WorldWideScience

Sample records for bioluminescence tomography based

  1. Hybrid light transport model based bioluminescence tomography reconstruction for early gastric cancer detection

    Science.gov (United States)

    Chen, Xueli; Liang, Jimin; Hu, Hao; Qu, Xiaochao; Yang, Defu; Chen, Duofang; Zhu, Shouping; Tian, Jie

    2012-03-01

    Gastric cancer is the second cause of cancer-related death in the world, and it remains difficult to cure because it has been in late-stage once that is found. Early gastric cancer detection becomes an effective approach to decrease the gastric cancer mortality. Bioluminescence tomography (BLT) has been applied to detect early liver cancer and prostate cancer metastasis. However, the gastric cancer commonly originates from the gastric mucosa and grows outwards. The bioluminescent light will pass through a non-scattering region constructed by gastric pouch when it transports in tissues. Thus, the current BLT reconstruction algorithms based on the approximation model of radiative transfer equation are not optimal to handle this problem. To address the gastric cancer specific problem, this paper presents a novel reconstruction algorithm that uses a hybrid light transport model to describe the bioluminescent light propagation in tissues. The radiosity theory integrated with the diffusion equation to form the hybrid light transport model is utilized to describe light propagation in the non-scattering region. After the finite element discretization, the hybrid light transport model is converted into a minimization problem which fuses an l1 norm based regularization term to reveal the sparsity of bioluminescent source distribution. The performance of the reconstruction algorithm is first demonstrated with a digital mouse based simulation with the reconstruction error less than 1mm. An in situ gastric cancer-bearing nude mouse based experiment is then conducted. The primary result reveals the ability of the novel BLT reconstruction algorithm in early gastric cancer detection.

  2. Registration of planar bioluminescence to magnetic resonance and x-ray computed tomography images as a platform for the development of bioluminescence tomography reconstruction algorithms.

    Science.gov (United States)

    Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G

    2009-01-01

    The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.

  3. Fast in vivo bioluminescence tomography using a novel pure optical imaging technique

    Directory of Open Access Journals (Sweden)

    Shuang Zhang

    2017-05-01

    Full Text Available Bioluminescence tomography (BLT is a novel optical molecular imaging technique that advanced the conventional planar bioluminescence imaging (BLI into a quantifiable three-dimensional (3D approach in preclinical living animal studies in oncology. In order to solve the inverse problem and reconstruct tumor lesions inside animal body accurately, the prior structural information is commonly obtained from X-ray computed tomography (CT. This strategy requires a complicated hybrid imaging system, extensive post imaging analysis and involvement of ionizing radiation. Moreover, the overall robustness highly depends on the fusion accuracy between the optical and structural information. Here, we present a pure optical bioluminescence tomographic (POBT system and a novel BLT workflow based on multi-view projection acquisition and 3D surface reconstruction. This method can reconstruct the 3D surface of an imaging subject based on a sparse set of planar white-light and bioluminescent images, so that the prior structural information can be offered for 3D tumor lesion reconstruction without the involvement of CT. The performance of this novel technique was evaluated through the comparison with a conventional dual-modality tomographic (DMT system and a commercialized optical imaging system (IVIS Spectrum using three breast cancer xenografts. The results revealed that the new technique offered comparable in vivo tomographic accuracy with the DMT system (P>0.05 in much shorter data analysis time. It also offered significantly better accuracy comparing with the IVIS system (P<0.04 without sacrificing too much time.

  4. An adaptive regularization parameter choice strategy for multispectral bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jinchao; Qin Chenghu; Jia Kebin; Han Dong; Liu Kai; Zhu Shouping; Yang Xin; Tian Jie [Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, P. O. Box 2728, Beijing 100190 (China) and School of Life Sciences and Technology, Xidian University, Xi' an 710071 (China)

    2011-11-15

    Purpose: Bioluminescence tomography (BLT) provides an effective tool for monitoring physiological and pathological activities in vivo. However, the measured data in bioluminescence imaging are corrupted by noise. Therefore, regularization methods are commonly used to find a regularized solution. Nevertheless, for the quality of the reconstructed bioluminescent source obtained by regularization methods, the choice of the regularization parameters is crucial. To date, the selection of regularization parameters remains challenging. With regards to the above problems, the authors proposed a BLT reconstruction algorithm with an adaptive parameter choice rule. Methods: The proposed reconstruction algorithm uses a diffusion equation for modeling the bioluminescent photon transport. The diffusion equation is solved with a finite element method. Computed tomography (CT) images provide anatomical information regarding the geometry of the small animal and its internal organs. To reduce the ill-posedness of BLT, spectral information and the optimal permissible source region are employed. Then, the relationship between the unknown source distribution and multiview and multispectral boundary measurements is established based on the finite element method and the optimal permissible source region. Since the measured data are noisy, the BLT reconstruction is formulated as l{sub 2} data fidelity and a general regularization term. When choosing the regularization parameters for BLT, an efficient model function approach is proposed, which does not require knowledge of the noise level. This approach only requests the computation of the residual and regularized solution norm. With this knowledge, we construct the model function to approximate the objective function, and the regularization parameter is updated iteratively. Results: First, the micro-CT based mouse phantom was used for simulation verification. Simulation experiments were used to illustrate why multispectral data were used

  5. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Science.gov (United States)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP3) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  6. Hybrid radiosity-SP3 equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    International Nuclear Information System (INIS)

    Chen, Xueli; Zhang, Qitan; Yang, Defu; Liang, Jimin

    2014-01-01

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP 3 equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP 3 ) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions

  7. Experimental Study on Bioluminescence Tomography with Multimodality Fusion

    Directory of Open Access Journals (Sweden)

    Yujie Lv

    2007-01-01

    Full Text Available To verify the influence of a priori information on the nonuniqueness problem of bioluminescence tomography (BLT, the multimodality imaging fusion based BLT experiment is performed by multiview noncontact detection mode, which incorporates the anatomical information obtained by the microCT scanner and the background optical properties based on diffuse reflectance measurements. In the reconstruction procedure, the utilization of adaptive finite element methods (FEMs and a priori permissible source region refines the reconstructed results and improves numerical robustness and efficiency. The comparison between the absence and employment of a priori information shows that multimodality imaging fusion is essential to quantitative BLT reconstruction.

  8. Hybrid radiosity-SP{sub 3} equation based bioluminescence tomography reconstruction for turbid medium with low- and non-scattering regions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Zhang, Qitan; Yang, Defu; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an, Shaanxi 710071 (China)

    2014-01-14

    To provide an ideal solution for a specific problem of gastric cancer detection in which low-scattering regions simultaneously existed with both the non- and high-scattering regions, a novel hybrid radiosity-SP{sub 3} equation based reconstruction algorithm for bioluminescence tomography was proposed in this paper. In the algorithm, the third-order simplified spherical harmonics approximation (SP{sub 3}) was combined with the radiosity equation to describe the bioluminescent light propagation in tissues, which provided acceptable accuracy for the turbid medium with both low- and non-scattering regions. The performance of the algorithm was evaluated with digital mouse based simulations and a gastric cancer-bearing mouse based in situ experiment. Primary results demonstrated the feasibility and superiority of the proposed algorithm for the turbid medium with low- and non-scattering regions.

  9. Comparisons of hybrid radiosity-diffusion model and diffusion equation for bioluminescence tomography in cavity cancer detection

    Science.gov (United States)

    Chen, Xueli; Yang, Defu; Qu, Xiaochao; Hu, Hao; Liang, Jimin; Gao, Xinbo; Tian, Jie

    2012-06-01

    Bioluminescence tomography (BLT) has been successfully applied to the detection and therapeutic evaluation of solid cancers. However, the existing BLT reconstruction algorithms are not accurate enough for cavity cancer detection because of neglecting the void problem. Motivated by the ability of the hybrid radiosity-diffusion model (HRDM) in describing the light propagation in cavity organs, an HRDM-based BLT reconstruction algorithm was provided for the specific problem of cavity cancer detection. HRDM has been applied to optical tomography but is limited to simple and regular geometries because of the complexity in coupling the boundary between the scattering and void region. In the provided algorithm, HRDM was first applied to three-dimensional complicated and irregular geometries and then employed as the forward light transport model to describe the bioluminescent light propagation in tissues. Combining HRDM with the sparse reconstruction strategy, the cavity cancer cells labeled with bioluminescent probes can be more accurately reconstructed. Compared with the diffusion equation based reconstruction algorithm, the essentiality and superiority of the HRDM-based algorithm were demonstrated with simulation, phantom and animal studies. An in vivo gastric cancer-bearing nude mouse experiment was conducted, whose results revealed the ability and feasibility of the HRDM-based algorithm in the biomedical application of gastric cancer detection.

  10. Modeling bioluminescent photon transport in tissue based on Radiosity-diffusion model

    Science.gov (United States)

    Sun, Li; Wang, Pu; Tian, Jie; Zhang, Bo; Han, Dong; Yang, Xin

    2010-03-01

    Bioluminescence tomography (BLT) is one of the most important non-invasive optical molecular imaging modalities. The model for the bioluminescent photon propagation plays a significant role in the bioluminescence tomography study. Due to the high computational efficiency, diffusion approximation (DA) is generally applied in the bioluminescence tomography. But the diffusion equation is valid only in highly scattering and weakly absorbing regions and fails in non-scattering or low-scattering tissues, such as a cyst in the breast, the cerebrospinal fluid (CSF) layer of the brain and synovial fluid layer in the joints. A hybrid Radiosity-diffusion model is proposed for dealing with the non-scattering regions within diffusing domains in this paper. This hybrid method incorporates a priori information of the geometry of non-scattering regions, which can be acquired by magnetic resonance imaging (MRI) or x-ray computed tomography (CT). Then the model is implemented using a finite element method (FEM) to ensure the high computational efficiency. Finally, we demonstrate that the method is comparable with Mont Carlo (MC) method which is regarded as a 'gold standard' for photon transportation simulation.

  11. Image Reconstruction For Bioluminescence Tomography From Partial Measurement

    OpenAIRE

    Jiang, M.; Zhou, T.; Cheng, J. T.; Cong, W. X.; Wang, Ge

    2007-01-01

    The bioluminescence tomography is a novel molecular imaging technology for small animal studies. Known reconstruction methods require the completely measured data on the external surface, although only partially measured data is available in practice. In this work, we formulate a mathematical model for BLT from partial data and generalize our previous results on the solution uniqueness to the partial data case. Then we extend two of our reconstruction methods for BLT to this case. The first m...

  12. Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method.

    Science.gov (United States)

    He, Xiaowei; Liang, Jimin; Wang, Xiaorui; Yu, Jingjing; Qu, Xiaochao; Wang, Xiaodong; Hou, Yanbin; Chen, Duofang; Liu, Fang; Tian, Jie

    2010-11-22

    In this paper, we present an incomplete variables truncated conjugate gradient (IVTCG) method for bioluminescence tomography (BLT). Considering the sparse characteristic of the light source and insufficient surface measurement in the BLT scenarios, we combine a sparseness-inducing (ℓ1 norm) regularization term with a quadratic error term in the IVTCG-based framework for solving the inverse problem. By limiting the number of variables updated at each iterative and combining a variable splitting strategy to find the search direction more efficiently, it obtains fast and stable source reconstruction, even without a priori information of the permissible source region and multispectral measurements. Numerical experiments on a mouse atlas validate the effectiveness of the method. In vivo mouse experimental results further indicate its potential for a practical BLT system.

  13. L{sub 1/2} regularization based numerical method for effective reconstruction of bioluminescence tomography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Yang, Defu; Zhang, Qitan; Liang, Jimin, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn [School of Life Science and Technology, Xidian University, Xi' an 710071 (China); Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education (China)

    2014-05-14

    Even though bioluminescence tomography (BLT) exhibits significant potential and wide applications in macroscopic imaging of small animals in vivo, the inverse reconstruction is still a tough problem that has plagued researchers in a related area. The ill-posedness of inverse reconstruction arises from insufficient measurements and modeling errors, so that the inverse reconstruction cannot be solved directly. In this study, an l{sub 1/2} regularization based numerical method was developed for effective reconstruction of BLT. In the method, the inverse reconstruction of BLT was constrained into an l{sub 1/2} regularization problem, and then the weighted interior-point algorithm (WIPA) was applied to solve the problem through transforming it into obtaining the solution of a series of l{sub 1} regularizers. The feasibility and effectiveness of the proposed method were demonstrated with numerical simulations on a digital mouse. Stability verification experiments further illustrated the robustness of the proposed method for different levels of Gaussian noise.

  14. The CUBLAS and CULA based GPU acceleration of adaptive finite element framework for bioluminescence tomography.

    Science.gov (United States)

    Zhang, Bo; Yang, Xiang; Yang, Fei; Yang, Xin; Qin, Chenghu; Han, Dong; Ma, Xibo; Liu, Kai; Tian, Jie

    2010-09-13

    In molecular imaging (MI), especially the optical molecular imaging, bioluminescence tomography (BLT) emerges as an effective imaging modality for small animal imaging. The finite element methods (FEMs), especially the adaptive finite element (AFE) framework, play an important role in BLT. The processing speed of the FEMs and the AFE framework still needs to be improved, although the multi-thread CPU technology and the multi CPU technology have already been applied. In this paper, we for the first time introduce a new kind of acceleration technology to accelerate the AFE framework for BLT, using the graphics processing unit (GPU). Besides the processing speed, the GPU technology can get a balance between the cost and performance. The CUBLAS and CULA are two main important and powerful libraries for programming on NVIDIA GPUs. With the help of CUBLAS and CULA, it is easy to code on NVIDIA GPU and there is no need to worry about the details about the hardware environment of a specific GPU. The numerical experiments are designed to show the necessity, effect and application of the proposed CUBLAS and CULA based GPU acceleration. From the results of the experiments, we can reach the conclusion that the proposed CUBLAS and CULA based GPU acceleration method can improve the processing speed of the AFE framework very much while getting a balance between cost and performance.

  15. Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

    International Nuclear Information System (INIS)

    Chaudhari, Abhijit J; Darvas, Felix; Bading, James R; Moats, Rex A; Conti, Peter S; Smith, Desmond J; Cherry, Simon R; Leahy, Richard M

    2005-01-01

    For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour

  16. TH-EF-207A-07: An Integrated X-Ray/bioluminescence Tomography System for Radiation Guidance and Tumor Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Shi, J; Udayakumar, T; Wang, Z; Dogan, N; Pollack, A; Yang, Y [University of Miami School of Medicine, Miami, FL (United States)

    2016-06-15

    Purpose: CT is not able to differentiate tumors from surrounding soft tissue. This study is to develop a bioluminescence tomography (BLT) system that is integrated onto our previously developed CT guided small animal arc radiation treatment system (iSMAART) to guide radiation, monitor tumor growth and evaluate therapeutic response. Methods: The BLT system employs a CCD camera coupled with a high speed lens, and is aligned orthogonally to the x-ray beam central axis. The two imaging modalities, CT and BLT, are physically registered through geometrical calibration. The CT anatomy provides an accurate contour of animal surface which is used to construct 3D mesh for BLT reconstruction. Bioluminescence projections are captured from multiple angles, once every 45 degree rotation. The diffusion equation based on analytical Kirchhoff approximation is adopted to model the photon propagation in tissues. A discrete cosine transform based reweighted L1-norm regularization (DCT-re-L1) algorithm is used for BLT reconstruction. Experiments are conducted on a mouse orthotopic prostate tumor model (n=12) to evaluate the BLT performance, in terms of its robustness and accuracy in locating and quantifying the bioluminescent tumor cells. Iodinated contrast agent was injected intravenously to delineate the tumor in CT. The tumor location and volume obtained from CT also serve as a benchmark against BLT. Results: With our cutting edge reconstruction algorithm, BLT is able to accurately reconstruct the orthotopic prostate tumors. The tumor center of mass in BLT is within 0.5 mm radial distance of that in CT. The tumor volume in BLT is significantly correlated with that in CT (R2 = 0.81). Conclusion: The BLT can differentiate, localize and quantify tumors. Together with CT, BLT will provide precision radiation guidance and reliable treatment assessment in preclinical cancer research.

  17. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Yu, Jingjing [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); School of Physics and Information Technology, Shaanxi Normal University, Shaanxi (China); Eslami, Sohrab; Iordachita, Iulian [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland (United States); Reyes, Juvenal; Malek, Reem [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Tran, Phuoc T. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States); Department of Oncology and Urology, Brady Urological Institute, Johns Hopkins University, Baltimore, Maryland (United States); Patterson, Michael S. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario (Canada); Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (United States)

    2016-04-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  18. Bioluminescence Tomography–Guided Radiation Therapy for Preclinical Research

    International Nuclear Information System (INIS)

    Zhang, Bin; Wang, Ken Kang-Hsin; Yu, Jingjing; Eslami, Sohrab; Iordachita, Iulian; Reyes, Juvenal; Malek, Reem; Tran, Phuoc T.; Patterson, Michael S.; Wong, John W.

    2016-01-01

    Purpose: In preclinical radiation research, it is challenging to localize soft tissue targets based on cone beam computed tomography (CBCT) guidance. As a more effective method to localize soft tissue targets, we developed an online bioluminescence tomography (BLT) system for small-animal radiation research platform (SARRP). We demonstrated BLT-guided radiation therapy and validated targeting accuracy based on a newly developed reconstruction algorithm. Methods and Materials: The BLT system was designed to dock with the SARRP for image acquisition and to be detached before radiation delivery. A 3-mirror system was devised to reflect the bioluminescence emitted from the subject to a stationary charge-coupled device (CCD) camera. Multispectral BLT and the incomplete variables truncated conjugate gradient method with a permissible region shrinking strategy were used as the optimization scheme to reconstruct bioluminescent source distributions. To validate BLT targeting accuracy, a small cylindrical light source with high CBCT contrast was placed in a phantom and also in the abdomen of a mouse carcass. The center of mass (CoM) of the source was recovered from BLT and used to guide radiation delivery. The accuracy of the BLT-guided targeting was validated with films and compared with the CBCT-guided delivery. In vivo experiments were conducted to demonstrate BLT localization capability for various source geometries. Results: Online BLT was able to recover the CoM of the embedded light source with an average accuracy of 1 mm compared to that with CBCT localization. Differences between BLT- and CBCT-guided irradiation shown on the films were consistent with the source localization revealed in the BLT and CBCT images. In vivo results demonstrated that our BLT system could potentially be applied for multiple targets and tumors. Conclusions: The online BLT/CBCT/SARRP system provides an effective solution for soft tissue targeting, particularly for small, nonpalpable, or

  19. Smartphone-based low light detection for bioluminescence application

    Science.gov (United States)

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation ...

  20. Uptake kinetics and biodistribution of C-14-D-luciferin-a radiolabeled substrate for the firefly luciferase catalyzed bioluminescence reaction : impact on bioluminescence based reporter gene imaging

    NARCIS (Netherlands)

    Berger, Frank; Paulmurugan, Ramasamy; Bhaumik, Srabani; Gambhir, Sanjiv Sam

    2008-01-01

    Purpose Firefly luciferase catalyzes the oxidative decarboxylation of D-luciferin to oxyluciferin in the presence of cofactors, producing bioluminescence. This reaction is used in optical bioluminescence-based molecular imaging approaches to detect the expression of the firefly luciferase reporter

  1. Smartphone-based low light detection for bioluminescence application

    Science.gov (United States)

    Kim, Huisung; Jung, Youngkee; Doh, Iyll-Joon; Lozano-Mahecha, Roxana Andrea; Applegate, Bruce; Bae, Euiwon

    2017-01-01

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an analyte. A simple cradle that houses the smartphone, sample tube, and collection lens supports the measuring platform, while noise reduction by ensemble averaging simultaneously lowers the background and enhances the signal from emitted photons. Five different types of smartphones, both Android and iOS devices, were tested, and the top two candidates were used to evaluate luminescence from the bioluminescent reporter Pseudomonas fluorescens M3A. The best results were achieved by OnePlus One (android), which was able to detect luminescence from ~106 CFU/mL of the bio-reporter, which corresponds to ~107 photons/s with 180 seconds of integration time.

  2. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  3. Smartphone-based low light detection for bioluminescence application

    OpenAIRE

    Kim, Huisung; Jung, Youngkee; Doh, Iyll-Joon; Lozano-Mahecha, Roxana Andrea; Applegate, Bruce; Bae, Euiwon

    2017-01-01

    We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation by smartphone (BAQS), provides an opportunity for onsite analysis and quantitation of luminescent signals from biological and non-biological sensing elements which emit photons in response to an an...

  4. SU-E-T-20: A Novel Hybrid CBCT, Bioluminescence and Fluorescence Tomography System for Preclinical Radiation Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Eslami, S; Iordachita, I [Johns Hopkins University, Baltimore, Maryland (United States); Yang, Y [University of Miami School of Medicine, Miami, FL (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada); Wong, J [Johns Hopkins University, Baltimore, MD (United States); Wang, K [Johns Hopkins Hospital, Baltimore, MD (United States)

    2014-06-01

    Purpose: A novel standalone bioluminescence and fluorescence tomography (BLT and FT) system equipped with high resolution CBCT has been built in our group. In this work, we present the system calibration method and validate our system in both phantom and in vivo environment. Methods: The CBCT is acquired by rotating the animal stage while keeping the x-ray source and detector panel static. The optical signal is reflected by the 3-mirror system to a multispectral filter set and then delivered to the CCD camera with f/1.4 lens mounted. Nine fibers passing through the stage and in contact with the mouse skin serve as the light sources for diffuse optical tomography (DOT) and FT. The anatomical information and optical properties acquired from the CBCT and DOT, respectively, are used as the priori information to improve the BLT/FT reconstruction accuracy. Flat field correction for the optical system was acquired at multiple wavelengths. A home-built phantom is used to register the optical and CBCT coordinates. An absolute calibration relating the CCD photon counts rate to the light fluence rate emitted at animal surface was developed to quantify the bioluminescence power or fluorophore concentration. Results: An optical inhomogeneous phantom with 2 light sources (3mm separation) imbedded is used to test the system. The optical signal is mapped onto the mesh generated from CBCT for optical reconstruction. Our preliminary results show that the center of mass can be reconstructed within 2.8mm accuracy. A live mouse with the light source imbedded is also used to validate our system. Liver or lung metastatic luminescence tumor model will be used for further testing. Conclusion: This hybrid system transforms preclinical research to a level that even sub-palpable volume of cells can be imaged rapidly and non-invasively, which largely extends the scope of radiobiological research. The research is supported by the NCI grant R01CA158100-01.

  5. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  6. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hazrati, Mehrnaz Khodam; Kalies, Kai-Uwe; Martinetz, Thomas

    2011-01-01

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  7. Disposable bioluminescence-based biosensor for detection of bacterial count in food.

    Science.gov (United States)

    Luo, Jinping; Liu, Xiaohong; Tian, Qing; Yue, Weiwei; Zeng, Jing; Chen, Guangquan; Cai, Xinxia

    2009-11-01

    A biosensor for rapid detection of bacterial count based on adenosine 5'-triphosphate (ATP) bioluminescence has been developed. The biosensor is composed of a key sensitive element and a photomultiplier tube used as a detector element. The disposable sensitive element consists of a sampler, a cartridge where intracellular ATP is chemically extracted from bacteria, and a microtube where the extracted ATP reacts with the luciferin-luciferase reagent to produce bioluminescence. The bioluminescence signal is transformed into relevant electrical signal by the detector and further measured with a homemade luminometer. Parameters affecting the amount of the extracted ATP, including the types of ATP extractants, the concentrations of ATP extractant, and the relevant neutralizing reagent, were optimized. Under the optimal experimental conditions, the biosensor showed a linear response to standard bacteria in a concentration range from 10(3) to 10(8) colony-forming units (CFU) per milliliter with a correlation coefficient of 0.925 (n=22) within 5min. Moreover, the bacterial count of real food samples obtained by the biosensor correlated well with those by the conventional plate count method. The proposed biosensor, with characteristics of low cost, easy operation, and fast response, provides potential application to rapid evaluation of bacterial contamination in the food industry, environment monitoring, and other fields.

  8. Bioluminescence lights the way to food safety

    Science.gov (United States)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2003-07-01

    The food industry is increasingly adopting food safety and quality management systems that are more proactive and preventive than those used in the past which have tended to rely on end product testing and visual inspection. The regulatory agencies in many countries are promoting one such management tool, Hazard Analysis Critical Control Point (HACCP), as a way to achieve a safer food supply and as a basis for harmonization of trading standards. Verification that the process is safe must involve microbiological testing but the results need not be generated in real-time. Of all the rapid microbiological tests currently available, the only ones that come close to offering real-time results are bioluminescence-based methods. Recent developments in application of bioluminescence for food safety issues are presented in the paper. These include the use of genetically engineered microorganisms with bioluminescent and fluorescent phenotypes as a real time indicator of physiological state and survival of food-borne pathogens in food and food processing environments as well as novel bioluminescent-based methods for rapid detection of pathogens in food and environmental samples. Advantages and pitfalls of the methods are discussed.

  9. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  10. Bioluminescent bioreporter sensing of foodborne toxins

    Science.gov (United States)

    Fraley, Amanda C.; Ripp, Steven; Sayler, Gary S.

    2004-06-01

    Histamine is the primary etiological agent in the foodborne disease scombrotoxicosis, one of the most common food toxicities related to fish consumption. Procedures for detecting histamine in fish products are available, but are often too expensive or too complex for routine use. As an alternative, a bacterial bioluminescent bioreporter has been constructed to develop a biosensor system that autonomously responds to low levels of histamine. The bioreporter contains a promoterless Photorhabdus luminescens lux operon (luxCDABE) fused with the Vibrio anguillarum angR regulatory gene promoter of the anguibactin biosynthetic operon. The bioreporter emitted 1.46 times more bioluminescence than background, 30 minutes after the addition of 100mM histamine. However, specificity was not optimal, as this biosensor generated significant bioluminescence in the presence of L-proline and L-histidine. As a means towards improving histamine specificity, the promoter region of a histamine oxidase gene from Arthrobacter globiformis was cloned upstream of the promotorless lux operon from Photorhabdus luminescens. This recently constructed whole-cell, lux-based bioluminescent bioreporter is currently being tested for optimal performance in the presence of histamine in order to provide a rapid, simple, and inexpensive model sensor for the detection of foodborne toxins.

  11. Bioluminescent bacteria: lux genes as environmental biosensors

    Directory of Open Access Journals (Sweden)

    Nunes-Halldorson Vânia da Silva

    2003-01-01

    Full Text Available Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in environmental studies, with special emphasis on the Microtox toxicity bioassay. Also, the general ecological significance of bioluminescence will be addressed.

  12. Systematic study of target localization for bioluminescence tomography guided radiation therapy

    Science.gov (United States)

    Yu, Jingjing; Zhang, Bin; Iordachita, Iulian I.; Reyes, Juvenal; Lu, Zhihao; Brock, Malcolm V.; Patterson, Michael S.; Wong, John W.

    2016-01-01

    Purpose: To overcome the limitation of CT/cone-beam CT (CBCT) in guiding radiation for soft tissue targets, the authors developed a spectrally resolved bioluminescence tomography (BLT) system for the small animal radiation research platform. The authors systematically assessed the performance of the BLT system in terms of target localization and the ability to resolve two neighboring sources in simulations, tissue-mimicking phantom, and in vivo environments. Methods: Multispectral measurements acquired in a single projection were used for the BLT reconstruction. The incomplete variables truncated conjugate gradient algorithm with an iterative permissible region shrinking strategy was employed as the optimization scheme to reconstruct source distributions. Simulation studies were conducted for single spherical sources with sizes from 0.5 to 3 mm radius at depth of 3–12 mm. The same configuration was also applied for the double source simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two self-illuminated sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single-source at 6 and 9 mm depth, two sources at 3 and 5 mm separation at depth of 5 mm, or three sources in the abdomen were also used to illustrate the localization capability of the BLT system for multiple targets in vivo. Results: For simulation study, approximate 1 mm accuracy can be achieved at localizing center of mass (CoM) for single-source and grouped CoM for double source cases. For the case of 1.5 mm radius source, a common tumor size used in preclinical study, their simulation shows that for all the source separations considered, except for the 3 mm separation at 9 and 12 mm depth, the two neighboring sources can be resolved at depths from 3 to 12 mm. Phantom experiments illustrated that 2D bioluminescence imaging failed to distinguish two sources

  13. Systematic study of target localization for bioluminescence tomography guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jingjing [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 and School of Physics and Information Technology, Shaanxi Normal University, Shaanxi 710119 (China); Zhang, Bin; Reyes, Juvenal; Wong, John W.; Wang, Ken Kang-Hsin, E-mail: kwang27@jhmi.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Lu, Zhihao [Department of Oncology and Department of Surgery, Johns Hopkins University, Baltimore, Maryland 21231 and Key laboratory of Carcinogenesis and Translational Research, Department of GI Oncology, Peking University, Beijing Cancer Hospital and Institute, Beijing 100142 (China); Brock, Malcolm V. [Department of Oncology and Department of Surgery, Johns Hopkins University, Baltimore, Maryland 21231 (United States); Patterson, Michael S. [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4L8 (Canada)

    2016-05-15

    Purpose: To overcome the limitation of CT/cone-beam CT (CBCT) in guiding radiation for soft tissue targets, the authors developed a spectrally resolved bioluminescence tomography (BLT) system for the small animal radiation research platform. The authors systematically assessed the performance of the BLT system in terms of target localization and the ability to resolve two neighboring sources in simulations, tissue-mimicking phantom, and in vivo environments. Methods: Multispectral measurements acquired in a single projection were used for the BLT reconstruction. The incomplete variables truncated conjugate gradient algorithm with an iterative permissible region shrinking strategy was employed as the optimization scheme to reconstruct source distributions. Simulation studies were conducted for single spherical sources with sizes from 0.5 to 3 mm radius at depth of 3–12 mm. The same configuration was also applied for the double source simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two self-illuminated sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single-source at 6 and 9 mm depth, two sources at 3 and 5 mm separation at depth of 5 mm, or three sources in the abdomen were also used to illustrate the localization capability of the BLT system for multiple targets in vivo. Results: For simulation study, approximate 1 mm accuracy can be achieved at localizing center of mass (CoM) for single-source and grouped CoM for double source cases. For the case of 1.5 mm radius source, a common tumor size used in preclinical study, their simulation shows that for all the source separations considered, except for the 3 mm separation at 9 and 12 mm depth, the two neighboring sources can be resolved at depths from 3 to 12 mm. Phantom experiments illustrated that 2D bioluminescence imaging failed to distinguish two sources

  14. Bioluminescent bacteria: lux genes as environmental biosensors

    OpenAIRE

    Nunes-Halldorson,Vânia da Silva; Duran,Norma Letícia

    2003-01-01

    Bioluminescent bacteria are widespread in natural environments. Over the years, many researchers have been studying the physiology, biochemistry and genetic control of bacterial bioluminescence. These discoveries have revolutionized the area of Environmental Microbiology through the use of luminescent genes as biosensors for environmental studies. This paper will review the chronology of scientific discoveries on bacterial bioluminescence and the current applications of bioluminescence in env...

  15. Repeated and Widespread Evolution of Bioluminescence in Marine Fishes.

    Directory of Open Access Journals (Sweden)

    Matthew P Davis

    Full Text Available Bioluminescence is primarily a marine phenomenon with 80% of metazoan bioluminescent genera occurring in the world's oceans. Here we show that bioluminescence has evolved repeatedly and is phylogenetically widespread across ray-finned fishes. We recover 27 independent evolutionary events of bioluminescence, all among marine fish lineages. This finding indicates that bioluminescence has evolved many more times than previously hypothesized across fishes and the tree of life. Our exploration of the macroevolutionary patterns of bioluminescent lineages indicates that the present day diversity of some inshore and deep-sea bioluminescent fish lineages that use bioluminescence for communication, feeding, and reproduction exhibit exceptional species richness given clade age. We show that exceptional species richness occurs particularly in deep-sea fishes with intrinsic bioluminescent systems and both shallow water and deep-sea lineages with luminescent systems used for communication.

  16. Bioluminescent organs of two deep-sea arrow worms, Eukrohnia fowleri and Caecosagitta macrocephala, with further observations on Bioluminescence in chaetognaths.

    Science.gov (United States)

    Thuesen, Erik V; Goetz, Freya E; Haddock, Steven H D

    2010-10-01

    Bioluminescence in the deep-sea chaetognath Eukrohnia fowleri is reported for the first time, and behavioral, morphological, and chemical characteristics of bioluminescence in chaetognaths are examined. Until this study, the only known species of bioluminescent chaetognath was Caecosagitta macrocephala. The luminescent organ of that species is located on the ventral edge of each anterior lateral fin, whereas that of E. fowleri runs across the center of the tail fin on both dorsal and ventral sides. Scanning electron microscopy showed that the bioluminescent organs of both species consist of hexagonal chambers containing elongate ovoid particles-the organelles holding bioluminescent materials. No other luminous organism is known to use hexagonal packing to hold bioluminescent materials. Transmission electron microscopy of particles from C. macrocephala revealed a densely packed paracrystalline matrix punctuated by globular inclusions, which likely correspond to luciferin and luciferase, respectively. Both species use unique luciferases in conjunction with coelenterazine for light emission. Luciferase of C. macrocephala becomes inactive after 30 min, but luciferase of E. fowleri is highly stable. Although C. macrocephala has about 90 times fewer particles than E. fowleri, it has a similar bioluminescent capacity (total particle volume) due to its larger particle size. In situ observations of C. macrocephala from a remotely operated vehicle revealed that the luminous particles are released to form a cloud. The discovery of bioluminescence in a second chaetognath phylogenetically distant from the first highlights the importance of bioluminescence among deep-sea organisms.

  17. WE-FG-BRA-06: Systematic Study of Target Localization for Bioluminescence Tomography Guided Radiation Therapy for Preclinical Research

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Reyes, J; Wong, J; Wang, K [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); Yu, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); School of Physics and Information Technology, Shaanxi Normal University, Shaanxi (China); Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States); Liu, Z [Department of Oncology, Department of Surgery, Johns Hopkins University, Baltimore, MD (United States); Department of GI Oncology, Peking University School of Oncology, Beijing Cancer Hospital & Institute, Beijing (China); Brock, M [Department of Oncology, Department of Surgery, Johns Hopkins University, Baltimore, MD (United States); Patterson, M [McMaster University, Hamilton, Ontario, CA (Canada)

    2016-06-15

    Purpose: To overcome the limitation of CT/CBCT in guiding radiation for soft tissue targets, we developed a bioluminescence tomography(BLT) system for preclinical radiation research. We systematically assessed the system performance in target localization and the ability of resolving two sources in simulations, phantom and in vivo environments. Methods: Multispectral images acquired in single projection were used for the BLT reconstruction. Simulation studies were conducted for single spherical source radius from 0.5 to 3 mm at depth of 3 to 12 mm. The same configuration was also applied for the double sources simulation with source separations varying from 3 to 9 mm. Experiments were performed in a standalone BLT/CBCT system. Two sources with 3 and 4.7 mm separations placed inside a tissue-mimicking phantom were chosen as the test cases. Live mice implanted with single source at 6 and 9 mm depth, 2 sources with 3 and 5 mm separation at depth of 5 mm or 3 sources in the abdomen were also used to illustrate the in vivo localization capability of the BLT system. Results: Simulation and phantom results illustrate that our BLT can provide 3D source localization with approximately 1 mm accuracy. The in vivo results are encouraging that 1 and 1.7 mm accuracy can be attained for the single source case at 6 and 9 mm depth, respectively. For the 2 sources study, both sources can be distinguished at 3 and 5 mm separations at approximately 1 mm accuracy using 3D BLT but not 2D bioluminescence image. Conclusion: Our BLT/CBCT system can be potentially applied to localize and resolve targets at a wide range of target sizes, depths and separations. The information provided in this study can be instructive to devise margins for BLT-guided irradiation and suggests that the BLT could guide radiation for multiple targets, such as metastasis. Drs. John W. Wong and Iulian I. Iordachita receive royalty payment from a licensing agreement between Xstrahl Ltd and Johns Hopkins University.

  18. New bioreactor for in situ simultaneous measurement of bioluminescence and cell density

    Science.gov (United States)

    Picart, Pascal; Bendriaa, Loubna; Daniel, Philippe; Horry, Habib; Durand, Marie-José; Jouvanneau, Laurent; Thouand, Gérald

    2004-03-01

    This article presents a new device devoted to the simultaneous measurement of bioluminescence and optical density of a bioluminescent bacterial culture. It features an optoelectronic bioreactor with a fully autoclavable module, in which the bioluminescent bacteria are cultivated, a modulated laser diode dedicated to optical density measurement, and a detection head for the acquisition of both bioluminescence and optical density signals. Light is detected through a bifurcated fiber bundle. This setup allows the simultaneous estimation of the bioluminescence and the cell density of the culture medium without any sampling. The bioluminescence is measured through a highly sensitive photomultiplier unit which has been photometrically calibrated to allow light flux measurements. This was achieved by considering the bioluminescence spectrum and the full optical transmission of the device. The instrument makes it possible to measure a very weak light flux of only a few pW. The optical density is determined through the laser diode and a photodiode using numerical synchronous detection which is based on the power spectrum density of the recorded signal. The detection was calibrated to measure optical density up to 2.5. The device was validated using the Vibrio fischeri bacterium which was cultivated under continuous culture conditions. A very good correlation between manual and automatic measurements processed with this instrument has been demonstrated. Furthermore, the optoelectronic bioreactor enables determination of the luminance of the bioluminescent bacteria which is estimated to be 6×10-5 W sr-1 m-2 for optical density=0.3. Experimental results are presented and discussed.

  19. REVIEW ARTICLE: Bioluminescent signals and the role of reflectors

    Science.gov (United States)

    Herring, Peter J.

    2000-11-01

    Organisms in a well lit environment use optical signals derived from the selective reflection of ambient light. In a dim or dark environment it is very difficult (because of low photon numbers) to detect the contrast between light reflected from the organism and that from the background, and many organisms use bioluminescent signals instead. The use of such signals on land is largely restricted to sexual signalling by the luminous beetles, but in the deep ocean their use is widespread, involving both many different organisms and a range of uses which parallel those of reflective signals on land. Some bioluminescent signals rely almost entirely on an optically unmodified light source (e.g. a secretion) but others depend upon complex optical structures, particularly reflectors, in the light-emitting organs. Reflectors in the light organs of many shrimp, squid and fish are based on constructive interference systems but employ different biological materials. They and other structures modify the angular, spectral and intensity distributions of bioluminescent signals. The ready availability of highly efficient biological reflectors has been a formative influence in the evolution of bioluminescent signalling in the sea.

  20. Bioluminescence of beetle luciferases with 6'-amino-D-luciferin analogues reveals excited keto-oxyluciferin as the emitter and phenolate/luciferin binding site interactions modulate bioluminescence colors.

    Science.gov (United States)

    Viviani, Vadim R; Neves, Deimison Rodrigues; Amaral, Danilo Trabuco; Prado, Rogilene A; Matsuhashi, Takuto; Hirano, Takashi

    2014-08-19

    Beetle luciferases produce different bioluminescence colors from green to red using the same d-luciferin substrate. Despite many studies of the mechanisms and structural determinants of bioluminescence colors with firefly luciferases, the identity of the emitters and the specific active site interactions responsible for bioluminescence color modulation remain elusive. To address these questions, we analyzed the bioluminescence spectra with 6'-amino-D-luciferin (aminoluciferin) and its 5,5-dimethyl analogue using a set of recombinant beetle luciferases that naturally elicit different colors and different pH sensitivities (pH-sensitive, Amydetes vivianii λmax=538 nm, Macrolampis sp2 λmax=564 nm; pH-insensitive, Phrixotrix hirtus λmax=623 nm, Phrixotrix vivianii λmax=546 nm, and Pyrearinus termitilluminans λmax=534 nm), a luciferase-like enzyme (Tenebrionidae, Zophobas morio λmax=613 nm), and mutants of C311 (S314). The green-yellow-emitting luciferases display red-shifted bioluminescence spectra with aminoluciferin in relation to those with D-luciferin, whereas the red-emitting luciferases displayed blue-shifted spectra. Bioluminescence spectra with 5,5-dimethylaminoluciferin, in which enolization is blocked, were almost identical to those of aminoluciferin. Fluorescence probing using 2-(4-toluidino)naphthalene-6-sulfonate and inference with aminoluciferin confirm that the luciferin binding site of the red-shifted luciferases is more polar than in the case of the green-yellow-emitting luciferases. Altogether, the results show that the keto form of excited oxyluciferin is the emitter in beetle bioluminescence and that bioluminescence colors are essentially modulated by interactions of the 6'-hydroxy group of oxyluciferin and basic moieties under the influence of the microenvironment polarity of the active site: a strong interaction between a base moiety and oxyluciferin phenol in a hydrophobic microenvironment promotes green-yellow emission, whereas a more polar

  1. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  2. Bioluminescent Antibodies for Point-of-Care Diagnostics.

