WorldWideScience

Sample records for bioluminescence tomography based

  1. Bioluminescence tomography based on the phase approximation model

    OpenAIRE

    Cong, W; Wang, G.

    2010-01-01

    A reconstruction method of bioluminescence sources is proposed based on a phase approximation model. Compared with the diffuse approximation, this phase approximation model more correctly predicts bioluminescence photon propagation in biological tissues, so that bioluminescence tomography can accurately locate and quantify the distribution of bioluminescence sources. The compressive sensing (CS) technique is applied to regularize the inverse source reconstruction to enhance numerical stabilit...

  2. A novel reconstruction algorithm for bioluminescent tomography based on Bayesian compressive sensing

    Science.gov (United States)

    Wang, Yaqi; Feng, Jinchao; Jia, Kebin; Sun, Zhonghua; Wei, Huijun

    2016-03-01

    Bioluminescence tomography (BLT) is becoming a promising tool because it can resolve the biodistribution of bioluminescent reporters associated with cellular and subcellular function through several millimeters with to centimeters of tissues in vivo. However, BLT reconstruction is an ill-posed problem. By incorporating sparse a priori information about bioluminescent source, enhanced image quality is obtained for sparsity based reconstruction algorithm. Therefore, sparsity based BLT reconstruction algorithm has a great potential. Here, we proposed a novel reconstruction method based on Bayesian compressive sensing and investigated its feasibility and effectiveness with a heterogeneous phantom. The results demonstrate the potential and merits of the proposed algorithm.

  3. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    Science.gov (United States)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  4. Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection

    Science.gov (United States)

    Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie

    2012-03-01

    Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.

  5. Improved AFEM algorithm for bioluminescence tomography based on dual-mesh alternation strategy

    Institute of Scientific and Technical Information of China (English)

    Wei Li; Heng Zhao; Xiaochao Qu; Yanbin Hou; Xueli Chen; Duofang Chen; Xiaowei He; Qitan Zhang; Jimin Liang

    2012-01-01

    Adaptive finite element method (AFEM) is broadly adopted to recover the internal source in biological tissues.In this letter,a novel dual-mesh alternation strategy (dual-mesh AFEM) is developed for bioluminescence tomography.By comprehensively considering the error estimation of the finite element method solution on each mesh,two different adaptive strategies based on the error indicator of the reconstructed source and the photon flux density are used alternately in the process.Combined with the constantly adjusted permissible region in the adaptive process,the new algorithm can achieve a more accurate source location compared with the AFEM in the previous experiments.%Adaptive finite element method (AFEM) is broadly adopted to recover the internal source in biological tissues. In this letter, a novel dual-mesh alternation strategy (dual-mesh AFEM) is developed for biolumi-nescence tomography. By comprehensively considering the error estimation of the finite element method solution on each mesh, two different adaptive strategies based on the error indicator of the reconstructed source and the photon flux density are used alternately in the process. Combined with the constantly adjusted permissible region in the adaptive process, the new algorithm can achieve a more accurate source location compared with the AFEM in the previous experiments.

  6. A Table-Based Random Sampling Simulation for Bioluminescence Tomography

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    2006-01-01

    Full Text Available As a popular simulation of photon propagation in turbid media, the main problem of Monte Carlo (MC method is its cumbersome computation. In this work a table-based random sampling simulation (TBRS is proposed. The key idea of TBRS is to simplify multisteps of scattering to a single-step process, through randomly table querying, thus greatly reducing the computing complexity of the conventional MC algorithm and expediting the computation. The TBRS simulation is a fast algorithm of the conventional MC simulation of photon propagation. It retained the merits of flexibility and accuracy of conventional MC method and adapted well to complex geometric media and various source shapes. Both MC simulations were conducted in a homogeneous medium in our work. Also, we present a reconstructing approach to estimate the position of the fluorescent source based on the trial-and-error theory as a validation of the TBRS algorithm. Good agreement is found between the conventional MC simulation and the TBRS simulation.

  7. L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography

    Science.gov (United States)

    Chen, Xueli; Yang, Defu; Zhang, Qitan; Liang, Jimin

    2014-05-01

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l1/2 regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l1/2 regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l1 regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.

  8. Ultrasound Modulated Bioluminescence Tomography

    CERN Document Server

    Bal, Guillaume

    2013-01-01

    We propose a method to reconstruct the density of a luminescent source in a highly-scattering medium from ultrasound modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the diffusion equation.

  9. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    Science.gov (United States)

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  10. L{sub 1/2} regularization based numerical method for effective reconstruction of bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Yang, Defu; Zhang, Qitan; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an 710071 (China); Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education (China)

    2014-05-14

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l{sub 1/2} regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l{sub 1/2} regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l{sub 1} regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.

  11. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Science.gov (United States)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP3) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  12. An efficient reconstruction method for bioluminescence tomography based on two-step iterative shrinkage approach

    Science.gov (United States)

    Guo, Wei; Jia, Kebin; Tian, Jie; Han, Dong; Liu, Xueyan; Wu, Ping; Feng, Jinchao; Yang, Xin

    2012-03-01

    Among many molecular imaging modalities, Bioluminescence tomography (BLT) is an important optical molecular imaging modality. Due to its unique advantages in specificity, sensitivity, cost-effectiveness and low background noise, BLT is widely studied for live small animal imaging. Since only the photon distribution over the surface is measurable and the photo propagation with biological tissue is highly diffusive, BLT is often an ill-posed problem and may bear multiple solutions and aberrant reconstruction in the presence of measurement noise and optical parameter mismatches. For many BLT practical applications, such as early detection of tumors, the volumes of the light sources are very small compared with the whole body. Therefore, the L1-norm sparsity regularization has been used to take advantage of the sparsity prior knowledge and alleviate the ill-posedness of the problem. Iterative shrinkage (IST) algorithm is an important research achievement in a field of compressed sensing and widely applied in sparse signal reconstruction. However, the convergence rate of IST algorithm depends heavily on the linear operator. When the problem is ill-posed, it becomes very slow. In this paper, we present a sparsity regularization reconstruction method for BLT based on the two-step iterated shrinkage approach. By employing Two-step strategy of iterative reweighted shrinkage (IRS) to improve IST, the proposed method shows faster convergence rate and better adaptability for BLT. The simulation experiments with mouse atlas were conducted to evaluate the performance of proposed method. By contrast, the proposed method can obtain the stable and comparable reconstruction solution with less number of iterations.

  13. A measurement-based analytical approach to the bioluminescence tomography problem

    Science.gov (United States)

    Erkol, Hakan; Demirkiran, Aytac; Kipergil, Esra-Aytac; Uluc, Nasire; Unlu, Mehmet B.

    2014-03-01

    This work presents an analytical approach for the solution of the tissue diffusion equation based on the bound- ary measurements. We consider a bioluminescent point source in both homogeneous and heterogeneous circular turbid media. The point source is described by the Dirac delta function. Analytical expressions for the strength and position of the point source are obtained introducing boundary measurements and then applying appropriate boundary conditions. In addition, numerical simulations are performed for the position of the source. Calculations show that that the analytical results are in a good accordance with the numerical results.

  14. Moment searching algorithm for bioluminescence tomography

    Institute of Scientific and Technical Information of China (English)

    Ludong Jin; Yan Wu; Jie Tian; Heyu Huang; Xiaochao Qu

    2009-01-01

    To avoid the ill-posedness in the inverse problem of bioluminescence tomography, a moment searching algorithm fusing the finite element method (FEM) with the moment concept in theoretical mechanics is developed. In the algorithm, the source's information is mapped to the surface photon flux density by FEM, and the source's position is modified with the feedback through the algorithm of barycenter searching, which makes full use of the position information of the photon flux density on surface. The position is modified in every iterative step and will finally converge to the real source's value theoretically.

  15. Hybrid radiosity-SP{sub 3} equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Zhang, Qitan; Yang, Defu; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-01-14

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP{sub 3} equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP{sub 3}) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  16. Ultrasound-modulated bioluminescence tomography

    Science.gov (United States)

    Bal, Guillaume; Schotland, John C.

    2014-03-01

    We propose a method to reconstruct the density of a luminescent source in a highly scattering medium from ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the diffusion equation.

  17. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    Directory of Open Access Journals (Sweden)

    Yujie Lv

    2007-01-01

    Full Text Available To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT, the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs and a priori permissible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT reconstruction.

  18. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    Science.gov (United States)

    Lv, Yujie; Tian, Jie; Cong, Wenxiang; Wang, Ge

    2007-01-01

    To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT), the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs) and a priori permissible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT reconstruction. PMID:18256736

  19. BIOLUMINESCENCE TOMOGRAPHY: BIOMEDICAL BACKGROUND, MATHEMATICAL THEORY, AND NUMERICAL APPROXIMATION

    Institute of Scientific and Technical Information of China (English)

    Weimin Han; Ce Wang

    2008-01-01

    Over the last couple of years molecular imaging has been rapidly developed to study physiological and pathological processes in vivo at the cellular and molecular levels. Among molecular imaging modalities, optical imaging stands out for its unique advantages, especially performance and cost-effectiveness. Bioluminescence tomography (BLT) is an emerging optical imaging mode with promising biomedical advantages. In this survey paper, we explain the biomedical significance of BLT, summarize theoretical results on the analysis and numerical solution of a diffusion based BLT model, and comment on a few extensions for the study of BLT.

  20. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used

  1. Enhanced Landweber algorithm via Bregman iterations for bioluminescence tomography

    Science.gov (United States)

    Xia, Yi; Zhang, Meng

    2014-09-01

    Bioluminescence tomography (BLT) is an important optical molecular imaging modality aimed at visualizing physiological and pathological processes at cellular and molecular levels. While the forward process of light propagation is described by the diffusion approximation to radiative transfer equation, BLT is the inverse problem to reconstruct the 3D localization and quantification of internal bioluminescent sources distribution. Due to the inherent ill-posedness of the BLT problem, regularization is generally indispensable to obtain more favorable reconstruction. In particular, total variation (TV) regularization is known to be effective for piecewise-constant source distribution which can permit sharp discontinuities and preserve edges. However, total variation regularization generally suffers from the unsatisfactory staircasing effect. In this work, we introduce the Bregman iterative regularization to alleviate this degeneration and enhance the numerical reconstruction of BLT. Based on the existing Landweber method (LM), we put forward the Bregman-LM-TV algorithm for BLT. Numerical experiments are carried out and preliminary simulation results are reported to evaluate the proposed algorithms. It is found that Bregman-LM-TV can significantly outperform the individual Landweber method for BLT when the source distribution is piecewise-constant.

  2. Spectrally resolved bioluminescence tomography with the third-order simplified spherical harmonics approximation

    Science.gov (United States)

    Lu, Yujie; Douraghy, Ali; Machado, Hidevaldo B.; Stout, David; Tian, Jie; Herschman, Harvey; Chatziioannou, Arion F.

    2009-11-01

    Bioluminescence imaging has been extensively applied to in vivo small animal imaging. Quantitative three-dimensional bioluminescent source information obtained by using bioluminescence tomography can directly and much more accurately reflect biological changes as opposed to planar bioluminescence imaging. Preliminary simulated and experimental reconstruction results demonstrate the feasibility and promise of bioluminescence tomography. However, the use of multiple approximations, particularly the diffusion approximation theory, affects the quality of in vivo small animal-based image reconstructions. In the development of new reconstruction algorithms, high-order approximation models of the radiative transfer equation and spectrally resolved data introduce new challenges to the reconstruction algorithm and speed. In this paper, an SP3-based (the third-order simplified spherical harmonics approximation) spectrally resolved reconstruction algorithm is proposed. The simple linear relationship between the unknown source distribution and the spectrally resolved data is established in this algorithm. A parallel version of this algorithm is realized, making BLT reconstruction feasible for the whole body of small animals especially for fine spatial domain discretization. In simulation validations, the proposed algorithm shows improved reconstruction quality compared with diffusion approximation-based methods when high absorption, superficial sources and detection modes are considered. In addition, comparisons between fine and coarse mesh-based BLT reconstructions show the effects of numerical errors in reconstruction image quality. Finally, BLT reconstructions using in vivo mouse experiments further demonstrate the potential and effectiveness of the SP3-based reconstruction algorithm.

  3. Algorithm for localized adaptive diffuse optical tomography and its application in bioluminescence tomography

    Science.gov (United States)

    Naser, Mohamed A.; Patterson, Michael S.; Wong, John W.

    2014-04-01

    A reconstruction algorithm for diffuse optical tomography based on diffusion theory and finite element method is described. The algorithm reconstructs the optical properties in a permissible domain or region-of-interest to reduce the number of unknowns. The algorithm can be used to reconstruct optical properties for a segmented object (where a CT-scan or MRI is available) or a non-segmented object. For the latter, an adaptive segmentation algorithm merges contiguous regions with similar optical properties thereby reducing the number of unknowns. In calculating the Jacobian matrix the algorithm uses an efficient direct method so the required time is comparable to that needed for a single forward calculation. The reconstructed optical properties using segmented, non-segmented, and adaptively segmented 3D mouse anatomy (MOBY) are used to perform bioluminescence tomography (BLT) for two simulated internal sources. The BLT results suggest that the accuracy of reconstruction of total source power obtained without the segmentation provided by an auxiliary imaging method such as x-ray CT is comparable to that obtained when using perfect segmentation.

  4. Bioluminescence.

    Science.gov (United States)

    Jones, M. Gail

    1993-01-01

    Describes bioluminescence and the chemistry of how it occurs. Presents information for conducting the following classroom activities: (1) firefly mimic; (2) modeling deep-sea fish; (3) sea fireflies; and (4) the chemistry of light. (PR)

  5. Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Lv Yujie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Cong Wenxiang [Division of Biomedical Imaging, VT-WFU School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Wang Ge [Division of Biomedical Imaging, VT-WFU School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Yang Wei [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Qin Chenghu [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China); Xu Min [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, PO Box 2728, Beijing 100080 (China)

    2007-08-07

    As a molecular imaging technique, bioluminescence tomography (BLT) with its highly sensitive detection and facile operation can significantly reveal molecular and cellular information in vivo at the whole-body small animal level. However, because of complex photon transportation in biological tissue and boundary detection data with high noise, bioluminescent sources in deeper positions generally cannot be localized. In our previous work, we used achromatic or monochromatic measurements and an a priori permissible source region strategy to develop a multilevel adaptive finite-element algorithm. In this paper, we propose a spectrally solved tomographic algorithm with a posteriori permissible source region selection. Multispectral measurements, and anatomical and optical information first deal with the nonuniqueness of BLT and constrain the possible solution of source reconstruction. The use of adaptive mesh refinement and permissible source region based on a posteriori measures not only avoids the dimension disaster arising from the multispectral measured data but also reduces the ill-posedness of BLT and therefore improves the reconstruction quality. Reconsideration of the optimization method and related modifications further enhance reconstruction robustness and efficiency. We also incorporate into the method some improvements for reducing computational burdens. Finally, using a whole-body virtual mouse phantom, we demonstrate the capability of the proposed BLT algorithm to reconstruct accurately bioluminescent sources in deeper positions. In terms of optical property errors and two sources of discernment in deeper positions, this BLT algorithm represents the unique predominance for BLT reconstruction.

  6. Design and implementation of an optical simulation environment for bioluminescent tomography studies

    Institute of Scientific and Technical Information of China (English)

    LI Hui; TIAN Jie; LUO Jie; L(U) Yujie; CONG Wenxiang; WANG Ge

    2007-01-01

    As a challenging task for bioluminescent tomography simulation, a virtual optical environment is needed to solve the forward problem accurately, that is, to achieve a high precision for bioluminescent signal synthesis on the external body surface of a small animal. The molecular optical simulation environment named MOSE is implemented using the C + + programming language and the OpenGL techniques, including a user-friendly interface with interactive tools facilitating users' operations. The accuracy of the virtual optical environment is verified by error analysis of mesh simplification and comparison between MOSE results and experimental data. This virtual optical environment is accurate, flexible and efficient to simulate the photon propagation in complicated tissues, which has a great potential to become a software platform for bioluminescent tomography studies and other molecular imaging applications.

  7. Total variation regularization for bioluminescence tomography with the split Bregman method.

    Science.gov (United States)

    Feng, Jinchao; Qin, Chenghu; Jia, Kebin; Zhu, Shouping; Liu, Kai; Han, Dong; Yang, Xin; Gao, Quansheng; Tian, Jie

    2012-07-01

    Regularization methods have been broadly applied to bioluminescence tomography (BLT) to obtain stable solutions, including l2 and l1 regularizations. However, l2 regularization can oversmooth reconstructed images and l1 regularization may sparsify the source distribution, which degrades image quality. In this paper, the use of total variation (TV) regularization in BLT is investigated. Since a nonnegativity constraint can lead to improved image quality, the nonnegative constraint should be considered in BLT. However, TV regularization with a nonnegativity constraint is extremely difficult to solve due to its nondifferentiability and nonlinearity. The aim of this work is to validate the split Bregman method to minimize the TV regularization problem with a nonnegativity constraint for BLT. The performance of split Bregman-resolved TV (SBRTV) based BLT reconstruction algorithm was verified with numerical and in vivo experiments. Experimental results demonstrate that the SBRTV regularization can provide better regularization quality over l2 and l1 regularizations.

  8. Incorporating MRI structural information into bioluminescence tomography: system, heterogeneous reconstruction and in vivo quantification.

    Science.gov (United States)

    Zhang, Jun; Chen, Duofang; Liang, Jimin; Xue, Huadan; Lei, Jing; Wang, Qin; Chen, Dongmei; Meng, Ming; Jin, Zhengyu; Tian, Jie

    2014-06-01

    Combining two or more imaging modalities to provide complementary information has become commonplace in clinical practice and in preclinical and basic biomedical research. By incorporating the structural information provided by computed tomography (CT) or magnetic resonance imaging (MRI), the ill poseness nature of bioluminescence tomography (BLT) can be reduced significantly, thus improve the accuracies of reconstruction and in vivo quantification. In this paper, we present a small animal imaging system combining multi-view and multi-spectral BLT with MRI. The independent MRI-compatible optical device is placed at the end of the clinical MRI scanner. The small animal is transferred between the light tight chamber of the optical device and the animal coil of MRI via a guide rail during the experiment. After the optical imaging and MRI scanning procedures are finished, the optical images are mapped onto the MRI surface by interactive registration between boundary of optical images and silhouette of MRI. Then, incorporating the MRI structural information, a heterogeneous reconstruction algorithm based on finite element method (FEM) with L 1 normalization is used to reconstruct the position, power and region of the light source. In order to validate the feasibility of the system, we conducted experiments of nude mice model implanted with artificial light source and quantitative analysis of tumor inoculation model with MDA-231-GFP-luc. Preliminary results suggest the feasibility and effectiveness of the prototype system.

  9. In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography

    Directory of Open Access Journals (Sweden)

    Coralie Genevois

    2016-10-01

    Full Text Available Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI using the firefly luciferase (Fluc as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI, fluorescence diffuse optical tomography (fDOT, and fluorescence molecular Imaging (FMT®. A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.

  10. Evaluation of On- and Off-Line Bioluminescence Tomography System for Focal Irradiation Guidance.

    Science.gov (United States)

    Zhang, Bin; Wong, John W; Iordachita, Iulian I; Reyes, Juvenal; Nugent, Katriana; Tran, Phuoc T; Tuttle, Stephen W; Koumenis, Constantinos; Wang, Ken Kang-Hsin

    2016-12-01

    In response to the limitations of computed tomography (CT) and cone-beam CT (CBCT) in irradiation guidance, especially for soft-tissue targets without the use of contrast agents, our group developed a solution that implemented bioluminescence tomography (BLT) as the image-guidance modality for preclinical radiation research. However, adding such a system to existing small animal irradiators is no small task. A potential solution is to utilize an off-line BLT system in close proximity to the irradiator, with stable and effective animal transport between the two systems. In this study, we investigated the localization accuracy of an off-line BLT system when used for the small animal radiation research platform (SARRP) and compared the results with those of an on-line system. The CBCT was equipped on both the off-line BLT system and the SARRP, with a distance of 5 m between them. To evaluate the setup error during animal transport between the two systems, the mice underwent CBCT imaging on the SARRP and were then transported to the off-line system for a second CBCT imaging session. The normalized intensity difference of the two images and the corresponding histogram and correlation were computed to evaluate if the transport process perturbed animal positioning. Strong correlation (correlation coefficients >0.95) between the SARRP and the off-line mouse CBCT was observed. The offset of the implanted light source center can be maintained within 0.2 mm during transport. To compare the target localization accuracy using the on-line SARRP BLT and the off-line system, a self-illuminated bioluminescent source was implanted in the abdomen of anesthetized mice. In addition to the application for dose calculation, CBCT imaging was also employed to generate the mesh grid of the imaged mouse for BLT reconstruction. Two scenarios were devised and compared, which involved localization of the luminescence source based on either: 1. on-line SARRP bioluminescence image and CBCT; or 2

  11. Computationally efficient perturbative forward modeling for 3D multispectral bioluminescence and fluorescence tomography

    Science.gov (United States)

    Dutta, Joyita; Ahn, Sangtae; Li, Changqing; Chaudhari, Abhijit J.; Cherry, Simon R.; Leahy, Richard M.

    2008-03-01

    The forward problem of optical bioluminescence and fluorescence tomography seeks to determine, for a given 3D source distribution, the photon density on the surface of an animal. Photon transport through tissues is commonly modeled by the diffusion equation. The challenge, then, is to accurately and efficiently solve the diffusion equation for a realistic animal geometry and heterogeneous tissue types. Fast analytical solvers are available that can be applied to arbitrary geometries but assume homogeneity of tissue optical properties and hence have limited accuracy. The finite element method (FEM) with volume tessellation allows reasonably accurate modeling of both animal geometry and tissue heterogeneity, but this approach is computationally intensive. The computational challenge is heightened when one is working with multispectral data to improve source localization and conditioning of the inverse problem. Here we present a fast forward model based on the Born approximation that falls in between these two approaches. Our model introduces tissue heterogeneity as perturbations in diffusion and absorption coefficients at rectangular grid points inside a mouse atlas. These reflect as a correction term added to the homogeneous forward model. We have tested our model by performing source localization studies first with a biolumnescence simulation setup and then with an experimental setup using a fluorescent source embedded in an inhomogeneous phantom that mimicks tissue optical properties.

  12. Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update

    Science.gov (United States)

    Darne, Chinmay; Lu, Yujie; Sevick-Muraca, Eva M.

    2014-01-01

    Emerging fluorescence and bioluminescence tomography approaches have several common, yet several distinct features from established emission tomographies of PET and SPECT. Although both nuclear and optical imaging modalities involve counting of photons, nuclear imaging techniques collect the emitted high energy (100-511 keV) photons after radioactive decay of radionuclides while optical techniques count low-energy (1.5-4.1 eV) photons that are scattered and absorbed by tissues requiring models of light transport for quantitative image reconstruction. Fluorescence imaging has been recently translated into clinic demonstrating high sensitivity, modest tissue penetration depth, and fast, millisecond image acquisition times. As a consequence, the promise of quantitative optical tomography as a complement of small animal PET and SPECT remains high. In this review, we summarize the different instrumentation, methodological approaches and schema for inverse image reconstructions for optical tomography, including luminescence and fluorescence modalities, and comment on limitations and key technological advances needed for further discovery research and translation.

  13. Accounting for filter bandwidth improves the quantitative accuracy of bioluminescence tomography

    Science.gov (United States)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie L.; Cobbold, Mark; Dehghani, Hamid

    2015-09-01

    Bioluminescence imaging is a noninvasive technique whereby surface weighted images of luminescent probes within animals are used to characterize cell count and function. Traditionally, data are collected over the entire emission spectrum of the source using no filters and are used to evaluate cell count/function over the entire spectrum. Alternatively, multispectral data over several wavelengths can be incorporated to perform tomographic reconstruction of source location and intensity. However, bandpass filters used for multispectral data acquisition have a specific bandwidth, which is ignored in the reconstruction. In this work, ignoring the bandwidth is shown to introduce a dependence of the recovered source intensity on the bandwidth of the filters. A method of accounting for the bandwidth of filters used during multispectral data acquisition is presented and its efficacy in increasing the quantitative accuracy of bioluminescence tomography is demonstrated through simulation and experiment. It is demonstrated that while using filters with a large bandwidth can dramatically decrease the data acquisition time, if not accounted for, errors of up to 200% in quantitative accuracy are introduced in two-dimensional planar imaging, even after normalization. For tomographic imaging, the use of this method to account for filter bandwidth dramatically improves the quantitative accuracy.

  14. Multi-projection bioluminescence tomography guided system for small animal radiation research platform (SARRP)

    Science.gov (United States)

    Zhang, Bin; Iordachita, Iulian; Wong, John W.; Wang, Ken Kang-Hsin

    2016-03-01

    Cone beam computed tomography (CBCT) is limited in guiding irradiation for soft tissue targets. As a complementary imaging modality, bioluminescence tomography (BLT) provides strong soft tissue contrast. We developed a dual-use BLT system which consists of an optical assembly, a mobile cart and an independent mouse bed. The system is motorized which can easily dock onto an independent mouse bed operating as a standalone system for longitudinal bioluminescence imaging (BLI)/BLT studies and also dock onto the SARRP for on-line radiation guidance. Our initial tests for the system demonstrate that (i) the imaging depth is 28 mm, (ii) the optical background is sufficiently low and uniform, (iii) the non-uniform response of the optical imaging can be corrected by the flat field correction, and (iv) the imaging acquisition speed was improved by an average of 3.7 times faster than our previous systems. We also presented a geometry calibration procedure to map the planar BLIs acquired at multi-projections onto the surface of the CBCT image. The CBCT is required to generate the mesh for BLT reconstruction and used for treatment planning and radiation delivery. Feasibility study of the geometry calibration was performed on a manual-docking prototype. The mean and maximum mapping accuracy is 0.3 and 0.6 mm. The performance of the proposed motorized dual-use system is expected to be superior to that of the manual-docking prototype because of the mechanism stability. We anticipate the dual-use system as a highly efficient and cost-effective platform to facilitate optical imaging for preclinical radiation research.

  15. Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region.

    Science.gov (United States)

    Naser, Mohamed A; Patterson, Michael S

    2011-11-01

    A reconstruction algorithm for bioluminescence tomography (BLT) has been developed. The algorithm numerically calculates the Green's function at different wavelengths using the diffusion equation and finite element method. The optical properties used in calculating the Green's function are reconstructed using diffuse optical tomography (DOT) and assuming anatomical information is provided by x-ray computed tomography or other methods. A symmetric system of equations is formed using the Green's function and the measured light fluence rate and the resulting eigenvalue problem is solved to get the eigenvectors of this symmetric system of equations. A space can be formed from the eigenvectors obtained and the reconstructed source is written as an expansion of the eigenvectors corresponding to non-zero eigenvalues. The coefficients of the expansion are found to obtain the reconstructed BL source distribution. The problem is solved iteratively by using a permissible source region that is shrunk by removing nodes with low probability to contribute to the source. Throughout this process the permissible region shrinks from the entire object to just a few nodes. The best estimate of the reconstructed source is chosen that which minimizes the difference between the calculated and measured light fluence rates. 3D simulations presented here show that the reconstructed source is in good agreement with the actual source in terms of locations, magnitudes, sizes, and total powers for both localized multiple sources and large inhomogeneous source distributions.

  16. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter g

  17. Smartphone-based low light detection for bioluminescence application

    Science.gov (United States)

    Kim, Huisung; Jung, Youngkee; Doh, Iyll-Joon; Lozano-Mahecha, Roxana Andrea; Applegate, Bruce; Bae, Euiwon

    2017-01-01

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an analyte. A simple cradle that houses the smartphone, sample tube, and collection lens supports the measuring platform, while noise reduction by ensemble averaging simultaneously lowers the background and enhances the signal from emitted photons. Five different types of smartphones, both Android and iOS devices, were tested, and the top two candidates were used to evaluate luminescence from the bioluminescent reporter Pseudomonas fluorescens M3A. The best results were achieved by OnePlus One (android), which was able to detect luminescence from ~106 CFU/mL of the bio-reporter, which corresponds to ~107 photons/s with 180 seconds of integration time.

  18. Smartphone-based low light detection for bioluminescence application

    Science.gov (United States)

    Kim, Huisung; Jung, Youngkee; Doh, Iyll-Joon; Lozano-Mahecha, Roxana Andrea; Applegate, Bruce; Bae, Euiwon

    2017-01-01

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an analyte. A simple cradle that houses the smartphone, sample tube, and collection lens supports the measuring platform, while noise reduction by ensemble averaging simultaneously lowers the background and enhances the signal from emitted photons. Five different types of smartphones, both Android and iOS devices, were tested, and the top two candidates were used to evaluate luminescence from the bioluminescent reporter Pseudomonas fluorescens M3A. The best results were achieved by OnePlus One (android), which was able to detect luminescence from ~106 CFU/mL of the bio-reporter, which corresponds to ~107 photons/s with 180 seconds of integration time. PMID:28067287

  19. Application of ATP-based bioluminescence for bioaerosol quantification: effect of sampling method.

    Science.gov (United States)

    Han, Taewon; Wren, Melody; DuBois, Kelsey; Therkorn, Jennifer; Mainelis, Gediminas

    2015-12-01

    An adenosine triphosphate (ATP)-based bioluminescence has potential to offer a quick and affordable method for quantifying bioaerosol samples. Here we report on our investigation into how different bioaerosol aerosolization parameters and sampling methods affect bioluminescence output per bacterium, and implications of that effect for bioaerosol research. Bacillus atrophaeus and Pseudomonas fluorescens bacteria were aerosolized by using a Collison nebulizer (BGI Inc., Waltham, MA) with a glass or polycarbonate jar and then collected for 15 and 60 min with: (1) Button Aerosol Sampler (SKC Inc., Eighty Four, PA) with polycarbonate, PTFE, and cellulose nitrate filters, (2) BioSampler (SKC Inc.) with 5 and 20 mL of collection liquid, and (3) our newly developed Electrostatic Precipitator with Superhydrophobic Surface (EPSS). For all aerosolization and sampling parameters we compared the ATP bioluminescence output per bacterium relative to that before aerosolization and sampling. In addition, we also determined the ATP reagent storage and preparation conditions that that do not affect the bioluminescence signal intensity. Our results show that aerosolization by a Collison nebulizer with a polycarbonate jar yields higher bioluminescence output per bacterium compared to the glass jar. Interestingly enough, the bioluminescence output by P. fluorescens increased substantially after its aerosolization compared to the fresh liquid suspension. For both test microorganisms, the bioluminescence intensity per bacterium after sampling was significantly lower than that before sampling suggesting negative effect of sampling stress on bioluminescence output. The decrease in bioluminescence intensity was more pronounces for longer sampling times and significantly and substantially depended on the sampling method. Among the investigated method, the EPSS was the least injurious for both microorganisms and sampling times. While the ATP-based bioluminescence offers a quick bioaerosol

  20. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Eslami, S; Iordachita, I [Johns Hopkins University, Baltimore, Maryland (United States); Yang, Y [University of Miami School of Medicine, Miami, FL (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Wang, K [Johns Hopkins Hospital, Baltimore, MD (United States)

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.

  1. SU-C-303-04: Evaluation of On- and Off-Line Bioluminescence Tomography System for Focal Irradiation Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Wang, K; Reyes, J; Tran, P; Wong, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: We have developed offline and on-board bioluminescence tomography(BLT) systems for the small animal radiation research platform(SARRP) for radiation guidance of soft tissue targets. We investigated the effectiveness of offline BLT guidance. Methods: CBCT is equipped on both the offline BLT system and SARRP that are 10 ft. apart. To evaluate the setup error during animal transport between the two systems, we implanted a luminescence source in the abdomen of anesthetized mice. Five mice were studied. After CBCT was acquired on both systems, source centers and correlation coefficients were calculated. CBCT was also used to generate object mesh for BLT reconstruction. To assess target localization, we compared the localization of the luminescence source based on (1)on-board SARRP BLT and CBCT, (2)offline BLT and CBCT, and (3)offline BLT and SARRP CBCT. The 3rd comparison examines if an offline BLT system can be used to guide radiation when there is minimal target contrast in CBCT. Results: Our CBCT results show the offset of the light source center can be maintained within 0.2 mm during animal transport. The center of mass(CoM) of the light source reconstructed by the offline BLT has an offset of 1.0 ± 0.4 mm from the ‘true’ CoM as derived from the SARRP CBCT. The results compare well with the offset of 1.0 ± 0.2 mm using on-line BLT. Conclusion: With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the use of offline BLT in close vicinity for accurate soft tissue target localization for irradiation. However, the disadvantage of the off-line system is reduced efficiency as care is required to maintain stable animal transport. We envisage a dual use system where the on-board arrangement allows convenient access to CBCT and avoids disturbance of animal setup. The off-line capability would support standalone longitudinal imaging studies. The work is supported by NIH R01CA158100 and Xstrahl

  2. Hybrid Multilevel Sparse Reconstruction for a Whole Domain Bioluminescence Tomography Using Adaptive Finite Element

    Directory of Open Access Journals (Sweden)

    Jingjing Yu

    2013-01-01

    Full Text Available Quantitative reconstruction of bioluminescent sources from boundary measurements is a challenging ill-posed inverse problem owing to the high degree of absorption and scattering of light through tissue. We present a hybrid multilevel reconstruction scheme by combining the ability of sparse regularization with the advantage of adaptive finite element method. In view of the characteristics of different discretization levels, two different inversion algorithms are employed on the initial coarse mesh and the succeeding ones to strike a balance between stability and efficiency. Numerical experiment results with a digital mouse model demonstrate that the proposed scheme can accurately localize and quantify source distribution while maintaining reconstruction stability and computational economy. The effectiveness of this hybrid reconstruction scheme is further confirmed with in vivo experiments.

  3. Simulation research on bioluminescence tomography%生物发光断层成像的仿真研究

    Institute of Scientific and Technical Information of China (English)

    刘勇; 齐树波; 方勇军; 陈锋

    2014-01-01

    目的:验证生物发光断层成像技术(bioluminescence tomography,BLT)成像的可行性并克服其成像的病态性.方法:采用BLT的前向数学模型和仿真实验结果进行分析.结果:仿真实验结果表明,基于多角度、非接触BLT成像系统(multi-view non-contact BLT imaging system),自发光源在成像体内的分布能够获得较为精确的解析,定位误差小于1 mm.结论:基于多角度、非接触的BLT成像系统,结合稀疏重建算法,能够在较少(6个)的角度下,获取较好的重建结果,有望为疾病早期诊断及药物研发等研究提供有力工具.

  4. Development of a rapid optic bacteria detecting system based on ATP bioluminescence

    Science.gov (United States)

    Liu, Jun Tao; Luo, JinPing; Liu, XiaoHong; Cai, XinXia

    2014-12-01

    A rapid optic bacteria detecting system based on the principle of Adenosine triphosphate(ATP) bioluminescence was presented in this paper. This system consisted of bioluminescence-based biosensor and the high-sensitivity optic meter. A photon counting photomultiplier tube (PMT) module was used to improve the detection sensitivity, and a NIOS II/f processor based on a Field Programmable Gate Array(FPGA) was used to control the system. In this work, Micrococcus luteus were chosen as the test sample. Several Micrococcus luteus suspension with different concentration was tested by both T2011 and plate counting method. By comparing the two group results, an calibration curve was obtained from the bioluminescence intensity for Micrococcus luteus in the range of 2.3×102 ~ 2.3×106 CFU/mL with a good correlation coefficient of 0.960. An impacting Air microorganism sampler was used to capture Airborne Bacteria, and 8 samples were collected in different place. The TBC results of 8 samples by T2011 were between 10 ~ 2×103 cfu/mL, consistent with that of plate counting method, which indicated that 8 samples were between 10 ~ 3×103 cfu/mL. For total airborne bacteria count was small, correlation coefficient was poor. Also no significant difference was found between T2011 and plate counting method by statistical analyses.

  5. [Quantitative specific detection of Staphylococcus aureus based on recombinant lysostaphin and ATP bioluminescence].

    Science.gov (United States)

    Li, Yuyuan; Mi, Zhiqiang; An, Xiaoping; Zhou, Yusen; Tong, Yigang

    2014-08-01

    Quantitative specific detection of Staphylococcus aureus is based on recombinant lysostaphin and ATP bioluminescence. To produce recombinant lysostaphin, the lysostaphin gene was chemically synthesized and inserted it into prokaryotic expression vector pQE30, and the resulting expression plasmid pQE30-Lys was transformed into E. coli M15 for expressing lysostaphin with IPTG induction. The recombinant protein was purified by Ni(2+)-NTA affinity chromatography. Staphylococcus aureus was detected by the recombinant lysostaphin with ATP bioluminescence, and plate count method. The results of the two methods were compared. The recombinant lysostaphin was successfully expressed, and a method of quantitative specific detection of S. aureus has been established, which showed a significant linear correlation with the colony counting. The detection method developed has good perspective to quantify S. aureus.

  6. Ultrasound modulated bioluminescence tomography and controllability of the radiative transport equation

    CERN Document Server

    Bal, Guillaume; Schotland, John C

    2015-01-01

    We propose a method to reconstruct the density of an optical source in a highly scattering medium from ultrasound-modulated optical measurements. Our approach is based on the solution to a hybrid inverse source problem for the radiative transport equation (RTE). A controllability result for the RTE plays an essential role in the analysis.

  7. Flow injection analysis with bioluminescence-based fiber-optic biosensors

    Science.gov (United States)

    Blum, Loic J.; Gautier, Sabine; Coulet, Pierre R.

    1991-09-01

    Fiber optic biosensors based on the firefly and the bacterial bioluminescence reactions have been constructed and incorporated in a specially designed flow-cell for the sensitive determination of ATP and NADH, respectively. The bioluminescence enzymes were immobilized on preactivated polyamide membranes which were placed in close contact with the surface on one end of a glass-fiber bundle, the other end being connected to the photomultiplier tube of a luminometer. When using the continuous-flow device with the firefly luciferase or the bacterial system immobilized separately on different membranes, the detection limit for ATP and NADH were 0.25 and 2 pmol, respectively. The versatility of the fiber optic probe has been improved by co-immobilizing the bacterial bioluminescent system and the firefly luciferase on the same support enabling the use of a single sensor for the selective, specific, and alternate determination of these two analytes. Compatible reaction conditions preserving the activity of each co-immobilized enzyme without impairing its stability were found. The selection of the appropriate reaction medium was done using a four port valve. Alternate quantification of ATP and NADH could then be performed in the linear ranges 0.25 pmol - 3 nmol and 5 pmol - 1 nmol, respectively with a RSD of 4.0 - 4.5%.

  8. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    Science.gov (United States)

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  9. Ratiometric bioluminescence indicators for monitoring cyclic adenosine 3',5'-monophosphate in live cells based on luciferase-fragment complementation.

    Science.gov (United States)

    Takeuchi, Masaki; Nagaoka, Yasutaka; Yamada, Toshimichi; Takakura, Hideo; Ozawa, Takeaki

    2010-11-15

    Bioluminescent indicators for cyclic 3',5'-monophosphate AMP (cAMP) are powerful tools for noninvasive detection with high sensitivity. However, the absolute photon counts are affected substantially by adenosine 5'-triphosphate (ATP) and d-luciferin concentrations, limiting temporal analysis in live cells. This report describes a genetically encoded bioluminescent indicator for detecting intracellular cAMP based on complementation of split fragments of two-color luciferase mutants originated from click beetles. A cAMP binding domain of protein kinase A was connected with an engineered carboxy-terminal fragment of luciferase, of which ends were connected with amino-terminal fragments of green luciferase and red luciferase. We demonstrated that the ratio of green to red bioluminescence intensities was less influenced by the changes of ATP and d-luciferin concentrations. We also showed an applicability of the bioluminescent indicator for time-course and quantitative assessments of intracellular cAMP in living cells and mice. The bioluminescent indicator will enable quantitative analysis and imaging of spatiotemporal dynamics of cAMP in opaque and autofluorescent living subjects.

  10. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  11. Bioluminescence-based method for measuring assimilable organic carbon in pretreatment water for reverse osmosis membrane desalination.

    Science.gov (United States)

    Weinrich, Lauren A; Schneider, Orren D; LeChevallier, Mark W

    2011-02-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment.

  12. Bioluminescence-based visualization of CD4 T cell dynamics using a T lineage-specific luciferase transgenic model1

    Directory of Open Access Journals (Sweden)

    Zinn Kurt R

    2009-08-01

    Full Text Available Abstract Background Rapid clonal expansion of T cells occurs in response to antigenic challenges. The kinetics of the T cell response has previously been described using tissue-based studies performed at defined time points. Luciferase bioluminescence has recently been utilized for non-invasive analysis of in vivo biologic processes in real-time. Results We have created a novel transgenic mouse model (T-Lux using a human CD2 mini-gene to direct luciferase expression specifically to the T cell compartment. T-Lux T cells demonstrated normal homing patterns within the intact mouse and following adoptive transfer. Bioluminescent signal correlated with T cell numbers in the whole body images as well as within specific organ regions of interest. Following transfer into lymphopenic (RAG2-/- recipients, homeostatic proliferation of T-Lux T cells was visualized using bioluminescent imaging. Real-time bioluminescent analysis of CD4+ T cell antigen-specific responses enabled real-time comparison of the kinetics and magnitude of clonal expansion and contraction in the inductive lymph node and tissue site of antigen injection. T cell expansion was dose-dependent despite the presence of supraphysiologic numbers of OVA-specific OT-II transgenic TCR T-Lux T cells. CD4+ T cells subsequently underwent a rapid (3–4 day contraction phase in the draining lymph node, with a delayed contraction in the antigen delivery site, with bioluminescent signal diminished below initial levels, representing TCR clonal frequency control. Conclusion The T-Lux mouse provides a novel, efficient model for tracking in vivo aspects of the CD4+ T cell response to antigen, providing an attractive approach for studies directed at immunotherapy or vaccine design.

  13. Destabilized bioluminescent proteins

    Science.gov (United States)

    Allen, Michael S.; Rakesh, Gupta; Gary, Sayler S.

    2007-07-31

    Purified nucleic acids, vectors and cells containing a gene cassette encoding at least one modified bioluminescent protein, wherein the modification includes the addition of a peptide sequence. The duration of bioluminescence emitted by the modified bioluminescent protein is shorter than the duration of bioluminescence emitted by an unmodified form of the bioluminescent protein.

  14. ATP binding cassette transporters modulate both coelenterazine- and D-luciferin- based bioluminescence imaging

    OpenAIRE

    Huang, Ruimin; Vider, Jelena; Serganova, Inna; Blasberg, Ronald G.

    2011-01-01

    Bioluminescence imaging (BLI) of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI-readout-intensity from intact living cells.

  15. Exploiting NanoLuc luciferase for smartphone-based bioluminescence cell biosensor for (anti)-inflammatory activity and toxicity.

    Science.gov (United States)

    Cevenini, Luca; Calabretta, Maria Maddalena; Lopreside, Antonia; Tarantino, Giuseppe; Tassoni, Annalisa; Ferri, Maura; Roda, Aldo; Michelini, Elisa

    2016-12-01

    The availability of smartphones with high-performance digital image sensors and processing power has completely reshaped the landscape of point-of-need analysis. Thanks to the high maturity level of reporter gene technology and the availability of several bioluminescent proteins with improved features, we were able to develop a bioluminescence smartphone-based biosensing platform exploiting the highly sensitive NanoLuc luciferase as reporter. A 3D-printed smartphone-integrated cell biosensor based on genetically engineered Hek293T cells was developed. Quantitative assessment of (anti)-inflammatory activity and toxicity of liquid samples was performed with a simple and rapid add-and-measure procedure. White grape pomace extracts, known to contain several bioactive compounds, were analyzed, confirming the suitability of the smartphone biosensing platform for analysis of untreated complex biological matrices. Such approach could meet the needs of small medium enterprises lacking fully equipped laboratories for first-level safety tests and rapid screening of new bioactive products. Graphical abstract Smartphone-based bioluminescence cell biosensor.

  16. Firefly Luciferase-Based Sequential Bioluminescence Resonance Energy Transfer (BRET)-Fluorescence Resonance Energy Transfer (FRET) Protease Assays.

    Science.gov (United States)

    Branchini, Bruce

    2016-01-01

    We describe here the preparation of ratiometric luminescent probes that contain two well-separated emission peaks produced by a sequential bioluminescence resonance energy transfer (BRET)-fluorescence resonance energy transfer (FRET) process. The probes are single soluble fusion proteins consisting of a thermostable firefly luciferase variant that catalyzes yellow-green (560 nm maximum) bioluminescence and a red fluorescent protein covalently labeled with a near-Infrared fluorescent dye. The two proteins are connected by a decapeptide containing a protease recognition site specific for factor Xa, thrombin, or caspase 3. The rates of protease cleavage of the fusion protein substrates were monitored by recording emission spectra and plotting the change in peak ratios over time. Detection limits of 0.41 nM for caspase 3, 1.0 nM for thrombin, and 58 nM for factor Xa were realized with a scanning fluorometer. This method successfully employs an efficient sequential BRET-FRET energy transfer process based on firefly luciferase bioluminescence to assay physiologically important protease activities and should be generally applicable to the measurement of any endoprotease lacking accessible cysteine residues.

  17. The uses and abuses of rapid bioluminescence-based ATP assays.

    Science.gov (United States)

    Shama, G; Malik, D J

    2013-03-01

    Bioluminescence-based ATP testing of solid surfaces has become well established in the food processing industry as part of general hazard analysis and critical control points (HACCP) measures. The rise in healthcare associated infections (HAIs) at the turn of the century focussed attention on the environment as a potential reservoir of the agents responsible for such infections. In response to the need for objective methods of assessing the efficiency of cleaning in healthcare establishments and for rapid methods for detecting the presence of the pathogens responsible for HAIs, it was proposed that ATP testing of environmental surfaces be introduced. We examine the basis behind the assumptions inherent in these proposals. Intracellular ATP levels are shown to vary between microbial taxa and according to environmental conditions. Good correlations between microbial numbers and ATP levels have been obtained under certain specific conditions, but never within healthcare settings. Notwithstanding, ATP testing may still have a role in providing reassurance that cleaning regimes are being carried out satisfactorily. However, ATP results should not be interpreted as surrogate indicators for the presence of microbial pathogens.

  18. ATP-Binding Cassette Transporters Modulate Both Coelenterazine- and D-Luciferin-Based Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Ruimin Huang

    2011-05-01

    Full Text Available Bioluminescence imaging (BLI of luciferase reporters provides a cost-effective and sensitive means to image biological processes. However, transport of luciferase substrates across the cell membrane does affect BLI readout intensity from intact living cells. To investigate the effect of ATP-binding cassette (ABC transporters on BLI readout, we generated click beetle (cLuc, firefly (fLuc, Renilla (rLuc, and Gaussia (gLuc luciferase HEK-293 reporter cells that overexpressed different ABC transporters (ABCB1, ABCC1, and ABCG2. In vitro studies showed a significant BLI intensity decrease in intact cells compared to cell lysates, when ABCG2 was overexpressed in HEK-293/cLuc, fLuc, and rLuc cells. Selective ABC transporter inhibitors were also applied. Inhibition of ABCG2 activity increased the BLI intensity more than two-fold in HEK-293/cLuc, fLuc, and rLuc cells; inhibition of ABCB1 elevated the BLI intensity two-fold only in HEK-293/rLuc cells. BLI of xenografts derived from HEK-293/ABC transporter/luciferase reporter cells confirmed the results of inhibitor treatment in vivo. These findings demonstrate that coelenterazine-based rLuc-BLI intensity can be modulated by ABCB1 and ABCG2. ABCG2 modulates d-luciferin-based BLI in a luciferase type–independent manner. Little ABC transporter effect on gLuc-BLI intensity is observed because a large fraction of gLuc is secreted. The expression level of ABC transporters is one key factor affecting BLI intensity, and this may be particularly important in luciferase-based applications in stem cell research.

  19. 基于多角度光学投影表面重建的三维自发荧光光源定位算法%A 3D Location Method of Bioluminescence Light Source Based on Multi-view Pro jection Surface Reconstruction

    Institute of Scientific and Technical Information of China (English)

    宁楠楠; 刘侠; 邓可欣; 吴萍; 王坤; 田捷

    2014-01-01

    In bioluminescent tomography imaging (BLT), dual-modality fusion (optical modality and structural modal-ity) can make full use of high accuracy 3D geometrical structures provided by structural modality reconstruct 3D surface light flux distribution and bioluminescence inner light source reconstruction. However, compared with the all-optical modality, dual-modality fusion has the problems of complicated fusion system, high cost compared with all-optical sys-tem, multifarious and exhaustive date processing, and ionizing radiation (for example, CT). Therefore, the 3D location method of bioluminescence light source based on pure optical 3D geometrical structures has significance for BLT. In this paper, we present a 3D location method of bioluminescence light source based on multi-view projection surface recon-struction, and an all-optical bioluminescence tomography system (AOBTS) is developed for this method. The method consists of 3D surface reconstruction based on multi-view optical pro jection, multi-view luminescent seamless integration, calibration and quantification of the surface light flux and internal bioluminescence reconstruction. An in-vivo BALB/C mouse with an implanted luminescent light source are used to evaluate the performance of the new method. Compared with the conventional optical methods, the new method improves not only the 3D surface reconstruction method but also the multi-view luminescent seamless integration. It has realized 3D real mouse bioluminescence light source localization, and the preliminary test proves its potential application in clinical trial.%在自发荧光断层成像(Bioluminescent tomography imaging, BLT)中,双模态融合(光学模态与结构模态)可充分利用结构模态提供的高精度3D 几何结构,重建三维表面荧光光通量分布,进而实现小动物内部荧光光源定位。然而,与纯光学模态相比,双模态融合存在采集系统复杂、成本高、数据处理繁琐及存在电离辐

  20. Quantum Yield Determination Based on Photon Number Measurement, Protocols for Firefly Bioluminescence Reactions.

    Science.gov (United States)

    Niwa, Kazuki

    2016-01-01

    Quantum yield (QY), which is defined as the probability of photon production by a single bio/chemiluminescence reaction, is an important factor to characterize luminescence light intensity emitted diffusively from the reaction solution mixture. Here, methods to measure number of photons to determine QY according to the techniques of national radiometry standards are described. As an example, experiments using firefly bioluminescence reactions are introduced.

  1. Development of bacteriophage-based bioluminescent bioreporters for monitoring of microbial pathogens

    Science.gov (United States)

    Ozen, Aysu; Montgomery, Kacey; Jegier, Pat; Patterson, Stacey; Daumer, Kathleen A.; Ripp, Steven A.; Garland, Jay L.; Sayler, Gary S.

    2004-03-01

    Microorganisms pose numerous problems when present in human occupied enclosed environments. Primary among these are health related hazards, manifested as infectious diseases related to contaminated drinking water, food, or air circulation systems or non-infectious allergy related complications associated with microbial metabolites (sick building syndrome). As a means towards rapid detection of microbial pathogens, we are attempting to harness the specificity of bacterial phage for their host with a modified quorum sensing amplification signal to produce quantifiable bioluminescent (lux) detection on a silicon microluminometer. The bacteriophage itself is metabolically inactive, only achieving replicative capabilities upon infection of its specific host bacterium. Bacteriophage bioluminescent bioreporters contain a genomically inserted luxI component. During an infection event, the phage genes and accompanying luxI construct are taken up by the host bacterium and transcribed, resulting in luxI expression and subsequent activation of a homoserine lactone inducible bioluminescent bioreporter. We constructed a vector carrying the luxI gene under the control of a strong E. coli promoter and cloned it into E. coli. We have shown that it can induce luminescence up to 14,000 counts per second when combined with the bioreporter strain. In their final embodiment, these sensors will be fully independent microelectronic monitors for microbial contamination, requiring only exposure of the biochip to the sample, with on-chip signal processing downloaded directly to the local area network of the environmental control system.

  2. Bioluminescence-Based Tumor Quantification Method for Monitoring Tumor Progression and Treatment Effects in Mouse Lymphoma Models.

    Science.gov (United States)

    Cosette, Jeremie; Ben Abdelwahed, Rym; Donnou-Triffault, Sabrina; Sautès-Fridman, Catherine; Flaud, Patrice; Fisson, Sylvain

    2016-07-07

    Although bioluminescence imaging (BLI) shows promise for monitoring tumor burden in animal models of cancer, these analyses remain mostly qualitative. Here we describe a method for bioluminescence imaging to obtain a semi-quantitative analysis of tumor burden and treatment response. This method is based on the calculation of a luminoscore, a value that allows comparisons of two animals from the same or different experiments. Current BLI instruments enable the calculation of this luminoscore, which relies mainly on the acquisition conditions (back and front acquisitions) and the drawing of the region of interest (manual markup around the mouse). Using two previously described mouse lymphoma models based on cell engraftment, we show that the luminoscore method can serve as a noninvasive way to verify successful tumor cell inoculation, monitor tumor burden, and evaluate the effects of in situ cancer treatment (CpG-DNA). Finally, we show that this method suits different experimental designs. We suggest that this method be used for early estimates of treatment response in preclinical small-animal studies.

  3. Lighting up bioluminescence with coelenterazine: strategies and applications.

    Science.gov (United States)

    Jiang, Tianyu; Du, Lupei; Li, Minyong

    2016-04-01

    Bioluminescence-based techniques, such as bioluminescence imaging, BRET and dual-luciferase reporter assay systems, have been widely used to examine a myriad of biological processes. Coelenterazine (CTZ), a luciferin or light-producing compound found in bioluminescent organisms, has sparked great curiosity and interest in searching for analogues with improved photochemical properties. This review summarizes the current development of coelenterazine analogues, their bioluminescence properties, and the rational design of caged coelenterazine towards biotargets, as well as their applications in bioassays. It should be emphasized that the design of caged luciferins can provide valuable insight into detailed molecular processes in organisms and will be a trend in the development of bioluminescent molecules.

  4. In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin.

    Science.gov (United States)

    Lark, Arianna R; Kitamoto, Toshihiro; Martin, Jean-René

    2016-01-08

    Functional in vivo imaging has become a powerful approach to study the function and physiology of brain cells and structures of interest. Recently a new method of Ca(2+)-imaging using the bioluminescent reporter GFP-aequorin (GA) has been developed. This new technique relies on the fusion of the GFP and aequorin genes, producing a molecule capable of binding calcium and - with the addition of its cofactor coelenterazine - emitting bright light that can be monitored through a photon collector. Transgenic lines carrying the GFP-aequorin gene have been generated for both mice and Drosophila. In Drosophila, the GFP-aequorin gene has been placed under the control of the GAL4/UAS binary expression system allowing for targeted expression and imaging within the brain. This method has subsequently been shown to be capable of detecting both inward Ca(2+)-transients and Ca(2+)-released from inner stores. Most importantly it allows for a greater duration in continuous recording, imaging at greater depths within the brain, and recording at high temporal resolutions (up to 8.3 msec). Here we present the basic method for using bioluminescent imaging to record and analyze Ca(2+)-activity within the mushroom bodies, a structure central to learning and memory in the fly brain.

  5. Development of a Filtration-Based Bioluminescence Assay for Detection of Microorganisms in Tea Beverages.

    Science.gov (United States)

    Shinozaki, Yohei; Igarashi, Toshinori; Harada, Yasuhiro

    2016-03-01

    The market for tea drinks as healthy beverages has been steadily expanding, and ready-to-drink beverages in polyethylene terephthalate bottles have been popular. To more rapidly and accurately test tea beverages bottled in polyethylene terephthalate for microbial contamination, a newly developed filtration device and a washing method with a commercial bioluminescence assay were combined to detect low numbers of bacterial spores, fungal conidia, and ascospores. Washing buffers were formulated with nonionic detergents from the Tween series. Commercially available tea beverages were used to evaluate the filtration capacity of the filtration device, the effect of washing buffers, and the performance of the assay. The assay was tested with serially diluted suspensions of colonies of two bacterial strains, spores of three Bacillus strains, conidia of five fungal strains, and ascospores of four fungal strains. The filtration device enabled filtration of a large sample volume (100 to 500 ml), and the washing buffer significantly decreased the background bioluminescence intensity of tea samples when compared with the no-washing method. Low numbers (1 to 10 CFU/100 ml) of the tested strains of bacteria were detected within 8 to 18 h of cultivation, and fungi were detected within 24 to 48 h. Furthermore, a whole bottle (500 ml) of mixed tea was filtered through the filtration device and microbes were detected. This method could be used for quality control of bottled beverages without preincubation.

  6. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    Science.gov (United States)

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis.

  7. Cell-based galactosemia diagnosis system based on a galactose assay using a bioluminescent Escherichia coli array.

    Science.gov (United States)

    Woo, Min-Ah; Kim, Moon Il; Cho, Daeyeon; Park, Hyun Gyu

    2013-11-19

    A new cell-based galactose assay system, which is comprised of two bioluminescent Escherichia coli strains immobilized within an agarose gel arrayed on a well plate, has been developed. For this purpose, a galT knockout strain [galT(-) cell] of E. coli was genetically constructed so that cell growth is not promoted by galactose but rather by glucose present in a sample. Another E. coli W strain (normal cell), which grows normally in the presence of either glucose or galactose, was employed. A luminescent reporter gene, which produces luminescence as cells grow, was inserted into both of the E. coli strains, so that cell growth could be monitored in a facile manner. The two strains were separately grown for 4 h on gel arrays to which test samples were individually supplied. The relative luminescence unit (RLU) values caused by cell growth were determined for each array, one of which is resulted by glucose only and the other of which is resulted by both glucose and galactose present in the sample. By employing this protocol, galactose concentrations present in the test sample are reflected in the differences between the RLU values for each array. The practical utility of the new assay system was demonstrated by its use in determining galactose levels in clinical blood spot specimens coming from newborn babies. Because it can be employed to diagnosis of galactosemia in newborn babies in a more rapid, convenient, and cost-effective manner, this cell-based solid-phase galactose assay system should become a powerful alternative to conventional methods, which require labor-intensive and time-consuming procedures and/or complicated and expensive equipment.

  8. Optimisation of acquisition time in bioluminescence imaging

    Science.gov (United States)

    Taylor, Shelley L.; Mason, Suzannah K. G.; Glinton, Sophie; Cobbold, Mark; Styles, Iain B.; Dehghani, Hamid

    2015-03-01

    Decreasing the acquisition time in bioluminescence imaging (BLI) and bioluminescence tomography (BLT) will enable animals to be imaged within the window of stable emission of the bioluminescent source, a higher imaging throughput and minimisation of the time which an animal is anaesthetised. This work investigates, through simulation using a heterogeneous mouse model, two methods of decreasing acquisition time: 1. Imaging at fewer wavelengths (a reduction from five to three); and 2. Increasing the bandwidth of filters used for imaging. The results indicate that both methods are viable ways of decreasing the acquisition time without a loss in quantitative accuracy. Importantly, when choosing imaging wavelengths, the spectral attenuation of tissue and emission spectrum of the source must be considered, in order to choose wavelengths at which a high signal can be achieved. Additionally, when increasing the bandwidth of the filters used for imaging, the bandwidth must be accounted for in the reconstruction algorithm.

