aldehydes usually associated with flowering plants; and possibly some insect-derived esters, particularly isopropyl tetradecanoate. The dominant compounds were: C11, C13, C15, and C17 alka(e)nes, methyl esters of C16 and C18:2 acids, isopropyl tetradecanoate, heptanal, 3-octanone and 2-nonanone, the acyclic terpene linalool, and the alcohols 1-heptanol, 1-hexanol, 1-octanol, 3-hexen-1-ol, and 2-octen-1-ol. It is concluded that this community may be distinguished from related communities by its repertoire of volatile organic compounds.

  20. Bioluminescent Bioreporter Pseudomonas putida TVA8 as a Detector of Water Pollution. Operational Conditions and Selectivity of Free Cells Sensor

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Pazlarová, J.; Hlavatá, Alena; Ripp, S.; Sayler, G.S.

    2011-01-01

    Roč. 11, č. 3 (2011), s. 882-887 ISSN 1470-160X R&D Projects: GA MŠk ME 893 Institutional research plan: CEZ:AV0Z40720504 Keywords : whole-cell biosensor * bioluminiscence * pseudomonas putida TVA8 Subject RIV: EI - Biotechnology ; Bionics Impact factor: 2.695, year: 2011