    Science.gov (United States)

    Xue, Lin; Yu, Qiuliyang; Griss, Rudolf; Schena, Alberto; Johnsson, Kai

    2017-06-12

    We introduce a general method to transform antibodies into ratiometric, bioluminescent sensor proteins for the no-wash quantification of analytes. Our approach is based on the genetic fusion of antibody fragments to NanoLuc luciferase and SNAP-tag, the latter being labeled with a synthetic fluorescent competitor of the antigen. Binding of the antigen, here synthetic drugs, by the sensor displaces the tethered fluorescent competitor from the antibody and disrupts bioluminescent resonance energy transfer (BRET) between the luciferase and fluorophore. The semisynthetic sensors display a tunable response range (submicromolar to submillimolar) and large dynamic range (ΔR max >500 %), and they permit the quantification of analytes through spotting of the samples onto paper followed by analysis with a digital camera. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  3. Effect of electromagnetic fields on the bacteria bioluminescent activity

    International Nuclear Information System (INIS)

    Berzhanskaya, L.Yu.; Berzhanskij, V.N.; Beloplotova, O.Yu.

    1995-01-01

    The effect of electromagnetic field with frequency from 36.2 to 55.9 GHz on bioluminescence activity of bacterium were investigated. Electromagnetic field results in decrease of bioluminescence, which depends from frequency. The electromagnetic field adaptation time is higher of intrinsic time parameters of bioluminescence system. The effect has nonthermal nature. It is suggested that electromagnetic field influence connects with structure rearrangements near cell emitter. 8 refs.; 3 figs

  4. Development of a novel preclinical pancreatic cancer research model: bioluminescence image-guided focal irradiation and tumor monitoring of orthotopic xenografts.

    Science.gov (United States)

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; Deweese, Theodore L; Herman, Joseph M

    2012-04-01

    We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response.

  5. Stimulated bioluminescence by fluid shear stress associated with pipe flow

    Energy Technology Data Exchange (ETDEWEB)

    Cao Jing; Wang Jiangan; Wu Ronghua, E-mail: caojing981@126.com [Col. of Electronic Eng., Naval University of Engineering, Wuhan 430033 (China)

    2011-01-01

    Dinoflagellate can be stimulated bioluminescence by hydrodynamic agitation. Two typical dinoflagellate (Lingulodinium polyedrum and Pyrocystis noctiluca) was choosed to research stimulated bioluminescence. The bioluminescence intensity and shear stress intensity were measured using fully developed pipe flow. There is shear stress threshold to agitate organism bioluminescence. From these experiment, the response thresholds of the stimulated bioluminscence always occurred in laminar flows at a shear stress level of 0.6-3 dyn/cm{sup 2}. At the same time, the spectral characteristc of dinoflagellate was recorded, the wavelength of them is about 470nm, and the full width at half maximum is approximate 30nm.

  6. Bioluminescence in vivo imaging of autoimmune encephalomyelitis predicts disease

    Directory of Open Access Journals (Sweden)

    Steinman Lawrence

    2008-02-01

    Full Text Available Abstract Background Experimental autoimmune encephalomyelitis is a widely used animal model to understand not only multiple sclerosis but also basic principles of immunity. The disease is scored typically by observing signs of paralysis, which do not always correspond with pathological changes. Methods Experimental autoimmune encephalomyelitis was induced in transgenic mice expressing an injury responsive luciferase reporter in astrocytes (GFAP-luc. Bioluminescence in the brain and spinal cord was measured non-invasively in living mice. Mice were sacrificed at different time points to evaluate clinical and pathological changes. The correlation between bioluminescence and clinical and pathological EAE was statistically analyzed by Pearson correlation analysis. Results Bioluminescence from the brain and spinal cord correlates strongly with severity of clinical disease and a number of pathological changes in the brain in EAE. Bioluminescence at early time points also predicts severity of disease. Conclusion These results highlight the potential use of bioluminescence imaging to monitor neuroinflammation for rapid drug screening and immunological studies in EAE and suggest that similar approaches could be applied to other animal models of autoimmune and inflammatory disorders.

  7. In vivo cell tracking with bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Eun; Kalimuthu, Senthilkumar; Ahn, Byeong Cheol [Dept. of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu (Korea, Republic of)

    2015-03-15

    Molecular imaging is a fast growing biomedical research that allows the visual representation, characterization and quantification of biological processes at the cellular and subcellular levels within intact living organisms. In vivo tracking of cells is an indispensable technology for development and optimization of cell therapy for replacement or renewal of damaged or diseased tissue using transplanted cells, often autologous cells. With outstanding advantages of bioluminescence imaging, the imaging approach is most commonly applied for in vivo monitoring of transplanted stem cells or immune cells in order to assess viability of administered cells with therapeutic efficacy in preclinical small animal models. In this review, a general overview of bioluminescence is provided and recent updates of in vivo cell tracking using the bioluminescence signal are discussed.

  8. In Vivo Bioluminescence Imaging for Longitudinal Monitoring of Inflammation in Animal Models of Uveitis.

    Science.gov (United States)

    Gutowski, Michal B; Wilson, Leslie; Van Gelder, Russell N; Pepple, Kathryn L

    2017-03-01

    We develop a quantitative bioluminescence assay for in vivo longitudinal monitoring of inflammation in animal models of uveitis. Three models of experimental uveitis were induced in C57BL/6 albino mice: primed mycobacterial uveitis (PMU), endotoxin-induced uveitis (EIU), and experimental autoimmune uveitis (EAU). Intraperitoneal injection of luminol sodium salt, which emits light when oxidized, provided the bioluminescence substrate. Bioluminescence images were captured by a PerkinElmer In Vivo Imaging System (IVIS) Spectrum and total bioluminescence was analyzed using Living Image software. Bioluminescence on day zero was compared to bioluminescence on the day of peak inflammation for each model. Longitudinal bioluminescence imaging was performed in EIU and EAU. In the presence of luminol, intraocular inflammation generates detectable bioluminescence in three mouse models of uveitis. Peak bioluminescence in inflamed PMU eyes (1.46 × 105 photons/second [p/s]) was significantly increased over baseline (1.47 × 104 p/s, P = 0.01). Peak bioluminescence in inflamed EIU eyes (3.18 × 104 p/s) also was significantly increased over baseline (1.09 × 104 p/s, P = 0.04), and returned to near baseline levels by 48 hours. In EAU, there was a nonsignificant increase in bioluminescence at peak inflammation. In vivo bioluminescence may be used as a noninvasive, quantitative measure of intraocular inflammation in animal models of uveitis. Primed mycobacterial uveitis and EIU are both acute models with robust anterior inflammation and demonstrated significant changes in bioluminescence corresponding with peak inflammation. Experimental autoimmune uveitis is a more indolent posterior uveitis and generated a more modest bioluminescent signal. In vivo imaging system bioluminescence is a nonlethal, quantifiable assay that can be used for monitoring inflammation in animal models of uveitis.

  9. Bioluminescence-Based Method for Measuring Assimilable Organic Carbon in Pretreatment Water for Reverse Osmosis Membrane Desalination ▿

    Science.gov (United States)

    Weinrich, Lauren A.; Schneider, Orren D.; LeChevallier, Mark W.

    2011-01-01

    A bioluminescence-based assimilable organic carbon (AOC) test was developed for determining the biological growth potential of seawater within the reverse osmosis desalination pretreatment process. The test uses Vibrio harveyi, a marine organism that exhibits constitutive luminescence and is nutritionally robust. AOC was measured in both a pilot plant and a full-scale desalination plant pretreatment. PMID:21148685

  10. Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity

    Science.gov (United States)

    Widder, E. A.

    2010-05-01

    From bacteria to fish, a remarkable variety of marine life depends on bioluminescence (the chemical generation of light) for finding food, attracting mates, and evading predators. Disparate biochemical systems and diverse phylogenetic distribution patterns of light-emitting organisms highlight the ecological benefits of bioluminescence, with biochemical and genetic analyses providing new insights into the mechanisms of its evolution. The origins and functions of some bioluminescent systems, however, remain obscure. Here, I review recent advances in understanding bioluminescence in the ocean and highlight future research efforts that will unite molecular details with ecological and evolutionary relationships.

  11. Bioluminescence imaging of Chlamydia muridarum ascending infection in mice.

    Directory of Open Access Journals (Sweden)

    Jessica Campbell

    Full Text Available Chlamydial pathogenicity in the upper genital tract relies on chlamydial ascending from the lower genital tract. To monitor chlamydial ascension, we engineered a luciferase-expressing C. muridarum. In cells infected with the luciferase-expressing C. muridarum, luciferase gene expression and enzymatic activity (measured as bioluminescence intensity correlated well along the infection course, suggesting that bioluminescence can be used for monitoring chlamydial replication. Following an intravaginal inoculation with the luciferase-expressing C. muridarum, 8 of 10 mice displayed bioluminescence signal in the lower with 4 also in the upper genital tracts on day 3 after infection. By day 7, all 10 mice developed bioluminescence signal in the upper genital tracts. The bioluminescence signal was maintained in the upper genital tract in 6 and 2 mice by days 14 and 21, respectively. The bioluminescence signal was no longer detectable in any of the mice by day 28. The whole body imaging approach also revealed an unexpected airway infection following the intravaginal inoculation. Although the concomitant airway infection was transient and did not significantly alter the genital tract infection time courses, caution should be taken during data interpretation. The above observations have demonstrated that C. muridarum can not only achieve rapid ascending infection in the genital tract but also cause airway infection following a genital tract inoculation. These findings have laid a foundation for further optimizing the C. muridarum intravaginal infection murine model for understanding chlamydial pathogenic mechanisms.

  12. Bioluminescence Monitoring of Neuronal Activity in Freely Moving Zebrafish Larvae

    Science.gov (United States)

    Knafo, Steven; Prendergast, Andrew; Thouvenin, Olivier; Figueiredo, Sophie Nunes; Wyart, Claire

    2017-01-01

    The proof of concept for bioluminescence monitoring of neural activity in zebrafish with the genetically encoded calcium indicator GFP-aequorin has been previously described (Naumann et al., 2010) but challenges remain. First, bioluminescence signals originating from a single muscle fiber can constitute a major pitfall. Second, bioluminescence signals emanating from neurons only are very small. To improve signals while verifying specificity, we provide an optimized 4 steps protocol achieving: 1) selective expression of a zebrafish codon-optimized GFP-aequorin, 2) efficient soaking of larvae in GFP-aequorin substrate coelenterazine, 3) bioluminescence monitoring of neural activity from motor neurons in free-tailed moving animals performing acoustic escapes and 4) verification of the absence of muscle expression using immunohistochemistry. PMID:29130058

  13. Total evidence phylogeny and the evolution of adult bioluminescence in fireflies (Coleoptera: Lampyridae).

    Science.gov (United States)

    Martin, Gavin J; Branham, Marc A; Whiting, Michael F; Bybee, Seth M

    2017-02-01

    Fireflies are some of the most captivating organisms on the planet. They have a rich history as subjects of scientific study, especially in relation to their bioluminescent behavior. Yet, the phylogenetic relationships of fireflies are still poorly understood. Here, we present the first total evidence approach to reconstruct lampyrid phylogeny using both a molecular matrix from six loci and an extensive morphological matrix. Using this phylogeny we test the hypothesis that adult bioluminescence evolved after the origin of the firefly clade. The ancestral state of adult bioluminescence is recovered as non-bioluminescent with one to six gains and five to ten subsequent losses. The monophyly of the family, as well as the subfamilies is also tested. Ototretinae, Cyphonocerinae, Luciolinae (incl. Pristolycus), Amydetinae, "cheguevarinae" sensu Jeng 2008, and Photurinae are highly supported as monophyletic. With the exception of four taxa, Lampyrinae is also recovered as monophyletic with high support. Based on phylogenetic and morphological data Lamprohiza, Phausis, and Lamprigera are transferred to Lampyridae incertae sedis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  15. Nucleic acid detection using BRET-beacons based on bioluminescent protein-DNA hybrids

    NARCIS (Netherlands)

    Engelen, W.; van de Wiel, K.M.; Meijer, L.H.H.; Saha, B.; Merkx, M.

    2017-01-01

    Bioluminescent molecular beacons have been developed using a modular design approach that relies on BRET between the bright luciferase NanoLuc and a Cy3 acceptor. While classical molecular beacons are hampered by background fluorescence and scattering, these BRET-beacons allow detection of low pM

  16. Influence of antibiotic pressure on bacterial bioluminescence, with emphasis on Staphylococcus aureus

    NARCIS (Netherlands)

    Daghighi, Seyedmojtaba; Sjollema, Jelmer; Harapanahalli, Akshay; Dijkstra, Rene J. B.; van der Mei, Henny C.; Busscher, Henk J.

    2015-01-01

    Bioluminescence imaging is used for longitudinal evaluation of bacteria in live animals. Clear relations exist between bacterial numbers and their bioluminescence. However, bioluminescence images of Staphylococcus aureus Xen29, S. aureus Xen36 and Escherichia coli Xen14 grown on tryptone soy agar in

  17. Autonomously bioluminescent mammalian cells for continuous and real-time monitoring of cytotoxicity.

    Science.gov (United States)

    Xu, Tingting; Close, Dan M; Webb, James D; Ripp, Steven A; Sayler, Gary S

    2013-10-28

    Mammalian cell-based in vitro assays have been widely employed as alternatives to animal testing for toxicological studies but have been limited due to the high monetary and time costs of parallel sample preparation that are necessitated due to the destructive nature of firefly luciferase-based screening methods. This video describes the utilization of autonomously bioluminescent mammalian cells, which do not require the destructive addition of a luciferin substrate, as an inexpensive and facile method for monitoring the cytotoxic effects of a compound of interest. Mammalian cells stably expressing the full bacterial bioluminescence (luxCDABEfrp) gene cassette autonomously produce an optical signal that peaks at 490 nm without the addition of an expensive and possibly interfering luciferin substrate, excitation by an external energy source, or destruction of the sample that is traditionally performed during optical imaging procedures. This independence from external stimulation places the burden for maintaining the bioluminescent reaction solely on the cell, meaning that the resultant signal is only detected during active metabolism. This characteristic makes the lux-expressing cell line an excellent candidate for use as a biosentinel against cytotoxic effects because changes in bioluminescent production are indicative of adverse effects on cellular growth and metabolism. Similarly, the autonomous nature and lack of required sample destruction permits repeated imaging of the same sample in real-time throughout the period of toxicant exposure and can be performed across multiple samples using existing imaging equipment in an automated fashion.

  18. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    Science.gov (United States)

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. BLI was correlated to positron emission tomography (PET)/computed tomography (CT) to estimate tumor dimensions. BLI and cone-beam CT (CBCT) were used to compare tumor centroid location and estimate setup error. BLI and CBCT fusion was performed to guide irradiation of tumors using the small animal radiation research platform (SARRP). DNA damage was assessed by γ-H2Ax staining. BLI was used to longitudinally monitor treatment response. RESULTS: Bioluminescence predicted tumor volume (R = 0.8984) and increased linearly as a function of time up to a 10-fold increase in tumor burden. BLI correlated with PET/CT and necropsy specimen in size (P < .05). Two-dimensional BLI centroid accuracy was 3.5 mm relative to CBCT. BLI-guided irradiated pancreatic tumors stained positively for γ-H2Ax, whereas surrounding normal tissues were spared. Longitudinal assessment of irradiated tumors with BLI revealed significant tumor growth delay of 20 days relative to controls. CONCLUSIONS: We have successfully applied the SARRP to a bioluminescent, orthotopic preclinical pancreas cancer model to noninvasively: 1) allow the identification of tumor burden before therapy, 2) facilitate image-guided focal radiation therapy, and 3) allow normalization of tumor burden and longitudinal assessment of treatment response. PMID:22496923

  19. In vivo quantitative imaging of point-like bioluminescent and fluorescent sources: Validation studies in phantoms and small animals post mortem

    Science.gov (United States)

    Comsa, Daria Craita

    2008-10-01

    There is a real need for improved small animal imaging techniques to enhance the development of therapies in which animal models of disease are used. Optical methods for imaging have been extensively studied in recent years, due to their high sensitivity and specificity. Methods like bioluminescence and fluorescence tomography report promising results for 3D reconstructions of source distributions in vivo. However, no standard methodology exists for optical tomography, and various groups are pursuing different approaches. In a number of studies on small animals, the bioluminescent or fluorescent sources can be reasonably approximated as point or line sources. Examples include images of bone metastases confined to the bone marrow. Starting with this premise, we propose a simpler, faster, and inexpensive technique to quantify optical images of point-like sources. The technique avoids the computational burden of a tomographic method by using planar images and a mathematical model based on diffusion theory. The model employs in situ optical properties estimated from video reflectometry measurements. Modeled and measured images are compared iteratively using a Levenberg-Marquardt algorithm to improve estimates of the depth and strength of the bioluminescent or fluorescent inclusion. The performance of the technique to quantify bioluminescence images was first evaluated on Monte Carlo simulated data. Simulated data also facilitated a methodical investigation of the effect of errors in tissue optical properties on the retrieved source depth and strength. It was found that, for example, an error of 4 % in the effective attenuation coefficient led to 4 % error in the retrieved depth for source depths of up to 12mm, while the error in the retrieved source strength increased from 5.5 % at 2mm depth, to 18 % at 12mm depth. Experiments conducted on images from homogeneous tissue-simulating phantoms showed that depths up to 10mm could be estimated within 8 %, and the relative

  20. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    International Nuclear Information System (INIS)

    Golberg, Karina; Elbaz, Amit; McNeil, Ronald; Kushmaro, Ariel; Geddes, Chris D.; Marks, Robert S.

    2014-01-01

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak

  1. Increased bioassay sensitivity of bioactive molecule discovery using metal-enhanced bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Golberg, Karina, E-mail: karingo@bgu.ac.il; Elbaz, Amit [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); McNeil, Ronald [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Kushmaro, Ariel [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel); Geddes, Chris D. [The Institute of Fluorescence, University of Maryland Baltimore County (United States); Marks, Robert S., E-mail: rsmarks@bgu.ac.il [Ben-Gurion University of the Negev, Avram and Stella Goldstein-Goren Department of Biotechnology Engineering (Israel)

    2014-12-15

    We report the use of bioluminescence signal enhancement via proximity to deposited silver nanoparticles for bioactive compound discovery. This approach employs a whole-cell bioreporter harboring a plasmid-borne fusion of a specific promoter incorporated with a bioluminescence reporter gene. The silver deposition process was first optimized to provide optimal nanoparticle size in the reaction time dependence with fluorescein. The use of silver deposition of 350 nm particles enabled the doubling of the bioluminescent signal amplitude by the bacterial bioreporter when compared to an untouched non-silver-deposited microtiter plate surface. This recording is carried out in the less optimal but necessary far-field distance. SEM micrographs provided a visualization of the proximity of the bioreporter to the silver nanoparticles. The electromagnetic field distributions around the nanoparticles were simulated using Finite Difference Time Domain, further suggesting a re-excitation of non-chemically excited bioluminescence in addition to metal-enhanced bioluminescence. The possibility of an antiseptic silver effect caused by such a close proximity was eliminated disregarded by the dynamic growth curves of the bioreporter strains as seen using viability staining. As a highly attractive biotechnology tool, this silver deposition technique, coupled with whole-cell sensing, enables increased bioluminescence sensitivity, making it especially useful for cases in which reporter luminescence signals are very weak.

  2. High resolution in vivo bioluminescent imaging for the study of bacterial tumour targeting.

    Directory of Open Access Journals (Sweden)

    Michelle Cronin

    Full Text Available The ability to track microbes in real time in vivo is of enormous value for preclinical investigations in infectious disease or gene therapy research. Bacteria present an attractive class of vector for cancer therapy, possessing a natural ability to grow preferentially within tumours following systemic administration. Bioluminescent Imaging (BLI represents a powerful tool for use with bacteria engineered to express reporter genes such as lux. BLI is traditionally used as a 2D modality resulting in images that are limited in their ability to anatomically locate cell populations. Use of 3D diffuse optical tomography can localize the signals but still need to be combined with an anatomical imaging modality like micro-Computed Tomography (μCT for interpretation.In this study, the non-pathogenic commensal bacteria E. coli K-12 MG1655 and Bifidobacterium breve UCC2003, or Salmonella Typhimurium SL7207 each expressing the luxABCDE operon were intravenously (i.v. administered to mice bearing subcutaneous (s.c FLuc-expressing xenograft tumours. Bacterial lux signal was detected specifically in tumours of mice post i.v.-administration and bioluminescence correlated with the numbers of bacteria recovered from tissue. Through whole body imaging for both lux and FLuc, bacteria and tumour cells were co-localised. 3D BLI and μCT image analysis revealed a pattern of multiple clusters of bacteria within tumours. Investigation of spatial resolution of 3D optical imaging was supported by ex vivo histological analyses. In vivo imaging of orally-administered commensal bacteria in the gastrointestinal tract (GIT was also achieved using 3D BLI. This study demonstrates for the first time the potential to simultaneously image multiple BLI reporter genes three dimensionally in vivo using approaches that provide unique information on spatial locations.

  3. Far red bioluminescence from two deep-sea fishes.

    Science.gov (United States)

    Widder, E A; Latz, M I; Herring, P J; Case, J F

    1984-08-03

    Spectral measurements of red bioluminescence were obtained from the deep-sea stomiatoid fishes Aristostomias scintillans (Gilbert) and Malacosteus niger (Ayres). Red luminescence from suborbital light organs extends to the near infrared, with peak emission at approximately 705 nanometers in the far red. These fishes also have postorbital light organs that emit blue luminescence with maxima between 470 and 480 nanometers. The red bioluminescence may be due to an energy transfer system and wavelength-selective filtering.

  4. Filtering and deconvolution for bioluminescence imaging of small animals; Filtrage et deconvolution en imagerie de bioluminescence chez le petit animal

    Energy Technology Data Exchange (ETDEWEB)

    Akkoul, S.

    2010-06-22

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  5. Methodological problems of direct bioluminescent ATP assay in platelets and erythrocytes.

    Science.gov (United States)

    Girotti, S; Ferri, E; Cascione, M L; Comuzio, S; Mazzuca, A; Orlandini, A; Breccia, A

    1989-07-01

    Direct bioluminescent ATP determination in platelets and erythrocytes involves the study of different parameters which are discussed here. Some parameters are linked to the bioluminescent reaction and to the analyte (ATP); others have regard to the biological matrix. The composition of bioluminescent reagents and the preparation and conservation of the ATP standard, also in the presence of excipients, are among the first given. Matrix problems involve cell characteristics related to age and form, lysis resistance and the possible formation of aggregates (platelets) that may inhibit the complete release of ATP. For these reasons we used the most efficient ATP release agent with the lowest inhibitory effect on luciferase. The data obtained correlate well with a bioluminescent method requiring extraction with ethanol/EDTA, and therefore more time, for ATP determination in platelets and erythrocytes.

  6. Bioluminescence imaging: a shining future for cardiac regeneration

    Science.gov (United States)

    Roura, Santiago; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2013-01-01

    Advances in bioanalytical techniques have become crucial for both basic research and medical practice. One example, bioluminescence imaging (BLI), is based on the application of natural reactants with light-emitting capabilities (photoproteins and luciferases) isolated from a widespread group of organisms. The main challenges in cardiac regeneration remain unresolved, but a vast number of studies have harnessed BLI with the discovery of aequorin and green fluorescent proteins. First described in the luminous hydromedusan Aequorea victoria in the early 1960s, bioluminescent proteins have greatly contributed to the design and initiation of ongoing cell-based clinical trials on cardiovascular diseases. In conjunction with advances in reporter gene technology, BLI provides valuable information about the location and functional status of regenerative cells implanted into numerous animal models of disease. The purpose of this review was to present the great potential of BLI, among other existing imaging modalities, to refine effectiveness and underlying mechanisms of cardiac cell therapy. We recount the first discovery of natural primary compounds with light-emitting capabilities, and follow their applications to bioanalysis. We also illustrate insights and perspectives on BLI to illuminate current efforts in cardiac regeneration, where the future is bright. PMID:23402217

  7. Symplectin evolved from multiple duplications in bioluminescent squid

    DEFF Research Database (Denmark)

    Francis, Warren R.; Christianson, Lynne M.; Haddock, Steven H.D.

    2017-01-01

    The squid Sthenoteuthis oualaniensis, formerly Symplectoteuthis oualaniensis, generates light using the luciferin coelenterazine and a unique enzyme, symplectin. Genetic information is limited for bioluminescent cephalopod species, so many proteins, including symplectin, occur in public databases...... functioning is conserved across essentially all members of the protein family, even those unlikely to be used for bioluminescence. Conversely, active site residues involved in pantetheinase catalysis are also conserved across essentially all of these proteins, suggesting that symplectin may have multiple...

  8. SU-C-303-04: Evaluation of On- and Off-Line Bioluminescence Tomography System for Focal Irradiation Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B; Wang, K; Reyes, J; Tran, P; Wong, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD (United States); Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: We have developed offline and on-board bioluminescence tomography(BLT) systems for the small animal radiation research platform(SARRP) for radiation guidance of soft tissue targets. We investigated the effectiveness of offline BLT guidance. Methods: CBCT is equipped on both the offline BLT system and SARRP that are 10 ft. apart. To evaluate the setup error during animal transport between the two systems, we implanted a luminescence source in the abdomen of anesthetized mice. Five mice were studied. After CBCT was acquired on both systems, source centers and correlation coefficients were calculated. CBCT was also used to generate object mesh for BLT reconstruction. To assess target localization, we compared the localization of the luminescence source based on (1)on-board SARRP BLT and CBCT, (2)offline BLT and CBCT, and (3)offline BLT and SARRP CBCT. The 3rd comparison examines if an offline BLT system can be used to guide radiation when there is minimal target contrast in CBCT. Results: Our CBCT results show the offset of the light source center can be maintained within 0.2 mm during animal transport. The center of mass(CoM) of the light source reconstructed by the offline BLT has an offset of 1.0 ± 0.4 mm from the ‘true’ CoM as derived from the SARRP CBCT. The results compare well with the offset of 1.0 ± 0.2 mm using on-line BLT. Conclusion: With CBCT information provided by the SARRP and effective animal immobilization during transport, these findings support the use of offline BLT in close vicinity for accurate soft tissue target localization for irradiation. However, the disadvantage of the off-line system is reduced efficiency as care is required to maintain stable animal transport. We envisage a dual use system where the on-board arrangement allows convenient access to CBCT and avoids disturbance of animal setup. The off-line capability would support standalone longitudinal imaging studies. The work is supported by NIH R01CA158100 and Xstrahl

  9. An ebCMOS camera system for marine bioluminescence observation: The LuSEApher prototype

    Energy Technology Data Exchange (ETDEWEB)

    Dominjon, A., E-mail: a.dominjon@ipnl.in2p3.fr [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Ageron, M. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Barbier, R. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Billault, M.; Brunner, J. [CNRS/IN2P3, Centre de Physique des Particules de Marseille, Marseille, F-13288 (France); Cajgfinger, T. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Calabria, P. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Chabanat, E. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France); Universite de Lyon, Universite Lyon 1, Lyon F-69003 (France); Chaize, D.; Doan, Q.T.; Guerin, C.; Houles, J.; Vagneron, L. [CNRS/IN2P3, Institut de Physique Nucleaire de Lyon, Villeurbanne F-69622 (France)

    2012-12-11

    The ebCMOS camera, called LuSEApher, is a marine bioluminescence recorder device adapted to extreme low light level. This prototype is based on the skeleton of the LUSIPHER camera system originally developed for fluorescence imaging. It has been installed at 2500 m depth off the Mediterranean shore on the site of the ANTARES neutrino telescope. The LuSEApher camera is mounted on the Instrumented Interface Module connected to the ANTARES network for environmental science purposes (European Seas Observatory Network). The LuSEApher is a self-triggered photo detection system with photon counting ability. The presentation of the device is given and its performances such as the single photon reconstruction, noise performances and trigger strategy are presented. The first recorded movies of bioluminescence are analyzed. To our knowledge, those types of events have never been obtained with such a sensitivity and such a frame rate. We believe that this camera concept could open a new window on bioluminescence studies in the deep sea.

  10. Integrated visualization of multi-angle bioluminescence imaging and micro CT

    NARCIS (Netherlands)

    Kok, P.; Dijkstra, J.; Botha, C.P.; Post, F.H.; Kaijzel, E.; Que, I.; Löwik, C.W.G.M.; Reiber, J.H.C.; Lelieveldt, B.P.F.

    2007-01-01

    This paper explores new methods to visualize and fuse multi-2D bioluminescence imaging (BLI) data with structural imaging modalities such as micro CT and MR. A geometric, back-projection-based 3D reconstruction for superficial lesions from multi-2D BLI data is presented, enabling a coarse estimate

  11. Action of γ-radiation on bioluminescence of Noctiluca miliaris

    International Nuclear Information System (INIS)

    Tokarev, Yu.N.

    1976-01-01

    Results of the study in the action of various doses of irradiation on the bioluminescence of Noctiluca miliaris are presented. The doses are found that stimulate the bioluminescence and the dose - effect curves are obtained. It has been shown that stimulation of Noctiluca luminescence by γ-radiation is not of a constant character and extinguishes after a period of time determined by a dose rate

  12. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler.

    Directory of Open Access Journals (Sweden)

    Ji-Woon Park

    Full Text Available A culture-based colony counting method is the most widely used analytical technique for monitoring bioaerosols in both indoor and outdoor environments. However, this method requires several days for colony formation. In this study, our goal was fast monitoring (Sampling: 3 min, Detection: < 1 min of indoor bioaerosol concentrations with ATP bioluminescence assay using a bioaerosol sampler. For this purpose, a novel hand-held electrostatic rod-type sampler (110 mm wide, 115 mm long, and 200 mm tall was developed and used with a commercial luminometer, which employs the Adenosine triphosphate (ATP bioluminescence method. The sampler consisted of a wire-rod type charger and a cylindrical collector, and was operated with an applied voltage of 4.5 kV and a sampling flow rate of 150.7 lpm. Its performance was tested using Staphylococcus epidermidis which was aerosolized with an atomizer. Bioaerosol concentrations were measured using ATP bioluminescence method with our sampler and compared with the culture-based method using Andersen cascade impactor under controlled laboratory conditions. Indoor bioaerosol concentrations were also measured using both methods in various indoor environments. A linear correlation was obtained between both methods in lab-tests and field-tests. Our proposed sampler with ATP bioluminescence method may be effective for fast monitoring of indoor bioaerosol concentrations.

  13. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wijnberg, Hans; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    While investigating circular polarization in luminescence, and having found it in chemiluminescence, we have studied bioluminescence because it is such a widespread and dramatic natural phenomenon. We report here that left and right lanterns of live larvae of the fireflies, Photuris lucicrescens and

  14. Photon Counting System for High-Sensitivity Detection of Bioluminescence at Optical Fiber End.

    Science.gov (United States)

    Iinuma, Masataka; Kadoya, Yutaka; Kuroda, Akio

    2016-01-01

    The technique of photon counting is widely used for various fields and also applicable to a high-sensitivity detection of luminescence. Thanks to recent development of single photon detectors with avalanche photodiodes (APDs), the photon counting system with an optical fiber has become powerful for a detection of bioluminescence at an optical fiber end, because it allows us to fully use the merits of compactness, simple operation, highly quantum efficiency of the APD detectors. This optical fiber-based system also has a possibility of improving the sensitivity to a local detection of Adenosine triphosphate (ATP) by high-sensitivity detection of the bioluminescence. In this chapter, we are introducing a basic concept of the optical fiber-based system and explaining how to construct and use this system.

  15. Bioluminescent system for dynamic imaging of cell and animal behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hara-Miyauchi, Chikako [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Tsuji, Osahiko [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Hanyu, Aki [Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550 (Japan); Okada, Seiji [Department of Advanced Medical Initiatives, Faculty of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Yasuda, Akimasa [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Fukano, Takashi [Laboratory for Cell Function Dynamics, Brain Science Institute, RIKEN, Saitama 351-0198 (Japan); Akazawa, Chihiro [Department of Biophysics and Biochemistry, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo 113-8510 (Japan); Nakamura, Masaya [Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo 160-8582 (Japan); Imamura, Takeshi [Department of Molecular Medicine for Pathogenesis, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295 (Japan); Core Research for Evolutional Science and Technology, The Japan Science and Technology Corporation, Tokyo 135-8550 (Japan); Matsuzaki, Yumi [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Okano, Hirotaka James, E-mail: hjokano@jikei.ac.jp [Department of Physiology, Keio University School of Medicine, Tokyo 160-8582 (Japan); Division of Regenerative Medicine Jikei University School of Medicine, Tokyo 150-8461 (Japan); and others

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. Black-Right-Pointing-Pointer ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. Black-Right-Pointing-Pointer ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. Black-Right-Pointing-Pointer ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  16. Bioluminescent system for dynamic imaging of cell and animal behavior

    International Nuclear Information System (INIS)

    Hara-Miyauchi, Chikako; Tsuji, Osahiko; Hanyu, Aki; Okada, Seiji; Yasuda, Akimasa; Fukano, Takashi; Akazawa, Chihiro; Nakamura, Masaya; Imamura, Takeshi; Matsuzaki, Yumi; Okano, Hirotaka James

    2012-01-01

    Highlights: ► We combined a yellow variant of GFP and firefly luciferase to make ffLuc-cp156. ► ffLuc-cp156 showed improved photon yield in cultured cells and transgenic mice. ► ffLuc-cp156 enabled video-rate bioluminescence imaging of freely-moving animals. ► ffLuc-cp156 mice enabled tracking real-time drug delivery in conscious animals. -- Abstract: The current utility of bioluminescence imaging is constrained by a low photon yield that limits temporal sensitivity. Here, we describe an imaging method that uses a chemiluminescent/fluorescent protein, ffLuc-cp156, which consists of a yellow variant of Aequorea GFP and firefly luciferase. We report an improvement in photon yield by over three orders of magnitude over current bioluminescent systems. We imaged cellular movement at high resolution including neuronal growth cones and microglial cell protrusions. Transgenic ffLuc-cp156 mice enabled video-rate bioluminescence imaging of freely moving animals, which may provide a reliable assay for drug distribution in behaving animals for pre-clinical studies.

  17. Rapid Analysis of Eukaryotic Bioluminescence to Assess Potential Groundwater Contamination Events

    Directory of Open Access Journals (Sweden)

    Zacariah L. Hildenbrand

    2015-01-01

    Full Text Available Here we present data using a bioluminescent dinoflagellate, Pyrocystis lunula, in a toxicological bioassay to rapidly assess potential instances of groundwater contamination associated with natural gas extraction. P. lunula bioluminescence can be quantified using spectrophotometry as a measurement of organismal viability, with normal bioluminescent output declining with increasing concentration(s of aqueous toxicants. Glutaraldehyde and hydrochloric acid (HCl, components used in hydraulic fracturing and shale acidization, triggered significant toxicological responses in as little as 4 h. Conversely, P. lunula was not affected by the presence of arsenic, selenium, barium, and strontium, naturally occurring heavy metal ions potentially associated with unconventional drilling activities. If exogenous compounds, such as glutaraldehyde and HCl, are thought to have been introduced into groundwater, quantification of P. lunula bioluminescence after exposure to water samples can serve as a cost-effective detection and risk assessment tool to rapidly assess the impact of putative contamination events attributed to unconventional drilling activity.

  18. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control

    Energy Technology Data Exchange (ETDEWEB)

    Ripp, S.; Nivens, D.E.; Ahn, Y.; Werner, C.; Jarrell, J. IV; Easter, J.P.; Cox, C.D.; Burlage, R.S.; Sayler, G.S.

    2000-03-01

    Pseudomonas fluorescens HK44 represents the first genetically engineered microorganism approved for field testing in the United States for bioremediation purposes. Strain HK44 harbors an introduced lux gene fused within a naphthalene degradative pathway, thereby allowing this recombinant microbe to bioluminescent as it degrades specific polyaromatic hydrocarbons such as naphthalene. The bioremediation process can therefore be monitored by the detection of light. P. fluorescens HK44 was inoculated into the vadose zone of intermediate-scale, semicontained soil lysimeters contaminated with naphthalene, anthracene, and phenanthrene, and the population dynamics were followed over an approximate 2-year period in order to assess the long-term efficacy of using strain HK44 for monitoring and controlling bioremediation processes. Results showed that P. fluorescens HK44 was capable of surviving initial inoculation into both hydrocarbon contaminated and uncontaminated soils and was recoverable from these soils 660 days post inoculation. It was also demonstrated that strain HK44 was capable of generating bioluminescence in response to soil hydrocarbon bioavailability. Bioluminescence approaching 166,000 counts/s was detected in fiber optic-based biosensor devices responding to volatile polyaromatic hydrocarbons, while a portable photomultiplier module detected bioluminescence at an average of 4300 counts/s directly from soil-borne HK44 cells within localized treatment areas. The utilization of lux-based bioreporter microorganisms therefore promises to be a viable option for in situ determination of environmental contaminant bioavailability and biodegradation process monitoring and control.

  19. A Table-Based Random Sampling Simulation for Bioluminescence Tomography

    Directory of Open Access Journals (Sweden)

    Xiaomeng Zhang

    2006-01-01

    Full Text Available As a popular simulation of photon propagation in turbid media, the main problem of Monte Carlo (MC method is its cumbersome computation. In this work a table-based random sampling simulation (TBRS is proposed. The key idea of TBRS is to simplify multisteps of scattering to a single-step process, through randomly table querying, thus greatly reducing the computing complexity of the conventional MC algorithm and expediting the computation. The TBRS simulation is a fast algorithm of the conventional MC simulation of photon propagation. It retained the merits of flexibility and accuracy of conventional MC method and adapted well to complex geometric media and various source shapes. Both MC simulations were conducted in a homogeneous medium in our work. Also, we present a reconstructing approach to estimate the position of the fluorescent source based on the trial-and-error theory as a validation of the TBRS algorithm. Good agreement is found between the conventional MC simulation and the TBRS simulation.

  20. Bioluminescent bacteria have potential as a marker of drowning in seawater: two immersed cadavers retrieved near estuaries.

    Science.gov (United States)

    Kakizaki, Eiji; Kozawa, Shuji; Sakai, Masahiro; Yukawa, Nobuhiro

    2009-03-01

    We detected numerous bioluminescent bacteria in blood samples from two cadavers that had been immersed in estuarine environments. Autopsy, diatomaceous and toxicological findings indicated death by drowning, which agreed with environmental aspects and the findings of police investigations. Bioluminescent bacteria appeared in blood samples cultured on selective agar containing 2%, 3% and 4% NaCl after about 18h. Blood from the left side of the heart, the right side of the heart and the femoral vein generated 7.0 x 10(2), 2.0 x 10(4) and 8.0 x 10(2) cfu/ml of blood (case 1), and 1.8 x 10(4), 1.1 x 10(3) and 2.5 x 10(1) cfu/ml (case 2) of bioluminescent colonies, respectively, in agar containing 4% NaCl. Homologous analysis based on the 16S rRNA gene also identified the bioluminescent colonies as Vibrio fischeri and V. harveyi, which normally inhabit seawater. This simple assay might serve as an additional indicator to support a conclusion of death by drowning together with the diatom test.

  1. Filtering and deconvolution for bioluminescence imaging of small animals

    International Nuclear Information System (INIS)

    Akkoul, S.