  9. Grating-based tomography of human tissues

    Science.gov (United States)

    Müller, Bert; Schulz, Georg; Mehlin, Andrea; Herzen, Julia; Lang, Sabrina; Holme, Margaret; Zanette, Irene; Hieber, Simone; Deyhle, Hans; Beckmann, Felix; Pfeiffer, Franz; Weitkamp, Timm

    2012-07-01

    The development of therapies to improve our health requires a detailed knowledge on the anatomy of soft tissues from the human body down to the cellular level. Grating-based phase contrast micro computed tomography using synchrotron radiation provides a sensitivity, which allows visualizing micrometer size anatomical features in soft tissue without applying any contrast agent. We show phase contrast tomography data of human brain, tumor vessels and constricted arteries from the beamline ID 19 (ESRF) and urethral tissue from the beamline W2 (HASYLAB/DESY) with micrometer resolution. Here, we demonstrate that anatomical features can be identified within brain tissue as well known from histology. Using human urethral tissue, the application of two photon energies is compared. Tumor vessels thicker than 20 μm can be perfectly segmented. The morphology of coronary arteries can be better extracted in formalin than after paraffin embedding.

  10. Combining fluorescence and bioluminescence microscopy.

    Science.gov (United States)

    Goda, Kazuhito; Hatta-Ohashi, Yoko; Akiyoshi, Ryutaro; Sugiyama, Takashi; Sakai, Ikuko; Takahashi, Takeo; Suzuki, Hirobumi

    2015-08-01

    Bioluminescence microscopy has revealed that gene expression in individual cells can respond differently to the same stimulus. To understand this phenomenon, it is important to sequentially observe the series of events from cellular signal transduction to gene expression regulated by specific transcription factors derived from signaling cascades in individual cells. However, these processes have been separately analyzed with fluorescence and bioluminescence microscopy. Furthermore, in culture medium, the background fluorescence of luciferin-a substrate of luciferase in promoter assays of gene expression in cultured cells-confounds the simultaneous observation of fluorescence and bioluminescence. Therefore, we optimized conditions for optical filter sets based on spectral properties and the luciferin concentration based on cell permeability for fluorescence observation combined with bioluminescence microscopy. An excitation and emission filter set (492-506 nm and 524-578 nm) was suitable for green fluorescent protein and yellow fluorescent protein imaging of cells, and >100 μM luciferin was acceptable in culture medium based on kinetic constants and the estimated intracellular concentration. Using these parameters, we present an example of sequential fluorescence and bioluminescence microscopic observation of signal transduction (translocation of protein kinase C alpha from the cytoplasm to the plasma membrane) coupled with activation of gene expression by nuclear factor of kappa light polypeptide B in individual cells and show that the gene expression response is not completely concordant with upstream signaling following stimulation with phorbol-12-myristate-13-acetate. Our technique is a powerful imaging tool for analysis of heterogeneous gene expression together with upstream signaling in live single cells.

  11. BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells.

    Science.gov (United States)

    Mo, Xiu-Lei; Fu, Haian

    2016-01-01

    Bioluminescence resonance energy transfer (BRET) is a prominent biophysical technology for monitoring molecular interactions, and has been widely used to study protein-protein interactions (PPI) in live cells. This technology requires proteins of interest to be associated with an energy donor (i.e., luciferase) and an acceptor (e.g., fluorescent protein) molecule. Upon interaction of the proteins of interest, the donor and acceptor will be brought into close proximity and energy transfer of chemical reaction-induced luminescence to its corresponding acceptor will result in an increased emission at an acceptor-defined wavelength, generating the BRET signal. We leverage the advantages of the superior optical properties of the NanoLuc(®) luciferase (NLuc) as a BRET donor coupled with Venus, a yellow fluorescent protein, as acceptor. We term this NLuc-based BRET platform "BRET(n)". BRET(n) has been demonstrated to have significantly improved assay performance, compared to previous BRET technologies, in terms of sensitivity and scalability. This chapter describes a step-by-step practical protocol for developing a BRET(n) assay in a multi-well plate format to detect PPIs in live mammalian cells.

  12. Bioluminescence assay for cell viability.

    Science.gov (United States)

    Lomakina, G Yu; Modestova, Yu A; Ugarova, N N

    2015-06-01

    Theoretical aspects of the adenosine triphosphate bioluminescence assay based on the use of the firefly luciferin-luciferase system are considered, as well as its application for assessing cell viability in microbiology, sanitation, medicine, and ecology. Various approaches for the analysis of individual or mixed cultures of microorganisms are presented, and capabilities of the method for investigation of biological processes in live cells including necrosis, apoptosis, as well as for investigation of the dynamics of metabolism are described.

  13. Computerized ionospheric tomography based on geosynchronous SAR

    Science.gov (United States)

    Hu, Cheng; Tian, Ye; Dong, Xichao; Wang, Rui; Long, Teng

    2017-02-01

    Computerized ionospheric tomography (CIT) based on spaceborne synthetic aperture radar (SAR) is an emerging technique to construct the three-dimensional (3-D) image of ionosphere. The current studies are all based on the Low Earth Orbit synthetic aperture radar (LEO SAR) which is limited by long repeat period and small coverage. In this paper, a novel ionospheric 3-D CIT technique based on geosynchronous SAR (GEO SAR) is put forward. First, several influences of complex atmospheric environment on GEO SAR focusing are detailedly analyzed, including background ionosphere and multiple scattering effects (induced by turbulent ionosphere), tropospheric effects, and random noises. Then the corresponding GEO SAR signal model is constructed with consideration of the temporal-variant background ionosphere within the GEO SAR long integration time (typically 100 s to 1000 s level). Concurrently, an accurate total electron content (TEC) retrieval method based on GEO SAR data is put forward through subband division in range and subaperture division in azimuth, obtaining variant TEC value with respect to the azimuth time. The processing steps of GEO SAR CIT are given and discussed. Owing to the short repeat period and large coverage area, GEO SAR CIT has potentials of covering the specific space continuously and completely and resultantly has excellent real-time performance. Finally, the TEC retrieval and GEO SAR CIT construction are performed by employing a numerical study based on the meteorological data. The feasibility and correctness of the proposed methods are verified.

  14. 基于受激发光实验的生物光尾流特性%Characteristics of bioluminescent wake based on stimulated luminescence laboratory experiments

    Institute of Scientific and Technical Information of China (English)

    曹静; 王江安; 何友; 吴荣华

    2011-01-01

    Abstract: Based on the relative characteristics of stimulated bioluminescence and hydrodynamic flow, the experimental plat-form of stimulated bioluminescence in Couette flow was built. The hydrodynamic elements stimulated bioluminescence were analy-sised. The threshold of shear stress for stimulated bioluminescence of Lingulodinium polyedrum is 0. 1 N/m2. And biolumines-cence emission is the function of shear stress and increases with it when the shear stress exceeds the threshold. The shear stress distributions of submarine were simulated by FLUENT software. The results of calculation illustrate that the shear stress decrea-ses with the increased length of wake of submarine and it can be decreased as the oscillation of sine wave in the near area. The shear stress of wake decreases rapidly and widely with the higher speed of submarine, when the speed of submarine is above 4. 1 m/s, the shear stress of wake in 2 000 m length is still over the threshold.%基于生物受激发光与流场机械刺激间的相关性,构建了库埃特流场刺激下的生物受激发光实验平台,分析了影响生物发光的水动力因素剪应力.实验结果显示:引起多边膝沟藻受激发光的剪应力阈值为0.1 N/m2;当流场中的剪应力大于发光阈值后,生物发光强度随着剪应力的增大而增强.采用FLUENT软件模拟计算了不同航速下某潜艇尾流场中的剪应力,计算结果表明:剪应力随着尾流长度的增加而减小,在近场区域剪应力出现了类似正弦波振荡的减小,且航速越大减幅越大,减速越快;当潜艇航速大于4.1 m/s航行时,2 000 m处尾流的剪应力仍然大于引起生物发光的剪应力阈值.

  15. Glu311 and Arg337 Stabilize a Closed Active-site Conformation and Provide a Critical Catalytic Base and Countercation for Green Bioluminescence in Beetle Luciferases.

    Science.gov (United States)

    Viviani, V R; Simões, A; Bevilaqua, V R; Gabriel, G V M; Arnoldi, F G C; Hirano, T

    2016-08-30

    Beetle luciferases elicit the emission of different bioluminescence colors from green to red. Whereas firefly luciferases emit yellow-green light and are pH-sensitive, undergoing a typical red-shift at acidic pH and higher temperatures and in the presence of divalent heavy metals, click beetle and railroadworm luciferases emit a wider range of colors from green to red but are pH-independent. Despite many decades of study, the structural determinants and mechanisms of bioluminescence colors and pH sensitivity remain enigmatic. Here, through modeling studies, site-directed mutagenesis, and spectral and kinetic studies using recombinant luciferases from the three main families of bioluminescent beetles that emit different colors of light (Macrolampis sp2 firefly, Phrixotrix hirtus railroadworm, and Pyrearinus termitilluminans click beetle), we investigated the role of E311 and R337 in bioluminescence color determination. All mutations of these residues in firefly luciferase produced red mutants, indicating that the preservation of opposite charges and the lengths of the side chains of E311 and R337 are essential for keeping a salt bridge that stabilizes a closed hydrophobic conformation favorable for green light emission. Kinetic studies indicate that residue R337 is important for binding luciferin and creating a positively charged environment around excited oxyluciferin phenolate. In Pyrearinus green-emitting luciferase, the R334A mutation causes a 27 nm red-shift, whereas in Phrixotrix red-emitting luciferase, the L334R mutation causes a blue-shift that is no longer affected by guanidine. These results provide compelling evidence that the presence of arginine at position 334 is essential for blue-shifting the emission spectra of most beetle luciferases. Therefore, residues E311 and R337 play both structural and catalytic roles in bioluminescence color determination, by stabilizing a closed hydrophobic conformation favorable for green light emission, and also

  16. Cellular bioluminescence imaging.

    Science.gov (United States)

    Welsh, David K; Noguchi, Takako

    2012-08-01

    Bioluminescence imaging of live cells has recently been recognized as an important alternative to fluorescence imaging. Fluorescent probes are much brighter than bioluminescent probes (luciferase enzymes) and, therefore, provide much better spatial and temporal resolution and much better contrast for delineating cell structure. However, with bioluminescence imaging there is virtually no background or toxicity. As a result, bioluminescence can be superior to fluorescence for detecting and quantifying molecules and their interactions in living cells, particularly in long-term studies. Structurally diverse luciferases from beetle and marine species have been used for a wide variety of applications, including tracking cells in vivo, detecting protein-protein interactions, measuring levels of calcium and other signaling molecules, detecting protease activity, and reporting circadian clock gene expression. Such applications can be optimized by the use of brighter and variously colored luciferases, brighter microscope optics, and ultrasensitive, low-noise cameras. This article presents a review of how bioluminescence differs from fluorescence, its applications to cellular imaging, and available probes, optics, and detectors. It also gives practical suggestions for optimal bioluminescence imaging of single cells.

  17. U-SPECT-BioFluo: an integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  18. Detection of nitrate/nitrite bioavailability in wastewater using a luxCDABE-based Klebsiella oxytoca bioluminescent bioreporter.

    Science.gov (United States)

    Abd-El-Haleem, Desouky; Ripp, Steven; Zaki, Sahar; Sayler, Gary S

    2007-08-01

    In the present study, we have constructed a bioluminescent bioreporter for the assessment of nitrate/nitrite bioavailability in wastewater. Specifically, an approximately 500-bp DNA fragment containing a nitrate/nitrite-activated nasR-like promoter (regulating expression of genes encoding nitrite reductase in the genus Klebsiella) was fused upstream of the Vibrio fischeri luxCDABE gene cassette in a modified mini-Tn5 vector. Characterization of this strain, designated W6-1, yielded dose-dependent increased bioluminescence coincident with increased nitrate, nitrite, and ammonium added to the growth medium from 1 to 11 ppm. Bioluminescence in response to nitrogen species addition was light dependent up to 10, 7, and 8 ppm with nitrate, nitrite, and ammonium, respectively. This response was linear in the range from 1 to 8 ppm for nitrate (R2 = 0.98), 1 to 6 ppm for nitrite (R2 = 0.99), and 1 to 7 ppm for ammonium (R2 = 0.99). A significant bioluminescent response was also recorded when strain W6-1 was incubated with slurries from aged, nitrate/nitrite contaminated wastewater. Thus, bioreporter strain W6-1 can be used to elucidate factors that constrain the use of nitrate/nitrite in wastewaters.

  19. Thoughts on the diversity of convergent evolution of bioluminescence on earth

    Science.gov (United States)

    Waldenmaier, Hans E.; Oliveira, Anderson G.; Stevani, Cassius V.

    2012-10-01

    The widespread independent evolution of analogous bioluminescent systems is one of the most impressive and diverse examples of convergent evolution on earth. There are roughly 30 extant bioluminescent systems that have evolved independently on Earth, with each system likely having unique enzymes responsible for catalysing the bioluminescent reaction. Bioluminescence is a chemical reaction involving a luciferin molecule and a luciferase or photoprotein that results in the emission of light. Some independent systems utilize the same luciferin, such as the use of tetrapyrrolic compounds by krill and dinoflagellates, and the wide use of coelenterazine by marine organisms, while the enzymes involved are unique. One common thread among all the different bioluminescent systems is the requirement of molecular oxygen. Bioluminescence is found in most forms of life, especially marine organisms. Bioluminescence in known to benefit the organism by: attraction, repulsion, communication, camouflage, and illumination. The marine ecosystem is significantly affected by bioluminescence, the only light found in the pelagic zone and below is from bioluminescent organisms. Transgenic bioluminescent organisms have revolutionized molecular research, medicine and the biotechnology industry. The use of bioluminescence in studying molecular pathways and disease allows for non-invasive and real-time analysis. Bioluminescence-based assays have been developed for several analytes by coupling luminescence to many enzyme-catalysed reactions.

  20. Bioluminescence patterns among North American Armillaria species.

    Science.gov (United States)

    Mihail, Jeanne D

    2015-06-01

    Bioluminescence is widely recognized among white-spored species of Basidiomycota. Most reports of fungal bioluminescence are based upon visual light perception. When instruments such as photomultipliers have been used to measure fungal luminescence, more taxa have been discovered to produce light, albeit at a range of magnitudes. The present studies were undertaken to determine the prevalence of bioluminescence among North American Armillaria species. Consistent, constitutive bioluminescence was detected for the first time for mycelia of Armillaria calvescens, Armillaria cepistipes, Armillaria gemina, Armillaria nabsnona, and Armillaria sinapina and confirmed for mycelia of Armillaria gallica, Armillaria mellea, Armillaria ostoyae, and Armillaria tabescens. Emission spectra of mycelia representing all species had maximum intensity in the range 515-525 nm confirming that emitted light was the result of bioluminescence rather than chemiluminescence. Time series analysis of 1000 consecutive luminescence measurements revealed a highly significant departure from random variation. Mycelial luminescence of eight species exhibited significant, stable shifts in magnitude in response to a series of mechanical disturbance treatments, providing one mechanism for generating observed luminescence variation.

  1. Immobilized Bioluminescent Reagents in Flow Injection Analysis.

    Science.gov (United States)

    Nabi, Abdul

    Available from UMI in association with The British Library. Bioluminescent reactions exhibits two important characteristics from an analytical viewpoint; they are selective and highly sensitive. Furthermore, bioluminescent emissions are easily measured with a simple flow-through detector based on a photomultiplier tube and the rapid and reproducible mixing of sample and expensive reagent is best achieved by a flow injection manifold. The two most important bioluminescent systems are the enzyme (luciferase)/substrate (luciferin) combinations extracted from fireflies (Photinus pyralis) and marine bacteria (Virio harveyi) which requires ATP and NAD(P)H respectively as cofactors. Reactions that generate or consume these cofactors can also be coupled to the bioluminescent reaction to provide assays for a wide range of clinically important species. A flow injection manifold for the study of bioluminescent reactions is described, as are procedures for the extraction, purification and immobilization of firefly and bacterial luciferase and oxidoreductase. Results are presented for the determination of ATP using firefly system and the determination of other enzymes and substrates participating in ATP-converting reactions e.g. creatine kinase, ATP-sulphurylase, pyruvate kinase, creatine phosphate, pyrophosphate and phophoenolypyruvate. Similarly results are presented for the determination of NAD(P)H, FMN, FMNH_2 and several dehydrogenases which produce NAD(P)H and their substrates, e.g. alcohol, L-lactate, L-malate, L-glutamate, Glucose-6-phosphate and primary bile acid.

  2. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    Science.gov (United States)

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  3. Using bioluminescence imaging in glioma research.

    Science.gov (United States)

    Luwor, Rodney B; Stylli, Stanley S; Kaye, Andrew H

    2015-05-01

    Glioblastoma multiforme (GBM) is the most common malignant brain tumour and has the worst prognosis. Over the last decade, the use of bioluminescence imaging technology has rapidly become widespread to further understand the mechanisms that drive GBM development and progression. Pre-clinical evaluation and optimisation of therapeutic efficacy in GBM research has also utilised this simple non-invasive technology. Here we summarise recent advances made in glioma biology and therapeutic intervention using bioluminescence imaging. This review also describes the current knowledge regarding the use of luciferase-based reporters in examining the role of specific cancer signalling cascades that promote glioma progression.

  4. Integrated-optics-based optical coherence tomography

    NARCIS (Netherlands)

    Nguyen, D.V.

    2013-01-01

    Optical coherence tomography (OCT) is a high resolution, imaging technique that has developed over the last 20 years from a complicated laboratory setup into a ready-to-use commercially available device. Instead of using electronic time gating as being used by ultrasound (US) imaging, in OCT, the op

  5. Identification of MMV Malaria Box inhibitors of Perkinsus marinus using an ATP-based bioluminescence assay.

    Directory of Open Access Journals (Sweden)

    Yesmalie Alemán Resto

    Full Text Available "Dermo" disease caused by the protozoan parasite Perkinsus marinus (Perkinsozoa is one of the main obstacles to the restoration of oyster populations in the USA. Perkinsus spp. are also a concern worldwide because there are limited approaches to intervention against the disease. Based on the phylogenetic affinity between the Perkinsozoa and Apicomplexa, we exposed Perkinsus trophozoites to the Medicines for Malaria Venture Malaria Box, an open access compound library comprised of 200 drug-like and 200 probe-like compounds that are highly active against the erythrocyte stage of Plasmodium falciparum. Using a final concentration of 20 µM, we found that 4 days after exposure 46% of the compounds were active against P. marinus trophozoites. Six compounds with IC50 in the µM range were used to compare the degree of susceptibility in vitro of eight P. marinus strains from the USA and five Perkinsus species from around the world. The three compounds, MMV666021, MMV665807 and MMV666102, displayed a uniform effect across Perkinsus strains and species. Both Perkinsus marinus isolates and Perkinsus spp. presented different patterns of response to the panel of compounds tested, supporting the concept of strain/species variability. Here, we expanded the range of compounds available for inhibiting Perkinsus proliferation in vitro and characterized Perkinsus phenotypes based on their resistance to six compounds. We also discuss the implications of these findings in the context of oyster management. The Perkinsus system offers the potential for investigating the mechanism of action of the compounds of interest.

  6. Novel fusion for hybrid optical/microcomputed tomography imaging based on natural light surface reconstruction and iterated closest point

    Science.gov (United States)

    Ning, Nannan; Tian, Jie; Liu, Xia; Deng, Kexin; Wu, Ping; Wang, Bo; Wang, Kun; Ma, Xibo

    2014-02-01

    In mathematics, optical molecular imaging including bioluminescence tomography (BLT), fluorescence tomography (FMT) and Cerenkov luminescence tomography (CLT) are concerned with a similar inverse source problem. They all involve the reconstruction of the 3D location of a single/multiple internal luminescent/fluorescent sources based on 3D surface flux distribution. To achieve that, an accurate fusion between 2D luminescent/fluorescent images and 3D structural images that may be acquired form micro-CT, MRI or beam scanning is extremely critical. However, the absence of a universal method that can effectively convert 2D optical information into 3D makes the accurate fusion challengeable. In this study, to improve the fusion accuracy, a new fusion method for dual-modality tomography (luminescence/fluorescence and micro-CT) based on natural light surface reconstruction (NLSR) and iterated closest point (ICP) was presented. It consisted of Octree structure, exact visual hull from marching cubes and ICP. Different from conventional limited projection methods, it is 360° free-space registration, and utilizes more luminescence/fluorescence distribution information from unlimited multi-orientation 2D optical images. A mouse mimicking phantom (one XPM-2 Phantom Light Source, XENOGEN Corporation) and an in-vivo BALB/C mouse with implanted one luminescent light source were used to evaluate the performance of the new fusion method. Compared with conventional fusion methods, the average error of preset markers was improved by 0.3 and 0.2 pixels from the new method, respectively. After running the same 3D internal light source reconstruction algorithm of the BALB/C mouse, the distance error between the actual and reconstructed internal source was decreased by 0.19 mm.

  7. Bioluminescent bioreporter integrated circuit

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L. (Knoxville, TN); Sayler, Gary S. (Blaine, TN); Paulus, Michael J. (Knoxville, TN)

    2000-01-01

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for environmental pollutant detection, oil exploration, drug discovery, industrial process control, and hazardous chemical monitoring.

  8. Detection for Viability of Wheat Based on Ultra -Weak Delayed Bioluminescence%基于超弱延迟发光的小麦生活力检测方法研究

    Institute of Scientific and Technical Information of China (English)

    吴才章; 牛群峰; 张兰静

    2015-01-01

    The variation of the ultra -weak delayed bioluminescence under different viability and different test conditions was investigated with zhengmai 9023 as an experimental object.The different viability wheat sample could be obtained by rapid artificial aging,and the characteristics of the delayed bioluminescence from different viability and the influence of temperature on the delayed bioluminescence were studied.The results showed that obvious differences were found in the delayed bioluminescence ability for different viability with the same seeds.There was a negative correlation between the delayed bioluminescence and its viability.In other words,its viability was strengthened as the delayed bi-oluminescence was weakened.The influence of temperature on the delayed bioluminescence was obvious.As the temper-ature rose,the intensity of ultra -weak photon emission decreased gradually.The research demonstrated that it was feasi-ble to detect wheat viability based on the ultra -weak delayed bioluminescence under the strict control of test conditions.%以郑麦9023为试验对象,研究了不同生活力和不同测试条件下小麦样品超弱延迟发光的变化情况。通过人工快速陈化的方法获得不同生活力的小麦样品,对这些小麦样品的延迟发光特性进行系统研究,在此基础上以温度为例研究了测试条件对小麦延迟发光的影响。结果表明,同一品种不同生活力小麦样品的延迟发光能力差异明显,小麦的延迟发光强度与其生活力显著负相关,生活力越强,其延迟发光能力越弱;小麦的延迟发光能力受其自身温度的影响显著,随着温度的升高,其延迟发光能力减弱。本研究发现,利用超弱延迟发光进行小麦生活力检测是可行的,但需要对测试条件进行严格控制。

  9. Detection of the onset of ischemia and carcinogenesis by hypoxia-inducible transcription factor-based in vivo bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kadonosono

    Full Text Available An animal model for the early detection of common fatal diseases such as ischemic diseases and cancer is desirable for the development of new drugs and treatment strategies. Hypoxia-inducible factor 1 (HIF-1 is a transcription factor that regulates oxygen homeostasis and plays key roles in a number of diseases, including cancer. Here, we established transgenic (Tg mice that carry HRE/ODD-luciferase (HOL gene, which generates bioluminescence in an HIF-1-dependent manner and was successfully used in this study to monitor HIF-1 activity in ischemic tissues. To monitor carcinogenesis in vivo, we mated HOL mice with rasH2 Tg mice, which are highly sensitive to carcinogens and are used for short-term carcinogenicity assessments. After rasH2-HOL Tg mice were treated with N-methyl-N-nitrosourea, bioluminescence was detected noninvasively as early as 9 weeks in tissues that contained papillomas and malignant lesions. These results suggest that the Tg mouse lines we established hold significant potential for monitoring the early onset of both ischemia and carcinogenesis and that these lines will be useful for screening chemicals for carcinogenic potential.

  10. Theoretical Study of Dinoflagellate Bioluminescence.

    Science.gov (United States)

    Wang, Ming-Yu; Liu, Ya-Jun

    2017-03-01

    Dinoflagellates are the most ubiquitous luminescent protists in the marine environment and have drawn much attention for their crucial roles in marine ecosystems. Dinoflagellate bioluminescence has been applied in underwater target detection. The luminescent system of dinoflagellates is a typical luciferin-luciferase one. However, the excited-state oxyluciferin is not the light emitter of dinoflagellate bioluminescence as in most luciferin-luciferase bioluminescent organisms. The oxyluciferin of bioluminescent dinoflagellates is not fluorescent, whereas its luciferin emits bright fluorescence with similar wavelength of the bioluminescence. What is the light emitter of dinoflagellate bioluminescence and what is the chemical process of the light emission like? These questions have not been answered by the limited experimental evidence so far. In this study, for the first time, the density functional calculation is employed to investigate the geometries and properties of luciferin and oxyluciferin of bioluminescent dinoflagellate. The calculated results agree with the experimental observations and indicate the luciferin or its analogue, rather than oxyluciferin, is the bioluminophore of dinoflagellate bioluminescence. A rough mechanism involving energy transfer is proposed for dinoflagellate bioluminescence.

  11. Bioluminescent bioreporter sensing of foodborne toxins

    Science.gov (United States)

    Fraley, Amanda C.; Ripp, Steven; Sayler, Gary S.

    2004-06-01

    Histamine is the primary etiological agent in the foodborne disease scombrotoxicosis, one of the most common food toxicities related to fish consumption. Procedures for detecting histamine in fish products are available, but are often too expensive or too complex for routine use. As an alternative, a bacterial bioluminescent bioreporter has been constructed to develop a biosensor system that autonomously responds to low levels of histamine. The bioreporter contains a promoterless Photorhabdus luminescens lux operon (luxCDABE) fused with the Vibrio anguillarum angR regulatory gene promoter of the anguibactin biosynthetic operon. The bioreporter emitted 1.46 times more bioluminescence than background, 30 minutes after the addition of 100mM histamine. However, specificity was not optimal, as this biosensor generated significant bioluminescence in the presence of L-proline and L-histidine. As a means towards improving histamine specificity, the promoter region of a histamine oxidase gene from Arthrobacter globiformis was cloned upstream of the promotorless lux operon from Photorhabdus luminescens. This recently constructed whole-cell, lux-based bioluminescent bioreporter is currently being tested for optimal performance in the presence of histamine in order to provide a rapid, simple, and inexpensive model sensor for the detection of foodborne toxins.

  12. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    Science.gov (United States)

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.

  13. Optical Microangiography Based on Optical Coherence Tomography

    Science.gov (United States)

    Reif, Roberto; Wang, Ruikang K.

    Proper homeostasis regulation of in vivo biological systems requires microvascular blood perfusion, which is the process of delivering blood into the tissue's capillary beds. Abnormal tissue vascularization has been associated with various diseases such as cancer, diabetes, neurological disorders, wounds, and inflammation. Understanding the changes in the vascular network or microangiography will have an important role in determining the causes and developing potential treatments for these diseases. Optical coherence tomography (OCT) is a noninvasive method for imaging three-dimensional biological tissues with high resolution (~10 µm) and without requiring the use of contrast agents. In this chapter we review several techniques for using OCT to determine blood flow velocities and the vessel morphology (optical microangiography). Different techniques will be discussed with a brief explanation of their limitations. Also, methods for quantifying these images are presented, as well as the depiction of several applications.

  14. 基于 ATP 发光的细菌污染物检测系统%A DESIGN OF BACTERIA DETECTION SYSTEM BASED ON ATP BIOLUMINESCENCE TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    张志杰; 王春兴

    2016-01-01

    作者设计了一种基于三磷酸腺苷(ATP)发光技术的细菌数量快速检测系统。系统运用了自动加样技术在暗室中反应,减少了外界杂光的干扰;并优化以光度校准单元,提高了检测可靠性。采用高测量灵敏度的 H5773-02型光电倍增管(PMT)进行光电转换来检测微弱的荧光信号。测试结果表明荧光强度与 ATP 浓度成线性关系。该系统检测时间短,精度高,在食品、药品安全检测中具有较广泛的应用。%According to the requirements of the current market for detecting the number of bacteria rapidly,a detecting system based on ATP bioluminescence technology is designed. In order to reduce the outside scattering light interference,the reagents are filled automatically into the dark container. The optical calibration unit enhances the reliability of the system. H5773 - 02 type PMT can realize photoelectric conversion. The testing results show that the bioluminescence has a great linear correlation with the ATP concentration. The system can detect0 rapidly and accurately,and has a strong potential in the food and drug safety detection.

  15. In vivo functional calcium imaging of induced or spontaneous activity in the fly brain using a GFP-apoaequorin-based bioluminescent approach.

    Science.gov (United States)

    Minocci, Daiana; Carbognin, Elena; Murmu, Meena Sriti; Martin, Jean-René

    2013-07-01

    Different optical imaging techniques have been developed to study neuronal activity with the goal of deciphering the neural code underlying neurophysiological functions. Because of several constraints inherent in these techniques as well as difficulties interpreting the results, the majority of these studies have been dedicated more to sensory modalities than to the spontaneous activity of the central brain. Recently, a novel bioluminescence approach based on GFP-aequorin (GA) (GFP: Green fluorescent Protein), has been developed, allowing us to functionally record in-vivo neuronal activity. Taking advantage of the particular characteristics of GA, which does not require light excitation, we report that we can record induced and/or the spontaneous Ca(2+)-activity continuously over long periods. Targeting GA to the mushrooms-bodies (MBs), a structure implicated in learning/memory and sleep, we have shown that GA is sensitive enough to detect odor-induced Ca(2+)-activity in Kenyon cells (KCs). It has been possible to reveal two particular peaks of spontaneous activity during overnight recording in the MBs. Other peaks of spontaneous activity have been recorded in flies expressing GA pan-neurally. Similarly, expression in the glial cells has revealed that these cells exhibit a cell-autonomous Ca(2+)-activity. These results demonstrate that bioluminescence imaging is a useful tool for studying Ca(2+)-activity in neuronal and/or glial cells and for functional mapping of the neurophysiological processes in the fly brain. These findings provide a framework for investigating the biological meaning of spontaneous neuronal activity. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.

  16. Real-Time Bioluminescence Imaging of Nitroreductase in Mouse Model.

    Science.gov (United States)

    Feng, Ping; Zhang, Huateng; Deng, Quankun; Liu, Wei; Yang, Linghui; Li, Guobo; Chen, Guo; Du, Lupei; Ke, Bowen; Li, Minyong

    2016-06-01

    Nitroreductase (NTR) is an endogenous reductase overexpressed in hypoxic tumors; however, its precise detection in living cells and animals remains a considerable challenge. Herein, we developed three reaction-based probes and a related bioluminescence assay for the real-time NTR detection. The high sensitivity and selectivity of probe 3, combined with its remarkable potential of bioluminescence imaging, affords a valuable approach for in vivo imaging of NTR in a tumor model mouse.

  17. BIOLUMINESCENCE IMAGING: PROGRESS AND APPLICATIONS

    OpenAIRE

    Badr, Christian E.; Tannous, Bakhos A

    2011-01-01

    Application of bioluminescence imaging has grown tremendously in the past decade and has significantly contributed to the core conceptual advances in biomedical research. This technology provides valuable means for monitoring of different biological processes for immunology, oncology, virology and neuroscience. In this review, we will discuss current trends in bioluminescence and its application in different fields with emphasis on cancer research.

  18. Research on ionospheric tomography based on variable pixel height

    Science.gov (United States)

    Zheng, Dunyong; Li, Peiqing; He, Jie; Hu, Wusheng; Li, Chaokui

    2016-05-01

    A novel ionospheric tomography technique based on variable pixel height was developed for the tomographic reconstruction of the ionospheric electron density distribution. The method considers the height of each pixel as an unknown variable, which is retrieved during the inversion process together with the electron density values. In contrast to conventional computerized ionospheric tomography (CIT), which parameterizes the model with a fixed pixel height, the variable-pixel-height computerized ionospheric tomography (VHCIT) model applies a disturbance to the height of each pixel. In comparison with conventional CIT models, the VHCIT technique achieved superior results in a numerical simulation. A careful validation of the reliability and superiority of VHCIT was performed. According to the results of the statistical analysis of the average root mean square errors, the proposed model offers an improvement by 15% compared with conventional CIT models.

  19. Computed tomography of the human developing anterior skull base

    NARCIS (Netherlands)

    J. van Loosen (J.); A.I.J. Klooswijk (A. I J); D. van Velzen (D.); C.D.A. Verwoerd (Carel)

    1990-01-01

    markdownabstractAbstract The ossification of the anterior skull base, especially the lamina cribrosa, has been studied by computed tomography and histopathology. Sixteen human fetuses, (referred to our laboratory for pathological examination after spontaneous abortion between 18 and 32 weeks of ge

  20. Mechanisms of bioluminescence, chemiluminescence and of their regulation. Progress report, one year period through March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, H H

    1976-01-01

    Progress is reported on a 10-yr study of the production and role of excited states in biological systems and the mechanisms involved in bioluminescence and chemoluminescence. An hypothesis of the origin of bioluminescence is presented that is based on the mixed function oxygenase reaction. Techniques of absolute measurements of light intensities and spectral composition were applied in studies of bioluminescence of marine dinoflagellates and the chemiluminescence of carcinogenic polycyclic aromatic hydrocarbons as the result of enzymatic hydroxylation. (CH)

  1. Electron tomography based on a total variation minimization reconstruction technique

    Energy Technology Data Exchange (ETDEWEB)

    Goris, B., E-mail: bart.goris@ua.ac.be [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van den Broek, W. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Batenburg, K.J. [Centrum Wiskunde and Informatica, Science Park 123, NL-1098XG Amsterdam (Netherlands); Vision Lab, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Heidari Mezerji, H.; Bals, S. [EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2012-02-15

    The 3D reconstruction of a tilt series for electron tomography is mostly carried out using the weighted backprojection (WBP) algorithm or using one of the iterative algorithms such as the simultaneous iterative reconstruction technique (SIRT). However, it is known that these reconstruction algorithms cannot compensate for the missing wedge. Here, we apply a new reconstruction algorithm for electron tomography, which is based on compressive sensing. This is a field in image processing specialized in finding a sparse solution or a solution with a sparse gradient to a set of ill-posed linear equations. Therefore, it can be applied to electron tomography where the reconstructed objects often have a sparse gradient at the nanoscale. Using a combination of different simulated and experimental datasets, it is shown that missing wedge artefacts are reduced in the final reconstruction. Moreover, it seems that the reconstructed datasets have a higher fidelity and are easier to segment in comparison to reconstructions obtained by more conventional iterative algorithms. -- Highlights: Black-Right-Pointing-Pointer A reconstruction algorithm for electron tomography is investigated based on total variation minimization. Black-Right-Pointing-Pointer Missing wedge artefacts are reduced by this algorithm. Black-Right-Pointing-Pointer The reconstruction is easier to segment. Black-Right-Pointing-Pointer More reliable quantitative information can be obtained.

  2. Strengths and weaknesses in the determination of Saccharomyces cerevisiae cell viability by ATP-based bioluminescence assay.

    Science.gov (United States)

    Paciello, Lucia; Falco, Francesco Cristino; Landi, Carmine; Parascandola, Palma

    2013-03-05

    Due to its sensitivity and speed of execution, detection of ATP by luciferin-luciferase reaction is a widely spread system to highlight cell viability. The paper describes the methodology followed to successfully run the assay in the presence of yeast cells of two strains of the yeast Saccharomyces cerevisiae, BY4741 and CEN.PK2-1C and emphasizes the importance of correctly determining the contact time between the lysing agent and the yeast cells. Once this was established, luciferin-luciferase reaction was exploited to determine the maximum specific rate of growth, as well as cell viability in a series of routine tests. The results obtained in this preliminary study highlighted that using luciferin-luciferase can imply an over-estimation of maximum specific growth rate with respect to that determined by optical density and/or viable count. On the contrary, the bioluminescence assay gave the possibility to highlight, if employed together with viable count, physiological changes occurring in yeast cells as response to stressful environmental conditions such as those deriving from exposure of yeast cells to high temperature or those depending on the operative conditions applied during fed-batch operations.

  3. Measurement of Bacterial Bioluminescence Intensity and Spectrum: Current Physical Techniques and Principles.

    Science.gov (United States)

    Jia, Kun; Ionescu, Rodica Elena

    2016-01-01

    : Bioluminescence is light production by living organisms, which can be observed in numerous marine creatures and some terrestrial invertebrates. More specifically, bacterial bioluminescence is the "cold light" produced and emitted by bacterial cells, including both wild-type luminescent and genetically engineered bacteria. Because of the lively interplay of synthetic biology, microbiology, toxicology, and biophysics, different configurations of whole-cell biosensors based on bacterial bioluminescence have been designed and are widely used in different fields, such as ecotoxicology, food toxicity, and environmental pollution. This chapter first discusses the background of the bioluminescence phenomenon in terms of optical spectrum. Platforms for bacterial bioluminescence detection using various techniques are then introduced, such as a photomultiplier tube, charge-coupled device (CCD) camera, micro-electro-mechanical systems (MEMS), and complementary metal-oxide-semiconductor (CMOS) based integrated circuit. Furthermore, some typical biochemical methods to optimize the analytical performances of bacterial bioluminescent biosensors/assays are reviewed, followed by a presentation of author's recent work concerning the improved sensitivity of a bioluminescent assay for pesticides. Finally, bacterial bioluminescence as implemented in eukaryotic cells, bioluminescent imaging, and cancer cell therapies is discussed.

  4. Phage-amplified bioluminescent bioreporters for the detection of foodborne pathogens

    Science.gov (United States)

    Ripp, Steven; Young, Jacque C.; Ozen, Aysu; Jegier, Patricia; Johnson, Courtney; Daumer, Kathleen; Garland, Jay; Sayler, Gary S.

    2004-06-01

    The objective of this investigation is to develop a bioluminescent bioreporter system for the detection and monitoring of pathogenic microbial species. Current detection methodologies typically rely on time-consuming sample pre-enrichment steps to elevate pathogen concentrations to detectable levels or DNA based polymerase chain reaction (PCR) techniques that require extensive user training and expensive instrumentation. Detection utilizing bioluminescent bioreporter organisms, however, can provide a simple and rapid means of monitoring foodborne pathogens. Bioluminescent bioreporters are engineered to produce light in response to specific environmental inducers. The light signal is then measured with photodetector devices to generate a quantitative assessment of inducer concentration. The immediate goal of this research effort is to integrate key quorum sensing signal transduction elements into pathogen specific bacteriophages. Upon infection of a unique pathogenic species by the bacteriophages, quorum sensing signals will be generated that will subsequently stimulate bioluminescence in neighboring bioluminescent bioreporter cells. Utilizing both bacteriophages and bioluminescent bioreporters, we realize exceptional pathogen specificity while attaining enhanced bioluminescence production. This integrative approach will lead to rapid pathogen identification without requisite sample pre-enrichment. Additionally, since the bioluminescent response is completely intrinsic to the bioreporter organism, no user interventions are required for generating light signals; the protocol requires only addition of the food sample with the bacteriophage/bioluminescent bioreporter system. Measurement of light responses can be achieved using high-throughput microtiter plate readers, hand-held photomultiplier units, or microchip luminometers.

  5. Network Tomography Based on Additive Metrics

    CERN Document Server

    Ni, Jian

    2008-01-01

    Inference of the network structure (e.g., routing topology) and dynamics (e.g., link performance) is an essential component in many network design and management tasks. In this paper we propose a new, general framework for analyzing and designing routing topology and link performance inference algorithms using ideas and tools from phylogenetic inference in evolutionary biology. The framework is applicable to a variety of measurement techniques. Based on the framework we introduce and develop several polynomial-time distance-based inference algorithms with provable performance. We provide sufficient conditions for the correctness of the algorithms. We show that the algorithms are consistent (return correct topology and link performance with an increasing sample size) and robust (can tolerate a certain level of measurement errors). In addition, we establish certain optimality properties of the algorithms (i.e., they achieve the optimal $l_\\infty$-radius) and demonstrate their effectiveness via model simulation.

  6. Chemiluminescence and bioluminescence microbe detection

    Science.gov (United States)

    Taylor, R. E.; Chappelle, E.; Picciolo, G. L.; Jeffers, E. L.; Thomas, R. R.

    1978-01-01

    Automated biosensors for online use with NASA Water Monitoring System employs bioluminescence and chemiluminescence techniques to rapidly measure microbe contamination of water samples. System eliminates standard laboratory procedures requiring time duration of 24 hours or longer.

  7. Bioluminescence tracking of alginate micro-encapsulated cell transplants.

    Science.gov (United States)

    Tiernan, Aubrey R; Sambanis, Athanassios

    2017-02-01

    Cell-based therapies to treat loss-of-function hormonal disorders such as diabetes and Parkinson's disease are routinely coupled with encapsulation strategies, but an understanding of when and why grafts fail in vivo is lacking. Consequently, investigators cannot clearly define the key factors that influence graft success. Although bioluminescence is a popular method to track the survival of free cells transplanted in preclinical models, little is known of the ability to use bioluminescence for real-time tracking of microencapsulated cells. Furthermore, the impact that dynamic imaging distances may have, due to freely-floating microcapsules in vivo, on cell survival monitoring is unknown. This work addresses these questions by applying bioluminescence to a pancreatic substitute based on microencapsulated cells. Recombinant insulin-secreting cells were transduced with a luciferase lentivirus and microencapsulated in Ba(2+) crosslinked alginate for in vitro and in vivo studies. In vitro quantitative bioluminescence monitoring was possible and viable microencapsulated cells were followed in real time under both normoxic and anoxic conditions. Although in vivo dispersion of freely-floating microcapsules in the peritoneal cavity limited the analysis to a qualitative bioluminescence evaluation, signals consistently four orders of magnitude above background were clear indicators of temporal cell survival. Strong agreement between in vivo and in vitro cell proliferation over time was discovered by making direct bioluminescence comparisons between explanted microcapsules and parallel in vitro cultures. Broader application of this bioluminescence approach to retrievable transplants, in supplement to currently used end-point physiological tests, could improve understanding and accelerate development of cell-based therapies for critical clinical applications. Copyright © 2014 John Wiley & Sons, Ltd.

  8. Bioluminescence Potential Modeling and Forecasting

    Science.gov (United States)

    2013-05-22

    bioluminescence in the wakes of ships, breaking waves, around the bodies of rapidly moving fish and mammals , and from simple agitation of the water with one’s hand...history of brilliant displays of bioluminescence in the wakes of ships, breaking waves, around the bodies of rapidly moving fish and mammals , and from...during the earlier stages of upwelling development. Later, the observed deep offshore BL potential maximum disappeared and became a shallower and much

  9. Travel-time-based thermal tracer tomography

    Science.gov (United States)

    Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf

    2016-05-01

    Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.

  10. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  11. Fast, moment-based estimation methods for delay network tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Earl Christophre [Los Alamos National Laboratory; Michailidis, George [U OF MICHIGAN; Nair, Vijayan N [U OF MICHIGAN

    2008-01-01

    Consider the delay network tomography problem where the goal is to estimate distributions of delays at the link-level using data on end-to-end delays. These measurements are obtained using probes that are injected at nodes located on the periphery of the network and sent to other nodes also located on the periphery. Much of the previous literature deals with discrete delay distributions by discretizing the data into small bins. This paper considers more general models with a focus on computationally efficient estimation. The moment-based schemes presented here are designed to function well for larger networks and for applications like monitoring that require speedy solutions.

  12. CORRIGENDUM: Compressed sensing based interior tomography Compressed sensing based interior tomography

    Science.gov (United States)

    Yu, Hengyong; Wang, Ge

    2009-07-01

    The authors would like to add some missing references. On page 2799, lines 15 and 16 from the bottom should read 'Specifically, the algorithm can be summarized in the following pseudo-code (Candes and Romberg 2005, Candes et al 2006, Sidky et al 2006, Chen et al 2008, Sidky and Pan 2008)'. References Candes E J and Romberg J 2005 Signal recovery from random projections Computational Imaging III; Proc. SPIE 5764 76-86 Candes E J, Romberg J and Tao T 2006 Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Trans. Inf. Theory 52 489-509 Chen G H, Tang J and Leng S 2008 Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets Med. Phys. 35 660-3 Sidky E Y, Kao C M and Pan X C 2006 Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT J. X-ray Sci. Technol. 14 119-39 Sidky E Y and Pan X C 2008 Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization Phys. Med. Biol. 53 4777-807

  13. Electromagnetic tomography (EMT): image reconstruction based on the inverse problem

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Starting from Maxwell's equations for inhomogeneous media, nonlinear integral equations of the inverse problem of the electromagnetic tomography (EMT) are derived, whose kernel is the dyadic Green's function for the EMT sensor with a homogeneous medium in the object space. Then in terms of ill-posedness of the inverse problem, a Tikhonov-type regularization model is established based on a linearization-approximation of the nonlinear inverse problem. Finally, an iterative algorithm of image reconstruction based on the inverse problem and reconstruction images of some object flows for simplified sensor are given. Initial results of the image reconstruction show that the algorithm based on the inverse problem is superior to those based on the linear back-projection in the quality of image reconstruction.

  14. Object-based high contrast travel time tomography

    CERN Document Server

    Lin, Yenting

    2013-01-01

    We consider travel time tomography problems involving detection of high contrast, discrete high velocity structures. This results in a discrete nonlinear inverse problem, for which traditional grid-based models and iterative linearized least-squares reconstruction algorithms are not suitable. This is because travel paths change significantly near the high contrast velocity structure, making it more difficult to inversely calculate the travel path and infer the velocity along the path. We propose a model-based approach to describe the high velocity structure using pre-defined elementary objects. Compared to a grid-based model, our approach has complexity that increases as a function of the number of objects, rather than increasing with the number of cells (usually very large). A new reconstruction algorithm is developed that provides estimates of the probability that a high velocity structure appears at any point in the region of interest. Simulation results show that our method can efficiently sample the mode...

  15. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  16. Introducing shape constraints into object-based traveltime tomography

    Science.gov (United States)

    Gaullier, G.; Charbonnier, P.; Heitz, F.; Côte, P.

    2016-09-01

    Traveltime tomography is a difficult, ill-posed reconstruction problem due to the nonlinearity of the forward model and the limited number of measurements usually available. In such an adverse situation, pixel-based regularization methods are generally unable to provide satisfactory reconstructions. In this paper we propose a novel object-based reconstruction method that introduces prior information about the shape of the structures to be reconstructed, which yields high quality geoacoustic inversion. The proposed method approaches the forward model by a series of linear problems, leading to a sequence of minimizations during which the shape prior is introduced. The method is demonstrated on synthetic and real data, collected on a specific bench dedicated to non-destructive testing of civil engineering structures.

  17. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  18. Line-Source Based X-Ray Tomography

    Directory of Open Access Journals (Sweden)

    Deepak Bharkhada

    2009-01-01

    Full Text Available Current computed tomography (CT scanners, including micro-CT scanners, utilize a point x-ray source. As we target higher and higher spatial resolutions, the reduced x-ray focal spot size limits the temporal and contrast resolutions achievable. To overcome this limitation, in this paper we propose to use a line-shaped x-ray source so that many more photons can be generated, given a data acquisition interval. In reference to the simultaneous algebraic reconstruction technique (SART algorithm for image reconstruction from projection data generated by an x-ray point source, here we develop a generalized SART algorithm for image reconstruction from projection data generated by an x-ray line source. Our numerical simulation results demonstrate the feasibility of our novel line-source based x-ray CT approach and the proposed generalized SART algorithm.

  19. Voidage measurement based on genetic algorithm and electrical capacitance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-wei; WANG Bao-liang; HUANG Zhi-yao; LI Hai-qing

    2005-01-01

    A new voidage measurement method based on electrical capacitance tomography (ECT) technique, Genetic Algorithm (GA) and Partial Least Square (PLS) method was proposed. The voidage measurement model, linear capacitance combination, was developed to measure on-line voidage. GA and PLS method were used to determine the coefficients of the voidage measurement model. GA was used to explore the optimal capacitance combination which gave significant contribution to the voidage measurement. PLS method was applied to determine the weight coefficient of the contribution of each capacitance to the voidage measurement. Flow pattern identification result was introduced to improve the voidage measurement accuracy. Experimental results showed that the proposed voidage measurement method is effective and that the measurement accuracy is satisfactory.

  20. Sensing of Tooth Microleakage Based on Dental Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Chia-Wei Sun

    2015-01-01

    Full Text Available This study describes microleakage sensing based on swept-source optical coherence tomography (SS-OCT. With a handheld scanning probe, the SS-OCT system can provide portable real-time imaging for clinical diagnosis. Radiography is the traditional clinical imaging instrument used for dentistry; however, it does not provide good contrast images between filling material and the enamel of treated teeth with microleakage. The results of this study show that microleakage can be detected with oral probing using SS-OCT in vivo. The calculated microleakage length was 401 μm and the width is 148 μm, which is consistent with the related histological biopsy measurements. The diagnosis of microleakage in teeth could be useful for prevention of secondary caries in the clinical treatment plans developed in the field of oral medicine.

  1. Coronary revascularization treatment based on dual-source computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Dikkers, R.; Willems, T.P.; Jonge, G.J. de; Zaag-Loonen, H.J. van der; Ooijen, P.M.A. van; Oudkerk, M. [University of Groningen, Department of Radiology, Groningen (Netherlands); University Medical Center, Groningen (Netherlands); Piers, L.H.; Tio, R.A.; Zijlstra, F. [University of Groningen, Department of Cardiology, Groningen (Netherlands); University Medical Center, Groningen (Netherlands)

    2008-09-15

    Therapy advice based on dual-source computed tomography (DSCT) in comparison with coronary angiography (CAG) was investigated and the results evaluated after 1-year follow-up. Thirty-three consecutive patients (mean age 61.9 years) underwent DSCT and CAG and were evaluated independently. In an expert reading (the ''gold standard''), CAG and DSCT examinations were evaluated simultaneously by an experienced radiologist and cardiologist. Based on the presence of significant stenosis and current guidelines, therapy advice was given by all readers blinded from the results of other readings and clinical information. Patients were treated based on a multidisciplinary team evaluation including all clinical information. In comparison with the gold standard, CAG had a higher specificity (91%) and positive predictive value (PPV) (95%) compared with DSCT (82% and 91%, respectively). DSCT had a higher sensitivity (96%) and negative predictive value (NPV) (89%) compared with CAG (91% and 83%, respectively). The DSCT-based therapy advice did not lead to any patient being denied the revascularization they needed according to the multidisciplinary team evaluation. During follow-up, two patients needed additional revascularization. The high NPV for DSCT for revascularization assessment indicates that DSCT could be safely used to select patients benefiting from medical therapy only. (orig.)

  2. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    William Charlton

    2007-07-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions.

  3. Bioluminescence imaging in live cells and animals.

    Science.gov (United States)

    Tung, Jack K; Berglund, Ken; Gutekunst, Claire-Anne; Hochgeschwender, Ute; Gross, Robert E

    2016-04-01

    The use of bioluminescent reporters in neuroscience research continues to grow at a rapid pace as their applications and unique advantages over conventional fluorescent reporters become more appreciated. Here, we describe practical methods and principles for detecting and imaging bioluminescence from live cells and animals. We systematically tested various components of our conventional fluorescence microscope to optimize it for long-term bioluminescence imaging. High-resolution bioluminescence images from live neurons were obtained with our microscope setup, which could be continuously captured for several hours with no signs of phototoxicity. Bioluminescence from the mouse brain was also imaged noninvasively through the intact skull with a conventional luminescence imager. These methods demonstrate how bioluminescence can be routinely detected and measured from live cells and animals in a cost-effective way with common reagents and equipment.

  4. Quantification of the vascular endothelial growth factor with a bioluminescence resonance energy transfer (BRET) based single molecule biosensor.

    Science.gov (United States)

    Wimmer, T; Lorenz, B; Stieger, K

    2016-12-15

    Neovascular pathologies in the eye like age-related macular degeneration (AMD), the diabetic retinopathie (DR), retinopathie of prematurity (ROP) or the retinal vein occlusion (RVO) are caused through a hypoxia induced upregulation of the vascular endothelial growth factor (VEGF). So far a correlation of intraocular VEGF concentrations to the impact of the pathologies is limited because of invasive sampling. Therefore, a minimally invasive, repeatable quantification of VEGF levels in the eye is needed to correlate the stage of VEGF induced pathologies as well as the efficacy of anti-VEGF treatment. Here we describe the development of three variants of enhanced BRET2 (eBRET2) based, single molecule biosensors by fusing a Renilla luciferase mutant with enhanced light output (RLuc8) to the N-terminus and a suitable eBRET2 acceptor fluorophore (GFP2) to the C-terminus of a VEGF binding domain, directly fused or separated with two different peptide linkers for the quantification of VEGF in vitro. The VEGF binding domain consists of a single chain variable fragment (scFv) based on ranibizumab in which the light- and the heavy- F(ab) chains were connected with a peptide linker to generate one open reading frame (orf). All three variants generate measureable eBRET2 ratios by transferring energy from the luciferase donor to the GFP2 acceptor, whereas only the directly fused and the proline variant permit VEGF quantification. The directly fused biosensor variant allows the quantification of VEGF with higher sensitivity, compared to the widely used ELISA systems and a wide dynamic quantification range in vitro. Our system demonstrates not only an additional in vitro application on VEGF quantification but also a promising step towards an applicable biosensor in an implantable device able to quantify VEGF reliably after implantation in vivo.

  5. Guided Wave Tomography Based on Full-Waveform Inversion.

    Science.gov (United States)

    Rao, Jing; Ratassepp, Madis; Fan, Zheng

    2016-02-29

    In this paper, a guided wave tomography method based on Full Waveform Inversion (FWI) is developed for accurate and high resolu- tion reconstruction of the remaining wall thickness in isotropic plates. The forward model is computed in the frequency domain by solving a full-wave equation in a two-dimensional acoustic model, accounting for higher order eects such as diractions and multiple scattering. Both numerical simulations and experiments were carried out to obtain the signals of a dispersive guided mode propagating through defects. The inversion was based on local optimization of a waveform mist func- tion between modeled and measured data, and was applied iteratively to discrete frequency components from low to high frequencies. The resulting wave velocity maps were then converted to thickness maps by the dispersion characteristics of selected guided modes. The results suggest that the FWI method is capable to reconstruct the thickness map of a irregularly shaped defect accurately on a 10 mm thick plate with the thickness error within 0.5 mm.

  6. Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lo, P., E-mail: pechinlo@mednet.edu.ucla; Brown, M. S.; Kim, H.; Kim, H.; Goldin, J. G. [Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90024 (United States); Argula, R.; Strange, C. [Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 (United States)

    2015-05-15

    Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select a small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.

  7. FPGA-Based Pulse Parameter Discovery for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Hauck, Scott; Lewellen, Thomas K; Miyaoka, Robert S

    2009-10-24

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex digital signal processing algorithms with clock rates well above 100MHz. This, combined with FPGA's low expense and ease of use make them an ideal technology for a data acquisition system for a positron emission tomography (PET) scanner. The University of Washington is producing a series of high-resolution, small-animal PET scanners that utilize FPGAs as the core of the front-end electronics. For these next generation scanners, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper we report how we utilize the reconfigurable property of an FPGA to self-calibrate itself to determine pulse parameters necessary for some of the pulse processing steps. Specifically, we show how the FPGA can generate a reference pulse based on actual pulse data instead of a model. We also report how other properties of the photodetector pulse (baseline, pulse length, average pulse energy and event triggers) can be determined automatically by the FPGA.

  8. Video-rate volumetric optical coherence tomography-based microangiography

    Science.gov (United States)

    Baran, Utku; Wei, Wei; Xu, Jingjiang; Qi, Xiaoli; Davis, Wyatt O.; Wang, Ruikang K.

    2016-04-01

    Video-rate volumetric optical coherence tomography (vOCT) is relatively young in the field of OCT imaging but has great potential in biomedical applications. Due to the recent development of the MHz range swept laser sources, vOCT has started to gain attention in the community. Here, we report the first in vivo video-rate volumetric OCT-based microangiography (vOMAG) system by integrating an 18-kHz resonant microelectromechanical system (MEMS) mirror with a 1.6-MHz FDML swept source operating at ˜1.3 μm wavelength. Because the MEMS scanner can offer an effective B-frame rate of 36 kHz, we are able to engineer vOMAG with a video rate up to 25 Hz. This system was utilized for real-time volumetric in vivo visualization of cerebral microvasculature in mice. Moreover, we monitored the blood perfusion dynamics during stimulation within mouse ear in vivo. We also discussed this system's limitations. Prospective MEMS-enabled OCT probes with a real-time volumetric functional imaging capability can have a significant impact on endoscopic imaging and image-guided surgery applications.

  9. Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

    Science.gov (United States)

    Zabihian, Behrooz; Chen, Zhe; Rank, Elisabet; Sinz, Christoph; Bonesi, Marco; Sattmann, Harald; Ensher, Jason; Minneman, Michael P.; Hoover, Erich; Weingast, Jessika; Ginner, Laurin; Leitgeb, Rainer; Kittler, Harald; Zhang, Edward; Beard, Paul; Drexler, Wolfgang; Liu, Mengyang

    2016-09-01

    Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo, advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin is significantly smaller than that in other areas of the skin. We present for the first time OCTA images of capillaries along with the PAT images of the deeper vessels, demonstrating the complementary effective imaging depth range and the visualization capabilities of PAT and OCTA for imaging human skin in vivo. The proposed imaging system in this study could significantly improve treatment monitoring of dermatological diseases associated with cutaneous vasculature abnormalities.

  10. Analysis of forest backscattering characteristics based on polarization coherence tomography

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is difficult to make an inventory of vertical profiles of forest structure parameters in field measurements.However,analysis and understanding of forest backscattering characteristics contribute to estimation and detection of forest vertical structure because of the close relationships between backscattering characteristics and structure parameters.The vertical structure function in the complex interferometric coherence definition,which represents the vertical variation of microwave scattering with the penetration depth at a point in the 2-D radar image and can be used to analyze the forest backscattering characteristics,can be reconstructed from polarization coherence tomography(PCT).Based on PCT,the paper analyzes the forest backscattering characteristics and explores the inherent relationship between the result of PCT and the forest structure parameters from numerical simulation of Random Volume over Ground model(RVoG),Polarimetric SAR interferometry(PolInSAR)simulation of forest scene and PolInSAR data at L-band of the test site Traunstein.Firstly,the effects of the extinction coefficient and surface-to-volume scattering ratio in RVoG model on vertical backscattering characteristics are analyzed by means of numerical simulation.Secondly,by applying PCT to L-band POLInSAR simulations of forest scene,different variations of vertical backscattering due to different extinction coefficients and the ratios of surface-to-volume scattering resulting from different polarizations,forest types and densities are displayed and analyzed.Then a concept of relative average backscattering intensity is presented,and the factors which affect its vertical distribution are also discussed.Preliminary results show that there is high sensitivity of the vertical distribution of forest relative average backscattering intensity to the polarization,forest type and density.Finally,based on repeat pass DLR E-SAR L-band airborne POLInSAR data,the capability of PCT technology for detection

  11. Formulation of photon diffusion from spherical bioluminescent sources in an infinite homogeneous medium

    Directory of Open Access Journals (Sweden)

    Wang Lihong V

    2004-05-01

    computationally efficient in biomedical engineering applications. By using our analytic solutions for spherical sources, we can better predict bioluminescent signals and better understand both the potential for, and the limitations of, bioluminescent tomography in an idealized case. The formulas are particularly valuable for furthering the development of bioluminescent tomography.