    2010-01-01

    This thesis is devoted to analysis of bioluminescence images applied to the small animal. This kind of imaging modality is used in cancerology studies. Nevertheless, some problems are related to the diffusion and the absorption of the tissues of the light of internal bioluminescent sources. In addition, system noise and the cosmic rays noise are present. This influences the quality of the images and makes it difficult to analyze. The purpose of this thesis is to overcome these disturbing effects. We first have proposed an image formation model for the bioluminescence images. The processing chain is constituted by a filtering stage followed by a deconvolution stage. We have proposed a new median filter to suppress the random value impulsive noise which corrupts the acquired images; this filter represents the first block of the proposed chain. For the deconvolution stage, we have performed a comparative study of various deconvolution algorithms. It allowed us to choose a blind deconvolution algorithm initialized with the estimated point spread function of the acquisition system. At first, we have validated our global approach by comparing our obtained results with the ground truth. Through various clinical tests, we have shown that the processing chain allows a significant improvement of the spatial resolution and a better distinction of very close tumor sources, what represents considerable contribution for the users of bioluminescence images. (author)

  2. Hv 1 Proton Channels in Dinoflagellates: Not Just for Bioluminescence?

    Science.gov (United States)

    Kigundu, Gabriel; Cooper, Jennifer L; Smith, Susan M E

    2018-04-26

    Bioluminescence in dinoflagellates is controlled by H V 1 proton channels. Database searches of dinoflagellate transcriptomes and genomes yielded hits with sequence features diagnostic of all confirmed H V 1, and show that H V 1 is widely distributed in the dinoflagellate phylogeny including the basal species Oxyrrhis marina. Multiple sequence alignments followed by phylogenetic analysis revealed three major subfamilies of H V 1 that do not correlate with presence of theca, autotrophy, geographic location, or bioluminescence. These data suggest that most dinoflagellates express a H V 1 which has a function separate from bioluminescence. Sequence evidence also suggests that dinoflagellates can contain more than one H V 1 gene. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Validating Bioluminescence Imaging as a High-Throughput, Quantitative Modality for Assessing Tumor Burden

    Directory of Open Access Journals (Sweden)

    Zain Paroo

    2004-04-01

    Full Text Available Bioluminescence imaging (BLI is a highly sensitive tool for visualizing tumors, neoplastic development, metastatic spread, and response to therapy. Although BLI has engendered much excitement due to its apparent simplicity and ease of implementation, few rigorous studies have been presented to validate the measurements. Here, we characterize the nature of bioluminescence output from mice bearing subcutaneous luciferase-expressing tumors over a 4-week period. Following intraperitoneal or direct intratumoral administration of luciferin substrate, there was a highly dynamic kinetic profile of light emission. Although bioluminescence was subject to variability, strong correlations (r > .8, p < .001 between caliper measured tumor volumes and peak light signal, area under light signal curve and light emission at specific time points were determined. Moreover, the profile of tumor growth, as monitored with bioluminescence, closely resembled that for caliper measurements. The study shows that despite the dynamic and variable nature of bioluminescence, where appropriate experimental precautions are taken, single time point BLI may be useful for noninvasive, high-throughput, quantitative assessment of tumor burden.

  4. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    Science.gov (United States)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  5. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion.

    Science.gov (United States)

    Wollenberg, M S; Preheim, S P; Polz, M F; Ruby, E G

    2012-03-01

    This study reports the first description and molecular characterization of naturally occurring, non-bioluminescent strains of Vibrio fischeri. These 'dark' V. fischeri strains remained non-bioluminescent even after treatment with both autoinducer and aldehyde, substrate additions that typically maximize light production in dim strains of luminous bacteria. Surprisingly, the entire lux locus (eight genes) was absent in over 97% of these dark V. fischeri strains. Although these strains were all collected from a Massachusetts (USA) estuary in 2007, phylogenetic reconstructions allowed us to reject the hypothesis that these newly described non-bioluminescent strains exhibit monophyly within the V. fischeri clade. These dark strains exhibited a competitive disadvantage against native bioluminescent strains when colonizing the light organ of the model V. fischeri host, the Hawaiian bobtail squid Euprymna scolopes. Significantly, we believe that the data collected in this study may suggest the first observation of a functional, parallel locus-deletion event among independent lineages of a non-pathogenic bacterial species. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. A two-hour antibiotic susceptibility test by ATP-bioluminescence.

    Science.gov (United States)

    March Rosselló, Gabriel Alberto; García-Loygorri Jordán de Urries, María Cristina; Gutiérrez Rodríguez, María Purificación; Simarro Grande, María; Orduña Domingo, Antonio; Bratos Pérez, Miguel Ángel

    2016-01-01

    The antibiotic susceptibility test (AST) in Clinical Microbiology laboratories is still time-consuming, and most procedures take 24h to yield results. In this study, a rapid antimicrobial susceptibility test using ATP-bioluminescence has been developed. The design of method was performed using five ATCC collection strains of known susceptibility. This procedure was then validated against standard commercial methods on 10 strains of enterococci, 10 staphylococci, 10 non-fermenting gram negative bacilli, and 13 Enterobacteriaceae from patients. The agreement obtained in the sensitivity between the ATP-bioluminescence method and commercial methods (E-test, MicroScan and VITEK2) was 100%. In summary, the preliminary results obtained in this work show that the ATP-bioluminescence method could provide a fast and reliable AST in two hours. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. In vitro validation of bioluminescent monitoring of disease progression and therapeutic response in leukaemia model animals

    International Nuclear Information System (INIS)

    Inoue, Yusuke; Okubo, Toshiyuki; Tojo, Arinobu; Sekine, Rieko; Soda, Yasushi; Kobayashi, Seiichiro; Nomura, Akiko; Izawa, Kiyoko; Kitamura, Toshio; Ohtomo, Kuni

    2006-01-01

    The application of in vivo bioluminescence imaging to non-invasive, quantitative monitoring of tumour models relies on a positive correlation between the intensity of bioluminescence and the tumour burden. We conducted cell culture studies to investigate the relationship between bioluminescent signal intensity and viable cell numbers in murine leukaemia model cells. Interleukin-3 (IL-3)-dependent murine pro-B cell line Ba/F3 was transduced with firefly luciferase to generate cells expressing luciferase stably under the control of a retroviral long terminal repeat. The luciferase-expressing cells were transduced with p190 BCR-ABL to give factor-independent proliferation. The cells were cultured under various conditions, and bioluminescent signal intensity was compared with viable cell numbers and the cell cycle stage. The Ba/F3 cells showed autonomous growth as well as stable luciferase expression following transduction with both luciferase and p190 BCR-ABL, and in vivo bioluminescence imaging permitted external detection of these cells implanted into mice. The bioluminescence intensities tended to reflect cell proliferation and responses to imatinib in cell culture studies. However, the luminescence per viable cell was influenced by the IL-3 concentration in factor-dependent cells and by the stage of proliferation and imatinib concentration in factor-independent cells, thereby impairing the proportionality between viable cell number and bioluminescent signal intensity. Luminescence per cell tended to vary in association with the fraction of proliferating cells. Although in vivo bioluminescence imaging would allow non-invasive monitoring of leukaemia model animals, environmental factors and therapeutic interventions may cause some discrepancies between tumour burden and bioluminescence intensity. (orig.)

  8. Multimodal Imaging of Integrin Receptor-Positive Tumors by Bioluminescence, Fluorescence, Gamma Scintigraphy, and Single-Photon Emission Computed Tomography Using a Cyclic RGD Peptide Labeled with a Near-Infrared Fluorescent Dye and a Radionuclide

    Directory of Open Access Journals (Sweden)

    W. Barry Edwards

    2009-03-01

    Full Text Available Integrins, particularly the αvβ3 heterodimers, play important roles in tumor-induced angiogenesis and invasiveness. To image the expression pattern of the αvβ3 integrin in tumors through a multimodality imaging paradigm, we prepared a cyclic RGDyK peptide analogue (LS308 bearing a tetraazamacrocycle 1,4,7,10-tetraazacyclododecane-N, N′, N″, N‴-tetraacetic acid (DOTA and a lipophilic near-infrared (NIR fluorescent dye cypate. The αvβ3 integrin binding affinity and the internalization properties of LS308 mediated by the αvβ3 integrin in 4t1luc cells were investigated by receptor binding assay and fluorescence microscopy, respectively. The in vivo distribution of 111In-labeled LS308 in a 4t1luc tumor-bearing mouse model was studied by fluorescence, bioluminescence, planar gamma, and single-photon emission computed tomography (SPECT. The results show that LS308 has high affinity for αvβ3 integrin and internalized preferentially via the αvβ3 integrin-mediated endocytosis in 4t1luc cells. We also found that LS308 selectively accumulated in αvβ3-positve tumors in a receptor-specific manner and was visualized by the four imaging methods. Whereas the endogenous bioluminescence imaging identified the ensemble of the tumor tissue, the fluorescence and SPECT methods with the exogenous contrast agent LS308 reported the local expression of αvβ3 integrin. Thus, the multimodal imaging approach could provide important complementary diagnostic information for monitoring the efficacy of new antiangiogenic drugs.

  9. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yidong, E-mail: yidongyang@med.miami.edu [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 and Department of Radiation Oncology, University of Miami School of Medicine, Miami, Florida 33136 (United States); Wang, Ken Kang-Hsin; Wong, John W. [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231 (United States); Eslami, Sohrab; Iordachita, Iulian I. [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Patterson, Michael S. [Juravinski Cancer Centre and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4K1 (Canada)

    2015-04-15

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  10. Systematic calibration of an integrated x-ray and optical tomography system for preclinical radiation research

    International Nuclear Information System (INIS)

    Yang, Yidong; Wang, Ken Kang-Hsin; Wong, John W.; Eslami, Sohrab; Iordachita, Iulian I.; Patterson, Michael S.

    2015-01-01

    Purpose: The cone beam computed tomography (CBCT) guided small animal radiation research platform (SARRP) has been developed for focal tumor irradiation, allowing laboratory researchers to test basic biological hypotheses that can modify radiotherapy outcomes in ways that were not feasible previously. CBCT provides excellent bone to soft tissue contrast, but is incapable of differentiating tumors from surrounding soft tissue. Bioluminescence tomography (BLT), in contrast, allows direct visualization of even subpalpable tumors and quantitative evaluation of tumor response. Integration of BLT with CBCT offers complementary image information, with CBCT delineating anatomic structures and BLT differentiating luminescent tumors. This study is to develop a systematic method to calibrate an integrated CBCT and BLT imaging system which can be adopted onboard the SARRP to guide focal tumor irradiation. Methods: The integrated imaging system consists of CBCT, diffuse optical tomography (DOT), and BLT. The anatomy acquired from CBCT and optical properties acquired from DOT serve as a priori information for the subsequent BLT reconstruction. Phantoms were designed and procedures were developed to calibrate the CBCT, DOT/BLT, and the entire integrated system. Geometrical calibration was performed to calibrate the CBCT system. Flat field correction was performed to correct the nonuniform response of the optical imaging system. Absolute emittance calibration was performed to convert the camera readout to the emittance at the phantom or animal surface, which enabled the direct reconstruction of the bioluminescence source strength. Phantom and mouse imaging were performed to validate the calibration. Results: All calibration procedures were successfully performed. Both CBCT of a thin wire and a euthanized mouse revealed no spatial artifact, validating the accuracy of the CBCT calibration. The absolute emittance calibration was validated with a 650 nm laser source, resulting in a 3

  11. Quantitative and Functional Requirements for Bioluminescent Cancer Models.

    Science.gov (United States)

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vermeulen, Stefan; Vandesompele, J O; Vanderheyden, Katrien; Messens, Kathy; Bracke, Marc; De Wever, Olivier

    2016-01-01

    Bioluminescent cancer models are widely used but detailed quantification of the luciferase signal and functional comparison with a non-transfected control cell line are generally lacking. In the present study, we provide quantitative and functional tests for luciferase-transfected cells. We quantified the luciferase expression in BLM and HCT8/E11 transfected cancer cells, and examined the effect of long-term luciferin exposure. The present study also investigated functional differences between parental and transfected cancer cells. Our results showed that quantification of different single-cell-derived populations are superior with droplet digital polymerase chain reaction. Quantification of luciferase protein level and luciferase bioluminescent activity is only useful when there is a significant difference in copy number. Continuous exposure of cell cultures to luciferin leads to inhibitory effects on mitochondrial activity, cell growth and bioluminescence. These inhibitory effects correlate with luciferase copy number. Cell culture and mouse xenograft assays showed no significant functional differences between luciferase-transfected and parental cells. Luciferase-transfected cells should be validated by quantitative and functional assays before starting large-scale experiments. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence.

    Science.gov (United States)

    Nackerdien, Zeena E; Keynan, Alexander; Bassler, Bonnie L; Lederberg, Joshua; Thaler, David S

    2008-02-27

    The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy. The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh) strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp) strain increased the growth rate of wild type Vh without significantly altering Vh's bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants. The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.

  13. Quorum sensing influences Vibrio harveyi growth rates in a manner not fully accounted for by the marker effect of bioluminescence.

    Directory of Open Access Journals (Sweden)

    Zeena E Nackerdien

    2008-02-01

    Full Text Available The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy.The marker effect was explored via growth rate studies in isogenic Vibrio harveyi (Vh strains altered in quorum sensing on the one hand, and bioluminescence on the other. By hypothesis, growth rate is energy limited: mutants deficient in quorum sensing grow faster because wild type quorum sensing unleashes bioluminescence and bioluminescence diverts energy. Findings reported here confirm a role for bioluminescence in limiting Vh growth rate, at least under the conditions tested. However, the results argue that the bioluminescence is insufficient to explain the relationship of growth rate and quorum sensing in Vh. A Vh mutant null for all genes encoding the bioluminescence pathway grew faster than wild type but not as fast as null mutants in quorum sensing. Vh quorum sensing mutants showed altered growth rates that do not always rank with their relative increase or decrease in bioluminescence. In addition, the cell-free culture fluids of a rapidly growing Vibrio parahaemolyticus (Vp strain increased the growth rate of wild type Vh without significantly altering Vh's bioluminescence. The same cell-free culture fluid increased the bioluminescence of Vh quorum mutants.The effect of quorum sensing on Vh growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate.

  14. Bioorthogonal chemistry in bioluminescence imaging.

    Science.gov (United States)

    Godinat, Aurélien; Bazhin, Arkadiy A; Goun, Elena A

    2018-05-18

    Bioorthogonal chemistry has developed significant over the past few decades, to the particular benefit of molecular imaging. Bioluminescence imaging (BLI) along with other imaging modalities have significantly benefitted from this chemistry. Here, we review bioorthogonal reactions that have been used to signific antly broaden the application range of BLI. Copyright © 2018. Published by Elsevier Ltd.

  15. Detection of antibodies in blood plasma using bioluminescent sensor proteins and a smartphone

    NARCIS (Netherlands)

    Arts, R.; den Hartog, I.; Zijlema, S.E.; Thijssen, V.; van der Beelen, S.H.E.; Merkx, M.

    2016-01-01

    Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies

  16. Flexible Measurement of Bioluminescent Reporters Using an Automated Longitudinal Luciferase Imaging Gas- and Temperature-optimized Recorder (ALLIGATOR).

    Science.gov (United States)

    Crosby, Priya; Hoyle, Nathaniel P; O'Neill, John S

    2017-12-13

    Luciferase-based reporters of cellular gene expression are in widespread use for both longitudinal and end-point assays of biological activity. In circadian rhythms research, for example, clock gene fusions with firefly luciferase give rise to robust rhythms in cellular bioluminescence that persist over many days. Technical limitations associated with photomultiplier tubes (PMT) or conventional microscopy-based methods for bioluminescence quantification have typically demanded that cells and tissues be maintained under quite non-physiological conditions during recording, with a trade-off between sensitivity and throughput. Here, we report a refinement of prior methods that allows long-term bioluminescence imaging with high sensitivity and throughput which supports a broad range of culture conditions, including variable gas and humidity control, and that accepts many different tissue culture plates and dishes. This automated longitudinal luciferase imaging gas- and temperature-optimized recorder (ALLIGATOR) also allows the observation of spatial variations in luciferase expression across a cell monolayer or tissue, which cannot readily be observed by traditional methods. We highlight how the ALLIGATOR provides vastly increased flexibility for the detection of luciferase activity when compared with existing methods.

  17. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.

    Science.gov (United States)

    Affi, Mahmoud; Solliec, Camille; Legentilhomme, Patrick; Comiti, Jacques; Legrand, Jack; Jouanneau, Sulivan; Thouand, Gérald

    2016-12-01

    Water quality and water management are worldwide issues. The analysis of pollutants and in particular, heavy metals, is generally conducted by sensitive but expensive physicochemical methods. Other alternative methods of analysis, such as microbial biosensors, have been developed for their potential simplicity and expected moderate cost. Using a biosensor for a long time generates many changes in the growth of the immobilized bacteria and consequently alters the robustness of the detection. This work simulated the operation of a biosensor for the long-term detection of cadmium and improved our understanding of the bioluminescence reaction dynamics of bioreporter bacteria inside an agarose matrix. The choice of the numerical tools is justified by the difficulty to measure experimentally in every condition the biosensor functioning during a long time (several days). The numerical simulation of a biomass profile is made by coupling the diffusion equation and the consumption/reaction of the nutrients by the bacteria. The numerical results show very good agreement with the experimental profiles. The growth model verified that the bacterial growth is conditioned by both the diffusion and the consumption of the nutrients. Thus, there is a high bacterial density in the first millimeter of the immobilization matrix. The growth model has been very useful for the development of the bioluminescence model inside the gel and shows that a concentration of oxygen greater than or equal to 22 % of saturation is required to maintain a significant level of bioluminescence. A continuous feeding of nutrients during the process of detection of cadmium leads to a biofilm which reduces the diffusion of nutrients and restricts the presence of oxygen from the first layer of the agarose (1 mm) and affects the intensity of the bioluminescent reaction. The main advantage of this work is to link experimental works with numerical models of growth and bioluminescence in order to provide a

  18. Phylogenetic relationships of click beetles (Coleoptera: Elateridae) inferred from 28S ribosomal DNA: insights into the evolution of bioluminescence in Elateridae.

    Science.gov (United States)

    Sagegami-Oba, Reiko; Oba, Yuichi; Ohira, Hitoo

    2007-02-01

    Although the taxonomy of click beetles (family Elateridae) has been studied extensively, inconsistencies remain. We examine here the relationships between species of Elateridae based on partial sequences of nuclear 28S ribosomal DNA. Specimens were collected primarily from Japan, while luminous click beetles were also sampled from Central and South America to investigate the origins of bioluminescence in Elateridae. Neighbor-joining, maximum-parsimony, and maximum-likelihood analyses produced a consistent basal topology with high statistical support that is partially congruent with the results of previous investigations based on the morphological characteristics of larvae and adults. The most parsimonious reconstruction of the "luminous" and "nonluminous" states, based on the present molecular phylogeny, indicates that the ancestral state of Elateridae was nonluminous. This suggests that the bioluminescence in click beetle evolved independent of that of other luminous beetles, such as Lampyridae, despite their common mechanisms of bioluminescence.

  19. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks.

    Directory of Open Access Journals (Sweden)

    Julien M Claes

    Full Text Available The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai and one dalatiid species (Squaliolus aliae]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax fall within the range 484-491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent

  20. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks.

    Science.gov (United States)

    Claes, Julien M; Partridge, Julian C; Hart, Nathan S; Garza-Gisholt, Eduardo; Ho, Hsuan-Ching; Mallefet, Jérôme; Collin, Shaun P

    2014-01-01

    The mesopelagic zone is a visual scene continuum in which organisms have developed various strategies to optimize photon capture. Here, we used light microscopy, stereology-assisted retinal topographic mapping, spectrophotometry and microspectrophotometry to investigate the visual ecology of deep-sea bioluminescent sharks [four etmopterid species (Etmopterus lucifer, E. splendidus, E. spinax and Trigonognathus kabeyai) and one dalatiid species (Squaliolus aliae)]. We highlighted a novel structure, a translucent area present in the upper eye orbit of Etmopteridae, which might be part of a reference system for counterillumination adjustment or acts as a spectral filter for camouflage breaking, as well as several ocular specialisations such as aphakic gaps and semicircular tapeta previously unknown in elasmobranchs. All species showed pure rod hexagonal mosaics with a high topographic diversity. Retinal specialisations, formed by shallow cell density gradients, may aid in prey detection and reflect lifestyle differences; pelagic species display areae centrales while benthopelagic and benthic species display wide and narrow horizontal streaks, respectively. One species (E. lucifer) displays two areae within its horizontal streak that likely allows detection of conspecifics' elongated bioluminescent flank markings. Ganglion cell topography reveals less variation with all species showing a temporal area for acute frontal binocular vision. This area is dorsally extended in T. kabeyai, allowing this species to adjust the strike of its peculiar jaws in the ventro-frontal visual field. Etmopterus lucifer showed an additional nasal area matching a high rod density area. Peak spectral sensitivities of the rod visual pigments (λmax) fall within the range 484-491 nm, allowing these sharks to detect a high proportion of photons present in their habitat. Comparisons with previously published data reveal ocular differences between bioluminescent and non-bioluminescent deep

  1. The origins of marine bioluminescence: turning oxygen defence mechanisms into deep-sea communication tools.

    Science.gov (United States)

    Rees, J F; de Wergifosse, B; Noiset, O; Dubuisson, M; Janssens, B; Thompson, E M

    1998-04-01

    Bioluminescence, the emission of ecologically functional light by living organisms, emerged independently on several occasions, yet the evolutionary origins of most bioluminescent systems remain obscure. We propose that the luminescent substrates of the luminous reactions (luciferins) are the evolutionary core of most systems, while luciferases, the enzymes catalysing the photogenic oxidation of the luciferin, serve to optimise the expression of the endogenous chemiluminescent properties of the luciferin. Coelenterazine, a luciferin occurring in many marine bioluminescent groups, has strong antioxidative properties as it is highly reactive with reactive oxygen species such as the superoxide anion or peroxides. We suggest that the primary function of coelenterazine was originally the detoxification of the deleterious oxygen derivatives. The functional shift from its antioxidative to its light-emitting function might have occurred when the strength of selection for antioxidative defence mechanisms decreased. This might have been made possible when marine organisms began colonising deeper layers of the oceans, where exposure to oxidative stress is considerably reduced because of reduced light irradiance and lower oxygen levels. A reduction in metabolic activity with increasing depth would also have decreased the endogenous production of reactive oxygen species. Therefore, in these organisms, mechanisms for harnessing the chemiluminescence of coelenterazine in specialised organs could have developed, while the beneficial antioxidative properties were maintained in other tissues. The full range of graded irradiance in the mesopelagic zone, where the majority of organisms are bioluminescent, would have provided a continuum for the selection and improvement of proto-bioluminescence. Although the requirement for oxygen or reactive oxygen species observed in bioluminescent systems reflects the high energy required to produce visible light, it may suggest that oxygen

  2. Effect of irradiation on detection of bacteria in dehydrated vegetables with ATP bioluminescence assay

    International Nuclear Information System (INIS)

    Xiao Huan; Luo Shishi; Wang Zegang; Feng Min; Zhu Jiating; Chen Xiulan; Zhai Jianqing

    2011-01-01

    ATP bioluminescence intensity of 4 kinds of irradiated dehydrated vegetables was inconsistent with the bacteria number, the reasons were investigated in this paper. Results showed that irradiation had little effect on background luminescence, and there was no effect on luciferase-luminous system. When irradiation killed the bacteria, the ATPase activity also decreased. As a result, the ATP content in bacteria didn't decreased with the killed of bacteria, which contributed to the increase of free ATP in ATP extract and finally led to the disagreement between the bioluminescence intensity and the actual number of bacteria. When the free ATP in the dehydrated vegetable was removed, the bioluminescence intensity of ATP extract was consistent with the actual number of bacteria in irradiated dehydrated vegetable and ATP bioluminescence technology could be used in bacteria detection of irradiated samples. (authors)

  3. Efficiency of peracetic acid in inactivating bacteria, viruses, and spores in water determined with ATP bioluminescence, quantitative PCR, and culture-based methods.

    Science.gov (United States)

    Park, Eunyoung; Lee, Cheonghoon; Bisesi, Michael; Lee, Jiyoung

    2014-03-01

    The disinfection efficiency of peracetic acid (PAA) was investigated on three microbial types using three different methods (filtration-based ATP (adenosine-triphosphate) bioluminescence, quantitative polymerase chain reaction (qPCR), culture-based method). Fecal indicator bacteria (Enterococcus faecium), virus indicator (male-specific (F(+)) coliphages (coliphages)), and protozoa disinfection surrogate (Bacillus subtilis spores (spores)) were tested. The mode of action for spore disinfection was visualized using scanning electron microscopy. The results indicated that PAA concentrations of 5 ppm (contact time: 5 min), 50 ppm (10 min), and 3,000 ppm (5 min) were needed to achieve 3-log reduction of E. faecium, coliphages, and spores, respectively. Scanning electron microscopy observation showed that PAA targets the external layers of spores. The lower reduction rates of tested microbes measured with qPCR suggest that qPCR may overestimate the surviving microbes. Collectively, PAA showed broad disinfection efficiency (susceptibility: E. faecium > coliphages > spores). For E. faecium and spores, ATP bioluminescence was substantially faster (∼5 min) than culture-based method (>24 h) and qPCR (2-3 h). This study suggests PAA as an effective alternative to inactivate broad types of microbial contaminants in water. Together with the use of rapid detection methods, this approach can be useful for urgent situations when timely response is needed for ensuring water quality.

  4. Toxicity assessment of Hanford Site wastes by bacterial bioluminescence

    International Nuclear Information System (INIS)

    Rebagay, T.V.; Dodd, D.A.; Voogd, J.A.

    1991-09-01

    This paper examines the toxicity of the nonradioactive component of low-level wastes stored in tanks on the Hanford reservation. The use of a faster, cheaper bioassay to replace the 96 hour fish acute toxicity test is examined. The new bioassay is based on loss of bioluminescence of Photobacter phosphoreum (commonly called Microtox) following exposure to toxic materials. This bioassay is calibrated and compares well to the standard fish acute toxicity test for characterization of Hanford Wastes. 4 refs., 11 figs., 11 tabs

  5. Characterization of an anthraquinone fluor from the bioluminescent, pelagic polychaete Tomopteris

    Science.gov (United States)

    Francis, Warren R; Powers, Meghan L; Haddock, Steven H D

    2014-01-01

    Tomopteris is a cosmopolitan genus of polychaetes. Many species produce yellow luminescence in the parapodia when stimulated. Yellow bioluminescence is rare in the ocean, and the components of this luminescent reaction have not been identified. Only a brief description, half a century ago, noted fluorescence in the parapodia with a remarkably similar spectrum to the bioluminescence, which suggested that it may be the luciferin or terminal light-emitter. Here, we report the isolation of the fluorescent yellow–orange pigment found in the luminous exudate and in the body of the animals. Liquid chromatography-mass spectrometry revealed the mass to be 270 m/z with a molecular formula of C15H10O5, which ultimately was shown to be aloe-emodin, an anthraquinone previously found in plants. We speculate that aloe-emodin could be a factor for resonant-energy transfer or the oxyluciferin for Tomopteris bioluminescence. PMID:24760626

  6. Bioluminescent imaging: a critical tool in pre-clinical oncology research.

    LENUS (Irish Health Repository)

    O'Neill, Karen

    2010-02-01

    Bioluminescent imaging (BLI) is a non-invasive imaging modality widely used in the field of pre-clinical oncology research. Imaging of small animal tumour models using BLI involves the generation of light by luciferase-expressing cells in the animal following administration of substrate. This light may be imaged using an external detector. The technique allows a variety of tumour-associated properties to be visualized dynamically in living models. The increasing use of BLI as a small-animal imaging modality has led to advances in the development of xenogeneic, orthotopic, and genetically engineered animal models expressing luciferase genes. This review aims to provide insight into the principles of BLI and its applications in cancer research. Many studies to assess tumour growth and development, as well as efficacy of candidate therapeutics, have been performed using BLI. More recently, advances have also been made using bioluminescent imaging in studies of protein-protein interactions, genetic screening, cell-cycle regulators, and spontaneous cancer development. Such novel studies highlight the versatility and potential of bioluminescent imaging in future oncological research.

  7. Expression of a humanized viral 2A-mediated lux operon efficiently generates autonomous bioluminescence in human cells.

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    Full Text Available Expression of autonomous bioluminescence from human cells was previously reported to be impossible, suggesting that all bioluminescent-based mammalian reporter systems must therefore require application of a potentially influential chemical substrate. While this was disproven when the bacterial luciferase (lux cassette was demonstrated to function in a human cell, its expression required multiple genetic constructs, was functional in only a single cell type, and generated a significantly reduced signal compared to substrate-requiring systems. Here we investigate the use of a humanized, viral 2A-linked lux genetic architecture for the efficient introduction of an autobioluminescent phenotype across a variety of human cell lines.The lux cassette was codon optimized and assembled into a synthetic human expression operon using viral 2A elements as linker regions. Human kidney, breast cancer, and colorectal cancer cell lines were both transiently and stably transfected with the humanized operon and the resulting autobioluminescent phenotype was evaluated using common imaging instrumentation. Autobioluminescent cells were screened for cytotoxic effects resulting from lux expression and their utility as bioreporters was evaluated through the demonstration of repeated monitoring of single populations over a prolonged period using both a modified E-SCREEN assay for estrogen detection and a classical cytotoxic compound detection assay for the antibiotic Zeocin. Furthermore, the use of self-directed bioluminescent initiation in response to target detection was assessed to determine its amenability towards deployment as fully autonomous sensors. In all cases, bioluminescent measurements were supported with traditional genetic and transcriptomic evaluations.Our results demonstrate that the viral 2A-linked, humanized lux genetic architecture successfully produced autobioluminescent phenotypes in all cell lines tested without the induction of cytotoxicity

  8. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta ...

    African Journals Online (AJOL)

    Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude Oil) by four bioluminescent bacteria (Vibrio harveyi, V. fisheri, Photobacterium leiognathi and P. Phosphoreum isolated from the Bonny estuary in the Niger Delta, Nigeria was investigated. Microbial utilization was monitored ...

  9. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  10. Continuous, real-time bioimaging of chemical bioavailability and toxicology using autonomously bioluminescent human cell lines

    Science.gov (United States)

    Xu, Tingting; Close, Dan M.; Webb, James D.; Price, Sarah L.; Ripp, Steven A.; Sayler, Gary S.

    2013-05-01

    Bioluminescent imaging is an emerging biomedical surveillance strategy that uses external cameras to detect in vivo light generated in small animal models of human physiology or in vitro light generated in tissue culture or tissue scaffold mimics of human anatomy. The most widely utilized of reporters is the firefly luciferase (luc) gene; however, it generates light only upon addition of a chemical substrate, thus only generating intermittent single time point data snapshots. To overcome this disadvantage, we have demonstrated substrate-independent bioluminescent imaging using an optimized bacterial bioluminescence (lux) system. The lux reporter produces bioluminescence autonomously using components found naturally within the cell, thereby allowing imaging to occur continuously and in real-time over the lifetime of the host. We have validated this technology in human cells with demonstrated chemical toxicological profiling against exotoxin exposures at signal strengths comparable to existing luc systems (~1.33 × 107 photons/second). As a proof-in-principle demonstration, we have engineered breast carcinoma cells to express bioluminescence for real-time screening of endocrine disrupting chemicals and validated detection of 17β-estradiol (EC50 = ~ 10 pM). These and other applications of this new reporter technology will be discussed as potential new pathways towards improved models of target chemical bioavailability, toxicology, efficacy, and human safety.

  11. Image analyzing method to evaluate in situ bioluminescence from an obligate anaerobe cultivated under various dissolved oxygen concentrations.

    Science.gov (United States)

    Ninomiya, Kazuaki; Yamada, Ryuji; Matsumoto, Masami; Fukiya, Satoru; Katayama, Takane; Ogino, Chiaki; Shimizu, Nobuaki

    2013-02-01

    An image analyzing method was developed to evaluate in situ bioluminescence expression, without exposing the culture sample to the ambient oxygen atmosphere. Using this method, we investigated the effect of dissolved oxygen concentration on bioluminescence from an obligate anaerobe Bifidobacterium longum expressing bacterial luciferase which catalyzes an oxygen-requiring bioluminescent reaction. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. The Use of Stimulable Bioluminescence From Dinoflagellates as a Means of Detecting Toxicity in the Marine Environment

    Science.gov (United States)

    1993-03-01

    AND SSTýTL FUNDINCG NUMI)) W, TIHE USE OF STIMt LABILE BIOLUMINESCENCE FROM DI NOIFLAGELLATk. PH: M1E69 AS A MEAN’S OF DETrECTING ToxicITY IN THE...bioluminescence dinoflagellates for asseossmnent of toxic effects when exposed to a single tox~icant or mixture. Successful use of this type of bioassav... tributyltin chloride (TFITCI), Copper (11) Sulfate (CuSO 4 I. zinc sulfate (ZnSO4 ), or storm drain effluent. Stimulable bioluminescence was measured at

  13. Detection of organic compounds with whole-cell bioluminescent bioassays.

    Science.gov (United States)

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  14. Bioluminescence : the potential of a non-invasive bio-optical imaging technique and improvement of animal research

    NARCIS (Netherlands)

    Hesselink, J. W.; van Dam, G. M.

    2007-01-01

    Bioluminescence is an optical imaging technique that exploits the emission of photons at specific wavelengths based on energy-dependent reactions catalysed by luciferases. The technique makes it possible to monitor measure, and track biological processes in living animals. A short review is

  15. Molecular phylogeny of Neotropical bioluminescent beetles (Coleoptera: Elateroidea) in southern and central Brazil.

    Science.gov (United States)

    Amaral, D T; Arnoldi, F G C; Rosa, S P; Viviani, V R

    2014-08-01

    Bioluminescence in beetles is found mainly in the Elateroidea superfamily (Elateridae, Lampyridae and Phengodidae). The Neotropical region accounts for the richest diversity of bioluminescent species in the world with about 500 described species, most occurring in the Amazon, Atlantic rainforest and Cerrado (savanna) ecosystems in Brazil. The origin and evolution of bioluminescence, as well as the taxonomic status of several Neotropical taxa in these families remains unclear. In order to contribute to a better understanding of the phylogeny and evolution of bioluminescent Elateroidea we sequenced and analyzed sequences of mitochondrial NADH2 and the nuclear 28S genes and of the cloned luciferase sequences of Brazilian species belonging to the following genera: (Lampyridae) Macrolampis, Photuris, Amydetes, Bicellonycha, Aspisoma, Lucidota, Cratomorphus; (Elateridae) Conoderus, Pyrophorus, Hapsodrilus, Pyrearinus, Fulgeochlizus; and (Phengodidae) Pseudophengodes, Phrixothrix, Euryopa and Brasilocerus. Our study supports a closer phylogenetic relationship between Elateridae and Phengodidae as other molecular studies, in contrast with previous morphologic and molecular studies that clustered Lampyridae/Phengodidae. Molecular data also supported division of the Phengodinae subfamily into the tribes Phengodini and Mastinocerini. The position of the genus Amydetes supports the status of the Amydetinae as a subfamily. The genus Euryopa is included in the Mastinocerini tribe within the Phengodinae/Phengodidae. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Triple Bioluminescence Imaging for In Vivo Monitoring of Cellular Processes

    Directory of Open Access Journals (Sweden)

    Casey A Maguire

    2013-01-01

    Full Text Available Bioluminescence imaging (BLI has shown to be crucial for monitoring in vivo biological processes. So far, only dual bioluminescence imaging using firefly (Fluc and Renilla or Gaussia (Gluc luciferase has been achieved due to the lack of availability of other efficiently expressed luciferases using different substrates. Here, we characterized a codon-optimized luciferase from Vargula hilgendorfii (Vluc as a reporter for mammalian gene expression. We showed that Vluc can be multiplexed with Gluc and Fluc for sequential imaging of three distinct cellular phenomena in the same biological system using vargulin, coelenterazine, and D-luciferin substrates, respectively. We applied this triple imaging system to monitor the effect of soluble tumor necrosis factor-related apoptosis-inducing ligand (sTRAIL delivered using an adeno-associated viral vector (AAV on brain tumors in mice. Vluc imaging showed efficient sTRAIL gene delivery to the brain, while Fluc imaging revealed a robust antiglioma therapy. Further, nuclear factor-κB (NF-κB activation in response to sTRAIL binding to glioma cells death receptors was monitored by Gluc imaging. This work is the first demonstration of trimodal in vivo bioluminescence imaging and will have a broad applicability in many different fields including immunology, oncology, virology, and neuroscience.

  17. Bacteria as part of bioluminescence emission at the deep ANTARES station (North-Western Mediterranean Sea) during a one-year survey

    Science.gov (United States)

    Martini, S.; Michotey, V.; Casalot, L.; Bonin, P.; Guasco, S.; Garel, M.; Tamburini, C.

    2016-10-01

    Bioluminescent bacteria have been studied during a one-year survey in 2011 at the deep ANTARES site (Northwestern Mediterranean Sea, 2000 m depth). The neutrino underwater telescope ANTARES, located at this station, has been used to record the bioluminescence at the same depth. Together with these data, environmental variables (potential temperature, salinity, nutrients, dissolved organic carbon and oxygen) have been characterized in water samples. The year 2011 was characterized by relatively stable conditions, as revealed by minor variability in the monitored oceanographic variables, by low bioluminescence and low current speed. This suggests weak eukaryote participation and mainly non-stimulated light emission. Hence, no processes of dense water have affected the ANTARES station during this survey. Abundance of bioluminescent bacteria belonging to Photobacterium genus, measured by qPCR of the luxF gene, ranged from 1.4×102 to 7.2×102 genes mL-1. Their effective activity was confirmed through mRNA luxF quantification. Our results reveal that bioluminescent bacteria appeared more active than the total counterpart of bacteria, suggesting an ecological benefit of this feature such as favoring interaction with macro-organisms. Moreover, these results show that part of the bioluminescence, recorded at 2000 m depth over one year, could be due to bioluminescent bacteria in stable hydrological conditions.

  18. Near-Infrared Diffuse Optical Tomography

    Directory of Open Access Journals (Sweden)

    A. H. Hielscher

    2002-01-01

    Full Text Available Diffuse optical tomography (DOT is emerging as a viable new biomedical imaging modality. Using near-infrared (NIR light, this technique probes absorption as well as scattering properties of biological tissues. First commercial instruments are now available that allow users to obtain cross-sectional and volumetric views of various body parts. Currently, the main applications are brain, breast, limb, joint, and fluorescence/bioluminescence imaging. Although the spatial resolution is limited when compared with other imaging modalities, such as magnetic resonance imaging (MRI or X-ray computerized tomography (CT, DOT provides access to a variety of physiological parameters that otherwise are not accessible, including sub-second imaging of hemodynamics and other fast-changing processes. Furthermore, DOT can be realized in compact, portable instrumentation that allows for bedside monitoring at relatively low cost. In this paper, we present an overview of current state-of-the -art technology, including hardware and image-reconstruction algorithms, and focus on applications in brain and joint imaging. In addition, we present recent results of work on optical tomographic imaging in small animals.

  19. Assessing the bioavailability of organic contaminants using a novel bioluminescent biosensor

    International Nuclear Information System (INIS)

    Keane, A.; Phoenix, P.; Lau, P.C.K.; Ghoshal, S.

    2002-01-01

    The limited rate and extent of biodegradation in contaminated soils is often attributed to a lack of bioavailability of hydrophobic organic compounds. To date, the majority of studies aimed at assessing bioavailability and modes of bacterial uptake have relied upon quantification of microbial degradation rates in comparison to rates of dissolution or desorption in corresponding abiotic systems. Several studies have indicated the possibility of a direct uptake mechanism for sorbed or separate phase compounds. However, there is a lack of direct evidence to support these claims. To address the need for a direct measurement technique for microbial bioavailability, we have constructed a whole-cell bioluminescent biosensor, Pseudomonas putida F1G4 (PpF1G4), by fusing lux genes that encode for bioluminescence to the solvent efflux pump (sep) promoter element in PpF1G4, which is induced by the presence of target organic compounds. When the biosensor microorganism is exposed to an inducing compound, the bioluminescence system is activated and the cell produces an intensity of visible light (λ = 495 nm) that is directly related to the level of exposure to the contaminant. Batch experiments were carried out to assess whether the biosensor is able to sense the presence of toluene, a representative target compound, contained in a NAPL. Preliminary results show that while PpF1G4 responds to toluene in the aqueous phase, the biosensor does not appear to emit a significant bioluminescence signal in response to the toluene present in the NAPL. Ongoing research is focusing on optimizing the experimental procedure to fully explore this issue. (author)

  20. Bioluminescence-based cytotoxicity assay for simultaneous evaluation of cell viability and membrane damage in human hepatoma HepG2 cells.