  12. RTM-based Teleseismic Reflection Tomography with Free Surface Multiples

    Science.gov (United States)

    Burdick, S. A.; De Hoop, M. V.; van der Hilst, R. D.

    2013-12-01

    Receiver function analysis of teleseismic converted and free surface reflected phases has long been a cornerstone of lithospheric studies. Discontinuities in elastic properties are revealed by deconvolving the incident wavefield from scattered phases and projecting the time differences to depth to form an image. The accuracy of the image is determined to a large extent by the accuracy of the method and background velocity model used, but popular approaches for projecting receiver functions to depth commonly rely on simplifying assumptions of a 1D velocity and planar discontinuities. In tectonically complex regions like subduction zones and rift systems, strong heterogeneity can create an ambiguous tradeoff between the background velocity and the depth of the discontinuities. Furthermore, such structures are apt to create caustics at high frequencies, rendering ray-based methods inadequate. In order to better constrain the background velocity and correctly place the discontinuities at depth, we employ a novel reverse-time migration (RTM) based reflection tomography method. We adapt our reflection tomography from exploration seismology for use with teleseismic phases. Active source methods for exploration have focused on the annihilation of extended images - image gathers formed with different subsurface angle or offset information - as a means of judging the accuracy of the model. Applying these approaches to teleseismic data is untenable because 1) the sparse and uneven distribution of earthquake sources leads to the incomplete construction of extended image, 2) the imperfect separation and source deconvolution of the scattered wavefield render previous error measurements unreliable, and 3) the planar geometry of incoming arrivals makes measures of subsurface offset insensitive to perturbations in the model. To overcome these obstacles, we have developed a flexible approach based on pairwise single-source image correlations. We determine the success of the RTM and

  13. A practical local tomography reconstruction algorithm based on known subregion

    CERN Document Server

    Paleo, Pierre; Mirone, Alessandro

    2016-01-01

    We propose a new method to reconstruct data acquired in a local tomography setup. This method uses an initial reconstruction and refines it by correcting the low frequency artifacts known as the cupping effect. A basis of Gaussian functions is used to correct the initial reconstruction. The coefficients of this basis are iteratively optimized under the constraint of a known subregion. Using a coarse basis reduces the degrees of freedom of the problem while actually correcting the cupping effect. Simulations show that the known region constraint yields an unbiased reconstruction, in accordance to uniqueness theorems stated in local tomography.

  14. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  15. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    Science.gov (United States)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  16. Dictionary-based image denoising for dual energy computed tomography

    Science.gov (United States)

    Mechlem, Korbinian; Allner, Sebastian; Mei, Kai; Pfeiffer, Franz; Noël, Peter B.

    2016-03-01

    Compared to conventional computed tomography (CT), dual energy CT allows for improved material decomposition by conducting measurements at two distinct energy spectra. Since radiation exposure is a major concern in clinical CT, there is a need for tools to reduce the noise level in images while preserving diagnostic information. One way to achieve this goal is the application of image-based denoising algorithms after an analytical reconstruction has been performed. We have developed a modified dictionary denoising algorithm for dual energy CT aimed at exploiting the high spatial correlation between between images obtained from different energy spectra. Both the low-and high energy image are partitioned into small patches which are subsequently normalized. Combined patches with improved signal-to-noise ratio are formed by a weighted addition of corresponding normalized patches from both images. Assuming that corresponding low-and high energy image patches are related by a linear transformation, the signal in both patches is added coherently while noise is neglected. Conventional dictionary denoising is then performed on the combined patches. Compared to conventional dictionary denoising and bilateral filtering, our algorithm achieved superior performance in terms of qualitative and quantitative image quality measures. We demonstrate, in simulation studies, that this approach can produce 2d-histograms of the high- and low-energy reconstruction which are characterized by significantly improved material features and separation. Moreover, in comparison to other approaches that attempt denoising without simultaneously using both energy signals, superior similarity to the ground truth can be found with our proposed algorithm.

  17. Miniature optical coherence tomography system based on silicon photonics

    Science.gov (United States)

    Margallo-Balbás, Eduardo; Pandraud, Gregory; French, Patrick J.

    2008-02-01

    Optical Coherence Tomography (OCT) is a promising medical imaging technique. It has found applications in many fields of medicine and has a large potential for the optical biopsy of tumours. One of the technological challenges impairing faster adoption of OCT is the relative complexity of the optical instrumentation required, which translates into expensive and bulky setups. In this paper we report an implementation of Time Domain OCT (TD-OCT) based on a silicon photonic platform. The devices are fabricated using Silicon-On-Insulator (SOI) wafers, on which rib waveguides are defined. While most of the components needed are well-known in this technology, a fast delay line with sufficient scanning range is a specific requirement of TD-OCT. In the system reported, this was obtained making use of the thermo-optical effect of silicon. By modulating the thermal resistance of the waveguide to the substrate, it is possible to establish a trade-off between maximum working frequency and power dissipation. Within this trade-off, the systems obtained can be operated in the kHz range, and they achieve temperature shifts corresponding to scanning ranges of over 2mm. Though the current implementation still requires external sources and detectors to be coupled to the Planar Lightwave Circuit (PLC), future work will include three-dimensional integration of these components onto the substrate. With the potential to include the read-out and driving electronics on the same die, the reported approach can yield extremely compact and low-cost TD-OCT systems, enabling a wealth of new applications, including gastrointestinal pills with optical biopsy capabilities.

  18. Roles of biogenic amines in regulating bioluminescence in the Australian glowworm Arachnocampa flava.

    Science.gov (United States)

    Rigby, Lisa M; Merritt, David J

    2011-10-01

    The glowworm Arachnocampa flava is a carnivorous fly larva (Diptera) that uses light to attract prey into its web. The light organ is derived from cells of the Malpighian tubules, representing a bioluminescence system that is unique to the genus. Bioluminescence is modulated through the night although light levels change quite slowly compared with the flashing of the better-known fireflies (Coleoptera). The existing model for the neural regulation of bioluminescence in Arachnocampa, based on use of anaesthetics and ligations, is that bioluminescence is actively repressed during the non-glowing phase and the repression is partially released during the bioluminescence phase. The effect of the anaesthetic, carbon dioxide, on the isolated light organ from the present study indicates that the repression is at least partially mediated at the light organ itself rather than less directly through the central nervous system. Blocking of neural signals from the central nervous system through ligation leads to uncontrolled release of bioluminescence but light is emitted at relatively low levels compared with under anaesthesia. Candidate biogenic amines were introduced by several methods: feeding prey items injected with test solution, injecting the whole larva, injecting a ligated section containing the light organ or bathing the isolated light organ in test solution. Using these methods, dopamine, serotonin and tyramine do not affect bioluminescence output. Exposure to elevated levels of octopamine via feeding, injection or bathing of the isolated light organ indicates that it is involved in the regulation of repression. Administration of the octopamine antagonists phentolamine or mianserin results in very high bioluminescence output levels, similar to the effect of anaesthetics, but only mianserin acts directly on the light organ.

  19. Discovery of a glowing millipede in California and the gradual evolution of bioluminescence in Diplopoda.

    Science.gov (United States)

    Marek, Paul E; Moore, Wendy

    2015-05-19

    The rediscovery of the Californian millipede Xystocheir bistipita surprisingly reveals that the species is bioluminescent. Using molecular phylogenetics, we show that X. bistipita is the evolutionary sister group of Motyxia, the only genus of New World bioluminescent millipedes. We demonstrate that bioluminescence originated in the group's most recent common ancestor and evolved by gradual, directional change through diversification. Because bioluminescence in Motyxia has been experimentally demonstrated to be aposematic, forewarning of the animal's cyanide-based toxins, these results are contrary to aposematic theory and empirical evidence that a warning pattern cannot evolve gradually in unpalatable prey. However, gradual evolution of a warning pattern is plausible if faint light emission served another function and was co-opted as an aposematic signal later in the diversification of the genus. Luminescence in Motyxia stem-group taxa may have initially evolved to cope with reactive oxygen stress triggered by a hot, dry environment and was repurposed for aposematism by high-elevation crown-group taxa colonizing new habitats with varying levels of predation. The discovery of bioluminescence in X. bistipita and its pivotal phylogenetic location provides insight into the independent and repeated evolution of bioluminescence across the tree of life.

  20. Three dimensional image reconstruction based on a wide-field optical coherence tomography system

    Science.gov (United States)

    Feng, Yinqi; Feng, Shengtong; Zhang, Min; Hao, Junjun

    2014-07-01

    Wide-field optical coherence tomography has a promising application for its high scanning rate and resolution. The principle of a wide-field optical coherence tomography system is described, and 2D images of glass slides are reconstructed using eight-stepped phase-shifting method in the system. Using VC6.0 and OpenGL programming, 3D images are reconstructed based on the Marching Cube algorithm with 2D image sequences. The experimental results show that the depth detection and three-dimensional tomography for translucent materials could be implemented efficiently in the WFOCT system.

  1. Bioluminescence imaging: a shining future for cardiac regeneration

    OpenAIRE

    Roura, Santiago; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2013-01-01

    Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described...

  2. The Chemical Basis of Fungal Bioluminescence.

    Science.gov (United States)

    Purtov, Konstantin V; Petushkov, Valentin N; Baranov, Mikhail S; Mineev, Konstantin S; Rodionova, Natalja S; Kaskova, Zinaida M; Tsarkova, Aleksandra S; Petunin, Alexei I; Bondar, Vladimir S; Rodicheva, Emma K; Medvedeva, Svetlana E; Oba, Yuichi; Oba, Yumiko; Arseniev, Alexander S; Lukyanov, Sergey; Gitelson, Josef I; Yampolsky, Ilia V

    2015-07-06

    Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  3. Lung Ventilation Functional Monitoring Based on Electrical Impedance Tomography

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiaoyan; WANG Huaxiang; ZHAO Bo; SHI Xiaolei

    2009-01-01

    Medically,electrical impedance tomography(EIT)is a relatively inexpensive,safe,non-invasive and portable technique compared with computerized tomography(CT)and magnetic resonance imaging(MRI).In this paper,EIT_TJU_Ⅱ system is developed including both the data collection system and image reconstruction algorithm.The testing approach of the system performance,including spatial resolution and sensitivity,is described through brine tank experiments.The images of the thorax physical model verify that the system can reconstruct the interior resistivity distribution.Finally,the lung ventilation functional monitoring in vivo is realized by EIT,and the visualized images indicate that the configuration and performance of EIT_TJU_Ⅱ system are feasible and EIT is a promising technique in clinical monitoring application.

  4. Optical coherence tomography-based micro-particle image velocimetry.

    Science.gov (United States)

    Mujat, Mircea; Ferguson, R Daniel; Iftimia, Nicusor; Hammer, Daniel X; Nedyalkov, Ivaylo; Wosnik, Martin; Legner, Hartmut

    2013-11-15

    We present a new application of optical coherence tomography (OCT), widely used in biomedical imaging, to flow analysis in near-wall hydrodynamics for marine research. This unique capability, called OCT micro-particle image velocimetry, provides a high-resolution view of microscopic flow phenomena and measurement of flow statistics within the first millimeter of a boundary layer. The technique is demonstrated in a small flow cuvette and in a water tunnel.

  5. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.

    Science.gov (United States)

    Davis, Matthew P; Sparks, John S; Smith, W Leo

    2016-01-01

    Bioluminescence is primarily a marine phenomenon with 80% of metazoan bioluminescent genera occurring in the world's oceans. Here we show that bioluminescence has evolved repeatedly and is phylogenetically widespread across ray-finned fishes. We recover 27 independent evolutionary events of bioluminescence, all among marine fish lineages. This finding indicates that bioluminescence has evolved many more times than previously hypothesized across fishes and the tree of life. Our exploration of the macroevolutionary patterns of bioluminescent lineages indicates that the present day diversity of some inshore and deep-sea bioluminescent fish lineages that use bioluminescence for communication, feeding, and reproduction exhibit exceptional species richness given clade age. We show that exceptional species richness occurs particularly in deep-sea fishes with intrinsic bioluminescent systems and both shallow water and deep-sea lineages with luminescent systems used for communication.

  6. Analytical Applications of Bioluminescence and Chemiluminescence

    Science.gov (United States)

    Chappelle, E. W. (Editor); Picciolo, G. L. (Editor)

    1975-01-01

    Bioluminescence and chemiluminescence studies were used to measure the amount of adenosine triphosphate and therefore the amount of energy available. Firefly luciferase - luciferin enzyme system was emphasized. Photometer designs are also considered.

  7. Quantitative bioluminescence imaging of mouse tumor models.

    Science.gov (United States)

    Tseng, Jen-Chieh; Kung, Andrew L

    2015-01-05

    Bioluminescence imaging (BLI) has become an essential technique for preclinical evaluation of anticancer therapeutics and provides sensitive and quantitative measurements of tumor burden in experimental cancer models. For light generation, a vector encoding firefly luciferase is introduced into human cancer cells that are grown as tumor xenografts in immunocompromised hosts, and the enzyme substrate luciferin is injected into the host. Alternatively, the reporter gene can be expressed in genetically engineered mouse models to determine the onset and progression of disease. In addition to expression of an ectopic luciferase enzyme, bioluminescence requires oxygen and ATP, thus only viable luciferase-expressing cells or tissues are capable of producing bioluminescence signals. Here, we summarize a BLI protocol that takes advantage of advances in hardware, especially the cooled charge-coupled device camera, to enable detection of bioluminescence in living animals with high sensitivity and a large dynamic range.

  8. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    Energy Technology Data Exchange (ETDEWEB)

    Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  9. Circadian control sheds light on fungal bioluminescence.

    Science.gov (United States)

    Oliveira, Anderson G; Stevani, Cassius V; Waldenmaier, Hans E; Viviani, Vadim; Emerson, Jillian M; Loros, Jennifer J; Dunlap, Jay C

    2015-03-30

    Bioluminescence, the creation and emission of light by organisms, affords insight into the lives of organisms doing it. Luminous living things are widespread and access diverse mechanisms to generate and control luminescence [1-5]. Among the least studied bioluminescent organisms are phylogenetically rare fungi-only 71 species, all within the ∼ 9,000 fungi of the temperate and tropical Agaricales order-are reported from among ∼ 100,000 described fungal species [6, 7]. All require oxygen [8] and energy (NADH or NADPH) for bioluminescence and are reported to emit green light (λmax 530 nm) continuously, implying a metabolic function for bioluminescence, perhaps as a byproduct of oxidative metabolism in lignin degradation. Here, however, we report that bioluminescence from the mycelium of Neonothopanus gardneri is controlled by a temperature-compensated circadian clock, the result of cycles in content/activity of the luciferase, reductase, and luciferin that comprise the luminescent system. Because regulation implies an adaptive function for bioluminescence, a controversial question for more than two millennia [8-15], we examined interactions between luminescent fungi and insects [16]. Prosthetic acrylic resin "mushrooms," internally illuminated by a green LED emitting light similar to the bioluminescence, attract staphilinid rove beetles (coleopterans), as well as hemipterans (true bugs), dipterans (flies), and hymenopterans (wasps and ants), at numbers far greater than dark control traps. Thus, circadian control may optimize energy use for when bioluminescence is most visible, attracting insects that can in turn help in spore dispersal, thereby benefitting fungi growing under the forest canopy, where wind flow is greatly reduced.

  10. The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber

    Directory of Open Access Journals (Sweden)

    Gabriela Kuncová

    2016-06-01

    Full Text Available Living cells of the lux-based bioluminescent bioreporter Pseudomonas putida TVA8 were encapsulated in a silica hydrogel attached to the distal wider end of a tapered quartz fiber. Bioluminescence of immobilized cells was induced with toluene at high (26.5 mg/L and low (5.3 mg/L concentrations. Initial bioluminescence maxima were achieved after >12 h. One week after immobilization, a biofilm-like layer of cells had formed on the surface of the silica gel. This resulted in shorter response times and more intensive bioluminescence maxima that appeared as rapidly as 2 h after toluene induction. Considerable second bioluminescence maxima were observed after inductions with 26.5 mg toluene/L. The second and third week after immobilization the biosensor repetitively and semiquantitatively detected toluene in buffered medium. Due to silica gel dissolution and biofilm detachment, the bioluminescent signal was decreasing 20–32 days after immobilization and completely extinguished after 32 days. The reproducible formation of a surface cell layer on the wider end of the tapered optical fiber can be translated to various whole cell bioluminescent biosensor devices and may serve as a platform for in-situ sensors.

  11. Development of a new procedure based on the energy charge measurement using ATP bioluminescence assay for the detection of living mould from graphic documents.

    Science.gov (United States)

    Rakotonirainy, Malalanirina Sylvia; Arnold, Sylvia

    2008-01-01

    Fungal contamination is a major cause of deterioration in libraries and archives. Curators and conservators increasingly need rapid microbiological analyses. This paper presents a rapid detection method for the fungal contaminants on documents. A previous study showed that the calculation of energy charge, using bioluminescence ATP assays, provides a useful indicator to determinate the viability of fungal strains. We argue that this sensitive and time-saving method is better than traditional culture techniques. However, the procedure needs to be modified to make it usable for lay persons. An improved and simplified protocol is proposed here for the extraction of adenylate nucleotides (AN) from fungal spores and for their measurements. Our new procedure can detect the existence of viable fungal strains on documents, presenting suspect spots within minutes. The extraction is performed by filtration with DMSO-TE solution as extractant. The different step of the measurement of AN content is carried out successively in a single test tube instead of the three tubes necessary in the initial method. The new procedure was tested on 12 strains among those most frequently found in archives and libraries and validated on swab samples from real documents.

  12. Bioluminescence in Dinoflagellates: Evidence that the Adaptive Value of Bioluminescence in Dinoflagellates is Concentration Dependent.

    Science.gov (United States)

    Hanley, Karen A; Widder, Edith A

    2017-03-01

    Three major hypotheses have been proposed to explain why dinoflagellate bioluminescence deters copepod grazing: startle response, aposematic warning, and burglar alarm. These hypotheses propose dinoflagellate bioluminescence (A) startles predatory copepods, (B) warns potential predators of toxicity, and (C) draws the attention of higher order visual predators to the copepod's location. While the burglar alarm is the most commonly accepted hypothesis, it requires a high concentration of bioluminescent dinoflagellates to be effective, meaning the bioluminescence selective advantage at lower, more commonly observed, dinoflagellate concentrations may result from another function (e.g. startle response or aposematic warning). Therefore, a series of experiments was conducted to evaluate copepod grazing (Acartia tonsa) on bioluminescent dinoflagellates (during bioluminescent and nonbioluminescent phases, corresponding to night and day, respectively) at different concentrations (10, 1000, and 3000 cells mL(-1) ), on toxic (Pyrodinium bahamense var. bahamense) and nontoxic (Lingulodinium polyedrum) bioluminescent dinoflagellates, and in the presence of nonluminescent diatoms (Thalassiosira eccentrica). Changes in copepod ingestion rates, clearance rates, and feeding preferences as a result of these experimental factors, particularly during the mixed trails with nonluminescent diatoms, indicate there is a concentration threshold at which the burglar alarm becomes effective and below which dinoflagellate bioluminescence functions as an aposematic warning.

  13. Noninvasive bioluminescence imaging in small animals.

    Science.gov (United States)

    Zinn, Kurt R; Chaudhuri, Tandra R; Szafran, April Adams; O'Quinn, Darrell; Weaver, Casey; Dugger, Kari; Lamar, Dale; Kesterson, Robert A; Wang, Xiangdong; Frank, Stuart J

    2008-01-01

    There has been a rapid growth of bioluminescence imaging applications in small animal models in recent years, propelled by the availability of instruments, analysis software, reagents, and creative approaches to apply the technology in molecular imaging. Advantages include the sensitivity of the technique as well as its efficiency, relatively low cost, and versatility. Bioluminescence imaging is accomplished by sensitive detection of light emitted following chemical reaction of the luciferase enzyme with its substrate. Most imaging systems provide 2-dimensional (2D) information in rodents, showing the locations and intensity of light emitted from the animal in pseudo-color scaling. A 3-dimensional (3D) capability for bioluminescence imaging is now available, but is more expensive and less efficient; other disadvantages include the requirement for genetically encoded luciferase, the injection of the substrate to enable light emission, and the dependence of light signal on tissue depth. All of these problems make it unlikely that the method will be extended to human studies. However, in small animal models, bioluminescence imaging is now routinely applied to serially detect the location and burden of xenografted tumors, or identify and measure the number of immune or stem cells after an adoptive transfer. Bioluminescence imaging also makes it possible to track the relative amounts and locations of bacteria, viruses, and other pathogens over time. Specialized applications of bioluminescence also follow tissue-specific luciferase expression in transgenic mice, and monitor biological processes such as signaling or protein interactions in real time. In summary, bioluminescence imaging has become an important component of biomedical research that will continue in the future.

  14. NanoLuc: A Small Luciferase Is Brightening Up the Field of Bioluminescence.

    Science.gov (United States)

    England, Christopher G; Ehlerding, Emily B; Cai, Weibo

    2016-05-18

    The biomedical field has greatly benefited from the discovery of bioluminescent proteins. Currently, scientists employ bioluminescent systems for numerous biomedical applications, ranging from highly sensitive cellular assays to bioluminescence-based molecular imaging. Traditionally, these systems are based on Firefly and Renilla luciferases; however, the applicability of these enzymes is limited by their size, stability, and luminescence efficiency. NanoLuc (NLuc), a novel bioluminescence platform, offers several advantages over established systems, including enhanced stability, smaller size, and >150-fold increase in luminescence. In addition, the substrate for NLuc displays enhanced stability and lower background activity, opening up new possibilities in the field of bioluminescence imaging. The NLuc system is incredibly versatile and may be utilized for a wide array of applications. The increased sensitivity, high stability, and small size of the NLuc system have the potential to drastically change the field of reporter assays in the future. However, as with all such technology, NLuc has limitations (including a nonideal emission for in vivo applications and its unique substrate) which may cause it to find restricted use in certain areas of molecular biology. As this unique technology continues to broaden, NLuc may have a significant impact in both preclinical and clinical fields, with potential roles in disease detection, molecular imaging, and therapeutic monitoring. This review will present the NLuc technology to the scientific community in a nonbiased manner, allowing the audience to adopt their own views of this novel system.

  15. Bioluminescence microscopy using a short focal-length imaging lens

    OpenAIRE

    Ogoh, K; Akiyoshi, R; May-Maw-Thet,; Sugiyama, T; Dosaka, S; Hatta-Ohashi, Y; Suzuki, H.

    2014-01-01

    Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low-light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera....

  16. Discovery of New Substrates for LuxAB Bacterial Bioluminescence.

    Science.gov (United States)

    Jiang, Tianyu; Wang, Weishan; Wu, Xingkang; Wu, Wenxiao; Bai, Haixiu; Ma, Zhao; Shen, Yuemao; Yang, Keqian; Li, Minyong

    2016-08-01

    In this article, four novel substrates with long halftime have been designed and synthesized successfully for luxAB bacterial bioluminescence. After in vitro and in vivo biological evaluation, these molecules can emit obvious bioluminescence emission with known bacterial luciferase, thus indicating a new promising approach to developing the bacterial bioluminescent system.

  17. Study of an automatic ATP detecting system with high sensitivity based on bioluminescence%基于生物发光的高灵敏度ATP自动测试系统研究

    Institute of Scientific and Technical Information of China (English)

    岳伟伟; 何保山; 周爱玉; 罗金平; 蔡新霞

    2009-01-01

    To meet the needs of automatic adenosine triphosphate (ATP) detection with high sensitivity and wide response range, an ATP detection system was designed based on bioluminescence. By recording the light intensity at the beginning of the bioluminescence reaction using the automatic injection technology, the system can detect samples automatically with high sensitivity. The photo-electronic detection unit was optimized to decrease the influence of stray light and electromagnetism and increase the efficiency of luminescence detection. The circuit and data processing algorithm was optimized to broaden the detection range. The ATP samples with the concentration of 10-15~10-6 M were measured and the correlation coefficient between the ATP concentration and the light intensity was 0.974. The detection range was over 9 magnitudes. Compared with the commercial products, the system in this paper has the virtues of automatization, high sensitivity and wide detection range. Therefore, the ATP system has a great potential in ATP measurement and the corresponding fields such as bacteria, toxicity and hygienic conditions, and so on.%针对高灵敏度、宽响应范围及自动检测三磷酸腺苷(ATP)的需求,设计了一种基于生物发光原理的ATP检测系统.系统采用自动加样技术,在发光反应的同时开始记录光强,使仪表检测自动化,且提高检测灵敏度;在优化光电检测单元设计和减小杂散光及电磁干扰的同时,提高荧光检测效率;通过电路和数据处理算法优化提高仪表检测范围.以浓度为10-15~10-6 M范围内的标准ATP溶液进行了实验,结果表明仪表测量光强与ATP实际浓度相关系数为0.974,检测范围达9个数量级.与市场相关仪器相比,该系统具有自动化测试,性能和灵敏度高、响应范围宽的特点,在ATP测量以及相关领域如细菌测量、毒性测试及卫生状况检测等方面具有广泛的应用前景.

  18. High throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence

    Science.gov (United States)

    Shultzaberger, Ryan K.; Paddock, Mark L.; Katsuki, Takeo; Greenspan, Ralph J.; Golden, Susan S.

    2016-01-01

    The temporal measurement of a bioluminescent reporter has proven to be one of the most powerful tools for characterizing circadian rhythms in the cyanobacterium Synechococcus elongatus. Primarily, two approaches have been used to automate this process: (1) detection of cell culture bioluminescence in 96-well plates by a photomultiplier tube-based plate-cycling luminometer (TopCount Microplate Scintillation and Luminescence Counter, Perkin Elmer) and (2) detection of individual colony bioluminescence by iteratively rotating a Petri dish under a cooled CCD camera using a computer-controlled turntable. Each approach has distinct advantages. The TopCount provides a more quantitative measurement of bioluminescence, enabling the direct comparison of clock output levels among strains. The computer-controlled turntable approach has a shorter set-up time and greater throughput, making it a more powerful phenotypic screening tool. While the latter approach is extremely useful, only a few labs have been able to build such an apparatus because of technical hurdles involved in coordinating and controlling both the camera and the turntable, and in processing the resulting images. This protocol provides instructions on how to construct, use, and process data from a computer-controlled turntable to measure the temporal changes in bioluminescence of individual cyanobacterial colonies. Furthermore, we describe how to prepare samples for use with the TopCount to minimize experimental noise, and generate meaningful quantitative measurements of clock output levels for advanced analysis. PMID:25662451

  19. Bioluminescent bioreporter assays for targeted detection of chemical and biological agents

    Science.gov (United States)

    Ripp, Steven; Jegier, Pat; Johnson, Courtney; Moser, Scott; Islam, Syed; Sayler, Gary

    2008-04-01

    Bioluminescent bioreporters carrying the bacterial lux gene cassette have been well established for the sensing and monitoring of select chemical agents. Their ability to generate target specific visible light signals with no requirement for extraneous additions of substrate or other hands-on manipulations affords a real-time, repetitive assaying technique that is remarkable in its simplicity and accuracy. Although the predominant application of lux-based bioluminescent bioreporters has been towards chemical compound detection, novel genetic engineering schemes are yielding a variety of new bioreporter systems that extend the lux sensing mechanism beyond mere analyte discrimination. For example, the unique specificity of bacteriophage (bacterial viruses) has been exploited in lux bioluminescent assays for specific identification of foodborne bacterial pathogens such as Escherichia coli O157:H7. With the concurrent ability to interface bioluminescent bioreporter assays onto integrated circuit microluminometers (BBICs; bioluminescent bioreporter integrated circuits), the potential exists for the development of sentinel microchips that can function as environmental monitors for multiplexed recognition of chemical and biological agents in air, food, and water. The size and portability of BBIC biosensors may ultimately provide a deployable, interactive network sensing technology adaptable towards chem/bio defense.

  20. High-throughput and quantitative approaches for measuring circadian rhythms in cyanobacteria using bioluminescence.

    Science.gov (United States)

    Shultzaberger, Ryan K; Paddock, Mark L; Katsuki, Takeo; Greenspan, Ralph J; Golden, Susan S

    2015-01-01

    The temporal measurement of a bioluminescent reporter has proven to be one of the most powerful tools for characterizing circadian rhythms in the cyanobacterium Synechococcus elongatus. Primarily, two approaches have been used to automate this process: (1) detection of cell culture bioluminescence in 96-well plates by a photomultiplier tube-based plate-cycling luminometer (TopCount Microplate Scintillation and Luminescence Counter, Perkin Elmer) and (2) detection of individual colony bioluminescence by iteratively rotating a Petri dish under a cooled CCD camera using a computer-controlled turntable. Each approach has distinct advantages. The TopCount provides a more quantitative measurement of bioluminescence, enabling the direct comparison of clock output levels among strains. The computer-controlled turntable approach has a shorter set-up time and greater throughput, making it a more powerful phenotypic screening tool. While the latter approach is extremely useful, only a few labs have been able to build such an apparatus because of technical hurdles involved in coordinating and controlling both the camera and the turntable, and in processing the resulting images. This protocol provides instructions on how to construct, use, and process data from a computer-controlled turntable to measure the temporal changes in bioluminescence of individual cyanobacterial colonies. Furthermore, we describe how to prepare samples for use with the TopCount to minimize experimental noise and generate meaningful quantitative measurements of clock output levels for advanced analysis.

  1. In vitro influence of hypoxia on bioluminescence imaging in brain tumor cells

    Science.gov (United States)

    Moriyama, Eduardo H.; Jarvi, Mark; Niedre, Mark; Mocanu, Joseph D.; Moriyama, Yumi; Li, Buhong; Lilge, Lothar; Wilson, Brian C.

    2007-02-01

    Bioluminescence Imaging (BLI) has been employed as an imaging modality to identify and characterize fundamental processes related to cancer development and response at cellular and molecular levels. This technique is based on the reaction of luciferin with oxygen in the presence of luciferase and ATP. A major concern in this technique is that tumors are generally hypoxic, either constitutively and/or as a result of treatment, therefore the oxygen available for the bioluminescence reaction could possibly be reduced to limiting levels, and thus leading to underestimation of the actual number of luciferase-labeled cells during in vivo procedures. In this report, we present the initial in vitro results of the oxygen dependence of the bioluminescence signal in rat gliosarcoma 9L cells tagged with the luciferase gene (9L luc cells). Bioluminescence photon emission from cells exposed to different oxygen tensions was detected by a sensitive CCD camera upon exposure to luciferin. The results showed that bioluminescence signal decreased at administered pO II levels below about 5%, falling by approximately 50% at 0.2% pO II. Additional experiments showed that changes in BLI was due to the cell inability to maintain normal levels of ATP during the hypoxic period reducing the ATP concentration to limiting levels for BLI.

  2. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  3. Feasibility of computed tomography based thermometry during interstitial laser heating in bovine liver

    NARCIS (Netherlands)

    Pandeya, G. D.; Klaessens, J. H. G. M.; Greuter, M. J. W.; Schmidt, B.; Flohr, T.; van Hillegersberg, R.; Oudkerk, M.

    2011-01-01

    To assess the feasibility of computed tomography (CT) based thermometry during interstitial laser heating in the bovine liver. Four freshly exercised cylindrical blocks of bovine tissue were heated using a continuous laser of Nd:YAG (wavelength: 1064 nm, active length: 30 mm, power: 10-30 W). All ti

  4. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  5. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. Met

  6. Retrospective image-based gating of intracoronary optical coherence tomography: Implications for quantitative analysis

    NARCIS (Netherlands)

    K. Sihan (Kenji); C.P. Botha (Charl); F.H. Post (Frits); S. de Winter (Sebastiaan); N. Gonzalo (Nieves); E.S. Regar (Eveline); P.W.J.C. Serruys (Patrick); R. Hamers (Ronald); N. Bruining (Nico)

    2011-01-01

    textabstractAims: Images acquired of coronary vessels during a pullback of time-domain optical coherence tomography (OCT) are influenced by the dynamics of the heart. This study explores the feasibility of applying an in-house developed retrospective image-based gating method for OCT and the influen

  7. In vivo cell tracking with bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Eun; Kalimuthu, Senthilkumar; Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of)

    2015-03-15

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

  8. Monitoring of environmental pollutants by bioluminescent bacteria.

    Science.gov (United States)

    Girotti, Stefano; Ferri, Elida Nora; Fumo, Maria Grazia; Maiolini, Elisabetta

    2008-02-04

    This review deals with the applications of bioluminescent bacteria to the environmental analyses, published during the years 2000-2007. The ecotoxicological assessment, by bioassays, of the environmental risks and the luminescent approaches are reported. The review includes a brief introduction to the characteristics and applications of bioassays, a description of the characteristics and applications of natural bioluminescent bacteria (BLB), and a collection of the main applications to organic and inorganic pollutants. The light-emitting genetically modified bacteria applications, as well as the bioluminescent immobilized systems and biosensors are outlined. Considerations about commercially available BLB and BLB catalogues are also reported. Most of the environmental applications, here mentioned, of luminescent organisms are on wastewater, seawater, surface and ground water, tap water, soil and sediments, air. Comparison to other bioindicators and bioassay has been also made. Various tables have been inserted, to make easier to take a rapid glance at all possible references concerning the topic of specific interest.

  9. Detection of bacteria with bioluminescent reporter bacteriophage.

    Science.gov (United States)

    Klumpp, Jochen; Loessner, Martin J

    2014-01-01

    Bacteriophages are viruses that exclusively infect bacteria. They are ideally suited for the development of highly specific diagnostic assay systems. Bioluminescent reporter bacteriophages are designed and constructed by integration of a luciferase gene in the virus genome. Relying on the host specificity of the phage, the system enables rapid, sensitive, and specific detection of bacterial pathogens. A bioluminescent reporter phage assay is superior to any other molecular detection method, because gene expression and light emission are dependent on an active metabolism of the bacterial cell, and only viable cells will yield a signal. In this chapter we introduce the concept of creating reporter phages, discuss their advantages and disadvantages, and illustrate the advances made in developing such systems for different Gram-negative and Gram-positive pathogens. The application of bioluminescent reporter phages for the detection of foodborne pathogens is emphasized.

  10. In vivo cell tracking with bioluminescence imaging.

    Science.gov (United States)

    Kim, Jung Eun; Kalimuthu, Senthilkumar; Ahn, Byeong-Cheol

    2015-03-01

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

  11. Evaluating the microstructure of human brain tissues using synchrotron radiation-based micro-computed tomography

    Science.gov (United States)

    Schulz, Georg; Morel, Anne; Imholz, Martha S.; Deyhle, Hans; Weitkamp, Timm; Zanette, Irene; Pfeiffer, Franz; David, Christian; Müller-Gerbl, Magdalena; Müller, Bert

    2010-09-01

    Minimally invasive deep brain neurosurgical interventions require a profound knowledge of the morphology of the human brain. Generic brain atlases are based on histology including multiple preparation steps during the sectioning and staining. In order to correct the distortions induced in the anisotropic, inhomogeneous soft matter and therefore improve the accuracy of brain atlases, a non-destructive 3D imaging technique with the required spatial and density resolution is of great significance. Micro computed tomography provides true micrometer resolution. The application to post mortem human brain, however, is questionable because the differences of the components concerning X-ray absorption are weak. Therefore, magnetic resonance tomography has become the method of choice for three-dimensional imaging of human brain. Because the spatial resolution of this method is limited, an alternative has to be found for the three-dimensional imaging of cellular microstructures within the brain. Therefore, the present study relies on the synchrotron radiationbased micro computed tomography in the recently developed grating-based phase contrast mode. Using data acquired at the beamline ID 19 (ESRF, Grenoble, France) we demonstrate that grating-based tomography yields premium images of human thalamus, which can be used for the correction of histological distortions by 3D non-rigid registration.

  12. Monitoring of recombinant protein production using bioluminescence in a semiautomated fermentation process.

    Science.gov (United States)

    Trezzani, I; Nadri, M; Dorel, C; Lejeune, P; Bellalou, J; Lieto, J; Hammouri, H; Longin, R; Dhurjati, P

    2003-01-01

    On-line optimization of fermentation processes can be greatly aided by the availability of information on the physiological state of the cell. The goal of our "BioLux" research project was to design a recombinant cell capable of intracellular monitoring of product synthesis and to use it as part of an automated fermentation system. A recombinant plasmid was constructed containing an inducible promoter that controls the gene coding for a model protein and the genes necessary for bioluminescence. The cells were cultured in microfermenters equipped with an on-line turbidity sensor and a specially designed on-line light sensor capable of continuous measurement of bioluminescence. Initial studies were done under simple culture conditions, and a linear correlation between luminescence and protein production was obtained. Such specially designed recombinant bioluminescent cells can potentially be applied for model-based inference of intracellular product formation, as well as for optimization and control of recombinant fermentation processes.

  13. Use of Bioluminescence Markers To Detect Pseudomonas spp. in the Rhizosphere

    Science.gov (United States)

    de Weger, Letty A.; Dunbar, Paul; Mahafee, Walter F.; Lugtenberg, Ben J. J.; Sayler, Gary S.

    1991-01-01

    The use of bioluminescence as a sensitive marker for detection of Pseudomonas spp. in the rhizosphere was investigated. Continuous expression of the luxCDABE genes, required for bioluminescence, was not detectable in the rhizosphere. However, when either a naphthalene-inducible luxCDABE construct or a constitutive luxAB construct (coding only for the luciferase) was introduced into the Pseudomonas cells, light emission could be initiated just prior to measurement by the addition of naphthalene or the substrate for luciferase, n-decyl aldehyde, respectively. These Pseudomonas cells could successfully be detected in the rhizosphere by using autophotography or optical fiber light measurement techniques. Detection required the presence of 103 to 104 CFU/cm of root, showing that the bioluminescence technique is at least 1,000-fold more sensitive than β-galactosidase-based systems. Images PMID:16348610

  14. Monitoring of bacterial contamination of dental unit water lines using adenosine triphosphate bioluminescence.

    Science.gov (United States)

    Watanabe, A; Tamaki, N; Yokota, K; Matsuyama, M; Kokeguchi, S

    2016-12-01

    Bacterial contamination of dental unit waterlines (DUWLs) was evaluated using ATP bioluminescence analysis and a conventional culture method. Water samples (N=44) from DUWLs were investigated for heterotrophic bacteria by culture on R2A agar, which gave counts ranging from 1.4×10(3) to 2.7×10(5) cfu/mL. The ATP bioluminescence results for DUWL samples ranged from 6 to 1189 relative light units and could be obtained within 1min; these correlated well with the culture results (r=0.727-0.855). We conclude that the results of the ATP bioluminescence assay accurately reflect the results of conventional culture-based testing. This method is potentially useful for rapid and simple monitoring of DUWL bacterial contamination.

  15. A Multichannel Bioluminescence Determination Platform for Bioassays.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays.

  16. Wide-field fluorescence molecular tomography with compressive sensing based preconditioning.

    Science.gov (United States)

    Yao, Ruoyang; Pian, Qi; Intes, Xavier

    2015-12-01

    Wide-field optical tomography based on structured light illumination and detection strategies enables efficient tomographic imaging of large tissues at very fast acquisition speeds. However, the optical inverse problem based on such instrumental approach is still ill-conditioned. Herein, we investigate the benefit of employing compressive sensing-based preconditioning to wide-field structured illumination and detection approaches. We assess the performances of Fluorescence Molecular Tomography (FMT) when using such preconditioning methods both in silico and with experimental data. Additionally, we demonstrate that such methodology could be used to select the subset of patterns that provides optimal reconstruction performances. Lastly, we compare preconditioning data collected using a normal base that offers good experimental SNR against that directly acquired with optimal designed base. An experimental phantom study is provided to validate the proposed technique.

  17. Swept source optical coherence tomography based on non-uniform discrete fourier transform

    Institute of Scientific and Technical Information of China (English)

    Tong Wu; Zhihua Ding; Kai Wang; Chuan Wang

    2009-01-01

    A high-speed high-sensitivity swept source optical coherence tomography (SSOCT) system using a high speed swept laser source is developed.Non-uniform discrete fourier transform (NDFT) method is introduced in the SSOCT system for data processing.Frequency calibration method based on a Mach-Zender interferometer (MZI) and conventional data interpolation method is also adopted in the system for comparison.Optical coherence tomography (OCT) images from SSOCT based on the NDFT method,the MZI method,and the interpolation method are illustrated.The axial resolution of the SSOCT based on the NDFT method is comparable to that of the SSOCT system using MZI calibration method and conventional data interpolation method.The SSOCT system based on the NDFT method can achieve higher signal intensity than that of the system based on the MZI calibration method and conventional data interpolation method because of the better utilization of the power of source.

  18. Theoretical tuning of the firefly bioluminescence spectra by the modification of oxyluciferin

    Science.gov (United States)

    Cheng, Yuan-Yuan; Zhu, Jia; Liu, Ya-Jun

    2014-01-01

    Extending the firefly bioluminescence is of practical significance for the improved visualization of living cells and the development of a multicolor reporter. Tuning the color of bioluminescence in fireflies mainly involves the modification of luciferase and luciferin. In this Letter, we theoretically studied the emission spectra of 9 firefly oxyluciferin analogs in the gas phase and in solutions. Three density functionals, including B3LYP, CAM-B3LYP and M06-2X, were employed to theoretically predict the efficiently luminescent analogs. The reliable functionals for calculating the targeted systems were suggested. The luminescence efficiency, solvent effects, and substituent effects are discussed based on the calculated results.

  19. Antioxidant assay using genetically engineered bioluminescent Escherichia coli

    Science.gov (United States)

    Bartolome, Amelita; Macalino, Bernadette; Pastoral, Ian Lemuel; Sevilla, Fortunato, III

    2006-02-01

    A new antioxidant activity assay based on the reactive oxygen species (ROS)-inducible bacterial strain (E. coli DPD2511) is described. The strain harbors the plasmid pKatG::luxCDABE and responds to hydrogen peroxide treatment by increasing light emission at 490 nm. Antioxidant capacity is evaluated through the ability of an agent to inhibit the hydrogen peroxide-induced bioluminescence of E. coli DPD2511. Applicability of the developed assay in detecting levels of antioxidants in various aqueous plant extracts is demonstrated. The assay was validated against 2,2-diphenylpicrylhydrazyl (DPPH) assay, a known antioxidant assay.

  20. Spectral phase-based automatic calibration scheme for swept source-based optical coherence tomography systems

    Science.gov (United States)

    Ratheesh, K. M.; Seah, L. K.; Murukeshan, V. M.

    2016-11-01

    The automatic calibration in Fourier-domain optical coherence tomography (FD-OCT) systems allows for high resolution imaging with precise depth ranging functionality in many complex imaging scenarios, such as microsurgery. However, the accuracy and speed of the existing automatic schemes are limited due to the functional approximations and iterative operations used in their procedures. In this paper, we present a new real-time automatic calibration scheme for swept source-based optical coherence tomography (SS-OCT) systems. The proposed automatic calibration can be performed during scanning operation and does not require an auxiliary interferometer for calibration signal generation and an additional channel for its acquisition. The proposed method makes use of the spectral component corresponding to the sample surface reflection as the calibration signal. The spectral phase function representing the non-linear sweeping characteristic of the frequency-swept laser source is determined from the calibration signal. The phase linearization with improved accuracy is achieved by normalization and rescaling of the obtained phase function. The fractional-time indices corresponding to the equidistantly spaced phase intervals are estimated directly from the resampling function and are used to resample the OCT signals. The proposed approach allows for precise calibration irrespective of the path length variation induced by the non-planar topography of the sample or galvo scanning. The conceived idea was illustrated using an in-house-developed SS-OCT system by considering the specular reflection from a mirror and other test samples. It was shown that the proposed method provides high-performance calibration in terms of axial resolution and sensitivity without increasing computational and hardware complexity.

  1. Bioluminescent bioreporter integrated circuit detection methods

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Michael L.; Paulus, Michael J.; Sayler, Gary S.; Applegate, Bruce M.; Ripp, Steven A.

    2005-06-14

    Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for detection of particular analytes, including ammonia and estrogen compounds.

  2. Multicolor Bioluminescence Obtained Using Firefly Luciferin.

    Science.gov (United States)

    Kiyama, Masahiro; Saito, Ryohei; Iwano, Satoshi; Obata, Rika; Niwa, Haruki; Maki, Shojiro A

    2016-01-01

    Firefly bioluminescence is widely used in life science research as a useful analysis tool. For example, the adenosine-5`-triphosphate (ATP)-dependent enzymatic firefly bioluminescence reaction has long been utilized as a microbial monitoring tool. Rapid and sensitive firefly luciferin-luciferase combinations are used not only to measure cell viability but also for reporter-gene assays. Recently, bioluminescence was utilized as a noninvasive, real-time imaging tool for living subjects to monitor cells and biological events. However, the number of commercialized luciferase genes is limited and tissue-permeable near-infrared (NIR) region emitting light is required for in vivo imaging. In this review, recent studies describing synthetic luciferin analogues predicted to have red-shifted bioluminescence are summarized. Luciferase substrates emitting red, green, and blue light that were designed and developed in our laboratory are presented. The longest emission wavelength of the synthesized luciferin analogues was recorded at 675 nm, which is within the NIR region. This compound is now commercially available as "Aka Lumine®".

  3. Bioluminescence for determining energy state of plants

    Science.gov (United States)

    Ching, T. M.

    1975-01-01

    Bioluminescence produced by the luciferin-luciferase system is a very sensitive assay for ATP content in extracts of plant materials. The ATP test for seed and pollen viability and vigor is presented, along with prediction of high growth potential and productivity in new crosses and selections of breeding materials. ATP as an indicator for environmental quality, stresses, and metabolic regulation is also considered.

  4. Blob-Based Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography

    CERN Document Server

    Wang, Kun; Su, Richard; Oraevsky, Alexander; Anastasio, Mark A

    2013-01-01

    Optoacoustic tomography (OAT), also known as photoacoustic tomography, is an emerging computed biomedical imaging modality that exploits optical contrast and ultrasonic detection principles. Iterative image reconstruction algorithms that are based on discrete imaging models are actively being developed for OAT due to their ability to improve image quality by incorporating accurate models of the imaging physics, instrument response, and measurement noise.In this work, we investigate the use of discrete imaging models based on Kaiser-Bessel window functions, or `blobs', for iterative image reconstruction in OAT.A closed-form expression for the pressure produced by a blob function is calculated, which facilitates accurate computation of the system matrix. Computer-simulation and experimental studies are employed to demonstrate the potential advantages of blob-based iterative image reconstruction in OAT.

  5. Model Based Iterative Reconstruction for Bright Field Electron Tomography (Postprint)

    Science.gov (United States)

    2013-02-01

    Reconstruction Technique ( SIRT ) are applied to the data. Model based iterative reconstruction (MBIR) provides a powerful framework for tomographic...the reconstruction when the typical algorithms such as Filtered Back Projection (FBP) and Simultaneous Iterative Reconstruction Technique ( SIRT ) are

  6. Amplitude metrics for cellular circadian bioluminescence reporters.

    Science.gov (United States)

    St John, Peter C; Taylor, Stephanie R; Abel, John H; Doyle, Francis J

    2014-12-01

    Bioluminescence rhythms from cellular reporters have become the most common method used to quantify oscillations in circadian gene expression. These experimental systems can reveal phase and amplitude change resulting from circadian disturbances, and can be used in conjunction with mathematical models to lend further insight into the mechanistic basis of clock amplitude regulation. However, bioluminescence experiments track the mean output from thousands of noisy, uncoupled oscillators, obscuring the direct effect of a given stimulus on the genetic regulatory network. In many cases, it is unclear whether changes in amplitude are due to individual changes in gene expression level or to a change in coherence of the population. Although such systems can be modeled using explicit stochastic simulations, these models are computationally cumbersome and limit analytical insight into the mechanisms of amplitude change. We therefore develop theoretical and computational tools to approximate the mean expression level in large populations of noninteracting oscillators, and further define computationally efficient amplitude response calculations to describe phase-dependent amplitude change. At the single-cell level, a mechanistic nonlinear ordinary differential equation model is used to calculate the transient response of each cell to a perturbation, whereas population-level dynamics are captured by coupling this detailed model to a phase density function. Our analysis reveals that amplitude changes mediated at either the individual-cell or the population level can be distinguished in tissue-level bioluminescence data without the need for single-cell measurements. We demonstrate the effectiveness of the method by modeling experimental bioluminescence profiles of light-sensitive fibroblasts, reconciling the conclusions of two seemingly contradictory studies. This modeling framework allows a direct comparison between in vitro bioluminescence experiments and in silico ordinary

  7. Improved Reconstruction Quality of Bioluminescent Images by Combining SP3 Equations and Bregman Iteration Method

    Directory of Open Access Journals (Sweden)

    Qiang Wu

    2013-01-01

    Full Text Available Bioluminescence tomography (BLT has a great potential to provide a powerful tool for tumor detection, monitoring tumor therapy progress, and drug development; developing new reconstruction algorithms will advance the technique to practical applications. In the paper, we propose a BLT reconstruction algorithm by combining SP3 equations and Bregman iteration method to improve the quality of reconstructed sources. The numerical results for homogeneous and heterogeneous phantoms are very encouraging and give significant improvement over the algorithms without the use of SP3 equations and Bregman iteration method.

  8. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate o

  9. Cadaveric in-situ testing of optical coherence tomography system-based skull base surgery guidance

    Science.gov (United States)

    Sun, Cuiru; Khan, Osaama H.; Siegler, Peter; Jivraj, Jamil; Wong, Ronnie; Yang, Victor X. D.

    2015-03-01

    Optical Coherence Tomography (OCT) has extensive potential for producing clinical impact in the field of neurological diseases. A neurosurgical OCT hand-held forward viewing probe in Bayonet shape has been developed. In this study, we test the feasibility of integrating this imaging probe with modern navigation technology for guidance and monitoring of skull base surgery. Cadaver heads were used to simulate relevant surgical approaches for treatment of sellar, parasellar and skull base pathology. A high-resolution 3D CT scan was performed on the cadaver head to provide baseline data for navigation. The cadaver head was mounted on existing 3- or 4-point fixation systems. Tracking markers were attached to the OCT probe and the surgeon-probe-OCT interface was calibrated. 2D OCT images were shown in real time together with the optical tracking images to the surgeon during surgery. The intraoperative video and multimodality imaging data set, consisting of real time OCT images, OCT probe location registered to neurosurgical navigation were assessed. The integration of intraoperative OCT imaging with navigation technology provides the surgeon with updated image information, which is important to deal with tissue shifts and deformations during surgery. Preliminary results demonstrate that the clinical neurosurgical navigation system can provide the hand held OCT probe gross anatomical localization. The near-histological imaging resolution of intraoperative OCT can improve the identification of microstructural/morphology differences. The OCT imaging data, combined with the neurosurgical navigation tracking has the potential to improve image interpretation, precision and accuracy of the therapeutic procedure.

  10. 2.5D dictionary learning based computed tomography reconstruction

    Science.gov (United States)

    Luo, Jiajia; Eri, Haneda; Can, Ali; Ramani, Sathish; Fu, Lin; De Man, Bruno

    2016-05-01

    A computationally efficient 2.5D dictionary learning (DL) algorithm is proposed and implemented in the model- based iterative reconstruction (MBIR) framework for low-dose CT reconstruction. MBIR is based on the minimization of a cost function containing data-fitting and regularization terms to control the trade-off between data-fidelity and image noise. Due to the strong denoising performance of DL, it has previously been considered as a regularizer in MBIR, and both 2D and 3D DL implementations are possible. Compared to the 2D case, 3D DL keeps more spatial information and generates images with better quality although it requires more computation. We propose a novel 2.5D DL scheme, which leverages the computational advantage of 2D-DL, while attempting to maintain reconstruction quality similar to 3D-DL. We demonstrate the effectiveness of this new 2.5D DL scheme for MBIR in low-dose CT. By applying the 2D DL method in three different orthogonal planes and calculating the sparse coefficients accordingly, much of the 3D spatial information can be preserved without incurring the computational penalty of the 3D DL method. For performance evaluation, we use baggage phantoms with different number of projection views. In order to quantitatively compare the performance of different algorithms, we use PSNR, SSIM and region based standard deviation to measure the noise level, and use the edge response to calculate the resolution. Experimental results with full view datasets show that the different DL based algorithms have similar performance and 2.5D DL has the best resolution. Results with sparse view datasets show that 2.5D DL outperforms both 2D and 3D DL in terms of noise reduction. We also compare the computational costs, and 2.5D DL shows strong advantage over 3D DL in both full-view and sparse-view cases.

  11. Task-Based Optimization of Computed Tomography Imaging Systems

    CERN Document Server

    Sanchez, Adrian A

    2015-01-01

    The goal of this thesis is to provide a framework for the use of task-based metrics of image quality to aid in the design, implementation, and evaluation of CT image reconstruction algorithms and CT systems in general. We support the view that task-based metrics of image quality can be useful in guiding the algorithm design and implementation process in order to yield images of objectively superior quality and higher utility for a given task. Further, we believe that metrics such as the Hotelling observer (HO) SNR can be used as summary scalar metrics of image quality for the evaluation of images produced by novel reconstruction algorithms. In this work, we aim to construct a concise and versatile formalism for image reconstruction algorithm design, implementation, and assessment. The bulk of the work focuses on linear analytical algorithms, specifically the ubiquitous filtered back-projection (FBP) algorithm. However, due to the demonstrated importance of optimization-based algorithms in a wide variety of CT...

  12. Optical coherence tomography based microangiography: A tool good for dermatology applications (Conference Presentation)

    Science.gov (United States)

    Wang, Ruikang K.; Baran, Utku; Choi, Woo J.

    2016-02-01

    Optical coherence tomography (OCT) based microangiography (OMAG) is a new imaging technique enabling the visualization of blood flow within microcirculatory tissue beds in vivo with high resolution. In this talk, the concept and advantages of OMAG will be discussed and its potential clinical applications in the dermatology will be shown, demonstrating its usefulness in the clinical monitoring and therapeutic treatment of various skin pathologies, e.g. acne, port wine stain and wound healing.

  13. Atom-probe tomography of tribological boundary films resulting from boron-based oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon-Jun; Baik, Sung-Il; Bertolucci-Coelho, Leonardo; Mazzaferro, Lucca; Ramirez, Giovanni; Erdemir, Ali; Seidman, D K

    2016-01-15

    Correlative characterization using atom-probe tomography (APT) and transmission electron microscopy (TEM) was performed on a tribofilm formed during sliding frictional testing with a fully formulated engine oil, which also contains a boron-based additive. The tribofilm formed is ~15 nm thick and consists of oxides of iron and compounds of B, Ca, P, and S, which are present in the additive. This study provides strong evidence for boron being embedded in the tribofilm, which effectively reduces friction and wear losses.

  14. Iterative reconstruction methods in atmospheric tomography: FEWHA, Kaczmarz and Gradient-based algorithm

    Science.gov (United States)

    Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.

    2014-07-01

    The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.

  15. Bioluminescence as an ecological factor during high Arctic polar night

    Science.gov (United States)

    Cronin, Heather A.; Cohen, Jonathan H.; Berge, Jørgen; Johnsen, Geir; Moline, Mark A.

    2016-11-01

    Bioluminescence commonly influences pelagic trophic interactions at mesopelagic depths. Here we characterize a vertical gradient in structure of a generally low species diversity bioluminescent community at shallower epipelagic depths during the polar night period in a high Arctic fjord with in situ bathyphotometric sampling. Bioluminescence potential of the community increased with depth to a peak at 80 m. Community composition changed over this range, with an ecotone at 20–40 m where a dinoflagellate-dominated community transitioned to dominance by the copepod Metridia longa. Coincident at this depth was bioluminescence exceeding atmospheric light in the ambient pelagic photon budget, which we term the bioluminescence compensation depth. Collectively, we show a winter bioluminescent community in the high Arctic with vertical structure linked to attenuation of atmospheric light, which has the potential to influence pelagic ecology during the light-limited polar night.

  16. Bioluminescence microscopy using a short focal-length imaging lens.

    Science.gov (United States)

    Ogoh, K; Akiyoshi, R; May-Maw-Thet; Sugiyama, T; Dosaka, S; Hatta-Ohashi, Y; Suzuki, H

    2014-03-01

    Bioluminescence from cells is so dim that bioluminescence microscopy is performed using an ultra low-light imaging camera. Although the image sensor of such cameras has been greatly improved over time, such improvements have not been made commercially available for microscopes until now. Here, we customized the optical system of a microscope for bioluminescence imaging. As a result, bioluminescence images of cells could be captured with a conventional objective lens and colour imaging camera. As bioluminescence microscopy requires no excitation light, it lacks the photo-toxicity associated with fluorescence imaging and permits the long-term, nonlethal observation of living cells. Thus, bioluminescence microscopy would be a powerful tool in cellular biology that complements fluorescence microscopy.

  17. Bioluminescence-Sensing Assay for Microbial Growth Recognition

    Directory of Open Access Journals (Sweden)

    Heba Ramadan Eed

    2016-01-01

    Full Text Available The conventional methods for microbial viability quantification require cultivation and are laborious. There is consequently a widespread need for cultivation-free methods. The adenosine triphosphate (ATP bioluminescence-sensing assay is considered an extremely effective biosensor; hence ATP is the energy currency of all living microbes and can be used as a rapid indicator of microbial viability. We developed an ATP bioluminescence-sensing assay to detect microbial viability. A bioluminescent recombinant E. coli strain was used with luciferase extracted from transformed bacteria. Results showed that there is a direct correlation between the bioluminescence intensity of the ATP bioluminescence-sensing assay and the microbial viability. Bacterial counts from food samples were detected using the developed sensing assay and validated by the traditional plate-counting method. Compared with the plate-counting method, ATP bioluminescence-sensing assay is a more rapid and efficient approach for detecting microbial viability.

  18. Autonomously Bioluminescent Mammalian Cells for Continuous and Real-time Monitoring of Cytotoxicity

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Ripp, Steven A.; Sayler, Gary S.

    2013-01-01

    Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures. This independence from external stimulation places the burden for maintaining the bioluminescent reaction solely on the cell, meaning that the resultant signal is only detected during active metabolism. This characteristic makes the lux-expressing cell line an excellent candidate for use as a biosentinel against cytotoxic effects because changes in bioluminescent production are indicative of adverse effects on cellular growth and metabolism. Similarly, the autonomous nature and lack of required sample destruction permits repeated imaging of the same sample in real-time throughout the period of toxicant exposure and can be performed across multiple samples using existing imaging equipment in an automated fashion. PMID:24193545

  19. Passive endoscopic polarization sensitive optical coherence tomography with completely fiber based optical components

    Science.gov (United States)

    Cahill, Lucas; Lee, Anthony M. D.; Pahlevaninezhad, Hamid; Ng, Samson; MacAulay, Calum E.; Poh, Catherine; Lane, Pierre

    2015-03-01

    Polarization Sensitive Optical Coherence Tomography (PSOCT) is a functional extension of Optical Coherence Tomography (OCT) that is sensitive to well-structured, birefringent tissue such as scars, smooth muscle and cartilage. In this work, we present a novel completely fiber based swept source PSOCT system using a fiber-optic rotary pullback catheter. This PSOCT implementation uses only passive optical components and requires no calibration while adding minimal additional cost to a standard structural OCT imaging system. Due to its complete fiber construction, the system can be made compact and robust, while the fiber-optic catheter allows access to most endoscopic imaging sites. The 1.5mm diameter endoscopic probe can capture 100 frames per second at pullback speeds up to 15 mm/s allowing rapid traversal of large imaging fields. We validate the PSOCT system with known birefringent tissues and demonstrate in vivo PSOCT imaging of human oral scar tissue.