    Science.gov (United States)

    Uno, Katsuhiro; Murotomi, Kazutoshi; Kazuki, Yasuhiro; Oshimura, Mitsuo; Nakajima, Yoshihiro

    2018-05-01

    We have developed a bioluminescence-based non-destructive cytotoxicity assay in which cell viability and membrane damage are simultaneously evaluated using Emerald luciferase (ELuc) and endoplasmic reticulum (ER)-targeted copepod luciferase (GLuc-KDEL), respectively, by using multi-integrase mouse artificial chromosome (MI-MAC) vector. We have demonstrated that the time-dependent concentration response curves of ELuc luminescence intensity and WST-1 assay, and GLuc-KDEL luminescence intensity and lactate dehydrogenase (LDH) activity in the culture medium accompanied by cytotoxicity show good agreement in toxicant-treated ELuc- and GLuc-KDEL-expressing HepG2 stable cell lines. We have clarified that the increase of GLuc-KDEL luminescence intensity in the culture medium reflects the type of cell death, including necrosis and late apoptosis, but not early apoptosis. We have also uncovered a strong correlation between GLuc-KDEL luminescence intensity in the culture medium and the extracellular release of high mobility group box 1 (HMGB1), a representative damage-associated molecular pattern (DAMP) molecule. The bioluminescence measurement assay using ELuc and GLuc-KDEL developed in this study can simultaneously monitor cell viability and membrane damage, respectively, and the increase of GLuc-KDEL luminescence intensity in the culture medium accompanied by the increase of cytotoxicity is an index of necrosis and late apoptosis associated with the extracellular release of DAMP molecules. Copyright © 2018 John Wiley & Sons, Ltd.

  1. The application of superweak bioluminescence on freshness degree of chicken egg

    International Nuclear Information System (INIS)

    Zhao Hongxia; Li Guochen; Li Qiangzheng; Li Juan

    2007-01-01

    The luminescence of chicken egg in storage is studied by a detection system of superweak bioluminescence. The results show that egg has the strongest vigour on the third day after it is laid, subsequently the luminescence presents decay with oscillation. These eggs, which have been stored for 3 days, are most suitable for hatching. Different eggs have different luminescence intensities depending on the vigour of the egg. The stronger the vigour of the egg is, the more intensive the luminescence is. Superweak bioluminescence as a comprehensive index of biology and biochemistry response can be used for inspecting the freshness degree of the egg, and the test is nondestructive and sensitive

  2. The in vitro and in vivo effects of constitutive light expression on a bioluminescent strain of the mouse enteropathogen Citrobacter rodentium

    Directory of Open Access Journals (Sweden)

    Hannah M. Read

    2016-06-01

    Full Text Available Bioluminescent reporter genes, such as those from fireflies and bacteria, let researchers use light production as a non-invasive and non-destructive surrogate measure of microbial numbers in a wide variety of environments. As bioluminescence needs microbial metabolites, tagging microorganisms with luciferases means only live metabolically active cells are detected. Despite the wide use of bioluminescent reporter genes, very little is known about the impact of continuous (also called constitutive light expression on tagged bacteria. We have previously made a bioluminescent strain of Citrobacter rodentium, a bacterium which infects laboratory mice in a similar way to how enteropathogenic Escherichia coli (EPEC and enterohaemorrhagic E. coli (EHEC infect humans. In this study, we compared the growth of the bioluminescent C. rodentium strain ICC180 with its non-bioluminescent parent (strain ICC169 in a wide variety of environments. To understand more about the metabolic burden of expressing light, we also compared the growth profiles of the two strains under approximately 2,000 different conditions. We found that constitutive light expression in ICC180 was near-neutral in almost every non-toxic environment tested. However, we also found that the non-bioluminescent parent strain has a competitive advantage over ICC180 during infection of adult mice, although this was not enough for ICC180 to be completely outcompeted. In conclusion, our data suggest that constitutive light expression is not metabolically costly to C. rodentium and supports the view that bioluminescent versions of microbes can be used as a substitute for their non-bioluminescent parents to study bacterial behaviour in a wide variety of environments.

  3. Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property

    OpenAIRE

    Side, Domenico Delle; Nassisi, Vincenzo; Pennetta, Cecilia; Alifano, Pietro; Di Salvo, Marco; Talà, Adelfia; Chechkin, Aleksei; Seno, Flavio; Trovato, Antonio

    2017-01-01

    We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distri...

  4. Adenosina trifosfato bioluminescência para avaliação da limpeza de superfícies: uma revisão integrativa

    OpenAIRE

    Oliveira, Adriana Cristina de; Viana, Roberta El Hariri

    2014-01-01

    Objetivo: Identificar na literatura indicações e controvérsias do ATP bioluminescência para avaliação da efetividade da limpeza de superfícies em estabelecimentos de saúde. Método: Revisão integrativa da literatura, entre 2000 e 2012, nas bases de dados MEDLINE, LILACS, Science Direct, SCOPUS e Isi Web of Knowledge. Resultados: Selecionou-se para esta revisão 15 artigos. O ATP bioluminescência foi apontado como importante recurso educacional e método complementar à inspeção visual e às anális...

  5. Rapid detection of E. Coli O157:H7 by IFAST and ATP bioluminescence assay for water analysis

    CSIR Research Space (South Africa)

    Ngamsom, B

    2016-10-01

    Full Text Available The present investigation reports isolation and detection of E. coli O157:H7 employing a simple and portable microfluidic device based on immiscible filtration assisted by surface tension (IFAST) and adenosine triphosphate (ATP) bioluminescence...

  6. Revealing the ability of a novel polysaccharide bioflocculant in bioremediation of heavy metals sensed in a Vibrio bioluminescence reporter assay.

    Science.gov (United States)

    Sajayan, Arya; Seghal Kiran, G; Priyadharshini, S; Poulose, Navya; Selvin, Joseph

    2017-09-01

    A bioflocculant-producing bacterial strain, designated MSI021, was isolated from the marine sponge Dendrilla nigra and demonstrated 94% flocculation activity in a kaolin clay suspension. MSI021 was identified as Bacillus cereus based on phylogenetic affiliation and biochemical characteristics. The purified extra-cellular bioflocculant was chemically elucidated as a polysaccharide molecule. The polysaccharide bioflocculant was stable under both acidic and alkaline conditions (pH 2.0-10.0) and temperatures up to 100 °C. The purified bioflocculant efficiently nucleated the formation of silver nanoparticles which showed broad spectrum antibacterial activity. The ability of the bioflocculant to remediate heavy metal toxicity was evaluated by measuring the inhibition of bioluminescence expression in Vibrio harveyi. Enrichment of heavy metals such as zinc, mercury and copper at concentrations of 1, 2 and 3 mM in culture media showed significant reduction of bioluminescence in Vibrio, whereas media enriched with heavy metals and bioflocculant showed dose dependent improvement in the expression of bioluminescence. The assay results demonstrated that the polysaccharide bioflocculant effectively mitigates heavy metal toxicity, thereby improving the expression of bioluminescence in Vibrio. This bioluminescence reporter assay can be developed into a high-throughput format to monitor and evaluate of heavy metal toxicity. The findings of this study revealed that a novel polysaccharide bioflocculant produced by a marine B. cereus demonstrated strong flocculating performance and was effective in nucleating the formation antibacterial silver nanoparticles and removing heavy metals. These results suggest that the MSI021 polysaccharide bioflocculant can be used to develop greener waste water treatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Effect of Naphthalene and Salicylate Analogues on the Bioluminescence of Bioreporter Pseudomonas Fluorescens HK44.

    Czech Academy of Sciences Publication Activity Database

    Trögl, Josef; Kuncová, Gabriela; Kubicová, L.; Pařík, P.; Hálová, Jaroslava; Demnerová, K.; Ripp, S.; Sayler, G. S.

    2007-01-01

    Roč. 52, 1 (2007) , s. 3-14 ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA104/05/2637; GA ČR(CZ) GA203/06/1244 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502 Keywords : pseudomonas fluorescens HK44 * bioluminescence * bioluminescence Subject RIV: CE - Biochemistry Impact factor: 0.989, year: 2007

  8. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  9. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  10. Radiative transport-based frequency-domain fluorescence tomography

    International Nuclear Information System (INIS)

    Joshi, Amit; Rasmussen, John C; Sevick-Muraca, Eva M; Wareing, Todd A; McGhee, John

    2008-01-01

    We report the development of radiative transport model-based fluorescence optical tomography from frequency-domain boundary measurements. The coupled radiative transport model for describing NIR fluorescence propagation in tissue is solved by a novel software based on the established Attila(TM) particle transport simulation platform. The proposed scheme enables the prediction of fluorescence measurements with non-contact sources and detectors at a minimal computational cost. An adjoint transport solution-based fluorescence tomography algorithm is implemented on dual grids to efficiently assemble the measurement sensitivity Jacobian matrix. Finally, we demonstrate fluorescence tomography on a realistic computational mouse model to locate nM to μM fluorophore concentration distributions in simulated mouse organs

  11. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    Directory of Open Access Journals (Sweden)

    Giulia eSiciliano

    2015-05-01

    Full Text Available The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  12. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    Science.gov (United States)

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  13. Melatonin Entrains PER2::LUC Bioluminescence Circadian Rhythm in the Mouse Cornea

    Science.gov (United States)

    Baba, Kenkichi; Davidson, Alec J.; Tosini, Gianluca

    2015-01-01

    Purpose Previous studies have reported the presence of a circadian rhythm in PERIOD2::LUCIFERASE (PER2::LUC) bioluminescence in mouse photoreceptors, retina, RPE, and cornea. Melatonin (MLT) modulates many physiological functions in the eye and it is believed to be one of the key circadian signals within the eye. The aim of the present study was to investigate the regulation of the PER2::LUC circadian rhythm in mouse cornea and to determine the role played by MLT. Methods Corneas were obtained from PER2::LUC mice and cultured to measure bioluminescence rhythmicity in isolated tissue using a Lumicycle or CCD camera. To determine the time-dependent resetting of the corneal circadian clocks in response to MLT or IIK7 (a melatonin type 2 receptor, MT2, agonist) was added to the cultured corneas at different times of the day. We also defined the location of the MT2 receptor within different corneal layers using immunohistochemistry. Results A long-lasting bioluminescence rhythm was recorded from cultured PER2::LUC cornea and PER2::LUC signal was localized to the corneal epithelium and endothelium. MLT administration in the early night delayed the cornea rhythm, whereas administration of MLT at late night to early morning advanced the cornea rhythm. Treatment with IIK7 mimicked the MLT phase-shifting effect. Consistent with these results, MT2 immunoreactivity was localized to the corneal epithelium and endothelium. Conclusions Our work demonstrates that MLT entrains the PER2::LUC bioluminescence rhythm in the cornea. Our data indicate that the cornea may represent a model to study the molecular mechanisms by which MLT affects the circadian clock. PMID:26207312

  14. Dive Activities for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Information about dive activities were recorded by personnel during the "Bioluminescence 2009" expedition, July 20 through 31, 2009. Additional information was...

  15. Attenuated Bioluminescent Brucella melitensis Mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) Confer Protection in Mice

    OpenAIRE

    Rajashekara, Gireesh; Glover, David A.; Banai, Menachem; O'Callaghan, David; Splitter, Gary A.

    2006-01-01

    In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B....

  16. Probing intermolecular protein-protein interactions in the calcium-sensing receptor homodimer using bioluminescence resonance energy transfer (BRET)

    DEFF Research Database (Denmark)

    Jensen, Anders A.; Hansen, Jakob L; Sheikh, Søren P

    2002-01-01

    -induced intermolecular movements in the CaR homodimer using the new bioluminescence resonance energy transfer technique, BRET2, which is based on the transference of energy from Renilla luciferase (Rluc) to the green fluorescent protein mutant GFP2. We tagged CaR with Rluc and GFP2 at different intracellular locations...

  17. Detection of the onset of ischemia and carcinogenesis by hypoxia-inducible transcription factor-based in vivo bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kadonosono

    Full Text Available An animal model for the early detection of common fatal diseases such as ischemic diseases and cancer is desirable for the development of new drugs and treatment strategies. Hypoxia-inducible factor 1 (HIF-1 is a transcription factor that regulates oxygen homeostasis and plays key roles in a number of diseases, including cancer. Here, we established transgenic (Tg mice that carry HRE/ODD-luciferase (HOL gene, which generates bioluminescence in an HIF-1-dependent manner and was successfully used in this study to monitor HIF-1 activity in ischemic tissues. To monitor carcinogenesis in vivo, we mated HOL mice with rasH2 Tg mice, which are highly sensitive to carcinogens and are used for short-term carcinogenicity assessments. After rasH2-HOL Tg mice were treated with N-methyl-N-nitrosourea, bioluminescence was detected noninvasively as early as 9 weeks in tissues that contained papillomas and malignant lesions. These results suggest that the Tg mouse lines we established hold significant potential for monitoring the early onset of both ischemia and carcinogenesis and that these lines will be useful for screening chemicals for carcinogenic potential.

  18. Ship track for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and Atmospheric Administration (NOAA) Office of...

  19. Unanimous Model for Describing the Fast Bioluminescence Kinetics of Ca

    NARCIS (Netherlands)

    Eremeeva, Elena V.; Bartsev, Sergey I.; Berkel, van Willem J.H.; Vysotski, Eugene S.

    2017-01-01

    Upon binding their metal ion cofactors, Ca2+-regulated photoproteins display a rapid increase of light signal, which reaches its peak within milliseconds. In the present study, we investigate bioluminescence kinetics of the entire photoprotein family. All five recombinant hydromedusan Ca2+-regulated

  20. A portable bioluminescence engineered cell-based biosensor for on-site applications.

    Science.gov (United States)

    Roda, Aldo; Cevenini, Luca; Michelini, Elisa; Branchini, Bruce R

    2011-04-15

    We have developed a portable biosensing device based on genetically engineered bioluminescent (BL) cells. Cells were immobilized on a 4 × 3 multiwell cartridge using a new biocompatible matrix that preserved their vitality. Using a fiber optic taper, the cartridge was placed in direct contact with a cooled CCD sensor to image and quantify the BL signals. Yeast and bacterial cells were engineered to express recognition elements, whose interaction with the analyte led to luciferase expression, via reporter gene technology. Three different biosensors were developed. The first detects androgenic compounds using yeast cells carrying a green-emitting P. pyralis luciferase regulated by the human androgen receptor and a red mutant of the same species as internal vitality control. The second biosensor detects two classes of compounds (androgens and estrogens) using yeast strains engineered to express green-or red-emitting mutant firefly luciferases in response to androgens or estrogens, respectively. The third biosensor detects lactose analogue isopropyl β-d-1-thiogalactopyranoside using two E. coli strains. One strain exploits the lac operon as recognition element for the expression of P. pyralis luciferase. The other strain serves as a vitality control expressing Gaussia princeps luciferase, which requires a different luciferin substrate. The immobilized cells were stable for up to 1 month. The analytes could be detected at nanomolar levels with good precision and accuracy when the specific signal was corrected using the internal vitality control. This portable device can be used for on-site multiplexed bioassays for different compound classes. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. The cAMP-dependent protein kinase inhibitor H-89 attenuates the bioluminescence signal produced by Renilla Luciferase.

    Directory of Open Access Journals (Sweden)

    Katie J Herbst

    2009-05-01

    Full Text Available Investigations into the regulation and functional roles of kinases such as cAMP-dependent protein kinase (PKA increasingly rely on cellular assays. Currently, there are a number of bioluminescence-based assays, for example reporter gene assays, that allow the study of the regulation, activity, and functional effects of PKA in the cellular context. Additionally there are continuing efforts to engineer improved biosensors that are capable of detecting real-time PKA signaling dynamics in cells. These cell-based assays are often utilized to test the involvement of PKA-dependent processes by using H-89, a reversible competitive inhibitor of PKA.We present here data to show that H-89, in addition to being a competitive PKA inhibitor, attenuates the bioluminescence signal produced by Renilla luciferase (RLuc variants in a population of cells and also in single cells. Using 10 microM of luciferase substrate and 10 microM H-89, we observed that the signal from RLuc and RLuc8, an eight-point mutation variant of RLuc, in cells was reduced to 50% (+/-15% and 54% (+/-14% of controls exposed to the vehicle alone, respectively. In vitro, we showed that H-89 decreased the RLuc8 bioluminescence signal but did not compete with coelenterazine-h for the RLuc8 active site, and also did not affect the activity of Firefly luciferase. By contrast, another competitive inhibitor of PKA, KT5720, did not affect the activity of RLuc8.The identification and characterization of the adverse effect of H-89 on RLuc signal will help deconvolute data previously generated from RLuc-based assays looking at the functional effects of PKA signaling. In addition, for the current application and future development of bioluminscence assays, KT5720 is identified as a more suitable PKA inhibitor to be used in conjunction with RLuc-based assays. These principal findings also provide an important lesson to fully consider all of the potential effects of experimental conditions on a cell-based

  2. An Experimental-Numerical Study of Small Scale Flow Interaction with Bioluminescent Plankton

    National Research Council Canada - National Science Library

    Latz, Michael

    1998-01-01

    Numerical and experimental approaches were used to investigate the effects of quantified flow stimuli on bioluminescence sUmulatidn at the small length and time scales appropriate for individual plankton...

  3. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry.

    Science.gov (United States)

    Mueller-Klieser, W; Schaefer, C; Walenta, S; Rofstad, E K; Fenton, B M; Sutherland, R M

    1990-03-15

    The energy and oxygenation status of tumors from two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) were assessed using three independent techniques. Tumor energy metabolism was investigated in vivo by 31P nuclear magnetic resonance spectroscopy. After nuclear magnetic resonance measurements, tumors were frozen in liquid nitrogen to determine the tissue ATP concentration by imaging bioluminescence and to register the intracapillary oxyhemoglobin (HbO2) saturation using the cryospectrophotometric method. There was a positive correlation between the nucleoside triphosphate beta/total resonance ratio or a negative correlation between the Pi/total resonance ratio and the model ATP concentration obtained by bioluminescence, respectively. This was true for small tumors with no extended necrosis irrespective of tumor type. Moreover, a positive correlation was obtained between the HbO2 saturations and the ATP concentration measured with bioluminescence. The results demonstrate the potential of combined studies using noninvasive, integrating methods and high-resolution imaging techniques for characterizing the metabolic milieu in tumors.

  4. Monitoring Bloom Dynamics of a Common Coastal Bioluminescent Ctenophore

    Science.gov (United States)

    2010-09-30

    photodiode array are simultaneously burst sampled through integrating transimpedance amplifiers with an integration period of 0.1 s. 64-bursts are...clear acrylic test section to reduce the optical path length and reducing integrator capacitance to increase transimpedance gain. A later improvement...gain, higher resolution analog to digital conversion, and greater transimpedance gain. Figure 5 Bioluminescence intensities from Pyrocystis

  5. ATP bioluminescence: Surface hygiene monitoring in milk preparation room of neonatal intensive care unit

    Science.gov (United States)

    Mohamad, Mahirah; Ishak, Shareena; Jaafar, Rohana; Sani, Norrakiah Abdullah

    2018-04-01

    ATP Bioluminescence application and standard microbiological analyses were used to evaluate the cleanliness of milk contact surfaces and non-milk contact surfaces in milk preparation room of neonatal intensive care unit (NICU) of Universiti Kebangsaan Malaysia Medical Centre (UKMMC). A total of 44 samples including the breast pump, milk bottle, milk bottle screw top and screw ring, teats, measuring cups, waterless warmer, refrigerator, dishwasher and pasteurizer inner wall were tested on May 2017. 3M Clean and Trace Hygiene Monitoring (UXL100 ATP Test swabs) and the bioluminescence reader Clean-Trace NG Luminometer (3M) were used to measure the Relative Light Unit (RLU) and microbiological analysis using 3M Quick Swab and 3MTM PetrifilmTM for enumeration of aerobic count, Staphylococcus aureus, Enterobacteriaceae, coliform and detection of Escherichia coli (CFU /100cm2 or utensil/item). The RLU values were from 11 to 194 and passed the ATP benchmark for intensive care unit (ICU), < 250 RLU as recommended. Aerobic colony count was only found in waterless warmer (0.05±0.01 mean log CFU/warmer). None of S. aureus, Enterobacteriaceae, E. coli and coliform was detected in all samples. A weak correlation was found between bioluminescence measurements RLU and the microbiological analysis (CFU). However, the use of ATP bioluminescence in monitoring milk preparation room cleanliness can be a useful method for assessing rapidly the surface hygiene as well as to verify the Sanitation Standard Operating Procedure (SSOP) prior to implementation of Hazard Analysis and Critical Control Points (HACCP) in milk preparation room.

  6. Light and vision in the deep-sea benthos: I. Bioluminescence at 500-1000 m depth in the Bahamian islands.

    Science.gov (United States)

    Johnsen, Sönke; Frank, Tamara M; Haddock, Steven H D; Widder, Edith A; Messing, Charles G

    2012-10-01

    Bioluminescence is common and well studied in mesopelagic species. However, the extent of bioluminescence in benthic sites of similar depths is far less studied, although the relatively large eyes of benthic fish, crustaceans and cephalopods at bathyal depths suggest the presence of significant biogenic light. Using the Johnson-Sea-Link submersible, we collected numerous species of cnidarians, echinoderms, crustaceans, cephalopods and sponges, as well as one annelid from three sites in the northern Bahamas (500-1000 m depth). Using mechanical and chemical stimulation, we tested the collected species for light emission, and photographed and measured the spectra of the emitted light. In addition, in situ intensified video and still photos were taken of different benthic habitats. Surprisingly, bioluminescence in benthic animals at these sites was far less common than in mesopelagic animals from similar depths, with less than 20% of the collected species emitting light. Bioluminescent taxa comprised two species of anemone (Actinaria), a new genus and species of flabellate Parazoanthidae (formerly Gerardia sp.) (Zoanthidea), three sea pens (Pennatulacea), three bamboo corals (Alcyonacea), the chrysogorgiid coral Chrysogorgia desbonni (Alcyonacea), the caridean shrimp Parapandalus sp. and Heterocarpus ensifer (Decapoda), two holothuroids (Elasipodida and Aspidochirota) and the ophiuroid Ophiochiton ternispinus (Ophiurida). Except for the ophiuroid and the two shrimp, which emitted blue light (peak wavelengths 470 and 455 nm), all the species produced greener light than that measured in most mesopelagic taxa, with the emissions of the pennatulaceans being strongly shifted towards longer wavelengths. In situ observations suggested that bioluminescence associated with these sites was due primarily to light emitted by bioluminescent planktonic species as they struck filter feeders that extended into the water column.

  7. Ship Sensor Observations for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the R/V Seward Johnson during the "Bioluminescence 2009" expedition sponsored by the National Oceanic and...

  8. [Determination of minimal concentrations of biocorrosion inhibitors by a bioluminescence method in relation to bacteria, participating in biocorrosion].

    Science.gov (United States)

    Efremenko, E N; Azizov, R E; Makhlis, T A; Abbasov, V M; Varfolomeev, S D

    2005-01-01

    By using a bioluminescence ATP assay, we have determined the minimal concentrations of some biocorrosion inhibitors (Katon, Khazar, VFIKS-82, Nitro-1, Kaspii-2, and Kaspii-4) suppressing most common microbial corrosion agents: Desulfovibrio desulfuricans, Desulfovibrio vulgaris, Pseudomonas putida, Pseudomonas fluorescens, and Acidithiobacillus ferrooxidans. The cell titers determined by the bioluminescence method, including not only dividing cells but also their dormant living counterparts, are two- to sixfold greater than the values determined microbiologically. It is shown that the bioluminescence method can be applied to determination of cell titers in samples of oil-field waters in the presence of iron ions (up to 260 mM) and iron sulfide (to 186 mg/l) and in the absence or presence of biocidal corrosion inhibitors.

  9. Sensitive in situ monitoring of a recombinant bioluminescent Yersinia enterocolitica reporter mutant in real time on Camembert cheese.

    Science.gov (United States)

    Maoz, Ariel; Mayr, Ralf; Bresolin, Geraldine; Neuhaus, Klaus; Francis, Kevin P; Scherer, Siegfried

    2002-11-01

    Bioluminescent mutants of Yersinia enterocolitica were generated by transposon mutagenesis using a promoterless, complete lux operon (luxCDABE) derived from Photorhabdus luminescens, and their production of light in the cheese environment was monitored. Mutant B94, which had the lux cassette inserted into an open reading frame of unknown function was used for direct monitoring of Y. enterocolitica cells on cheeses stored at 10 degrees C by quantifying bioluminescence using a photon-counting, intensified charge-coupled device camera. The detection limit on cheese was 200 CFU/cm(2). Bioluminescence of the reporter mutant was significantly regulated by its environment (NaCl, temperature, and cheese), as well as by growth phase, via the promoter the lux operon had acquired upon transposition. At low temperatures, mutant B94 did not exhibit the often-reported decrease of photon emission in older cells. It was not necessary to include either antibiotics or aldehyde in the food matrix in order to gain quantitative, reproducible bioluminescence data. As far as we know, this is the first time a pathogen has been monitored in situ, in real time, in a "real-product" status, and at a low temperature.

  10. Detection of Antibodies in Blood Plasma Using Bioluminescent Sensor Proteins and a Smartphone.

    Science.gov (United States)

    Arts, Remco; den Hartog, Ilona; Zijlema, Stefan E; Thijssen, Vito; van der Beelen, Stan H E; Merkx, Maarten

    2016-04-19

    Antibody detection is of fundamental importance in many diagnostic and bioanalytical assays, yet current detection techniques tend to be laborious and/or expensive. We present a new sensor platform (LUMABS) based on bioluminescence resonance energy transfer (BRET) that allows detection of antibodies directly in solution using a smartphone as the sole piece of equipment. LUMABS are single-protein sensors that consist of the blue-light emitting luciferase NanoLuc connected via a semiflexible linker to the green fluorescent acceptor protein mNeonGreen, which are kept close together using helper domains. Binding of an antibody to epitope sequences flanking the linker disrupts the interaction between the helper domains, resulting in a large decrease in BRET efficiency. The resulting change in color of the emitted light from green-blue to blue can be detected directly in blood plasma, even at picomolar concentrations of antibody. Moreover, the modular architecture of LUMABS allows changing of target specificity by simple exchange of epitope sequences, as demonstrated here for antibodies against HIV1-p17, hemagglutinin (HA), and dengue virus type I. The combination of sensitive ratiometric bioluminescent detection and the intrinsic modularity of the LUMABS design provides an attractive generic platform for point-of-care antibody detection that avoids the complex liquid handling steps associated with conventional immunoassays.

  11. Visualization of local Ca2+ dynamics with genetically encoded bioluminescent reporters.

    Science.gov (United States)

    Rogers, Kelly L; Stinnakre, Jacques; Agulhon, Cendra; Jublot, Delphine; Shorte, Spencer L; Kremer, Eric J; Brûlet, Philippe

    2005-02-01

    Measurements of local Ca2+ signalling at different developmental stages and/or in specific cell types is important for understanding aspects of brain functioning. The use of light excitation in fluorescence imaging can cause phototoxicity, photobleaching and auto-fluorescence. In contrast, bioluminescence does not require the input of radiative energy and can therefore be measured over long periods, with very high temporal resolution. Aequorin is a genetically encoded Ca(2+)-sensitive bioluminescent protein, however, its low quantum yield prevents dynamic measurements of Ca2+ responses in single cells. To overcome this limitation, we recently reported the bi-functional Ca2+ reporter gene, GFP-aequorin (GA), which was developed specifically to improve the light output and stability of aequorin chimeras [V. Baubet, et al., (2000) PNAS, 97, 7260-7265]. In the current study, we have genetically targeted GA to different microdomains important in synaptic transmission, including to the mitochondrial matrix, endoplasmic reticulum, synaptic vesicles and to the postsynaptic density. We demonstrate that these reporters enable 'real-time' measurements of subcellular Ca2+ changes in single mammalian neurons using bioluminescence. The high signal-to-noise ratio of these reporters is also important in that it affords the visualization of Ca2+ dynamics in cell-cell communication in neuronal cultures and tissue slices. Further, we demonstrate the utility of this approach in ex-vivo preparations of mammalian retina, a paradigm in which external light input should be controlled. This represents a novel molecular imaging approach for non-invasive monitoring of local Ca2+ dynamics and cellular communication in tissue or whole animal studies.

  12. Aequorin fusion proteins as bioluminescent tracers for competitive immunoassays

    Science.gov (United States)

    Mirasoli, Mara; Michelini, Elisa; Deo, Sapna K.; Dikici, Emre; Roda, Aldo; Daunert, Sylvia

    2004-06-01

    The use of bio- and chemiluminescence for the development of quantitative binding assays offers undoubted advantages over other detection systems, such as spectrophotometry, fluorescence, or radioactivity. Indeed, bio- and chemiluminescence detection provides similar, or even better, sensitivity and detectability than radioisotopes, while avoiding the problems of health hazards, waste disposal, and instability associated with the use of radioisotopes. Among bioluminescent labels, the calcium-activated photoprotein aequorin, originally isolated from Aequorea victoria and today available as a recombinant product, is characterized by very high detectability, down to attomole levels. It has been used as a bioluminescent label for developing a variety of highly sensitive immunoassays, using various analyte-aequorin conjugation strategies. When the analyte is a protein or a peptide, genetic engineering techniques can be used to produce protein fusions where the analyte is in-frame fused with aequorin, thus producing homogeneous one-to-one conjugation products, available in virtually unlimited amount. Various assays were developed using this strategy: a short review of the most interesting applications is presented, as well as the cloning, purification and initial characterization of an endothelin-1-aequorin conjugate suitable for developing a competitive immunoassay for endothelin-1, a potent vasoconstrictor peptide, involved in hypertension.

  13. A genetic screen for bioluminescence genes in the fungus Armillaria mellea, through the use of Agrobacterium tumefaciens-mediated random insertional mutagenesis

    Science.gov (United States)

    Bioluminescence is reported from 71 saprobic species of fungi from four, distant lineages in the order Agaricales. Analyses of the fungal luminescent chemistry shows that all four lineages share a functionally conserved substrate and luciferase, indicating that the bioluminescent pathway is likely c...

  14. Analysis of genetically modified organisms by pyrosequencing on a portable photodiode-based bioluminescence sequencer.

    Science.gov (United States)

    Song, Qinxin; Wei, Guijiang; Zhou, Guohua

    2014-07-01

    A portable bioluminescence analyser for detecting the DNA sequence of genetically modified organisms (GMOs) was developed by using a photodiode (PD) array. Pyrosequencing on eight genes (zSSIIb, Bt11 and Bt176 gene of genetically modified maize; Lectin, 35S-CTP4, CP4EPSPS, CaMV35S promoter and NOS terminator of the genetically modified Roundup ready soya) was successfully detected with this instrument. The corresponding limit of detection (LOD) was 0.01% with 35 PCR cycles. The maize and soya available from three different provenances in China were detected. The results indicate that pyrosequencing using the small size of the detector is a simple, inexpensive, and reliable way in a farm/field test of GMO analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Bioluminescence determination of active caspase-3 in single apoptotic cells

    Czech Academy of Sciences Publication Activity Database

    Lišková, Marcela; Klepárník, Karel; Matalová, Eva; Hegrová, Jitka; Přikryl, Jan; Švandová, Eva; Foret, František

    2013-01-01

    Roč. 34, č. 12 (2013), s. 1772-1777 ISSN 0173-0835 R&D Projects: GA ČR GAP206/11/2377 Grant - others:GA ČR(CZ) GAP502/12/1285 Program:GA Institutional support: RVO:68081715 ; RVO:67985904 Keywords : apoptosis * bioluminescence * caspase-3 Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  16. Photons-based medical imaging - Radiology, X-ray tomography, gamma and positrons tomography, optical imaging; Imagerie medicale a base de photons - Radiologie, tomographie X, tomographie gamma et positons, imagerie optique

    Energy Technology Data Exchange (ETDEWEB)

    Fanet, H.; Dinten, J.M.; Moy, J.P.; Rinkel, J. [CEA Leti, Grenoble (France); Buvat, I. [IMNC - CNRS, Orsay (France); Da Silva, A. [Institut Fresnel, Marseille (France); Douek, P.; Peyrin, F. [INSA Lyon, Lyon Univ. (France); Frija, G. [Hopital Europeen George Pompidou, Paris (France); Trebossen, R. [CEA-Service hospitalier Frederic Joliot, Orsay (France)

    2010-07-01

    This book describes the different principles used in medical imaging. The detection aspects, the processing electronics and algorithms are detailed for the different techniques. This first tome analyses the photons-based techniques (X-rays, gamma rays and visible light). Content: 1 - physical background: radiation-matter interaction, consequences on detection and medical imaging; 2 - detectors for medical imaging; 3 - processing of numerical radiography images for quantization; 4 - X-ray tomography; 5 - positrons emission tomography: principles and applications; 6 - mono-photonic imaging; 7 - optical imaging; Index. (J.S.)

  17. BarTeL, a Genetically Versatile, Bioluminescent and Granule Neuron Precursor-Targeted Mouse Model for Medulloblastoma.

    Directory of Open Access Journals (Sweden)

    Gregory M Shackleford

    Full Text Available Medulloblastomas are the most common malignant pediatric brain tumor and have been divided into four major molecular subgroups. Animal models that mimic the principal molecular aberrations of these subgroups will be important tools for preclinical studies and allow greater understanding of medulloblastoma biology. We report a new transgenic model of medulloblastoma that possesses a unique combination of desirable characteristics including, among others, the ability to incorporate multiple and variable genes of choice and to produce bioluminescent tumors from a limited number of somatic cells within a normal cellular environment. This model, termed BarTeL, utilizes a Barhl1 homeobox gene promoter to target expression of a bicistronic transgene encoding both the avian retroviral receptor TVA and an eGFP-Luciferase fusion protein to neonatal cerebellar granule neuron precursor (cGNP cells, which are cells of origin for the sonic hedgehog (SHH subgroup of human medulloblastomas. The Barhl1 promoter-driven transgene is expressed strongly in mammalian cGNPs and weakly or not at all in mature granule neurons. We efficiently induced bioluminescent medulloblastomas expressing eGFP-luciferase in BarTeL mice by infection of a limited number of somatic cGNPs with avian retroviral vectors encoding the active N-terminal fragment of SHH and a stabilized MYCN mutant. Detection and quantification of the increasing bioluminescence of growing tumors in young BarTeL mice was facilitated by the declining bioluminescence of their uninfected maturing cGNPs. Inclusion of eGFP in the transgene allowed enriched sorting of cGNPs from neonatal cerebella. Use of a single bicistronic avian vector simultaneously expressing both Shh and Mycn oncogenes increased the medulloblastoma incidence and aggressiveness compared to mixed virus infections. Bioluminescent tumors could also be produced by ex vivo transduction of neonatal BarTeL cerebellar cells by avian retroviruses and

  18. Dual-color bioluminescent sensor proteins for therapeutic drug monitoring of antitumor antibodies

    NARCIS (Netherlands)

    van Rosmalen, M.; Ni, Y.; Vervoort, D.F.M.; Arts, R.; Ludwig, S.K.J.; Merkx, M.

    2018-01-01

    Monitoring the levels of therapeutic antibodies in individual patients would allow patient-specific dose optimization, with the potential for major therapeutic and financial benefits. Our group recently developed a new platform of bioluminescent sensor proteins (LUMABS; LUMinescent AntiBody Sensor)

  19. Submersible Data (Dive Waypoints) for Bioluminescence 2009 - Office of Ocean Exploration and Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data and information collected by the submersible Johnson Sea-Link II at waypoints along its track during seventeen dives of the 2009 "Bioluminescence" expedition...

  20. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part I: design and optimization of bioluminescent bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Durand, Marie-Jose; Jouanneau, Sulivan; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Dion, Michel [UMR CNRS 6204, Nantes University, PRES UNAM, Biotechnologie, Biocatalyse, Bioregulation, 2, Rue de la Houssiniere, BP 92208, Nantes cedex 3 (France); Pernetti, Mimma; Poncelet, Denis [ONIRIS-ENITIAA, UMR CNRS GEPEA, Rue de la Geraudiere, BP 82225, Nantes cedex 3 (France)

    2011-05-15

    This study describes the construction of inducible bioluminescent strains via genetic engineering along with their characterization and optimization in the detection of heavy metals. Firstly, a preliminary comparative study enabled us to select a suitable carbon substrate from pyruvate, glucose, citrate, diluted Luria-Bertani, and acetate. The latter carbon source provided the best induction ratios for comparison. Results showed that the three constructed inducible strains, Escherichia coli DH1 pBzntlux, pBarslux, and pBcoplux, were usable when conducting a bioassay after a 14-h overnight culture at 30 C. Utilizing these sensors gave a range of 12 detected heavy metals including several cross-detections. Detection limits for each metal were often close to and sometimes lower than the European standards for water pollution. Finally, in order to maintain sensitive bacteria within the future biosensor-measuring cell, the agarose immobilization matrix was compared to polyvinyl alcohol (PVA). Agarose was selected because the detection limits of the bioluminescent strains were not affected, in contrast to PVA. Specific detection and cross-detection ranges determined in this study will form the basis of a multiple metals detection system by the new multi-channel Lumisens3 biosensor. (orig.)

  1. Heterogeneity in quorum sensing-regulated bioluminescence of Vibrio harveyi.

    Science.gov (United States)

    Anetzberger, Claudia; Pirch, Torsten; Jung, Kirsten

    2009-07-01

    Quorum sensing (QS) refers to the ability of bacterial populations to read out the local environment for cell density and to collectively activate gene expression. Vibrio harveyi, one of the best characterized model organisms in QS, was used to address the question how single cells behave within a QS-activated community in a homogeneous environment. Analysis of the QS-regulated bioluminescence of a wild type strain revealed that even at high cell densities only 69% of the cells of the population produced bioluminescence, 25% remained dark and 6% were dead. Moreover, light intensities greatly varied from cell to cell at high population density. Addition of autoinducer to a bright liquid culture of V. harveyi increased the percentage of luminescent cells up to 98%, suggesting that V. harveyi produces and/or keeps the autoinducers at non-saturating concentrations. In contrast, all living cells of a constitutive QS-active mutant (DeltaluxO) produced light. We also found that QS affects biofilm formation in V. harveyi. Our data provide first evidence that a heterogeneous population produces more biofilm than a homogeneous one. It is suggested that even a QS-committed population of V. harveyi takes advantage of heterogeneity, which extends the current view of QS-regulated uniformity.

  2. Structure of fungal oxyluciferin, the product of the bioluminescence reaction.

    Science.gov (United States)

    Purtov, K V; Osipova, Z M; Petushkov, V N; Rodionova, N S; Tsarkova, A S; Kotlobay, A A; Chepurnykh, T V; Gorokhovatsky, A Yu; Yampolsky, I V; Gitelson, J I

    2017-11-01

    The structure of fungal oxyluciferin was determined, the enzymatic bioluminescence reaction under substrate saturation conditions with discrete monitoring of formed products was conducted, and the structures of the end products of the reaction were established. On the basis of these studies, the scheme of oxyluciferin degradation to the end products was developed. The structure of fungal oxyluciferin was confirmed by counter synthesis.

  3. Study of the Dynamic Uptake of Free Drug and Nanostructures for Drug Delivery Based on Bioluminescence Measurements

    Directory of Open Access Journals (Sweden)

    Zhongjian Fang

    2017-01-01

    Full Text Available The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.