  20. A new recontruction algorithm for use with capacitance-based tomography

    Directory of Open Access Journals (Sweden)

    Ø. Isaksen

    1994-01-01

    Full Text Available A new reconstruction algorithm for use with capacitance-based process tomography is proposed. A numerical simulator, capable of calculating the capacitances for a particular sensor configuration and flow regime is used together with a parameter representation of the dielectric distribution and an optimization algorithm. The algorithm calculates these parameters and hence the dielectric distribution, by minimizing a function defined as a weighted sum of square differences between the measured and estimated capacitances. The method is tested by using both synthetic and experimental data, and the results are compared with results from the commonly used Linear Back Projection (LBP algorithm. The method is capable of obtaining the correct parameter values for all the flow regimes tested, and does provide a better estimate than the LBP method. The method proves to be very promising, and is a step towards quantitative capacitance tomography.

  1. Are we ready for positron emission tomography/computed tomography-based target volume definition in lymphoma radiation therapy?

    Science.gov (United States)

    Yeoh, Kheng-Wei; Mikhaeel, N George

    2013-01-01

    Fluorine-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) has become indispensable for the clinical management of lymphomas. With consistent evidence that it is more accurate than anatomic imaging in the staging and response assessment of many lymphoma subtypes, its utility continues to increase. There have therefore been efforts to incorporate PET/CT data into radiation therapy decision making and in the planning process. Further, there have also been studies investigating target volume definition for radiation therapy using PET/CT data. This article will critically review the literature and ongoing studies on the above topics, examining the value and methods of adding PET/CT data to the radiation therapy treatment algorithm. We will also discuss the various challenges and the areas where more evidence is required.

  2. Transformation Experiment Using Bioluminescence Genes of "Vibrio fischeri."

    Science.gov (United States)

    Slock, James

    1995-01-01

    Bioluminescence transformation experiments show students the excitement and power of recombinant DNA technology. This laboratory experiment utilizes two plasmids of "Vibrio fischeri" in a transformation experiment. (LZ)

  3. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  4. Bioluminescence as a classroom tool for scientist volunteers.

    Science.gov (United States)

    Hammer, M; Andrade, J D

    2000-01-01

    There is a great need for practicing scientists to volunteer their time and expertise in the K-12th grade science classroom. We have found that bioluminescence is a fun and exciting way to teach basic science concepts and is an excellent tool for the volunteering scientist. We have had very positive reactions from both teachers and students. The excitement of the students when they first see bioluminescence is contagious. Bioluminescent dinoflagellates are one of the easiest ways to introduce students to this fascinating topic. Many activities and experiments can be done using the bioluminescent dinoflagellates and many students and teachers could benefit from your knowledge and expertise. See you in the classroom.

  5. Simultaneous maximum-likelihood reconstruction for x-ray grating based phase-contrast tomography avoiding intermediate phase retrieval

    CERN Document Server

    Ritter, André; Durst, Jürgen; Gödel, Karl; Haas, Wilhelm; Michel, Thilo; Rieger, Jens; Weber, Thomas; Wucherer, Lukas; Anton, Gisela

    2013-01-01

    Phase-wrapping artifacts, statistical image noise and the need for a minimum amount of phase steps per projection limit the practicability of x-ray grating based phase-contrast tomography, when using filtered back projection reconstruction. For conventional x-ray computed tomography, the use of statistical iterative reconstruction algorithms has successfully reduced artifacts and statistical issues. In this work, an iterative reconstruction method for grating based phase-contrast tomography is presented. The method avoids the intermediate retrieval of absorption, differential phase and dark field projections. It directly reconstructs tomographic cross sections from phase stepping projections by the use of a forward projecting imaging model and an appropriate likelihood function. The likelihood function is then maximized with an iterative algorithm. The presented method is tested with tomographic data obtained through a wave field simulation of grating based phase-contrast tomography. The reconstruction result...

  6. Bioluminescent assay for human lymphocyte blast transformation.

    Science.gov (United States)

    Bulanova, E G; Budagyan, V M; Romanova, N A; Brovko LYu; Ugarova, N N

    1995-05-01

    One of the basic tests of in vitro evaluation of immune cell functional activity is a proliferative response of lymphocytes on the action of external stimuli such as mitogenic lectines, antigens, etc. We compared two methods used to assess the lymphocyte functional status. (1) [3H]thymidine incorporation and (2) bioluminescence for determination of intracellular ATP in blast cells. Comparison has been done for healthy donors and patients with proven low immunological status. The proposed bioluminescent method for evaluation of the proliferative response was shown to be sensitive enough for diagnostic purposes. This method allows one to process a large number of samples at the same time and correlates highly with the radionuclide test use hazardous radioactive materials.

  7. Bioluminescent Mammalian Cells Grown in Sponge Matrices to Monitor Immune Rejection

    Directory of Open Access Journals (Sweden)

    Okechukwu Ojogho

    2007-09-01

    Full Text Available The growth and bioluminescence of cells seeded in collagen and gelatin sponge matrices were compared in vitro under different conditions, and immune rejection was quantified and visualized directly in situ based on loss of bioluminescence activity. Mammalian cells expressing a Renilla luciferase complementary deoxyribonucleic acid (cDNA were used to seed collagen and gelatin sponge matrices soaked in either polylysine or gelatin to determine optimal growth conditions in vitro. The sponges were incubated in tissue culture plates for 3 weeks and received 2, 9, or 15 injections of coelenterazine. Measurements of bioluminescence activity indicated that gelatin sponges soaked in gelatin emitted the highest levels of light emission, multiple injections of coelenterazine did not affect light emission significantly, and light emission from live cells grown in sponges could be measured qualitatively but not quantitatively. Histologic analysis of sponge matrices cultured in vitro showed that cells grew best in gelatin matrices. Visualization of subcutaneously implanted sponges in mice showed accelerated loss of light emission in immunocompetent BALB/c mice compared with immunodeficient BALB/c-scid mice, which was associated with increased cell infiltration. Our results indicate that sponge matrices carrying bioluminescent mammalian cells are a valid model system to study immune rejection in situ.

  8. Bioluminophore and Flavin Mononucleotide Fluorescence Quenching of Bacterial Bioluminescence-A Theoretical Study.

    Science.gov (United States)

    Luo, Yanling; Liu, Ya-Jun

    2016-11-02

    Bacterial bioluminescence with continuous glow has been applied to the fields of environmental toxin monitoring, drug screening, and in vivo imaging. Nonetheless, the chemical form of the bacterial bioluminophore is still a bone of contention. Flavin mononucleotide (FMN), one of the light-emitting products, and 4a-hydroxy-5-hydro flavin mononucleotide (HFOH), an intermediate of the chemical reactions, have both been assumed candidates for the light emitter because they have similar molecular structures and fluorescence wavelengths. The latter is preferred in experiments and was assigned in our previous density functional study. HFOH displays weak fluorescence in solutions, but exhibits strong bioluminescence in the bacterial luciferase. FMN shows the opposite behavior; its fluorescence is quenched when it is bound to the luciferase. This is the first example of flavin fluorescence quenching observed in bioluminescent systems and is merely an observation, both the quenching mechanism and quencher are still unclear. Based on theoretical analysis of high-level quantum mechanics (QM), combined QM and molecular mechanics (QM/MM), and molecular dynamics (MD), this paper confirms that HFOH in its first singlet excited state is the bioluminophore of bacterial bioluminescence. More importantly, the computational results indicate that Tyr110 in the luciferase quenches the FMN fluorescence via an electron-transfer mechanism.

  9. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae).

    Science.gov (United States)

    Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M

    2017-02-01

    Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis.

  10. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    Directory of Open Access Journals (Sweden)

    Andrea Osimani

    2014-10-01

    Full Text Available ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs, including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99 between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  11. Bioluminescence ATP monitoring for the routine assessment of food contact surface cleanliness in a university canteen.

    Science.gov (United States)

    Osimani, Andrea; Garofalo, Cristiana; Clementi, Francesca; Tavoletti, Stefano; Aquilanti, Lucia

    2014-10-17

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period. Arbitrary acceptability limits were set for both microbial loads and ATP bioluminescence readings. A highly significant correlation (r = 0.99) between the means of ATP bioluminescence readings and the viable counts of total mesophilic aerobes was seen, thus revealing a strong association of these parameters with the level of surface contamination. Among CPs, the raw meat and multi-purpose chopping boards showed the highest criticalities. Although ATP bioluminescence technology cannot substitute traditional microbiological analyses for the determination of microbial load on food contact surfaces, it has proved to be a powerful tool for the real time monitoring of surface cleanliness at mass catering plants, for verify the correct application of SSOP, and hence for their implementation/revision in the case of poor hygiene.

  12. Tissue sensitive imaging and tomography without contrast agents for small animals with Timepix based detectors

    Science.gov (United States)

    Trojanova, E.; Schyns, L. E. J. R.; Ludwig, D.; Jakubek, J.; Le Pape, A.; Sefc, L.; Lotte, S.; Sykora, V.; Turecek, D.; Uher, J.; Verhaegen, F.

    2017-01-01

    The tissue type resolving X-ray radiography and tomography can be performed even without contrast agents. The differences between soft tissue types such as kidney, muscles, fat, liver, brain and spleen were measured based on their spectral response. The Timepix based X-ray imaging detector WidePIX2×5 with 300 μm thick silicon sensors was used for most of the measurements presented in this work. These promising results are used for further optimizations of the detector technology and radiographic methods.

  13. Beam hardening correction for interior tomography based on exponential formed model and radon inversion transform

    Science.gov (United States)

    Chen, Siyu; Zhang, Hanming; Li, Lei; Xi, Xiaoqi; Han, Yu; Yan, Bin

    2016-10-01

    X-ray computed tomography (CT) has been extensively applied in industrial non-destructive testing (NDT). However, in practical applications, the X-ray beam polychromaticity often results in beam hardening problems for image reconstruction. The beam hardening artifacts, which manifested as cupping, streaks and flares, not only debase the image quality, but also disturb the subsequent analyses. Unfortunately, conventional CT scanning requires that the scanned object is completely covered by the field of view (FOV), the state-of-art beam hardening correction methods only consider the ideal scanning configuration, and often suffer problems for interior tomography due to the projection truncation. Aiming at this problem, this paper proposed a beam hardening correction method based on radon inversion transform for interior tomography. Experimental results show that, compared to the conventional correction algorithms, the proposed approach has achieved excellent performance in both beam hardening artifacts reduction and truncation artifacts suppression. Therefore, the presented method has vitally theoretic and practicable meaning in artifacts correction of industrial CT.

  14. [Study on Non-Destructive Testing of Guqin Interior Structure Based on Computed Tomography].

    Science.gov (United States)

    Zhao, De-da; Liu, Xing-e; Yang, Shu-min; Yu, Shenz; Tian, Gen-lin; Ma, Jian-feng; Wang, Qing-ping

    2015-12-01

    The wood property and production process affect quality of Guqin. At the same time, Guqin shape with cavity layout relations to the improvement of Guqin technology and inheritance, so it's very important to get the internal cavity characteristics and parameters on the condition of non-destructive the structure of Guqin. The image of interior structure in Guqin was investigated by overall scanning based on non-destructive testing technology of computed tomography, which texture of faceplate, connection method between faceplate and soleplate and interior defects were studied. The three-dimensional reconstruction of Guqin cavity was achieved through Mimics software of surface rendering method and put the two-dimensional CT tomography images convert into three-dimensional, which more complete show interior structural form in Guqin, and finally the parameter of cavity dimensions was obtained. Experimental research shows that there is significant difference in Guqin interior structure between Zhong-ni and Luo-xia type, in which the fluctuation of the interior surfacein Zhong-ni type's is larger than that in Luo-xia type; the interior volume of Zhong-ni typeis less than that of Luo-xia type, especially in Guqin neck. The accurate internal information of Guqin obtained through the computed tomography (CT) technology will provide technical support for the Guqin manufacture craft and the quality examination, as well as provide the reference in the aspect of non-destructive testing for other traditional precious internal structure research.

  15. Experiments of Tomography-Based SAR Techniques with P-Band Polarimetric Data

    Science.gov (United States)

    Lombardini, F.; Pardini, M.

    2009-04-01

    New opportunities are arising in the synthetic aperture radar (SAR) observation of forest scenarios, especially with decimetric and metric radio wavelengths, which possess the capability of penetrating into volumes. Given its capabilities in the three-dimensional imaging of the scattering properties of the observed scene, SAR Tomography (Tomo-SAR) constitutes a good candidate for the analysis of the vertical structure of the forest. In this work, the results are presented of the application of tomography-based SAR techniques to P-band airborne data over a boreal forest from the ESA BioSAR-1 project. Results of an adaptive tomographic analysis are presented, also with a low resolution dataset, which emulates a satellite acquisition. In order to mitigate the geometric perspective effects due to the poor range resolution, the principle is introduced of the application of a common band pre-filtering to tomography. Then, a coherent layer canceller is derived to possibly apply interferometric techniques conceived for single layer scenarios to two layer scenarios. Finally, a stabilized adaptive polarimetric Tomo-SAR (PolTomo-SAR) method is proposed for estimating the 3D polarimetric scattering mechanism of the scene with low distorsions.

  16. Modern Focused-Ion-Beam-Based Site-Specific Specimen Preparation for Atom Probe Tomography.

    Science.gov (United States)

    Prosa, Ty J; Larson, David J

    2017-02-06

    Approximately 30 years after the first use of focused ion beam (FIB) instruments to prepare atom probe tomography specimens, this technique has grown to be used by hundreds of researchers around the world. This past decade has seen tremendous advances in atom probe applications, enabled by the continued development of FIB-based specimen preparation methodologies. In this work, we provide a short review of the origin of the FIB method and the standard methods used today for lift-out and sharpening, using the annular milling method as applied to atom probe tomography specimens. Key steps for enabling correlative analysis with transmission electron-beam backscatter diffraction, transmission electron microscopy, and atom probe tomography are presented, and strategies for preparing specimens for modern microelectronic device structures are reviewed and discussed in detail. Examples are used for discussion of the steps for each of these methods. We conclude with examples of the challenges presented by complex topologies such as nanowires, nanoparticles, and organic materials.

  17. Iterative Reconstruction of Computed Axial Tomography images based on GPUs; Reconstruccion Iterativa de Imagenes TAC basada en GPUs

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, V.; Florez, L. A.; Mayo, P.; Rodenas, F.; Verdu, G.

    2013-07-01

    Although widely used in nuclear medicine (gamma-cameras, SPECT-single photon emission computed tomography, positron emission tomography, PET), the iterative image reconstruction is not widespread in Computed tomography (CT). The biggest reason for this is that the data set required in TAC is much higher than in nuclear medicine and iterative reconstruction is computationally very intensive. The graphics processing units (GPUs) provide the possibility to reduce the high computational cost of rebuilding in an effective way. The objective of this work is to develop image reconstruction algorithm based on GPUs.

  18. Global solution of the finite element shape-from-shading model with a bioluminescent molecular imaging application.

    Science.gov (United States)

    Zhong, Jianghong; Tian, Jie; Yang, Xin; Qin, Chenghu

    2010-01-01

    Only a planar bioluminescence image acquired from an ordinary cooled charge-coupled device (CCD) array every time, how to re-establish the three-dimensional small animal shape and light intensity distribution on the surface has become urgent to be solved as a bottleneck of bioluminescence tomography (BLT) reconstruction. In this paper, a finite element algorithm to solve the Dirichlet type problem for the first order Hamilton-Jacobi equation related to the shape-fromshading model is adopted. The algorithm outputting the globally maximal solution of the above problem avoids cumbersome boundary conditions on the interfaces between light and shadows and the use of additional information on the surface. The results of the optimization method are satisfied. It demonstrates the feasibility and potential of the finite element shape-fromshading (FE-SFS) model for reconstructing the small animal surface that lays one of key foundations for a fast low-cost application of the BLT in the next future.

  19. Bioluminescence enhancement through an added washing protocol enabling a greater sensitivity to carbofuran toxicity.

    Science.gov (United States)

    Jia, Kun; Eltzov, Evgeni; Marks, Robert S; Ionescu, Rodica E

    2013-10-01

    The effects of carbofuran toxicity on a genetically modified bacterial strain E. coli DPD2794 were enhanced using a new bioluminescent protocol which consisted of three consecutive steps: incubation, washing and luminescence reading. Specifically, in the first step, several concentrations of carbofuran aqueous solutions were incubated with different bacterial suspensions at recorded optical densities for different lengths of time. Thereafter, the resulting bacterial/toxicant mixtures were centrifuged and the aged cellular supernatant replaced with fresh medium. In the final step, the carbofuran- induced bioluminescence to the exposed E. coli DPD2794 bacteria was shown to provide a faster and higher intensity when recorded at a higher temperature at30°C which is not usually used in the literature. It was found that the incubation time and the replacement of aged cellular medium were essential factors to distinguish different concentrations of carbofuran in the bioluminescent assays. From our results, the optimum incubation time for a "light ON" bioluminescence detection of the effect of carbofuran was 6h. Thanks to the replacement of the aged cellular medium, a group of additional peaks starting around 30min were observed and we used the corresponding areas under the curve (AUC) at different contents of carbofuran to produce the calibration curve. Based on the new protocol, a carbofuran concentration of 0.5pg/mL can be easily determined in a microtiter plate bioluminescent assay, while a non-wash protocol provides an unexplainable order of curve evolutionswhich does not allow the user to determine the concentration.

  20. Volumetric Diffuse Optical Tomography for Small Animals Using a CCD-Camera-Based Imaging System

    Directory of Open Access Journals (Sweden)

    Zi-Jing Lin

    2012-01-01

    Full Text Available We report the feasibility of three-dimensional (3D volumetric diffuse optical tomography for small animal imaging by using a CCD-camera-based imaging system with a newly developed depth compensation algorithm (DCA. Our computer simulations and laboratory phantom studies have demonstrated that the combination of a CCD camera and DCA can significantly improve the accuracy in depth localization and lead to reconstruction of 3D volumetric images. This approach may present great interests for noninvasive 3D localization of an anomaly hidden in tissue, such as a tumor or a stroke lesion, for preclinical small animal models.

  1. A Wavelet-Based Multiresolution Reconstruction Method for Fluorescent Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2009-01-01

    Full Text Available Image reconstruction of fluorescent molecular tomography (FMT often involves repeatedly solving large-dimensional matrix equations, which are computationally expensive, especially for the case where there are large deviations in the optical properties between the target and the reference medium. In this paper, a wavelet-based multiresolution reconstruction approach is proposed for the FMT reconstruction in combination with a parallel forward computing strategy, in which both the forward and the inverse problems of FMT are solved in the wavelet domain. Simulation results demonstrate that the proposed approach can significantly speed up the reconstruction process and improve the image quality of FMT.

  2. Fast and high-quality reconstruction in electron tomography based on an enhanced linear forward model

    Science.gov (United States)

    Kohr, H.; Louis, A. K.

    2011-04-01

    We study single-axis electron tomography and present an improved version of the linear forward model given by Fanelli and Öktem (2008 Inverse Problems 24 013001) which accounts for inelastic scattering and image distortions caused by imperfect optics. Based on the concept of approximate inverse, we derive an algorithm of filtered backprojection type which is much faster than the frequently used iterative methods. Numerical tests with simulated and measured transmission electron microscope data and comparisons with other FBP-type methods reveal that our algorithm provides reconstructions with high contrast and resolution, while the noise level is significantly reduced.

  3. Element-sensitive computed tomography by fine tuning of PXR-based X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Y., E-mail: yahayak@lebra.nihon-u.ac.jp [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Hayakawa, K.; Inagaki, M. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Kaneda, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Nakao, K.; Nogami, K. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Sakae, T.; Sakai, T. [Nihon University School of Dentistry at Matsudo, Sakaecho-Nishi 2-870-1, Matsudo 271-8587 (Japan); Sato, I. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan); Takahashi, Y. [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho, Tsukuba 305-8501 (Japan); Tanaka, T. [Laboratory for Electron Beam Research and Application, Nihon University, Narashinodai 7-24-1, Funabashi 274-8501 (Japan)

    2015-07-15

    Element-sensitive computed tomography (CT) experiments were carried out based on the absorption edge of a specific element using a finely tunable X-ray beam generated by parametric X-ray radiation (PXR). Tomographic images of specimens containing strontium were measured at energies both lower and higher than that of the Sr absorption edge. The difference between the images of the two energies successfully reveals the three-dimensional distributions of Sr. The results demonstrate that this method is effective for elemental analysis of considerably thick samples and could complement X-ray fluorescence analysis.

  4. Resolving directional ambiguity in dynamic light scattering-based transverse motion velocimetry in optical coherence tomography

    Science.gov (United States)

    Huang, Brendan K.; Choma, Michael A.

    2014-01-01

    Dynamic Light Scattering-based Optical Coherence Tomography approaches have been successfully implemented to measure total transverse (xy) flow speed, but are unable to resolve directionality. We propose a method to extract directional velocity in the transverse plane by introducing a variable scan bias to our system. Our velocity estimation, which yields the directional velocity component along the scan axis, is also independent of any point spread function calibration. By combining our approach with Doppler velocimetry, we show three-component velocimetry that is appropriately dependent on latitudinal and longitudinal angle. PMID:24487855

  5. The feasibility of unmanned aerial vehicle-based acoustic atmospheric tomography.

    Science.gov (United States)

    Finn, Anthony; Rogers, Kevin

    2015-08-01

    A technique for remotely monitoring the near-surface air temperature and wind fields up to altitudes of 1 km is presented and examined. The technique proposes the measurement of sound spectra emitted by the engine of a small unmanned aerial vehicle using sensors located on the aircraft and the ground. By relating projected and observed Doppler shifts in frequency and converting them into effective sound speed values, two- and three-dimensional spatially varying atmospheric temperature and wind velocity fields may be reconstructed using tomography. The feasibility and usefulness of the technique relative to existing unmanned aerial vehicle-based meteorological techniques using simulation and trials is examined.

  6. Colorectal neoplasm characterization based on swept-source optical coherence tomography

    Science.gov (United States)

    Lu, Chih-Wei; Chiu, Han-Mo; Sun, Chia-Wei

    2009-07-01

    Most of the colorectal cancer has grown from the adenomatous polyp. Adenomatous lesions have a well-documented relationship to colorectal cancer in previous studies. Thus, to detect the morphological changes between polyp and tumor can allow early diagnosis of colorectal cancer and simultaneous removal of lesions. In this paper, the various adenoma/carcinoma in-vitro samples are monitored by our swept-source optical coherence tomography (SS-OCT) system. The significant results indicate a great potential for early detection of colorectal adenomas based on the SS-OCT imaging.

  7. In-vivo retinal imaging by optical coherence tomography using an RSOD-based phase modulator

    Institute of Scientific and Technical Information of China (English)

    Ling WANG; Zhi-hua DING; Guo-hua SHI; Yu-dong ZHANG

    2009-01-01

    Fourier-domain rapid scanning optical delay line (RSOD) was introduced for phase modulation and depth scanning in a time-domain optical coherence tomography (TD-OCT) system. Investigation of parameter optimization of RSOD was conducted.Experiments for RSOD characterization at different parameters of the groove pitch, focal length, galvomirror size, etc. were performed. By implementing the optimized RSOD in our established TD-OCT system with a broadband light source centered at 840 nm with 50 nm bandwidth, in vivo retina imaging of a rabbit was presented, demonstrating the feasibility of high-quality TD-OCT imaging using an RSOD-based phase modulator.

  8. Digital signal processor-based real-time optical Doppler tomography system.

    Science.gov (United States)

    Yan, Shikui; Piao, Daqing; Chen, Yueli; Zhu, Quing

    2004-01-01

    We present a real-time data-processing and display unit based on a custom-designed digital signal processor (DSP) module for imaging tissue structure and Doppler blood flow. The DSP module is incorporated into a conventional optical coherence tomography system. We also demonstrate the flexibility of embedding advanced Doppler processing algorithms in the DSP module. Two advanced velocity estimation algorithms previously introduced by us are incorporated in this DSP module. Experiments on Intralipid flow demonstrate that a pulsatile flow of several hundred pulses per minute can be faithfully captured in M-scan mode by this DSP system. In vivo imaging of a rat's abdominal blood flow is also presented.

  9. A REVIEW OF ENVIRONMENTAL APPLICATIONS OF BIOLUMINESCENCE MEASUREMENTS

    Science.gov (United States)

    This review of the recent literature on environmental applications of bioluminescence systems will focus on in vivo and in vitro bioluminescence methods that have been utilized to elucidate properties of chemicals, toxic and mutagenic effects, and to estimate biomass. The unifyin...

  10. Detection of ATP and NADH: A Bioluminescent Experience.

    Science.gov (United States)

    Selig, Ted C.; And Others

    1984-01-01

    Described is a bioluminescent assay for adenosine triphosphate (ATP) and reduced nicotineamide-adenine dinucleotide (NADH) that meets the requirements of an undergraduate biochemistry laboratory course. The 3-hour experiment provides students with experience in bioluminescence and analytical biochemistry yet requires limited instrumentation,…

  11. Single-cell bioluminescence and GFP in biofilm research

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.J. Jr, Sayler, G., White, D.C. [Tennessee Univ., Knoxville, TN (United States), Ctr. Env. Biotech; Phiefer, C. [Oak Ridge National Lab., TN (United States), Environmental Sciences Div.

    1996-12-31

    Using flow cells and a combination of microscopy techniques, we can unequivocally identify single bacterial cells that express bioluminescent and fluorescent bioreporters. We have shown that, for attached cells, bioluminescence output within a bacterial strain can vary greatly from cell to cell.

  12. Comparison of approaches based on optimization and algebraic iteration for binary tomography

    Science.gov (United States)

    Cai, Weiwei; Ma, Lin

    2010-12-01

    Binary tomography represents a special category of tomographic problems, in which only two values are possible for the sought image pixels. The binary nature of the problems can potentially lead to a significant reduction in the number of view angles required for a satisfactory reconstruction, thusly enabling many interesting applications. However, the limited view angles result in a severely underdetermined system of equations, which is challenging to solve. Various approaches have been proposed to address such a challenge, and two categories of approaches include those based on optimization and those based on algebraic iteration. However, the relative strengths, limitations, and applicable ranges of these approaches have not been clearly defined in the past. Therefore, it is the main objective of this work to conduct a systematic comparison of approaches from each category. This comparison suggested that the approaches based on algebraic iteration offered both superior reconstruction fidelity and computation efficiency at low (two or three) view angles, and these advantages diminished at high view angles. Meanwhile, this work also investigated the application of regularization techniques, the selection of optimal regularization parameter, and the use of a local search technique for binary problems. We expect the results and conclusions reported in this work to provide valuable guidance for the design and development of algorithms for binary tomography problems.

  13. Dinoflagellate bioluminescence in response to mechanical stimuli in water flows

    Directory of Open Access Journals (Sweden)

    A. S. Cussatlegras

    2005-01-01

    Full Text Available Bioluminescence of plankton organisms induced by water movements has long been observed and is still under investigations because of its great complexity. In particular, the exact mechanism occurring at the level of the cell has not been yet fully understood. This work is devoted to the study of the bioluminescence of the dinoflagellates plankton species Pyrocystis noctiluca in response to mechanical stimuli generated by water flows. Several experiments were performed with different types of flows in a Couette shearing apparatus. All of them converge to the conclusion that stationary homogeneous laminar shear does not trigger massive bioluminescence, but that acceleration and shear are both necessary to stimulate together an intense bioluminescence response. The distribution of the experimental bioluminescence thresholds is finally calculated from the light emission response for the Pyrocystis noctiluca species.

  14. Whole-cell bioluminescent bioreporter sensing of foodborne toxicants

    Science.gov (United States)

    Ripp, Steve A.; Applegate, Bruce M.; Simpson, Michael L.; Sayler, Gary S.

    2001-03-01

    The presence of biologically derived toxins in foods is of utmost significance to food safety and human health concerns. Biologically active amines, referred to as biogenic amines, serve as a noteworthy example, having been implicated as the causative agent in numerous food poisoning episodes. Of the various biogenic amines encountered, histamine, putrescine, cadaverine, tyramine, tryptamine, beta-phenylethylamine, spermine, and spermidine are considered to be the most significant, and can be used as hygienic-quality indicators of food. Biogenic amines can be monitored using whole-cell bioluminescent bioreporters, which represent a family of genetically engineered microorganisms that generate visible light in response to specific chemical or physical agents in their environment. The light response occurs due to transcriptional activation of a genetically incorporated lux cassette, and can be measured using standard photomultiplier devices. We have successfully engineered a lux-based bioreporter capable of detecting and monitoring the biogenic amine beta-phenylethylamine. This research represents a biologically-based sensor technology that can be readily integrated into Hazard Analysis Critical Control Point programs to provide a rugged monitoring regime that can be uniformly applied for field-based and in-house laboratory quality control analyses. Since the bioreporter and biosensing elements are completely self-contained within the sensor design, this system provides ease of use, with operational capabilities realized by simply combining the food sample with the bioreporter and allowing the sensor to process the ensuing bioluminescent signal and communicate the results. The application of this technology to the critically important issue of food safety and hygienic quality represents a novel method for detecting, monitoring, and preventing biologically active toxins in food commodities.

  15. Bioluminescence microscopy: application to ATP measurements in single living cells

    Science.gov (United States)

    Brau, Frederic; Helle, Pierre; Bernengo, Jean C.

    1997-12-01

    Bioluminescence microscopy can be used to measure intracellular cofactors and ionic concentrations (Ca2+, K+, ATP, NADH), as an alternative to micro- spectrophotometry and micro-fluorimetry, due to the development of sensitive detectors (cooled photomultipliers tubes and CCD). The main limitation comes from the very small and brief intensity of the emitted light. Our instrumentation based on an inverted microscope, equipped with high aperture immersion lenses is presented. Light intensity measurements are carried out through a photomultiplier sorted for low dark current and cooled at -5 degree(s)C to reduce thermal noise. Our first aim is to quantify ATP on single living cells using the firefly luciferin-luciferase couple. Experimental and kinetic aspects are presented to emphasize the potentialities of the technique.

  16. Application value of ATP based bioluminescence tumor chemosensitivity assay in the chemotherapy for hydrothorax caused by non-small cell lung cancer

    Institute of Scientific and Technical Information of China (English)

    Kaijian Le; Yuming Jia; Jing Wang; Maoqiong Jiang

    2013-01-01

    Objective: The aim of the study was to investigate the clinical value and application of ATP based bioluminescencetumor chemosensitivity assay (ATP-TCA) in the chemotherapy for hydrothorax caused by non-small cell lung cancer(NSCLC). Methods: Hydrothorax specimens from 120 NSCLC patients were analyzed by ATP-TCA and the most sensitivechemotherapeutic drugs were used in NSCLC patients (treatment group). At the same time, 56 NSCLC patients with hydrothoraxwere admitted in our Hospital (Department of Oncology, The No. 2 People's Hospital of Yibin, China) and given chemotherapywithout guidance of the ATP-TCA (control group). Before the third chemotherapeutic cycle, clinical outcomes wereanalyzed in the two groups. Results: Effective rate of hydrothorax in treatment group was 67%, while 46% in control group(P < 0.05). In refractory hydrothorax patients, they were 69% and 40% (P < 0.05), respectively. In vitro results correlated wellwith clinical outcomes (P < 0.01). Conclusion: Effective rate of chemotherapy for hydrothorax in NSCLC is higher in treatmentgroup than that in control group. ATP-TCA is especially helpful for refractory hydrothorax.

  17. Comparison of surface-based and image-based quality metrics for the analysis of dimensional computed tomography data

    Directory of Open Access Journals (Sweden)

    Francisco A. Arenhart

    2016-11-01

    Full Text Available This paper presents a comparison of surface-based and image-based quality metrics for dimensional X-ray computed tomography (CT data. The chosen metrics are used to characterize two key aspects in acquiring signals with CT systems: the loss of information (blurring and the adding of unwanted information (noise. A set of structured experiments was designed to test the response of the metrics to different influencing factors. It is demonstrated that, under certain circumstances, the results of both types of metrics become conflicting, emphasizing the importance of using surface information for evaluating the quality dimensional CT data. Specific findings using both types of metrics are also discussed.

  18. Using the bioluminescence and microbiological contact methods in sustaining a proper hygienic level in food processing plants

    Directory of Open Access Journals (Sweden)

    Dorota Cais-Sokolińska

    2008-12-01

    Full Text Available The efficiency of bioluminescence applied to monitor the state of hygiene in a dairy processing plant was assessed in relation to the results of conventional microbiological methods. The used blotting tests were Envirocheck Contact DC with Agar CASO medium with added neutralizers. The analysed object was the surface of a beam stirrer in a fermentation tank. Swabs were collected following tank washing and disinfection after the completion of 15 production cycles. A high degree of correlation r = 0.91 was obtained at the reliability of comparison β = 0.906. The analysis of probability of distribution confirmed the feasibility of bioluminescence. Boundary values (112 and 171 RLU were determined for bioluminescence for three object cleanliness ranges, based on microbial counts (cfu/cm2. Over 13% surfaces were classified as conditionally clean (Alert.

  19. High-resolution synchrotron radiation-based phase tomography of the healthy and epileptic brain

    Science.gov (United States)

    Bikis, Christos; Janz, Philipp; Schulz, Georg; Schweighauser, Gabriel; Hench, Jürgen; Thalmann, Peter; Deyhle, Hans; Chicherova, Natalia; Rack, Alexander; Khimchenko, Anna; Hieber, Simone E.; Mariani, Luigi; Haas, Carola A.; Müller, Bert

    2016-10-01

    Phase-contrast micro-tomography using synchrotron radiation has yielded superior soft tissue visualization down to the sub-cellular level. The isotropic spatial resolution down to about one micron is comparable to the one of histology. The methods, however, provide different physical quantities and are thus complementary, also allowing for the extension of histology into the third dimension. To prepare for cross-sectional animal studies on epilepsy, we have standardized the specimen's preparation and scanning procedure for mouse brains, so that subsequent histology remains entirely unaffected and scanning of all samples (n = 28) is possible in a realistic time frame. For that, we have scanned five healthy and epileptic mouse brains at the ID19 beamline, ESRF, Grenoble, France, using grating- and propagation-based phase contrast micro-tomography. The resulting datasets clearly show the cortex, ventricular system, thalamus, hypothalamus, and hippocampus. Our focus is on the latter, having planned kainate-induced epilepsy experiments. The cell density and organization in the dentate gyrus and Ammon's horn region were clearly visualized in control animals. This proof of principle was required to initiate experiment. The resulting three-dimensional data have been correlated to histology. The goal is a brain-wide quantification of cell death or structural reorganization associated with epilepsy as opposed to histology alone that represents small volumes of the total brain only. Thus, the proposed technique bears the potential to correlate the gold standard in analysis with independently obtained data sets. Such an achievement also fuels interest for other groups in neuroscience research to closely collaborate with experts in phase micro-tomography.

  20. Wave equation-based reflection tomography of the 1992 Landers earthquake area

    Science.gov (United States)

    Huang, Xueyuan; Yang, Dinghui; Tong, Ping; Badal, José; Liu, Qinya

    2016-03-01

    In the framework of a recent wave equation-based traveltime seismic tomography, we show that incorporating Moho-reflected phases (PmP and SmS) in addition to the direct P and S phases can significantly increase tomography resolution in the lower crust and this may provide additional evidence to resolve important tectonic issues. To highlight the resolving power of the new strategy, we apply it in the region around the 1992 Landers earthquake (Mw = 7.3) in Southern California using seismic arrivals from local earthquakes, obtaining 3-D high-resolution P and S wave crustal velocity models and Poisson's ratio structures. In the upper crust, our method confirmed features that had been previously found. However, in the middle-to-lower crust, we found low-velocity anomalies on the southeastern section of the San Jacinto Fault and high Vp and low Vs structures to the west of the Big Bear earthquake, which may be related to upwelling of partial melt from the mantle.

  1. An image reconstruction framework based on boundary voltages for ultrasound modulated electrical impedance tomography

    Science.gov (United States)

    Song, Xizi; Xu, Yanbin; Dong, Feng

    2016-11-01

    A new image reconstruction framework based on boundary voltages is presented for ultrasound modulated electrical impedance tomography (UMEIT). Combining the electric and acoustic modalities, UMEIT reconstructs the conductivity distribution with more measurements with position information. The proposed image reconstruction framework begins with approximately constructing the sensitivity matrix of the imaging object with inclusion. Then the conductivity is recovered from the boundary voltages of the imaging object. To solve the nonlinear inverse problem, an optimization method is adopted and the iterative method is tested. Compared with that for electrical resistance tomography (ERT), the newly constructed sensitivity matrix is more sensitive to the inclusion, even in the center of the imaging object, and it contains more effective information about the inclusions. Finally, image reconstruction is carried out by the conjugate gradient algorithm, and results show that reconstructed images with higher quality can be obtained for UMEIT with a faster convergence rate. Both theory and image reconstruction results validate the feasibility of the proposed framework for UMEIT and confirm that UMEIT is a potential imaging technique.

  2. Research of inverse synthetic aperture imaging lidar based on filtered back-projection tomography technique

    Science.gov (United States)

    Liu, Zhi-chao; Yang, Jin-hua

    2014-07-01

    In order to obtain clear two-dimensional image under the conditions without using heterodyne interferometry by inverse synthetic aperture lidar(ISAL), designed imaging algorithms based on filtered back projection tomography technique, and the target "A" was reconstructed with simulation algorithm by the system in the turntable model. Analyzed the working process of ISAL, and the function of the reconstructed image was given. Detail analysis of the physical meaning of the various parameters in the process of echo data, and its parameters affect the reconstructed image. The image in test area was reconstructed by the one-dimensional distance information with filtered back projection tomography technique. When the measured target rotated, the sum of the echo light intensity at the same distance was constituted by the different position of the measured target. When the total amount collected is large enough, multiple equations can be solved change. Filtered back-projection image of the ideal image is obtained through MATLAB simulation, and analyzed that the angle intervals affected the reconstruction of image. The ratio of the intensity of echo light and loss light affected the reconstruction of image was analyzed. Simulation results show that, when the sampling angle is smaller, the resolution of the reconstructed image of measured target is higher. And the ratio of the intensity of echo light and loss light is greater, the resolution of the reconstructed image of measured target is higher. In conclusion after some data processing, the reconstructed image basically meets be effective identification requirements.

  3. Simulation of a fast diffuse optical tomography system based on radiative transfer equation

    Science.gov (United States)

    Motevalli, S. M.; Payani, A.

    2016-12-01

    Studies show that near-infrared (NIR) light (light with wavelength between 700nm and 1300nm) undergoes two interactions, absorption and scattering, when it penetrates a tissue. Since scattering is the predominant interaction, the calculation of light distribution in the tissue and the image reconstruction of absorption and scattering coefficients are very complicated. Some analytical and numerical methods, such as radiative transport equation and Monte Carlo method, have been used for the simulation of light penetration in tissue. Recently, some investigators in the world have tried to develop a diffuse optical tomography system. In these systems, NIR light penetrates the tissue and passes through the tissue. Then, light exiting the tissue is measured by NIR detectors placed around the tissue. These data are collected from all the detectors and transferred to the computational parts (including hardware and software), which make a cross-sectional image of the tissue after performing some computational processes. In this paper, the results of the simulation of an optical diffuse tomography system are presented. This simulation involves two stages: a) Simulation of the forward problem (or light penetration in the tissue), which is performed by solving the diffusion approximation equation in the stationary state using FEM. b) Simulation of the inverse problem (or image reconstruction), which is performed by the optimization algorithm called Broyden quasi-Newton. This method of image reconstruction is faster compared to the other Newton-based optimization algorithms, such as the Levenberg-Marquardt one.

  4. Weight-based contrast administration in the computerized tomography evaluation of acute pulmonary embolism

    Science.gov (United States)

    Laurent, Lisa; Zamfirova, Ina; Sulo, Suela; Baral, Pesach

    2017-01-01

    Abstract Compare individualized contrast protocol, or weight-based protocol, to standard methodology in evaluating acute pulmonary embolism. Retrospective chart review was performed on patients undergoing computed tomography angiography with standard contrast protocol (n = 50) or individualized protocol (n = 50). Computerized tomography images were assessed for vascular enhancement and image quality. Demographics were comparable, however, more patients in the individualized group were admitted to intensive care unit (48% vs 16%, P = 0.004). Vascular enhancement and image quality were also comparable, although individualized protocol had significantly fewer contrast and motion artifact limitations (28% vs 48%, P = 0.039). Fifteen percent decrease in intravenous contrast volume was identified in individualized group with no compromise in image quality. Individualized contrast protocol provided comparable vascular enhancement and image quality to the standard, yet with fewer limitations and lower intravenous contrast volume. Catheter-gauge flow rate restrictions resulting in inconsistent technologist exam execution were identified, supporting the need for further investigation of this regimen. PMID:28151887

  5. Stabilizing dual-energy X-ray computed tomography reconstructions using patch-based regularization

    CERN Document Server

    Tracey, Brian H

    2014-01-01

    Recent years have seen growing interest in exploiting dual- and multi-energy measurements in computed tomography (CT) in order to characterize material properties as well as object shape. Material characterization is performed by decomposing the scene into constitutive basis functions, such as Compton scatter and photoelectric absorption functions. While well motivated physically, the joint recovery of the spatial distribution of photoelectric and Compton properties is severely complicated by the fact that the data are several orders of magnitude more sensitive to Compton scatter coefficients than to photoelectric absorption, so small errors in Compton estimates can create large artifacts in the photoelectric estimate. To address these issues, we propose a model-based iterative approach which uses patch-based regularization terms to stabilize inversion of photoelectric coefficients, and solve the resulting problem though use of computationally attractive Alternating Direction Method of Multipliers (ADMM) solu...

  6. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images.

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16  dB with a small 5.4% loss of similarity.

  7. Low-dose computed tomography image denoising based on joint wavelet and sparse representation.

    Science.gov (United States)

    Ghadrdan, Samira; Alirezaie, Javad; Dillenseger, Jean-Louis; Babyn, Paul

    2014-01-01

    Image denoising and signal enhancement are the most challenging issues in low dose computed tomography (CT) imaging. Sparse representational methods have shown initial promise for these applications. In this work we present a wavelet based sparse representation denoising technique utilizing dictionary learning and clustering. By using wavelets we extract the most suitable features in the images to obtain accurate dictionary atoms for the denoising algorithm. To achieve improved results we also lower the number of clusters which reduces computational complexity. In addition, a single image noise level estimation is developed to update the cluster centers in higher PSNRs. Our results along with the computational efficiency of the proposed algorithm clearly demonstrates the improvement of the proposed algorithm over other clustering based sparse representation (CSR) and K-SVD methods.

  8. Surface and subsurface damage detection in cement-based materials using electrical resistance tomography

    Science.gov (United States)

    Ruan, T.; Poursaee, A.

    2016-04-01

    Cement-based materials are widely used in infrastructure facilities. However, often the degradation of structures leads to the failures earlier than designed service life. Thus, non-destructive testing techniques are urgently needed to evaluate the health information of the structures. In this paper, the implementation of Electrical Resistance Tomography (ERT) was investigated. This low cost, radiation free and easy to perform modality is based on measuring the electrical properties of the material under test and using that to evaluate the existence of defects in that material. It uses a set of boundary potentials and injected current to reconstruct the conductivity distribution. An automatic measurement system was developed and surface damages as well as subsurface damages on mortar specimens were investigated. The reconstructed images were capable to show the presence and the location of the damages.

  9. Spiking cortical model-based nonlocal means method for speckle reduction in optical coherence tomography images

    Science.gov (United States)

    Zhang, Xuming; Li, Liu; Zhu, Fei; Hou, Wenguang; Chen, Xinjian

    2014-06-01

    Optical coherence tomography (OCT) images are usually degraded by significant speckle noise, which will strongly hamper their quantitative analysis. However, speckle noise reduction in OCT images is particularly challenging because of the difficulty in differentiating between noise and the information components of the speckle pattern. To address this problem, the spiking cortical model (SCM)-based nonlocal means method is presented. The proposed method explores self-similarities of OCT images based on rotation-invariant features of image patches extracted by SCM and then restores the speckled images by averaging the similar patches. This method can provide sufficient speckle reduction while preserving image details very well due to its effectiveness in finding reliable similar patches under high speckle noise contamination. When applied to the retinal OCT image, this method provides signal-to-noise ratio improvements of >16 dB with a small 5.4% loss of similarity.

  10. A fast marching method based back projection algorithm for photoacoustic tomography in heterogeneous media

    CERN Document Server

    Wang, Tianren

    2015-01-01

    This paper presents a numerical study on a fast marching method based back projection reconstruction algorithm for photoacoustic tomography in heterogeneous media. Transcranial imaging is used here as a case study. To correct for the phase aberration from the heterogeneity (i.e., skull), the fast marching method is adopted to compute the phase delay based on the known speed of sound distribution, and the phase delay is taken into account by the back projection algorithm for more accurate reconstructions. It is shown that the proposed algorithm is more accurate than the conventional back projection algorithm, but slightly less accurate than the time reversal algorithm particularly in the area close to the skull. However, the image reconstruction time for the proposed algorithm can be as little as 124 ms when implemented by a GPU (512 sensors, 21323 pixels reconstructed), which is two orders of magnitude faster than the time reversal reconstruction. The proposed algorithm, therefore, not only corrects for the p...

  11. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  12. Development of bioluminescent Salmonella strains for use in food safety

    Directory of Open Access Journals (Sweden)

    Bailey R Hartford

    2008-01-01

    Full Text Available Abstract Background Salmonella can reside in healthy animals without the manifestation of any adverse effects on the carrier. If raw products of animal origin are not handled properly during processing or cooked to a proper temperature during preparation, salmonellosis can occur. In this research, we developed bioluminescent Salmonella strains that can be used for real-time monitoring of the pathogen's growth on food products. To accomplish this, twelve Salmonella strains from the broiler production continuum were transformed with the broad host range plasmid pAKlux1, and a chicken skin attachment model was developed. Results Salmonella strains carrying pAKlux1 constitutively expressed the luxCDABE operon and were therefore detectable using bioluminescence. Strains were characterized in terms of bioluminescence properties and plasmid stability. To assess the usefulness of bioluminescent Salmonella strains in food safety studies, we developed an attachment model using chicken skin. The effect of washing on attachment of Salmonella strains to chicken skin was tested using bioluminescent strains, which revealed the attachment properties of each strain. Conclusion This study demonstrated that bioluminescence is a sensitive and effective tool to detect Salmonella on food products in real-time. Bioluminescence imaging is a promising technology that can be utilized to evaluate new food safety measures for reducing Salmonella contamination on food products.

  13. Detection of dichloromethane with a bioluminescent (lux) bacterial bioreporter.

    Science.gov (United States)

    Lopes, Nicholas; Hawkins, Shawn A; Jegier, Patricia; Menn, Fu-Min; Sayler, Gary S; Ripp, Steven

    2012-01-01

    The focus of this research effort was to develop an autonomous, inducible, lux-based bioluminescent bioreporter for the real-time detection of dichloromethane. Dichloromethane (DCM), also known as methylene chloride, is a volatile organic compound and one of the most commonly used halogenated solvents in the U.S., with applications ranging from grease and paint stripping to aerosol propellants and pharmaceutical tablet coatings. Predictably, it is released into the environment where it contaminates air and water resources. Due to its classification as a probable human carcinogen, hepatic toxin, and central nervous system effector, DCM must be carefully monitored and controlled. Methods for DCM detection usually rely on analytical techniques such as solid-phase microextraction (SPME) and capillary gas chromatography or photoacoustic environmental monitors, all of which require trained personnel and/or expensive equipment. To complement conventional monitoring practices, we have created a bioreporter for the self-directed detection of DCM by taking advantage of the evolutionary adaptation of bacteria to recognize and metabolize chemical agents. This bioreporter, Methylobacterium extorquens DCM( lux ), was engineered to contain a bioluminescent luxCDABE gene cassette derived from Photorhabdus luminescens fused downstream to the dcm dehalogenase operon, which causes the organism to generate visible light when exposed to DCM. We have demonstrated detection limits down to 1.0 ppm under vapor phase exposures and 0.1 ppm under liquid phase exposures with response times of 2.3 and 1.3 h, respectively, and with specificity towards DCM under relevant industrial environmental monitoring conditions.

  14. Role of certain amino acid residues of the coelenterazine-binding cavity in bioluminescence of light-sensitive Ca(2+)-regulated photoprotein berovin.

    Science.gov (United States)

    Burakova, Ludmila P; Stepanyuk, Galina A; Eremeeva, Elena V; Vysotski, Eugene S

    2016-05-11

    Bright bioluminescence of ctenophores is caused by Ca(2+)-regulated photoproteins. Although these photoproteins are functionally identical to and share many properties of cnidarian photoproteins, like aequorin and obelin, and retain the same spatial architecture, they are extremely sensitive to light, i.e. lose the ability to bioluminesce on exposure to light over the entire absorption spectrum. In addition, the degree of identity of their amino acid sequences with those of cnidarian photoproteins is only 29.4%. This suggests that the residues involved in bioluminescence of ctenophore and cnidarian photoproteins significantly differ. Here we describe the bioluminescent properties of berovin mutants with substitution of the residues located in the photoprotein internal cavity. Since the spatial structure of berovin bound with a substrate is not determined yet, to identify these residues we have modeled it with an accommodated substrate using the structures of some cnidarian Ca(2+)-regulated photoproteins with bound coelenterazine or coelenteramide as templates in order to obtain an adequate sampling and to take into account all possible conformers and variants for ligand-protein docking. Based on the impact of substitutions on the bioluminescent properties and model structures we speculate that within the internal cavity of ctenophore photoproteins, coelenterazine is bound as a 2-peroxy anion adduct which is stabilized owing to Coulomb interaction with a positively charged guanidinium group of Arg41 paired with Tyr204. In this case, the bioluminescence reaction is triggered by only calcium-induced conformational changes leading to the disturbance of charge-charge interaction.

  15. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  16. Bioluminescence ATP Monitoring for the Routine Assessment of Food Contact Surface Cleanliness in a University Canteen

    OpenAIRE

    Andrea Osimani; Cristiana Garofalo; Francesca Clementi; Stefano Tavoletti; Lucia Aquilanti

    2014-01-01

    ATP bioluminescence monitoring and traditional microbiological analyses (viable counting of total mesophilic aerobes, coliforms and Escherichia coli) were used to evaluate the effectiveness of Sanitation Standard Operating Procedures (SSOP) at a university canteen which uses a HACCP-based approach. To that end, 10 cleaning control points (CPs), including food contact surfaces at risk of contamination from product residues or microbial growth, were analysed during an 8-month monitoring period....

  17. Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images.

    Science.gov (United States)

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Rubin, Daniel L

    2015-06-01

    Image denoising is a fundamental preprocessing step of image processing in many applications developed for optical coherence tomography (OCT) retinal imaging--a high-resolution modality for evaluating disease in the eye. To make a homogeneity similarity-based image denoising method more suitable for OCT image removal, we improve it by considering the noise and retinal characteristics of OCT images in two respects: (1) median filtering preprocessing is used to make the noise distribution of OCT images more suitable for patch-based methods; (2) a rectangle neighborhood and region restriction are adopted to accommodate the horizontal stretching of retinal structures when observed in OCT images. As a performance measurement of the proposed technique, we tested the method on real and synthetic noisy retinal OCT images and compared the results with other well-known spatial denoising methods, including bilateral filtering, five partial differential equation (PDE)-based methods, and three patch-based methods. Our results indicate that our proposed method seems suitable for retinal OCT imaging denoising, and that, in general, patch-based methods can achieve better visual denoising results than point-based methods in this type of imaging, because the image patch can better represent the structured information in the images than a single pixel. However, the time complexity of the patch-based methods is substantially higher than that of the others.

  18. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    Science.gov (United States)

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  19. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  20. Endoscopic swept-source optical coherence tomography based on a two-axis microelectromechanical system mirror

    Science.gov (United States)

    Wang, Donglin; Fu, Linlai; Wang, Xin; Gong, Zhongjian; Samuelson, Sean; Duan, Can; Jia, Hongzhi; Ma, Jun Shan; Xie, Huikai

    2013-08-01

    A microelectromechanical system (MEMS) mirror based endoscopic swept-source optical coherence tomography (SS-OCT) system that can perform three-dimensional (3-D) imaging at high speed is reported. The key component enabling 3-D endoscopic imaging is a two-axis MEMS scanning mirror which has a 0.8×0.8 mm2 mirror plate and a 1.6×1.4 mm2 device footprint. The diameter of the endoscopic probe is only 3.5 mm. The imaging rate of the SS-OCT system is 50 frames/s. OCT images of both human suspicious oral leukoplakia tissue and normal buccal mucosa were taken in vivo and compared. The OCT imaging result agrees well with the histopathological analysis.

  1. Finite element analysis of the hip and spine based on quantitative computed tomography.

    Science.gov (United States)

    Carpenter, R Dana

    2013-06-01

    Quantitative computed tomography (QCT) provides three-dimensional information about bone geometry and the spatial distribution of bone mineral. Images obtained with QCT can be used to create finite element models, which offer the ability to analyze bone strength and the distribution of mechanical stress and physical deformation. This approach can be used to investigate different mechanical loading scenarios (stance and fall configurations at the hip, for example) and to estimate whole bone strength and the relative mechanical contributions of the cortical and trabecular bone compartments. Finite element analyses based on QCT images of the hip and spine have been used to provide important insights into the biomechanical effects of factors such as age, sex, bone loss, pharmaceuticals, and mechanical loading at sites of high clinical importance. Thus, this analysis approach has become an important tool in the study of the etiology and treatment of osteoporosis at the hip and spine.

  2. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing.

    Science.gov (United States)

    Yang, Fugang; Ozturk, Mehmet S; Zhao, Lingling; Cong, Wenxiang; Wang, Ge; Intes, Xavier

    2015-01-01

    Mesoscopic fluorescence molecular tomography (MFMT) is new imaging modality aiming at 3-D imaging of molecular probes in a few millimeter thick biological samples with high-spatial resolution. In this paper, we develop a compressive sensing-based reconstruction method with l1-norm regularization for MFMT with the goal of improving spatial resolution and stability of the optical inverse problem. Three-dimensional numerical simulations of anatomically accurate microvasculature and real data obtained from phantom experiments are employed to evaluate the merits of the proposed method. Experimental results show that the proposed method can achieve 80 μm spatial resolution for a biological sample of 3 mm thickness and more accurate quantifications of concentrations and locations for the fluorophore distribution than those of the conventional methods.

  3. Quantum state tomography of orbital angular momentum photonics qubits via a projection-based technique

    CERN Document Server

    Nicolas, Adrien; Giacobino, Elisabeth; Maxein, Dominik; Laurat, Julien

    2014-01-01

    While measuring the orbital angular momentum state of bright light beams can be performed using imaging techniques, a full characterization at the single-photon level is challenging. For applications to quantum optics and quantum information science, such characterization is an essential capability. Here, we present a setup to perform the quantum state tomography of photonic qubits encoded in this degree of freedom. The method is based on a projective technique using spatial mode projection via fork holograms and single-mode fibers inserted into an interferometer. The alignment and calibration of the device is detailed as well as the measurement sequence to reconstruct the associated density matrix. Possible extensions to higher-dimensional spaces are discussed.

  4. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression.

    Science.gov (United States)

    Galbán, Craig J; Han, Meilan K; Boes, Jennifer L; Chughtai, Komal A; Meyer, Charles R; Johnson, Timothy D; Galbán, Stefanie; Rehemtulla, Alnawaz; Kazerooni, Ella A; Martinez, Fernando J; Ross, Brian D

    2012-11-01

    Chronic obstructive pulmonary disease (COPD) is increasingly being recognized as a highly heterogeneous disorder, composed of varying pathobiology. Accurate detection of COPD subtypes by image biomarkers is urgently needed to enable individualized treatment, thus improving patient outcome. We adapted the parametric response map (PRM), a voxel-wise image analysis technique, for assessing COPD phenotype. We analyzed whole-lung computed tomography (CT) scans acquired at inspiration and expiration of 194 individuals with COPD from the COPDGene study. PRM identified the extent of functional small airways disease (fSAD) and emphysema as well as provided CT-based evidence that supports the concept that fSAD precedes emphysema with increasing COPD severity. PRM is a versatile imaging biomarker capable of diagnosing disease extent and phenotype while providing detailed spatial information of disease distribution and location. PRM's ability to differentiate between specific COPD phenotypes will allow for more accurate diagnosis of individual patients, complementing standard clinical techniques.

  5. Parameters measurement of rigid gas permeable contact lens based on optical coherence tomography

    Science.gov (United States)

    Zhu, Dexi; Shen, Meixiao; Li, Yiyu

    2012-10-01

    Spectral domain optical coherence tomography (OCT) was developed in order to measure the geometric parameters of rigid gas permeable (RGP) contact lens. With custom designed OCT system, an ultra-high axial resolution of 3.3 μm in lens was achieved. The OCT image was corrected to eliminate the optical distortion and actual surfaces of lens were shown in contour map. Central thickness, lens diameter, base curve and front surface curvature at optical zone were calculated from the contour map. The results match well with the real values measured by conventional instruments. Our research indicates that OCT can be used to test the RGP lens in a simple and exact way.

  6. Fourier transform based iterative method for x-ray differential phase-contrast computed tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Ge

    2011-01-01

    Biological soft tissues encountered in clinical and pre-clinical imaging mainly consist of light element atoms, and their composition is nearly uniform with little density variation. Thus, x-ray attenuation imaging suffers from low image contrast resolution. By contrast, x-ray phase shift of soft tissues is about a thousand times greater than x-ray absorption over the diagnostic energy range, thereby a significantly higher sensitivity can be achieved in terms of phase shift. In this paper, we propose a novel Fourier transform based iterative method to perform x-ray tomographic imaging of the refractive index directly from differential phase shift data. This approach offers distinct advantages in cases of incomplete and noisy data than analytic reconstruction, and especially suitable for phase-contrast interior tomography by incorporating prior knowledge in a region of interest (ROI). Biological experiments demonstrate the merits of the proposed approach.

  7. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  8. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization

    KAUST Repository

    Jin, Bangti

    2011-08-24

    This paper develops a novel sparse reconstruction algorithm for the electrical impedance tomography problem of determining a conductivity parameter from boundary measurements. The sparsity of the \\'inhomogeneity\\' with respect to a certain basis is a priori assumed. The proposed approach is motivated by a Tikhonov functional incorporating a sparsity-promoting ℓ 1-penalty term, and it allows us to obtain quantitative results when the assumption is valid. A novel iterative algorithm of soft shrinkage type was proposed. Numerical results for several two-dimensional problems with both single and multiple convex and nonconvex inclusions were presented to illustrate the features of the proposed algorithm and were compared with one conventional approach based on smoothness regularization. © 2011 John Wiley & Sons, Ltd.