  4. Observations and Measurements of Planktonic Bioluminescence in and Around a Milky Sea

    Science.gov (United States)

    1988-03-01

    malticharnel analysers operating in the multiscaler mode. The details of both the onboard underway system and the LPTC systems have been published (Lapota...the Arabian Sea during the southwest monsoon. No nutrient data was collected during our study, yet phosphates, nitrates , and trace BIOLUMINESCENCE IN

  5. Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity.

    Science.gov (United States)

    Mofford, David M; Adams, Spencer T; Reddy, G S Kiran Kumar; Reddy, Gadarla Randheer; Miller, Stephen C

    2015-07-15

    Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fatty acid amide hydrolase (FAAH). In the presence of luciferase, these molecules enable highly sensitive and selective bioluminescent detection of FAAH activity in vitro, in live cells, and in vivo. The potency and tissue distribution of FAAH inhibitors can be imaged in live mice, and luciferin amides serve as exemplary reagents for greatly improved bioluminescence imaging in FAAH-expressing tissues such as the brain.

  6. Uninterrupted monitoring of drug effects in human-induced pluripotent stem cell-derived cardiomyocytes with bioluminescence Ca2+ microscopy.

    Science.gov (United States)

    Suzuki, Kazushi; Onishi, Takahito; Nakada, Chieko; Takei, Shunsuke; Daniels, Matthew J; Nakano, Masahiro; Matsuda, Tomoki; Nagai, Takeharu

    2018-05-18

    Cardiomyocytes derived from human-induced pluripotent stem cells are a powerful platform for high-throughput drug screening in vitro. However, current modalities for drug testing, such as electrophysiology and fluorescence imaging have inherent drawbacks. To circumvent these problems, we report the development of a bioluminescent Ca 2+ indicator GmNL(Ca 2+ ), and its application in a customized microscope for high-throughput drug screening. GmNL(Ca 2+ ) gives a 140% signal change with Ca 2+ , and can image drug-induced changes of Ca 2+ dynamics in cultured cells. Since bioluminescence requires application of a chemical substrate, which is consumed over ~ 30 min we made a dedicated microscope with automated drug dispensing inside a light-tight box, to control drug addition. To overcome thermal instability of the luminescent substrate, or small molecule, dual climate control enables distinct temperature settings in the drug reservoir and the biological sample. By combining GmNL(Ca 2+ ) with this adaptation, we could image spontaneous Ca 2+ transients in cultured cardiomyocytes and phenotype their response to well-known drugs without accessing the sample directly. In addition, the bioluminescent strategy demonstrates minimal perturbation of contractile parameters and long-term observation attributable to lack of phototoxicity and photobleaching. Overall, bioluminescence may enable more accurate drug screening in a high-throughput manner.

  7. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  8. Dual monitoring using 124I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    International Nuclear Information System (INIS)

    Lee, T. S.; Kim, J. H.; Kwon, H. C.

    2007-01-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[ 124 I] iodouracil ( 124 I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ( 124 I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, 124 I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, 124 I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by 124 I-FIAU PET imaging. 124 I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. 124 I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials

  9. Investigation of Processes and Factors Regulating the Generation, Maintenance and Breakdown of Bioluminescent Thin Layers

    National Research Council Canada - National Science Library

    Widder, Edith

    2001-01-01

    .... Katz's submersible holographic camera mounted on the upper work platform. Thin layers were located using real-time sensor feedback from intensified video recordings of stimulated bioluminescence...

  10. Development of Optical Molecular Imaging System for the Acquisition of Bioluminescence Signals from Small Animals

    International Nuclear Information System (INIS)

    Lee, Byeong Il; Kim, Hyeon Sik; Jeong, Hye Jin; Lee, Hyung Jae; Moon, Seung Min; Kwon, Seung Young; Jeong, Shin Young; Bom, Hee Seung; Min, Jung Joon; Choi, Eun Seo

    2009-01-01

    Optical imaging is providing great advance and improvement in genetic and molecular imaging of animals and humans. Optical imaging system consists of optical imaging devices, which carry out major function for monitoring, tracing, and imaging in most of molecular in-vivo researches. In bio-luminescent imaging, small animals containing luciferase gene locally irradiate light, and emitted photons transmitted through skin of the small animals are imaged by using a high sensitive charged coupled device (CCD) camera. In this paper, we introduced optical imaging system for the image acquisition of bio-luminescent signals emitted from small animals. In the system, Nikon lens and four LED light sources were mounted at the inside of a dark box. A cooled CCD camera equipped with a control module was used. We tested the performance of the optical imaging system using effendorf tube and light emitting bacteria which injected intravenously into CT26 tumor bearing nude mouse. The performance of implemented optical imaging system for bio-luminescence imaging was demonstrated and the feasibility of the system in small animal imaging application was proved. We anticipate this system could be a useful tool for the molecular imaging of small animals adaptable for various experimental conditions in future

  11. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado

    Directory of Open Access Journals (Sweden)

    ETELVINO J.H. BECHARA

    Full Text Available ABSTRACT Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera belonging to the Lampyridae (fireflies, Elateridae (click-beetles, and Phengodidae (railroad-worms families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the “luminous termite mounds” in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  12. Factors Influencing Quantification of in Vivo Bioluminescence Imaging: Application to Assessment of Pancreatic Islet Transplants

    Directory of Open Access Journals (Sweden)

    John Virostko

    2004-10-01

    Full Text Available The aim of this study is to determine and characterize factors influencing in vivo bioluminescence imaging (BLI and apply them to the specific application of imaging transplanted pancreatic islets. Noninvasive quantitative assessment of transplanted pancreatic islets poses a formidable challenge. Murine pancreatic islets expressing firefly luciferase were transplanted under the renal capsule or into the portal vein of nonobese diabetic–severe combined immunodeficiency mice and the bioluminescence was quantified with a cooled charge coupled device camera and digital photon image analysis. The important, but often neglected, effects of wound healing, mouse positioning, and transplantation site on bioluminescence measurements were investigated by imaging a constant emission, isotropic light-emitting bead (λ = 600 implanted at the renal or hepatic site. The renal beads emitted nearly four times more light than hepatic beads with a smaller spot size, indicating that light absorption and scatter are greatly influenced by the transplant site and must be accounted for in BLI measurements. Detected luminescence decreased with increasing angle between the mouse surface normal and optical axis. By defining imaging parameters such as postsurgical effects, animal positioning, and light attenuation as a function of transplant site, this study develops BLI as a useful imaging modality for quantitative assessment of islets post-transplantation.

  13. Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado.

    Science.gov (United States)

    Bechara, Etelvino J H; Stevani, Cassius V

    2018-01-01

    Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera) belonging to the Lampyridae (fireflies), Elateridae (click-beetles), and Phengodidae (railroad-worms) families. The ATP-dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the "luminous termite mounds" in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. Finally, we point out analytical uses of beetle bioluminescence for biological, clinical, environmental, and industrial samples.

  14. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves

    Directory of Open Access Journals (Sweden)

    Flor-Henry Michel

    2004-11-01

    Full Text Available Abstract Background All living organisms emit spontaneous low-level bioluminescence, which can be increased in response to stress. Methods for imaging this ultra-weak luminescence have previously been limited by the sensitivity of the detection systems used. Results We developed a novel configuration of a cooled charge-coupled device (CCD for 2-dimensional imaging of light emission from biological material. In this study, we imaged photon emission from plant leaves. The equipment allowed short integration times for image acquisition, providing high resolution spatial and temporal information on bioluminescence. We were able to carry out time course imaging of both delayed chlorophyll fluorescence from whole leaves, and of low level wound-induced luminescence that we showed to be localised to sites of tissue damage. We found that wound-induced luminescence was chlorophyll-dependent and was enhanced at higher temperatures. Conclusions The data gathered on plant bioluminescence illustrate that the equipment described here represents an improvement in 2-dimensional luminescence imaging technology. Using this system, we identify chlorophyll as the origin of wound-induced luminescence from leaves.

  15. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    International Nuclear Information System (INIS)

    Bieg, B.; Chrzanowski, J.; Kravtsov, Yu. A.; Mazon, D.

    2015-01-01

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  16. Polarimetry data inversion in conditions of tokamak plasma: Model based tomography concept

    Energy Technology Data Exchange (ETDEWEB)

    Bieg, B. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Chrzanowski, J., E-mail: j.chrzanowski@am.szczecin.pl [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Kravtsov, Yu. A. [Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin (Poland); Space Research Institute, Profsoyuznaya St. 82/34 Russian Academy of Science, Moscow 117997 (Russian Federation); Mazon, D. [CEA, IRFM, F-13108 Saint Paul-lez-Durance (France)

    2015-10-15

    Highlights: • Model based plasma tomography is presented. • Minimization procedure for the error function is suggested to be performed using the gradient method. • model based procedure of data inversion in the case of joint polarimetry–interferometry data. - Abstract: Model based plasma tomography is studied which fits a hypothetical multi-parameter plasma model to polarimetry and interferometry experimental data. Fitting procedure implies minimization of the error function, defined as a sum of squared differences between theoretical and empirical values. Minimization procedure for the function is suggested to be performed using the gradient method. Contrary to traditional tomography, which deals exclusively with observational data, model-based tomography (MBT) operates also with reasonable model of inhomogeneous plasma distribution and verifies which profile of a given class better fits experimental data. Model based tomography (MBT) restricts itself by definite class of models for instance power series, Fourier expansion etc. The basic equations of MBT are presented which generalize the equations of model based procedure of polarimetric data inversion in the case of joint polarimetry–interferometry data.

  17. Fourier diffraction theorem for diffusion-based thermal tomography

    International Nuclear Information System (INIS)

    Baddour, Natalie

    2006-01-01

    There has been much recent interest in thermal imaging as a method of non-destructive testing and for non-invasive medical imaging. The basic idea of applying heat or cold to an area and observing the resulting temperature change with an infrared camera has led to the development of rapid and relatively inexpensive inspection systems. However, the main drawback to date has been that such an approach provides mainly qualitative results. In order to advance the quantitative results that are possible via thermal imaging, there is interest in applying techniques and algorithms from conventional tomography. Many tomography algorithms are based on the Fourier diffraction theorem, which is inapplicable to thermal imaging without suitable modification to account for the attenuative nature of thermal waves. In this paper, the Fourier diffraction theorem for thermal tomography is derived and discussed. The intent is for this thermal-diffusion based Fourier diffraction theorem to form the basis of tomographic reconstruction algorithms for quantitative thermal imaging

  18. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J [Johns Hopkins University, Baltimore, MD (United States); Patterson, M [Hamilton Regional Cancer Ctr., Hamilton, ON (Canada)

    2014-06-15

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100.

  19. TH-C-17A-12: Integrated CBCT and Optical Tomography System On-Board a Small Animal Radiation Research Platform (SARRP)

    International Nuclear Information System (INIS)

    Wang, K; Zhang, B; Eslami, S; Iordachita, I; Wong, J; Patterson, M

    2014-01-01

    Purpose: We present a newly developed on-board optical tomography system for SARRP. Innovative features include the compact design and fast acquisition optical method to perform 3D soft tissue radiation guidance. Because of the on-board feature and the combination of the CBCT, diffusive optical tomography (DOT), bioluminescence and fluorescence tomography (BLT and FT), this integrated system is expected to provide more accurate soft tissue guidance than an off-line system as well as highly sensitive functional imaging in preclinical research. Methods: Images are acquired in the order of CBCT, DOT and then BLT/FT, where the SARRP CBCT and DOT are used to provide the anatomical and optical properties information to enhance the subsequent BLT/FT optical reconstruction. The SARRP stage is redesigned to include 9 imbedded optical fibers in contact with the animal's skin. These fibers, connected to a white light lamp or laser, serve as the light sources for the DOT or FT, respectively. A CCD camera with f/1.4 lens and multi-spectral filter set is used as the optical detector and is mounted on a portable cart ready to dock into the SARRP. No radiation is delivered during optical image acquisition. A 3-way mirror system capable of 180 degree rotation around the animal reflects the optical signal to the camera at multiple projection angles. A special black-painted dome covers the stage and provides the light shielding. Results: Spontaneous metastatic bioluminescent liver and lung tumor models will be used to validate the 3D BLT reconstruction. To demonstrate the capability of our FT system, GastroSense750 fluorescence agent will be used to imaging the mouse stomach and intestinal region in 3D. Conclusion: We expect that this integrated CBCT and optical tomography on-board a SARRP will present new research opportunities for pre-clinical radiation research. Supported by NCI RO1-CA 158100

  20. BIOLUMINESCENCE: TEACHING BIOCHEMISTRY BEYOND THE UNIVERSITY WALLS

    Directory of Open Access Journals (Sweden)

    Ana Paula Jesus de Almeida

    2016-11-01

    Full Text Available INTRODUCTION: The use of video in teaching and learning processes provides a challenging environment, able to stimulate the intellect and facilitate understanding in life science studies. Videos can be of extraordinary importance in education and dissemination of knowledge, contributing to greater learning, but is rarely used and exploited properly, especially for teaching biochemistry. Biochemistry is considered complex because it involves many molecular structures and processes, especially considering the number of events and molecules involved in the metabolism. OBJECTIVES: This study aimed to introduce biochemistry for the students of basic education using the theme "Light, Science and Life" in a playful and fun way. MATERIALS AND METHODS: A video about bioluminescence was designed and prepared aiming to use it as a support for learning biochemistry by students of basic education of public schools located in Salvador, Bahia. In order to prepare the video, undergraduate students initially revised the literature in order to acquire proper knowledge, and along with their teacher advisor worked the elaboration of texts, textbook and questionnaire and applied at school. DISCUSSION AND RESULTS: Analysis the qualitative results of the experiment on the preparation and use of the video about "Bioluminescence" focused mainly on the content of biochemistry linked to theme Light, Science and Life, and demonstrated the importance of such work in the teaching-learning process. The dynamics used allowed greater interaction between students and teacher, and the teaching of biochemistry in a fun way beyond the university walls. CONCLUSION: The teaching through recreational resources, e.g. videos and other educational strategies that foster learning should be encouraged from basic education, always bearing in order to transmit through these teaching methods the main concepts covered in biochemistry.

  1. Dual monitoring using {sup 124}I-FIAU and bioluminescence for HSV1-tk suicide gene therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T. S.; Kim, J. H.; Kwon, H. C. [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2007-07-01

    Herpes simplex virus type I thymidine kinase (HSV-tk) is the most common reporter gene and is used in cancer gene therapy with a prodrug nucleoside analog, ganciclovir (GCV). The aim of this study is to evaluate therapeutic efficacy of suicide gene therapy with 2'-fluoro-2'-deoxy-1-D-arabinofuranosyl-5-[{sup 124}I] iodouracil ({sup 124}I - FIAU) and bioluminescence in retrovirally HSV -tk and firefly luciferase transduced hepatoma model. The HSV -tk and firefly luciferase (Luc) was retrovirally transduced and expressed in MCA rat Morris hepatoma cells. Nude mice with subcutaneous tumors, MCA and MCA-TK-Luc, were subjected to GCV treatment (50mg/Kg/d intraperitoneally) for 5 day. PET imaging and biodistribution with ({sup 124}I-FIAU) were performed at before and after initiation of therapy with GCV. Bioluminescent signal was also measured during GCV treatment. Before GCV treatment, no significant difference in tumor volume was found in tumors between MCA and MCA-TK-Luc. After GCV treatment, tumor volume of MCA-TK-Luc markedly reduced compared to that of MCA. In biodistribution study, {sup 124}I-FIAU uptake after GCV therapy significantly decreased compared with pretreatment levels (34.8 13.67 %ID/g vs 7.6 2.59 %ID/g) and bioluminescent signal was also significantly decreased compared with pretreatment levels. In small animal PET imaging, {sup 124}I-FIAU selectively localized in HSV -tk expressing tumor and the therapeutic efficacy of GCV treatment was evaluated by {sup 124}I-FIAU PET imaging. {sup 124}I-FIAU PET and bioluminescence imaging in HSV-tk suicide gene therapy were effective to evaluate the therapeutic response. {sup 124}I-FIAU may serve as an efficient and selective agent for monitoring of transduced HSV1-tk gene expression in vivo in clinical trials.

  2. What Orthopaedic Operating Room Surfaces Are Contaminated With Bioburden? A Study Using the ATP Bioluminescence Assay.

    Science.gov (United States)

    Richard, Raveesh Daniel; Bowen, Thomas R

    2017-07-01

    Contaminated operating room surfaces can increase the risk of orthopaedic infections, particularly after procedures in which hardware implantation and instrumentation are used. The question arises as to how surgeons can measure surface cleanliness to detect increased levels of bioburden. This study aims to highlight the utility of adenosine triphosphate (ATP) bioluminescence technology as a novel technique in detecting the degree of contamination within the sterile operating room environment. What orthopaedic operating room surfaces are contaminated with bioburden? When energy is required for cellular work, ATP breaks down into adenosine biphosphate (ADP) and phosphate (P) and in that process releases energy. This process is inherent to all living things and can be detected as light emission with the use of bioluminescence assays. On a given day, six different orthopaedic surgery operating rooms (two adult reconstruction, two trauma, two spine) were tested before surgery with an ATP bioluminescence assay kit. All of the cases were considered clean surgery without infection, and this included the previously performed cases in each sampled room. These rooms had been cleaned and prepped for surgery but the patients had not been physically brought into the room. A total of 13 different surfaces were sampled once in each room: the operating room (OR) preparation table (both pre- and postdraping), OR light handles, Bovie machine buttons, supply closet countertops, the inside of the Bair Hugger™ hose, Bair Hugger™ buttons, right side of the OR table headboard, tourniquet machine buttons, the Clark-socket attachment, and patient positioners used for total hip and spine positioning. The relative light units (RLUs) obtained from each sample were recorded and data were compiled and averaged for analysis. These values were compared with previously published ATP benchmark values of 250 to 500 RLUs to define cleanliness in both the hospital and restaurant industries. All

  3. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri.

    Science.gov (United States)

    Sun, Haoyu; Pan, Yongzheng; Gu, Yue; Lin, Zhifen

    2018-07-15

    Cross-phenomenon in which the concentration-response curve (CRC) for a mixture crosses the CRC for the reference model has been identified in many studies, expressed as a heterogeneous pattern of joint toxic action. However, a mechanistic explanation of the cross-phenomenon has thus far been extremely insufficient. In this study, a time-dependent cross-phenomenon was observed, in which the cross-concentration range between the CRC for the mixture of sulfamethoxypyridazine (SMP) and (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone (C30) to the bioluminescence of Aliivibrio fischeri (A. fischeri) and the CRC for independent action model with 95% confidence bands varied from low-concentration to higher-concentration regions in a timely manner expressed the joint toxic action of the mixture changing with an increase of both concentration and time. Through investigating the time-dependent hormetic effects of SMP and C30 (by measuring the expression of protein mRNA, simulating the bioluminescent reaction and analyzing the toxic action), the underlying mechanism was as follows: SMP and C30 acted on the quorum sensing (QS) system of A. fischeri, which induced low-concentration stimulatory effects and high-concentration inhibitory effects; in the low-concentration region, the stimulatory effects of SMP and C30 made the mixture produce a synergistic stimulation on the bioluminescence; thus, the joint toxic action exhibited antagonism. In the high-concentration region, the inhibitory effects of SMP and C30 in the mixture caused a double block in the loop circuit of the QS system; thus, the joint toxic action exhibited synergism. With the increase of time, these stimulatory and inhibitory effects of SMP and C30 were changed by the variation of the QS system at different growth phases, resulting in the time-dependent cross-phenomenon. This study proposes an induced mechanism for time-dependent cross-phenomenon based on QS, which may provide new insight into the mechanistic

  4. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP

    International Nuclear Information System (INIS)

    Nilsson, L.E.; Hoffner, S.E.; Ansehn, S.

    1988-01-01

    Mycobacterial growth was monitored by bioluminescence assay of mycobacterial ATP. Cultures of Mycobacterium tuberculosis H37Rv and of 25 clinical isolates of the same species were exposed to serial dilutions of ethambutol, isoniazid, rifampin, and streptomycin. A suppression of ATP, indicating growth inhibition, occurred for susceptible but not resistant strains within 5 to 7 days of incubation. Breakpoint concentrations between susceptibility and resistance were determined by comparing these results with those obtained by reference techniques. Full agreement was found in 99% of the assays with the resistance ratio method on Lowenstein-Jensen medium, and 98% of the assays were in full agreement with the radiometric system (BACTEC). A main advantage of the bioluminescence method is its rapidity, with results available as fast as with the radiometric system but at a lower cost and without the need for radioactive culture medium. The method provides kinetic data concerning drug effects within available in vivo drug concentrations and has great potential for both rapid routine susceptibility testing and research applications in studies of drug effects on mycobacteria

  5. Bioanalytical Applications of Real-Time ATP Imaging Via Bioluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Gruenhagen, Jason Alan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    The research discussed within involves the development of novel applications of real-time imaging of adenosine 5'-triphosphate (ATP). ATP was detected via bioluminescence and the firefly luciferase-catalyzed reaction of ATP and luciferin. The use of a microscope and an imaging detector allowed for spatially resolved quantitation of ATP release. Employing this method, applications in both biological and chemical systems were developed. First, the mechanism by which the compound 48/80 induces release of ATP from human umbilical vein endothelial cells (HUVECs) was investigated. Numerous enzyme activators and inhibitors were utilized to probe the second messenger systems involved in release. Compound 48/80 activated a G{sub q}-type protein to initiate ATP release from HUVECs. Ca2+ imaging along with ATP imaging revealed that activation of phospholipase C and induction of intracellular Ca2+ signaling were necessary for release of ATP. Furthermore, activation of protein kinase C inhibited the activity of phospholipase C and thus decreased the magnitude of ATP release. This novel release mechanism was compared to the existing theories of extracellular release of ATP. Bioluminescence imaging was also employed to examine the role of ATP in the field of neuroscience. The central nervous system (CNS) was dissected from the freshwater snail Lymnaea stagnalis. Electrophysiological experiments demonstrated that the neurons of the Lymnaea were not damaged by any of the components of the imaging solution. ATP was continuously released by the ganglia of the CNS for over eight hours and varied from ganglion to ganglion and within individual ganglia. Addition of the neurotransmitters K+ and serotonin increased release of ATP in certain regions of the Lymnaea CNS. Finally, the ATP imaging technique was investigated for the study of drug release systems. MCM-41-type mesoporous nanospheres were loaded with ATP and end-capped with mercaptoethanol

  6. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  7. Bioluminescence imaging in a medium-sized animal by local injection of d-luciferin

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Kim, Sung Mi; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of); Oh, Suk Jung; Kang, Han Saem; Kim, Kwang Yoon [ECOBIO INC., Gwangju (Korea, Republic of); Kim, Young Ho [Chosun University, Gwangju (Korea, Republic of)

    2005-07-01

    Luciferase is one of the most commonly used reporter enzymes in the field of molecular imaging. D-luciferin is known as the substrate for luciferase enzyme and its cost is very expensive. Therefore, the bioluminescence molecular imaging study has been allowed in small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase. And then was performed different method of chondrocyte cell injection and transplantation into the knee of rabbits. The rabbits underwent imaging by cooled CCD camera after local injection of D-luciferin (3mg) into experimental knee joint as well as contralateral normal knee joint on days 1, 5, 7, 9. We sought whether optimal imaging signal was acquired by using cooled CCD camera after local injection of D-luciferin. We successfully visualized injected or transplanted cells in knee joint by local injection of D-luciferin. Total photon flux (7.86E+08 p/s/cm{sup 2}/sr) from the knee joint transplanted with cells approximately increased 10-fold more than (9.43E+07p/s/cm{sup 2}/sr) that from injected knee joints until 7 day. Imaging signal was observed in transplanted joints until day 9 after surgery while signal from injected knee was observed by day 7 after injection. We successfully carried out bioluminescence imaging study with medium sized animal by local injection of small amount of D-luciferin. Survival of chondrocytes were prolonged when surgically transplanted in joints than when directly injected in joint space.

  8. Fiber optic based optical tomography sensor for monitoring plasma uniformity

    International Nuclear Information System (INIS)

    Benck, Eric C.; Etemadi, Kasra

    2001-01-01

    A new type of fiber optic based optical tomography sensor has been developed for in situ monitoring of plasma uniformity. Optical tomography inverts optical emission measurements into the actual plasma distribution without assuming radial symmetry. The new sensor is designed to operate with only two small windows and acquire the necessary data in less than a second. Optical tomography is being tested on an ICP-GEC RF plasma source. Variations in plasma uniformity are measured as a function of different plasma conditions

  9. X-ray micro-modulated luminescence tomography (XMLT)

    Science.gov (United States)

    Cong, Wenxiang; Liu, Fenglin; Wang, Chao; Wang, Ge

    2014-01-01

    Imaging depth of optical microscopy has been fundamentally limited to millimeter or sub-millimeter due to strong scattering of light in a biological sample. X-ray microscopy can resolve spatial details of few microns deep inside a sample but contrast resolution is inadequate to depict heterogeneous features at cellular or sub-cellular levels. To enhance and enrich biological contrast at large imaging depth, various nanoparticles are introduced and become essential to basic research and molecular medicine. Nanoparticles can be functionalized as imaging probes, similar to fluorescent and bioluminescent proteins. LiGa5O8:Cr3+ nanoparticles were recently synthesized to facilitate luminescence energy storage with x-ray pre-excitation and subsequently stimulated luminescence emission by visible/near-infrared (NIR) light. In this paper, we propose an x-ray micro-modulated luminescence tomography (XMLT, or MLT to be more general) approach to quantify a nanophosphor distribution in a thick biological sample with high resolution. Our numerical simulation studies demonstrate the feasibility of the proposed approach. PMID:24663898

  10. A look at some systemic properties of self-bioluminescent emission

    Science.gov (United States)

    Creath, Katherine

    2008-08-01

    Self-bioluminescent emission (SBE) is a type of biological chemiluminescence where photons are emitted as part of chemical reactions occurring during metabolic processes. This emission is also known as biophoton emission, ultraweak photon emission and ultraweak bioluminescence. This paper outlines research over the past century on some systemic properties of SBE as measured with biological detectors, photomultiplier detectors and ultra-sensitive imaging arrays. There is an apparent consensus in the literature that emission in the deep blue and ultraviolet (150-450nm) is related to DNA / RNA processes while emission in the red and near infrared (600-1000nm) is related to mitochondria and oxidative metabolisms involving reactive oxygen species, singlet oxygen and free radicals in plant, animal and human cells along with chlorophyll fluorescent decay in plants. Additionally, there are trends showing that healthy, unstressed and uninjured samples have less emission than samples that are unhealthy, stressed or injured. Mechanisms producing this emission can be narrowed down by isolating the wavelength region of interest and waiting for short-term fluorescence to decay leaving the ultraweak long-term metabolic emission. Examples of imaging this emission in healthy versus unhealthy, stressed versus unstressed, and injured versus uninjured plant parts are shown. Further discussion poses questions still to be answered related to properties such as coherence, photon statistics, and methodological means of isolating mechanisms.

  11. Mitrocomin from the jellyfish Mitrocoma cellularia with deleted C-terminal tyrosine reveals a higher bioluminescence activity compared to wild type photoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Burakova, Ludmila P.; Natashin, Pavel V.; Markova, Svetlana V.; Eremeeva, Elena V.; Malikova, Natalia P.; Cheng, Chongyun; Liu, Zhi-Jie; Vysotski, Eugene S.

    2016-09-01

    The full-length cDNA genes encoding five new isoforms of Ca2 +-regulated photoprotein mitrocomin from a small tissue sample of the outer bell margin containing photocytes of only one specimen of the luminous jellyfish Mitrocoma cellularia were cloned, sequenced, and characterized after their expression in Escherichia coli and subsequent purification. The analysis of cDNA nucleotide sequences encoding mitrocomin isoforms allowed suggestion that two isoforms might be the products of two allelic genes differing in one amino acid residue (64R/Q) whereas other isotypes appear as a result of transcriptional mutations. In addition, the crystal structure of mitrocomin was determined at 1.30 Å resolution which expectedly revealed a high similarity with the structures of other hydromedusan photoproteins. Although mitrocomin isoforms reveal a high degree of identity of amino acid sequences, they vary in specific bioluminescence activities. At that, all isotypes displayed the identical bioluminescence spectra (473–474 nm with no shoulder at 400 nm). Fluorescence spectra of Ca2 +-discharged mitrocomins were almost identical to their light emission spectra similar to the case of Ca2 +-discharged aequorin, but different from Ca2 +-discharged obelins and clytin which fluorescence is red-shifted by 25–30 nm from bioluminescence spectra. The main distinction of mitrocomin from other hydromedusan photoproteins is an additional Tyr at the C-terminus. Using site-directed mutagenesis, we showed that this Tyr is not important for bioluminescence because its deletion even increases specific activity and efficiency of apo-mitrocomin conversion into active photoprotein, in contrast to C-terminal Pro of other photoproteins. Since genes in a population generally exist as different isoforms, it makes us anticipate the cloning of even more isoforms of mitrocomin and other hydromedusan photoproteins with different bioluminescence properties.

  12. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.

  13. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    Directory of Open Access Journals (Sweden)

    Zagozdzon Agnieszka M

    2012-05-01

    Full Text Available Abstract Background Numerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study. Results A new mouse strain (MMTV-Luc2 mice expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal. Conclusions We have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  14. Generation of a new bioluminescent model for visualisation of mammary tumour development in transgenic mice

    LENUS (Irish Health Repository)

    Zagozdzon, Agnieszka M

    2012-05-30

    AbstractBackgroundNumerous transgenic models have been generated to study breast cancer. However, despite many advantages, traditional transgenic models for breast cancer are also burdened with difficulties in early detection and longitudinal observation of transgene-induced tumours, which in most cases are randomly located and occur at various time points. Methods such as palpation followed by mechanical measurement of the tumours are of limited value in transgenic models. There is a crucial need for making these previously generated models suitable for modern methods of tumour visualisation and monitoring, e.g. by bioluminescence-based techniques. This approach was successfully used in the current study.ResultsA new mouse strain (MMTV-Luc2 mice) expressing Luc2 luciferase primarily in mammary tissue in females, with low-level background expression in internal organs, was generated and bred to homozygosity. After these mice were intercrossed with MMTV-PyVT mice, all double transgenic females developed mammary tumours by the age of 10 weeks, the localisation and progression of which could be effectively monitored using the luminescence-based in vivo imaging. Luminescence-based readout allowed for early visualisation of the locally overgrown mammary tissue and for longitudinal evaluation of local progression of the tumours. When sampled ex vivo at the age of 10 weeks, all tumours derived from MMTV-Luc2PyVT females displayed robust bioluminescent signal.ConclusionsWe have created a novel transgenic strain for visualisation and longitudinal monitoring of mammary tumour development in transgenic mice as an addition and\\/or a new and more advanced alternative to manual methods. Generation of this mouse strain is vital for making many of the existing mammary tumour transgenic models applicable for in vivo imaging techniques.

  15. Oculogryphus chenghoiyanae sp. n. (Coleoptera, Lampyridae: a new ototretine firefly from Hong Kong with descriptions of its bioluminescent behavior and ultraviolet-induced fluorescence in females

    Directory of Open Access Journals (Sweden)

    Vor Yiu

    2018-02-01

    Full Text Available The first Oculogryphus species with associated males and female was found in Hong Kong and is described as new: O. chenghoiyanae sp. n. Adults of both sexes were collected live in the field and their bioluminescent behavior is reported for the first time in the genus. The captive males emit weak and continuous light from a pair of light spots on abdominal ventrite 6 or do so when disturbed. The larviform (highly paedomorphic females can glow brightly from a pair of light-emitting organs on the abdomen. The females of Oculogryphus and Stenocladius are to date the only documented representatives of paedomorphism in ototretine fireflies. The finding is consistent with the evidence from male morphology and bioluminescent behavior, supporting the close relationship between the two genera. A key to the Oculogryphus species is provided. The Oculogryphus females can fluoresce with a blue-green light through the whole body under ultraviolet illumination, a phenomenon reported in the Lampyridae for the first time. The co-occurrence of bioluminescence and fluorescence is rare in terrestrial ecosystems, previously known only in some millipedes (Diplopoda. The fluorescence and bioluminescence abilities of Oculogryphus females are functionally independent: abdominal light-emitting organs producing bright yellowish green light while the body wall fluoresces with blue-green light. In contrast, fluorescence and bioluminescence in millipedes are biochemically linked, like in some jellyfish (Cnidaria: Medusozoa.

  16. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  17. Advancing Molecular Therapies through In Vivo Bioluminescent Imaging

    Directory of Open Access Journals (Sweden)

    Anton McCaffrey

    2003-04-01

    Full Text Available Effective development of therapeutics that target the molecular basis of disease is dependent on testing new therapeutic moieties and delivery strategies in animal models of human disease. Accelerating the analyses of these models and improving their predictive value through whole animal imaging methods, which provide data in real time and are sensitive to the subtle changes, are crucial for rapid advancement of these approaches. Modalities based on optics are rapid, sensitive, and accessible methods for in vivo analyses with relatively low instrumentation costs. In vivo bioluminescent imaging (BLI is one of these optically based imaging methods that enable rapid in vivo analyses of a variety of cellular and molecular events with extreme sensitivity. BLI is based on the use of light-emitting enzymes as internal biological light sources that can be detected externally as biological indicators. BLI has been used to test spatio-temporal expression patterns of both target and therapeutic genes in living laboratory animals where the contextual influences of whole biological systems are preserved. BLI has also been used to analyze gene delivery, immune cell therapies, and the in vivo efficacy of inhibitory RNAs. New tools for BLI are being developed that will offer greater flexibility in detection and analyses. BLI can be used to accelerate the evaluation of experimental therapeutic strategies and whole body imaging offers the opportunity of revealing the effects of novel approaches on key steps in disease processes.

  18. Comparison of the spectral emission of lux recombinant and bioluminescent marine bacteria.

    Science.gov (United States)

    Thouand, Gérald; Daniel, Philippe; Horry, Habib; Picart, Pascal; Durand, Marie José; Killham, Ken; Knox, Oliver G G; DuBow, Michael S; Rousseau, Michel

    2003-01-01

    The purpose of the present paper was to study the influence of bacteria harbouring the luciferase-encoding Vibrio harveyi luxAB genes upon the spectral emission during growth in batch-culture conditions. In vivo bioluminescence spectra were compared from several bioluminescent strains, either naturally luminescent (Vibrio fischeri and Vibrio harveyi) or in recombinant strains (two Gram-negative Escherichia coli::luxAB strains and a Gram-positive Bacillus subtilis::luxAB strain). Spectral emission was recorded from 400 nm to 750 nm using a highly sensitive spectrometer initially devoted to Raman scattering. Two peaks were clearly identified, one at 491-500 nm (+/- 5 nm) and a second peak at 585-595 (+/- 5 nm) with the Raman CCD. The former peak was the only one detected with traditional spectrometers with a photomultiplier detector commonly used for spectral emission measurement, due to their lack of sensitivity and low resolution in the 550-650 nm window. When spectra were compared between all the studied bacteria, no difference was observed between natural or recombinant cells, between Gram-positive and Gram-negative strains, and growth conditions and growth medium were not found to modify the spectrum of light emission. Copyright 2003 John Wiley & Sons, Ltd.

  19. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals

    NARCIS (Netherlands)

    Klerk, Clara P. W.; Overmeer, Renée M.; Niers, Tatjana M. H.; Versteeg, Henri H.; Richel, Dick J.; Buckle, Tessa; van Noorden, Cornelis J. F.; van Tellingen, Olaf

    2007-01-01

    A relatively new strategy to longitudinally monitor tumor load in intact animals and the effects of therapy is noninvasive bioluminescence imaging (BLI). The validity of BLI for quantitative assessment of tumor load in small animals is critically evaluated in the present review. Cancer cells are

  20. Bioluminescent human breast cancer cell lines that permit rapid and sensitive in vivo detection of mammary tumors and multiple metastases in immune deficient mice

    International Nuclear Information System (INIS)

    Jenkins, Darlene E; Hornig, Yvette S; Oei, Yoko; Dusich, Joan; Purchio, Tony

    2005-01-01

    Our goal was to generate xenograft mouse models of human breast cancer based on luciferase-expressing MDA-MB-231 tumor cells that would provide rapid mammary tumor growth; produce metastasis to clinically relevant tissues such as lymph nodes, lung, and bone; and permit sensitive in vivo detection of both primary and secondary tumor sites by bioluminescent imaging. Two clonal cell sublines of human MDA-MB-231 cells that stably expressed firefly luciferase were isolated following transfection of the parental cells with luciferase cDNA. Each subline was passaged once or twice in vivo to enhance primary tumor growth and to increase metastasis. The resulting luciferase-expressing D3H1 and D3H2LN cells were analyzed for long-term bioluminescent stability, primary tumor growth, and distal metastasis to lymph nodes, lungs, bone and soft tissues by bioluminescent imaging. Cells were injected into the mammary fat pad of nude and nude-beige mice or were delivered systemically via intracardiac injection. Metastasis was also evaluated by ex vivo imaging and histologic analysis postmortem. The D3H1 and D3H2LN cell lines exhibited long-term stable luciferase expression for up to 4–6 months of accumulative tumor growth time in vivo. Bioluminescent imaging quantified primary mammary fat pad tumor development and detected early spontaneous lymph node metastasis in vivo. Increased frequency of spontaneous lymph node metastasis was observed with D3H2LN tumors as compared with D3H1 tumors. With postmortem ex vivo imaging, we detected additional lung micrometastasis in mice with D3H2LN mammary tumors. Subsequent histologic evaluation of tissue sections from lymph nodes and lung lobes confirmed spontaneous tumor metastasis at these sites. Following intracardiac injection of the MDA-MB-231-luc tumor cells, early metastasis to skeletal tissues, lymph nodes, brain and various visceral organs was detected. Weekly in vivo imaging data permitted longitudinal analysis of metastasis at

  1. Global Seismic Imaging Based on Adjoint Tomography

    Science.gov (United States)

    Bozdag, E.; Lefebvre, M.; Lei, W.; Peter, D. B.; Smith, J. A.; Zhu, H.; Komatitsch, D.; Tromp, J.

    2013-12-01

    Our aim is to perform adjoint tomography at the scale of globe to image the entire planet. We have started elastic inversions with a global data set of 253 CMT earthquakes with moment magnitudes in the range 5.8 ≤ Mw ≤ 7 and used GSN stations as well as some local networks such as USArray, European stations, etc. Using an iterative pre-conditioned conjugate gradient scheme, we initially set the aim to obtain a global crustal and mantle model with confined transverse isotropy in the upper mantle. Global adjoint tomography has so far remained a challenge mainly due to computational limitations. Recent improvements in our 3D solvers (e.g., a GPU version) and access to high-performance computational centers (e.g., ORNL's Cray XK7 "Titan" system) now enable us to perform iterations with higher-resolution (T > 9 s) and longer-duration (200 min) simulations to accommodate high-frequency body waves and major-arc surface waves, respectively, which help improve data coverage. The remaining challenge is the heavy I/O traffic caused by the numerous files generated during the forward/adjoint simulations and the pre- and post-processing stages of our workflow. We improve the global adjoint tomography workflow by adopting the ADIOS file format for our seismic data as well as models, kernels, etc., to improve efficiency on high-performance clusters. Our ultimate aim is to use data from all available networks and earthquakes within the magnitude range of our interest (5.5 ≤ Mw ≤ 7) which requires a solid framework to manage big data in our global adjoint tomography workflow. We discuss the current status and future of global adjoint tomography based on our initial results as well as practical issues such as handling big data in inversions and on high-performance computing systems.

  2. Ship track for Islands in the Stream 2002 - Pharmaceutical Discovery, Vision, and Bioluminescence - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the R/V Seward Johnson during the 2002 "Islands in the Stream - Pharmaceutical Discovery, Vision, and Bioluminescence" expedition sponsored by the...

  3. Attenuated bioluminescent Brucella melitensis mutants GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091) confer protection in mice.