  9. Measuring IL-1β Processing by Bioluminescence Sensors I: Using a Bioluminescence Resonance Energy Transfer Biosensor.

    Science.gov (United States)

    Compan, Vincent; Pelegrín, Pablo

    2016-01-01

    IL-1β processing is one of the hallmarks of inflammasome activation and drives the initiation of the inflammatory response. For decades, Western blot or ELISA have been extensively used to study this inflammatory event. Here, we describe the use of a bioluminescence resonance energy transfer (BRET) biosensor to monitor IL-1β processing in real time and in living macrophages either using a plate reader or a microscope.

  10. Bioluminescence : the potential of a non-invasive bio-optical imaging technique and improvement of animal research

    NARCIS (Netherlands)

    Hesselink, J. W.; van Dam, G. M.

    2007-01-01

    Bioluminescence is an optical imaging technique that exploits the emission of photons at specific wavelengths based on energy-dependent reactions catalysed by luciferases. The technique makes it possible to monitor measure, and track biological processes in living animals. A short review is presente

  11. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  12. Draft genome sequence of the polycyclic aromatic hydrocarbon-degrading, genetically engineered bioluminescent bioreporter Pseudomonas fluorescens HK44.

    Science.gov (United States)

    Chauhan, Archana; Layton, Alice C; Williams, Daniel E; Smartt, Abby E; Ripp, Steven; Karpinets, Tatiana V; Brown, Steven D; Sayler, Gary S

    2011-09-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids.

  13. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44 ▿

    Science.gov (United States)

    Chauhan, Archana; Layton, Alice C.; Williams, Daniel E.; Smartt, Abby E.; Ripp, Steven; Karpinets, Tatiana V.; Brown, Steven D.; Sayler, Gary S.

    2011-01-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of ∼6.1 Mb of sequence indicates that 30% of the traits are unique and distributed over five genomic islands, a prophage, and two plasmids. PMID:21742869

  14. Draft Genome Sequence of the Polycyclic Aromatic Hydrocarbon-Degrading, Genetically Engineered Bioluminescent Bioreporter Pseudomonas fluorescens HK44

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Archana [ORNL; Layton, Alice [University of Tennessee, Knoxville (UTK); Williams, Daniel W [ORNL; Smart, Abby E. [University of Tennessee, Knoxville (UTK); Ripp, Steven Anthony [ORNL; Karpinets, Tatiana V [ORNL; Brown, Steven D [ORNL; Sayler, Gary Steven [ORNL

    2011-01-01

    Pseudomonas fluorescens strain HK44 (DSM 6700) is a genetically engineered lux-based bioluminescent bioreporter. Here we report the draft genome sequence of strain HK44. Annotation of {approx}6.1 Mb sequence indicates that 30% of the traits are unique and distributed over 5 genomic islands, a prophage and two plasmids.

  15. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D. [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-07-15

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  16. A computer tomography-based spatial normalization for the analysis of [{sup 18}F]fluorodeoxyglucose position emission tomography of the brain

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hanna; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jin Su [Molecular Imaging Research Center, Korea Institute Radiological and Medical Science, Seoul(Korea, Republic of)

    2014-12-15

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [{sup 18}F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [{sup 18}F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [18F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  17. Accounting for systematic errors in bioluminescence imaging to improve quantitative accuracy

    Science.gov (United States)

    Taylor, Shelley L.; Perry, Tracey A.; Styles, Iain B.; Cobbold, Mark; Dehghani, Hamid

    2015-07-01

    Bioluminescence imaging (BLI) is a widely used pre-clinical imaging technique, but there are a number of limitations to its quantitative accuracy. This work uses an animal model to demonstrate some significant limitations of BLI and presents processing methods and algorithms which overcome these limitations, increasing the quantitative accuracy of the technique. The position of the imaging subject and source depth are both shown to affect the measured luminescence intensity. Free Space Modelling is used to eliminate the systematic error due to the camera/subject geometry, removing the dependence of luminescence intensity on animal position. Bioluminescence tomography (BLT) is then used to provide additional information about the depth and intensity of the source. A substantial limitation in the number of sources identified using BLI is also presented. It is shown that when a given source is at a significant depth, it can appear as multiple sources when imaged using BLI, while the use of BLT recovers the true number of sources present.

  18. Spectrally encoded common-path fiber-optic-based parallel optical coherence tomography.

    Science.gov (United States)

    Lee, Kye-Sung; Hur, Hwan; Sung, Ha-Young; Kim, I Jong; Kim, Geon-Hee

    2016-09-15

    We demonstrate a fiber-optic-based parallel optical coherence tomography (OCT) using spectrally encoded extended illumination with a common-path handheld probe, where the flexibility and robustness of the system are significantly improved, which is critical in the clinical environment. To the best of our knowledge, we present the first parallel OCT based on fiber optics including a fiber coupler with a sensitivity of 94 dB, which is comparable to that of point-scanning OCT. We also investigated the effect of the phase stability of the fiber-based interferometry on the parallel OCT system by comparing the common-path OCT with two-arm OCT. Using the homemade common-path handheld probe based on a Mirau interferometer, the phase stability was 32 times better than that of the two-arm OCT. The axial resolution of the common-path OCT was measured as 5.1±0.3  μm. To demonstrate the in vivo imaging performance of the fiber-optic-based parallel OCT, human skin was imaged.

  19. Use of Saccharomyces cerevisiae BLYES Expressing Bacterial Bioluminescence for Rapid, Sensitive Detection of Estrogenic Compounds

    Science.gov (United States)

    Sanseverino, John; Gupta, Rakesh K.; Layton, Alice C.; Patterson, Stacey S.; Ripp, Steven A.; Saidak, Leslie; Simpson, Michael L.; Schultz, T. Wayne; Sayler, Gary S.

    2005-01-01

    An estrogen-inducible bacterial lux-based bioluminescent reporter was developed in Saccharomyces cerevisiae for applications in chemical sensing and environmental assessment of estrogen disruptor activity. The strain, designated S. cerevisiae BLYES, was constructed by inserting tandem estrogen response elements between divergent yeast promoters GPD and ADH1 on pUTK401 (formerly pUA12B7) that constitutively express luxA and luxB to create pUTK407. Cotransformation of this plasmid with a second plasmid (pUTK404) containing the genes required for aldehyde synthesis (luxCDE) and FMN reduction (frp) yielded a bioluminescent bioreporter responsive to estrogen-disrupting compounds. For validation purposes, results with strain BLYES were compared to the colorimetric-based estrogenic assay that uses the yeast lacZ reporter strain (YES). Strains BLYES and YES were exposed to 17β-estradiol over the concentration range of 1.2 × 10−8 through 5.6 × 10−12 M. Calculated 50% effective concentration values from the colorimetric and bioluminescence assays (n = 7) were similar at (4.4 ± 1.1) × 10−10 and (2.4 ± 1.0) × 10−10 M, respectively. The lower and upper limits of detection for each assay were also similar and were approximately 4.5 × 10−11 to 2.8 × 10−9 M. Bioluminescence was observed in as little as 1 h and reached its maximum in 6 h. In comparison, the YES assay required a minimum of 3 days for results. Strain BLYES fills the niche for rapid, high-throughput screening of estrogenic compounds and has the ability to be used for remote, near-real-time monitoring of estrogen-disrupting chemicals in the environment. PMID:16085836

  20. Comparing the Gibraltar and Calabrian subduction zones (central western Mediterranean) based on seismic tomography

    Science.gov (United States)

    Argnani, Andrea; Battista Cimini, Giovanni; Frugoni, Francesco; Monna, Stephen; Montuori, Caterina

    2016-04-01

    The Central Western Mediterranean (CWM) was shaped by a complex tectonic and geodynamic evolution. Deep seismicity and tomographic studies point to the existence, under the Alboran and Tyrrhenian Seas, of lithospheric slabs extending down to the bottom of the mantle transition zone, at 660 km depth. Two narrow arcs correspond to the two slabs, the Gibraltar and Calabrian Arcs (e.g., Monna et al., 2013; Montuori et al., 2007). Similarities in the tectonic and mantle structure of the two areas have been explained by a common subduction and roll-back mechanism for the opening of the CWM, in which the two arcs are symmetrical end products. In spite of this unifying model, a wide amount of literature from different disciplines shows that many aspects of the two areas are still controversial. We present a new 3-D tomographic model at mantle scale for the Calabrian Arc and compare it with a recently published 3-D tomographic model for the Gibraltar Arc by Monna et al (2013). The two models are based on non-linear inversion of teleseismic phase arrivals, and have scale and parametrization that allow for a direct comparison. Unlike previous studies the tomographic models here presented include Ocean Bottom Seismometer broadband data, which improved the resolution of the mantle structures in the marine areas surrounding the arcs. We focus on key features of the two models that constrain reconstructions of the geodynamic evolution of the CWM (e.g., Monna et al., 2015). At Tortonian time the opening of the Tyrrhenian basin was in its initial stage, and the Calabrian arc formed subsequently; on the contrary, the Gibraltar arc was almost completely defined. We hypothesize that the complexity of the continental margin approaching the subduction zone played a key role during the final stages of the arc formation. References Monna, S., G. B. Cimini, C. Montuori, L. Matias, W. H. Geissler, and P. Favali (2013), New insights from seismic tomography on the complex geodynamic evolution

  1. Bioluminescence-activated deep-tissue photodynamic therapy of cancer.

    Science.gov (United States)

    Kim, Yi Rang; Kim, Seonghoon; Choi, Jin Woo; Choi, Sung Yong; Lee, Sang-Hee; Kim, Homin; Hahn, Sei Kwang; Koh, Gou Young; Yun, Seok Hyun

    2015-01-01

    Optical energy can trigger a variety of photochemical processes useful for therapies. Owing to the shallow penetration of light in tissues, however, the clinical applications of light-activated therapies have been limited. Bioluminescence resonant energy transfer (BRET) may provide a new way of inducing photochemical activation. Here, we show that efficient bioluminescence energy-induced photodynamic therapy (PDT) of macroscopic tumors and metastases in deep tissue. For monolayer cell culture in vitro incubated with Chlorin e6, BRET energy of about 1 nJ per cell generated as strong cytotoxicity as red laser light irradiation at 2.2 mW/cm(2) for 180 s. Regional delivery of bioluminescence agents via draining lymphatic vessels killed tumor cells spread to the sentinel and secondary lymph nodes, reduced distant metastases in the lung and improved animal survival. Our results show the promising potential of novel bioluminescence-activated PDT.

  2. Special Section Guest Editorial:Selected Topics in Biophotonics: Photoacoustic Tomography and Fiber-Based Lasers and Supercontinuum Sources

    DEFF Research Database (Denmark)

    Andersson-Engels, Stefan; Andersen, Peter E.

    2016-01-01

    The present special section entitled “Selected Topics in Biophotonics: Photoacoustic Tomography and Fiber-Based Lasers and Supercontinuum Sources” comprises two invited papers and several contributed papers from the summer school Biophotonics ’15, as well as contributed papers within this general...

  3. Clinicopathological and immunohistochemical features of lung invasive mucinous adenocarcinoma based on computed tomography findings

    Directory of Open Access Journals (Sweden)

    Shimizu K

    2016-12-01

    Full Text Available Katsuhiko Shimizu, Riki Okita, Shinsuke Saisho, Ai Maeda, Yuji Nojima, Masao Nakata Department of General Thoracic Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan Background: We performed an analysis to clarify differences in clinicopathological and molecular features of lung invasive mucinous adenocarcinoma (IMA based on computed tomography (CT findings and their impact on prognosis.Patients and methods: On the basis of CT findings, we divided lung IMA into three subtypes: solid, bubbling, and pneumonic. We then investigated differences in clinicopathological characteristics, prognosis, and the expressions of well-identified biomarkers, including cyclooxygenase-2 (Cox-2, excision repair cross-complementation group 1 (ERCC1, ribonucleotide reductase M1 (RRM1, class III beta-tubulin, thymidylate synthase (TS, secreted protein acidic and rich in cysteine (SPARC, programmed cell death-1 ligand-1 (PD-L1, and epidermal growth factor receptor mutation, among the three subtypes.Results: A total of 29 patients with resected lung IMA were analyzed. Compared with the solid or bubbling type, the pneumonic type had a higher proportion of symptoms, a larger tumor size, a higher pathological stage, and a significantly worse prognosis. The immunohistochemical findings tended to show high expression of RRM1, class III beta-tubulin, and Cox-2 in the tumor and of SPARC in the stroma, but not of ERCC1, TS, and PD-L1 in the tumor. None of the biomarkers with high expression levels in the tumor were prognostic biomarkers, but the expression of SPARC in the stroma was correlated with a poor outcome.Conclusion: Clinical and pathological features, in conjunction with molecular data, indicate that IMA should be divided into different subgroups. In our results, the pneumonic type was correlated with a significantly worse outcome. Further studies should be performed to confirm our conclusion and to explore its molecular implications. Keywords: non-small cell

  4. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Cheng-Ying; Anastasio, Mark A. [Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei, Taiwan 106, Taiwan (China); Department of Biomedical Engineering, Medical Imaging Research Center, Illinois Institute of Technology, 3440 S. Dearborn Street, E1-116, Chicago, Illinois 60616 (United States)

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  5. Expanding the bioluminescent toolkit for in vivo imaging

    OpenAIRE

    Paley, Miranda Amelia

    2014-01-01

    Bioluminescence imaging (BLI) is among the most dynamic imaging modalities for visualizing whole cells and gene expression patterns in vivo. This technique captures light emission from the luciferase-catalyzed oxidation of small molecule luciferins with highly sensitive CCD cameras. While powerful, current options for multiplexed BLI in mice are limited by the number of luciferase/luciferin pairs found in nature. Our lab aims to expand the bioluminescent toolkit by pairing mutant luciferases ...

  6. Bioluminescence-Sensing Assay for Microbial Growth Recognition

    OpenAIRE

    Heba Ramadan Eed; Nora S. Abdel-Kader; Mahmoud Helmy El Tahan; Tianhong Dai; Rehab Amin

    2016-01-01

    The conventional methods for microbial viability quantification require cultivation and are laborious. There is consequently a widespread need for cultivation-free methods. The adenosine triphosphate (ATP) bioluminescence-sensing assay is considered an extremely effective biosensor; hence ATP is the energy currency of all living microbes and can be used as a rapid indicator of microbial viability. We developed an ATP bioluminescence-sensing assay to detect microbial viability. A biolumine...

  7. BIOLUMINESCENCE: TEACHING BIOCHEMISTRY BEYOND THE UNIVERSITY WALLS

    Directory of Open Access Journals (Sweden)

    Ana Paula Jesus de Almeida

    2016-11-01

    Full Text Available INTRODUCTION: The use of video in teaching and learning processes provides a challenging environment, able to stimulate the intellect and facilitate understanding in life science studies. Videos can be of extraordinary importance in education and dissemination of knowledge, contributing to greater learning, but is rarely used and exploited properly, especially for teaching biochemistry. Biochemistry is considered complex because it involves many molecular structures and processes, especially considering the number of events and molecules involved in the metabolism. OBJECTIVES: This study aimed to introduce biochemistry for the students of basic education using the theme "Light, Science and Life" in a playful and fun way. MATERIALS AND METHODS: A video about bioluminescence was designed and prepared aiming to use it as a support for learning biochemistry by students of basic education of public schools located in Salvador, Bahia. In order to prepare the video, undergraduate students initially revised the literature in order to acquire proper knowledge, and along with their teacher advisor worked the elaboration of texts, textbook and questionnaire and applied at school. DISCUSSION AND RESULTS: Analysis the qualitative results of the experiment on the preparation and use of the video about "Bioluminescence" focused mainly on the content of biochemistry linked to theme Light, Science and Life, and demonstrated the importance of such work in the teaching-learning process. The dynamics used allowed greater interaction between students and teacher, and the teaching of biochemistry in a fun way beyond the university walls. CONCLUSION: The teaching through recreational resources, e.g. videos and other educational strategies that foster learning should be encouraged from basic education, always bearing in order to transmit through these teaching methods the main concepts covered in biochemistry.

  8. Bioluminescence imaging of Chlamydia muridarum ascending infection in mice.

    Directory of Open Access Journals (Sweden)

    Jessica Campbell

    Full Text Available Chlamydial pathogenicity in the upper genital tract relies on chlamydial ascending from the lower genital tract. To monitor chlamydial ascension, we engineered a luciferase-expressing C. muridarum. In cells infected with the luciferase-expressing C. muridarum, luciferase gene expression and enzymatic activity (measured as bioluminescence intensity correlated well along the infection course, suggesting that bioluminescence can be used for monitoring chlamydial replication. Following an intravaginal inoculation with the luciferase-expressing C. muridarum, 8 of 10 mice displayed bioluminescence signal in the lower with 4 also in the upper genital tracts on day 3 after infection. By day 7, all 10 mice developed bioluminescence signal in the upper genital tracts. The bioluminescence signal was maintained in the upper genital tract in 6 and 2 mice by days 14 and 21, respectively. The bioluminescence signal was no longer detectable in any of the mice by day 28. The whole body imaging approach also revealed an unexpected airway infection following the intravaginal inoculation. Although the concomitant airway infection was transient and did not significantly alter the genital tract infection time courses, caution should be taken during data interpretation. The above observations have demonstrated that C. muridarum can not only achieve rapid ascending infection in the genital tract but also cause airway infection following a genital tract inoculation. These findings have laid a foundation for further optimizing the C. muridarum intravaginal infection murine model for understanding chlamydial pathogenic mechanisms.

  9. Bioluminescence imaging of Chlamydia muridarum ascending infection in mice.

    Science.gov (United States)

    Campbell, Jessica; Huang, Yumeng; Liu, Yuanjun; Schenken, Robert; Arulanandam, Bernard; Zhong, Guangming

    2014-01-01

    Chlamydial pathogenicity in the upper genital tract relies on chlamydial ascending from the lower genital tract. To monitor chlamydial ascension, we engineered a luciferase-expressing C. muridarum. In cells infected with the luciferase-expressing C. muridarum, luciferase gene expression and enzymatic activity (measured as bioluminescence intensity) correlated well along the infection course, suggesting that bioluminescence can be used for monitoring chlamydial replication. Following an intravaginal inoculation with the luciferase-expressing C. muridarum, 8 of 10 mice displayed bioluminescence signal in the lower with 4 also in the upper genital tracts on day 3 after infection. By day 7, all 10 mice developed bioluminescence signal in the upper genital tracts. The bioluminescence signal was maintained in the upper genital tract in 6 and 2 mice by days 14 and 21, respectively. The bioluminescence signal was no longer detectable in any of the mice by day 28. The whole body imaging approach also revealed an unexpected airway infection following the intravaginal inoculation. Although the concomitant airway infection was transient and did not significantly alter the genital tract infection time courses, caution should be taken during data interpretation. The above observations have demonstrated that C. muridarum can not only achieve rapid ascending infection in the genital tract but also cause airway infection following a genital tract inoculation. These findings have laid a foundation for further optimizing the C. muridarum intravaginal infection murine model for understanding chlamydial pathogenic mechanisms.

  10. Stimulation of bioluminescence in Noctiluca sp. using controlled temperature changes.

    Science.gov (United States)

    Han, Jing; Li, GuiJuan; Liu, HuanYing; Hu, HaoHao; Zhang, XueGang

    2013-01-01

    Bioluminescence induced by multifarious stimuli has long been observed and is remains under investigation because of its great complexity. In particular, the exact mechanism underlying bioluminescence is not yet fully understood. This work presents a new experimental method for studying Noctiluca sp. bioluminescence under temperature change stimulation. It is a study of Noctiluca sp. bioluminescence using controlled temperature changes in a tank. A characteristic of this experiment is the large volume of water used (1 m(3) in a tank of 2 × 1 × 1 m). Temperature changes were controlled by two methods. In the first, a flask filled with hot water was introduced into the tank and in the second, a water heater was used in the tank. Temperature changes were recorded using sensors. Noctiluca sp. bioluminescence was recorded using a Canon 5D Mark II and this allowed the characteristics of Noctiluca sp. bioluminescence under temperature change stimulation to be monitored.

  11. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.

    Directory of Open Access Journals (Sweden)

    Ji-Woon Park

    Full Text Available A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: < 1 min of indoor bioaerosol concentrations with ATP bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations.

  12. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.

    Science.gov (United States)

    Park, Ji-Woon; Park, Chul Woo; Lee, Sung Hwa; Hwang, Jungho

    2015-01-01

    A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall) was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP) bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations.

  13. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dominjon, A., E-mail: a.dominjon@ipnl.in2p3.fr [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Ageron, M. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Billault, M.; Brunner, J. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Calabria, P. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Chabanat, E. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Chaize, D.; Doan, Q.T.; Guerin, C.; Houles, J.; Vagneron, L. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France)

    2012-12-11

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  14. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation

    Science.gov (United States)

    Wang, Qi; Lian, Zhijie; Wang, Jianming; Chen, Qingliang; Sun, Yukuan; Li, Xiuyan; Duan, Xiaojie; Cui, Ziqiang; Wang, Huaxiang

    2016-11-01

    Electrical impedance tomography (EIT) reconstruction is a nonlinear and ill-posed problem. Exact reconstruction of an EIT image inverts a high dimensional mathematical model to calculate the conductivity field, which causes significant problems regarding that the computational complexity will reduce the achievable frame rate, which is considered as a major advantage of EIT imaging. The single-step method, state estimation method, and projection method were always used to accelerate reconstruction process. The basic principle of these methods is to reduce computational complexity. However, maintaining high resolution in space together with not much cost is still challenging, especially for complex conductivity distribution. This study proposes an idea to accelerate image reconstruction of EIT based on compressive sensing (CS) theory, namely, CSEIT method. The novel CSEIT method reduces the sampling rate through minimizing redundancy in measurements, so that detailed information of reconstruction is not lost. In order to obtain sparse solution, which is the prior condition of signal recovery required by CS theory, a novel image reconstruction algorithm based on patch-based sparse representation is proposed. By applying the new framework of CSEIT, the data acquisition time, or the sampling rate, is reduced by more than two times, while the accuracy of reconstruction is significantly improved.

  15. Positioning Standardized Acupuncture Points on the Whole Body Based on X-Ray Computed Tomography Images.

    Science.gov (United States)

    Kim, Jungdae; Kang, Dae-In

    2014-02-01

    Objective: The goal of this research was to position all the standardized 361 acupuncture points on the entire human body based on a 3-dimensional (3D) virtual body. Materials and Methods: Digital data from a healthy Korean male with a normal body shape were obtained in the form of cross-sectional images generated by X-ray computed tomography (CT), and the 3D models for the bones and the skin's surface were created through the image-processing steps. Results: The reference points or the landmarks were positioned based on the standard descriptions of the acupoints, and the formulae for the proportionalities between the acupoints and the reference points were presented. About 37% of the 361 standardized acupoints were automatically linked with the reference points, the reference points accounted for 11% of the 361 acupoints, and the remaining acupoints (52%) were positioned point-by-point by using the OpenGL 3D graphics libraries. Based on the projective 2D descriptions of the standard acupuncture points, the volumetric 3D acupoint model was developed; it was extracted from the X-ray CT images. Conclusions: This modality for positioning acupoints may modernize acupuncture research and enable acupuncture treatments to be more personalized.

  16. Gradient-based iterative image reconstruction scheme for time-resolved optical tomography

    Energy Technology Data Exchange (ETDEWEB)

    Hielscher, A.H.; Klose, A.D. [State Univ. of New York, Brooklyn, NY (United States). Dept. of Pathology; Hanson, K.M. [Los Alamos National Lab., NM (United States)

    1999-03-01

    Currently available tomographic image reconstruction schemes for optical tomography (OT) are mostly based on the limiting assumptions of small perturbations and a priori knowledge of the optical properties of a reference medium. Furthermore, these algorithms usually require the inversion of large, full, ill-conditioned Jacobian matrices. In this work a gradient-based iterative image reconstruction (GIIR) method is presented that promises to overcome current limitations. The code consists of three major parts: (1) A finite-difference, time-resolved, diffusion forward model is used to predict detector readings based on the spatial distribution of optical properties; (2) An objective function that describes the difference between predicted and measured data; (3) An updating method that uses the gradient of the objective function in a line minimization scheme to provide subsequent guesses of the spatial distribution of the optical properties for the forward model. The reconstruction of these properties is completed, once a minimum of this objective function is found. After a presentation of the mathematical background, two- and three-dimensional reconstruction of simple heterogeneous media as well as the clinically relevant example of ventricular bleeding in the brain are discussed. Numerical studies suggest that intraventricular hemorrhages can be detected using the GIIR technique, even in the presence of a heterogeneous background.

  17. Laboratory-based x-ray phase-contrast tomography enables 3D virtual histology

    Science.gov (United States)

    Töpperwien, Mareike; Krenkel, Martin; Quade, Felix; Salditt, Tim

    2016-09-01

    Due to the large penetration depth and small wavelength hard x-rays offer a unique potential for 3D biomedical and biological imaging, combining capabilities of high resolution and large sample volume. However, in classical absorption-based computed tomography, soft tissue only shows a weak contrast, limiting the actual resolution. With the advent of phase-contrast methods, the much stronger phase shift induced by the sample can now be exploited. For high resolution, free space propagation behind the sample is particularly well suited to make the phase shift visible. Contrast formation is based on the self-interference of the transmitted beam, resulting in object-induced intensity modulations in the detector plane. As this method requires a sufficiently high degree of spatial coherence, it was since long perceived as a synchrotron-based imaging technique. In this contribution we show that by combination of high brightness liquid-metal jet microfocus sources and suitable sample preparation techniques, as well as optimized geometry, detection and phase retrieval, excellent three-dimensional image quality can be obtained, revealing the anatomy of a cobweb spider in high detail. This opens up new opportunities for 3D virtual histology of small organisms. Importantly, the image quality is finally augmented to a level accessible to automatic 3D segmentation.

  18. Evaluation of electrical capacitance tomography sensor based on the coupling of fluid field and electrostatic field

    Science.gov (United States)

    Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-07-01

    Electrical capacitance tomography (ECT) is based on capacitance measurements from electrode pairs mounted outside of a pipe or vessel. The structure of ECT sensors is vital to image quality. In this paper, issues with the number of electrodes and the electrode covering ratio for complex liquid-solids flows in a rotating device are investigated based on a new coupling simulation model. The number of electrodes is increased from 4 to 32 while the electrode covering ratio is changed from 0.1 to 0.9. Using the coupling simulation method, real permittivity distributions and the corresponding capacitance data at 0, 0.5, 1, 2, 3, 5, and 8 s with a rotation speed of 96 rotations per minute (rpm) are collected. Linear back projection (LBP) and Landweber iteration algorithms are used for image reconstruction. The quality of reconstructed images is evaluated by correlation coefficient compared with the real permittivity distributions obtained from the coupling simulation. The sensitivity for each sensor is analyzed and compared with the correlation coefficient. The capacitance data with a range of signal-to-noise ratios (SNRs) of 45, 50, 55 and 60 dB are generated to evaluate the effect of data noise on the performance of ECT sensors. Furthermore, the SNRs of experimental data are analyzed for a stationary pipe with permittivity distribution. Based on the coupling simulation, 16-electrode ECT sensors are recommended to achieve good image quality.

  19. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  20. 2D Magnetic resonance electrical property tomography based on B1(-) field mapping.

    Science.gov (United States)

    Yuqing Wan; Negishi, Michiro; Constable, R Todd

    2014-01-01

    Magnetic Resonance Electrical Property Tomography (MREPT) is a method to visualize electrical conductivity and permittivity distributions in the object. Traditional MREPT relies on either the radio frequency (RF) transmit field (B(+)1) mapping, or using a transmit/receive RF coil, to compute tissue's electrical conductivity and permittivity. This paper introduces an alternative approach based on the reconstructed receive field (B(-)1) By solving a system of homogeneous equations consisting of the signal ratios from multi-channel receive coils, the receive field distribution with both magnitude and phase can be computed. Similar to (B(+)1) based MREPT method, the conductivity and permittivity in the imaging object can be calculated from the (B(-)1) field. We demonstrated the feasibility to image electrical property contrasts through computer simulated studies and phantom experiments. Although this study focuses on the 2D reconstruction, the presented method can be extended to full 3D. This method can be applied to regular MR imaging collected with multi-channel receive coils, and therefore, tissue anomaly based on electrical properties can potentially be revealed with a higher imaging quality, providing useful information for clinical diagnosis.

  1. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting.

    Directory of Open Access Journals (Sweden)

    Michelle Cronin

    Full Text Available The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v. administered to mice bearing subcutaneous (s.c FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and μCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.

  2. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  3. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may imp

  4. A Micromegas-based telescope for muon tomography: The WatTo experiment

    Science.gov (United States)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  5. Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging

    Directory of Open Access Journals (Sweden)

    Paritosh Pande

    2016-01-01

    Full Text Available Hand-held optical coherence tomography (OCT imaging probes offer flexibility to image sites that are otherwise challenging to access. While the majority of hand-held imaging probes utilize galvanometer- or MEMS-scanning mirrors to transversely scan the imaging beam, these probes are commonly limited to lateral fields-of-view (FOV of only a few millimeters. The use of a freehand manually scanned probe can significantly increase the lateral FOV. However, using the traditional fixed-rate triggering scheme for data acquisition in a manually scanned probe results in imaging artifacts due to variations in the scan velocity of the imaging probe. These artifacts result in a structurally inaccurate image of the sample. In this paper, we present a sensor-based manual scanning technique for OCT imaging, where real-time feedback from an optical motion sensor is used to trigger data acquisition. This technique is able to circumvent the problem of motion artifacts during manual scanning by adaptively altering the trigger rate based on the instantaneous scan velocity, enabling OCT imaging over a large lateral FOV. The feasibility of the proposed technique is demonstrated by imaging several biological and nonbiological samples.

  6. Damage detection tomography based on guided waves in composite structures using a distributed sensor network

    Science.gov (United States)

    Memmolo, Vittorio; Maio, Leandro; Boffa, Natalino Daniele; Monaco, Ernesto; Ricci, Fabrizio

    2016-01-01

    Structural health monitoring (SHM) based on guided waves allows assessing the health of a structure due to the sensitivity to the occurrence of delamination. However, wave propagation presents several complexities for effective damage identification in composite structures. An efficient implementation of a guided wave-based SHM system requires an accurate analysis of collected data to obtain a useful detection. This paper is concerned with the identification of small emerging delaminations in composite structural components using a sparse array of surface ultrasonic transducers. An ultrasonic-guided wave tomography technique focused on impact damage detection in composite plate-like structures is presented. A statistical damage index approach is adopted to interpret the recorded signals, and a subsequent graphic interpolation is implemented to reconstruct the damage appearance. Experimental tests carried out on a typical composite structure demonstrated the effectiveness of the developed technique with the aim to investigate the presence and location of damage using simple imaging reports and a limited number of measurements. A traditional ultrasonic inspection (C-scan) is used to assess the methodology.

  7. Preclinical positron emission tomography scanner based on a monolithic annulus of scintillator: initial design study.

    Science.gov (United States)

    Stolin, Alexander V; Martone, Peter F; Jaliparthi, Gangadhar; Raylman, Raymond R

    2017-01-01

    Positron emission tomography (PET) scanners designed for imaging of small animals have transformed translational research by reducing the necessity to invasively monitor physiology and disease progression. Virtually all of these scanners are based on the use of pixelated detector modules arranged in rings. This design, while generally successful, has some limitations. Specifically, use of discrete detector modules to construct PET scanners reduces detection sensitivity and can introduce artifacts in reconstructed images, requiring the use of correction methods. To address these challenges, and facilitate measurement of photon depth-of-interaction in the detector, we investigated a small animal PET scanner (called AnnPET) based on a monolithic annulus of scintillator. The scanner was created by placing 12 flat facets around the outer surface of the scintillator to accommodate placement of silicon photomultiplier arrays. Its performance characteristics were explored using Monte Carlo simulations and sections of the NEMA NU4-2008 protocol. Results from this study revealed that AnnPET's reconstructed spatial resolution is predicted to be [Formula: see text] full width at half maximum in the radial, tangential, and axial directions. Peak detection sensitivity is predicted to be 10.1%. Images of simulated phantoms (mini-hot rod and mouse whole body) yielded promising results, indicating the potential of this system for enhancing PET imaging of small animals.

  8. Efficient non-negative constrained model-based inversion in optoacoustic tomography

    Science.gov (United States)

    Ding, Lu; Luís Deán-Ben, X.; Lutzweiler, Christian; Razansky, Daniel; Ntziachristos, Vasilis

    2015-09-01

    The inversion accuracy in optoacoustic tomography depends on a number of parameters, including the number of detectors employed, discrete sampling issues or imperfectness of the forward model. These parameters result in ambiguities on the reconstructed image. A common ambiguity is the appearance of negative values, which have no physical meaning since optical absorption can only be higher or equal than zero. We investigate herein algorithms that impose non-negative constraints in model-based optoacoustic inversion. Several state-of-the-art non-negative constrained algorithms are analyzed. Furthermore, an algorithm based on the conjugate gradient method is introduced in this work. We are particularly interested in investigating whether positive restrictions lead to accurate solutions or drive the appearance of errors and artifacts. It is shown that the computational performance of non-negative constrained inversion is higher for the introduced algorithm than for the other algorithms, while yielding equivalent results. The experimental performance of this inversion procedure is then tested in phantoms and small animals, showing an improvement in image quality and quantitativeness with respect to the unconstrained approach. The study performed validates the use of non-negative constraints for improving image accuracy compared to unconstrained methods, while maintaining computational efficiency.

  9. Application of a computed tomography based cystic fibrosis scoring system to chest tomosynthesis

    Science.gov (United States)

    Söderman, Christina; Johnsson, Åse; Vikgren, Jenny; Rystedt, Hans; Ivarsson, Jonas; Rossi Norrlund, Rauni; Nyberg Andersson, Lena; Bâth, Magnus

    2013-03-01

    In the monitoring of progression of lung disease in patients with cystic fibrosis (CF), recurrent computed tomography (CT) examinations are often used. The relatively new imaging technique chest tomosynthesis (CTS) may be an interesting alternative in the follow-up of these patients due to its visualization of the chest in slices at radiation doses and costs significantly lower than is the case with CT. A first step towards introducing CTS imaging in the diagnostics of CF patients is to establish a scoring system appropriate for evaluating the severity of CF pulmonary disease based on findings in CTS images. Previously, several such CF scoring systems based on CT imaging have been published. The purpose of the present study was to develop a CF scoring system for CTS, by starting from an existing scoring system dedicated for CT images and making modifications regarded necessary to make it appropriate for use with CTS images. In order to determine any necessary changes, three thoracic radiologists independently used a scoring system dedicated for CT on both CT and CTS images from CF patients. The results of the scoring were jointly evaluated by all the observers, which lead to suggestions for changes to the scoring system. Suggested modifications include excluding the scoring of air trapping and doing the scoring of the findings in quadrants of the image instead of in each lung lobe.

  10. Iterative reconstruction using a Monte Carlo based system transfer matrix for dedicated breast positron emission tomography.

    Science.gov (United States)

    Saha, Krishnendu; Straus, Kenneth J; Chen, Yu; Glick, Stephen J

    2014-08-28

    To maximize sensitivity, it is desirable that ring Positron Emission Tomography (PET) systems dedicated for imaging the breast have a small bore. Unfortunately, due to parallax error this causes substantial degradation in spatial resolution for objects near the periphery of the breast. In this work, a framework for computing and incorporating an accurate system matrix into iterative reconstruction is presented in an effort to reduce spatial resolution degradation towards the periphery of the breast. The GATE Monte Carlo Simulation software was utilized to accurately model the system matrix for a breast PET system. A strategy for increasing the count statistics in the system matrix computation and for reducing the system element storage space was used by calculating only a subset of matrix elements and then estimating the rest of the elements by using the geometric symmetry of the cylindrical scanner. To implement this strategy, polar voxel basis functions were used to represent the object, resulting in a block-circulant system matrix. Simulation studies using a breast PET scanner model with ring geometry demonstrated improved contrast at 45% reduced noise level and 1.5 to 3 times resolution performance improvement when compared to MLEM reconstruction using a simple line-integral model. The GATE based system matrix reconstruction technique promises to improve resolution and noise performance and reduce image distortion at FOV periphery compared to line-integral based system matrix reconstruction.

  11. Full-field optical coherence tomography image restoration based on Hilbert transformation

    Science.gov (United States)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2007-02-01

    We propose the envelope detection method that is based on Hilbert transform for image restoration in full-filed optical coherence tomography (FF-OCT). The FF-OCT system presenting a high-axial resolution of 0.9 μm was implemented with a Kohler illuminator based on Linnik interferometer configuration. A 250 W customized quartz tungsten halogen lamp was used as a broadband light source and a CCD camera was used as a 2-dimentional detector array. The proposed image restoration method for FF-OCT requires only single phase-shifting. By using both the original and the phase-shifted images, we could remove the offset and the background signals from the interference fringe images. The desired coherent envelope image was obtained by applying Hilbert transform. With the proposed image restoration method, we demonstrate en-face imaging performance of the implemented FF-OCT system by presenting a tilted mirror surface, an integrated circuit chip, and a piece of onion epithelium.

  12. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography

    Science.gov (United States)

    Kim, Sehui; Lee, Changho; Kim, Jin Young; Kim, Jeehyun; Lim, Geunbae; Kim, Chulhong

    2016-10-01

    Compact size and fast imaging abilities are key requirements for the clinical implementation of an optical coherence tomography (OCT) system. Among the various small-sized technology, a microelectromechanical system (MEMS) scanning mirror is widely used in a miniaturized OCT system. However, the complexities of conventional MEMS fabrication processes and relatively high costs have restricted fast clinical translation and commercialization of the OCT systems. To resolve these problems, we developed a two-axis polydimethylsiloxane (PDMS)-based MEMS (2A-PDMS-MEMS) scanning mirror through simple processes with low costs. It had a small size of 15×15×15 mm3, was fast, and had a wide scanning range at a low voltage. The AC/DC responses were measured to evaluate the performance of the 2A-PDMS-MEMS scanning mirror. The maximum scanning angles were measured as ±16.6 deg and ±11.6 deg along the X and Y axes, respectively, and the corresponding field of view was 29.8 mm×20.5 mm with an optical focal length of 50 mm. The resonance frequencies were 82 and 57 Hz along the X and Y axes, respectively. Finally, in vivo B-scan and volumetric OCT images of human fingertips and palms were successfully acquired using the developed SD-OCT system based on the 2A-PDMS-MEMS scanning mirror.

  13. A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging.

    Science.gov (United States)

    Mezzanotte, Laura; Blankevoort, Vicky; Löwik, Clemens W G M; Kaijzel, Eric L

    2014-09-01

    Fluorescence and bioluminescence imaging have different advantages and disadvantages depending on the application. Bioluminescence imaging is now the most sensitive optical technique for tracking cells, promoter activity studies, or for longitudinal in vivo preclinical studies. Far-red and near-infrared fluorescence imaging have the advantage of being suitable for both ex vivo and in vivo analysis and have translational potential, thanks to the availability of very sensitive imaging instrumentation. Here, we report the development and validation of a new luciferase fusion reporter generated by the fusion of the firefly luciferase Luc2 to the far-red fluorescent protein TurboFP635 by a 14-amino acid linker peptide. Expression of the fusion protein, named TurboLuc, was analyzed in human embryonic kidney cells, (HEK)-293 cells, via Western blot analysis, fluorescence microscopy, and in vivo optical imaging. The created fusion protein maintained the characteristics of the original bioluminescent and fluorescent protein and showed no toxicity when expressed in living cells. To assess the sensitivity of the reporter for in vivo imaging, transfected cells were subcutaneously injected in animals. Detection limits of cells were 5 × 10(3) and 5 × 10(4) cells for bioluminescent and fluorescent imaging, respectively. In addition, hydrodynamics-based in vivo gene delivery using a minicircle vector expressing TurboLuc allowed for the analysis of luminescent signals over time in deep tissue. Bioluminescence could be monitored for over 30 days in the liver of animals. In conclusion, TurboLuc combines the advantages of both bioluminescence and fluorescence and allows for highly sensitive optical imaging ranging from single-cell analysis to in vivo whole-body bioluminescence imaging.

  14. Atlas-based high-density diffuse optical tomography for imaging the whole human cortex

    Science.gov (United States)

    Wu, Xue; Eggebrecht, Adam T.; Ferradal, Silvina L.; Culver, Joseph P.; Dehghani, Hamid

    2015-03-01

    Diffuse optical tomography (DOT) for brain imaging has the potential to be an alternative human brain mapping technique when MRI imaging is not applicable. It recovers tissue chromophore concentrations of brain tissue through measures of light transmission to monitor for example the resting-state brain dynamics. This imaging technique relies on simulation of the light propagation which can be generated based on a subject-specific model. There has been some study on using rigid atlas models as alternatives for model based DOT when subject-specific anatomical data is not available; but there is still a lack of detailed analysis between geometrical accuracy and internal light propagation in tissue for atlas-based DOT. This work is focused on High-Density DOT (HD-DOT) of the whole cortex based on atlas models from 11 different rigid registration algorithms across 24 subjects, and the results are evaluated in 19 areas of the human head. The correlation between geometrical surface error and internal light propagation errors is strong in most area but varies in different regions from R2 = 0.74 in the region around top of the head to R2 = 0.98 in the region around the temples. In the 11 registration methods, basic-4-landmark registration with 4.2mm average surface error and 50% average internal light propagation errors is shown to be the least accurate registration method whereas full-head landmark with non-iterative point to point with 1.7mm average surface error and 32% average internal light propagation error is shown to be the most accurate registration method for atlas-based DOT.

  15. MEMS-based handheld fourier domain Doppler optical coherence tomography for intraoperative microvascular anastomosis imaging.

    Directory of Open Access Journals (Sweden)

    Yong Huang

    Full Text Available To demonstrate the feasibility of a miniature handheld optical coherence tomography (OCT imager for real time intraoperative vascular patency evaluation in the setting of super-microsurgical vessel anastomosis.A novel handheld imager Fourier domain Doppler optical coherence tomography based on a 1.3-µm central wavelength swept source for extravascular imaging was developed. The imager was minimized through the adoption of a 2.4-mm diameter microelectromechanical systems (MEMS scanning mirror, additionally a 12.7-mm diameter lens system was designed and combined with the MEMS mirror to achieve a small form factor that optimize functionality as a handheld extravascular OCT imager. To evaluate in-vivo applicability, super-microsurgical vessel anastomosis was performed in a mouse femoral vessel cut and repair model employing conventional interrupted suture technique as well as a novel non-suture cuff technique. Vascular anastomosis patency after clinically successful repair was evaluated using the novel handheld OCT imager.With an adjustable lateral image field of view up to 1.5 mm by 1.5 mm, high-resolution simultaneous structural and flow imaging of the blood vessels were successfully acquired for BALB/C mouse after orthotopic hind limb transplantation using a non-suture cuff technique and BALB/C mouse after femoral artery anastomosis using a suture technique. We experimentally quantify the axial and lateral resolution of the OCT to be 12.6 µm in air and 17.5 µm respectively. The OCT has a sensitivity of 84 dB and sensitivity roll-off of 5.7 dB/mm over an imaging range of 5 mm. Imaging with a frame rate of 36 Hz for an image size of 1000(lateral×512(axial pixels using a 50,000 A-lines per second swept source was achieved. Quantitative vessel lumen patency, lumen narrowing and thrombosis analysis were performed based on acquired structure and Doppler images.A miniature handheld OCT imager that can be used for intraoperative evaluation of

  16. Advancing Molecular Therapies through In Vivo Bioluminescent Imaging

    Directory of Open Access Journals (Sweden)

    Anton McCaffrey

    2003-04-01

    Full Text Available Effective development of therapeutics that target the molecular basis of disease is dependent on testing new therapeutic moieties and delivery strategies in animal models of human disease. Accelerating the analyses of these models and improving their predictive value through whole animal imaging methods, which provide data in real time and are sensitive to the subtle changes, are crucial for rapid advancement of these approaches. Modalities based on optics are rapid, sensitive, and accessible methods for in vivo analyses with relatively low instrumentation costs. In vivo bioluminescent imaging (BLI is one of these optically based imaging methods that enable rapid in vivo analyses of a variety of cellular and molecular events with extreme sensitivity. BLI is based on the use of light-emitting enzymes as internal biological light sources that can be detected externally as biological indicators. BLI has been used to test spatio-temporal expression patterns of both target and therapeutic genes in living laboratory animals where the contextual influences of whole biological systems are preserved. BLI has also been used to analyze gene delivery, immune cell therapies, and the in vivo efficacy of inhibitory RNAs. New tools for BLI are being developed that will offer greater flexibility in detection and analyses. BLI can be used to accelerate the evaluation of experimental therapeutic strategies and whole body imaging offers the opportunity of revealing the effects of novel approaches on key steps in disease processes.

  17. Model-based image reconstruction in X-ray computed tomography

    NARCIS (Netherlands)

    Zbijewski, Wojciech Bartosz

    2006-01-01

    The thesis investigates the applications of iterative, statistical reconstruction (SR) algorithms in X-ray Computed Tomography. Emphasis is put on various aspects of system modeling in statistical reconstruction. Fundamental issues such as effects of object discretization and algorithm initializatio

  18. Four-dimensional visualization of a small-scale flame based on deflection tomography

    Science.gov (United States)

    Zhang, Bin; Liu, Zhigang; Zhao, Minmin

    2016-11-01

    Optical computed tomography is an important technique in the visualization and diagnosis of various flow fields. A small-scale diffusion flame was visualized using deflection tomography. A projection sampling system was proposed for deflection tomography to obtain deflectograms with a pair of gratings. Wave-front retrieval was employed for processing the deflectograms to obtain the deflection angles of the rays. This two-dimensional data extraction method expanded the application of deflection tomography and was suitable for the projection extraction of small-scale combustion. Deflection angle revision reconstruction algorithm was used to reconstruct the temperature distributions in 10 cross sections for each deflectogram in different instants. The flow structure was reconstructed using a visualization toolkit equipped with the marching cube and ray casting algorithms. The performed experiments demonstrated the three-dimensional dynamic visualization of temperature distributions and the flame structures of small-scale diffusion combustion.

  19. Column flotation monitoring based on electrical capacitance volume tomography: A preliminary study

    Science.gov (United States)

    Haryono, Didied; Harjanto, Sri; Nugraha, Harisma; Huda, Mahfudz Al; Taruno, Warsito Purwo

    2017-01-01

    A preliminary study of column flotation monitoring process using electrical capacitance volume tomography (ECVT) was conducted. ECVT was one of the monitoring systems which based on the capacitance measurement. It was used to understand the phenomenon that occurs inside the column in a three-dimensional (3-D) image. A linear back projection (LBP) algorithm technique was used to reconstruct the 3-D ECVT images from all measurement data obtained in this study. As a preliminary study, the effect of gas injection in the two-phase (liquid and gas) system was conducted. This study is conducted to assess the possibility of ECVT system in the monitoring of column flotation process. The experiments were conducted by using column flotation with 5 cm diameter and 150 cm height in which a sparger was installed at the bottom of column to inject air inside the column. 32-CH rectangular ECVT sensor was installed at 13 cm above the sparger and placed around the column. The gas injection variations used were 2-7 l/min with interval 1 l/min and all experiments were conducted at room temperature. Based on the signal and image analysis, the signals and 3-D ECVT images showed differences when the gas injection was varied. An increase in gas injection will decrease the fluctuation of signal intensity which correlates to the 3-D ECVT images. Average signals obtained by ECVT when given gas injection variations were in the range of 440.09 to 453.62 mV from high to low gas injection. Based on these results, ECVT has a prospect as an imaging tool to monitor the column flotation process. And also, hopefully, based on the analysis of 3-D images generated by ECVT system, the metallurgical performance would be analyzed in the further researches.

  20. High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications.

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, Edward Steven,

    2013-09-01

    The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

  1. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  2. Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Directory of Open Access Journals (Sweden)

    Quinn Brian

    2011-10-01

    Full Text Available Abstract Background The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose. Methods One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population. Results Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters. Conclusions A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.

  3. Classification of temporal bone pneumatization based on sigmoid sinus using computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.-J. [Department of Otorhinolaryngology, National Health Insurance Corporation Ilsan Hospital, Seoul (Korea, Republic of); Song, M.H. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of); Kim, J. [Department of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, W.-S. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of); Lee, H.-K. [Department of Otorhinolaryngology, Yonsei University College of Medicine, Kang-nam Gu, Do-gok Dong, 146-92, Seoul, Republic of Korea 135-720 (Korea, Republic of)], E-mail: hoki@yuhs.ac

    2007-11-15

    Aim: To analyse several reference structures using axial computed tomography (CT) imaging of the temporal bone, which may reflect pneumatization of the entire temporal bone by statistical correlation to the actual volume of the temporal bone measured using three-dimensional reconstruction. Materials and methods: One hundred and sixteen temporal bones were studied, comprising 48 with normal findings and 68 sides showing chronic otitis media or temporal bone fracture. After measuring the volume of temporal bone air cells by the volume rendering technique using three-dimensional reconstruction images, classification of temporal bone pneumatization was performed using various reference structures on axial images to determine whether significant differences in the volume of temporal bone air cells could be found between the groups. Results: When the sigmoid sinus at the level of the malleoincudal complex was used in the classification, there were statistically significant differences between the groups that correlated with the entire volume of the temporal bone. Grouping based on the labyrinth and the ascending carotid artery showed insignificant differences in volume. Furthermore, there was no significant correlation between the cross-sectional area of the antrum and the entire volume of the temporal bone. Conclusion: The degree of pneumatization of temporal bone can be estimated easily by the evaluation of the air cells around the sigmoid sinus on axial CT images.

  4. A novel image-domain-based cone-beam computed tomography enhancement algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiang; Li Tianfang; Yang Yong; Heron, Dwight E; Huq, M Saiful, E-mail: lix@upmc.edu [Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232 (United States)

    2011-05-07

    Kilo-voltage (kV) cone-beam computed tomography (CBCT) plays an important role in image-guided radiotherapy. However, due to a large cone-beam angle, scatter effects significantly degrade the CBCT image quality and limit its clinical application. The goal of this study is to develop an image enhancement algorithm to reduce the low-frequency CBCT image artifacts, which are also called the bias field. The proposed algorithm is based on the hypothesis that image intensities of different types of materials in CBCT images are approximately globally uniform (in other words, a piecewise property). A maximum a posteriori probability framework was developed to estimate the bias field contribution from a given CBCT image. The performance of the proposed CBCT image enhancement method was tested using phantoms and clinical CBCT images. Compared to the original CBCT images, the corrected images using the proposed method achieved a more uniform intensity distribution within each tissue type and significantly reduced cupping and shading artifacts. In a head and a pelvic case, the proposed method reduced the Hounsfield unit (HU) errors within the region of interest from 300 HU to less than 60 HU. In a chest case, the HU errors were reduced from 460 HU to less than 110 HU. The proposed CBCT image enhancement algorithm demonstrated a promising result by the reduction of the scatter-induced low-frequency image artifacts commonly encountered in kV CBCT imaging.

  5. Low background high efficiency radiocesium detection system based on positron emission tomography technology

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi; Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, 1-1-20 Daiko-Minami, Higashi-ku, Nagoya 461-8673 (Japan)

    2013-09-15

    After the 2011 nuclear power plant accident at Fukushima, radiocesium contamination in food became a serious concern in Japan. However, low background and high efficiency radiocesium detectors are expensive and huge, including semiconductor germanium detectors. To solve this problem, we developed a radiocesium detector by employing positron emission tomography (PET) technology. Because {sup 134}Cs emits two gamma photons (795 and 605 keV) within 5 ps, they can selectively be measured with coincidence. Such major environmental gamma photons as {sup 40}K (1.46 MeV) are single photon emitters and a coincidence measurement reduces the detection limit of radiocesium detectors. We arranged eight sets of Bi{sub 4}Ge{sub 3}O{sub 12} (BGO) scintillation detectors in double rings (four for each ring) and measured the coincidence between these detectors using PET data acquisition system. A 50 × 50 × 30 mm BGO was optically coupled to a 2 in. square photomultiplier tube (PMT). By measuring the coincidence, we eliminated most single gamma photons from the energy distribution and only detected those from {sup 134}Cs at an average efficiency of 12%. The minimum detectable concentration of the system for the 100 s acquisition time is less than half of the food monitor requirements in Japan (25 Bq/kg). These results show that the developed radiocesium detector based on PET technology is promising to detect low level radiocesium.

  6. CdZnTe detector for computed tomography based on weighting potential

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Hyun Jong; Park, Chan Sun; Kim, Jung Su; Kim, Jung Min; Choi, Jong Hak; Kim, Ki Hyun [Korea University, Seoul (Korea, Republic of)

    2016-03-15

    Room-temperature operating CdZnTe(CZT) material is an innovative radiation detector which could reduce the patient dose to one-tenth level of conventional CT (Computed Tomography) and mammography system. The pixel and pixel pitch in the imaging device determine the conversion efficiency of incident Xor gamma-ray and the cross-talk of signal, that is, image quality of detector system. The weighting potential is the virtual potential determined by the position and geometry of electrode. The weighting potential obtained by computer-based simulation in solving Poisson equation with proper boundaries condition. The pixel was optimized by considering the CIE (charge induced efficiency) and the signal cross-talk in CT detector system. The pixel pitch was 1-mm and the detector thickness was 2-mm in the simulation. The optimized pixel size and inter-pixel distance for maximizing the CIE and minimizing the signal cross-talk is about 750 μm and 125 μm, respectively.

  7. Image-based iterative compensation of motion artifacts in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Schretter, Colas; Rose, Georg; Bertram, Matthias [Philips Research Europe, Weisshausstrasse 2, 52066 Aachen, Germany and Otto-von-Guericke University, Universitaetsplatz 2, 39016 Magdeburg (Germany); Otto-von-Guericke University, Universitaetsplatz 2, 39016 Magdeburg (Germany); Philips Research Europe, Weisshausstrasse 2, 52066 Aachen (Germany)

    2009-11-15

    Purpose: This article presents an iterative method for compensation of motion artifacts for slowly rotating computed tomography (CT) systems. Patient's motion introduces inconsistencies among projections and yields severe reconstruction artifacts for free-breathing acquisitions. Streaks and doubling of structures can appear and the resolution is limited by strong blurring. Methods: The rationale of the proposed motion compensation method is to iteratively correct the reconstructed image by first decomposing the perceived motion in projection space, then reconstructing the motion artifacts in image space, and finally subtracting the artifacts from an initial image. The initial image is reconstructed from the acquired data and might contain motion blur artifacts but, nevertheless, is considered as a reference for estimating the reconstruction artifacts. Results: Qualitative and quantitative figures are shown for experiments based on numerically simulated projections of a sequence of clinical images resulting from a respiratory-gated helical CT acquisition. The border of the diaphragm becomes progressively sharper and the contrast improves for small structures in the lungs. Conclusions: The originality of the technique stems from the fact that the patient motion is not explicitly estimated but the motion artifacts are reconstructed in image space. This approach could provide sharp static anatomical images on interventional C-arm systems or on slowly rotating X-ray equipments in radiotherapy.

  8. Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema.

    Science.gov (United States)

    Chiu, Stephanie J; Allingham, Michael J; Mettu, Priyatham S; Cousins, Scott W; Izatt, Joseph A; Farsiu, Sina

    2015-04-01

    We present a fully automatic algorithm to identify fluid-filled regions and seven retinal layers on spectral domain optical coherence tomography images of eyes with diabetic macular edema (DME). To achieve this, we developed a kernel regression (KR)-based classification method to estimate fluid and retinal layer positions. We then used these classification estimates as a guide to more accurately segment the retinal layer boundaries using our previously described graph theory and dynamic programming (GTDP) framework. We validated our algorithm on 110 B-scans from ten patients with severe DME pathology, showing an overall mean Dice coefficient of 0.78 when comparing our KR + GTDP algorithm to an expert grader. This is comparable to the inter-observer Dice coefficient of 0.79. The entire data set is available online, including our automatic and manual segmentation results. To the best of our knowledge, this is the first validated, fully-automated, seven-layer and fluid segmentation method which has been applied to real-world images containing severe DME.

  9. The application of a priori structural information based regularization in image reconstruction in magnetic induction tomography

    Science.gov (United States)

    Dekdouk, B.; Ktistis, C.; Yin, W.; Armitage, D. W.; Peyton, A. J.

    2010-04-01

    Magnetic induction tomography (MIT) is a non-invasive contactless modality that could be capable of imaging the conductivity distribution of biological tissues. In this paper we consider the possibility of using absolute MIT voltage measurements for monitoring the progress of a peripheral hemorrhagic stroke in a human brain. The pathology is modelled as a local blood accumulation in the white matter. The solution of the MIT inverse problem is nonlinear and ill-posed and hence requires the use of a regularisation method. In this paper, we describe the construction and present the performance of a regularisation matrix based on a priori structural information of the head tissues obtained from a very recent MRI scan. The method takes the MRI scan as an initial state of the stroke and constructs a learning set containing the possible conductivity distributions of the current state of the stroke. This data is used to calculate an approximation of the covariance matrix and then a subspace is constructed using principal component analysis (PCA). It is shown by simulations the method is capable of producing a representative reconstruction of a stroke compared to smoothing Tikhonov regularization in a simplified model of the head.

  10. Microwave-induced thermal acoustic tomography for breast tumor based on compressive sensing.

    Science.gov (United States)

    Zhu, Xiaozhang; Zhao, Zhiqin; Wang, Jinguo; Song, Jian; Liu, Qing Huo

    2013-05-01

    Microwave-induced thermal acoustic tomography (MITAT) is an innovative technique to image biomedical tissues based on their electric properties. It has the advantages of both high contrast and high spatial resolution. Image reconstruction method in MITAT is always a critical issue. In this paper, a CS-MITAT (CS: compressive sensing) imaging method is proposed. Compressive sensing (CS) is a recently developed sparse signal representation and analysis framework which handles medical imaging measurements using low sampling rate or increasing imaging quality. The CS-MITAT imaging method applies CS theory to the MITAT for breast tumor imaging. In this method, an over-complete dictionary is established to make sparse measurements in the spatial domain. This treatment greatly saves measurement time. Simulations and experiments with real breast tumor tissues demonstrate the feasibility and effectiveness of the method. Compared with conventional time reversal mirror method which has been used in MITAT research, CS-MITAT provides the same peak signal-to-noise ratio imaging quality by using significantly fewer acoustic sensor positions or scanning times.

  11. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718.

    Science.gov (United States)

    Viskari, L; Stiller, K

    2011-05-01

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening γ' Ni(3)(Al,Nb) precipitates on the obtained results is discussed.