    Science.gov (United States)

    Rajashekara, Gireesh; Glover, David A; Banai, Menachem; O'Callaghan, David; Splitter, Gary A

    2006-05-01

    In vivo bioluminescence imaging is a persuasive approach to investigate a number of issues in microbial pathogenesis. Previously, we have applied bioluminescence imaging to gain greater insight into Brucella melitensis pathogenesis. Endowing Brucella with bioluminescence allowed direct visualization of bacterial dissemination, pattern of tissue localization, and the contribution of Brucella genes to virulence. In this report, we describe the pathogenicity of three attenuated bioluminescent B. melitensis mutants, GR019 (virB4), GR024 (galE), and GR026 (BMEI1090-BMEI1091), and the dynamics of bioluminescent virulent bacterial infection following vaccination with these mutants. The virB4, galE, and BMEI1090-BMEI1091 mutants were attenuated in interferon regulatory factor 1-deficient (IRF-1(-/-)) mice; however, only the GR019 (virB4) mutant was attenuated in cultured macrophages. Therefore, in vivo imaging provides a comprehensive approach to identify virulence genes that are relevant to in vivo pathogenesis. Our results provide greater insights into the role of galE in virulence and also suggest that BMEI1090 and downstream genes constitute a novel set of genes involved in Brucella virulence. Survival of the vaccine strain in the host for a critical period is important for effective Brucella vaccines. The galE mutant induced no changes in liver and spleen but localized chronically in the tail and protected IRF-1(-/-) and wild-type mice from virulent challenge, implying that this mutant may serve as a potential vaccine candidate in future studies and that the direct visualization of Brucella may provide insight into selection of improved vaccine candidates.

  4. Bioluminescence in a complex coastal environment: 1. Temporal dynamics of nighttime water-leaving radiance

    Science.gov (United States)

    Moline, Mark A.; Oliver, Matthew J.; Mobley, Curtis D.; Sundman, Lydia; Bensky, Thomas; Bergmann, Trisha; Bissett, W. Paul; Case, James; Raymond, Erika H.; Schofield, Oscar M. E.

    2007-11-01

    Nighttime water-leaving radiance is a function of the depth-dependent distribution of both the in situ bioluminescence emissions and the absorption and scattering properties of the water. The vertical distributions of these parameters were used as inputs for a modified one-dimensional radiative transfer model to solve for spectral bioluminescence water-leaving radiance from prescribed depths of the water column. Variation in the water-leaving radiance was consistent with local episodic physical forcing events, with tidal forcing, terrestrial runoff, particulate accumulation, and biological responses influencing the shorter timescale dynamics. There was a >90 nm shift in the peak water-leaving radiance from blue (˜474 nm) to green as light propagated to the surface. In addition to clues in ecosystem responses to physical forcing, the temporal dynamics in intensity and spectral quality of water-leaving radiance provide suitable ranges for assessing detection. This may provide the information needed to estimate the depth of internal light sources in the ocean, which is discussed in part 2 of this paper.

  5. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    Science.gov (United States)

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  6. In vivo bioluminescence imaging using orthotopic xenografts towards patient's derived-xenograft Medulloblastoma models.

    Science.gov (United States)

    Asadzadeh, Fatemeh; Ferrucci, Veronica; DE Antonellis, Pasqualino; Zollo, Massimo

    2017-03-01

    Medulloblastoma is a cerebellar neoplasia of the central nervous system. Four molecular subgrups have been identified (MBWNT, MBSHH, MBgroup3 and MBgroup4) with distinct genetics and clinical outcome. Among these, MBgroup3-4 are highly metastatic with the worst prognosis. The current standard therapy includes surgery, radiation and chemotherapy. Thus, specific treatments adapted to cure those different molecular subgroups are needed. The use of orthotopic xenograft models, together with the non-invasive in vivo biolumiscence imaging (BLI) technology, is emerging during preclinical studies to test novel therapeutics for medulloblastoma treatment. Orthotopic MB xenografts were performed by injection of Daoy-luc cells, that had been previously infected with lentiviral particles to stably express luciferase gene, into the fourth right ventricle of the cerebellum of ten nude mice. For the implantation, specific stereotactic coordinates were used. Seven days after the implantation the mice were imaged by acquisitions of bioluminescence imaging (BLI) using IVIS 3D Illumina Imaging System (Xenogen). Tumor growth was evaluated by quantifying the bioluminescence signals using the integrated fluxes of photons within each area of interest using the Living Images Software Package 3.2 (Xenogen-Perkin Elmer). Finally, histological analysis using hematoxylin-eosin staining was performed to confirm the presence of tumorigenic cells into the cerebellum of the mice. We describe a method to use the in vivo bioluminescent imaging (BLI) showing the potential to be used to investigate the potential antitumorigenic effects of a drug for in vivo medulloblastoma treatment. We also discuss other studies in which this technology has been applied to obtain a more comprehensive knowledge of medulloblastoma using orthotopic xenograft mouse models. There is a need to develop patient's derived-xenograft (PDX) model systems to test novel drugs for medulloblastoma treatment within each molecular sub

  7. Rapid drug susceptibility test of mycobacterium tuberculosis by bioluminescence sensor

    Science.gov (United States)

    Lu, Bin; Xu, Shunqing; Chen, Zifei; Zhou, Yikai

    2001-09-01

    With the persisting increase of drug-resistant stains of M. Tuberculosis around the world, rapid and sensitive detection of antibiotic of M. Tuberculosis is becoming more and more important. In the present study, drug susceptibility of M. tuberculosis were detected by recombination mycobacteriophage combined with bioluminescence sensor. It is based on the use of recombination mycobacteriophage which can express firefly luciferase when it infects viable mycobacteria, and can effectively produce quantifiable photon. Meanwhile, in mycobacterium cells treated with active antibiotic, no light is observed. The emitted light is recorded by a bioluminscence sensor, so the result of drug-resistant test can be determined by the naked eye. 159 stains of M. tuberculosis were applied to this test on their resistant to rifampin, streptomycin and isoniazid. It is found that the agreement of this assay with Liewenstein- Jensen slat is: rifampin 95.60 percent, isoniazid 91.82 percent, streptomycin 88.68 percent, which showed that it is a fast and practical method to scene and detect drug resistant of mycobacterium stains.

  8. Influence of 18F-fluorodeoxyglucose-positron emission tomography on computed tomography-based radiation treatment planning for oesophageal cancer

    International Nuclear Information System (INIS)

    Everitt, C.; Leong, T.

    2006-01-01

    The addition of positron emission tomography (PET) information to CT-based radiotherapy treatment planning has the potential to improve target volume definition through more accurate localization of the primary tumour and involved regional lymph nodes. This case report describes the first patient enrolled to a prospective study evaluating the effects of coregistered positron emission tomography/CT images on radiotherapy treatment planning for oesophageal cancer. The results show that if combined positron emission tomography/CT is used for radiotherapy treatment planning, there may be alterations to the delineation of tumour volumes when compared to CT alone. For this patient, a geographic miss of tumour would have occurred if CT data alone were used for radiotherapy planning Copyright (2006) Blackwell Publishing Asia Pty Ltd

  9. [Activation of the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones in the presence of nitrofurans and NO generators].

    Science.gov (United States)

    Zaĭtseva, Iu V; Granik, V G; Belik, A S; Koksharova, O A; Khmel', I A

    2010-01-01

    Nitrofurans (nitrofurazone, nitrofurantoin, furazidin, nifuroxazide), and nitric oxide generators (sodium nitroprusside and isosorbide mononitrate) in subinhibitory concentrations were shown to significantly increase the bioluminescence of the sensor Escherichia coli strains used for detecting N-acyl-homoserine lactones, signaling molecules of Quorum Sensing (QS) regulatory systems. The highest activation of bioluminescence (up to 250-400 fold) was observed in the presence of nitrofurazone on E. coli DH5alpha biosensors containing lux-reporter plasmids pSB401 or pSB536. However, this activation was not specifically associated with the functioning of QS systems. We suggest that the effect observed results from a direct action of nitrofurans and NO donors on the process of bioluminescence. The data indicate the necessity of using the biosensors that make it possible to detect specific effects of substances tested on QS regulation.

  10. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    OpenAIRE

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have bee...

  11. Application de la bioluminescence au dénombrement des microorganismes vivants dans les vins

    Directory of Open Access Journals (Sweden)

    Aline Lonvaud-Funel

    1982-12-01

    Bioluminescence was applied to enumerate the microorganisms present in wine. An excellent correlation is obtained by counting colonies grown in Petri dishes. The simplicity of the manipulations and the rapid obtention of results are the principal benefits of this method. Research is still necessary both in the differentiation of yeasts and bacteria and the reduction of the threshold of detection.

  12. A Bone Metastasis Nude Mouse Model Created by Ultrasound Guided Intracardiac Injection of Breast Cancer Cells: the Micro-CT, MRI and Bioluminescence Imaging Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Jin; Song, Eun Hye; Kim, Seol Hwa; Song, Ho Taek; Suh, Jin Suck [Yonsei University College of Medicine, Seoul (Korea, Republic of); Choi, Sang Hyun [Korean Minjok Leadership Academy, Heongsung (Korea, Republic of)

    2011-01-15

    The purpose of this study was to develop a nude mouse model of bone metastasis by performing intracardiac injection of breast cancer cells under ultrasonography guidance and we wanted to evaluate the development and the distribution of metastasis in vivo using micro-CT, MRI and bioluminescence imaging. Animal experiments were performed in 6-week-old female nude mice. The animals underwent left ventricular injection of 2x105 MDA-MB-231Bo-Luc cells. After injection of the tumor cells, serial bioluminescence imaging was performed for 7 weeks. The findings of micro-CT, MRI and the histology were correlated with the 'hot' lesions seen on the bioluminescence imaging. Metastasis was found in 62.3% of the animals. Two weeks after intracardiac injection, metastasis to the brain, spine and femur was detected with bioluminescence imaging with an increasing intensity by week 7. Micro-CT scan confirmed multiple osteolytic lesions at the femur, spine and skull. MRI and the histology were able to show metastasis in the brain and extraskeletal metastasis around the femur. The intracardiac injection of cancer cells under ultrasonography guidance is a safe and highly reproducible method to produce bone metastasis in nude mice. This bone metastasis nude mouse model will be useful to study the mechanism of bone metastasis and to validate new therapeutics

  13. Development of a novel genetically modified bioluminescent-bacteria-based assay for detection of fluoroquinolones in animal-derived foods.

    Science.gov (United States)

    Cheng, Guyue; Dong, Xiaobing; Wang, Yulian; Peng, Dapeng; Wang, Xu; Hao, Haihong; Xie, Shuyu; Qu, Wei; Liu, Zhenli; Yuan, Zonghui

    2014-12-01

    Fluoroquinolones (FQNs) are broad-spectrum antibacterial agents widely used in animal husbandry and aquaculture. The residues and antimicrobial resistance of such antibiotics are a major public health concern. To realize multianalyte detection of FQN residues, a genetically modified bacterium, Escherichia coli pK12 harboring plasmid pRecAlux3, was constructed in this study to develop a bioluminescent-bacteria-based assay for the detection of FQNs in animal-derived foods. This assay was based on the principle of induction of an SOS response by FQNs via inducing the recA-promoter-fused luciferase reporter gene existing on the plasmid pRecAlux3. E. coli pK12 was able to recognize 11 FQNs: difloxacin, enrofloxacin, ciprofloxacin, sarafloxacin, norfloxacin, danofloxacin, ofloxacin, pefloxacin, lomefloxacin, marbofloxacin, and orbifloxacin. This method could be applied to 11 edible tissues, including milk, fish muscle, and the muscles, livers, and kidneys of cattle, chickens, and pigs, with a very simple and rapid sample extraction procedure using only phosphate-buffered saline. The limits of detection of the FQNs were between 12.5 and 100 μg kg(-1), all of which were lower than the maximum residue limits. Most of the recoveries of the FQNs were in the range from 60 to 120 %, and the interassay coefficients of variation were less than 30 %. This method, confirmed by high-performance liquid chromatography, is reliable and can be used as both a screening test and a semiquantitative assay, when the identity of a single type of FQN is known.

  14. A Superresolution Image Reconstruction Algorithm Based on Landweber in Electrical Capacitance Tomography

    Directory of Open Access Journals (Sweden)

    Chen Deyun

    2013-01-01

    Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.

  15. Selective ligand activity at Nur/retinoid X receptor complexes revealed by dimer-specific bioluminescence resonance energy transfer-based sensors

    Science.gov (United States)

    Giner, Xavier C; Cotnoir-White, David; Mader, Sylvie; Lévesque, Daniel

    2017-01-01

    Retinoid X receptors (RXR) play a role as master regulators due to their capacity to form heterodimers with other nuclear receptors. Accordingly, retinoid signaling is involved in multiple biological processes, including development, cell differentiation, metabolism and cell death. However, the role and functions of RXR in different heterodimer complexes remain unsolved, mainly because most RXR drugs (called rexinoids) are not selective to specific heterodimer complexes. This also strongly limits the use of rexinoids for specific therapeutic approaches. In order to better characterize rexinoids at specific nuclear receptor complexes, we have developed and optimized luciferase protein complementation-based Bioluminescence Resonance Energy Transfer (BRET) assays, which can directly measure recruitment of a co-activator motif fused to yellow fluorescent protein (YFP) by specific nuclear receptor dimers. To validate the assays, we compared rexinoid modulation of co-activator recruitment by RXR homodimer, and heterodimers Nur77/RXR and Nurr1/RXR. Results reveal that some rexinoids display selective co-activator recruitment activities with homo- or hetero-dimer complexes. In particular, SR11237 (BMS649) has increased potency for recruitment of co-activator motif and transcriptional activity with the Nur77/RXR heterodimer compared to other complexes. This technology should prove useful to identify new compounds with specificity for individual dimeric species formed by nuclear receptors. PMID:26148973

  16. Adenosina trifosfato bioluminescência para avaliação da limpeza de superfícies: uma revisão integrativa

    Directory of Open Access Journals (Sweden)

    Adriana Cristina de Oliveira

    2014-12-01

    Full Text Available Objetivo: Identificar na literatura indicações e controvérsias do ATP bioluminescência para avaliação da efetividade da limpeza de superfícies em estabelecimentos de saúde. Método: Revisão integrativa da literatura, entre 2000 e 2012, nas bases de dados MEDLINE, LILACS, Science Direct, SCOPUS e Isi Web of Knowledge. Resultados: Selecionou-se para esta revisão 15 artigos. O ATP bioluminescência foi apontado como importante recurso educacional e método complementar à inspeção visual e às análises microbiológicas na avaliação da efetividade da limpeza. A impossibilidade de indicar a contaminação da superfície por micro-organismos viáveis, a interferência por substâncias químicas e a dificuldade de interpretação dos resultados constituem as principais controvérsias para o uso deste nos serviços de saúde. Conclusão: Apesar de constituir importante recurso na avaliação da limpeza de superfícies, mais estudos são necessários para incorporação efetiva do método nos serviços de saúde.

  17. Infection routes of Aeromonas salmonicida in rainbow trout monitored in vivo by real-time bioluminescence imaging

    DEFF Research Database (Denmark)

    Bartkova, Simona; Kokotovic, Branko; Dalsgaard, Inger

    2017-01-01

    Recent development of imaging tools has facilitated studies of pathogen infections in vivo in real time. This trend can be exemplified by advances in bioluminescence imaging (BLI), an approach that helps to visualize dissemination of pathogens within the same animal over several time points. Here...

  18. A miniaturized device for bioluminescence analysis of caspase-3/7 5 activity in a single apoptotic cell

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Lišková, Marcela; Matalová, E.; Klepárník, Karel

    Roč. 406 , č. 22 (2014), s. 5389-5394 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : apoptosis * bioluminescence * single-cell analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.436, year: 2014

  19. A miniaturized device for bioluminescence analysis of caspase-3/7 5 activity in a single apoptotic cell

    Czech Academy of Sciences Publication Activity Database

    Adamová, Eva; Lišková, Marcela; Matalová, E.; Klepárník, Karel

    2014-01-01

    Roč. 406, č. 22 (2014), s. 5389-5394 ISSN 1618-2642 R&D Projects: GA ČR(CZ) GA14-28254S Institutional support: RVO:68081715 Keywords : apoptosis * bioluminescence * single-cell analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.436, year: 2014

  20. X-ray-based attenuation correction for positron emission tomography/computed tomography scanners.

    Science.gov (United States)

    Kinahan, Paul E; Hasegawa, Bruce H; Beyer, Thomas

    2003-07-01

    A synergy of positron emission tomography (PET)/computed tomography (CT) scanners is the use of the CT data for x-ray-based attenuation correction of the PET emission data. Current methods of measuring transmission use positron sources, gamma-ray sources, or x-ray sources. Each of the types of transmission scans involves different trade-offs of noise versus bias, with positron transmission scans having the highest noise but lowest bias, whereas x-ray scans have negligible noise but the potential for increased quantitative errors. The use of x-ray-based attenuation correction, however, has other advantages, including a lack of bias introduced from post-injection transmission scanning, which is an important practical consideration for clinical scanners, as well as reduced scan times. The sensitivity of x-ray-based attenuation correction to artifacts and quantitative errors depends on the method of translating the CT image from the effective x-ray energy of approximately 70 keV to attenuation coefficients at the PET energy of 511 keV. These translation methods are usually based on segmentation and/or scaling techniques. Errors in the PET emission image arise from positional mismatches caused by patient motion or respiration differences between the PET and CT scans; incorrect calculation of attenuation coefficients for CT contrast agents or metallic implants; or keeping the patient's arms in the field of view, which leads to truncation and/or beam-hardening (or x-ray scatter) artifacts. Proper interpretation of PET emission images corrected for attenuation by using the CT image relies on an understanding of the potential artifacts. In cases where an artifact or bias is suspected, careful inspection of all three available images (CT and PET emission with and without attenuation correction) is recommended. Copyright 2003 Elsevier Inc. All rights reserved.

  1. Engineering the metal sensitive sites in Macrolampis sp2 firefly luciferase and use as a novel bioluminescent ratiometric biosensor for heavy metals.

    Science.gov (United States)

    Gabriel, Gabriele V M; Viviani, Vadim R

    2016-12-01

    Most luminescent biosensors for heavy metals are fluorescent and rely on intensity measurements, whereas a few are ratiometric and rely on spectral changes. Bioluminescent biosensors for heavy metals are less common. Firefly luciferases have been coupled to responsive promoters for mercury and arsenium, and used as light on biosensors. Firefly luciferase bioluminescence spectrum is naturally sensitive to heavy metal cations such as zinc and mercury and to pH. Although pH sensitivity of firefly luciferases was shown to be useful for ratiometric estimation of intracellular pH, its potential use for ratiometric estimation of heavy metals was never considered. Using the yellow-emitting Macrolampis sp2 firefly luciferase and site-directed mutagenesis, we show that the residues H310 and E354 constitute two critical sites for metal sensitivity that can be engineered to increase sensitivity to zinc, nickel, and mercury. A linear relationship between cation concentration and the ratio of bioluminescence intensities at 550 and 610 nm allowed, for the first time, the ratiometric estimation of heavy metals concentrations down to 0.10 mM, demonstrating the potential applicability of firefly luciferases as enzymatic and intracellular ratiometric metal biosensors.

  2. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-C. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Hwang, Jeng-Jong [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jjhwang@ym.edu.tw; Ting, G. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China); Tseng, Y.-L. [Taiwan Liposome Company, Taipei 115, Taiwan (China); Wang, S.-J. [Department of Nuclear Medicine, Veterans General Hospital, Taipei 112, Taiwan (China); Whang-Peng, J. [Cancer Research Division, National Health Research Institute, Miaoli 350, Taiwan (China)

    2007-02-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R {sup 2}=0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm{sup 3} (R {sup 2}=0.907). {gamma} Scintigraphy combined with [{sup 131}I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs.

  3. Monitoring and quantitative assessment of tumor burden using in vivo bioluminescence imaging

    International Nuclear Information System (INIS)

    Chen, C.-C.; Hwang, Jeng-Jong; Ting, G.; Tseng, Y.-L.; Wang, S.-J.; Whang-Peng, J.

    2007-01-01

    In vivo bioluminescence imaging (BLI) is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating tumor growth. In this study, the kinetic of tumor growth has been assessed in C26 colon carcinoma bearing BALB/c mouse model. The ability of BLI to noninvasively quantitate the growth of subcutaneous tumors transplanted with C26 cells genetically engineered to stably express firefly luciferase and herpes simplex virus type-1 thymidine kinase (C26/tk-luc). A good correlation (R 2 =0.998) of photon emission to the cell number was found in vitro. Tumor burden and tumor volume were monitored in vivo over time by quantitation of photon emission using Xenogen IVIS 50 and standard external caliper measurement, respectively. At various time intervals, tumor-bearing mice were imaged to determine the correlation of in vivo BLI to tumor volume. However, a correlation of BLI to tumor volume was observed when tumor volume was smaller than 1000 mm 3 (R 2 =0.907). γ Scintigraphy combined with [ 131 I]FIAU was another imaging modality used for verifying the previous results. In conclusion, this study showed that bioluminescence imaging is a powerful and quantitative tool for the direct assay to monitor tumor growth in vivo. The dual reporter genes transfected tumor-bearing animal model can be applied in the evaluation of the efficacy of new developed anti-cancer drugs

  4. The Repetitive Detection of Toluene with Bioluminescence Bioreporter Pseudomonas putida TVA8 Encapsulated in Silica Hydrogel on an Optical Fiber.

    Czech Academy of Sciences Publication Activity Database

    Kuncová, Gabriela; Ishizaki, Takayuki; Solovyev, Andrey; Trögl, J.; Ripp, S.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 467 ISSN 1996-1944 Institutional support: RVO:67985858 Keywords : bioluminescent biosensor * silica gel * encapsulation Subject RIV: CC - Organic Chemistry Impact factor: 2.654, year: 2016

  5. Modeling Chemical Reactions by QM/MM Calculations: The Case of the Tautomerization in Fireflies Bioluminescent Systems.

    Science.gov (United States)

    Berraud-Pache, Romain; Garcia-Iriepa, Cristina; Navizet, Isabelle

    2018-01-01

    In less than half a century, the hybrid QM/MM method has become one of the most used technique to model molecules embedded in a complex environment. A well-known application of the QM/MM method is for biological systems. Nowadays, one can understand how enzymatic reactions work or compute spectroscopic properties, like the wavelength of emission. Here, we have tackled the issue of modeling chemical reactions inside proteins. We have studied a bioluminescent system, fireflies, and deciphered if a keto-enol tautomerization is possible inside the protein. The two tautomers are candidates to be the emissive molecule of the bioluminescence but no outcome has been reached. One hypothesis is to consider a possible keto-enol tautomerization to treat this issue, as it has been already observed in water. A joint approach combining extensive MD simulations as well as computation of key intermediates like TS using QM/MM calculations is presented in this publication. We also emphasize the procedure and difficulties met during this approach in order to give a guide for this kind of chemical reactions using QM/MM methods.

  6. Modelling chemical reactions by QM/MM calculations: the case of the tautomerization in fireflies bioluminescent systems

    Science.gov (United States)

    Berraud-Pache, Romain; Garcia-Iriepa, Cristina; Navizet, Isabelle

    2018-04-01

    In less than half a century, the hybrid QM/MM method has become one of the most used technique to model molecules embedded in a complex environment. A well-known application of the QM/MM method is for biological systems. Nowadays, one can understand how enzymatic reactions work or compute spectroscopic properties, like the wavelength of emission. Here, we have tackled the issue of modelling chemical reactions inside proteins. We have studied a bioluminescent system, fireflies, and deciphered if a keto-enol tautomerization is possible inside the protein. The two tautomers are candidates to be the emissive molecule of the bioluminescence but no outcome has been reached. One hypothesis is to consider a possible keto-enol tautomerization to treat this issue, as it has been already observed in water. A joint approach combining extensive MD simulations as well as computation of key intermediates like TS using QM/MM calculations is presented in this publication. We also emphasize the procedure and difficulties met during this approach in order to give a guide for this kind of chemical reactions using QM/MM methods.

  7. The effect of radiation on bioluminescent bacteria: possible use of luminescent bacteria as a biological dosemeter

    International Nuclear Information System (INIS)

    Mantel, J.; Freidin, M.; Perry, H.

    1983-01-01

    The purpose of the study was to investigate the response of the bioluminescent Photobacterium phosphoreum to radiation, and the possible use of the bacteria as a biological radiation dosemeter, i.e. a water-equivalent biological system that will compare beams not merely on the basis of absorbed dose, but also have intrinsic RBE values for different radiation beams. Samples were irradiated by a 12 MeV electron beam at a dose rate of 3.0 Gy min -1 , by 60 Co gamma rays at 2.85 Gy min -1 , and by 100 kVsub(p) x-rays at a dose rate of 2.13 Gy min -1 . To study dose-rate dependence, the survival fraction was obtained for a 12 MeV electron beam at 0.50 and 12 Gy min -1 for 20.0 Gy. The survival fraction proved to be independent of dose rate in this range. The results presented in this work indicate that by using bioluminescent bacteria, RBE measurements can be markedly simplified and the results interpreted unequivocally. (U.K.)

  8. Grating-based tomography applications in biomedical engineering

    Science.gov (United States)

    Schulz, Georg; Thalmann, Peter; Khimchenko, Anna; Müller, Bert

    2017-10-01

    For the investigation of soft tissues or tissues consisting of soft and hard tissues on the microscopic level, hard X-ray phase tomography has become one of the most suitable imaging techniques. Besides other phase contrast methods grating interferometry has the advantage of higher sensitivity than inline methods and the quantitative results. One disadvantage of the conventional double-grating setup (XDGI) compared to inline methods is the limitation of the spatial resolution. This limitation can be overcome by removing the analyser grating resulting in a single-grating setup (XSGI). In order to verify the performance of XSGI concerning contrast and spatial resolution, a quantitative comparison of XSGI and XDGI tomograms of a human nerve was performed. Both techniques provide sufficient contrast to allow for the distinction of tissue types. The spatial resolution of the two-fold binned XSGI data set is improved by a factor of two in comparison to XDGI which underlies its performance in tomography of soft tissues. Another application for grating-based X-ray phase tomography is the simultaneous visualization of soft and hard tissues of a plaque-containing coronary artery. The simultaneous visualization of both tissues is important for the segmentation of the lumen. The segmented data can be used for flow simulations in order to obtain information about the three-dimensional wall shear stress distribution needed for the optimization of mechano-sensitive nanocontainers used for drug delivery.

  9. A novel mouse model of soft-tissue infection using bioluminescence imaging allows noninvasive, real-time monitoring of bacterial growth.

    Science.gov (United States)

    Yoshioka, Kenji; Ishii, Ken; Kuramoto, Tetsuya; Nagai, Shigenori; Funao, Haruki; Ishihama, Hiroko; Shiono, Yuta; Sasaki, Aya; Aizawa, Mamoru; Okada, Yasunori; Koyasu, Shigeo; Toyama, Yoshiaki; Matsumoto, Morio

    2014-01-01

    Musculoskeletal infections, including surgical-site and implant-associated infections, often cause progressive inflammation and destroy areas of the soft tissue. Treating infections, especially those caused by multi-antibiotic resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) remains a challenge. Although there are a few animal models that enable the quantitative evaluation of infection in soft tissues, these models are not always reproducible or sustainable. Here, we successfully established a real-time, in vivo, quantitative mouse model of soft-tissue infection in the superficial gluteus muscle (SGM) using bioluminescence imaging. A bioluminescent strain of MRSA was inoculated into the SGM of BALB/c adult male mice, followed by sequential measurement of bacterial photon intensity and serological and histological analyses of the mice. The mean photon intensity in the mice peaked immediately after inoculation and remained stable until day 28. The serum levels of interleukin-6, interleukin-1 and C-reactive protein at 12 hours after inoculation were significantly higher than those prior to inoculation, and the C-reactive protein remained significantly elevated until day 21. Histological analyses showed marked neutrophil infiltration and abscesses containing necrotic and fibrous tissues in the SGM. With this SGM mouse model, we successfully visualized and quantified stable bacterial growth over an extended period of time with bioluminescence imaging, which allowed us to monitor the process of infection without euthanizing the experimental animals. This model is applicable to in vivo evaluations of the long-term efficacy of novel antibiotics or antibacterial implants.

  10. Bioluminescence resonance energy transfer system for measuring dynamic protein-protein interactions in bacteria.

    Science.gov (United States)

    Cui, Boyu; Wang, Yao; Song, Yunhong; Wang, Tietao; Li, Changfu; Wei, Yahong; Luo, Zhao-Qing; Shen, Xihui

    2014-05-20

    Protein-protein interactions are important for virtually every biological process, and a number of elegant approaches have been designed to detect and evaluate such interactions. However, few of these methods allow the detection of dynamic and real-time protein-protein interactions in bacteria. Here we describe a bioluminescence resonance energy transfer (BRET) system based on the bacterial luciferase LuxAB. We found that enhanced yellow fluorescent protein (eYFP) accepts the emission from LuxAB and emits yellow fluorescence. Importantly, BRET occurred when LuxAB and eYFP were fused, respectively, to the interacting protein pair FlgM and FliA. Furthermore, we observed sirolimus (i.e., rapamycin)-inducible interactions between FRB and FKBP12 and a dose-dependent abolishment of such interactions by FK506, the ligand of FKBP12. Using this system, we showed that osmotic stress or low pH efficiently induced multimerization of the regulatory protein OmpR and that the multimerization induced by low pH can be reversed by a neutralizing agent, further indicating the usefulness of this system in the measurement of dynamic interactions. This method can be adapted to analyze dynamic protein-protein interactions and the importance of such interactions in bacterial processes such as development and pathogenicity. Real-time measurement of protein-protein interactions in prokaryotes is highly desirable for determining the roles of protein complex in the development or virulence of bacteria, but methods that allow such measurement are not available. Here we describe the development of a bioluminescence resonance energy transfer (BRET) technology that meets this need. The use of endogenous excitation light in this strategy circumvents the requirement for the sophisticated instrument demanded by standard fluorescence resonance energy transfer (FRET). Furthermore, because the LuxAB substrate decanal is membrane permeable, the assay can be performed without lysing the bacterial cells

  11. Promising Biological Indicator of Heavy Metal Pollution: Bioluminescent Bacterial Strains Isolated and Characterized from Marine Niches of Goa, India.

    Science.gov (United States)

    Thakre, Neha A; Shanware, Arti S

    2015-09-01

    In present study, several marine water samples collected from the North Goa Beaches, India for isolation of luminescent bacterial species. Isolates obtained labelled as DP1-5 and AB1-6. Molecular characterization including identification of a microbial culture using 16S rRNA gene based molecular technique and phylogenetic analysis confirmed that DP3 & AB1 isolates were Vibrio harveyi. All of the isolates demonstrated multiple metal resistances in terms of growth, with altered luminescence with variable metal concentration. Present investigations were an attempt towards exploring and reporting an updated diversity of bioluminescent bacterial species from various sites around the Goa, India which would be explored in future for constructing luminescence based biosensor for efficiently monitoring the level of hazardous metals in the environment.

  12. Spatiotemporal expression of heme oxygenase-1 detected by in vivo bioluminescence after hepatic ischemia in HO-1/luc mice

    NARCIS (Netherlands)

    Su, Huawei; van Dam, Gooitzen M.; Buis, Carlijn I.; Visser, Dorien S.; Hesselink, Jan Willem; Schuurs, Theo A.; Leuvenink, Henri G. D.; Contag, Christopher H.; Porte, Robert J.

    Upregulation of heme oxygenase-1 (HO-1) has been proposed as a critical mechanism protecting against cellular stress during liver transplantation, providing a potential target for new therapeutic interventions. We investigated the feasibility of in vivo bioluminescence imaging (BLI) to noninvasively

  13. Computed tomography vs. digital radiography assessment for detection of osteolysis in asymptomatic patients with uncemented cups: a proposal for a new classification system based on computer tomography.

    Science.gov (United States)

    Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik

    2013-10-01

    Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Visualization of glucagon secretion from pancreatic α cells by bioluminescence video microscopy: Identification of secretion sites in the intercellular contact regions

    International Nuclear Information System (INIS)

    Yokawa, Satoru; Suzuki, Takahiro; Inouye, Satoshi; Inoh, Yoshikazu; Suzuki, Ryo; Kanamori, Takao; Furuno, Tadahide; Hirashima, Naohide

    2017-01-01

    We have firstly visualized glucagon secretion using a method of video-rate bioluminescence imaging. The fusion protein of proglucagon and Gaussia luciferase (PGCG-GLase) was used as a reporter to detect glucagon secretion and was efficiently expressed in mouse pancreatic α cells (αTC1.6) using a preferred human codon-optimized gene. In the culture medium of the cells expressing PGCG-GLase, luminescence activity determined with a luminometer was increased with low glucose stimulation and KCl-induced depolarization, as observed for glucagon secretion. From immunochemical analyses, PGCG-GLase stably expressed in clonal αTC1.6 cells was correctly processed and released by secretory granules. Luminescence signals of the secreted PGCG-GLase from the stable cells were visualized by video-rate bioluminescence microscopy. The video images showed an increase in glucagon secretion from clustered cells in response to stimulation by KCl. The secretory events were observed frequently at the intercellular contact regions. Thus, the localization and frequency of glucagon secretion might be regulated by cell-cell adhesion. - Highlights: • The fused protein of proglucagon to Gaussia luciferase was used as a reporter. • The fusion protein was highly expressed using a preferred human-codon optimized gene. • Glucagon secretion stimulated by depolarization was determined by luminescence. • Glucagon secretion in α cells was visualized by bioluminescence imaging. • Glucagon secretion sites were localized in the intercellular contact regions.

  15. A PC-based discrete tomography imaging software system for assaying radioactive waste containers

    International Nuclear Information System (INIS)

    Palacios, J.C.; Longoria, L.C.; Santos, J.; Perry, R.T.

    2003-01-01

    A PC-based discrete tomography imaging software system for assaying radioactive waste containers for use in facilities in Mexico has been developed. The software system consists of three modules: (i) for reconstruction transmission tomography, (ii) for reconstruction emission tomography, and (iii) for simulation tomography. The Simulation Module is an interactive computer program that is used to create simulated databases for input to the Reconstruction Modules. These databases may be used in the absence of physical measurements to insure that the tomographic theoretical models are valid and that the coding accurately describes these models. Simulation may also be used to determine the detection limits of the reconstruction methodology. A description of the system, the theory, and a demonstration of the systems capabilities is provided in the paper. The hardware for this system is currently under development

  16. Survival of bioluminescent Listeria monocytogenes and Escherichia coli O157:H7 in soft cheeses.

    Science.gov (United States)

    Ramsaran, H; Chen, J; Brunke, B; Hill, A; Griffiths, M W

    1998-07-01

    Pasteurized and raw milks that had been inoculated at 10(4) cfu/ml with bioluminescent strains of Listeria monocytogenes and Escherichia coli O157:H7 were used in the manufacture of Camembert and Feta cheeses with or without nisin-producing starter culture. Survival of both organisms was determined during the manufacture and storage of Camembert and Feta cheeses at 2 +/- 1 degree C for 65 and 75 d, respectively. Bacterial bioluminescence was used as an indicator to enumerate the colonies plated on selective Listeria agar and on MacConkey agar. Escherichia coli O157:H7 survived the manufacturing process of both cheeses and was present at the end of the storage period in greater numbers than in the initial inoculum. At the end of 75 d of storage, E. coli O157:H7 was found in the brine of Feta cheese. The counts of L. monocytogenes increased as the pH of the Camembert cheese increased, and there were significant differences between the counts from samples taken from the inside and the counts from samples obtained near the surface of the cheese. The Feta cheese that contained nisin was the only cheese in which L. monocytogenes was at the level of the initial inoculum after 75 d of storage.

  17. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    Energy Technology Data Exchange (ETDEWEB)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  18. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  19. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging

    International Nuclear Information System (INIS)

    Ponomarev, Vladimir; Vider, Jelena; Shavrin, Aleksander; Ageyeva, Ludmila; Tourkova, Vilia; Doubrovin, Michael; Serganova, Inna; Beresten, Tatiana; Ivanova, Anna; Blasberg, Ronald; Balatoni, Julius; Bornmann, William; Gelovani Tjuvajev, Juri

    2004-01-01

    Two genetic reporter systems were developed for multimodality reporter gene imaging of different molecular-genetic processes using fluorescence, bioluminescence (BLI), and nuclear imaging techniques. The eGFP cDNA was fused at the N-terminus with HSV1-tk cDNA bearing a nuclear export signal from MAPKK (NES-HSV1-tk) or with truncation at the N-terminus of the first 45 amino acids (Δ45HSV1-tk) and with firefly luciferase at the C-terminus. A single fusion protein with three functional subunits is formed following transcription and translation from a single open reading frame. The NES-TGL (NES-TGL) or Δ45HSV1-tk/GFP/luciferase (Δ45-TGL) triple-fusion gene cDNAs were cloned into a MoMLV-based retrovirus, which was used for transduction of U87 human glioma cells. The integrity, fluorescence, bioluminescence, and enzymatic activity of the TGL reporter proteins were assessed in vitro. The predicted molecular weight of the fusion proteins (130 kDa) was confirmed by western blot. The U87-NES-TGL and U87-Δ45-TGL cells had cytoplasmic green fluorescence. The in vitro BLI was 7- and 13-fold higher in U87-NES-TGL and U87-Δ45-TGL cells compared to nontransduced control cells. The Ki of 14 C-FIAU was 0.49±0.02, 0.51±0.03, and 0.003±0.001 ml/min/g in U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells, respectively. Multimodality in vivo imaging studies were performed in nu/nu mice bearing multiple s.c. xenografts established from U87-NES-TGL, U87-Δ45-TGL, and wild-type U87 cells. BLI was performed after administration of d-luciferin (150 mg/kg i.v.). Gamma camera or PET imaging was conducted at 2 h after i.v. administration of [ 131 I]FIAU (7.4 MBq/animal) or [ 124 I]FIAU (7.4 MBq/animal), respectively. Whole-body fluorescence imaging was performed in parallel with the BLI and radiotracer imaging studies. In vivo BLI and gamma camera imaging showed specific localization of luminescence and radioactivity to the TGL transduced xenografts with background levels of activity

  20. Simulation-Based Planning of Optimal Conditions for Industrial Computed Tomography

    DEFF Research Database (Denmark)

    Reisinger, S.; Kasperl, S.; Franz, M.

    2011-01-01

    We present a method to optimise conditions for industrial computed tomography (CT). This optimisation is based on a deterministic simulation. Our algorithm finds task-specific CT equipment settings to achieve optimal exposure parameters by means of an STL-model of the specimen and a raytracing...

  1. Film-based X-ray tomography combined with digital image processing: investigation of an ancient pattern-welded sword

    International Nuclear Information System (INIS)

    Lindegaard-Andersen, A.; Vedel, T.; Jeppesen, L.; Gottlieb, B.

    1988-01-01

    Film-based X-ray tomography and digital image processing have been used to investigate an inhomogeneous object of non-circular cross-section. The feasibility of using digital image processing to compensate for the poor contrast resolution inherent in film-based tomography has been demonstrated. (author)

  2. A statistical-based approach for acoustic tomography of the atmosphere.

    Science.gov (United States)

    Kolouri, Soheil; Azimi-Sadjadi, Mahmood R; Ziemann, Astrid

    2014-01-01

    Acoustic travel-time tomography of the atmosphere is a nonlinear inverse problem which attempts to reconstruct temperature and wind velocity fields in the atmospheric surface layer using the dependence of sound speed on temperature and wind velocity fields along the propagation path. This paper presents a statistical-based acoustic travel-time tomography algorithm based on dual state-parameter unscented Kalman filter (UKF) which is capable of reconstructing and tracking, in time, temperature, and wind velocity fields (state variables) as well as the dynamic model parameters within a specified investigation area. An adaptive 3-D spatial-temporal autoregressive model is used to capture the state evolution in the UKF. The observations used in the dual state-parameter UKF process consist of the acoustic time of arrivals measured for every pair of transmitter/receiver nodes deployed in the investigation area. The proposed method is then applied to the data set collected at the Meteorological Observatory Lindenberg, Germany, as part of the STINHO experiment, and the reconstruction results are presented.