  12. NUMERICAL SIMULATION OF ELECTRICAL IMPEDANCE TOMOGRAPHY PROBLEM AND STUDY OF APPROACH BASED ON FINITE VOLUME METHOD

    Directory of Open Access Journals (Sweden)

    Ye. S. Sherina

    2014-01-01

    Full Text Available This research has been aimed to carry out a study of peculiarities that arise in a numerical simulation of the electrical impedance tomography (EIT problem. Static EIT image reconstruction is sensitive to a measurement noise and approximation error. A special consideration has been given to reducing of the approximation error, which originates from numerical implementation drawbacks. This paper presents in detail two numerical approaches for solving EIT forward problem. The finite volume method (FVM on unstructured triangular mesh is introduced. In order to compare this approach, the finite element (FEM based forward solver was implemented, which has gained the most popularity among researchers. The calculated potential distribution with the assumed initial conductivity distribution has been compared to the analytical solution of a test Neumann boundary problem and to the results of problem simulation by means of ANSYS FLUENT commercial software. Two approaches to linearized EIT image reconstruction are discussed. Reconstruction of the conductivity distribution is an ill-posed problem, typically requiring a large amount of computation and resolved by minimization techniques. The objective function to be minimized is constructed of measured voltage and calculated boundary voltage on the electrodes. A classical modified Newton type iterative method and the stochastic differential evolution method are employed. A software package has been developed for the problem under investigation. Numerical tests were conducted on simulated data. The obtained results could be helpful to researches tackling the hardware and software issues for medical applications of EIT.

  13. Fourier optics analysis of phase-mask-based path-length-multiplexed optical coherence tomography.

    Science.gov (United States)

    Yin, Biwei; Dwelle, Jordan; Wang, Bingqing; Wang, Tianyi; Feldman, Marc D; Rylander, Henry G; Milner, Thomas E

    2015-11-01

    Optical coherence tomography (OCT) is an imaging technique that constructs a depth-resolved image by measuring the optical path-length difference between broadband light backscattered from a sample and a reference surface. For many OCT sample arm optical configurations, sample illumination and backscattered light detection share a common path. When a phase mask is placed in the sample path, features in the detected signal are observed, which suggests that an analysis of a generic common path OCT imaging system is warranted. In this study, we present a Fourier optics analysis using a Fresnel diffraction approximation of an OCT system with a path-length-multiplexing element (PME) inserted in the sample arm optics. The analysis may be generalized for most phase-mask-based OCT systems. A radial-angle-diverse PME is analyzed in detail, and the point spread function, coherent transfer function, sensitivity of backscattering angular diversity detection, and signal formation in terms of sample spatial frequency are simulated and discussed. The analysis reveals important imaging features and application limitations of OCT imaging systems with a phase mask in the sample path optics.

  14. Use of a Computed Tomography Based Approach to Validate Noninvasive Devices to Measure Rotational Knee Laxity.

    Science.gov (United States)

    Neumann, Simon; Maas, Stefan; Waldmann, Danièle; Ricci, Pierre-Louis; Zürbes, Arno; Arnoux, Pierre-Jean; Walter, Frédéric; Kelm, Jens

    2015-01-01

    The purpose of this study is to validate a noninvasive rotational knee laxity measuring device called "Rotameter P2" with an approach based on Computed Tomography (CT). This CT-approach using X-rays is hence invasive and can be regarded as a precise reference method that may also be applied to similar devices. An error due to imperfect femur fixation was observed but can be neglected for small torques. The most significant estimation error is due to the unavoidable soft tissues rotation and hence flexibility in the measurement chain. The error increases with the applied torque. The assessment showed that the rotational knee angle measured with the Rotameter is still overestimated because of thigh and femur displacement, soft tissues deformation, and measurement artefacts adding up to a maximum of 285% error at +15 Nm for the Internal Rotation of female volunteers. This may be questioned if such noninvasive devices for measuring the Tibia-Femoral Rotation (TFR) can help diagnosing knee pathologies and investigate ligament reconstructive surgery.

  15. FEM-based simulation of a fluorescence tomography experiment using anatomical MR images

    Science.gov (United States)

    Ren, Wuwei; Elmer, Andreas; Augath, Mark-Aurel; Rudin, Markus

    2016-03-01

    A hybrid system combining fluorescence molecular tomography (FMT) and magnetic resonance imaging (MRI) is attractive for preclinical imaging as it allows fusion of molecular information derived from FMT and anatomical reference data derived from MRI. We have previously developed such a system and demonstrated its performance in biological applications. For reconstruction slab geometry with homogeneous optical parameters was assumed, which led to undesirable artifacts. In order to exploit the power of the hybrid system, the use of MRI derived anatomical information, as a constraint for FMT reconstruction, appears logical. Heterogeneity of tissues and irregular surface derived from MRI can be accounted for by generating a mesh using the finite element method (FEM), and attributing optical parameters to individual mesh points. We have established a forward simulation tool based on TOAST++ to mimic an FMT experiment. MRI images were recorded on a 9.4T MR scanner using a T1-weighted pulse sequence. The voxelized dataset was processed by iso2mesh to yield a 3D-mesh. Four steps of FMT simulation were included: 1) Assignment of optical properties, 2) Specification of boundary conditions and generation of 3) excitation and 4) emission maps. FEM-derived results were compared with those obtained using the analytical solution of Green's function and with experimental data with a single fluorescent inclusion in a silicon phantom. Once, the forward modeling method is properly validated it will be used as a central element of a reconstruction algorithm for analyzing data derived from a hybrid FMT/MRI setup.

  16. Detection and analysis of multi-dimensional pulse wave based on optical coherence tomography

    Science.gov (United States)

    Shen, Yihui; Li, Zhifang; Li, Hui; Chen, Haiyu

    2014-11-01

    Pulse diagnosis is an important method of traditional Chinese medicine (TCM). Doctors diagnose the patients' physiological and pathological statuses through the palpation of radial artery for radial artery pulse information. Optical coherence tomography (OCT) is an useful tool for medical optical research. Current conventional diagnostic devices only function as a pressure sensor to detect the pulse wave - which can just partially reflect the doctors feelings and lost large amounts of useful information. In this paper, the microscopic changes of the surface skin above radial artery had been studied in the form of images based on OCT. The deformation of surface skin in a cardiac cycle which is caused by arterial pulse is detected by OCT. The patient's pulse wave is calculated through image processing. It is found that it is good consistent with the result conducted by pulse analyzer. The real-time patient's physiological and pathological statuses can be monitored. This research provides a kind of new method for pulse diagnosis of traditional Chinese medicine.

  17. Fractal analysis of granular ore media based on computed tomography image processing

    Institute of Scientific and Technical Information of China (English)

    WU Ai-xiang; YANG Bao-hua; ZHOU Xu

    2008-01-01

    The cross-sectional images of nine groups of ore samples were obtained by X-ray computed tomography(CT) scanner.Based on CT image analysis,the fractal dimensions of solid matrix,pore space and matrix/pore interface of each sample were measured by using box counting method.The correlation of the three fractal dimensions with particle size,porosity,and seepage coefficient was investigated.The results show that for all images of these samples,the matrix phase has the highest dimension,followed by the pore phase,and the dimension of matrix-pore interface has the smallest value; the dimensions of matrix phase and matrix-pore interface are negatively and linearly correlated with porosity while the dimension of pore phase relates positively and linearly with porosity; the fractal dimension of matrix-pore interface relates negatively and linearly with seepage coefficient.Larger fractal dimension of matrix/pore interface indicates more irregular complicated channels for solution flow,resulting in low permeability.

  18. Fast Microwave-Induced Thermoacoustic Tomography Based on Multi-Element Phase-Controlled Focus Technique

    Institute of Scientific and Technical Information of China (English)

    ZENG Lü-Ming; XING Da; GU Huai-Min; YANG Di-Wu; YANG Si-Hua; XIANG Liang-Zhong

    2006-01-01

    @@ We develop a fast microwave-induced thermoacoustic tomography system based on a 320-element phase-controlled focus linear transducer array. A 1.2-GHz microwave generator transmits microwave with a pulse width of 0.5 μs and an incident energy density of 0.45 m J/cm2, and the microwave energy is delivered by a rectangular waveguide with a cross section of (80.01 ± 0.02) × 10-4 m2. Compared to single transducer collection, the system with the multi-element linear transducer array can eliminate the mechanical rotation of the transducer, hence can effectively reduce the image blurring and improve the image resolution. Using a phase-controlled focus technique to collect thermoacoustic signals, the data need not be averaged because of a high signal-to-noise ratio, resulting in a total data acquisition time of less than 5s. The system thus provides a rapid and reliable approach to thermoacoustic imaging, which can potentially be developed as a powerful diagnostic tool for early-stage breast caners.

  19. FPGA-Based Front-End Electronics for Positron Emission Tomography.

    Science.gov (United States)

    Haselman, Michael; Dewitt, Don; McDougald, Wendy; Lewellen, Thomas K; Miyaoka, Robert; Hauck, Scott

    2009-02-22

    Modern Field Programmable Gate Arrays (FPGAs) are capable of performing complex discrete signal processing algorithms with clock rates above 100MHz. This combined with FPGA's low expense, ease of use, and selected dedicated hardware make them an ideal technology for a data acquisition system for positron emission tomography (PET) scanners. Our laboratory is producing a high-resolution, small-animal PET scanner that utilizes FPGAs as the core of the front-end electronics. For this next generation scanner, functions that are typically performed in dedicated circuits, or offline, are being migrated to the FPGA. This will not only simplify the electronics, but the features of modern FPGAs can be utilizes to add significant signal processing power to produce higher resolution images. In this paper two such processes, sub-clock rate pulse timing and event localization, will be discussed in detail. We show that timing performed in the FPGA can achieve a resolution that is suitable for small-animal scanners, and will outperform the analog version given a low enough sampling period for the ADC. We will also show that the position of events in the scanner can be determined in real time using a statistical positioning based algorithm.

  20. Digital-signal-processor-based dynamic imaging system for optical tomography.

    Science.gov (United States)

    Lasker, Joseph M; Masciotti, James M; Schoenecker, Matthew; Schmitz, Christoph H; Hielscher, Andreas H

    2007-08-01

    In this article, we introduce a dynamic optical tomography system that is, unlike currently available analog instrumentation, based on digital data acquisition and filtering techniques. At the core of this continuous wave instrument is a digital signal processor (DSP) that collects, collates, processes, and filters the digitized data set. The processor is also responsible for managing system timing and the imaging routines which can acquire real-time data at rates as high as 150 Hz. Many of the synchronously timed processes are controlled by a complex programmable logic device that is also used in conjunction with the DSP to orchestrate data flow. The operation of the system is implemented through a comprehensive graphical user interface designed with LABVIEW software which integrates automated calibration, data acquisition, data organization, and signal postprocessing. Performance analysis demonstrates very low system noise (approximately 1 pW rms noise equivalent power), excellent signal precision (<0.04%-0.2%) and long term system stability (<1% over 40 min). A large dynamic range (approximately 190 dB) accommodates a wide scope of measurement geometries and tissue types. First experiments on tissue phantoms show that dynamic behavior is accurately captured and spatial location can be correctly tracked using this system.

  1. A novel optical coherence tomography-based micro-indentation technique for mechanical characterization of hydrogels.

    Science.gov (United States)

    Yang, Ying; Bagnaninchi, Pierre O; Ahearne, Mark; Wang, Ruikang K; Liu, Kuo-Kang

    2007-12-22

    Depth-sensing micro-indentation has been well recognized as a powerful tool for characterizing mechanical properties of solid materials due to its non-destructive approach. Based on the depth-sensing principle, we have developed a new indentation method combined with a high-resolution imaging technique, optical coherence tomography, which can accurately measure the deformation of hydrogels under a spherical indenter at constant force. The Hertz contact theory has been applied for quantitatively correlating the indentation force and the deformation with the mechanical properties of the materials. Young's moduli of hydrogels estimated by the new method are comparable with those measured by conventional depth-sensing micro-indentation. The advantages of this new method include its capability to characterize mechanical properties of bulk soft materials and amenability to perform creeping tests. More importantly, the measurement can be performed under sterile conditions allowing non-destructive, in situ and real-time investigations on the changes in mechanical properties of soft materials (e.g. hydrogel). This unique character can be applied for various biomechanical investigations such as monitoring reconstruction of engineered tissues.

  2. High-resolution handheld rigid endomicroscope based on full-field optical coherence tomography

    Science.gov (United States)

    Benoit a la Guillaume, Emilie; Martins, Franck; Boccara, Claude; Harms, Fabrice

    2016-02-01

    Full-field optical coherence tomography (FF-OCT) is a powerful tool for nondestructive assessment of biological tissue, i.e., for the structural examination of tissue in depth at a cellular resolution. Mostly known as a microscopy device for ex vivo analysis, FF-OCT has also been adapted to endoscopy setups since it shows good potential for in situ cancer diagnosis and biopsy guidance. Nevertheless, all the attempts to perform endoscopic FF-OCT imaging did not go beyond lab setups. We describe here, to the best of our knowledge, the first handheld FF-OCT endoscope based on a tandem interferometry assembly using incoherent illumination. A common-path passive imaging interferometer at the tip of an optical probe makes it robust and insensitive to environmental perturbations, and a low finesse Fabry-Perot processing interferometer guarantees a compact system. A good resolution (2.7 μm transverse and 6 μm axial) is maintained through the long distance, small diameter relay optics of the probe, and a good signal-to-noise ratio is achieved in a limited 100 ms acquisition time. High-resolution images and a movie of a rat brain slice have been recorded by moving the contact endoscope over the surface of the sample, allowing for tissue microscopic exploration at 20 μm under the surface. These promising ex vivo results open new perspectives for in vivo imaging of biological tissue, in particular, in the field of cancer and surgical margin assessment.

  3. Observations and Measurements of Planktonic Bioluminescence in and Around a Milky Sea

    Science.gov (United States)

    1988-03-01

    produced by plankton subjected to mechanical stimulation) can be observed from breaking wave crests and swimming shoals of fish . The Arabian Sea is...identification: growth at 4 ’C, growth at 35 ’C, ainylase, lipase , gelatinase. growth on maltose, cellobiose, gluconate, BIOLUMINESCENCE IN MILKY SEA 57...neofluar oil -immersion objective. BIOLUMINESCENCE MEASUREMENTS Surface-water bioluminescence Surface-water bioluminescence was measured continuously during

  4. Surface Wave Tomography with Spatially Varying Smoothing Based on Continuous Model Regionalization

    Science.gov (United States)

    Liu, Chuanming; Yao, Huajian

    2017-03-01

    Surface wave tomography based on continuous regionalization of model parameters is widely used to invert for 2-D phase or group velocity maps. An inevitable problem is that the distribution of ray paths is far from homogeneous due to the spatially uneven distribution of stations and seismic events, which often affects the spatial resolution of the tomographic model. We present an improved tomographic method with a spatially varying smoothing scheme that is based on the continuous regionalization approach. The smoothness of the inverted model is constrained by the Gaussian a priori model covariance function with spatially varying correlation lengths based on ray path density. In addition, a two-step inversion procedure is used to suppress the effects of data outliers on tomographic models. Both synthetic and real data are used to evaluate this newly developed tomographic algorithm. In the synthetic tests, when the contrived model has different scales of anomalies but with uneven ray path distribution, we compare the performance of our spatially varying smoothing method with the traditional inversion method, and show that the new method is capable of improving the recovery in regions of dense ray sampling. For real data applications, the resulting phase velocity maps of Rayleigh waves in SE Tibet produced using the spatially varying smoothing method show similar features to the results with the traditional method. However, the new results contain more detailed structures and appears to better resolve the amplitude of anomalies. From both synthetic and real data tests we demonstrate that our new approach is useful to achieve spatially varying resolution when used in regions with heterogeneous ray path distribution.

  5. Simple area-based measurement for multidetector computed tomography to predict left ventricular size

    Energy Technology Data Exchange (ETDEWEB)

    Schlett, Christopher L.; Kwait, Dylan C.; Mahabadi, Amir A.; Hoffmann, Udo [Massachusetts General Hospital, and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); Bamberg, Fabian [Massachusetts General Hospital, and Harvard Medical School, Cardiac MR PET CT Program, Boston, MA (United States); University Hospitals Munich, and Ludwig Maximilians University, Department of Clinical Radiology, Munich (Germany); O' Donnell, Christopher J. [Lung and Blood Institute' s Framingham Heart Study, National Heart, Framingham (United States); Fox, Caroline S. [Lung and Blood Institute' s Framingham Heart Study, National Heart, Framingham (United States); Brigham and Women' s Hospital, and Harvard Medical School, Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, Boston, MA (United States)

    2010-07-15

    Measures of left ventricular (LV) mass and dimensions are independent predictors of morbidity and mortality. We determined whether an axial area-based method by computed tomography (CT) provides an accurate estimate of LV mass and volume. A total of 45 subjects (49% female, 56.0 {+-} 12 years) with a wide range of LV geometry underwent contrast-enhanced 64-slice CT. LV mass and volume were derived from 3D data. 2D images were analysed to determine LV area, the direct transverse cardiac diameter (dTCD) and the cardiothoracic ratio (CTR). Furthermore, feasibility was confirmed in 100 Framingham Offspring Cohort subjects. 2D measures of LV area, dTCD and CTR were 47.3 {+-} 8 cm{sup 2}, 14.7 {+-} 1.5 cm and 0.54 {+-} 0.05, respectively. 3D-derived LV volume (end-diastolic) and mass were 148.9 {+-} 45 cm{sup 3} and 124.2 {+-} 34 g, respectively. Excellent inter- and intra-observer agreement were shown for 2D LV area measurements (both intraclass correlation coefficients (ICC) = 0.99, p < 0.0001) and could be confirmed on non-contrast CT. The measured 2D LV area was highly correlated to LV volume, mass and size (r = 0.68; r = 0.73; r = 0.82; all p < 0.0001, respectively). On the other hand, CTR was not correlated to LV volume, mass, size or 2D LV area (all p > 0.27). Compared with traditionally used CTR, LV size can be accurately predicted based on a simple and highly reproducible axial LV area-based measurement. (orig.)

  6. Detection of occult disease in breast cancer using fluorodeoxyglucose camera-based positron emission tomography.

    Science.gov (United States)

    Pecking, A P; Mechelany-Corone, C; Bertrand-Kermorgant, F; Alberini, J L; Floiras, J L; Goupil, A; Pichon, M F

    2001-10-01

    An isolated increase of blood tumor marker CA 15.3 in breast cancer is considered a sensitive indicator for occult metastatic disease but by itself is not sufficient for initiating therapeutic intervention. We investigated the potential of camera-based positron emission tomography (PET) imaging using [18F]-fluorodeoxyglucose (FDG) to detect clinically occult recurrences in 132 female patients (age, 35-69 years) treated for breast cancer, all presenting with an isolated increase in blood tumor marker CA 15.3 without any other evidence of metastatic disease. FDG results were correlated to pathology results or to a sequentially guided conventional imaging method. One hundred nineteen patients were eligible for correlations. Positive FDG scans were obtained for 106 patients, including 89 with a single lesion and 17 with 2 or more lesion. There were 92 true-positive and 14 false-positive cases, 10 of which became true positive within 1 year. Among the 13 negative cases, 7 were false negative and 6 were true negative. Camera-based PET using FDG has successfully identified clinically occult disease with an overall sensitivity of 93.6% and a positive predictive value of 96.2%. The smallest detected size was 6 mm for a lymph node metastasis (tumor to nontumor ratio, 4:2). FDG camera-based PET localized tumors in 85.7% of cases suspected for clinically occult metastatic disease on the basis of a significant increase in blood tumor marker. A positive FDG scan associated with an elevated CA 15.3 level is most consistent with metastatic relapse of breast cancer.

  7. Optimization of propagation-based x-ray phase-contrast tomography for breast cancer imaging

    Science.gov (United States)

    Baran, P.; Pacile, S.; Nesterets, Y. I.; Mayo, S. C.; Dullin, C.; Dreossi, D.; Arfelli, F.; Thompson, D.; Lockie, D.; McCormack, M.; Taba, S. T.; Brun, F.; Pinamonti, M.; Nickson, C.; Hall, C.; Dimmock, M.; Zanconati, F.; Cholewa, M.; Quiney, H.; Brennan, P. C.; Tromba, G.; Gureyev, T. E.

    2017-03-01

    The aim of this study was to optimise the experimental protocol and data analysis for in-vivo breast cancer x-ray imaging. Results are presented of the experiment at the SYRMEP beamline of Elettra Synchrotron using the propagation-based phase-contrast mammographic tomography method, which incorporates not only absorption, but also x-ray phase information. In this study the images of breast tissue samples, of a size corresponding to a full human breast, with radiologically acceptable x-ray doses were obtained, and the degree of improvement of the image quality (from the diagnostic point of view) achievable using propagation-based phase-contrast image acquisition protocols with proper incorporation of x-ray phase retrieval into the reconstruction pipeline was investigated. Parameters such as the x-ray energy, sample-to-detector distance and data processing methods were tested, evaluated and optimized with respect to the estimated diagnostic value using a mastectomy sample with a malignant lesion. The results of quantitative evaluation of images were obtained by means of radiological assessment carried out by 13 experienced specialists. A comparative analysis was performed between the x-ray and the histological images of the specimen. The results of the analysis indicate that, within the investigated range of parameters, both the objective image quality characteristics and the subjective radiological scores of propagation-based phase-contrast images of breast tissues monotonically increase with the strength of phase contrast which in turn is directly proportional to the product of the radiation wavelength and the sample-to-detector distance. The outcomes of this study serve to define the practical imaging conditions and the CT reconstruction procedures appropriate for low-dose phase-contrast mammographic imaging of live patients at specially designed synchrotron beamlines.

  8. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Park, Peter C. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Schreibmann, Eduard; Roper, Justin; Elder, Eric; Crocker, Ian [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia (United States); Fox, Tim [Varian Medical Systems, Palo Alto, California (United States); Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dong, Lei [Scripps Proton Therapy Center, San Diego, California (United States); Dhabaan, Anees, E-mail: anees.dhabaan@emory.edu [Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, Georgia (United States)

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR. Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.

  9. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji [Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2015-03-15

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  10. Micro-modulated luminescence tomography

    CERN Document Server

    Cong, Wenxiang; Wang, Chao; Wang, Ge

    2013-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to light scattering. X-ray microscopy can resolve spatial details of few microns deeply inside a sample but the contrast resolution is still inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and the subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we suggest a micro-modulated luminescence tomography (MLT) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonst...

  11. Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus

    NARCIS (Netherlands)

    Daghighi, Seyedmojtaba; Sjollema, Jelmer; Harapanahalli, Akshay; Dijkstra, Rene J. B.; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in

  12. Seasonal Changes of Bioluminescence in Photosynthetic and Heterotrophic Dinoflagellates at San Clemente Island

    Science.gov (United States)

    2012-02-01

    2 Seasonal Changes of Bioluminescence in Photosynthetic and Heterotrophic Dinoflagellates at San Clemente Island David Lapota Space and Naval...Warfare Systems Center, Pacific USA 1. Introduction A significant portion of bioluminescence in all oceans is produced by dinoflagellates . Numerous...studies have documented the ubiquitous distribution of bioluminescent dinoflagellates in near surface waters (Seliger et al., 1961; Yentsch and Laird

  13. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    CERN Document Server

    Cortesi, M; Adams, R; Dangendorf, V; Prasser, H -M

    2012-01-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, cool...

  14. Concept of a novel fast neutron imaging detector based on THGEM for fan-beam tomography applications

    Science.gov (United States)

    Cortesi, M.; Zboray, R.; Adams, R.; Dangendorf, V.; Prasser, H.-M.

    2012-02-01

    The conceptual design and operational principle of a novel high-efficiency, fast neutron imaging detector based on THGEM, intended for future fan-beam transmission tomography applications, is described. We report on a feasibility study based on theoretical modeling and computer simulations of a possible detector configuration prototype. In particular we discuss results regarding the optimization of detector geometry, estimation of its general performance, and expected imaging quality: it has been estimated that detection efficiency of around 5-8% can be achieved for 2.5 MeV neutrons; spatial resolution is around one millimeter with no substantial degradation due to scattering effects. The foreseen applications of the imaging system are neutron tomography in non-destructive testing for the nuclear energy industry, including examination of spent nuclear fuel bundles, detection of explosives or drugs, as well as investigation of thermal hydraulics phenomena (e.g., two-phase flow, heat transfer, phase change, coolant dynamics, and liquid metal flow).

  15. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    Directory of Open Access Journals (Sweden)

    Steinman Lawrence

    2008-02-01

    Full Text Available Abstract Background Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes. Methods Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc. Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis. Results Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease. Conclusion These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.

  16. Detection of DNA adducts by bioluminescence

    Science.gov (United States)

    Xu, Shunqing; Tan, Xianglin; Yao, Qunfeng; He, Min; Zhou, Yikai; Chen, Jian

    2001-09-01

    Luminescent assay for detection ATP is very sensitive with limitation of 10-17 moles. ATP using styrene oxide as a model carcinogen we currently apply a luminescence technique to detect the very low levels of carcinogen-DNA adducts in vitro and in vivo. The bioluminescent assay of DNA adducts entails three consecutive steps: digestion of modified DNA to adducted dinucleoside monophosphate and normal nucleotide are hydrolyzed to nucleosides (N) by nuclease P1 and prostatic acid phosphomonesterase (PAP); incorporation of (gamma) -P of ATP into normal nucleoside(N); detection of consumption of ATP by luminescence. This assay does not require separate manipulation because of the selective property of nuclease P1. One fmol of carcinogen- DNA adducts was detected by luminescent assay. A good correlation between results of luminescent assay and 32P-postlabeling procedures has been observed. We detect 1 adduct in 108 nucleotides for 10(mu) g DNA sample. The procedures of luminescent method is very simple and low- cost. IT appears applicable to the ultra sensitive detection of low levels of DNA adducts without radioactive isotope.

  17. 3D noninvasive ultrasound Joule heat tomography based on acousto-electric effect using unipolar pulses: a simulation study

    OpenAIRE

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2012-01-01

    Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a nov...

  18. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography (Conference Presentation)

    Science.gov (United States)

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2016-03-01

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time. In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. We use a modified pump-probe system (pulses with duration of ~0.5 ps and 75 fs, respectively) with interferometric detection in the Fourier-domain to demonstrate that the dispersive measurements are more robust to noise (e.g., laser noise) compared to conventional amplitude measurements, which in turn permits facile spectral and spatial multiplexing. Results show that it is possible to assess a broadband dispersion spectrum (currently limited to ~400 cm-1) with a single laser shot or spectrometer acquisition (20-50 µs). For molecular imaging with broadband spectral information, we achieve spatial pixel rates of 2.5 kHz, and will discuss how this can be further improved to 20-50 kHz. We also combine SRS with optical coherence tomography (OCT) (molecular and structural information are rendered from the same data), which enables axial multiplexing by coherence gating and paves the way for volumetric biochemical imaging. The approach is tested on a thin water-and-oil phantom, a thick scattering polystyrene bead phantom, and thick freshly excised human adipose tissue. Finally, we will outline other opportunities for spatial multiplexing using wide-field holography and spectroscopic-OCT, which would massively parallelize the spatial and spectral information. The combination of dispersion-based SRS and phase imaging has the potential to enable faster wide-area and volumetric molecular imaging. Such methods would be valuable in a clinical setting for many applications.

  19. A promising limited angular computed tomography reconstruction via segmentation based regional enhancement and total variation minimization

    Science.gov (United States)

    Zhang, Wenkun; Zhang, Hanming; Li, Lei; Wang, Linyuan; Cai, Ailong; Li, Zhongguo; Yan, Bin

    2016-08-01

    X-ray computed tomography (CT) is a powerful and common inspection technique used for the industrial non-destructive testing. However, large-sized and heavily absorbing objects cause the formation of artifacts because of either the lack of specimen penetration in specific directions or the acquisition of data from only a limited angular range of views. Although the sparse optimization-based methods, such as the total variation (TV) minimization method, can suppress artifacts to some extent, reconstructing the images such that they converge to accurate values remains difficult because of the deficiency in continuous angular data and inconsistency in the projections. To address this problem, we use the idea of regional enhancement of the true values and suppression of the illusory artifacts outside the region to develop an efficient iterative algorithm. This algorithm is based on the combination of regional enhancement of the true values and TV minimization for the limited angular reconstruction. In this algorithm, the segmentation approach is introduced to distinguish the regions of different image knowledge and generate the support mask of the image. A new regularization term, which contains the support knowledge to enhance the true values of the image, is incorporated into the objective function. Then, the proposed optimization model is solved by variable splitting and the alternating direction method efficiently. A compensation approach is also designed to extract useful information from the initial projections and thus reduce false segmentation result and correct the segmentation support and the segmented image. The results obtained from comparing both simulation studies and real CT data set reconstructions indicate that the proposed algorithm generates a more accurate image than do the other reconstruction methods. The experimental results show that this algorithm can produce high-quality reconstructed images for the limited angular reconstruction and suppress

  20. Studying primate carpal kinematics in three dimensions using a computed-tomography-based markerless registration method.

    Science.gov (United States)

    Orr, Caley M; Leventhal, Evan L; Chivers, Spencer F; Marzke, Mary W; Wolfe, Scott W; Crisco, Joseph J

    2010-04-01

    The functional morphology of the wrist pertains to a number of important questions in primate evolutionary biology, including that of hominins. Reconstructing locomotor and manipulative capabilities of the wrist in extinct species requires a detailed understanding of wrist biomechanics in extant primates and the relationship between carpal form and function. The kinematics of carpal movement, and the role individual joints play in providing mobility and stability of the wrist, is central to such efforts. However, there have been few detailed biomechanical studies of the nonhuman primate wrist. This is largely because of the complexity of wrist morphology and the considerable technical challenges involved in tracking the movements of the many small bones that compose the carpus. The purpose of this article is to introduce and outline a method adapted from human clinical studies of three-dimensional (3D) carpal kinematics for use in a comparative context. The method employs computed tomography of primate cadaver forelimbs in increments throughout the wrist's range of motion, coupled with markerless registration of 3D polygon models based on inertial properties of each bone. The 3D kinematic principles involved in extracting motion axis parameters that describe bone movement are reviewed. In addition, a set of anatomically based coordinate systems embedded in the radius, capitate, hamate, lunate, and scaphoid is presented for the benefit of other primate functional morphologists interested in studying carpal kinematics. Finally, a brief demonstration of how the application of these methods can elucidate the mechanics of the wrist in primates illustrates the closer-packing of carpals in chimpanzees than in orangutans, which may help to stabilize the midcarpus and produce a more rigid wrist beneficial for efficient hand posturing during knuckle-walking locomotion.

  1. Far-red fluorescence gene reporter tomography for determination of placement and viability of cell-based gene therapies.

    Science.gov (United States)

    Lu, Yujie; Darne, Chinmay D; Tan, I-Chih; Zhu, Banghe; Hall, Mary A; Lazard, Zawaunyka W; Davis, Alan R; Simpson, Lashan; Sevick-Muraca, Eva M; Olmsted-Davis, Elizabeth A

    2013-10-01

    Non-invasive injectable cellular therapeutic strategies based on sustained delivery of physiological levels of BMP-2 for spinal fusion are emerging as promising alternatives, which could provide sufficient fusion without the associated surgical risks. However, these injectable therapies are dependent on bone formation occurring only at the specific target region. In this study, we developed and deployed fluorescence gene reporter tomography (FGRT) to provide information on in vivo cell localization and viability. This information is sought to confirm the ideal placement of the materials with respect to the area where early bone reaction is required, ultimately providing three dimensional data about the future fusion. However, because almost all conventional fluorescence gene reporters require visible excitation wavelengths, current in vivo imaging of fluorescent proteins is limited by high tissue absorption and confounding autofluorescence. We previously administered fibroblasts engineered to produce BMP-2, but is difficult to determine 3-D information of placement prior to bone formation. Herein we used the far-red fluorescence gene reporter, IFP1.4 to report the position and viability of fibroblasts and developed 3-D tomography to provide placement information. A custom small animal, far-red fluorescence tomography system integrated into a commercial CT scanner was used to assess IFP1.4 fluorescence and to demark 3-D placement of encapsulated fibroblasts with respect to the vertebrae and early bone formation as assessed from CT. The results from three experiments showed that the placement of the materials within the spine could be detected. This work shows that in vivo fluorescence gene reporter tomography of cell-based gene therapy is feasible and could help guide cell-based therapies in preclinical models.

  2. The Expanding Toolbox of In Vivo Bioluminescent Imaging

    Science.gov (United States)

    Xu, Tingting; Close, Dan; Handagama, Winode; Marr, Enolia; Sayler, Gary; Ripp, Steven

    2016-01-01

    In vivo bioluminescent imaging (BLI) permits the visualization of engineered bioluminescence from living cells and tissues to provide a unique perspective toward the understanding of biological processes as they occur within the framework of an authentic in vivo environment. The toolbox of in vivo BLI includes an inventory of luciferase compounds capable of generating bioluminescent light signals along with sophisticated and powerful instrumentation designed to detect and quantify these light signals non-invasively as they emit from the living subject. The information acquired reveals the dynamics of a wide range of biological functions that play key roles in the physiological and pathological control of disease and its therapeutic management. This mini review provides an overview of the tools and applications central to the evolution of in vivo BLI as a core technology in the preclinical imaging disciplines. PMID:27446798

  3. In Vivo Bioluminescence Imaging for Longitudinal Monitoring of Inflammation in Animal Models of Uveitis

    Science.gov (United States)

    Gutowski, Michal B.; Wilson, Leslie; Van Gelder, Russell N.; Pepple, Kathryn L.

    2017-01-01

    Purpose We develop a quantitative bioluminescence assay for in vivo longitudinal monitoring of inflammation in animal models of uveitis. Methods Three models of experimental uveitis were induced in C57BL/6 albino mice: primed mycobacterial uveitis (PMU), endotoxin-induced uveitis (EIU), and experimental autoimmune uveitis (EAU). Intraperitoneal injection of luminol sodium salt, which emits light when oxidized, provided the bioluminescence substrate. Bioluminescence images were captured by a PerkinElmer In Vivo Imaging System (IVIS) Spectrum and total bioluminescence was analyzed using Living Image software. Bioluminescence on day zero was compared to bioluminescence on the day of peak inflammation for each model. Longitudinal bioluminescence imaging was performed in EIU and EAU. Results In the presence of luminol, intraocular inflammation generates detectable bioluminescence in three mouse models of uveitis. Peak bioluminescence in inflamed PMU eyes (1.46 × 105 photons/second [p/s]) was significantly increased over baseline (1.47 × 104 p/s, P = 0.01). Peak bioluminescence in inflamed EIU eyes (3.18 × 104 p/s) also was significantly increased over baseline (1.09 × 104 p/s, P = 0.04), and returned to near baseline levels by 48 hours. In EAU, there was a nonsignificant increase in bioluminescence at peak inflammation. Conclusions In vivo bioluminescence may be used as a noninvasive, quantitative measure of intraocular inflammation in animal models of uveitis. Primed mycobacterial uveitis and EIU are both acute models with robust anterior inflammation and demonstrated significant changes in bioluminescence corresponding with peak inflammation. Experimental autoimmune uveitis is a more indolent posterior uveitis and generated a more modest bioluminescent signal. In vivo imaging system bioluminescence is a nonlethal, quantifiable assay that can be used for monitoring inflammation in animal models of uveitis. PMID:28278321

  4. Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography

    DEFF Research Database (Denmark)

    Garde, Henrik; Staboulis, Stratos

    2016-01-01

    The inverse problem of electrical impedance tomography is severely ill-posed, meaning that, only limited information about the conductivity can in practice be recovered from boundary measurements of electric current and voltage. Recently it was shown that a simple monotonicity property of the rel......The inverse problem of electrical impedance tomography is severely ill-posed, meaning that, only limited information about the conductivity can in practice be recovered from boundary measurements of electric current and voltage. Recently it was shown that a simple monotonicity property...

  5. Reconstruction methods for sound visualization based on acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Lylloff, Oliver; Barrera Figueroa, Salvador;

    2013-01-01

    The visualization of acoustic fields using acousto-optic tomography has recently proved to yield satisfactory results in the audible frequency range. The current implementation of this visualization technique uses a laser Doppler vibrometer (LDV) to measure the acousto-optic effect, that is...... tomographic techniques. The filtered back projection (FBP) method is the most popular reconstruction algorithm used for tomography in many fields of science. The present study takes the performance of the FBP method in sound visualization as a reference and investigates the use of alternative methods commonly...

  6. Light illumination and detection patterns for fluorescence diffuse optical tomography based on compressive sensing.

    Science.gov (United States)

    Jin, An; Yazici, Birsen; Ntziachristos, Vasilis

    2014-06-01

    Fluorescence diffuse optical tomography (FDOT) is an emerging molecular imaging modality that uses near infrared light to excite the fluorophore injected into tissue; and to reconstruct the fluorophore concentration from boundary measurements. The FDOT image reconstruction is a highly ill-posed inverse problem due to a large number of unknowns and limited number of measurements. However, the fluorophore distribution is often very sparse in the imaging domain since fluorophores are typically designed to accumulate in relatively small regions. In this paper, we use compressive sensing (CS) framework to design light illumination and detection patterns to improve the reconstruction of sparse fluorophore concentration. Unlike the conventional FDOT imaging where spatially distributed light sources illuminate the imaging domain one at a time and the corresponding boundary measurements are used for image reconstruction, we assume that the light sources illuminate the imaging domain simultaneously several times and the corresponding boundary measurements are linearly filtered prior to image reconstruction. We design a set of optical intensities (illumination patterns) and a linear filter (detection pattern) applied to the boundary measurements to improve the reconstruction of sparse fluorophore concentration maps. We show that the FDOT sensing matrix can be expressed as a columnwise Kronecker product of two matrices determined by the excitation and emission light fields. We derive relationships between the incoherence of the FDOT forward matrix and these two matrices, and use these results to reduce the incoherence of the FDOT forward matrix. We present extensive numerical simulation and the results of a real phantom experiment to demonstrate the improvements in image reconstruction due to the CS-based light illumination and detection patterns in conjunction with relaxation and greedy-type reconstruction algorithms.

  7. The Dimensions of the Orbital Cavity Based on High-Resolution Computed Tomography of Human Cadavers.

    Science.gov (United States)

    Felding, Ulrik Ascanius; Bloch, Sune Land; Buchwald, Christian von

    2016-06-01

    Blow-out fractures affect the volume and surface area of the orbital cavity. Estimation of these values after the trauma may help in deciding whether or not a patient is a candidate for surgery. Recent studies have provided estimates of orbital volume and area of bone defect, and correlated them with the degree of enophthalmos. However, a large degree of biological variation between individuals may preclude such absolute values from being successful indicators for surgery.Stereological methods have been used to estimate orbital cavity volume in a few studies, but to date these have not been used for surface area. To authors' knowledge, this study is the first to have measured the entire surface area of the orbital cavity.The volume and surface area of the orbital cavity were estimated in computed tomography scans of 11 human cadavers using unbiased stereological sampling techniques. The mean (± SD) total volume and total surface area of the orbital cavities was 24.27 ± 3.88 cm and 32.47 ± 2.96 cm, respectively. There was no significant difference in volume (P = 0.315) or surface area (P = 0.566) between the 2 orbital cavities.The stereological technique proved to be a robust and unbiased method that may be used as a gold standard for comparison with automated computer software. Future imaging studies in blow-out fracture patients may be based on individual and relative calculation involving both herniated volume and fractured surface area in relation to the total volume and surface area of the uninjured orbital cavity.

  8. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography.

    Science.gov (United States)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A

    2009-11-07

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).

  9. Small field dose delivery evaluations using cone beam optical computed tomography-based polymer gel dosimetry

    Directory of Open Access Journals (Sweden)

    Timothy Olding

    2011-01-01

    Full Text Available This paper explores the combination of cone beam optical computed tomography with an N-isopropylacrylamide (NIPAM-based polymer gel dosimeter for three-dimensional dose imaging of small field deliveries. Initial investigations indicate that cone beam optical imaging of polymer gels is complicated by scattered stray light perturbation. This can lead to significant dosimetry failures in comparison to dose readout by magnetic resonance imaging (MRI. For example, only 60% of the voxels from an optical CT dose readout of a 1 l dosimeter passed a two-dimensional Low′s gamma test (at a 3%, 3 mm criteria, relative to a treatment plan for a well-characterized pencil beam delivery. When the same dosimeter was probed by MRI, a 93% pass rate was observed. The optical dose measurement was improved after modifications to the dosimeter preparation, matching its performance with the imaging capabilities of the scanner. With the new dosimeter preparation, 99.7% of the optical CT voxels passed a Low′s gamma test at the 3%, 3 mm criteria and 92.7% at a 2%, 2 mm criteria. The fitted interjar dose responses of a small sample set of modified dosimeters prepared (a from the same gel batch and (b from different gel batches prepared on the same day were found to be in agreement to within 3.6% and 3.8%, respectively, over the full dose range. Without drawing any statistical conclusions, this experiment gives a preliminary indication that intrabatch or interbatch NIPAM dosimeters prepared on the same day should be suitable for dose sensitivity calibration.

  10. Wireless, Web-Based Interactive Control of Optical Coherence Tomography with Mobile Devices

    Science.gov (United States)

    Mehta, Rajvi; Nankivil, Derek; Zielinski, David J.; Waterman, Gar; Keller, Brenton; Limkakeng, Alexander T.; Kopper, Regis; Izatt, Joseph A.; Kuo, Anthony N.

    2017-01-01

    Purpose Optical coherence tomography (OCT) is widely used in ophthalmology clinics and has potential for more general medical settings and remote diagnostics. In anticipation of remote applications, we developed wireless interactive control of an OCT system using mobile devices. Methods A web-based user interface (WebUI) was developed to interact with a handheld OCT system. The WebUI consisted of key OCT displays and controls ported to a webpage using HTML and JavaScript. Client–server relationships were created between the WebUI and the OCT system computer. The WebUI was accessed on a cellular phone mounted to the handheld OCT probe to wirelessly control the OCT system. Twenty subjects were imaged using the WebUI to assess the system. System latency was measured using different connection types (wireless 802.11n only, wireless to remote virtual private network [VPN], and cellular). Results Using a cellular phone, the WebUI was successfully used to capture posterior eye OCT images in all subjects. Simultaneous interactivity by a remote user on a laptop was also demonstrated. On average, use of the WebUI added only 58, 95, and 170 ms to the system latency using wireless only, wireless to VPN, and cellular connections, respectively. Qualitatively, operator usage was not affected. Conclusions Using a WebUI, we demonstrated wireless and remote control of an OCT system with mobile devices. Translational Relevance The web and open source software tools used in this project make it possible for any mobile device to potentially control an OCT system through a WebUI. This platform can be a basis for remote, teleophthalmology applications using OCT.

  11. Fast and automatic depth control of iterative bone ablation based on optical coherence tomography data

    Science.gov (United States)

    Fuchs, Alexander; Pengel, Steffen; Bergmeier, Jan; Kahrs, Lüder A.; Ortmaier, Tobias

    2015-07-01

    Laser surgery is an established clinical procedure in dental applications, soft tissue ablation, and ophthalmology. The presented experimental set-up for closed-loop control of laser bone ablation addresses a feedback system and enables safe ablation towards anatomical structures that usually would have high risk of damage. This study is based on combined working volumes of optical coherence tomography (OCT) and Er:YAG cutting laser. High level of automation in fast image data processing and tissue treatment enables reproducible results and shortens the time in the operating room. For registration of the two coordinate systems a cross-like incision is ablated with the Er:YAG laser and segmented with OCT in three distances. The resulting Er:YAG coordinate system is reconstructed. A parameter list defines multiple sets of laser parameters including discrete and specific ablation rates as ablation model. The control algorithm uses this model to plan corrective laser paths for each set of laser parameters and dynamically adapts the distance of the laser focus. With this iterative control cycle consisting of image processing, path planning, ablation, and moistening of tissue the target geometry and desired depth are approximated until no further corrective laser paths can be set. The achieved depth stays within the tolerances of the parameter set with the smallest ablation rate. Specimen trials with fresh porcine bone have been conducted to prove the functionality of the developed concept. Flat bottom surfaces and sharp edges of the outline without visual signs of thermal damage verify the feasibility of automated, OCT controlled laser bone ablation with minimal process time.

  12. A novel forward projection-based metal artifact reduction method for flat-detector computed tomography

    Science.gov (United States)

    Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A.

    2009-11-01

    Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).

  13. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  14. Characterization of nano-sized precipitates in a Mn-based lean maraging steel by atom probe tomography

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.; Ponge, D.; Raabe, D.; Choi, P.; Dmitrieva, O. [Max-Planck-Institut fuer Eisenforschung, Duesseldorf (Germany)

    2011-02-15

    We present atom probe tomography results of a precipitation-hardened Mn-based maraging steel (9 Mn, 1.9 Ni, 0.6 Mo, 1.1 Ti, 0.33 Al; in at.%). The alloy is characterized by the surprising effect that both, strength and total elongation increase upon aging. The material reveals a high ultimate tensile strength (UTS) up to 1 GPa and good ductility (total elongation (TE) of up to 15% in a tensile test) depending on aging conditions. We map the evolution of the precipitates after 450 C aging treatment using atom probe tomography in terms of chemical composition and size distribution. (Copyright copyright 2011 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Space application research of EMCCDs for bioluminescence imaging

    Science.gov (United States)

    Zhang, Tao

    The detection of bioluminescense is widely used on the ground, while the detection of bioluminescence in space is still at the stage of detecting bright bioluminescense. With the rapid development of research in Space Life Sciences, it will be necessary to develop a detection technology to detect weak bioluminescense. Compared to other low-light detection techniques for ground, there are more advantages of EMCCDs for space application. Build a space bioluminescence imaging detection system, analysis the feasibility and capability of its will be significant. Co-Author:Xie Zongbao,Zheng Weibo

  16. Bioluminescence as the Basis for the Detection of Trichothecenes

    Science.gov (United States)

    1986-03-17

    screened for their ability to quench bioluminescence were obtained through the courtesy of Dr. Lou Carson, of the Toxicology Division of the Food and...34 Recent Adv. Phytochem . 9, 167 (1974). 13. Lyman, J. and Fleming, R.H., "Composition of Seawater," J. Mar. Res. 3, 134 (1940). 14. Mayer, C.F., "Endemic...DIELDRIN Cl CI Cl~c C 1 2I• HEPTACHLOR EPOXIDE OCTACHLOR EPOXIDE "Fig. 11 - Pesticides screened for ability to quench bioluminescence Ir £ d, PF K.I IR 10 R 125 - I ’S * N 586 9 -q

  17. Numerical analysis of astigmatism correction in gradient refractive index lens based optical coherence tomography catheters

    NARCIS (Netherlands)

    T. Wang (Teng); A.F.W. van der Steen (Ton); G. van Soest (Gijs)

    2012-01-01

    textabstractEndoscopic optical coherence tomography (OCT) catheters comprise a transparent tube to separate the imaging instrument from tissues. This tube acts as a cylindrical lens, introducing astigmatism into the beam. In this report, we quantified this negative effect using optical simulations o

  18. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence. [Photobacter phosphoreum:a3

    Energy Technology Data Exchange (ETDEWEB)

    Rebagay, T.V.; Dodd, D.A.; Voogd, J.A.

    1991-09-01

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of {und Photobacter phosphoreum} (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs. (MHB)

  19. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.

  20. Combining Computed Tomography-Based Bone Density Assessment with FRAX Screening in Men with Prostate Cancer.

    Science.gov (United States)

    McDonald, Andrew M; Jones, Joseph A; Cardan, Rex A; Saag, Kenneth S; Mayhew, David L; Fiveash, John B

    2016-10-01

    To investigate the addition of a computed tomography (CT)-based method of osteoporosis screening to FRAX without bone mineral density (BMD) fracture risk assessment in men undergoing radiotherapy for prostate cancer, we reviewed the records of all patients with localized prostate cancer treated with external beam radiotherapy at our institution between 2001 and 2012. The 10-yr probability of hip fracture was calculated using the FRAX algorithm without BMD. The CT attenuation of the L5 trabecular bone (L5CT) was assessed by contouring the trabecular bone on a single CT slice at the level of the midvertebral body and by averaging the Hounsfield units (HU) of all included voxels. L5CT values of 105 and 130 HU were used as screening thresholds. The clinical characteristics of additional patients identified by each L5CT screening threshold value were compared to patients whose estimated 10-yr risk of hip fracture was 3% or greater by FRAX without BMD. A total of 609 patients treated between 2001 and 2012 had CT scans available for review and complete clinical information allowing for FRAX without BMD risk calculation. Seventy-four (12.2%) patients had an estimated 10-yr risk of hip fracture of 3% or greater. An additional 22 (3.6%) and 71 (11.6%) patients were identified by CT screening when thresholds L5CT = 105 HU and L5CT = 130 HU were used, respectively. Compared to the group of patients identified by FRAX without BMD, the additional patients identified by CT screening at each L5CT threshold level tended to be younger and heavier, and were more likely to be African-American or treated without androgen deprivation therapy. These results suggest that the addition of CT-based screening to FRAX without BMD risk assessment identifies additional men with different underlying clinical characteristics who may be at risk for osteoporosis and may benefit from pharmacological therapy to increase BMD and reduce fracture risk.

  1. A combination of NADHP and hispidin is not essential for bioluminescence in luminous fungal living gills of Mycena chlorophos.

    Science.gov (United States)

    Teranishi, Katsunori

    2017-01-05

    The chemical mechanisms underlying visible bioluminescence in the fungus Mycena chlorophos are not clear. A combination of dihydronicotinamide adenine dinucleotide phosphate (NADPH) and hispidin, which has been reported to increase the intensity of in vitro luminescence in crude cold-water extracts prepared from the bioluminescent fruiting bodies of M. chlorophos, exhibited potential bioluminescence activation in the early bioluminescence stages, in which the bioluminescence was ultra-weak, for living gills and luminescence activation for non-bioluminescent gills, which was collapsed by freezing and subsequent thawing, at all bioluminescence stages. These abilities were not evident in considerably bioluminescent gills. These abilities were blocked by trans-4-hydroxycinnamic acid and trans-3,4-dihydroxycinnamic acid, which were identified as in vivo bioluminescence-activating components. Original bioluminescence and bioluminescence produced from the addition of trans-4-hydroxycinnamic acid and trans-3,4-dihydroxycinnamic acid in living gills were almost completely inhibited by 10 mM NaN3 , whereas the luminescence produced form the combination of NADPH and hispidin in thawed non-bioluminescent and living gills at the early weak bioluminescence stages was not inhibited by 10 mM NaN3 . Thus, the combination of NADPH and hispidin plays different roles in luminescence systems compared with essential bioluminescence systems, and the combination of NADPH and hispidin was not essential for visible bioluminescence in living gills.

  2. Upgrading bioluminescent bacterial bioreporter performance by splitting the lux operon.

    Science.gov (United States)

    Yagur-Kroll, Sharon; Belkin, Shimshon

    2011-05-01

    Bioluminescent bacterial bioreporters harbor a fusion of bacterial bioluminescence genes (luxCDABE), acting as the reporting element, to a stress-response promoter, serving as the sensing element. Upon exposure to conditions that activate the promoter, such as an environmental stress or the presence of an inducing chemical, the promoter::reporter fusion generates a dose-dependent bioluminescent signal. In order to improve bioluminescent bioreporter performance we have split the luxCDABE genes of Photorhabdus luminescens into two smaller functional units: luxAB, that encode for the luciferase enzyme, which catalyzes the luminescence reaction, and luxCDE that encode for the enzymatic complex responsible for synthesis of the reaction's substrate, a long-chain aldehyde. The expression of each subunit was put under the control of either an inducible stress-responsive promoter or a synthetic constitutive promoter, and different combinations of the two units were tested for their response to selected chemicals in Escherichia coli. In all cases tested, the split combinations proved to be superior to the native luxCDABE configuration, suggesting an improved efficiency in the transcription and/or translation of two small gene units instead of a larger one with the same genes. The best combination was that of an inducible luxAB and a constitutive luxCDE, indicating that aldehyde availability is limited when the five genes are expressed together in E. coli, and demonstrating that improved biosensor performance may be achieved by rearrangement of the lux operon genes.

  3. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca

    NARCIS (Netherlands)

    Eremeeva, Elena V.; Bartsev, Sergey I.; Berkel, van Willem J.H.; Vysotski, Eugene S.

    2017-01-01

    Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated

  4. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  5. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    Science.gov (United States)

    2010-09-30

    watershed run-off and discharge of submarine ground-water can profoundly impact growth conditions of bioluminescent plankton on very short space and...changes in marine ecosystems (Kane, 2009). Gelatinous zooplankton, such as Mnemiopsis sp., feed on mesozooplankton, with copepods being their main food

  6. Feasibility Study for a Compact, Multi-Purpose Bioluminescence Detector

    Science.gov (United States)

    1998-09-30

    which is likely to be primarily dinoflagellates, ostracods and gelatinous zooplankton, however a faster pump speed would be desirable in a profiling...and defense sectors by providing a valuable tool for biological oceanographers interested in plankton distribution patterns as well as providing...quantifying, tracking and identifying bioluminescent plankton . IEEE J. Oceanic Engineering. Widder, E.A. (1997) In situ video recordings of

  7. Visualization and Pathological Characteristics of Hepatic Alveolar Echinococcosis with Synchrotron-based X-ray Phase Sensitive Micro-tomography

    Science.gov (United States)

    Liu, Huiqiang; Ji, Xuewen; Sun, Li; Xiao, Tiqiao; Xie, Honglan; Fu, Yanan; Zhao, Yuan; Liu, Wenya; Zhang, Xueliang; Lin, Renyong

    2016-11-01

    Propagation-based phase-contrast computed tomography (PPCT) utilizes highly sensitive phase-contrast technology applied to X-ray micro-tomography, especially with the extensive use of synchrotron radiation (SR). Performing phase retrieval (PR) on the acquired angular projections can enhance image contrast and enable quantitative imaging. We employed the combination of SR-PPCT and PR for the histopathological evaluation of hepatic alveolar echinococcosis (HAE) disease and demonstrated the validity and superiority of PR-based SR-PPCT. A high-resolution angular projection data set of a human postoperative specimen of HAE disease was acquired, which was processed by graded ethanol concentration fixation (GECF). The reconstructed images from both approaches, with the projection data directly used and preprocessed by PR for tomographic reconstruction, were compared in terms of the tissue contrast-to-noise ratio and density spatial resolution. The PR-based SR-PPCT was selected for microscale measurement and the 3D visualization of HAE disease. Our experimental results demonstrated that the PR-based SR-PPCT technique is greatly suitable for the discrimination of pathological tissues and the characterization of HAE. In addition, this new technique is superior to conventional hospital CT and microscopy for the three-dimensional, non-destructive microscale measurement of HAE. This PR-based SR-PPCT technique has great potential for in situmicroscale histopathological analysis and diagnosis, especially for applications involving soft tissues and organs.

  8. A novel image reconstruction methodology based on inverse Monte Carlo analysis for positron emission tomography

    Science.gov (United States)

    Kudrolli, Haris A.

    2001-04-01

    A three dimensional (3D) reconstruction procedure for Positron Emission Tomography (PET) based on inverse Monte Carlo analysis is presented. PET is a medical imaging modality which employs a positron emitting radio-tracer to give functional images of an organ's metabolic activity. This makes PET an invaluable tool in the detection of cancer and for in-vivo biochemical measurements. There are a number of analytical and iterative algorithms for image reconstruction of PET data. Analytical algorithms are computationally fast, but the assumptions intrinsic in the line integral model limit their accuracy. Iterative algorithms can apply accurate models for reconstruction and give improvements in image quality, but at an increased computational cost. These algorithms require the explicit calculation of the system response matrix, which may not be easy to calculate. This matrix gives the probability that a photon emitted from a certain source element will be detected in a particular detector line of response. The ``Three Dimensional Stochastic Sampling'' (SS3D) procedure implements iterative algorithms in a manner that does not require the explicit calculation of the system response matrix. It uses Monte Carlo techniques to simulate the process of photon emission from a source distribution and interaction with the detector. This technique has the advantage of being able to model complex detector systems and also take into account the physics of gamma ray interaction within the source and detector systems, which leads to an accurate image estimate. A series of simulation studies was conducted to validate the method using the Maximum Likelihood - Expectation Maximization (ML-EM) algorithm. The accuracy of the reconstructed images was improved by using an algorithm that required a priori knowledge of the source distribution. Means to reduce the computational time for reconstruction were explored by using parallel processors and algorithms that had faster convergence rates

  9. Expression of a Humanized Viral 2A-Mediated lux Operon Efficiently Generates Autonomous Bioluminescence in Human Cells

    Science.gov (United States)

    Xu, Tingting; Ripp, Steven; Sayler, Gary S.; Close, Dan M.

    2014-01-01

    Background Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux) cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines. Methodology/Principal Findings The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations. Conclusions/Significance Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines

  10. Novel bioluminescent quantitative detection of nucleic acid amplification in real-time.

    Directory of Open Access Journals (Sweden)

    Olga A Gandelman

    Full Text Available BACKGROUND: The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. PRINCIPAL FINDINGS: Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. CONCLUSIONS: The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a

  11. Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea

    Science.gov (United States)

    Turner, J. R.; White, E. M.; Collins, M. A.; Partridge, J. C.; Douglas, R. H.

    2009-06-01

    The sensitivity hypothesis seeks to explain the correlation between the wavelength of visual pigment absorption maxima ( λmax) and habitat type in fish and other marine animals in terms of the maximisation of photoreceptor photon catch. In recent years its legitimacy has been called into question as studies have either not tested data against the output of a predictive model or are confounded by the wide phylogeny of species used. We have addressed these issues by focussing on the distribution of λmax values in one family of marine teleosts, the lanternfish (Myctophidae). Visual pigment extract spectrophotometry has shown that 54 myctophid species have a single pigment in their retinae with a λmax falling within the range 480-492 nm. A further 4 species contain two visual pigments in their retinae. The spectral distribution of these visual pigments seems relatively confined when compared to other mesopelagic fishes. Mathematical modelling based on the assumptions of the sensitivity hypothesis shows that, contrary to the belief that deep-sea fishes' visual pigments are shortwave shifted to maximise their sensitivity to downwelling sunlight, the visual pigments of myctophids instead seem better placed for the visualisation of bioluminescence. The predicted maximum visualisation distance of a blue/green bioluminescent point source by a myctophid was up to 30 m under ideal conditions. Two species ( Myctophum nitidulum and Bolinichthys longipes) have previously been shown to have longwave-shifted spectral sensitivities and we show that they could theoretically detect stomiid far-red bioluminescence from as far as ca. 7 m.

  12. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    OpenAIRE

    P. P. Ebner; M. Schneebeli; A. Steinfeld

    2015-01-01

    Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence...

  13. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    Directory of Open Access Journals (Sweden)

    Peng He

    2013-01-01

    Full Text Available Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI from truncated data in a theoretically exact fashion via the total variation (TV minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.