  3. Coordinate transformation based cryo-correlative methods for electron tomography and focused ion beam milling

    International Nuclear Information System (INIS)

    Fukuda, Yoshiyuki; Schrod, Nikolas; Schaffer, Miroslava; Feng, Li Rebekah; Baumeister, Wolfgang; Lucic, Vladan

    2014-01-01

    Correlative microscopy allows imaging of the same feature over multiple length scales, combining light microscopy with high resolution information provided by electron microscopy. We demonstrate two procedures for coordinate transformation based correlative microscopy of vitrified biological samples applicable to different imaging modes. The first procedure aims at navigating cryo-electron tomography to cellular regions identified by fluorescent labels. The second procedure, allowing navigation of focused ion beam milling to fluorescently labeled molecules, is based on the introduction of an intermediate scanning electron microscopy imaging step to overcome the large difference between cryo-light microscopy and focused ion beam imaging modes. These methods make it possible to image fluorescently labeled macromolecular complexes in their natural environments by cryo-electron tomography, while minimizing exposure to the electron beam during the search for features of interest. - Highlights: • Correlative light microscopy and focused ion beam milling of vitrified samples. • Coordinate transformation based cryo-correlative method. • Improved correlative light microscopy and cryo-electron tomography

  4. Hyperspectral tomography based on multi-mode absorption spectroscopy (MUMAS)

    Science.gov (United States)

    Dai, Jinghang; O'Hagan, Seamus; Liu, Hecong; Cai, Weiwei; Ewart, Paul

    2017-10-01

    This paper demonstrates a hyperspectral tomographic technique that can recover the temperature and concentration field of gas flows based on multi-mode absorption spectroscopy (MUMAS). This method relies on the recently proposed concept of nonlinear tomography, which can take full advantage of the nonlinear dependency of MUMAS signals on temperature and enables 2D spatial resolution of MUMAS which is naturally a line-of-sight technique. The principles of MUMAS and nonlinear tomography, as well as the mathematical formulation of the inversion problem, are introduced. Proof-of-concept numerical demonstrations are presented using representative flame phantoms and assuming typical laser parameters. The results show that faithful reconstruction of temperature distribution is achievable when a signal-to-noise ratio of 20 is assumed. This method can potentially be extended to simultaneously reconstructing distributions of temperature and the concentration of multiple flame species.

  5. Registration-based Reconstruction of Four-dimensional Cone Beam Computed Tomography

    DEFF Research Database (Denmark)

    Christoffersen, Christian; Hansen, David Christoffer; Poulsen, Per Rugaard

    2013-01-01

    We present a new method for reconstruction of four-dimensional (4D) cone beam computed tomography from an undersampled set of X-ray projections. The novelty of the proposed method lies in utilizing optical flow based registration to facilitate that each temporal phase is reconstructed from the full...

  6. Evaluation of biolistic gene transfer methods in vivo using non-invasive bioluminescent imaging techniques

    Directory of Open Access Journals (Sweden)

    Daniell Henry

    2011-06-01

    Full Text Available Abstract Background Gene therapy continues to hold great potential for treating many different types of disease and dysfunction. Safe and efficient techniques for gene transfer and expression in vivo are needed to enable gene therapeutic strategies to be effective in patients. Currently, the most commonly used methods employ replication-defective viral vectors for gene transfer, while physical gene transfer methods such as biolistic-mediated ("gene-gun" delivery to target tissues have not been as extensively explored. In the present study, we evaluated the efficacy of biolistic gene transfer techniques in vivo using non-invasive bioluminescent imaging (BLI methods. Results Plasmid DNA carrying the firefly luciferase (LUC reporter gene under the control of the human Cytomegalovirus (CMV promoter/enhancer was transfected into mouse skin and liver using biolistic methods. The plasmids were coupled to gold microspheres (1 μm diameter using different DNA Loading Ratios (DLRs, and "shot" into target tissues using a helium-driven gene gun. The optimal DLR was found to be in the range of 4-10. Bioluminescence was measured using an In Vivo Imaging System (IVIS-50 at various time-points following transfer. Biolistic gene transfer to mouse skin produced peak reporter gene expression one day after transfer. Expression remained detectable through four days, but declined to undetectable levels by six days following gene transfer. Maximum depth of tissue penetration following biolistic transfer to abdominal skin was 200-300 μm. Similarly, biolistic gene transfer to mouse liver in vivo also produced peak early expression followed by a decline over time. In contrast to skin, however, liver expression of the reporter gene was relatively stable 4-8 days post-biolistic gene transfer, and remained detectable for nearly two weeks. Conclusions The use of bioluminescence imaging techniques enabled efficient evaluation of reporter gene expression in vivo. Our results

  7. Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning.

    Science.gov (United States)

    Karki, Kishor; Saraiya, Siddharth; Hugo, Geoffrey D; Mukhopadhyay, Nitai; Jan, Nuzhat; Schuster, Jessica; Schutzer, Matthew; Fahrner, Lester; Groves, Robert; Olsen, Kathryn M; Ford, John C; Weiss, Elisabeth

    2017-09-01

    To investigate interobserver delineation variability for gross tumor volumes of primary lung tumors and associated pathologic lymph nodes using magnetic resonance imaging (MRI), and to compare the results with computed tomography (CT) alone- and positron emission tomography (PET)-CT-based delineations. Seven physicians delineated the tumor volumes of 10 patients for the following scenarios: (1) CT only, (2) PET-CT fusion images registered to CT ("clinical standard"), and (3) postcontrast T1-weighted MRI registered with diffusion-weighted MRI. To compute interobserver variability, the median surface was generated from all observers' contours and used as the reference surface. A physician labeled the interface types (tumor to lung, atelectasis (collapsed lung), hilum, mediastinum, or chest wall) on the median surface. Contoured volumes and bidirectional local distances between individual observers' contours and the reference contour were analyzed. Computed tomography- and MRI-based tumor volumes normalized relative to PET-CT-based volumes were 1.62 ± 0.76 (mean ± standard deviation) and 1.38 ± 0.44, respectively. Volume differences between the imaging modalities were not significant. Between observers, the mean normalized volumes per patient averaged over all patients varied significantly by a factor of 1.6 (MRI) and 2.0 (CT and PET-CT) (P=4.10 × 10 -5 to 3.82 × 10 -9 ). The tumor-atelectasis interface had a significantly higher variability than other interfaces for all modalities combined (P=.0006). The interfaces with the smallest uncertainties were tumor-lung (on CT) and tumor-mediastinum (on PET-CT and MRI). Although MRI-based contouring showed overall larger variability than PET-CT, contouring variability depended on the interface type and was not significantly different between modalities, despite the limited observer experience with MRI. Multimodality imaging and combining different imaging characteristics might be the best approach to define

  8. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Charrier, Thomas; Thouand, Gerald [UMR CNRS 6144 GEPEA, CBAC, Nantes University, PRES UNAM, Campus de la Courtaisiere-IUT, La Roche-sur-Yon cedex (France); Chapeau, Cyrille [Biolumine, Biokar Diagnostic, Rue des Quarante Mines ZAC de Ther-Allonne, Beauvais Cedex (France); Bendria, Loubna; Daniel, Philippe [UMR CNRS 6087 LPEC, Universite du Maine, Av Olivier Messiaen, Le Mans cedex 9 (France); Picart, Pascal [UMR CNRS 6613 IAM-LAUM, Ecole Nationale des Ingenieurs du Mans, Universite du Maine, Le Mans Cedex 9 (France)

    2011-05-15

    This research study deals with the on-line detection of heavy metals and toxicity within the context of environmental pollution monitoring. It describes the construction and the proof of concept of a multi-channel bioluminescent bacterial biosensor in immobilized phase: Lumisens3. This new versatile device, designed for the non-stop analysis of water pollution, enables the insertion of any bioluminescent strains (inducible or constitutive), immobilized in a multi-well removable card. The technical design of Lumisens3 has benefited from both a classical and a robust approach and includes four main parts: (1) a dedicated removable card contains 64 wells, 3 mm in depth, arranged in eight grooves within which bacteria are immobilized, (2) this card is incubated on a Pelletier block with a CCD cooled camera on top for bioluminescence monitoring, (3) a fluidic network feeds the card with the sample to be analyzed and finally (4) a dedicated computer interface, BIOLUX 1.0, controls all the elements of the biosensor, allowing it to operate autonomously. The proof of concept of this biosensor was performed using a set of four bioluminescent bacteria (Escherichia coli DH1 pBzntlux, pBarslux, pBcoplux, and E. coli XL1 pBfiluxCDABE) in the on-line detection of CdCl{sub 2} 0.5 {mu}M and As{sub 2}O{sub 3} 5 {mu}M from an influent. When considering metals individually, the ''fingerprints'' from the biosensor were as expected. However, when metals were mixed together, cross reaction and synergistic effects were detected. This biosensor allowed us to demonstrate the simultaneous on-line cross detection of one or several heavy metals as well as the measurement of the overall toxicity of the sample. (orig.)

  9. Comparison of Positron Emission Tomography Quantification Using Magnetic Resonance- and Computed Tomography-Based Attenuation Correction in Physiological Tissues and Lesions: A Whole-Body Positron Emission Tomography/Magnetic Resonance Study in 66 Patients.

    Science.gov (United States)

    Seith, Ferdinand; Gatidis, Sergios; Schmidt, Holger; Bezrukov, Ilja; la Fougère, Christian; Nikolaou, Konstantin; Pfannenberg, Christina; Schwenzer, Nina

    2016-01-01

    Attenuation correction (AC) in fully integrated positron emission tomography (PET)/magnetic resonance (MR) systems plays a key role for the quantification of tracer uptake. The aim of this prospective study was to assess the accuracy of standardized uptake value (SUV) quantification using MR-based AC in direct comparison with computed tomography (CT)-based AC of the same PET data set on a large patient population. Sixty-six patients (22 female; mean [SD], 61 [11] years) were examined by means of combined PET/CT and PET/MR (11C-choline, 18F-FDG, or 68Ga-DOTATATE) subsequently. Positron emission tomography images from PET/MR examinations were corrected with MR-derived AC based on tissue segmentation (PET(MR)). The same PET data were corrected using CT-based attenuation maps (μ-maps) derived from PET/CT after nonrigid registration of the CT to the MR-based μ-map (PET(MRCT)). Positron emission tomography SUVs were quantified placing regions of interest or volumes of interest in 6 different body regions as well as PET-avid lesions, respectively. The relative differences of quantitative PET values when using MR-based AC versus CT-based AC were varying depending on the organs and body regions assessed. In detail, the mean (SD) relative differences of PET SUVs were as follows: -7.8% (11.5%), blood pool; -3.6% (5.8%), spleen; -4.4% (5.6%)/-4.1% (6.2%), liver; -0.6% (5.0%), muscle; -1.3% (6.3%), fat; -40.0% (18.7%), bone; 1.6% (4.4%), liver lesions; -6.2% (6.8%), bone lesions; and -1.9% (6.2%), soft tissue lesions. In 10 liver lesions, distinct overestimations greater than 5% were found (up to 10%). In addition, overestimations were found in 2 bone lesions and 1 soft tissue lesion adjacent to the lung (up to 28.0%). Results obtained using different PET tracers show that MR-based AC is accurate in most tissue types, with SUV deviations generally of less than 10%. In bone, however, underestimations can be pronounced, potentially leading to inaccurate SUV quantifications. In

  10. Robust membrane detection based on tensor voting for electron tomography.

    Science.gov (United States)

    Martinez-Sanchez, Antonio; Garcia, Inmaculada; Asano, Shoh; Lucic, Vladan; Fernandez, Jose-Jesus

    2014-04-01

    Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Using ATP-driven bioluminescence assay to monitor microbial safety in a contemporary human cadaver laboratory.

    Science.gov (United States)

    Benninger, Brion; Maier, Thomas

    2015-03-01

    The objective of this study was to utilize a cost-effective method for assessing the levels of bacterial, yeast, and mold activity during a human dissection laboratory course. Nowadays, compliance with safety regulations is policed by institutions at higher standards than ever before. Fear of acquiring an unknown infection is one of the top concerns of professional healthcare students, and it provokes anti-laboratory anxiety. Human cadavers are not routinely tested for bacteria and viruses prior to embalming. Human anatomy dissecting rooms that house embalmed cadavers are normally cleaned after the dissected cadavers have been removed. There is no evidence that investigators have ever assessed bacterial and fungal activities using adenosine triphosphate (ATP)-driven bioluminescence assays. A literature search was conducted on texts, journals, and websites regarding bacterial, yeast, and mold activities in an active cadaver laboratory. Midway into a clinical anatomy course, ATP bioluminescence assays were used to swab various sites within the dissection room, including entrance and exiting door handles, water taps, cadaver tables, counter tops, imaging material, X-ray box switches, and the cadaver surfaces. The results demonstrated very low activities on cadaver tables, washing up areas, and exiting door handles. There was low activity on counter tops and X-ray boxes. There was medium activity on the entrance door handles. These findings suggest an inexpensive and accurate method for monitoring safety compliance and microbial activity. Students can feel confident and safe in the environment in which they work. © 2014 Wiley Periodicals, Inc.

  12. A new recontruction algorithm for use with capacitance-based tomography

    Directory of Open Access Journals (Sweden)

    Ø. Isaksen

    1994-01-01

    Full Text Available A new reconstruction algorithm for use with capacitance-based process tomography is proposed. A numerical simulator, capable of calculating the capacitances for a particular sensor configuration and flow regime is used together with a parameter representation of the dielectric distribution and an optimization algorithm. The algorithm calculates these parameters and hence the dielectric distribution, by minimizing a function defined as a weighted sum of square differences between the measured and estimated capacitances. The method is tested by using both synthetic and experimental data, and the results are compared with results from the commonly used Linear Back Projection (LBP algorithm. The method is capable of obtaining the correct parameter values for all the flow regimes tested, and does provide a better estimate than the LBP method. The method proves to be very promising, and is a step towards quantitative capacitance tomography.

  13. What is Computed Tomography?

    Science.gov (United States)

    ... Imaging Medical X-ray Imaging What is Computed Tomography? Share Tweet Linkedin Pin it More sharing options ... Chest X ray Image back to top Computed Tomography (CT) Although also based on the variable absorption ...

  14. Bioluminescence and the Actin Cytoskeleton in the Dinoflagellate Pyrocystis fusiformis: An Examination of Organelle Transport and Mechanotransduction

    OpenAIRE

    McDougall, Carrie A.

    2002-01-01

    Bioluminescence (BL), light produced by organisms, is a diverse and widespread marine phenomenon. yet little studied by researchers. Major contributors to sea surface BL displays are dinoflagellates, which produce rapid BL flashes upon fluid motion; mechanical stimulation triggers a 200-ms flash within 20 ms, representing one of the most rapid sensor-effector transduction systems described. In some dinoflagellate species the sensor-effector link is not constant throughout a 24-hour period. Me...

  15. Effect of Iron Fe (II and Fe (III in a Binary System Evaluated Bioluminescent Method

    Directory of Open Access Journals (Sweden)

    Elena Sorokina

    2013-01-01

    Full Text Available The effect of iron ions Fe2+ and Fe3+ on the bioluminescent recombinant strain of Escherichia coli in a single-component and binary system. Found that for the bacteria E. coli Fe3+ ions are more toxic than Fe2+. Under the combined effect of iron toxicity increases, the percentage of luminescence quenching increases, but the value is much less than the sum of the indicator for the Fe2+ and Fe3+. The biological effect of insertion of iron is not proportional to their content in the mixture.

  16. Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry.

    Science.gov (United States)

    Corbitt, A J; Bennion, N; Forsythe, S J

    2000-06-01

    Fourteen food residues, Escherichia coli O157:H7 and Staphylococcus aureus on stainless steel surfaces were detected using a combined assay with adenylate kinase as a cellular marker and ATP bioluminescence. The limit of sensitivity ranged from 0.02 to 708 microg for minced meat and broccoli, respectively. Both methods gave the same detection limit (105 cfu) for E. coli and Staph. aureus on stainless steel surfaces. The combined adenylate kinase-ATP assay is applicable to monitor the hygiene of work surfaces, especially those prone to contamination by meat and vegetable residues.

  17. Engraftment and bone mass are enhanced by PTHrP 1-34 in ectopically transplanted vertebrae (vossicle model) and can be non-invasively monitored with bioluminescence and fluorescence imaging.

    Science.gov (United States)

    Hildreth, Blake Eason; Williams, Michelle M; Dembek, Katarzyna A; Hernon, Krista M; Rosol, Thomas J; Toribio, Ramiro E

    2015-12-01

    Evidence exists that parathyroid hormone-related protein (PTHrP) 1-34 may be more anabolic in bone than parathyroid hormone 1-34. While optical imaging is growing in popularity, scant information exists on the relationships between traditional bone imaging and histology and bioluminescence (BLI) and fluorescence (FLI) imaging. We aimed to evaluate the effects of PTHrP 1-34 on bone mass and determine if relationships existed between radiographic and histologic findings in bone and BLI and FLI indices. Vertebrae (vossicles) from mice coexpressing luciferase and green fluorescent protein were implanted subcutaneously into allogenic nude mice. Transplant recipients were treated daily with saline or PTHrP 1-34 for 4 weeks. BLI, FLI, radiography, histology, and µCT of the vossicles were performed over time. PTHrP 1-34 increased bioluminescence the most after 2 weeks, fluorescence at all time points, and decreased the time to peak bioluminescence at 4 weeks (P ≤ 0.027), the latter of which suggesting enhanced engraftment. PTHrP 1-34 maximized vertebral body volume at 4 weeks (P bone observed histologically increased in both groups at 2 and 4 weeks (P ≤ 0.002); however, PTHrP 1-34 exceeded time-matched controls (P ≤ 0.044). A positive linear relationship existed between the percentage of trabecular bone and (1) total bioluminescence (r = 0.595; P = 0.019); (2) total fluorescence (r = 0.474; P = 0.074); and (3) max fluorescence (r = 0.587; P = 0.021). In conclusion, PTHrP 1-34 enhances engraftment and bone mass, which can be monitored non-invasively by BLI and FLI.

  18. Polarimetry noise in fiber-based optical coherence tomography instrumentation

    Science.gov (United States)

    Zhang, Ellen Ziyi; Vakoc, Benjamin J.

    2011-01-01

    High noise levels in fiber-based polarization-sensitive optical coherence tomography (PS-OCT) have broadly limited its clinical utility. In this study we investigate contribution of polarization mode dispersion (PMD) to the polarimetry noise. We develop numerical models of the PS-OCT system including PMD and validate these models with empirical data. Using these models, we provide a framework for predicting noise levels, for processing signals to reduce noise, and for designing an optimized system. PMID:21935044

  19. Cone Beam Micro-CT System for Small Animal Imaging and Performance Evaluation

    Directory of Open Access Journals (Sweden)

    Shouping Zhu

    2009-01-01

    in this paper. Experimental results show that the system is suitable for small animal imaging and is adequate to provide high-resolution anatomic information for bioluminescence tomography to build a dual modality system.

  20. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  1. Imaging of Bubonic Plague Dynamics by In Vivo Tracking of Bioluminescent Yersinia pestis

    Science.gov (United States)

    Nham, Toan; Filali, Sofia; Danne, Camille; Derbise, Anne; Carniel, Elisabeth

    2012-01-01

    Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI) to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba), followed by a colonization of the draining inguinal lymph node(s), and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response. PMID:22496846

  2. Imaging of bubonic plague dynamics by in vivo tracking of bioluminescent Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Toan Nham

    Full Text Available Yersinia pestis dissemination in a host is usually studied by enumerating bacteria in the tissues of animals sacrificed at different times. This laborious methodology gives only snapshots of the infection, as the infectious process is not synchronized. In this work we used in vivo bioluminescence imaging (BLI to follow Y. pestis dissemination during bubonic plague. We first demonstrated that Y. pestis CO92 transformed with pGEN-luxCDABE stably emitted bioluminescence in vitro and in vivo, while retaining full virulence. The light produced from live animals allowed to delineate the infected organs and correlated with bacterial loads, thus validating the BLI tool. We then showed that the first step of the infectious process is a bacterial multiplication at the injection site (linea alba, followed by a colonization of the draining inguinal lymph node(s, and subsequently of the ipsilateral axillary lymph node through a direct connection between the two nodes. A mild bacteremia and an effective filtering of the blood stream by the liver and spleen probably accounted for the early bacterial blood clearance and the simultaneous development of bacterial foci within these organs. The saturation of the filtering capacity of the spleen and liver subsequently led to terminal septicemia. Our results also indicate that secondary lymphoid tissues are the main targets of Y. pestis multiplication and that colonization of other organs occurs essentially at the terminal phase of the disease. Finally, our analysis reveals that the high variability in the kinetics of infection is attributable to the time the bacteria remain confined at the injection site. However, once Y. pestis has reached the draining lymph nodes, the disease progresses extremely rapidly, leading to the invasion of the entire body within two days and to death of the animals. This highlights the extraordinary capacity of Y. pestis to annihilate the host innate immune response.

  3. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    Science.gov (United States)

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  4. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer

    International Nuclear Information System (INIS)

    Yang Zhongyi; Pan Lingling; Cheng Jingyi; Hu Silong; Xu Junyan; Zhang Yingjian; Ye Dingwei

    2012-01-01

    The objective of this study was to investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity=95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. (author)

  5. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    International Nuclear Information System (INIS)

    Craig, Jessica; Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G.

    2011-01-01

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  6. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  7. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    International Nuclear Information System (INIS)

    Majidi, Keivan; Wernick, Miles N; Brankov, Jovan G; Li, Jun; Muehleman, Carol

    2014-01-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  8. Limited-angle tomography for analyzer-based phase-contrast x-ray imaging

    Science.gov (United States)

    Majidi, Keivan; Wernick, Miles N.; Li, Jun; Muehleman, Carol; Brankov, Jovan G.

    2014-07-01

    Multiple-image radiography (MIR) is an analyzer-based phase-contrast x-ray imaging method, which is emerging as a potential alternative to conventional radiography. MIR simultaneously generates three planar parametric images containing information about scattering, refraction and attenuation properties of the object. The MIR planar images are linear tomographic projections of the corresponding object properties, which allows reconstruction of volumetric images using computed tomography (CT) methods. However, when acquiring a full range of linear projections around the tissue of interest is not feasible or the scanning time is limited, limited-angle tomography techniques can be used to reconstruct these volumetric images near the central plane, which is the plane that contains the pivot point of the tomographic movement. In this work, we use computer simulations to explore the applicability of limited-angle tomography to MIR. We also investigate the accuracy of reconstructions as a function of number of tomographic angles for a fixed total radiation exposure. We use this function to find an optimal range of angles over which data should be acquired for limited-angle tomography MIR (LAT-MIR). Next, we apply the LAT-MIR technique to experimentally acquired MIR projections obtained in a cadaveric human thumb study. We compare the reconstructed slices near the central plane to the same slices reconstructed by CT-MIR using the full angular view around the object. Finally, we perform a task-based evaluation of LAT-MIR performance for different numbers of angular views, and use template matching to detect cartilage in the refraction image near the central plane. We use the signal-to-noise ratio of this test as the detectability metric to investigate an optimum range of tomographic angles for detecting soft tissues in LAT-MIR. Both results show that there is an optimum range of angular view for data acquisition where LAT-MIR yields the best performance, comparable to CT

  9. A Trp53fl/flPtenfl/fl mouse model of undifferentiated pleomorphic sarcoma mediated by adeno-Cre injection and in vivo bioluminescence imaging.

    Directory of Open Access Journals (Sweden)

    Marisa R Buchakjian

    Full Text Available Genetic mouse models of soft tissue sarcoma provide critical insights into disease pathophysiology, which are oftentimes unable to be extracted from human tumor samples or xenograft models. In this study we describe a mouse model of soft tissue sarcoma mediated by adenoviral-Cre recombinase injection into Trp53fl/fl/Ptenfl/fl lox-stop-lox luciferase mice. Injection of adenovirus expressing Cre recombinase, either subcutaneously or intramuscularly in two experimental groups, results in viral infection and gene recombination with 100% penetrance within the first 24 hours following injection. Luciferase expression measured by real-time bioluminescence imaging increases over time, with an initial robust increase following viral injection, followed by a steady rise over the next several weeks as primary tumors develop and grow. Intramuscular injections were more commonly associated with evidence of systemic viral distribution than subcutaneous injections. All mice developed soft tissue sarcomas at the primary injection site, with histological examination identifying 93% of tumors as invasive pleomorphic sarcomas based on microscopic morphology and immunohistochemical expression of sarcoma markers. A lymphocytic infiltrate was present in 64% of the sarcomas in this immunocompetent model and 71% of tumors expressed PD-L1. This is the first report of a viral-Cre mediated Trp53/Pten mouse model of undifferentiated pleomorphic sarcoma. The bioluminescence imaging feature, along with high penetrance of the model and its immunological characteristics, makes it suited for pre-clinical studies of soft tissue sarcoma.

  10. Monotonicity-based electrical impedance tomography for lung imaging

    Science.gov (United States)

    Zhou, Liangdong; Harrach, Bastian; Seo, Jin Keun

    2018-04-01

    This paper presents a monotonicity-based spatiotemporal conductivity imaging method for continuous regional lung monitoring using electrical impedance tomography (EIT). The EIT data (i.e. the boundary current-voltage data) can be decomposed into pulmonary, cardiac and other parts using their different periodic natures. The time-differential current-voltage operator corresponding to the lung ventilation can be viewed as either semi-positive or semi-negative definite owing to monotonic conductivity changes within the lung regions. We used these monotonicity constraints to improve the quality of lung EIT imaging. We tested the proposed methods in numerical simulations, phantom experiments and human experiments.

  11. Grating-based X-ray Dark-field Computed Tomography of Living Mice.

    Science.gov (United States)

    Velroyen, A; Yaroshenko, A; Hahn, D; Fehringer, A; Tapfer, A; Müller, M; Noël, P B; Pauwels, B; Sasov, A; Yildirim, A Ö; Eickelberg, O; Hellbach, K; Auweter, S D; Meinel, F G; Reiser, M F; Bech, M; Pfeiffer, F

    2015-10-01

    Changes in x-ray attenuating tissue caused by lung disorders like emphysema or fibrosis are subtle and thus only resolved by high-resolution computed tomography (CT). The structural reorganization, however, is of strong influence for lung function. Dark-field CT (DFCT), based on small-angle scattering of x-rays, reveals such structural changes even at resolutions coarser than the pulmonary network and thus provides access to their anatomical distribution. In this proof-of-concept study we present x-ray in vivo DFCTs of lungs of a healthy, an emphysematous and a fibrotic mouse. The tomographies show excellent depiction of the distribution of structural - and thus indirectly functional - changes in lung parenchyma, on single-modality slices in dark field as well as on multimodal fusion images. Therefore, we anticipate numerous applications of DFCT in diagnostic lung imaging. We introduce a scatter-based Hounsfield Unit (sHU) scale to facilitate comparability of scans. In this newly defined sHU scale, the pathophysiological changes by emphysema and fibrosis cause a shift towards lower numbers, compared to healthy lung tissue.

  12. Linear GPR Imaging Based on Electromagnetic Plane-Wave Spectra and Diffraction Tomography

    DEFF Research Database (Denmark)

    Meincke, Peter

    2004-01-01

    Two linear diffraction-tomography based inversion schemes, referred to as the Fourier transform method (FTM) and the far-field method (FFM), are derived for 3-dimensional fixed-offset GPR imaging of buried objects. The FTM and FFM are obtained by using different asymptotic approximations...

  13. Receptor-G Protein Interaction Studied by Bioluminescence Resonance Energy Transfer: Lessons From Protease-Activated Receptor 1

    Directory of Open Access Journals (Sweden)

    Mohammed Akli eAYOUB

    2012-06-01

    Full Text Available Since its development, the bioluminescence resonance energy transfer (BRET approach has been extensively applied to study G protein-coupled receptors (GPCRs in real time and in live cells. One of the major aspects of GPCRs investigated in considerable details is their physical coupling to the heterotrimeric G proteins. As a result, new concepts have emerged, but few questions are still a matter of debate illustrating the complexity of GPCR-G protein interactions and coupling. Here, we summarized the recent advances on our understanding of GPCR-G protein coupling based on BRET approaches and supported by other FRET-based studies. We essentially focused on our recent studies in which we addressed the concept of preassembly versus the agonist-dependent interaction between the protease-activated receptor 1 (PAR1 and its cognate G proteins. We discussed the concept of agonist-induced conformational changes within the preassembled PAR1-G protein complexes as well as the critical question how the multiple coupling of PAR1 with two different G proteins, Gi1 and G12, but also -arrestin 1, can be regulated.

  14. Detection and quantitation of circulating tumor cell dynamics by bioluminescence imaging in an orthotopic mammary carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Sarah Sasportas

    Full Text Available Circulating tumor cells (CTCs have been detected in the bloodstream of both early-stage and advanced cancer patients. However, very little is know about the dynamics of CTCs during cancer progression and the clinical relevance of longitudinal CTC enumeration. To address this, we developed a simple bioluminescence imaging assay to detect CTCs in mouse models of metastasis. In a 4T1 orthotopic metastatic mammary carcinoma mouse model, we demonstrated that this quantitative method offers sensitivity down to 2 CTCs in 0.1-1mL blood samples and high specificity for CTCs originating from the primary tumor, independently of their epithelial status. In this model, we simultaneously monitored blood CTC dynamics, primary tumor growth, and lung metastasis progression over the course of 24 days. Early in tumor development, we observed low numbers of CTCs in blood samples (10-15 cells/100 µL and demonstrated that CTC dynamics correlate with viable primary tumor growth. To our knowledge, these data represent the first reported use of bioluminescence imaging to detect CTCs and quantify their dynamics in any cancer mouse model. This new assay is opening the door to the study of CTC dynamics in a variety of animal models. These studies may inform clinical decision on the appropriate timing of blood sampling and value of longitudinal CTC enumeration in cancer patients.

  15. Matrix-based image reconstruction methods for tomography

    International Nuclear Information System (INIS)

    Llacer, J.; Meng, J.D.

    1984-10-01

    Matrix methods of image reconstruction have not been used, in general, because of the large size of practical matrices, ill condition upon inversion and the success of Fourier-based techniques. An exception is the work that has been done at the Lawrence Berkeley Laboratory for imaging with accelerated radioactive ions. An extension of that work into more general imaging problems shows that, with a correct formulation of the problem, positron tomography with ring geometries results in well behaved matrices which can be used for image reconstruction with no distortion of the point response in the field of view and flexibility in the design of the instrument. Maximum Likelihood Estimator methods of reconstruction, which use the system matrices tailored to specific instruments and do not need matrix inversion, are shown to result in good preliminary images. A parallel processing computer structure based on multiple inexpensive microprocessors is proposed as a system to implement the matrix-MLE methods. 14 references, 7 figures

  16. The Use of Stimulable Bioluminescence from Marine Dinoflagellates as a Means of Detecting Toxicity in the Marine Environment

    Science.gov (United States)

    1993-04-01

    FROM MARINE PR: ME65 DINOFLAGELLATES AS A MEANS OF DETECTING TOXICITY IN THE PE: 060372N MARINE ENVIRONMENT WU: DN288604 6ý AUTHOR(S) Accesion For I...measure the acute and sublethal effects of heavy metals ( tributyltin , copper, and zinc) and storm drain effluent on the light output from marine...Grovhoug 3 THE USE OF STIM1ULABLE BIOLUMINESCENCE FROM MARINE DINOFLAGELLATES AS A MEANS OF DETECTING TOXICITY IN THE MARINE ENVIRONMENT. REFERENCE

  17. Novel peptide chemistry in terrestrial animals: natural luciferin analogues from the bioluminescent earthworm Fridericia heliota.

    Science.gov (United States)

    Dubinnyi, Maxim A; Tsarkova, Aleksandra S; Petushkov, Valentin N; Kaskova, Zinaida M; Rodionova, Natalja S; Kovalchuk, Sergey I; Ziganshin, Rustam H; Baranov, Mikhail S; Mineev, Konstantin S; Yampolsky, Ilia V

    2015-03-02

    We report isolation and structure elucidation of AsLn5, AsLn7, AsLn11 and AsLn12: novel luciferin analogs from the bioluminescent earthworm Fridericia heliota. They were found to be highly unusual modified peptides, comprising either of the two tyrosine-derived chromophores, CompX or CompY and a set of amino acids, including threonine, gamma-aminobutyric acid, homoarginine, and unsymmetrical N,N-dimethylarginine. These natural compounds represent a unique peptide chemistry found in terrestrial animals and rise novel questions concerning their biosynthetic origin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Assessment of skull base involvement in nasopharyngeal carcinoma: comparisons of single-photon emission tomography with planar bone scintigraphy and X-ray computed tomography

    International Nuclear Information System (INIS)

    Lee Chianghsuan; Wang Peiwen; Chen Hueyong; Lui Chunchung; Su Chihying

    1995-01-01

    The diagnostic contribution of single-photon emission tomography (SPET) to the detection of bone lesions of the skull base was explored in 200 patients with nasopharyngeal carcinoma (NPC). Comparison of SPET with planar bone scintigraphy showed that SPET improved the contrast and better defined the lesions in 107 out of the 200 patients. Comparison of SPET with X-ray computed tomography (CT) showed that SPET did not miss the lesions detected by CT while CT missed 49% of the lesions detected by SPET. The only false-positive lesion with SPET was detected in the mastoid bone. SPET detected skull base lesions in all of the 35 patients with cranial nerve involvement, while CT missed eight and planar bone scintigraphy missed four. The findings suggest that SPET should be included in the routine check-up examinations of patients with NPC. (orig.)

  19. Knowledge-based automated radiopharmaceutical manufacturing for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Alexoff, D.L.

    1991-01-01

    This article describes the application of basic knowledge engineering principles to the design of automated synthesis equipment for radiopharmaceuticals used in Positron Emission Tomography (PET). Before discussing knowledge programming, an overview of the development of automated radiopharmaceutical synthesis systems for PET will be presented. Since knowledge systems will rely on information obtained from machine transducers, a discussion of the uses of sensory feedback in today's automated systems follows. Next, the operation of these automated systems is contrasted to radiotracer production carried out by chemists, and the rationale for and basic concepts of knowledge-based programming are explained. Finally, a prototype knowledge-based system supporting automated radiopharmaceutical manufacturing of 18FDG at Brookhaven National Laboratory (BNL) is described using 1stClass, a commercially available PC-based expert system shell

  20. Developmental and Microbiological Analysis of the Inception of Bioluminescent Symbiosis in the Marine Fish Nuchequula nuchalis (Perciformes: Leiognathidae)▿

    OpenAIRE

    Dunlap, Paul V.; Davis, Kimberly M.; Tomiyama, Shinichi; Fujino, Misato; Fukui, Atsushi

    2008-01-01

    Many marine fish harbor luminous bacteria as bioluminescent symbionts. Despite the diversity, abundance, and ecological importance of these fish and their apparent dependence on luminous bacteria for survival and reproduction, little is known about developmental and microbiological events surrounding the inception of their symbioses. To gain insight on these issues, we examined wild-caught larvae of the leiognathid fish Nuchequula nuchalis, a species that harbors Photobacterium leiognathi as ...

  1. CD4+ T cell effects on CD8+ T cell location defined using bioluminescence.

    Directory of Open Access Journals (Sweden)

    Mitra Azadniv

    2011-01-01

    Full Text Available T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are "helped" by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell "help" is to program the homing potential of CD8+ T cells.

  2. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    Science.gov (United States)

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  3. Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography

    International Nuclear Information System (INIS)

    Gureyev, T E; Mayo, S C; Nesterets, Ya I; Mohammadi, S; Menk, R H; Arfelli, F; Tromba, G; Lockie, D; Pavlov, K M; Kitchen, M J; Zanconati, F; Dullin, C

    2014-01-01

    We report the results of a systematic study of phase-contrast x-ray computed tomography in the propagation-based and analyser-based modes using specially designed phantoms and excised breast tissue samples. The study is aimed at the quantitative evaluation and subsequent optimization, with respect to detection of small tumours in breast tissue, of the effects of phase contrast and phase retrieval on key imaging parameters, such as spatial resolution, contrast-to-noise ratio, x-ray dose and a recently proposed ‘intrinsic quality’ characteristic which combines the image noise with the spatial resolution. We demonstrate that some of the methods evaluated in this work lead to substantial (more than 20-fold) improvement in the contrast-to-noise and intrinsic quality of the reconstructed tomographic images compared with conventional techniques, with the measured characteristics being in good agreement with the corresponding theoretical estimations. This improvement also corresponds to an approximately 400-fold reduction in the x-ray dose, compared with conventional absorption-based tomography, without a loss in the imaging quality. The results of this study confirm and quantify the significant potential benefits achievable in three-dimensional mammography using x-ray phase-contrast imaging and phase-retrieval techniques. (paper)

  4. A nanotube-based field emission x-ray source for microcomputed tomography

    International Nuclear Information System (INIS)

    Zhang, J.; Cheng, Y.; Lee, Y.Z.; Gao, B.; Qiu, Q.; Lin, W.L.; Lalush, D.; Lu, J.P.; Zhou, O.

    2005-01-01

    Microcomputed tomography (micro-CT) is a noninvasive imaging tool commonly used to probe the internal structures of small animals for biomedical research and for the inspection of microelectronics. Here we report the development of a micro-CT scanner with a carbon nanotube- (CNT-) based microfocus x-ray source. The performance of the CNT x-ray source and the imaging capability of the micro-CT scanner were characterized

  5. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    Science.gov (United States)

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  6. Scattered Neutron Tomography Based on A Neutron Transport Inverse Problem

    International Nuclear Information System (INIS)

    William Charlton

    2007-01-01

    Neutron radiography and computed tomography are commonly used techniques to non-destructively examine materials. Tomography refers to the cross-sectional imaging of an object from either transmission or reflection data collected by illuminating the object from many different directions

  7. A new normalization method based on electrical field lines for electrical capacitance tomography

    International Nuclear Information System (INIS)

    Zhang, L F; Wang, H X

    2009-01-01

    Electrical capacitance tomography (ECT) is considered to be one of the most promising process tomography techniques. The image reconstruction for ECT is an inverse problem to find the spatially distributed permittivities in a pipe. Usually, the capacitance measurements obtained from the ECT system are normalized at the high and low permittivity for image reconstruction. The parallel normalization model is commonly used during the normalization process, which assumes the distribution of materials in parallel. Thus, the normalized capacitance is a linear function of measured capacitance. A recently used model is a series normalization model which results in the normalized capacitance as a nonlinear function of measured capacitance. The newest presented model is based on electrical field centre lines (EFCL), and is a mixture of two normalization models. The multi-threshold method of this model is presented in this paper. The sensitivity matrices based on different normalization models were obtained, and image reconstruction was carried out accordingly. Simulation results indicate that reconstructed images with higher quality can be obtained based on the presented model

  8. A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography

    Science.gov (United States)

    Sun, S.; Chen, C.; WANG, H.; Wang, Q.

    2014-12-01

    The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M

  9. Filter-based reconstruction methods for tomography

    NARCIS (Netherlands)

    Pelt, D.M.

    2016-01-01

    In X-ray tomography, a three-dimensional image of the interior of an object is computed from multiple X-ray images, acquired over a range of angles. Two types of methods are commonly used to compute such an image: analytical methods and iterative methods. Analytical methods are computationally

  10. Initial evaluation of image performance of a 3-D x-ray system: phantom-based comparison of 3-D tomography with conventional computed tomography.

    Science.gov (United States)

    Benz, Robyn Melanie; Garcia, Meritxell Alzamora; Amsler, Felix; Voigt, Johannes; Fieselmann, Andreas; Falkowski, Anna Lucja; Stieltjes, Bram; Hirschmann, Anna

    2018-01-01

    Phantom-based initial performance assessment of a prototype three-dimensional (3-D) x-ray system and comparison of 3-D tomography with computed tomography (CT) were proposed. A 3-D image quality phantom was scanned with a prototype version of 3-D cone-beam CT imaging implemented on a twin robotic x-ray system using three trajectories (163 deg = table, 188 deg = upright, and 200 deg = side), six tube voltages (60, 70, 81, 90, 100, and 121 kV), and four detector doses (0.348, 0.696, 1.740, and [Formula: see text]). CT was obtained with a clinical protocol. Spatial resolution (line pairs/cm) and soft-tissue-contrast resolution were assessed by two independent readers. Radiation dose was assessed. Descriptive and analysis of variance (ANOVA) ([Formula: see text]) were performed. With 3-D tomography, a maximum of 16 lp/cm was visible and best soft-tissue-contrast resolution was 2 mm at 30 Hounsfield units (HU) for 160 projections. With CT, 10 lp/cm was visible and soft-tissue-contrast resolution was 4 mm at 20 HU. The upright trajectory yielded significantly better spatial resolution and soft tissue contrast, and the side trajectory yielded significantly higher soft tissue contrast than the table trajectory ([Formula: see text]). Radiation dose was higher in 3-D tomography (45 to 704 mGycm) than CT (44 mGycm). Three-dimensional tomography renders overall equal or higher spatial resolution and comparable soft tissue contrast to CT for medium- and high-dose protocols in the side and upright trajectories, but with higher radiation doses.