  14. Discrete tomography of demanding samples based on a modified SIRT algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Zuerner, Andreas; Doeblinger, Markus [Department of Chemistry and Center for NanoScience (CeNS), University of Munich - LMU, Butenandtstr. 5-13 (E), 81377 Munich (Germany); Cauda, Valentina [Department of Chemistry and Center for NanoScience (CeNS), University of Munich - LMU, Butenandtstr. 5-13 (E), 81377 Munich (Germany); CSHR, Italian Institute of Technology (IIT), C. so Trento 21, 10129 Turin (Italy); Wei, Ruoshan [Walter Schottky Institute, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany); Bein, Thomas, E-mail: bein@lmu.de [Department of Chemistry and Center for NanoScience (CeNS), University of Munich - LMU, Butenandtstr. 5-13 (E), 81377 Munich (Germany)

    2012-04-15

    The 3D structure of three particularly challenging samples was reconstructed by electron tomography. Due to sample limitations resulting in a large missing wedge and large tilt increments respectively the 3D structure could not be reconstructed by standard iterative algorithms; even a recently developed discrete algorithm failed until the input parameters for discrete reconstruction were improved. These challenges were addressed by adding a mask in each step of the preceding standard iterative reconstruction, setting all voxels known to be vacuum as zero, thus improving the segmentation and the 3D starting model. The position of these vacuum voxels is obtained from TEM images or other measurement data. -- Highlights: Black-Right-Pointing-Pointer Input parameters for discrete tomography are usually obtained from preceding conventional algorithms. Black-Right-Pointing-Pointer In each conventional iteration step we add a mask setting known vacuum voxels to zero. Black-Right-Pointing-Pointer This improves segmentation parameters and the starting model for discrete tomography. Black-Right-Pointing-Pointer We demonstrate the method for a series of only 9 exposures and two series with a tilt range of only {+-}40 Degree-Sign .

  15. Boosting bioluminescence neuroimaging: an optimized protocol for brain studies.

    Science.gov (United States)

    Aswendt, Markus; Adamczak, Joanna; Couillard-Despres, Sebastien; Hoehn, Mathias

    2013-01-01

    Bioluminescence imaging is widely used for optical cell tracking approaches. However, reliable and quantitative bioluminescence of transplanted cells in the brain is highly challenging. In this study we established a new bioluminescence imaging protocol dedicated for neuroimaging, which increases sensitivity especially for noninvasive tracking of brain cell grafts. Different D-Luciferin concentrations (15, 150, 300 and 750 mg/kg), injection routes (i.v., i.p., s.c.), types of anesthesia (Isoflurane, Ketamine/Xylazine, Pentobarbital) and timing of injection were compared using DCX-Luc transgenic mice for brain specific bioluminescence. Luciferase kinetics was quantitatively evaluated for maximal photon emission, total photon emission and time-to-peak. Photon emission followed a D-Luciferin dose-dependent relation without saturation, but with delay in time-to-peak increasing for increasing concentrations. The comparison of intravenous, subcutaneous and intraperitoneal substrate injection reflects expected pharmacokinetics with fastest and highest photon emission for intravenous administration. Ketamine/Xylazine and Pentobarbital anesthesia showed no significant beneficial effect on maximal photon emission. However, a strong difference in outcome was observed by injecting the substrate pre Isoflurane anesthesia. This protocol optimization for brain specific bioluminescence imaging comprises injection of 300 mg/kg D-Luciferin pre Isoflurane anesthesia as an efficient and stable method with a signal gain of approx. 200% (compared to 150 mg/kg post Isoflurane). Gain in sensitivity by the novel imaging protocol was quantitatively assessed by signal-to-noise calculations of luciferase-expressing neural stem cells grafted into mouse brains (transplantation of 3,000-300,000 cells). The optimized imaging protocol lowered the detection limit from 6,000 to 3,000 cells by a gain in signal-to-noise ratio.

  16. Nonrigid registration-based coronary artery motion correction for cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Bhagalia, Roshni; Pack, Jed D.; Miller, James V.; Iatrou, Maria [GE Global Research, Niskayuna, New York 12309 (United States); GE Healthcare, Hoboken, New Jersey 07030 (United States)

    2012-07-15

    Purpose: X-ray computed tomography angiography (CTA) is the modality of choice to noninvasively monitor and diagnose heart disease with coronary artery health and stenosis detection being of particular interest. Reliable, clinically relevant coronary artery imaging mandates high spatiotemporal resolution. However, advances in intrinsic scanner spatial resolution (CT scanners are available which combine nearly 900 detector columns with focal spot oversampling) can be tempered by motion blurring, particularly in patients with unstable heartbeats. As a result, recently numerous methods have been devised to improve coronary CTA imaging. Solutions involving hardware, multisector algorithms, or {beta}-blockers are limited by cost, oversimplifying assumptions about cardiac motion, and populations showing contraindications to drugs, respectively. This work introduces an inexpensive algorithmic solution that retrospectively improves the temporal resolution of coronary CTA without significantly affecting spatial resolution. Methods: Given the goal of ruling out coronary stenosis, the method focuses on 'deblurring' the coronary arteries. The approach makes no assumptions about cardiac motion, can be used on exams acquired at high heart rates (even over 75 beats/min), and draws on a fast and accurate three-dimensional (3D) nonrigid bidirectional labeled point matching approach to estimate the trajectories of the coronary arteries during image acquisition. Motion compensation is achieved by employing a 3D warping of a series of partial reconstructions based on the estimated motion fields. Each of these partial reconstructions is created from data acquired over a short time interval. For brevity, the algorithm 'Subphasic Warp and Add' (SWA) reconstruction. Results: The performance of the new motion estimation-compensation approach was evaluated by a systematic observer study conducted using nine human cardiac CTA exams acquired over a range of average heart

  17. Proton radiography and proton computed tomography based on time-resolved dose measurements

    Science.gov (United States)

    Testa, Mauro; Verburg, Joost M.; Rose, Mark; Min, Chul Hee; Tang, Shikui; Hassane Bentefour, El; Paganetti, Harald; Lu, Hsiao-Ming

    2013-11-01

    We present a proof of principle study of proton radiography and proton computed tomography (pCT) based on time-resolved dose measurements. We used a prototype, two-dimensional, diode-array detector capable of fast dose rate measurements, to acquire proton radiographic images expressed directly in water equivalent path length (WEPL). The technique is based on the time dependence of the dose distribution delivered by a proton beam traversing a range modulator wheel in passive scattering proton therapy systems. The dose rate produced in the medium by such a system is periodic and has a unique pattern in time at each point along the beam path and thus encodes the WEPL. By measuring the time dose pattern at the point of interest, the WEPL to this point can be decoded. If one measures the time-dose patterns at points on a plane behind the patient for a beam with sufficient energy to penetrate the patient, the obtained 2D distribution of the WEPL forms an image. The technique requires only a 2D dosimeter array and it uses only the clinical beam for a fraction of second with negligible dose to patient. We first evaluated the accuracy of the technique in determining the WEPL for static phantoms aiming at beam range verification of the brain fields of medulloblastoma patients. Accurate beam ranges for these fields can significantly reduce the dose to the cranial skin of the patient and thus the risk of permanent alopecia. Second, we investigated the potential features of the technique for real-time imaging of a moving phantom. Real-time tumor tracking by proton radiography could provide more accurate validations of tumor motion models due to the more sensitive dependence of proton beam on tissue density compared to x-rays. Our radiographic technique is rapid (˜100 ms) and simultaneous over the whole field, it can image mobile tumors without the problem of interplay effect inherently challenging for methods based on pencil beams. Third, we present the reconstructed p

  18. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis.

    Science.gov (United States)

    Damron, F Heath; McKenney, Elizabeth S; Barbier, Mariette; Liechti, George W; Schweizer, Herbert P; Goldberg, Joanna B

    2013-07-01

    We describe the construction of mini-Tn7-based broad-host-range vectors encoding lux genes as bioluminescent reporters. These constructs can be mobilized into the desired host(s) by conjugation for chromosomal mini-Tn7-lux integration and are useful for localization of bacteria during infections or for characterizing regulation of promoters of interest in Gram-negative bacteria.

  19. Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool.

    Science.gov (United States)

    Shah, N; Naseby, D C

    2015-06-15

    Whole cell biosensors have been extensively used for monitoring toxicity and contamination of various compounds and xenobiotics in environmental biology and microbial ecology; their application in the pharmaceutical and cosmetics industries has been limited. According to several pharmacopoeias, pharmaceutical products must be tested for microbial activity using traditional viable count techniques; the use of whole cell microbial biosensors potentially provides an alternative, fast, and efficient method. However there is a lack of a validated bioluminescence method. Prototype whole cell microbial biosensors have already been developed in Pseudomonas aeruginosa ATCC 9027. Validation of the bioluminescent strains was performed in accordance with the pharmacopoeia, Parenteral Drug Association and International Organisation of Standardisation. These strains demonstrated that the bioluminescent method was accurate, precise and equivalent, as compared with plate counting at a range of 10(3)-10(7) CFU/mL. Percentage recoveries using the bioluminescent method were between 70% and 130% for all bioluminescent strains and therefore the bioluminescent method was accurate according to the criteria set in PDA technical report 33. The method was also more precise (relative standard deviation less than 15%) than the traditional plate counting method or the ATP bioluminescent method. The lower limit of detection was 10(3) CFU/mL. Two-way ANOVA showed no significant difference between the traditional plate counting and the novel bioluminescent method for all bioluminescent strains. The bioluminescent constructs passed/exceeded pharmacopoeia-specified criteria for range, limit of detection, accuracy, precision and equivalence.

  20. Hyperspectral time-resolved wide-field fluorescence molecular tomography based on structured light and single-pixel detection.

    Science.gov (United States)

    Pian, Qi; Yao, Ruoyang; Zhao, Lingling; Intes, Xavier

    2015-02-01

    We present a time-resolved fluorescence diffuse optical tomography platform that is based on wide-field structured illumination, single-pixel detection, and hyperspectral acquisition. Two spatial light modulators (digital micro-mirror devices) are employed to generate independently wide-field illumination and detection patterns, coupled with a 16-channel spectrophotometer detection module to capture hyperspectral time-resolved tomographic data sets. The main system characteristics are reported, and we demonstrate the feasibility of acquiring dense 4D tomographic data sets (space, time, spectra) for time domain 3D quantitative multiplexed fluorophore concentration mapping in turbid media.

  1. Improving depth resolution of diffuse optical tomography with an exponential adjustment method based on maximum singular value of layered sensitivity

    Institute of Scientific and Technical Information of China (English)

    Haijing Niu; Ping Guo; Xiaodong Song; Tianzi Jiang

    2008-01-01

    The sensitivity of diffuse optical tomography (DOT) imaging exponentially decreases with the increase of photon penetration depth, which leads to a poor depth resolution for DOT. In this letter, an exponential adjustment method (EAM) based on maximum singular value of layered sensitivity is proposed. Optimal depth resolution can be achieved by compensating the reduced sensitivity in the deep medium. Simulations are performed using a semi-infinite model and the simulation results show that the EAM method can substantially improve the depth resolution of deeply embedded objects in the medium. Consequently, the image quality and the reconstruction accuracy for these objects have been largely improved.

  2. Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus.

    Science.gov (United States)

    Daghighi, Seyedmojtaba; Sjollema, Jelmer; Harapanahalli, Akshay; Dijkstra, Rene J B; van der Mei, Henny C; Busscher, Henk J

    2015-12-01

    Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in Etests demonstrated increased bioluminescence at sub-MICs of different antibiotics. This study aimed to further evaluate the influence of antibiotic pressure on bioluminescence in S. aureus Xen29. Bioluminescence of S. aureus Xen29, grown planktonically in tryptone soy broth, was quantified in the absence and presence of different concentrations of vancomycin, ciprofloxacin, erythromycin or chloramphenicol and was related to expression of the luxA gene under antibiotic pressure measured using real-time PCR. In the absence of antibiotics, staphylococcal bioluminescence increased over time until a maximum after ca. 6h of growth, and subsequently decreased to the detection threshold after 24h of growth owing to reduced bacterial metabolic activity. Up to MICs of the antibiotics, bioluminescence increased according to a similar pattern up to 6h of growth, but after 24h bioluminescence was higher than in the absence of antibiotics. Contrary to expectations, bioluminescence per organism (CFU) after different growth periods in the absence and at MICs of different antibiotics decreased with increasing expression of luxA. Summarising, antibiotic pressure impacts the relation between CFU and bioluminescence. Under antibiotic pressure, bioluminescence is not controlled by luxA expression but by co-factors impacting the bacterial metabolic activity. This conclusion is of utmost importance when evaluating antibiotic efficacy in live animals using bioluminescent bacterial strains.

  3. Prostate cancer diagnosis: the feasibility of needle-based optical coherence tomography.

    Science.gov (United States)

    Muller, Berrend G; de Bruin, Daniel M; van den Bos, Willemien; Brandt, Martin J; Velu, Juliette F; Bus, Mieke T J; Faber, Dirk J; Savci, Dilara; Zondervan, Patricia J; de Reijke, Theo M; Pes, Pilar Laguna; de la Rosette, Jean; van Leeuwen, Ton G

    2015-07-01

    The objective of this study is to demonstrate the feasibility of needle-based optical coherence tomography (OCT) and functional analysis of OCT data along the full pullback trajectory of the OCT measurement in the prostate, correlated with pathology. OCT images were recorded using a commercially available C7-XR™ OCT Intravascular Imaging System interfaced to a C7 Dragonfly™ intravascular 0.9-mm-diameter imaging probe. A computer program was constructed for automated image attenuation analysis. First, calibration of the OCT system for both the point spread function and the system roll-off was achieved by measurement of the OCT signal attenuation from an extremely weakly scattering medium (Intralipid® 0.0005 volume%). Second, the data were arranged in 31 radial wedges (pie slices) per circular segments consisting of 16 A-scans per wedge and 5 axial B-scans, resulting in an average A-scan per wedge. Third, the decay of the OCT signal is analyzed over 50 pixels ([Formula: see text]) in depth, starting from the first found maximum data point. Fourth, for visualization, the data were grouped with a corresponding color representing a specific [Formula: see text] range according to their attenuation coefficient. Finally, the analyses were compared to histopathology. To ensure that each single use sterile imaging probe is comparable to the measurements of the other imaging probes, the probe-to-probe variations were analyzed by measuring attenuation coefficients of 0.03, 6.5, 11.4, 17, and 22.7 volume% Intralipid®. Experiments were repeated five times per probe for four probes. Inter- and intraprobe variation in the measured attenuation of Intralipid samples with scattering properties similar to that of the prostate was [Formula: see text] of the mean values. Mean attenuation coefficients in the prostate were [Formula: see text] for parts of the tissue that were classified as benign (SD: [Formula: see text], minimum: [Formula: see text], maximum: [Formula: see text

  4. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    Directory of Open Access Journals (Sweden)

    Thomas Klein

    2016-09-01

    Full Text Available Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  5. Hardware and software design for a National Instrument-based magnetic induction tomography system for prospective biomedical applications.

    Science.gov (United States)

    Wei, Hsin-Yu; Soleimani, Manuchehr

    2012-05-01

    Magnetic induction tomography (MIT) is a new and emerging type of tomography technique that is able to map the passive electromagnetic properties (in particular conductivity) of an object. Excitation coils are used to induce eddy currents in the medium, and the magnetic field produced by the induced eddy current is then sensed by the receiver coils. Because of its non-invasive and contactless feature, it becomes an attractive technique for many applications (especially in biomedical area) compared to traditional contact electrode-based electrical impedance tomography. Due to the low contrast in conductivity between biological tissues, an accurate and stable hardware system is necessary. Most MIT systems in the literature employ external signal generators, power amplifiers and highly stable down-conversion electronics to obtain a satisfactory phase measurement. However, this would increase design complexity substantially. In this paper, a National Instrument-based MIT system is developed at the University of Bath, aiming for biomedical applications. The system utilizes National Instrument products to accomplish all signal driving, switching and data acquisition tasks, which ease the system design whilst providing satisfactory performance. This paper presents a full-scaled medical MIT system, from the sensor and system hardware design, eddy current model verification to the image reconstruction software: the performance of this MIT instrumentation system is characterized in detail, including the system accuracy and system stability. The methods of solving eddy current problem are presented. The reconstructed images of detecting the presence of saline solutions are also included in this paper, which show the capability of national instrument products to be developed into a full-scaled biomedical MIT system, by demonstrating the practical experimental results.

  6. Application of bioluminescence ATP measurement for evaluation of fungal viability of foxing spots on old documents.

    Science.gov (United States)

    Rakotonirainy, Malalanirina Sylvia; Dubar, Pauline

    2013-01-01

    An adenosine triphosphate (ATP) bioluminescence-based protocol was tested to assess the viability of fungal species in old documents damaged by foxing. Foxing appears as scattered yellow brownish-red stains, damaging the aesthetics of documents and their long-term readability. In the field of cultural heritage conservation, the debate over the mechanism of foxing is ongoing. Previous studies found evidence of mold-like structures in some coloured areas; however, many species have not yet been identified and their role in the phenomenon is not understood. To better understand their involvement in this type of paper decay, we focused our attention first on their viability. We demonstrated the reliability and sensitivity of the ATP bioluminescence assay compared with conventional methods based on cultivation, which has rarely given rise to in vitro growth from foxed papers. From nine books dating back from the 19th and 20th centuries, the mean ATP amount of foxed spots ranged from 0.29 to 3.63 ng/cm(2), suggesting the presence of strains inside the brownish spots and providing evidence of their viability. Outside the spots, ATP content was considered negligible, with a mean ATP amount of 0 to 0.03 ng/cm(2). ATP assay appears to be a useful and robust method for the detection and quantification of viable elements in foxing spots.

  7. In vivo visualization and monitoring of viable neural stem cells using noninvasive bioluminescence imaging in the 6-hydroxydopamine-induced mouse model of Parkinson disease.

    Science.gov (United States)

    Im, Hyung-Jun; Hwang, Do Won; Lee, Han Kyu; Jang, Jaeho; Lee, Song; Youn, Hyewon; Jin, Yeona; Kim, Seung U; Kim, E Edmund; Kim, Yong Sik; Lee, Dong Soo

    2013-06-01

    Transplantation of neural stem cells (NSCs) has been proposed as a treatment for Parkinson disease (PD). The aim of this study was to monitor the viability of transplanted NSCs expressing the enhanced luciferase gene in a mouse model of PD in vivo. The PD animal model was induced by unilateral injection of 6-hydroxydopamine (6-OHDA). The behavioral test using apomorphine-induced rotation and positron emission tomography with [18F]N-(3-fluoropropyl)-2'-carbomethoxy-3'-(4-iodophenyl)nortropane ([18F]FP-CIT) were conducted. HB1.F3 cells transduced with an enhanced firefly luciferase retroviral vector (F3-effLuc cells) were transplanted into the right striatum. In vivo bioluminescence imaging was repeated for 2 weeks. Four weeks after transplantation, [18F]FP-CIT PET and the rotation test were repeated. All 6-OHDA-injected mice showed markedly decreased [18F]FP-CIT uptake in the right striatum. Transplanted F3-effLuc cells were visualized on the right side of the brain in all mice by bioluminescence imaging. The bioluminescence intensity of the transplanted F3-effLuc cells gradually decreased until it was undetectable by 10 days. The behavioral test showed that stem cell transplantation attenuated the motor symptoms of PD. No significant change was found in [18F]FP-CIT imaging after cell transplantation. We successfully established an in vivo bioluminescence imaging system for the detection of transplanted NSCs in a mouse model of PD. NSC transplantation induced behavioral improvement in PD model mice.

  8. Tomography-based monitoring of isothermal snow metamorphism under advective conditions

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2015-02-01

    Full Text Available Time-lapse X-ray micro-tomography was used to investigate the structural dynamics of isothermal snow metamorphism exposed to an advective airflow. Diffusion and advection across the snow pores were analysed in controlled laboratory experiments. The 3-D digital geometry obtained by tomographic scans was used in direct pore-level numerical simulations to determine the effective transport properties. The results showed that isothermal advection with saturated air have no influence on the coarsening rate that is typical for isothermal snow metamorphism. Diffusion originating in the Kelvin effect between snow structures dominates and is the main transport process in isothermal snow packs.

  9. Towards multimodal detection of melanoma thickness based on optical coherence tomography and optoacoustics

    Science.gov (United States)

    Rahlves, M.; Varkentin, A.; Stritzel, J.; Blumenröther, E.; Mazurenka, M.; Wollweber, M.; Roth, B.

    2016-03-01

    Melanoma skin cancer has one of the highest mortality rates of all types of cancer if not detected at an early stage. The survival rate is highly dependent on its penetration depth, which is commonly determined by histopathology. In this work, we aim at combining optical coherence tomography and optoacoustic as a non-invasive all-optical method to measure the penetration depth of melanoma. We present our recent achievements to setup a handheld multimodal device and also results from first in vivo measurements on healthy and cancerous skin tissue, which are compared to measurements obtained by ultrasound and histopathology.

  10. An X-Ray Tomography Based Modeling Solution For Chemical Vapor Infiltration Of Ceramic Matrix Composites

    Science.gov (United States)

    Ros, William; Vignoles, Gérard L.; Germain, Christian

    2010-05-01

    A numerical tool for the simulation of Chemical Vapor Infiltration of carbon/carbon composites is introduced. The structure of the fibrous medium can be studied by high resolution X-Ray Computed Micro Tomography. Gas transport in various regimes is simulated by a random walk technique whilst the morphological evolution of the fluid/solid interface is handled by a Marching Cube technique. The program can be used to evaluate effective diffusivity and first order reaction rate. The numerical tool is validated by comparing computed effective properties of a straight slit pore with reactive walls to their analytical expression. Simulation of CVI processing of a real complex media is then presented.

  11. Three-dimensional computed tomography image based endovascular treatment for hepatic vein.

    Science.gov (United States)

    Ninomiya, Mizuki; Ikeda, Tetsuo; Shirabe, Ken; Kayashima, Hiroto; Harimoto, Norifumi; Iguchi, Tomohiro; Sugimachi, Keishi; Yamashita, Yo-Ichi; Ikegami, Toru; Saeki, Hiroshi; Oki, Eiji; Uchiyama, Hideaki; Yoshizumi, Tomoharu; Soejima, Yuji; Kawanaka, Hirofumi; Morita, Masaru; Maehara, Yoshihiko

    2013-11-01

    Along with the expansion of living donor liver transplantation, whereby hepatic venous anastomosis is mandatory, the frequency of hepatic venous stenosis that need interventional treatment is increasing. Due to its anatomical features, there are several pitfalls in the process of endovascular intervention for hepatic vein. Insufficient information of and around the hepatic vein may lead to miss-diagnosis of target lesion. Simulation by using three-dimensional computed tomography images was useful in planning the direction of X-ray projection and, as a consequence, contributed to safe endovascular treatment for hepatic venous stenosis.

  12. GPS-based ionospheric tomography with a constrained adaptive simultaneous algebraic reconstruction technique

    Indian Academy of Sciences (India)

    Wen Debao; Zhang Xiao; Tong Yangjin; Zhang Guangsheng; Zhang Min; Leng Rusong

    2015-03-01

    In this paper, a constrained adaptive simultaneous algebraic reconstruction technique (CASART) is presented to obtain high-quality reconstructions from insufficient projections. According to the continuous smoothness of the variations of ionospheric electron density (IED) among neighbouring voxels, Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the dependence on the initial values for those voxels without any GPS rays traversing them. Numerical simulation scheme is devised to validate the feasibility of the new algorithm. Some comparisons are made to demonstrate the superiority of the new method. Finally, the actual GPS observations are applied to further validate the feasibility and superiority of the new algorithm.

  13. A gel-based skin and blood flow model for a Doppler optical coherence tomography (DOCT) imaging system

    Science.gov (United States)

    Lawlor, Kate; O'Connell, Marie-Louise; Jonathan, Enock; Leahy, Martin J.

    2010-02-01

    Since its discovery in 1842 by Christian Johann Doppler, the Doppler Effect has had many applications in the scientific world. In recent years, the phenomenon has been integrated with Optical Coherence Tomography (OCT) yielding Doppler Optical Coherence Tomography (DOCT), a technique that is useful for high-resolution imaging of the skin microcirculation. However, interpretation of DOCT images is rather challenging. Thus, our study aims to aid understanding of DOCT images with respect to parameters of microcirculation components such as blood vessel size, depth and angular position. To this end, we have constructed a gel-based tissue and blood-flow model for performing DOCT studies under well controlled conditions. We present results from a pilot study using a gel-based tissue and blood flow model. Human blood was pumped through the model at various velocities from a commercial calibrated syringe pump, serving as a standard reference point for all velocity measurements. The range of velocity values was chosen to coincide with that found in the human vasculature. Simultaneous DOCT imaging at different flow rates contributed to establishing the capabilities and limitations of the DOCT system under investigation. We present preliminary results as first step to developing a robust validation protocol with which to aid future research in this area.

  14. Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method

    Institute of Scientific and Technical Information of China (English)

    鲍园; 王研; 高昆; 王志立; 朱佩平; 吴自玉

    2015-01-01

    The relationship between noise variance and spatial resolution in grating-based x-ray phase computed tomography (PCT) imaging is investigated with reverse projection extraction method, and the noise variances of the reconstructed absorption coefficient and refractive index decrement are compared. For the differential phase contrast method, the noise variance in the differential projection images follows the same inverse-square law with spatial resolution as in conventional absorption-based x-ray imaging projections. However, both theoretical analysis and simulations demonstrate that in PCT the noise variance of the reconstructed refractive index decrement scales with spatial resolution follows an inverse linear relationship at fixed slice thickness, while the noise variance of the reconstructed absorption coefficient conforms with the inverse cubic law. The results indicate that, for the same noise variance level, PCT imaging may enable higher spatial resolution than conventional absorption computed tomography (ACT), while ACT benefits more from degraded spatial resolution. This could be a useful guidance in imaging the inner structure of the sample in higher spatial resolution.

  15. Modelling dinoflagellates as an approach to the seasonal forecasting of bioluminescence in the North Atlantic

    Science.gov (United States)

    Marcinko, Charlotte L. J.; Martin, Adrian P.; Allen, John T.

    2014-11-01

    Bioluminescence within ocean surface waters is of significant interest because it can enhance the study of subsurface movement and organisms. Little is known about how bioluminescence potential (BPOT) varies spatially and temporally in the open ocean. However, light emitted from dinoflagellates often dominates the stimulated bioluminescence field. As a first step towards forecasting surface ocean bioluminescence in the open ocean, a simple ecological model is developed which simulates seasonal changes in dinoflagellate abundance. How forecasting seasonal changes in BPOT may be achieved through combining such a model with relationships derived from observations is discussed and an example is given. The study illustrates a potential new approach to forecasting BPOT through explicitly modelling the population dynamics of a prolific bioluminescent phylum. The model developed here offers a promising platform for the future operational forecasting of the broad temporal changes in bioluminescence within the North Atlantic. Such forecasting of seasonal patterns could provide valuable information for the targeting of scientific field campaigns.

  16. An image based vibration sensor for soft tissue modal analysis in a Digital Image Elasto Tomography (DIET) system.

    Science.gov (United States)

    Feng, Sheng; Lotz, Thomas; Chase, J Geoffrey; Hann, Christopher E

    2010-01-01

    Digital Image Elasto Tomography (DIET) is a non-invasive elastographic breast cancer screening technology, based on image-based measurement of surface vibrations induced on a breast by mechanical actuation. Knowledge of frequency response characteristics of a breast prior to imaging is critical to maximize the imaging signal and diagnostic capability of the system. A feasibility analysis for a non-invasive image based modal analysis system is presented that is able to robustly and rapidly identify resonant frequencies in soft tissue. Three images per oscillation cycle are enough to capture the behavior at a given frequency. Thus, a sweep over critical frequency ranges can be performed prior to imaging to determine critical imaging settings of the DIET system to optimize its tumor detection performance.

  17. Exploiting in vitro and in vivo bioluminescence for the implementation of the three Rs principle (replacement, reduction, and refinement) in drug discovery.

    Science.gov (United States)

    Michelini, Elisa; Cevenini, Luca; Calabretta, Maria Maddalena; Calabria, Donato; Roda, Aldo

    2014-09-01

    Bioluminescence-based analytical tools are suitable for high-throughput and high-content screening assays, finding widespread application in several fields related to the drug discovery process. Cell-based bioluminescence assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of drug screening. Reporter gene technology and the bioluminescence resonance energy transfer principle are widely used, and receptor binding studies of new agonists/antagonists for a variety of human receptors expressed in different cell lines can be performed. Moreover, bioluminescence can be used for in vitro and in vivo real-time monitoring of pathophysiological processes within living cells and small animals. New luciferases and substrates have recently arrived on the market, further expanding the spectrum of applications. A new generation of probes are also emerging that promise to revolutionize the preclinical imaging market. This formidable toolbox is demonstrated to facilitate the implementation of the three Rs principle in the early drug discovery process, in compliance with ethical and responsible research to reduce cost and improve the reliability and predictability of results.

  18. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.

    Science.gov (United States)

    Park, Chul Woo; Park, Ji-Woon; Lee, Sung Hwa; Hwang, Jungho

    2014-02-15

    In this study, we introduce a methodology for disrupting cell membranes with air ions coupled with ATP bioluminescence detection for real-time monitoring of bioaerosol concentrations. A carbon fiber ionizer was used to extract ATP from bacterial cells for generating ATP bioluminescence. Our methodology was tested using Staphylococcus epidermidis and Escherichia coli, which were aerosolized with an atomizer, and then indoor bioaerosols were also used for testing the methodology. Bioaerosol concentrations were estimated without culturing which requires several days for colony formation. Correlation equations were obtained for results acquired using our methodology (Relative Luminescent Unit (RLU)/m(3)) and a culture-based (Colony Forming Unit (CFU)/m(3)) method; CFU/m(3)=1.8 × measured RLU/m(3) for S. epidermidis and E. coli, and CFU/m(3)=1.1 × measured RLU/m(3) for indoor bioaerosols under the experimental conditions. Our methodology is an affordable solution for rapidly monitoring bioaerosols due to rapid detection time (cell-lysis time: 3 min; bioluminescence detection time: <1 min) and easy operation.

  19. The Muon Portal Project: Design and construction of a scanning portal based on muon tomography

    Science.gov (United States)

    Antonuccio, V.; Bandieramonte, M.; Becciani, U.; Bonanno, D. L.; Bonanno, G.; Bongiovanni, D.; Fallica, P. G.; Garozzo, S.; Grillo, A.; La Rocca, P.; Leonora, E.; Longhitano, F.; Lo Presti, D.; Marano, D.; Parasole, O.; Pugliatti, C.; Randazzo, N.; Riggi, F.; Riggi, S.; Romeo, G.; Romeo, M.; Russo, G. V.; Santagati, G.; Timpanaro, M. C.; Valvo, G.

    2017-02-01

    Cosmic ray tomography is a technique which exploits the multiple Coulomb scattering of highly penetrating cosmic ray-produced muons to perform non-destructive inspection of high-Z materials without the use of artificial radiation. A muon tomography detection system can be used as a portal monitor at border crossing points for detecting illegal targeted objects. The Muon Portal Project is a joint initiative between Italian research and industrial partners, aimed at the construction of a real size detector prototype (6×3×7 m3) for the inspection of cargo containers by the muon scattering technique. The detector consists of four XY tracking planes, two placed above and two below the container to be inspected. After a research and development phase, which led to the choice and test of the individual components, the construction and installation of the detection modules is almost completed. In this paper the present status of the Project is reported, focusing on the design and construction phase, as well as on the preliminary results obtained with the first detection planes.

  20. A bent Laue-Laue monochromator for a synchrotron-based computed tomography system

    CERN Document Server

    Ren, B; Chapman, L D; Ivanov, I; Wu, X Y; Zhong, Z; Huang, X

    1999-01-01

    We designed and tested a two-crystal bent Laue-Laue monochromator for wide, fan-shaped synchrotron X-ray beams for the program multiple energy computed tomography (MECT) at the National Synchrotron Light Source (NSLS). MECT employs monochromatic X-ray beams from the NSLS's X17B superconducting wiggler beamline for computed tomography (CT) with an improved image quality. MECT uses a fixed horizontal fan-shaped beam with the subject's apparatus rotating around a vertical axis. The new monochromator uses two Czochralski-grown Si crystals, 0.7 and 1.4 mm thick, respectively, and with thick ribs on their upper and lower ends. The crystals are bent cylindrically, with the axis of the cylinder parallel to the fan beam, using 4-rod benders with two fixed rods and two movable ones. The bent-crystal feature of the monochromator resolved the difficulties we had had with the flat Laue-Laue design previously used in MECT, which included (a) inadequate beam intensity, (b) excessive fluctuations in beam intensity, and (c) i...

  1. Locating Impedance Change in Electrical Impedance Tomography Based on Multilevel BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    彭源; 莫玉龙

    2003-01-01

    Electrical impedance tomography (EIT) is a new computer tomography technology, which reconstructs an impedance (resistivity, conductivity) distribution, or change of impedance, by making voltage and current measurements on the object's periphery.Image reconstruction in EIT is an ill-posed, non-linear inverse problem. A method for finding the place of impedance change in EIT is proposed in this paper, in which a multilevel BP neural network (MBPNN) is used to express the non-linear relation between theimpedance change inside the object and the voltage change measured on the surface of the object. Thus, the location of the impedance change can be decided by the measured voltage variation on the surface. The impedance change is then reconstructed using a linear approximate method. MBPNN can decide the impedance change location exactly without long training time. It alleviates some noise effects and can be expanded, ensuring high precision and space resolution of the reconstructed image that are not possible by using the back projection method.

  2. Impact of Anesthesia Protocols on In Vivo Bioluminescent Bacteria Imaging Results.

    Directory of Open Access Journals (Sweden)

    Thomas Chuzel

    Full Text Available Infectious murine models greatly benefit from optical imaging using bioluminescent bacteria to non-invasively and repeatedly follow in vivo bacterial infection. In this context, one of the most critical parameters is the bioluminescence sensitivity to reliably detect the smallest number of bacteria. Another critical point is the anesthetic approaches that have been demonstrated to impact the bioluminescence flux emission in studies with luciferase-transfected tumor cells. However, this impact has never been assessed on bacteria bioluminescent models. To this end, we investigated the effects of four anesthesia protocols on the bioluminescence flux in a central venous catheter murine model (SKH1-hr(hr mice infected by a bioluminescent S. aureus Xen36 strain. Bioluminescence imaging was performed on mice anesthetized by either ketamine/xylazine (with or without oxygen supplementation, or isoflurane carried with air or oxygen. Total flux emission was determined in vivo daily for 3 days and ex vivo at the end of the study together with a CFU counting of the biofilm in the catheter. Bioluminescence flux differences appear between the different anesthetic protocols. Using a ketamine/xylazine anesthesia (with air, bacteria detection was impossible since the bioluminescence signal remains in the background signal. Mice anesthetized with isoflurane and oxygen led to a signal significantly higher to the background all along the kinetics. The use of isoflurane in air presents a bioluminescence signal similar to the use of ketamine/xylazine with oxygen. These data highlight the importance of oxygen to improve bioluminescence flux by bacteria with isoflurane as well as with ketamine/xylazine anesthetics. As a conclusion, we recommend the use of isoflurane anesthetic with oxygen to increase the bioluminescence sensitivity in this kind of study.

  3. Impact of Anesthesia Protocols on In Vivo Bioluminescent Bacteria Imaging Results.

    Science.gov (United States)

    Chuzel, Thomas; Sanchez, Violette; Vandamme, Marc; Martin, Stéphane; Flety, Odile; Pager, Aurélie; Chabanel, Christophe; Magnier, Luc; Foskolos, Marie; Petit, Océane; Rokbi, Bachra; Chereul, Emmanuel

    2015-01-01

    Infectious murine models greatly benefit from optical imaging using bioluminescent bacteria to non-invasively and repeatedly follow in vivo bacterial infection. In this context, one of the most critical parameters is the bioluminescence sensitivity to reliably detect the smallest number of bacteria. Another critical point is the anesthetic approaches that have been demonstrated to impact the bioluminescence flux emission in studies with luciferase-transfected tumor cells. However, this impact has never been assessed on bacteria bioluminescent models. To this end, we investigated the effects of four anesthesia protocols on the bioluminescence flux in a central venous catheter murine model (SKH1-hr(hr) mice) infected by a bioluminescent S. aureus Xen36 strain. Bioluminescence imaging was performed on mice anesthetized by either ketamine/xylazine (with or without oxygen supplementation), or isoflurane carried with air or oxygen. Total flux emission was determined in vivo daily for 3 days and ex vivo at the end of the study together with a CFU counting of the biofilm in the catheter. Bioluminescence flux differences appear between the different anesthetic protocols. Using a ketamine/xylazine anesthesia (with air), bacteria detection was impossible since the bioluminescence signal remains in the background signal. Mice anesthetized with isoflurane and oxygen led to a signal significantly higher to the background all along the kinetics. The use of isoflurane in air presents a bioluminescence signal similar to the use of ketamine/xylazine with oxygen. These data highlight the importance of oxygen to improve bioluminescence flux by bacteria with isoflurane as well as with ketamine/xylazine anesthetics. As a conclusion, we recommend the use of isoflurane anesthetic with oxygen to increase the bioluminescence sensitivity in this kind of study.

  4. An Assessment and Annotated Bibliography of Marine Bioluminescence Research: 1979-1987.

    Science.gov (United States)

    1993-01-01

    1983). Speculations on the hydrogen peroxide and the photogenic cells are Colours of Marine Bioluminescence. Abstr., 15th associated with a brown...of the taxonomic distribution of Affinity of the Reduced Riboflavin 5’-Phosphate Site. bioluminescence among various groups of organisms Biochemistry...possible biological functions for for reduced riboflavin 5’-phosphate (FMNH,). The bioluminescence are explored. The spectral emission inhibitor was

  5. A study on bioluminescence and photoluminescence in the earthworm Eisenia lucens.

    Science.gov (United States)

    Pes, O; Midlik, A; Schlaghamersky, J; Zitnan, M; Taborsky, P

    2016-02-01

    Eisenia lucens is an earthworm living in the organic soil layer of decomposing wood. When irritated, the worm expels coelomic fluid through pores in its body wall, exhibiting blue-green bioluminescence. The mechanism of the bioluminescence, which seems to be different from other bioluminescence systems of terrestrial animals, has been studied in this work. Many lines of evidence indicate that riboflavin stored in coelomycetes plays an important role in this glowing reaction.

  6. Toxicological study of pesticides in air and precipitations of Paris by means of a bioluminescence method.

    Science.gov (United States)

    Trajkovska, S; Mbaye, M; Gaye Seye, M D; Aaron, J J; Chevreuil, M; Blanchoud, H

    2009-06-01

    A detailed toxicological study on several pesticides, including chlorothalonil, cyprodynil, dichlobénil, pendimethaline, trifluraline, and alpha-endosulfan, present at trace levels in air and total atmospheric precipitations of Paris is presented. The pesticides contained in the atmospheric samples, collected during sampling campaigns in February-March 2007, are identified and quantified by a high-performance liquid chromatographic (HPLC)-UV detection method. The toxicity measurements are performed by means of the Microtox bioluminescence method, based on the evaluation of the bioluminescence inhibition of the Vibrio fischeri marine bacteria at two exposure times to the pesticide solutions. The specific toxicity, corresponding to the particular toxicity of the compound under study and represented by the EC(50) parameter, is determined for these pesticides. Also, the global toxicity, which is the toxicity of all micro-pollutants present in the sample under study, is estimated for the extracts of air and atmospheric precipitation (rainwater) samples. The specific toxicities strongly vary with the nature of the pesticide, the EC(50) parameter values being comprised between 0.17 and 0.83 mg/mL and 0.15 and 0.66 mg/mL, respectively, for exposure times of 5 and 15 min. The importance of the atmospheric samples' global toxicity and the respective contribution of the toxic potency of the various pesticides contained in these samples are discussed.

  7. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Science.gov (United States)

    Martin, Jean-René; Rogers, Kelly L; Chagneau, Carine; Brûlet, Philippe

    2007-03-07

    Many different cells' signalling pathways are universally regulated by Ca(2+) concentration [Ca(2+)] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+) signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+) signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+) imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+) reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+)] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+) response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+)] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca(2+)] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+) stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+) signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  8. In vivo Bioluminescence Imaging of Ca2+ Signalling in the Brain of Drosophila

    Science.gov (United States)

    Chagneau, Carine; Brûlet, Philippe

    2007-01-01

    Many different cells' signalling pathways are universally regulated by Ca2+ concentration [Ca2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca2+ reporter GFP-aequorin (GA) in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca2+] transients in the Mushroom Bodies (MBs) following nicotine stimulation were accompanied by a delayed secondary [Ca2+] rise (up to 15 min. later) in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain. PMID:17342209

  9. Molecular phylogeny and node time estimation of bioluminescent Lantern Sharks (Elasmobranchii: Etmopteridae).

    Science.gov (United States)

    Straube, Nicolas; Iglésias, Samuel P; Sellos, Daniel Y; Kriwet, Jürgen; Schliewen, Ulrich K

    2010-09-01

    Deep-sea Lantern Sharks (Etmopteridae) represent the most speciose family within Dogfish Sharks (Squaliformes). We compiled an extensive DNA dataset to estimate the first molecular phylogeny of the family and to provide node age estimates for the origin and diversification for this enigmatic group. Phylogenetic inferences yielded consistent and well supported hypotheses based on 4685bp of both nuclear (RAG1) and mitochondrial genes (COI, 12S-partial 16S, tRNAVal and tRNAPhe). The monophyletic family Etmopteridae originated in the early Paleocene around the C/T boundary, and split further into four morphologically distinct lineages supporting three of the four extant genera. The exception is Etmopterus which is paraphyletic with respect to Miroscyllium. Subsequent rapid radiation within Etmopterus in the Oligocene/early Miocene was accompanied by divergent evolution of bioluminescent flank markings which morphologically characterize the four lineages. Higher squaliform interrelationships could not be satisfactorily identified, but convergent evolution of bioluminescence in Dalatiidae and Etmopteridae is supported.

  10. In vivo bioluminescence imaging of Ca signalling in the brain of Drosophila.

    Directory of Open Access Journals (Sweden)

    Jean-René Martin

    Full Text Available Many different cells' signalling pathways are universally regulated by Ca(2+ concentration [Ca(2+] rises that have highly variable amplitudes and kinetic properties. Optical imaging can provide the means to characterise both the temporal and spatial aspects of Ca(2+ signals involved in neurophysiological functions. New methods for in vivo imaging of Ca(2+ signalling in the brain of Drosophila are required for probing the different dynamic aspects of this system. In studies here, whole brain Ca(2+ imaging was performed on transgenic flies with targeted expression of the bioluminescent Ca(2+ reporter GFP-aequorin (GA in different neural structures. A photon counting based technique was used to undertake continuous recordings of cytosolic [Ca(2+] over hours. Time integrals for reconstructing images and analysis of the data were selected offline according to the signal intensity. This approach allowed a unique Ca(2+ response associated with cholinergic transmission to be identified by whole brain imaging of specific neural structures. Notably, [Ca(2+] transients in the Mushroom Bodies (MBs following nicotine stimulation were accompanied by a delayed secondary [Ca(2+] rise (up to 15 min. later in the MB lobes. The delayed response was sensitive to thapsigargin, suggesting a role for intra-cellular Ca(2+ stores. Moreover, it was reduced in dunce mutant flies, which are impaired in learning and memory. Bioluminescence imaging is therefore useful for studying Ca(2+ signalling pathways and for functional mapping of neurophysiological processes in the fly brain.

  11. The reaction process of firefly bioluminescence triggered by photolysis of caged-ATP.

    Science.gov (United States)

    Kageyama, Takeshi; Tanaka, Masatoshi; Sekiya, Takao; Ohno, Shin-Ya; Wada, Naohisa

    2011-01-01

    The reaction process of firefly bioluminescence was studied by photolyzing caged-ATP to adenosine triphosphate (ATP) within 100 ms. The intensity of luminescence increases markedly to reach a maximum within 1 s, maintains almost the same intensity up to 5 s and then decays monotonically. The rise γ(1) and decay γ(2) rate constants were determined to be about 5 s(-1) and 1 × 10(-2) s(-1), respectively, so as to phenomenologically fit the time course. A second luminescence peak appears after around 350 s. The dependence of the rate constants on the concentrations of reactants and a viscous reagent revealed that two kinds of reaction contribute the observed time course: (1) an intrinsic reaction by ATP photolyzed from caged-ATP that is already trapped in luciferase; and (2) a diffusion-controlled reaction by free ATP in the buffer solution outside luciferase. Numerical analysis based on reaction kinetics related γ(1) and γ(2) to the rate constants of a three-step reaction model, and accurately described the effects of concentration of reactants and a viscous reagent on the time courses of bioluminescence. Thus, it has been clearly concluded that the binding mode of caged-ATP at the catalytic center of luciferase is very different from that of ATP.

  12. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a Muon Tomography station based on GEM detectors

    CERN Document Server

    Gnanvo, Kondo; Hohlmann, Marcus; Locke, Judson B; Quintero, Amilkar S; Mitra, Debasis

    2010-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30cm \\times 30cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (~0.03 liters) using GEM-based Muon Tomography.

  13. Monitoring of Bioluminescent Lactobacillus plantarum in a Complex Food Matrix

    Science.gov (United States)

    Narbad, Arjan

    2017-01-01

    A bioluminescent Lactobacillus plantarum (pLuc2) strain was constructed. The luminescent signal started to increase during the early exponential phase and reached its maximum in the mid-exponential phase in a batch culture of the strain. The signal detection sensitivity of the strain was the highest in PBS (phosphate buffered saline), followed by milk and MRS broth, indicating that the sensitivity was influenced by the matrix effect. The strain was used in millet seed fermentation which has a complex matrix and native lactic acid bacteria (LAB). The luminescent signal was gradually increased until 9 h during fermentation and abolished at 24 h, indicating that the strain could be specifically tracked in the complex matrix and microflora. Therefore, the bioluminescent labeling system can be used for monitoring LAB in food and dairy sciences and industries. PMID:28316482

  14. Fluorescence and Bioluminescence Imaging of Orthotopic Brain Tumors in Mice.

    Science.gov (United States)

    McKinnon, Emilie; Moore, Alfred; Dixit, Suraj; Zhu, Yun; Broome, Ann-Marie

    2017-01-01

    Optical imaging strategies, such as fluorescence and bioluminescence imaging, are non-invasive, in vivo whole body imaging techniques utilized to study cancer. Optical imaging is widely used in preclinical work because of its ease of use and cost-friendliness. It also provides the opportunity to study animals and biological responses longitudinally over time. Important considerations include depth of tissue penetration, photon scattering, absorption and the choice of light emitting probe, all of which affect the resolution (image quality and data information) and the signal to noise ratio of the image. We describe how to use bioluminescence and fluorescence imaging to track a chemotherapeutic delivery nanocarrier conjugated with a fluorophore to determine its localization in vivo.

  15. Determination of solute site occupancies within γ' precipitates in nickel-base superalloys via orientation-specific atom probe tomography.

    Science.gov (United States)

    Meher, S; Rojhirunsakool, T; Nandwana, P; Tiley, J; Banerjee, R

    2015-12-01

    The analytical limitations in atom probe tomography such as resolving a desired set of atomic planes, for solving complex materials science problems, have been overcome by employing a well-developed unique and reproducible crystallographic technique, involving synergetic coupling of orientation microscopy with atom probe tomography. The crystallographic information in atom probe reconstructions has been utilized to determine the solute site occupancies in Ni-Al-Cr based superalloys accurately. The structural information in atom probe reveals that both Al and Cr occupy the same sub-lattice within the L12-ordered γ' precipitates to form Ni3(Al,Cr) precipitates in a Ni-14Al-7Cr (at%) alloy. Interestingly, the addition of Co, which is a solid solution strengthener, to a Ni-14Al-7Cr alloy results in the partial reversal of Al site occupancy within γ' precipitates to form (Ni,Al)3(Al,Cr,Co) precipitates. This unique evidence of reversal of Al site occupancy, resulting from the introduction of other solutes within the ordered structures, gives insights into the relative energetics of different sub-lattice sites when occupied by different solutes.

  16. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography.

    Science.gov (United States)

    Pahlevaninezhad, Hamid; Lee, Anthony M D; Shaipanich, Tawimas; Raizada, Rashika; Cahill, Lucas; Hohert, Geoffrey; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-09-01

    We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.

  17. Advanced 3D textile composites reinforcements meso F.E analyses based on X-ray computed tomography

    Science.gov (United States)

    Naouar, Naim; Vidal-Salle, Emmanuelle; Boisse, Philippe

    2016-10-01

    Meso-FE modelling of 3D textile composites is a powerful tool, which can help determine mechanical properties and permeability of the reinforcements or composites. The quality of the meso FE analyses depends on the quality of the initial model. A direct method based on X-ray tomography imaging is introduced to determine finite element models based on the real geometry of 3D composite reinforcements. The method is particularly suitable regarding 3D textile reinforcements for which internal geometries are numerous and complex. The approach used for the separation of the yarns in different directions is specialized because the fibres flow in three-dimensional space. An analysis of the image's texture is performed. A hyperelastic model developed for fibre bundles is used for the simulation of the deformation of the 3D reinforcement.

  18. A pseudo-discrete algebraic reconstruction technique (PDART) prior image-based suppression of high density artifacts in computed tomography

    Science.gov (United States)

    Pua, Rizza; Park, Miran; Wi, Sunhee; Cho, Seungryong

    2016-12-01

    We propose a hybrid metal artifact reduction (MAR) approach for computed tomography (CT) that is computationally more efficient than a fully iterative reconstruction method, but at the same time achieves superior image quality to the interpolation-based in-painting techniques. Our proposed MAR method, an image-based artifact subtraction approach, utilizes an intermediate prior image reconstructed via PDART to recover the background information underlying the high density objects. For comparison, prior images generated by total-variation minimization (TVM) algorithm, as a realization of fully iterative approach, were also utilized as intermediate images. From the simulation and real experimental results, it has been shown that PDART drastically accelerates the reconstruction to an acceptable quality of prior images. Incorporating PDART-reconstructed prior images in the proposed MAR scheme achieved higher quality images than those by a conventional in-painting method. Furthermore, the results were comparable to the fully iterative MAR that uses high-quality TVM prior images.

  19. Bacterial bioluminescence and Gumbel statistics: From quorum sensing to correlation

    Science.gov (United States)

    Delle Side, Domenico; Velardi, Luciano; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Talà, Adelfia; Salvatore Tredici, Maurizio

    2013-12-01

    We show that, in particular experimental conditions, the time course of the radiant fluxes, measured from a bioluminescent emission of a Vibrio harveyi related strain, collapse after suitable rescaling onto the Gumbel distribution of extreme value theory. We argue that the activation times of the strain luminous emission follow the universal behavior described by this statistical law, in spite of the fact that no extremal process is known to occur.

  20. Regulation of Bioluminescence in Photobacterium leiognathi Strain KNH6

    OpenAIRE

    Dunn, Anne K.; Rader, Bethany A.; Stabb, Eric V.; Mandel, Mark J.

    2015-01-01

    Bacterial bioluminescence is taxonomically restricted to certain proteobacteria, many of which belong to the Vibrionaceae. In the most well-studied cases, pheromone signaling plays a key role in regulation of light production. However, previous reports have indicated that certain Photobacterium strains do not use this regulatory method for controlling luminescence. In this study, we combined genome sequencing with genetic approaches to characterize the regulation of luminescence in Photobacte...

  1. A human brainstem glioma xenograft model enabled for bioluminescence imaging

    OpenAIRE

    Hashizume, Rintaro; Ozawa, Tomoko; Dinca, Eduard B.; Banerjee, Anuradha; Prados, Michael D.; James, Charles D.; Gupta, Nalin

    2009-01-01

    Despite the use of radiation and chemotherapy, the prognosis for children with diffuse brainstem gliomas is extremely poor. There is a need for relevant brainstem tumor models that can be used to test new therapeutic agents and delivery systems in pre-clinical studies. We report the development of a brainstem-tumor model in rats and the application of bioluminescence imaging (BLI) for monitoring tumor growth and response to therapy as part of this model. Luciferase-modified human glioblastoma...

  2. Bioluminescence imaging of estrogen receptor activity during breast cancer progression.

    Science.gov (United States)

    Vantaggiato, Cristina; Dell'Omo, Giulia; Ramachandran, Balaji; Manni, Isabella; Radaelli, Enrico; Scanziani, Eugenio; Piaggio, Giulia; Maggi, Adriana; Ciana, Paolo

    2016-01-01

    Estrogen receptors (ER) are known to play an important regulatory role in mammary gland development as well as in its neoplastic transformation. Although several studies highlighted the contribution of ER signaling in the breast transformation, little is known about the dynamics of ER state of activity during carcinogenesis due to the lack of appropriate models for measuring the extent of receptor signaling in time, in the same animal. To this aim, we have developed a reporter mouse model for the non-invasive in vivo imaging of ER activity: the ERE-Luc reporter mouse. ERE-Luc is a transgenic mouse generated with a firefly luciferase (Luc) reporter gene driven by a minimal promoter containing an estrogen responsive element (ERE). This model allows to measure receptor signaling in longitudinal studies by bioluminescence imaging (BLI). Here, we have induced sporadic mammary cancers by treating systemically ERE-Luc reporter mice with DMBA (9,10-dimethyl 1,2-benzanthracene) and measured receptor signaling by in vivo imaging in individual animals from early stage until a clinically palpable tumor appeared in the mouse breast. We showed that DMBA administration induces an increase of bioluminescence in the whole abdominal area 6 h after treatment, the signal rapidly disappears. Several weeks later, strong bioluminescence is observed in the area corresponding to the mammary glands. In vivo and ex vivo imaging analysis demonstrated that this bioluminescent signal is localized in the breast area undergoing neoplastic transformation. We conclude that this non-invasive assay is a novel relevant tool to identify the activation of the ER signaling prior the morphological detection of the neoplastic transformation.

  3. Guided-wave tomography imaging plate defects by laser-based ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Pil; Lim, Ju Young; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Pusan (Korea, Republic of)

    2014-12-15

    Contact-guided-wave tests are impractical for investigating specimens with limited accessibility and rough surfaces or complex geometric features. A non-contact setup with a laser-ultrasonic transmitter and receiver is quite attractive for guided-wave inspection. In the present work, we developed a non-contact guided-wave tomography technique using the laser-ultrasonic technique in a plate. A method for Lamb-wave generation and detection in an aluminum plate with a pulsed laser-ultrasonic transmitter and Michelson-interferometer receiver was developed. The defect shape and area in the images obtained using laser scanning, showed good agreement with the actual defect. The proposed approach can be used as a non-contact online inspection and monitoring technique.

  4. Parallel programming of gradient-based iterative image reconstruction schemes for optical tomography.

    Science.gov (United States)

    Hielscher, Andreas H; Bartel, Sebastian

    2004-02-01

    Optical tomography (OT) is a fast developing novel imaging modality that uses near-infrared (NIR) light to obtain cross-sectional views of optical properties inside the human body. A major challenge remains the time-consuming, computational-intensive image reconstruction problem that converts NIR transmission measurements into cross-sectional images. To increase the speed of iterative image reconstruction schemes that are commonly applied for OT, we have developed and implemented several parallel algorithms on a cluster of workstations. Static process distribution as well as dynamic load balancing schemes suitable for heterogeneous clusters and varying machine performances are introduced and tested. The resulting algorithms are shown to accelerate the reconstruction process to various degrees, substantially reducing the computation times for clinically relevant problems.

  5. Image reconstruction algorithms for electrical capacitance tomography based on ROF model using new numerical techniques

    Science.gov (United States)

    Chen, Jiaoxuan; Zhang, Maomao; Liu, Yinyan; Chen, Jiaoliao; Li, Yi

    2017-03-01

    Electrical capacitance tomography (ECT) is a promising technique applied in many fields. However, the solutions for ECT are not unique and highly sensitive to the measurement noise. To remain a good shape of reconstructed object and endure a noisy data, a Rudin–Osher–Fatemi (ROF) model with total variation regularization is applied to image reconstruction in ECT. Two numerical methods, which are simplified augmented Lagrangian (SAL) and accelerated alternating direction method of multipliers (AADMM), are innovatively introduced to try to solve the above mentioned problems in ECT. The effect of the parameters and the number of iterations for different algorithms, and the noise level in capacitance data are discussed. Both simulation and experimental tests were carried out to validate the feasibility of the proposed algorithms, compared to the Landweber iteration (LI) algorithm. The results show that the SAL and AADMM algorithms can handle a high level of noise and the AADMM algorithm outperforms other algorithms in identifying the object from its background.

  6. Wide-field optical coherence tomography based microangiography for retinal imaging

    Science.gov (United States)

    Zhang, Qinqin; Lee, Cecilia S.; Chao, Jennifer; Chen, Chieh-Li; Zhang, Thomas; Sharma, Utkarsh; Zhang, Anqi; Liu, Jin; Rezaei, Kasra; Pepple, Kathryn L.; Munsen, Richard; Kinyoun, James; Johnstone, Murray; van Gelder, Russell N.; Wang, Ruikang K.

    2016-02-01

    Optical coherence tomography angiography (OCTA) allows for the evaluation of functional retinal vascular networks without a need for contrast dyes. For sophisticated monitoring and diagnosis of retinal diseases, OCTA capable of providing wide-field and high definition images of retinal vasculature in a single image is desirable. We report OCTA with motion tracking through an auxiliary real-time line scan ophthalmoscope that is clinically feasible to image functional retinal vasculature in patients, with a coverage of more than 60 degrees of retina while still maintaining high definition and resolution. We demonstrate six illustrative cases with unprecedented details of vascular involvement in retinal diseases. In each case, OCTA yields images of the normal and diseased microvasculature at all levels of the retina, with higher resolution than observed with fluorescein angiography. Wide-field OCTA technology will be an important next step in augmenting the utility of OCT technology in clinical practice.

  7. Tetrahedron-based orthogonal simultaneous scan for cone-beam computed tomography.

    Science.gov (United States)

    Ye, Ivan B; Wang, Ge

    2012-08-01

    In this article, a cone-beam computed tomography scanning mode is designed using four x-ray sources and a spherical sample. The x-ray sources are mounted at the vertices of a regular tetrahedron. On the circumsphere of the tetrahedron, four detection panels are mounted opposite of each vertex. To avoid x-ray interference, the largest half angle of each x-ray cone beam is 27°22', while the radius of the largest ball fully covered by all the cone beams is 0.460, when the radius of the circumsphere is 1. A proposed scanning scheme consists of two rotations about orthogonal axes, such that, each quarter turn provides sufficient data for theoretically exact and stable reconstruction. This design can be used in biomedical or industrial settings, such as when a sequence of reconstructions of an object is desired.

  8. Avaliação da qualidade microbiológica de bebida láctea e creme de leite UAT por ATP-Bioluminescência Evaluation of microbiological quality of UHT milk drink and UHT milk cream by ATP-Bioluminescence

    Directory of Open Access Journals (Sweden)

    A.F. Cunha

    2013-04-01

    Full Text Available Embora métodos tradicionais sejam utilizados na avaliação microbiológica de produtos UAT, metodologias rápidas, baseadas em ATP-Bioluminescência, têm sido desenvolvidas. Os resultados da aplicação dessa técnica em 54 amostras de bebida láctea UAT achocolatada e 12 de creme de leite UAT foram comparados com os resultados de métodos microbiológicos, utilizando-se diferentes meios de cultura e tempos de incubação das referidas amostras. A técnica de ATP-Bioluminescência foi aplicada por meio do sistema MLS, e os resultados foram expressos em unidades relativas de luz (RLU. Em todos os tempos de incubação - 48, 72 e 168 horas - , as amostras apresentaram contagens baixas de microrganismos mesófilos e psicrotróficos aeróbios quando analisadas em meio PCA, BHI, PetrifilmTM AC e por ATP-Bioluminescência (Although traditional methods are used for the microbiological evaluation of UHT products, rapid methodologies based on ATP-Bioluminescence have been developed. The results of applying this technique in 54 samples of chocolate UHT milk drink and 12 of UHT milk cream were compared with the results of microbiological methods, using different culture media and incubation times for the referred samples. The ATP-Bioluminescence technique was applied through the MLS system and the results were expressed as relative light units (RLU. In all incubation times - 48, 72, and 168 hours - , the samples showed lower counts of mesophilic and psychrotrophic aerobic microorganisms when analyzed using PCA, BHI, PetrifilmTM AC and ATP-Bioluminescence (<150RLU, demonstrating the technique's high specificity. Only one sample of UHT milk cream showed a mesophilic aerobic count above the standard established by Brazilian legislation (<100CFU/mL when analyzed in PCA (260 CFU/mL and PetrifilmTM AC (108CFU/mL at 168 hours. This high count of aerobic mesophilic microorganisms was also detected by the ATP-Bioluminescence (416 RLU technique. The results of

  9. Markov Random Field Based Automatic Image Alignment for ElectronTomography

    Energy Technology Data Exchange (ETDEWEB)

    Moussavi, Farshid; Amat, Fernando; Comolli, Luis R.; Elidan, Gal; Downing, Kenneth H.; Horowitz, Mark

    2007-11-30

    Cryo electron tomography (cryo-ET) is the primary method for obtaining 3D reconstructions of intact bacteria, viruses, and complex molecular machines ([7],[2]). It first flash freezes a specimen in a thin layer of ice, and then rotates the ice sheet in a transmission electron microscope (TEM) recording images of different projections through the sample. The resulting images are aligned and then back projected to form the desired 3-D model. The typical resolution of biological electron microscope is on the order of 1 nm per pixel which means that small imprecision in the microscope's stage or lenses can cause large alignment errors. To enable a high precision alignment, biologists add a small number of spherical gold beads to the sample before it is frozen. These beads generate high contrast dots in the image that can be tracked across projections. Each gold bead can be seen as a marker with a fixed location in 3D, which provides the reference points to bring all the images to a common frame as in the classical structure from motion problem. A high accuracy alignment is critical to obtain a high resolution tomogram (usually on the order of 5-15nm resolution). While some methods try to automate the task of tracking markers and aligning the images ([8],[4]), they require user intervention if the SNR of the image becomes too low. Unfortunately, cryogenic electron tomography (or cryo-ET) often has poor SNR, since the samples are relatively thick (for TEM) and the restricted electron dose usually results in projections with SNR under 0 dB. This paper shows that formulating this problem as a most-likely estimation task yields an approach that is able to automatically align with high precision cryo-ET datasets using inference in graphical models. This approach has been packaged into a publicly available software called RAPTOR-Robust Alignment and Projection estimation for Tomographic Reconstruction.

  10. In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy

    Science.gov (United States)

    Ando, Yoriko; Sakurai, Takashi; Koida, Kowa; Tei, Hajime; Hida, Akiko; Nakao, Kazuki; Natsume, Mistuo; Numano, Rika

    2016-01-01

    Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner. PMID:27231601

  11. In vivo bioluminescence and reflectance imaging of multiple organs in bioluminescence reporter mice by bundled-fiber-coupled microscopy.

    Science.gov (United States)

    Ando, Yoriko; Sakurai, Takashi; Koida, Kowa; Tei, Hajime; Hida, Akiko; Nakao, Kazuki; Natsume, Mistuo; Numano, Rika

    2016-03-01

    Bioluminescence imaging (BLI) is used in biomedical research to monitor biological processes within living organisms. Recently, fiber bundles with high transmittance and density have been developed to detect low light with high resolution. Therefore, we have developed a bundled-fiber-coupled microscope with a highly sensitive cooled-CCD camera that enables the BLI of organs within the mouse body. This is the first report of in vivo BLI of the brain and multiple organs in luciferase-reporter mice using bundled-fiber optics. With reflectance imaging, the structures of blood vessels and organs can be seen clearly with light illumination, and it allowed identification of the structural details of bioluminescence images. This technique can also be applied to clinical diagnostics in a low invasive manner.

  12. Synchronization of circadian bioluminescence as a group-foraging strategy in cave glowworms.

    Science.gov (United States)

    Maynard, Andrew J; Merritt, David J

    2013-07-01

    Flies of the genus Arachnocampa are sit-and-lure predators that use bioluminescence to attract flying prey to their silk webs. Some species are most common in rainforest habitat and others inhabit both caves and rainforest. We have studied the circadian regulation of bioluminescence in two species: one found in subtropical rainforest with no known cave populations and the other found in temperate rainforest with large populations in limestone caves. The rainforest species is typical of most nocturnal animals in that individuals are entrained by the light:dark (LD) cycle to be active at night; in this case, their propensity to bioluminesce is greatest at night. The dual-habitat species shows an opposite phase response to the same entrainment; its bioluminescence propensity rhythm is entrained by LD exposure to peak during the day. Nevertheless, in LD environments, individuals do not bioluminesce during the day because ambient light inhibits their bioluminescence (negative masking), pushing bioluminescence into the dark period. This unusual and unexpected phenomenon could be related to their association with caves and has been suggested to be an adaptation of the circadian system that promotes synchronization of a colony's output of bioluminescence. Here, we use controlled laboratory experiments to show that individuals do synchronize their bioluminescence rhythms when in visual contact with each other. Entrainment of the bioluminescence rhythm to the biological photophase causes colony-wide synchronization, creating a daily sinusoidal rhythm of the intensity of bioluminescence in the many thousands of individuals making up a colony. This synchronization could provide a group-foraging advantage, allowing the colony to glow most brightly when the prey are most likely to be active.

  13. Conventional four field radiotherapy versus computed tomography-based treatment planning in cancer cervix: A dosimetric study

    Directory of Open Access Journals (Sweden)

    Abhishek Gulia

    2013-01-01

    Full Text Available Background: With advancements in imaging, wide variations in pelvic anatomy have been observed, thus raising doubts about adequate target volume coverage by conventional external radiotherapy fields based on bony landmarks. The present study evaluates the need for integrating computed tomography (CT-based planning in the treatment of carcinoma cervix. Aims: To estimate inadequacies in target volume coverage when using conventional planning based on bony landmarks. Materials and Methods: The study consisted of 50 patients. Target volume delineation was done on planning CT scans, according to the guidelines given in literature. The volume of target receiving 95% of prescribed dose (V95 was calculated after superimposing a conventional four field box on digitally reconstructed radiograph. The geographic miss with conventional four field box technique was compared with the CT-based target volume delineation. Results: In 48 out of 50 patients, the conventional four field box failed to encompass the target volume. The areas of miss were at the superior and lateral borders of the anterior-posterior fields, and the anterior border of the lateral fields. The median V95 for conventional fields marked with bony landmarks was only 89.4% as compared to 93% for target delineation based on CT contouring. Conclusions: Our study shows inadequate target volume coverage with conventional four field box technique. We recommend routine use of CT-based planning for treatment with radiotherapy in carcinoma cervix.

  14. GPU-accelerated non-uniform fast Fourier transform-based compressive sensing spectral domain optical coherence tomography.

    Science.gov (United States)

    Xu, Daguang; Huang, Yong; Kang, Jin U

    2014-06-16

    We implemented the graphics processing unit (GPU) accelerated compressive sensing (CS) non-uniform in k-space spectral domain optical coherence tomography (SD OCT). Kaiser-Bessel (KB) function and Gaussian function are used independently as the convolution kernel in the gridding-based non-uniform fast Fourier transform (NUFFT) algorithm with different oversampling ratios and kernel widths. Our implementation is compared with the GPU-accelerated modified non-uniform discrete Fourier transform (MNUDFT) matrix-based CS SD OCT and the GPU-accelerated fast Fourier transform (FFT)-based CS SD OCT. It was found that our implementation has comparable performance to the GPU-accelerated MNUDFT-based CS SD OCT in terms of image quality while providing more than 5 times speed enhancement. When compared to the GPU-accelerated FFT based-CS SD OCT, it shows smaller background noise and less side lobes while eliminating the need for the cumbersome k-space grid filling and the k-linear calibration procedure. Finally, we demonstrated that by using a conventional desktop computer architecture having three GPUs, real-time B-mode imaging can be obtained in excess of 30 fps for the GPU-accelerated NUFFT based CS SD OCT with frame size 2048(axial) × 1,000(lateral).

  15. Ultra-thin and flexible endoscopy probe for optical coherence tomography based on stepwise transitional core fiber.

    Science.gov (United States)

    Lee, Jangbeom; Chae, Yugyeong; Ahn, Yeh-Chan; Moon, Sucbei

    2015-05-01

    We present an ultra-thin fiber-body endoscopy probe for optical coherence tomography (OCT) which is based on a stepwise transitional core (STC) fiber. In a minimalistic design, our probe was made of spliced specialty fibers that could be directly used for beam probing optics without using a lens. In our probe, the OCT light delivered through a single-mode fiber was efficiently expanded to a large mode field of 24 μm diameter for a low beam divergence. The size of our probe was 85 μm in the probe's diameter while operated in a 160-μm thick protective tubing. Through theoretical and experimental analyses, our probe was found to exhibit various attractive features in terms of compactness, flexibility and reliability along with its excellent fabrication simplicity.

  16. High-dynamic-range microscope imaging based on exposure bracketing in full-field optical coherence tomography.

    Science.gov (United States)

    Leong-Hoi, Audrey; Montgomery, Paul C; Serio, Bruno; Twardowski, Patrice; Uhring, Wilfried

    2016-04-01

    By applying the proposed high-dynamic-range (HDR) technique based on exposure bracketing, we demonstrate a meaningful reduction in the spatial noise in image frames acquired with a CCD camera so as to improve the fringe contrast in full-field optical coherence tomography (FF-OCT). This new signal processing method thus allows improved probing within transparent or semitransparent samples. The proposed method is demonstrated on 3 μm thick transparent polymer films of Mylar, which, due to their transparency, produce low contrast fringe patterns in white-light interference microscopy. High-resolution tomographic analysis is performed using the technique. After performing appropriate signal processing, resulting XZ sections are observed. Submicrometer-sized defects can be lost in the noise that is present in the CCD images. With the proposed method, we show that by increasing the signal-to-noise ratio of the images, submicrometer-sized defect structures can thus be detected.

  17. A simulation-based study on the influence of beam hardening in X-ray computed tomography for dimensional metrology.

    Science.gov (United States)

    Lifton, Joseph J; Malcolm, Andrew A; McBride, John W

    2015-01-01

    X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.

  18. Minimal elastographic modeling of breast cancer for model based tumor detection in a digital image elasto tomography (DIET) system

    Science.gov (United States)

    Lotz, Thomas F.; Muller, Natalie; Hann, Christopher E.; Chase, J. Geoffrey

    2011-03-01

    Digital Image Elasto Tomography (DIET) is a non-invasive breast cancer screening technology that images the surface motion of a breast under harmonic mechanical actuation. A new approach capturing the dynamics and characteristics of tumor behavior is presented. A simple mechanical model of the breast is used to identify a transfer function relating the input harmonic actuation to the output surface displacements using imaging data of a silicone phantom. Areas of higher stiffness cause significant changes of damping and resonant frequencies as seen in the resulting Bode plots. A case study on a healthy and tumor silicone breast phantom shows the potential for this model-based method to clearly distinguish cancerous and healthy tissue as well as correctly predicting the tumor position.

  19. Noise-based body-wave seismic tomography in an active underground mine.

    Science.gov (United States)

    Olivier, G.; Brenguier, F.; Campillo, M.; Lynch, R.; Roux, P.

    2014-12-01

    Over the last decade, ambient noise tomography has become increasingly popular to image the earth's upper crust. The seismic noise recorded in the earth's crust is dominated by surface waves emanating from the interaction of the ocean with the solid earth. These surface waves are low frequency in nature ( noise recorded at higher frequencies are typically from anthropogenic sources, which are short lived, spatially unstable and not well suited for constructing seismic Green's functions between sensors with conventional cross-correlation methods. To examine the use of ambient noise tomography for smaller scale applications, continuous data were recorded for 5 months in an active underground mine in Sweden located more than 1km below surface with 18 high frequency seismic sensors. A wide variety of broadband (10 - 3000 Hz) seismic noise sources are present in an active underground mine ranging from drilling, scraping, trucks, ore crushers and ventilation fans. Some of these sources generate favorable seismic noise, while others are peaked in frequency and not usable. In this presentation, I will show that the noise generated by mining activity can be useful if periods of seismic noise are carefully selected. Although noise sources are not temporally stable and not evenly distributed around the sensor array, good estimates of the seismic Green's functions between sensors can be retrieved for a broad frequency range (20 - 400 Hz) when a selective stacking scheme is used. For frequencies below 100 Hz, the reconstructed Green's functions show clear body-wave arrivals for almost all of the 153 sensor pairs. The arrival times of these body-waves are picked and used to image the local velocity structure. The resulting 3-dimensional image shows a high velocity structure that overlaps with a known ore-body. The material properties of the ore-body differ from the host rock and is likely the cause of the observed high velocity structure. For frequencies above 200 Hz, the

  20. Application value of ATP based bioluminescence tumor chemo-sensitivity assay in the chemotherapy for ascites caused by recurrent ovarian cancer%ATP生物荧光肿瘤药敏在复发卵巢癌并腹水化疗中的应用价值

    Institute of Scientific and Technical Information of China (English)

    Kaijian Lei; Yuming Jia; Biao Wei; Yongxiang Xiong; Jing Wang

    2008-01-01

    Objective:To investigate the clinical value and application of ATP based bioluminescence tumor chemo-sensitivity assay (ATP-TCA) in the chemotherapy for ascites caused by recurrent ovarian cancer.Methods:More than 10 kinds of chemotherapeutic drugs or combinations were applied and 35 ascites specimens from recurrent ovarian cancer were analyzed by ATP-TCA.Sensitivity of chemotherapeutic drugs was assessed.After 2-4 chemotherapeutic cycles,clinical outcomes were analyzed,which were compared with those of 40 cases by empirical regimens.Results:32 of 35 specimens were evaluated with an overall evaluation rate of 91%.The assay results suggested that chemo-naive patients responded to chemotherapeutic drugs with individualized profiles.The sensitivity rates of GEM,EPI,OXA,DDP,CBP,ADM,VP-16,CTX,NVB,5-FU,PTX and TXT were 40%,30%,33%,29%,33%,38%,25%,33%,38%,33%,25% and 20%,respectively.While the sensitivity rates of combinations GEM + EPI,GEM + CBP,GEM + DDP,NVB + DDP,CTX + ADM + DDP,CTX + ADM,DDP + VP-18,OXA + 5-FU,VP-16 + IFO,PTX + DDP,TXT + CBP,VCR + CTX + MTX,DDP + CPT-11,OXA + CPT-11,and DTIC + CTX were 47%,50%,36%,44%,30%,33%,27%,33%,40%,27%,23%,14%,28%,30% and 17%,respectively.In vitro results correlated well with clinical outcomes.Objective response rate (RR) in chemo-sensitivity-guided group was of significance compared with that in empirical-regimen-guided group.Conclusion:ATP-TCA is a choice for the screening of chemotherapeutic drugs against ascites caused by recurrent ovarian cancer with excellent sensitivity and reliability.ATP-TCA assay results correlate well with clinical outcomes,suggesting its clinical value in the management of difficult-to-manage therapeutic situations such as ascites in recurrent ovarian cancer.

  1. Multi-view Hilbert transformation in full-ring-transducer-array based photoacoustic computed tomography (Conference Presentation)

    Science.gov (United States)

    Li, Lei; Li, Guo; Zhu, Liren; Xia, Jun; Wang, Lihong V.

    2016-03-01

    Photoacoustic tomography (PAT) exploits optical contrast and ultrasonic detection principles to form images of absorbed optical energy density within tissue. Based on the photoacoustic effect, PAT directly and quantitatively measures specific optical absorption. A full-ring ultrasonic transducer array based photoacoustic computed tomography (PACT) system was recently developed for small animal whole-body imaging with a full-view detection angle and high in-plane resolution (100 µm). However, due to the band-pass frequency response of the piezoelectric transducer elements, the reconstructed images present bipolar (both positive and negative) pixel values, which is artificial and counterintuitive for physicians and biologists seeking to interpret the image. Moreover, bipolar pixel values hinder quantification of physiological parameters, such as oxygen saturation and blood flow speed. Unipolar images can be obtained by deconvolving the raw channel data with the transducer's electrical impulse response and applying non-negativity during iteration, but this process requires complex transducer modeling and time-consuming computation. Here, we present a multi-view Hilbert transformation method to recover the unipolar initial pressure for full-ring PACT. Multi-view Hilbert transformation along the acoustic wave propagation direction minimizes reconstruction artifacts during envelope extraction and maintains the signal-to-noise ratio of the reconstructed images. The in-plane isotropic spatial resolution of this method was quantified to 168 μm within a 20 × 20 mm2 field of view. The effectiveness of the proposed algorithm was first validated by numerical simulations and then demonstrated with ex-vivo mouse brain structural imaging and in-vivo mouse wholebody imaging.

  2. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  3. Micro-computed tomography image-based evaluation of 3D anisotropy degree of polymer scaffolds.

    Science.gov (United States)

    Pérez-Ramírez, Ursula; López-Orive, Jesús Javier; Arana, Estanislao; Salmerón-Sánchez, Manuel; Moratal, David

    2015-01-01

    Anisotropy is one of the most meaningful determinants of biomechanical behaviour. This study employs micro-computed tomography (μCT) and image techniques for analysing the anisotropy of regenerative medicine polymer scaffolds. For this purpose, three three-dimensional anisotropy evaluation image methods were used: ellipsoid of inertia (EI), mean intercept length (MIL) and tensor scale (t-scale). These were applied to three patterns (a sphere, a cube and a right prism) and to two polymer scaffold topologies (cylindrical orthogonal pore mesh and spherical pores). For the patterns, the three methods provided good results. Regarding the scaffolds, EI mistook both topologies (0.0158, [-0.5683; 0.6001]; mean difference and 95% confidence interval), and MIL showed no significant differences (0.3509, [0.0656; 0.6362]). T-scale is the preferable method because it gave the best capability (0.3441, [0.1779; 0.5102]) to differentiate both topologies. This methodology results in the development of non-destructive tools to engineer biomimetic scaffolds, incorporating anisotropy as a fundamental property to be mimicked from the original tissue and permitting its assessment by means of μCT image analysis.

  4. 3D Curvelet-Based Segmentation and Quantification of Drusen in Optical Coherence Tomography Images

    Directory of Open Access Journals (Sweden)

    M. Esmaeili

    2017-01-01

    Full Text Available Spectral-Domain Optical Coherence Tomography (SD-OCT is a widely used interferometric diagnostic technique in ophthalmology that provides novel in vivo information of depth-resolved inner and outer retinal structures. This imaging modality can assist clinicians in monitoring the progression of Age-related Macular Degeneration (AMD by providing high-resolution visualization of drusen. Quantitative tools for assessing drusen volume that are indicative of AMD progression may lead to appropriate metrics for selecting treatment protocols. To address this need, a fully automated algorithm was developed to segment drusen area and volume from SD-OCT images. The proposed algorithm consists of three parts: (1 preprocessing, which includes creating binary mask and removing possible highly reflective posterior hyaloid that is used in accurate detection of inner segment/outer segment (IS/OS junction layer and Bruch’s membrane (BM retinal layers; (2 coarse segmentation, in which 3D curvelet transform and graph theory are employed to get the possible candidate drusenoid regions; (3 fine segmentation, in which morphological operators are used to remove falsely extracted elongated structures and get the refined segmentation results. The proposed method was evaluated in 20 publically available volumetric scans acquired by using Bioptigen spectral-domain ophthalmic imaging system. The average true positive and false positive volume fractions (TPVF and FPVF for the segmentation of drusenoid regions were found to be 89.15% ± 3.76 and 0.17% ± .18%, respectively.

  5. Features of Computed Tomography Perfusion of Mediastinal Lymphadenopathies: a Pathology-based Retrospective Study

    Institute of Scientific and Technical Information of China (English)

    Lin Ou-yang; Guang-ming Lu

    2015-01-01

    Objective To explore the features of various mediastinal lymphadenopathies using computed tomography perfusion (CTP). Methods CTP parameters (CTPs) of the selected mediastinal nodes from 59 patients with pathology-proven malignant lymph nodes and of those from 29 patients with clinically diagnosed or pathology-proven inflammatory lymphadenopathies were collected. Patients were divided into subgroups by etiology and phase of primary disease, including different pathological malignant nodes and diverse inflammatory nodes. CTPs were defined as blood flow (BF), blood volume (BV), mean transit time (MTT), permeability (PMB), and time to peak (TTP). Differences of CTPs were compared between malignant and benign nodes, and among subgroups, respectively. Results In the mediastinum, no significant differences of CTPs were found between malignant and benign groups (all P>0.05), the same for subgroups of malignant nodes (all P>0.05). Acute lymphadenitis had higher BF and BV than chronic inflammatory, lymphoid tuberculosis, sarcoidosis and malignant nodes. The BF of malignant nodes was markedly slower than that of acute lymphadenitis (P=0.01), but faster than chronic inflammatory nodes (P=0.04) and sarcoidosis (P=0.03), with no significant difference compared with lymphoid tuberculosis. Pneumonia-complicated lymphoid tuberculosis showed the longest MTT while sarcoidosis displayed the shortest MTT, and inflammatory nodes, lymphoid tuberculosis without complicated pneumonia and malignant nodes had moderate MTT. Conclusion CTPs show promising potential in distinguishing various lymphadenopathies in the mediastinum, but more studies are needed to improve their specificity.

  6. Eddy Current Tomography Based on a Finite Difference Forward Model with Additive Regularization

    Science.gov (United States)

    Trillon, A.; Girard, A.; Idier, J.; Goussard, Y.; Sirois, F.; Dubost, S.; Paul, N.

    2010-02-01

    Eddy current tomography is a nondestructive evaluation technique used for characterization of metal components. It is an inverse problem acknowledged as difficult to solve since it is both ill-posed and nonlinear. Our goal is to derive an inversion technique with improved tradeoff between quality of the results, computational requirements and ease of implementation. This is achieved by fully accounting for the nonlinear nature of the forward problem by means of a system of bilinear equations obtained through a finite difference modeling of the problem. The bilinear character of equations with respect to the electric field and the relative conductivity is taken advantage of through a simple contrast source inversion-like scheme. The ill-posedness is dealt with through the addition of regularization terms to the criterion, the form of which is determined according to computational constraints and the piecewise constant nature of the medium. Therefore an edge-preserving functional is selected. The performance of the resulting method is illustrated using 2D synthetic data examples.

  7. Classification of spondylolysis in the growing period based on computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Yoshimitsu; Kono, Sachu; Nagano, Junji; Sugawa, Isao (Seirei Hamamatsu Hospital, Shizuoka (Japan))

    1989-11-01

    Serial computed tomography (CT) images of 104 vertebrae were reviewed from 103 sport men aged 18 or under, in whom spondylolysis was radiologically suspected during the period from January 1985 through August 1988. Twenty-four vertebrae (23%) showed false positive CT for spondylolysis. Findings of CT in 80 vertebrae were classified into four types according to the degree of spondylolysis and bone sclerosis, and marginal morphology of the dissolved vertebra. X-ray images in the oblique projection revealed infraction in 53%, 74%, and 9% for Types I, II, and III, respectively; and pseudoarthrosis in 24% and 91% for Types II and II, respectively. In Type I, X-ray failed to reveal spondylolysis in 36%, although it was capable of denying it in 11%. Early spondylolysis, as observed in Type I, was difficult to diagnose on plain X-ray. In Type III, X-ray proved to be helpful in diagnosing spondylolysis. Diversified X-ray appearances of spondylolysis seemed to be attributable to the degree of spondylolysis and irregular running of the dissolved vertebra. An adhesion rate of 41% could be achieved with conservative therapy alone for Type I. These results indicated that CT may be helpful in the classification of spondylolysis that is required for conservative treatment aimed at bone adhesion. (N.K.).

  8. Acoustic property reconstruction of a pygmy sperm whale (Kogia breviceps) forehead based on computed tomography imaging.

    Science.gov (United States)

    Song, Zhongchang; Xu, Xiao; Dong, Jianchen; Xing, Luru; Zhang, Meng; Liu, Xuecheng; Zhang, Yu; Li, Songhai; Berggren, Per

    2015-11-01

    Computed tomography (CT) imaging and sound experimental measurements were used to reconstruct the acoustic properties (density, velocity, and impedance) of the forehead tissues of a deceased pygmy sperm whale (Kogia breviceps). The forehead was segmented along the body axis and sectioned into cross section slices, which were further cut into sample pieces for measurements. Hounsfield units (HUs) of the corresponding measured pieces were obtained from CT scans, and regression analyses were conducted to investigate the linear relationships between the tissues' HUs and velocity, and HUs and density. The distributions of the acoustic properties of the head at axial, coronal, and sagittal cross sections were reconstructed, revealing that the nasal passage system was asymmetric and the cornucopia-shaped spermaceti organ was in the right nasal passage, surrounded by tissues and airsacs. A distinct dense theca was discovered in the posterior-dorsal area of the melon, which was characterized by low velocity in the inner core and high velocity in the outer region. Statistical analyses revealed significant differences in density, velocity, and acoustic impedance between all four structures, melon, spermaceti organ, muscle, and connective tissue (p acoustic properties of the forehead tissues provide important information for understanding the species' bioacoustic characteristics.

  9. Sound field of thermoacoustic tomography based on a modified finite-difference time-domain method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chi; WANG Yuanyuan

    2009-01-01

    A modified finite-difference time-domain (FDTD) method is proposed for the sound field simulation of the thermoacoustic tomography (TAT) in the acoustic speed inhomogeneous medium. First, the basic equations of the TAT are discretized to difference ones by the FDTD. Then the electromagnetic pulse, the excitation source of the TAT, is modified twice to eliminate the error introduced by high frequency electromagnetic waves. Computer simulations are carried out to validate this method. It is shown that the FDTD method has a better accuracy than the commonly used time-of-flight (TOF) method in the TAT with the inhomogeneous acoustic speed. The error of the FDTD is ten times smaller than that of the TOF in the simulation for the acoustic speed difference larger than 50%. So this FDTD method is an efficient one for the sound field simulation of the TAT and can provide the theoretical basis for the study of reconstruction algorithms of the TAT in the acoustic heterogeneous medium.

  10. Sampling scheme optimization for diffuse optical tomography based on data and image space rankings

    Science.gov (United States)

    Sabir, Sohail; Kim, Changhwan; Cho, Sanghoon; Heo, Duchang; Kim, Kee Hyun; Ye, Jong Chul; Cho, Seungryong

    2016-10-01

    We present a methodology for the optimization of sampling schemes in diffuse optical tomography (DOT). The proposed method exploits singular value decomposition (SVD) of the sensitivity matrix, or weight matrix, in DOT. Two mathematical metrics are introduced to assess and determine the optimum source-detector measurement configuration in terms of data correlation and image space resolution. The key idea of the work is to weight each data measurement, or rows in the sensitivity matrix, and similarly to weight each unknown image basis, or columns in the sensitivity matrix, according to their contribution to the rank of the sensitivity matrix, respectively. The proposed metrics offer a perspective on the data sampling and provide an efficient way of optimizing the sampling schemes in DOT. We evaluated various acquisition geometries often used in DOT by use of the proposed metrics. By iteratively selecting an optimal sparse set of data measurements, we showed that one can design a DOT scanning protocol that provides essentially the same image quality at a much reduced sampling.

  11. Image reconstruction based on L1 regularization and projection methods for electrical impedance tomography.

    Science.gov (United States)

    Wang, Qi; Wang, Huaxiang; Zhang, Ronghua; Wang, Jinhai; Zheng, Yu; Cui, Ziqiang; Yang, Chengyi

    2012-10-01

    Electrical impedance tomography (EIT) is a technique for reconstructing the conductivity distribution by injecting currents at the boundary of a subject and measuring the resulting changes in voltage. Image reconstruction in EIT is a nonlinear and ill-posed inverse problem. The Tikhonov method with L(2) regularization is always used to solve the EIT problem. However, the L(2) method always smoothes the sharp changes or discontinue areas of the reconstruction. Image reconstruction using the L(1) regularization allows addressing this difficulty. In this paper, a sum of absolute values is substituted for the sum of squares used in the L(2) regularization to form the L(1) regularization, the solution is obtained by the barrier method. However, the L(1) method often involves repeatedly solving large-dimensional matrix equations, which are computationally expensive. In this paper, the projection method is combined with the L(1) regularization method to reduce the computational cost. The L(1) problem is mainly solved in the coarse subspace. This paper also discusses the strategies of choosing parameters. Both simulation and experimental results of the L(1) regularization method were compared with the L(2) regularization method, indicating that the L(1) regularization method can improve the quality of image reconstruction and tolerate a relatively high level of noise in the measured voltages. Furthermore, the projected L(1) method can also effectively reduce the computational time without affecting the quality of reconstructed images.

  12. Tomography-based observation of sublimation and snow metamorphism under temperature gradient and advective flow

    Directory of Open Access Journals (Sweden)

    P. P. Ebner

    2015-09-01

    Full Text Available Snow at or close to the surface commonly undergoes temperature gradient metamorphism under advective flow, which alters its microstructure and physical properties. Time-lapse X-ray micro-tomography is applied to investigate the structural dynamics of temperature gradient snow metamorphism exposed to an advective airflow in controlled laboratory conditions. The sublimation of water vapor for saturated air flowing across the snow sample was experimentally determined via variations of the porous ice structure. The results showed that the exothermic gas-to-solid phase change is favorable vis-a-vis the endothermic solid-to-gas phase change, thus leading to more ice deposition than ice sublimation. Sublimation has a marked effect on the structural change of the ice matrix but diffusion of water vapor in the direction of the temperature gradient counteracted the mass transport of advection. Therefore, the total net ice change was negligible leading to a constant porosity profile. However, the strong reposition process of water molecules on the ice grains is relevant for atmospheric chemistry.

  13. A New Computed Tomography-Based Radiographic Method to Detect Early Loosening of Total Wrist Implants

    Energy Technology Data Exchange (ETDEWEB)

    Olivecrona, H.; Noz, M.E.; Maguire, G.Q. Jr; Zeleznik, M.P.; Sollerman, C.; Olivecrona, L. [Dept. of Hand Surgery, Soedersjukhuset, Stockholm (Sweden)

    2007-11-15

    Background: Diagnosis of loosening of total wrist implants is usually late using routine radiographs. Switching modality to computed tomography (CT) should aid in early diagnosis. Purpose: To propose and evaluate the accuracy of a new CT method for assessing loosening of the carpal component in total wrist arthroplasty. Material and Methods: A protocol encompassing volume registration of paired CT scans of patients with unexplained pain in a prosthetically replaced wrist (used in clinical routine) is presented. Scans are acquired as a dynamic examination under torsional load. Using volume registration, the carpal component of the prosthesis is brought into spatial alignment. After registration, prosthetic loosening is diagnosed by a shift in position of the bones relative to the prosthesis. This study is a preclinical validation of this method using a human cadaverous arm with a cemented total wrist implant and tantalum markers. Seven CT scans of the arm were acquired. The scans were combined into 21 pairs of CT volumes. The carpal component was registered in each scan pair, and the residual mismatch of the surrounding tantalum markers and bone was analyzed both visually and numerically. Results: The detection limit for prosthetic movement was less than 1 mm. Conclusion: The results of this study demonstrate that CT volume registration holds promise to improve detection of movement of the carpal component at an earlier stage than is obtainable with plain radiography.

  14. Image reconstruction of fluorescent molecular tomography based on the tree structured Schur complement decomposition

    Directory of Open Access Journals (Sweden)

    Wang Jiajun

    2010-05-01

    Full Text Available Abstract Background The inverse problem of fluorescent molecular tomography (FMT often involves complex large-scale matrix operations, which may lead to unacceptable computational errors and complexity. In this research, a tree structured Schur complement decomposition strategy is proposed to accelerate the reconstruction process and reduce the computational complexity. Additionally, an adaptive regularization scheme is developed to improve the ill-posedness of the inverse problem. Methods The global system is decomposed level by level with the Schur complement system along two paths in the tree structure. The resultant subsystems are solved in combination with the biconjugate gradient method. The mesh for the inverse problem is generated incorporating the prior information. During the reconstruction, the regularization parameters are adaptive not only to the spatial variations but also to the variations of the objective function to tackle the ill-posed nature of the inverse problem. Results Simulation results demonstrate that the strategy of the tree structured Schur complement decomposition obviously outperforms the previous methods, such as the conventional Conjugate-Gradient (CG and the Schur CG methods, in both reconstruction accuracy and speed. As compared with the Tikhonov regularization method, the adaptive regularization scheme can significantly improve ill-posedness of the inverse problem. Conclusions The methods proposed in this paper can significantly improve the reconstructed image quality of FMT and accelerate the reconstruction process.

  15. FPGA Based High Speed Data Acquisition System for Electrical Impedance Tomography.

    Science.gov (United States)

    Khan, S; Borsic, A; Manwaring, Preston; Hartov, Alexander; Halter, Ryan

    2013-03-01

    Electrical Impedance Tomography (EIT) systems are used to image tissue bio-impedance. EIT provides a number of features making it attractive for use as a medical imaging device including the ability to image fast physiological processes (>60 Hz), to meet a range of clinical imaging needs through varying electrode geometries and configurations, to impart only non-ionizing radiation to a patient, and to map the significant electrical property contrasts present between numerous benign and pathological tissues. To leverage these potential advantages for medical imaging, we developed a modular 32 channel data acquisition (DAQ) system using National Instruments' PXI chassis, along with FPGA, ADC, Signal Generator and Timing and Synchronization modules. To achieve high frame rates, signal demodulation and spectral characteristics of higher order harmonics were computed using dedicated FFT-hardware built into the FPGA module. By offloading the computing onto FPGA, we were able to achieve a reduction in throughput required between the FPGA and PC by a factor of 32:1. A custom designed analog front end (AFE) was used to interface electrodes with our system. Our system is wideband, and capable of acquiring data for input signal frequencies ranging from 100 Hz to 12 MHz. The modular design of both the hardware and software will allow this system to be flexibly configured for the particular clinical application.

  16. 3-D imaging and quantification of graupel porosity by synchrotron-based micro-tomography

    Directory of Open Access Journals (Sweden)

    F. Enzmann

    2011-10-01

    Full Text Available The air bubble structure is an important parameter to determine the radiation properties of graupel and hailstones. For 3-D imaging of this structure at micron resolution, a cryo-stage was developed. This stage was used at the tomography beamline of the Swiss Light Source (SLS synchrotron facility. The cryo-stage setup provides for the first time 3-D-data on the individual pore morphology of ice particles down to infrared wavelength resolution. In the present study, both sub-mm size natural and artificial ice particles rimed in a wind tunnel were investigated. In the natural rimed ice particles, Y-shaped air-filled closed pores were found. When kept for half an hour at −8 °C, this morphology transformed into smaller and more rounded voids well known from literature. Therefore, these round structures seem to represent an artificial rather than in situ pore structure, in contrast to the observed y-shaped structures found in the natural ice particles. Hence, for morphological studies on natural ice samples, special care must be taken to minimize any thermal cycling between sampling and measurement, with least artifact production at liquid nitrogen temperatures.

  17. Chest computed tomography-based scoring of thoracic sarcoidosis: Inter-rater reliability of CT abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Heuvel, D.A.V. den; Es, H.W. van; Heesewijk, J.P. van; Spee, M. [St. Antonius Hospital Nieuwegein, Department of Radiology, Nieuwegein (Netherlands); Jong, P.A. de [University Medical Center Utrecht, Department of Radiology, Utrecht (Netherlands); Zanen, P.; Grutters, J.C. [University Medical Center Utrecht, Division Heart and Lungs, Utrecht (Netherlands); St. Antonius Hospital Nieuwegein, Center of Interstitial Lung Diseases, Department of Pulmonology, Nieuwegein (Netherlands)

    2015-09-15

    To determine inter-rater reliability of sarcoidosis-related computed tomography (CT) findings that can be used for scoring of thoracic sarcoidosis. CT images of 51 patients with sarcoidosis were scored by five chest radiologists for various abnormal CT findings (22 in total) encountered in thoracic sarcoidosis. Using intra-class correlation coefficient (ICC) analysis, inter-rater reliability was analysed and reported according to the Guidelines for Reporting Reliability and Agreement Studies (GRRAS) criteria. A pre-specified sub-analysis was performed to investigate the effect of training. Scoring was trained in a distinct set of 15 scans in which all abnormal CT findings were represented. Median age of the 51 patients (36 men, 70 %) was 43 years (range 26 - 64 years). All radiographic stages were present in this group. ICC ranged from 0.91 for honeycombing to 0.11 for nodular margin (sharp versus ill-defined). The ICC was above 0.60 in 13 of the 22 abnormal findings. Sub-analysis for the best-trained observers demonstrated an ICC improvement for all abnormal findings and values above 0.60 for 16 of the 22 abnormalities. In our cohort, reliability between raters was acceptable for 16 thoracic sarcoidosis-related abnormal CT findings. (orig.)

  18. Transducer combination for high-quality ultrasound tomography based on speed of sound imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hun; Park, Kwan Kyu [Dept. of Mechanical Engineering, Hanyang University, Seoul (Korea, Republic of)

    2016-02-15

    The type of ultrasound transducer used influences the quality of a reconstructed ultrasound image. This study analyzed the effect of transducer type on ultrasound computed tomography (UCT) image quality. The UCT was modeled in an ultrasound simulator by using a 5 cm anatomy model and a ring-shape 5 MHz 128 transducer array, which considered attenuation, refraction, and reflection. Speed-of-sound images were reconstructed by the Radon transform as the UCT image modality. Acoustic impedance images were also reconstructed by the delayand-sum (DAS) method, which considered the speed of sound information. To determine the optimal combination of transducers in observation, point-source, flat, and focused transducers were tested in combination as trasmitters and receivers; UCT images were constructed from each combination. The combination of point-source/flat transducer as transmitting and receiving devices presented the best reconstructed image quality. In UCT implementation, the combination of a flat transducer for transmitting and a point transducer for receiving permitted acceptable image quality.

  19. Gender and age-based differences in computed-tomography measurements of the orophaynx

    Science.gov (United States)

    Shigeta, Yuko; Ogawa, Takumi; Venturin, Jaqueline; Nguyen, Manuel; Clark, Glenn T; Enciso, Reyes

    2008-01-01

    Objective To examine the influence of aging and body-mass-index (BMI) on the oropharynx configuration in male and female Japanese patients. Study design This study examined the computed tomography (CT) images of 19 male and 19 females, group matched for age and BMI. The airway and the soft tissue volumes between the posterior nasal spine and top of the epiglottis were compared. Results The patient's height, total oropharynx length (TOL), and lower oropharynx lengths and volume measurements (soft tissue and airway) demonstrated statistically significant gender differences. Men consistently had larger TOL and volumes than women. In men, TOL changed with age, and age was a significant predictor of lower oropharynx length. In males, the upper oropharynx soft tissue volume decreased significantly with age and lower oropharynx soft tissue volume increased significantly with age. In females no significant relationship was identified. Conclusion The airway lengthens with aging in males and we speculate that it becomes more collapsible, which in turn could contribute to obstructive sleep apnea. PMID:18602313

  20. Bacterial Bioluminescence: Spectral Study of the Emitters in the In Vivo Reaction

    NARCIS (Netherlands)

    Matheson, I.B.C.; Lee, J.; Muller, F.

    1981-01-01

    Transient fluorescent species are observed in the bioluminescent reactions of three reduced flavin mononucleotides with aliphatic aldehydes and oxygen, catalyzed by bacterial luciferase. In each case the fluorescence spectral distribution is similar to that of the bioluminescence but is readily dist

  1. Evaluation of ATP bioluminescence assays for potential use in a hospital setting.

    Science.gov (United States)

    Aiken, Zoie A; Wilson, Michael; Pratten, Jonathan

    2011-05-01

    ATP bioluminescence is being applied in hospitals to measure surface contamination. We compared commercial luminometers for detecting the number Staphylococcus aureus associated with surfaces. The data showed that the ATP bioluminescence methods tested were not robust enough to generate quantitative data on bacterial numbers, especially at low concentrations.

  2. Rapid antimicrobial susceptibility determination of uropathogens in clinical urine specimens by use of ATP bioluminescence.

    Science.gov (United States)

    Ivancic, Vesna; Mastali, Mitra; Percy, Neil; Gornbein, Jeffrey; Babbitt, Jane T; Li, Yang; Landaw, Elliot M; Bruckner, David A; Churchill, Bernard M; Haake, David A

    2008-04-01

    We describe the first direct testing of the antimicrobial susceptibilities of bacterial pathogens in human clinical fluid samples by the use of ATP bioluminescence. We developed an ATP bioluminescence assay that eliminates somatic sources of ATP to selectively quantify the bacterial load in clinical urine specimens with a sensitivity of ATP bioluminescence assay for determination of the antimicrobial susceptibilities of uropathogens in clinical urine specimens tested in a blinded manner. ATP bioluminescent bacterial density quantitation was used to determine the inoculation volume in growth medium with and without antibiotics. After incubation at 37 degrees C for 120 min, the ATP bioluminescence assay was repeated to evaluate the uropathogen response to antibiotics. The ability of the ATP bioluminescence assay to discriminate between antimicrobial susceptibility and resistance was determined by comparison of the results obtained by the ATP bioluminescence assay with the results obtained by standard clinical microbiology methods. Receiver operator characteristic curves were used to determine the optimal threshold for discriminating between susceptibility and resistance. Susceptibility and resistance were correctly predicted in 87% and 95% of cases, respectively, for an overall unweighted accuracy of 91%, when the results were stratified by antibiotic. For samples in which the pathogen was susceptible, the accuracy improved to 95% when the results for samples with less than a 25-fold increase in the amount of bacterial ATP in the medium without antibiotics were excluded. These data indicate that a rapid bioluminescent antimicrobial susceptibility assay may be useful for the management of urinary tract infections.

  3. Long Term Dinoflagellate Bioluminescence, Chlorophyll, And Their Environmental Correlates In Southern California Coastal Waters

    Science.gov (United States)

    2012-02-01

    1 Long Term Dinoflagellate Bioluminescence, Chlorophyll, and Their Environmental Correlates in Southern California Coastal Waters David Lapota...2012 4. TITLE AND SUBTITLE Long Term Dinoflagellate Bioluminescence, Chlorophyll, And Their Environmental Correlates In Southern California... dinoflagellates were identified to the species level when possible. Chlorophyll a was extracted from the seawater samples using standard methods (APHA 1981) and

  4. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness

    Science.gov (United States)

    Steinberger, Bernhard

    2016-04-01

    Large-scale topography may be due to several causes, including (1) variations in crustal thickness and density structure, (2) oceanic lithosphere age differences, (3) subcrustal density variations in the continental lithosphere and (4) convective flow in the mantle beneath the lithosphere. The last contribution in particular may change with time and be responsible for continental inundations; distinguishing between these contributions is therefore important for linking Earth's history to its observed geological record. As a step towards this goal, this paper aims at such distinction for the present-day topography: the approach taken is deriving a `model' topography due to contributions (3) and (4), along with a model geoid, using a geodynamic mantle flow model. Both lithosphere thickness and density anomalies beneath the lithosphere are inferred from seismic tomography. Density anomalies within the continental lithosphere are uncertain, because they are probably due to variations in composition and temperature, making a simple scaling from seismic to density anomalies inappropriate. Therefore, we test a number of different assumptions regarding these. As a reality check, model topography is compared, in terms of both correlation and amplitude ratio, to `residual' topography, which follows from observed topography after subtracting contributions (1) and (2). The model geoid is compared to observations as well. Comparatively good agreement is found if there is either an excess density of ≈0.2 per cent in the lithosphere above ≈150 km depth, with anomalies below as inferred from tomography, or if the excess density is ≈0.4 per cent in the entire lithosphere. Further, a good fit is found for viscosity ≈1020 Pa s in the asthenosphere, increasing to ≈1023 Pa s in the lower mantle above D'. Results are quite dependent on which tomography models they are based on; for some recent ones, topography correlation is ≈0.6, many smaller scale features are matched

  5. Computed Tomography (CT) -- Sinuses

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the ... of CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly ...

  6. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Naomi, E-mail: haruhi0321@gmail.com [Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Department of Radiology, Ehime University, Ehime (Japan); Kataoka, Masaaki [Department of Radiation Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Sugawara, Yoshifumi [Department of Diagnostic Radiology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Ochi, Takashi [Department of Radiology, Ehime University, Ehime (Japan); Kiyoto, Sachiko; Ohsumi, Shozo [Department of Breast Oncology, National Hospital Organization Shikoku Cancer Center, Ehime (Japan); Mochizuki, Teruhito [Department of Radiology, Ehime University, Ehime (Japan)

    2013-11-15

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients. Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (≥53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ≥53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has

  7. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro [Toyama Medical and Pharmaceutical Univ. (Japan)

    2001-07-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  8. Computed Tomography Image Origin Identification based on Original Sensor Pattern Noise and 3D Image Reconstruction Algorithm Footprints.

    Science.gov (United States)

    Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou

    2016-06-08

    In this paper, we focus on the "blind" identification of the Computed Tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-Scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT-Scanner based on an Original Sensor Pattern Noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its 3D image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train an SVM based classifier so as to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-Scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than Sensor Pattern Noise (SPN) based strategy proposed for general public camera devices.

  9. Size-based protocol optimization using automatic tube current modulation and automatic kV selection in computed tomography.

    Science.gov (United States)

    MacDougall, Robert D; Kleinman, Patricia L; Callahan, Michael J

    2016-01-08

    Size-based diagnostic reference ranges (DRRs) for contrast-enhanced pediatric abdominal computed tomography (CT) have been published in order to establish practical upper and lower limits of CTDI, DLP, and SSDE. Based on these DRRs, guidelines for establishing size-based SSDE target levels from the SSDE of a standard adult by applying a linear correction factor have been published and provide a great reference for dose optimization initiatives. The necessary step of designing manufacturer-specific CT protocols to achieve established SSDE targets is the responsibility of the Qualified Medical Physicist. The task is straightforward if fixed-mA protocols are used, however, more difficult when automatic exposure control (AEC) and automatic kV selection are considered. In such cases, the physicist must deduce the operation of AEC algorithms from technical documentation or through testing, using a wide range of phantom sizes. Our study presents the results of such testing using anthropomorphic phantoms ranging in size from the newborn to the obese adult. The effect of each user-controlled parameter was modeled for a single-manufacturer AEC algorithm (Siemens CARE Dose4D) and automatic kV selection algorithm (Siemens CARE kV). Based on the results presented in this study, a process for designing mA-modulated, pediatric abdominal CT protocols that achieve user-defined SSDE and kV targets is described.

  10. Multi-scale volumetric cell and tissue imaging based on optical projection tomography (Conference Presentation)

    Science.gov (United States)

    Ban, Sungbea; Cho, Nam Hyun; Ryu, Yongjae; Jung, Sunwoo; Vavilin, Andrey; Min, Eunjung; Jung, Woonggyu

    2016-04-01

    Optical projection tomography is a new optical imaging method for visualizing small biological specimens in three dimension. The most important advantage of OPT is to fill the gap between MRI and confocal microscope for the specimen having the range of 1-10 mm. Thus, it has been mainly used for whole-mount small animals and developmental study since this imaging modality was developed. The ability of OPT delivering anatomical and functional information of relatively large tissue in 3D has made it a promising platform in biomedical research. Recently, the potential of OPT spans its coverage to cellular scale. Even though there are increasing demand to obtain better understanding of cellular dynamics, only few studies to visualize cellular structure, shape, size and functional morphology over tissue has been investigated in existing OPT system due to its limited field of view. In this study, we develop a novel optical imaging system for 3D cellular imaging with OPT integrated with dynamic focusing technique. Our tomographic setup has great potential to be used for identifying cell characteristic in tissue because it can provide selective contrast on dynamic focal plane allowing for fluorescence as well as absorption. While the dominant contrast of optical imaging technique is to use the fluorescence for detecting certain target only, the newly developed OPT system will offer considerable advantages over currently available method when imaging cellar molecular dynamics by permitting contrast variation. By achieving multi-contrast, it is expected for this new imaging system to play an important role in delivering better cytological information to pathologist.

  11. Seismic Tomography Around the Eastern Edge of the Alps From Ambient-Noise-Based Rayleigh Waves

    Science.gov (United States)

    Zigone, Dimitri; Fuchs, Florian; Kolinsky, Petr; Gröschl, Gidera; Apoloner, Maria-Theresia; Qorbani, Ehsan; Schippkus, Sven; Löberich, Eric; Bokelmann, Götz; AlpArray Working Group

    2016-04-01

    Inspecting ambient noise Green's functions is an excellent tool for monitoring the quality of seismic data, and for swiftly detecting changes in the configuration of a seismological station. Those Green's functions readily provide stable information about structural variations near the Earth's surface. We apply the technique to a network consisting of about 40 broadband stations in the area of the Easternmost Alps, in particular those operated by the University of Vienna (AlpArrayAustria) and the Vienna University of Technology. Those data are used to estimate Green's functions between station pairs; the Green's function consist mainly of surface waves, and we use them to investigate crustal structure near the Eastern edge of the Alps. To obtain better signal-to-noise ratios in the noise correlation functions, we adopt a procedure using short time windows (2 hr). Energy tests are performed on the data to remove effects of transient sources and instrumental problems. The resulting 9-component correlation tensor is used to make travel time measurements on the vertical, radial and transverse components. Those measurements can be used to evaluate dispersion using frequency-time analysis for periods between 5-30 seconds. After rejecting paths without sufficient signal-to-noise ratio, we invert the velocity measurements using the Barmin et al. (2001) approach on a 10 km grid size. The obtained group velocity maps reveal complex structures with clear velocity contrasts between sedimentary basins and crystalline rocks. The Bohemian Massif and the Northern Calcareous Alps are associated with fast-velocity bodies. By contrast, the Vienna Basin presents clear low-velocity zones with group velocities down to 2 km/s at period of 7 s. The group velocities are then inverted to 3D images of shear wave speeds using the linear inversion method of Herrmann (2013). The results highlight the complex crustal structure and complement earthquake tomography studies in the region. Updated

  12. A multiresolution image based approach for correction of partial volume effects in emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Boussion, N; Hatt, M; Lamare, F; Bizais, Y; Turzo, A; Rest, C Cheze-Le; Visvikis, D [INSERM U650, Laboratoire du Traitement de l' Information Medicale (LaTIM), CHU Morvan, Brest (France)

    2006-04-07

    Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography. They lead to a loss of signal in tissues of size similar to the point spread function and induce activity spillover between regions. Although PVE can be corrected for by using algorithms that provide the correct radioactivity concentration in a series of regions of interest (ROIs), so far little attention has been given to the possibility of creating improved images as a result of PVE correction. Potential advantages of PVE-corrected images include the ability to accurately delineate functional volumes as well as improving tumour-to-background ratio, resulting in an associated improvement in the analysis of response to therapy studies and diagnostic examinations, respectively. The objective of our study was therefore to develop a methodology for PVE correction not only to enable the accurate recuperation of activity concentrations, but also to generate PVE-corrected images. In the multiresolution analysis that we define here, details of a high-resolution image H (MRI or CT) are extracted, transformed and integrated in a low-resolution image L (PET or SPECT). A discrete wavelet transform of both H and L images is performed by using the 'a trous' algorithm, which allows the spatial frequencies (details, edges, textures) to be obtained easily at a level of resolution common to H and L. A model is then inferred to build the lacking details of L from the high-frequency details in H. The process was successfully tested on synthetic and simulated data, proving the ability to obtain accurately corrected images. Quantitative PVE correction was found to be comparable with a method considered as a reference but limited to ROI analyses. Visual improvement and quantitative correction were also obtained in two examples of clinical images, the first using a combined PET/CT scanner with a lymphoma patient and the second using a FDG brain PET and corresponding T1

  13. FPGA-based voltage and current dual drive system for high frame rate electrical impedance tomography.

    Science.gov (United States)

    Khan, Shadab; Manwaring, Preston; Borsic, Andrea; Halter, Ryan

    2015-04-01

    Electrical impedance tomography (EIT) is used to image the electrical property distribution of a tissue under test. An EIT system comprises complex hardware and software modules, which are typically designed for a specific application. Upgrading these modules is a time-consuming process, and requires rigorous testing to ensure proper functioning of new modules with the existing ones. To this end, we developed a modular and reconfigurable data acquisition (DAQ) system using National Instruments' (NI) hardware and software modules, which offer inherent compatibility over generations of hardware and software revisions. The system can be configured to use up to 32-channels. This EIT system can be used to interchangeably apply current or voltage signal, and measure the tissue response in a semi-parallel fashion. A novel signal averaging algorithm, and 512-point fast Fourier transform (FFT) computation block was implemented on the FPGA. FFT output bins were classified as signal or noise. Signal bins constitute a tissue's response to a pure or mixed tone signal. Signal bins' data can be used for traditional applications, as well as synchronous frequency-difference imaging. Noise bins were used to compute noise power on the FPGA. Noise power represents a metric of signal quality, and can be used to ensure proper tissue-electrode contact. Allocation of these computationally expensive tasks to the FPGA reduced the required bandwidth between PC, and the FPGA for high frame rate EIT. In 16-channel configuration, with a signal-averaging factor of 8, the DAQ frame rate at 100 kHz exceeded 110 frames s (-1), and signal-to-noise ratio exceeded 90 dB across the spectrum. Reciprocity error was found to be for frequencies up to 1 MHz. Static imaging experiments were performed on a high-conductivity inclusion placed in a saline filled tank; the inclusion was clearly localized in the reconstructions obtained for both absolute current and voltage mode data.

  14. A potential-based inversion of unconfined steady-state hydraulic tomography.

    Science.gov (United States)

    Cardiff, M; Barrash, W; Kitanidis, P K; Malama, B; Revil, A; Straface, S; Rizzo, E

    2009-01-01

    The importance of estimating spatially variable aquifer parameters such as transmissivity is widely recognized for studies in resource evaluation and contaminant transport. A useful approach for mapping such parameters is inverse modeling of data from series of pumping tests, that is, via hydraulic tomography. This inversion of field hydraulic tomographic data requires development of numerical forward models that can accurately represent test conditions while maintaining computational efficiency. One issue this presents is specification of boundary and initial conditions, whose location, type, and value may be poorly constrained. To circumvent this issue when modeling unconfined steady-state pumping tests, we present a strategy that analyzes field data using a potential difference method and that uses dipole pumping tests as the aquifer stimulation. By using our potential difference approach, which is similar to modeling drawdown in confined settings, we remove the need for specifying poorly known boundary condition values and natural source/sink terms within the problem domain. Dipole pumping tests are complementary to this strategy in that they can be more realistically modeled than single-well tests due to their conservative nature, quick achievement of steady state, and the insensitivity of near-field response to far-field boundary conditions. After developing the mathematical theory, our approach is first validated through a synthetic example. We then apply our method to the inversion of data from a field campaign at the Boise Hydrogeophysical Research Site. Results from inversion of nine pumping tests show expected geologic features, and uncertainty bounds indicate that hydraulic conductivity is well constrained within the central site area.

  15. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  16. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  17. Doppler Tomography

    CERN Document Server

    Marsh, T R

    2000-01-01

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the a...

  18. High Sensitivity Detection of ATP Using Bioluminescence at An Optical Fiber End

    Science.gov (United States)

    Iinuma, Masataka; Ushio, Yasuaki; Kuroda, Akio; Kadoya, Yutaka

    We investigated the sensitivity of ATP detection based on bioluminescence at an optical fiber end where luciferase molecules were immobilized via silica-binding protein molecules. Luminescence was detected by an avalanche photo diode (APD), with coupling optics to make full use of the merit of compactness, high quantum efficiency and low noise of the APD. The core diameter and the numerical aperture of the optical fiber, as well as the design of the coupling optics, were optimized so as to realize high photon-collection efficiency. A detection limit of about 10-10 M was obtained, which corresponds to 10-15 mol of ATP. A rough estimation shows that the photon count rate is still two orders of magnitude lower than that limited by diffusion or reaction processes, implying a possibility of further improvement of the sensitivity.

  19. Nondestructive material characterization of meteorites with synchrotron-based high energy x-ray phase micro-computed tomography

    Science.gov (United States)

    Liu, Huiqiang; Xiao, Tiqiao; Xie, Honglan; Fu, Yanan; Zhang, Xueliang; Fan, Xiaoxi

    2017-02-01

    Synchrotron radiation based x-ray propagation-based micro-computed tomography (SRPCT) has been widely used to nondestructively access 3D structural information in many fields in the last decade. However, for strongly absorbed objects with small density-differential compositions, conventional SRPCT technique fails in providing high-contrast images for visualization of objects characteristic information except edge-enhancements at interfaces or boundaries of samples. In this study, we successfully employed the SRPCT technique with phase retrieval, the high energy x-ray phase-attenuation-duality (PAD) algorithm, into nondestructive material characterization of invaluable meteorite samples due to the greatly enhanced phase-contrast of different bulk material areas, as compared to conventional SRPCT on equal dose basis. Our experimental results demonstrated the PAD-SRPCT technique is superior to conventional SRPCT technique to access density and structure distributions of different meteorite compositions with high density resolution, owing to the striking contrast-to-noise ratio (CNR). In addition, a new mass-density measurement method was presented to estimate the mass density of different compositions in the meteorite sample based on the calibration of the imaging system.

  20. Differentiation of pyogenic hepatic abscesses from malignant mimickers using multislice-based texture acquired from contrast-enhanced computed tomography

    Institute of Scientific and Technical Information of China (English)

    Shi-Teng Suo; Zhi-Guo Zhuang; Meng-Qiu Cao; Li-Jun Qian; Xin Wang; Run-Lin Gao; Yu Fan; Jian-Rong Xu

    2016-01-01

    BACKGROUND: Pyogenic hepatic abscess may mimic prima-ry or secondary carcinoma of the liver on contrast-enhanced computed tomography (CECT). The present study was to ex-plore the usefulness of the analysis of multislice-based texture acquired from CECT in the differentiation between pyogenic hepatic abscesses and malignant mimickers. METHODS: This retrospective study included 25 abscesses in 20 patients and 33 tumors in 26 subjects who underwent CECT. To make comparison, we also enrolled 19 patients with hepatic single simple cyst. The images from CECT were ana-lyzed using a Laplacian of Gaussian band-pass iflter (5 iflter levels with sigma weighting ranging from 1.0 to 2.5). We also quantiifed the uniformity, entropy, kurtosis and skewness of the multislice-based texture at different sigma weightings. Sta-tistical signiifcance for these parameters was tested with one-way ANOVA followed by Tukey honestly signiifcant difference (HSD) test. Diagnostic performance was evaluated using the receiver operating characteristic (ROC) curve analysis. RESULTS: There were signiifcant differences in entropy and uniformity at all sigma weightings (P CONCLUSION: Multislice-based texture analysis may be use-ful for differentiating pyogenic hepatic abscesses from malig-nant mimickers.