  11. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Hsun Su, Yen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Hsu, Chia-Yun; Chang, Chung-Chien [Science and Technology of Accelerator Light Source, Hsinchu 300, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Tu, Sheng-Lung; Shen, Yun-Hwei [Department of Resource Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  12. Comparison of static and microfluidic protease assays using modified bioluminescence resonance energy transfer chemistry.

    Directory of Open Access Journals (Sweden)

    Nan Wu

    Full Text Available BACKGROUND: Fluorescence and bioluminescence resonance energy transfer (F/BRET are two forms of Förster resonance energy transfer, which can be used for optical transduction of biosensors. BRET has several advantages over fluorescence-based technologies because it does not require an external light source. There would be benefits in combining BRET transduction with microfluidics but the low luminance of BRET has made this challenging until now. METHODOLOGY: We used a thrombin bioprobe based on a form of BRET (BRET(H, which uses the BRET(1 substrate, native coelenterazine, with the typical BRET(2 donor and acceptor proteins linked by a thrombin target peptide. The microfluidic assay was carried out in a Y-shaped microfluidic network. The dependence of the BRET(H ratio on the measurement location, flow rate and bioprobe concentration was quantified. Results were compared with the same bioprobe in a static microwell plate assay. PRINCIPAL FINDINGS: The BRET(H thrombin bioprobe has a lower limit of detection (LOD than previously reported for the equivalent BRET(1-based version but it is substantially brighter than the BRET(2 version. The normalised BRET(H ratio of the bioprobe changed 32% following complete cleavage by thrombin and 31% in the microfluidic format. The LOD for thrombin in the microfluidic format was 27 pM, compared with an LOD of 310 pM, using the same bioprobe in a static microwell assay, and two orders of magnitude lower than reported for other microfluidic chip-based protease assays. CONCLUSIONS: These data demonstrate that BRET based microfluidic assays are feasible and that BRET(H provides a useful test bed for optimising BRET-based microfluidics. This approach may be convenient for a wide range of applications requiring sensitive detection and/or quantification of chemical or biological analytes.

  13. Models of Hepatocellular Carcinoma and Biomarker Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bagi, Cedo M., E-mail: cedo.bagi@pfizer.com; Andresen, Catharine J. [Global Science & Technology, PGRD, Pfizer Inc, Groton, CT 06340 (United States)

    2010-07-07

    The overwhelming need to improve preclinical models in oncology has stimulated research efforts to refine and validate robust orthotopic models that closely mimic the disease population and therefore have the potential to better predict clinical outcome with novel therapies. Sophisticated technologies including bioluminescence, contrast enhanced ultrasound imaging, positron emission tomography, computed tomography and magnetic resonance imaging have been added to existing serum- and histology-based biomarkers to assist with patient selection and the design of clinical trials. The rationale for the use of human hepatocellular carcinoma (HCC) cell lines, implementation of xenograft and orthotopic animal models and utilization of available biomarkers have been discussed, providing guidelines to facilitate preclinical research for the development of treatments for HCC patients.

  14. a Study of the Bioluminescence of Larger Zooplankton and the Effects of Low-Level Light Changes on Their Behavior.

    Science.gov (United States)

    van Keuren, Jeffrey Robert

    A bio-optical study was undertaken to quantify the relationships which exist between counter-illuminating organisms and the downwelling spectral light field in which they exist. The basic hypothesis behind counter-illumination is that the animal emits light using ventrally-oriented photophores to disrupt or eliminate the shadowed area on ventral surfaces. An organism lacking photophores sharply silhouettes against the highly directional downwelling irradiance, whereas by distributing photophores over the ventral surface of the body and closely matching the spectral and intensity characteristics of the downwelling light, this silhouette is obscured. Analysis carried out on changes in vertical distribution patterns in response to low-level intensity changes in ambient surface light suggested that diel migrating organisms begin to shift vertically in the water column when surface scalar irradiance decreased below or increased above 1.0 times10^{-2} muEin m^{-2} sec^ {-1}. Maximum aggregations of organisms, as defined by MOCNESS net sampling or single-frequency acoustic backscatter, appeared to remain within definable in situ blue-green isolume ranges varying less than a factor of ten throughout each night. Comparisons made between organism counter-illumination capacity and modeled in situ downwelling irradiance levels suggested that euphausiids, decapods and myctophids use between 1-10 percent of their maximum counter-illumination capacity to match the ambient downwelling light conditions. Modeling also suggested that up to 40 percent of the maximum measured bioluminescence output is required to match ambient irradiance in the shallower surface zones where aggregations of copepods, potential food sources, were commonly found at night. An optical study to quantify the radiative transfer of bioluminescence from a point source revealed that non -isotropic point sources produce radiance patterns that cannot be simply explained by inverse square losses. Therefore simple

  15. Borehole radar diffraction tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Seong Jun; Kim, Jung Ho; Yi, Myeong Jong; Chung, Seung Hwan; Lee, Hee Il [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    Tomography is widely used as imaging method for determining subsurface structure. Among the reconstruction algorithms for tomographic imaging, travel time tomography is almost applied to imaging subsurface. But isolated small body comparable with the wavelength could not be well recognized by travel time tomography. Other tomographic method are need to improve the imaging process. In the study of this year, diffraction tomography was investigated. The theory for diffraction tomography is based on the 1st-order Born approximation. Multisource holography, which is similar to Kirchihoff migration, is compared with diffraction tomography. To improve 1st-order Born diffraction tomography, two kinds of filter designed from multisource holography and 2-D green function, respectively, applied on the reconstructed image. The algorithm was tested for the numerical modeling data of which algorithm consists of the analytic computation of radar signal in transmitter and receiver regions and 2-D FDM scheme for the propagation of electromagnetic waves in media. The air-filled cavity model to show a typical diffraction pattern was applied to diffraction tomography imaging, and the result shows accurate location and area of cavity. But the calculated object function is not well matched the real object function, because the air-filled cavity model is not satisfied week scattered inhomogeneity for 1st born approximation, and the error term is included in estimating source wavelet from received signals. In spite of the object function error, the diffraction tomography assist for interpretation of subsurface as if conducted with travel time tomography. And the fracture model was tested, 1st born diffraction tomographic image is poor because of limited view angle coverage and violation of week scatter assumption, but the filtered image resolve the fracture somewhat better. The tested diffraction tomography image confirms effectiveness of filter for enhancing resolution. (author). 14

  16. Activity-based costing evaluation of a [F-18]-fludeoxyglucose positron emission tomography study

    NARCIS (Netherlands)

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Vander Borght, Thierry

    2009-01-01

    Objective: The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes.

  17. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based X-ray phase contrast computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Melli, Seyed Ali, E-mail: sem649@mail.usask.ca [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Wahid, Khan A. [Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, SK (Canada); Babyn, Paul [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada); Montgomery, James [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Snead, Elisabeth [Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK (Canada); El-Gayed, Ali [College of Medicine, University of Saskatchewan, Saskatoon, SK (Canada); Pettitt, Murray; Wolkowski, Bailey [College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK (Canada); Wesolowski, Michal [Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK (Canada)

    2016-01-11

    Synchrotron source propagation-based X-ray phase contrast computed tomography is increasingly used in pre-clinical imaging. However, it typically requires a large number of projections, and subsequently a large radiation dose, to produce high quality images. To improve the applicability of this imaging technique, reconstruction algorithms that can reduce the radiation dose and acquisition time without degrading image quality are needed. The proposed research focused on using a novel combination of Douglas–Rachford splitting and randomized Kaczmarz algorithms to solve large-scale total variation based optimization in a compressed sensing framework to reconstruct 2D images from a reduced number of projections. Visual assessment and quantitative performance evaluations of a synthetic abdomen phantom and real reconstructed image of an ex-vivo slice of canine prostate tissue demonstrate that the proposed algorithm is competitive in reconstruction process compared with other well-known algorithms. An additional potential benefit of reducing the number of projections would be reduction of time for motion artifact to occur if the sample moves during image acquisition. Use of this reconstruction algorithm to reduce the required number of projections in synchrotron source propagation-based X-ray phase contrast computed tomography is an effective form of dose reduction that may pave the way for imaging of in-vivo samples.

  18. Geometrical differences in target volumes based on 18F-fluorodeoxyglucose positron emission tomography/computed tomography and four-dimensional computed tomography maximum intensity projection images of primary thoracic esophageal cancer.

    Science.gov (United States)

    Guo, Y; Li, J; Wang, W; Zhang, Y; Wang, J; Duan, Y; Shang, D; Fu, Z

    2014-01-01

    The objective of the study was to compare geometrical differences of target volumes based on four-dimensional computed tomography (4DCT) maximum intensity projection (MIP) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images of primary thoracic esophageal cancer for radiation treatment. Twenty-one patients with thoracic esophageal cancer sequentially underwent contrast-enhanced three-dimensional computed tomography (3DCT), 4DCT, and 18F-FDG PET/CT thoracic simulation scans during normal free breathing. The internal gross target volume defined as IGTVMIP was obtained by contouring on MIP images. The gross target volumes based on PET/CT images (GTVPET ) were determined with nine different standardized uptake value (SUV) thresholds and manual contouring: SUV≥2.0, 2.5, 3.0, 3.5 (SUVn); ≥20%, 25%, 30%, 35%, 40% of the maximum (percentages of SUVmax, SUVn%). The differences in volume ratio (VR), conformity index (CI), and degree of inclusion (DI) between IGTVMIP and GTVPET were investigated. The mean centroid distance between GTVPET and IGTVMIP ranged from 4.98 mm to 6.53 mm. The VR ranged from 0.37 to 1.34, being significantly (P<0.05) closest to 1 at SUV2.5 (0.94), SUV20% (1.07), or manual contouring (1.10). The mean CI ranged from 0.34 to 0.58, being significantly closest to 1 (P<0.05) at SUV2.0 (0.55), SUV2.5 (0.56), SUV20% (0.56), SUV25% (0.53), or manual contouring (0.58). The mean DI of GTVPET in IGTVMIP ranged from 0.61 to 0.91, and the mean DI of IGTVMIP in GTVPET ranged from 0.34 to 0.86. The SUV threshold setting of SUV2.5, SUV20% or manual contouring yields the best tumor VR and CI with internal-gross target volume contoured on MIP of 4DCT dataset, but 3DPET/CT and 4DCT MIP could not replace each other for motion encompassing target volume delineation for radiation treatment. © 2014 International Society for Diseases of the Esophagus.

  19. Development of a Novel Preclinical Pancreatic Cancer Research Model: Bioluminescence Image-Guided Focal Irradiation and Tumor Monitoring of Orthotopic Xenografts1

    OpenAIRE

    Tuli, Richard; Surmak, Andrew; Reyes, Juvenal; Hacker-Prietz, Amy; Armour, Michael; Leubner, Ashley; Blackford, Amanda; Tryggestad, Erik; Jaffee, Elizabeth M; Wong, John; DeWeese, Theodore L; Herman, Joseph M

    2012-01-01

    PURPOSE: We report on a novel preclinical pancreatic cancer research model that uses bioluminescence imaging (BLI)-guided irradiation of orthotopic xenograft tumors, sparing of surrounding normal tissues, and quantitative, noninvasive longitudinal assessment of treatment response. MATERIALS AND METHODS: Luciferase-expressing MiaPaCa-2 pancreatic carcinoma cells were orthotopically injected in nude mice. BLI was compared to pathologic tumor volume, and photon emission was assessed over time. B...

  20. Fiber optic-based optical coherence tomography (OCT) for dental applications

    Science.gov (United States)

    Everett, Matthew J.; Colston, Bill W., Jr.; Da Silva, Luiz B.; Otis, Linda L.

    1998-09-01

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity. We have produced, using this scanning device, in vivo cross-sectional images of hard and soft dental tissues in human volunteers. Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento- enamel junction, were visible in all the images. The cemento- enamel junction and the alveolar bone were identified in approximately two thirds of the images. These images represent, or our knowledge, the first in vivo OCT images of human dental tissue.

  1. Fiber optic based optical coherence tomography (OCT) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. J., LLNL

    1998-06-02

    We have developed a hand-held fiber optic based optical coherence tomography (OCT) system for scanning of the oral cavity We have produced, using this scanning device, in viva cross-sectional images of hard and soft dental tissues in human volunteers Clinically relevant anatomical structures, including the gingival margin, periodontal sulcus, and dento-enamel junction, were visible in all the images The dento-enamel junction and the alveolar bone were identifiable in approximately two thirds of the images These images represent, to our knowledge, the first in viva OCT images of human dental tissue.

  2. Overview and outlook on muon survey tomography based on micromegas detectors for unreachable sites technology

    Directory of Open Access Journals (Sweden)

    Roche I. Lázaro

    2016-01-01

    Full Text Available The present document describes the functioning principles of the Muon Survey Tomography based on Micromegas detectors for Unreachable Sites Technology and its distinguishing features from other Micromegas-like detectors. Additionally, it addresses the challenges found while operating the first generation and the resulting improvements. Currently, the project Temporal Tomography of the Densitometry by the Measurement of Muons is focused on obtaining a reliable pulse from the micromesh, associated to the passing of a muon, in order to trigger the acquisition and operate in standalone mode. An outlook of the future steps of the project is provided as well.

  3. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    Science.gov (United States)

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma

  4. Use of an improved simultaneous tomography cassette in linear tomography

    International Nuclear Information System (INIS)

    Egender, G.; Pirker, E.; Gornik, E.; Innsbruck Univ.

    1984-01-01

    An improved simultaneous tomography cassette according to P. Landau was tried out for four months using four tomographs in routine work. The mode of operation is based on accurate control of the relative speeds of the individual x-ray films resulting in simultaneous imaging of 6 equidistant tomographic levels. Clinical testing was effected in 80 cases: nephrotomography, of the lungs, the hilum, and the skeleton. In particular, the article describes imaging of the renal arteries by simultaneous tomography for the purpose of finding out the cause of hypertension, and if there is suspicion of a space-occupying growth in the kidney, basing on the urogram. The specific advantages of this technique are, on the one hand, improved diagnostic efficiency (the tomograms are taken during the same respiratory phase, more rapid diagnosis especially with accident patients), and, on the other hand, an important reduction in the x-ray exposure of the patient; furthermore, the life of the x-ray tube is prolonged, and there is a definite saving of time for both patient and personnel, the image quality being comparable with that of single-layer tomography. (orig.) [de

  5. Tomography

    International Nuclear Information System (INIS)

    Allan, C.J.; Keller, N.A.; Lupton, L.R.; Taylor, T.; Tonner, P.D.

    1984-10-01

    Tomography is a non-intrusive imaging technique being developed at CRNL as an industrial tool for generating quantitative cross-sectional density maps of objects. Of most interest is tomography's ability to: distinguish features within complex geometries where other NDT techniques fail because of the complexity of the geometry; detect/locate small density changes/defects within objects, e.g. void fraction measurements within thick-walled vessels, shrink cavities in castings, etc.; provide quantitative data that can be used in analyses, e.g. of complex processes, or fracture mechanics; and provide objective quantitative data that can be used for (computer-based) quality assurance decisions, thereby reducing and in some cases eliminating the present subjectivity often encountered in NDT. The CRNL program is reviewed and examples are presented to illustrate the potential and the limitations of the technology

  6. An energy-based beam hardening model in tomography

    International Nuclear Information System (INIS)

    Casteele, E van de; Dyck, D van; Sijbers, J; Raman, E

    2002-01-01

    As a consequence of the polychromatic x-ray source, used in micro-computer tomography (μCT) and in medical CT, the attenuation is no longer a linear function of absorber thickness. If this nonlinear beam hardening effect is not compensated, the reconstructed images will be corrupted by cupping artefacts. In this paper, a bimodal energy model for the detected energy spectrum is presented, which can be used for reduction of artefacts caused by beam hardening in well-specified conditions. Based on the combination of the spectrum of the source and the detector efficiency, the assumption is made that there are two dominant energies which can describe the system. The validity of the proposed model is examined by fitting the model to the experimental datapoints obtained on a microtomograph for different materials and source voltages

  7. Beam Based RF Voltage Measurements and Longitudinal Beam Tomography at the Fermilab Booster

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, C. M. [Fermilab; Bhat, S. [Fermilab

    2017-10-19

    Increasing proton beam power on neutrino production targets is one of the major goals of the Fermilab long term accelerator programs. In this effort, the Fermilab 8 GeV Booster synchrotron plays a critical role for at least the next two decades. Therefore, understanding the Booster in great detail is important as we continue to improve its performance. For example, it is important to know accurately the available RF power in the Booster by carrying out beam-based measurements in order to specify the needed upgrades to the Booster RF system. Since the Booster magnetic field is changing continuously measuring/calibrating the RF voltage is not a trivial task. Here, we present a beam based method for the RF voltage measurements. Data analysis is carried out using computer programs developed in Python and MATLAB. The method presented here is applicable to any RCS which do not have flat-bottom and flat-top in the acceleration magnetic ramps. We have also carried out longitudinal beam tomography at injection and extraction energies with the data used for RF voltage measurements. Beam based RF voltage measurements and beam tomography were never done before for the Fermilab Booster. The results from these investigations will be very useful in future intensity upgrades.

  8. Ginger and Zingerone Ameliorate Lipopolysaccharide-Induced Acute Systemic Inflammation in Mice, Assessed by Nuclear Factor-κB Bioluminescent Imaging.

    Science.gov (United States)

    Hsiang, Chien-Yun; Cheng, Hui-Man; Lo, Hsin-Yi; Li, Chia-Cheng; Chou, Pei-Chi; Lee, Yu-Chen; Ho, Tin-Yun

    2015-07-08

    Ginger is a commonly used spice in cooking. In this study, we comprehensively evaluated the anti-inflammatory activities of ginger and its component zingerone in lipopolysaccharide (LPS)-induced acute systemic inflammation in mice via nuclear factor-κB (NF-κB) bioluminescent imaging. Ginger and zingerone significantly suppressed LPS-induced NF-κB activities in cells in a dose-dependent manner, and the maximal inhibition (84.5% ± 3.5% and 96.2% ± 0.6%) was observed at 100 μg/mL ginger and zingerone, respectively. Moreover, dietary ginger and zingerone significantly reduced LPS-induced proinflammatory cytokine production in sera by 62.9% ± 18.2% and 81.3% ± 6.2%, respectively, and NF-κB bioluminescent signals in whole body by 26.9% ± 14.3% and 38.5% ± 6.2%, respectively. In addition, ginger and zingerone suppressed LPS-induced NF-κB-driven luminescent intensities in most organs, and the maximal inhibition by ginger and zingerone was observed in small intestine. Immunohistochemical staining further showed that ginger and zingerone decreased interleukin-1β (IL-1β)-, CD11b-, and p65-positive areas in jejunum. In conclusion, our findings suggested that ginger and zingerone were likely to be broad-spectrum anti-inflammatory agents in most organs that suppressed the activation of NF-κB, the production of IL-1β, and the infiltration of inflammatory cells in mice.

  9. Real-time monitoring of bacterial infection in vivo: development of bioluminescent staphylococcal foreign-body and deep-thigh-wound mouse infection models.

    Science.gov (United States)

    Kuklin, Nelly A; Pancari, Gregory D; Tobery, Timothy W; Cope, Leslie; Jackson, Jesse; Gill, Charles; Overbye, Karen; Francis, Kevin P; Yu, Jun; Montgomery, Donna; Anderson, Annaliesa S; McClements, William; Jansen, Kathrin U

    2003-09-01

    Staphylococcal infections associated with catheter and prosthetic implants are difficult to eradicate and often lead to chronic infections. Development of novel antibacterial therapies requires simple, reliable, and relevant models for infection. Using bioluminescent Staphylococcus aureus, we have adapted the existing foreign-body and deep-wound mouse models of staphylococcal infection to allow real-time monitoring of the bacterial colonization of catheters or tissues. This approach also enables kinetic measurements of bacterial growth and clearance in each infected animal. Persistence of infection was observed throughout the course of the study until termination of the experiment at day 16 in a deep-wound model and day 21 in the foreign-body model, providing sufficient time to test the effects of antibacterial compounds. The usefulness of both animal models was assessed by using linezolid as a test compound and comparing bioluminescent measurements to bacterial counts. In the foreign-body model, a three-dose antibiotic regimen (2, 5, and 24 h after infection) resulted in a decrease in both luminescence and bacterial counts recovered from the implant compared to those of the mock-treated infected mice. In addition, linezolid treatment prevented the formation of subcutaneous abscesses, although it did not completely resolve the infection. In the thigh model, the same treatment regimen resulted in complete resolution of the luminescent signal, which correlated with clearance of the bacteria from the thighs.

  10. Skull base osteomyelitis in otitis externa: The utility of triphasic and single photon emission computed tomography/computed tomography bone scintigraphy

    International Nuclear Information System (INIS)

    Chakraborty, Dhritiman; Bhattacharya, Anish; Gupta, Ashok Kumar; Panda, Naresh Kumar; Das, Ashim; Mittal, Bhagwant Rai

    2013-01-01

    Skull base osteomyelitis (SBO) refers to infection that has spread beyond the external auditory canal to the base of the skull in advanced stages of otitis externa. Clinically, it may be difficult to differentiate SBO from severe otitis externa without bony involvement. This study was performed to determine the role of three phase bone scintigraphy (TPBS) and single photon emission tomography/computed tomography (SPECT/CT) in detecting SBO. We retrospectively analyzed records of 20 patients (14 M, 6 F) with otitis externa and suspected SBO. TPBS and SPECT/CT of the skull were performed. Findings were correlated with clinical, laboratory and diagnostic CT scan findings. All patients were diabetic with elevated erythrocyte sedimentation rate. A total of 18 patients had bilateral and two unilateral symptoms. Cranial nerves were involved in eight patients and microbiological culture of ear discharge fluid positive in seven. Early images showed increased temporal vascularity in nine patients and increased soft-tissue uptake in 10, while delayed images showed increased bone uptake in 19/20 patients. Localized abnormal tracer uptake was shown by SPECT/CT in the mastoid temporal (15), petrous (11), sphenoid (3) and zygomatic (1) and showed destructive changes in five. Thus, TPBS was found positive for SBO in 10/20 patients and changed the management in four. Our study suggests that TPBS with SPECT/CT is a useful non-invasive investigation for detection of SBO in otitis externa

  11. Recent advances in neutron tomography

    International Nuclear Information System (INIS)

    McFarland, E.; Massachusetts Inst. of Technology, Cambridge, MA; Lanza, R.

    1993-01-01

    Neutron imaging has been shown to be an excellent imaging tool for many nondestructive evaluation applications. Significantly improved contrast over X-ray images is possible for materials commonly found in engineering assemblies. The major limitations have been the neutron source and detection. A low cost, position sensitive neutron tomography detector system has been designed and built based on an electro-optical detector system using a LiF-ZnS scintillator screen and a cooled charge coupled device. This detector system can be used for neutron radiography as well as two and three-dimensional neutron tomography. Calculated performance of the system predicted near-quantum efficiency for position sensitive neutron detection. Experimental data was recently taken using this system at McClellan Air Force Base, Air Logistics Center, Sacramento, CA. With increased availability of low cost neutron sources and advanced image processing, neutron tomography will become an increasingly important nondestructive imaging method

  12. Distribution of bioluminescent fungi across old-growth and secondary tropical rain forest in Costa Rica

    Directory of Open Access Journals (Sweden)

    Carolina Seas-Carvajal

    2013-06-01

    Full Text Available Most research on bioluminescent fungi is concentrated on their taxonomic relationships, while the basics of their natural history and ecological relationships are poorly understood. In this study, we compared the distribution of bioluminescent fungi between old-growth and secondary forest as related to four different soil types at the tropical rainforest of La Selva Biological Station in Costa Rica. The study was conducted during the wet season of 2009. Bioluminescent fungi were sought following eight different transects distributed evenly in old-growth and secondary forests across four different soil types, covering an area of 9 420m². We found fungi in four different substrates: litter, fallen branches, dead trunks, and roots, for a total of 61 samples. Correspondence analysis showed that the occurrence of fungi and soil types were related (inertia=0.21, p=0.071. We found a significant relationship between the presence of fungi and the distribution of soil types (X²=18.89, df=9, p=0.026. We found only three samples with fruiting bodies, two of which had Mycena and the other had one fungus of the order Xylariales (possibly Hypoxylon sp., Kretzschmariella sp., Xylaria sp.. Future work will concentrate on exploring other aspects of their ecology, such as their dispersal and substrate preference. This information will facilitate field identification and will foster more research on the distribution, seasonality, reproductive phenology and ecological requirements of this group of Fungi.La mayoría de las investigaciones sobre los hongos bioluminiscentes se ha centrado en relaciones taxonómicas. Los aspectos básicos de la historia natural y relaciones ecológicas de este grupo son poco conocidos. En este estudio, comparamos la distribución de hongos bioluminiscentes entre el bosque primario y el secundario en la Estación Biológica La Selva, Costa Rica en relación con cuatro tipos de suelo. El estudio se realizó durante la estación lluviosa

  13. Computed tomography scan based prediction of the vulnerable carotid plaque

    DEFF Research Database (Denmark)

    Diab, Hadi Mahmoud Haider; Rasmussen, Lars Melholt; Duvnjak, Stevo

    2017-01-01

    BACKGROUND: Primary to validate a commercial semi-automated computed tomography angiography (CTA) -software for vulnerable plaque detection compared to histology of carotid endarterectomy (CEA) specimens and secondary validating calcifications scores by in vivo CTA with ex vivo non......-contrast enhanced computed tomography (NCCT). METHODS: From January 2014 to October 2016 53 patients were included retrospectively, using a cross-sectional design. All patients underwent both CTA and CEA. Sixteen patients had their CEA specimen NCCT scanned. The semi-automated CTA software analyzed carotid stenosis...

  14. Linear chemically sensitive electron tomography using DualEELS and dictionary-based compressed sensing

    Energy Technology Data Exchange (ETDEWEB)

    AlAfeef, Ala, E-mail: a.al-afeef.1@research.gla.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Bobynko, Joanna [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Cockshott, W. Paul. [School of Computing Science, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Craven, Alan J. [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Zuazo, Ian; Barges, Patrick [ArcelorMittal Maizières Research, Maizières-lès-Metz 57283 (France); MacLaren, Ian, E-mail: ian.maclaren@glasgow.ac.uk [SUPA School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2016-11-15

    We have investigated the use of DualEELS in elementally sensitive tilt series tomography in the scanning transmission electron microscope. A procedure is implemented using deconvolution to remove the effects of multiple scattering, followed by normalisation by the zero loss peak intensity. This is performed to produce a signal that is linearly dependent on the projected density of the element in each pixel. This method is compared with one that does not include deconvolution (although normalisation by the zero loss peak intensity is still performed). Additionally, we compare the 3D reconstruction using a new compressed sensing algorithm, DLET, with the well-established SIRT algorithm. VC precipitates, which are extracted from a steel on a carbon replica, are used in this study. It is found that the use of this linear signal results in a very even density throughout the precipitates. However, when deconvolution is omitted, a slight density reduction is observed in the cores of the precipitates (a so-called cupping artefact). Additionally, it is clearly demonstrated that the 3D morphology is much better reproduced using the DLET algorithm, with very little elongation in the missing wedge direction. It is therefore concluded that reliable elementally sensitive tilt tomography using EELS requires the appropriate use of DualEELS together with a suitable reconstruction algorithm, such as the compressed sensing based reconstruction algorithm used here, to make the best use of the limited data volume and signal to noise inherent in core-loss EELS. - Highlights: • DualEELS is essential for chemically sensitive electron tomography using EELS. • A new compressed sensing based algorithm (DLET) gives high fidelity reconstruction. • This combination of DualEELS and DLET will give reliable results from few projections.

  15. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the ... the research focus in the fields of space geodesy and ... ment of GNSS such as GPS, Glonass, Galileo and. Compass, as these ...

  16. Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner

    Science.gov (United States)

    Liang, Shanshan; Saidi, Arya; Jing, Joe; Liu, Gangjun; Li, Jiawen; Zhang, Jun; Sun, Changsen; Narula, Jagat; Chen, Zhongping

    2012-07-01

    We developed a multimodality fluorescence and optical coherence tomography probe based on a double-clad fiber (DCF) combiner. The probe is composed of a DCF combiner, grin lens, and micromotor in the distal end. An integrated swept-source optical coherence tomography and fluorescence intensity imaging system was developed based on the combined probe for the early diagnoses of atherosclerosis. This system is capable of real-time data acquisition and processing as well as image display. For fluorescence imaging, the inflammation of atherosclerosis and necrotic core formed with the annexin V-conjugated Cy5.5 were imaged. Ex vivo imaging of New Zealand white rabbit arteries demonstrated the capability of the combined system.

  17. Neuroanatomy of cranial computed tomography

    International Nuclear Information System (INIS)

    Kretschmann, H.J.; Weinrich, W.

    1985-01-01

    Based on the fundamental structures visualized by means of computed tomography, the authors present the functional systems which are relevant in neurology by means of axial cross-sections. All drawings were prepared from original preparations by means of a new technique which is similar to the grey values of X-ray CT and nuclear magnetic resonance tomography. A detailed description is given of the topics of neurofunctional lesions

  18. Algorithmic fundamentals of computerized tomography and of transverse analogue tomography

    International Nuclear Information System (INIS)

    Heckmann, K.

    1981-01-01

    Computerized tomography and transverse analogue tomography are two different approaches to the same goal, namely, transverse tomography. The algorithm is discussed and compared. Transverse tomography appears capable of further development, judging by this comparison. (orig.) [de

  19. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may

  20. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography.

    Science.gov (United States)

    Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P

    2014-11-01

    Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  1. In vivo bioluminescence imaging validation of a human biopsy-derived orthotopic mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T

    2013-05-01

    Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  2. In Vivo Bioluminescence Imaging Validation of a Human Biopsy–Derived Orthotopic Mouse Model of Glioblastoma Multiforme

    Directory of Open Access Journals (Sweden)

    Monika A. Jarzabek

    2013-05-01

    Full Text Available Glioblastoma multiforme (GBM, the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI. A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.

  3. Horse species symposium: a novel approach to monitoring pathogen progression during uterine and placental infection in the mare using bioluminescence imaging technology and lux-modified bacteria.

    Science.gov (United States)

    Ryan, P L; Christiansen, D L; Hopper, R M; Walters, F K; Moulton, K; Curbelo, J; Greene, J M; Willard, S T

    2011-05-01

    Uterine and placental infections are the leading cause of abortion, stillbirth, and preterm delivery in the mare. Whereas uterine and placental infections in women have been studied extensively, a comprehensive examination of the pathogenic processes leading to this unsatisfactory pregnancy outcome in the mare has yet to be completed. Most information in the literature relating to late-term pregnancy loss in mares is based on retrospective studies of clinical cases submitted for necropsy. Here we report the development and application of a novel approach, whereby transgenically modified bacteria transformed with lux genes of Xenorhabdus luminescens or Photorhabdus luminescens origin and biophotonic imaging are utilized to better understand pathogen-induced preterm birth in late-term pregnant mares. This technology uses highly sensitive bioluminescence imaging camera systems to localize and monitor pathogen progression during tissue invasion by measuring the bioluminescent signatures emitted by the lux-modified pathogens. This method has an important advantage in that it allows for the potential tracking of pathogens in vivo in real time and over time, which was hitherto impossible. Although the application of this technology in domestic animals is in its infancy, investigators were successful in identifying the fetal lungs, sinuses, nares, urinary, and gastrointestinal systems as primary tissues for pathogen invasion after experimental infection of pregnant mares with lux-modified Escherichia coli. It is important that pathogens were not detected in other vital organs, such as the liver, brain, and cardiac system. Such precision in localizing sites of pathogen invasion provides potential application for this novel approach in the development of more targeted therapeutic interventions for pathogen-related diseases in the equine and other domestic species.

  4. Cone Beam X-Ray Luminescence Tomography Imaging Based on KA-FEM Method for Small Animals.

    Science.gov (United States)

    Chen, Dongmei; Meng, Fanzhen; Zhao, Fengjun; Xu, Cao

    2016-01-01

    Cone beam X-ray luminescence tomography can realize fast X-ray luminescence tomography imaging with relatively low scanning time compared with narrow beam X-ray luminescence tomography. However, cone beam X-ray luminescence tomography suffers from an ill-posed reconstruction problem. First, the feasibility of experiments with different penetration and multispectra in small animal has been tested using nanophosphor material. Then, the hybrid reconstruction algorithm with KA-FEM method has been applied in cone beam X-ray luminescence tomography for small animals to overcome the ill-posed reconstruction problem, whose advantage and property have been demonstrated in fluorescence tomography imaging. The in vivo mouse experiment proved the feasibility of the proposed method.

  5. Cerenkov luminescence tomography based on preconditioning orthogonal matching pursuit

    Science.gov (United States)

    Liu, Haixiao; Hu, Zhenhua; Wang, Kun; Tian, Jie; Yang, Xin

    2015-03-01

    Cerenkov luminescence imaging (CLI) is a novel optical imaging method and has been proved to be a potential substitute of the traditional radionuclide imaging such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT). This imaging method inherits the high sensitivity of nuclear medicine and low cost of optical molecular imaging. To obtain the depth information of the radioactive isotope, Cerenkov luminescence tomography (CLT) is established and the 3D distribution of the isotope is reconstructed. However, because of the strong absorption and scatter, the reconstruction of the CLT sources is always converted to an ill-posed linear system which is hard to be solved. In this work, the sparse nature of the light source was taken into account and the preconditioning orthogonal matching pursuit (POMP) method was established to effectively reduce the ill-posedness and obtain better reconstruction accuracy. To prove the accuracy and speed of this algorithm, a heterogeneous numerical phantom experiment and an in vivo mouse experiment were conducted. Both the simulation result and the mouse experiment showed that our reconstruction method can provide more accurate reconstruction result compared with the traditional Tikhonov regularization method and the ordinary orthogonal matching pursuit (OMP) method. Our reconstruction method will provide technical support for the biological application for Cerenkov luminescence.

  6. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation.

    Science.gov (United States)

    Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin

    2015-03-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (pimplants using micro-CT analysis using a region-based segmentation method.

  7. Optical Doppler tomography based on a field programmable gate array

    DEFF Research Database (Denmark)

    Larsen, Henning Engelbrecht; Nilsson, Ronnie Thorup; Thrane, Lars

    2008-01-01

    We report the design of and results obtained by using a field programmable gate array (FPGA) to digitally process optical Doppler tomography signals. The processor fits into the analog signal path in an existing optical coherence tomography setup. We demonstrate both Doppler frequency and envelope...... extraction using the Hilbert transform, all in a single FPGA. An FPGA implementation has certain advantages over general purpose digital signal processor (DSP) due to the fact that the processing elements operate in parallel as opposed to the DSP. which is primarily a sequential processor....

  8. Illustrated computer tomography

    International Nuclear Information System (INIS)

    Takahashi, S.

    1983-01-01

    This book provides the following information: basic aspects of computed tomography; atlas of computed tomography of the normal adult; clinical application of computed tomography; and radiotherapy planning and computed tomography

  9. Microcomputed tomography-based assessment of retrieved dental implants

    NARCIS (Netherlands)

    Narra, N.; Antalainen, A.K.; Zipprich, H.; Sándor, G.K.; Wolff, J.

    2015-01-01

    Purpose: The aim of this study was to demonstrate the potential of microcomputed tomography (micro-CT) technology in the assessment of retrieved dental implants. Cases are presented to illustrate the value of micro-CT imaging techniques in determining possible mechanical causes for dental implant

  10. Accuracy and reproducibility of voxel based superimposition of cone beam computed tomography models on the anterior cranial base and the zygomatic arches

    NARCIS (Netherlands)

    Nada, R.M.; Maal, T.J.J.; Breuning, K.H.; Berge, S.J.; Mostafa, Y.A.; Kuijpers-Jagtman, A.M.

    2011-01-01

    Superimposition of serial Cone Beam Computed Tomography (CBCT) scans has become a valuable tool for three dimensional (3D) assessment of treatment effects and stability. Voxel based image registration is a newly developed semi-automated technique for superimposition and comparison of two CBCT scans.

  11. Optical coherence tomography based microangiography: A tool good for dermatology applications (Conference Presentation)

    Science.gov (United States)

    Wang, Ruikang K.; Baran, Utku; Choi, Woo J.

    2016-02-01

    Optical coherence tomography (OCT) based microangiography (OMAG) is a new imaging technique enabling the visualization of blood flow within microcirculatory tissue beds in vivo with high resolution. In this talk, the concept and advantages of OMAG will be discussed and its potential clinical applications in the dermatology will be shown, demonstrating its usefulness in the clinical monitoring and therapeutic treatment of various skin pathologies, e.g. acne, port wine stain and wound healing.

  12. Three Dimensional Digital Sieving of Asphalt Mixture Based on X-ray Computed Tomography

    OpenAIRE

    Chichun Hu; Jiexian Ma; M. Emin Kutay

    2017-01-01

    In order to perform three-dimensional digital sieving based on X-ray computed tomography images, the definition of digital sieve size (DSS) was proposed, which was defined as the minimum length of the minimum bounding squares of all possible orthographic projections of an aggregate. The corresponding program was developed to reconstruct aggregate structure and to obtain DSS. Laboratory experiments consisting of epoxy-filled aggregate specimens were conducted to investigate the difference betw...

  13. In vivo microwave-based thermoacoustic tomography of rats (Conference Presentation)

    Science.gov (United States)

    Lin, Li; Zhou, Yong; Wang, Lihong V.

    2016-03-01

    Microwave-based thermoacoustic tomography (TAT), based on the measurement of ultrasonic waves induced by microwave pulses, can reveal tissue dielectric properties that may be closely related to the physiological and pathological status of the tissues. Using microwaves as the excitation source improved imaging depth because of their deep penetration into biological tissues. We demonstrate, for the first time, in vivo microwave-based thermoacoustic imaging in rats. The transducer is rotated around the rat in a full circle, providing a full two-dimensional view. Instead of a flat ultrasonic transducer, we used a virtual line detector based on a cylindrically focused transducer. A 3 GHz microwave source with 0.6 µs pulse width and an electromagnetically shielded transducer with 2.25 MHz central frequency provided clear cross-sectional images of the rat's body. The high imaging contrast, based on the tissue's rate of absorption, and the ultrasonically defined spatial resolution combine to reveal the spine, kidney, muscle, and other deeply seated anatomical features in the rat's abdominal cavity. This non-invasive and non-ionizing imaging modality achieved an imaging depth beyond 6 cm in the rat's tissue. Cancer diagnosis based on information about tissue properties from microwave band TAT can potentially be more accurate than has previously been achievable.

  14. Frozen Gaussian approximation for 3D seismic tomography

    Science.gov (United States)

    Chai, Lihui; Tong, Ping; Yang, Xu

    2018-05-01

    Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.

  15. Turbocharging Quantum Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Blume-Kohout, Robin J. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Gamble, John King [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nielsen, Erik [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Maunz, Peter Lukas Wilhelm [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Scholten, Travis L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rudinger, Kenneth Michael [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Quantum tomography is used to characterize quantum operations implemented in quantum information processing (QIP) hardware. Traditionally, state tomography has been used to characterize the quantum state prepared in an initialization procedure, while quantum process tomography is used to characterize dynamical operations on a QIP system. As such, tomography is critical to the development of QIP hardware (since it is necessary both for debugging and validating as-built devices, and its results are used to influence the next generation of devices). But tomography suffers from several critical drawbacks. In this report, we present new research that resolves several of these flaws. We describe a new form of tomography called gate set tomography (GST), which unifies state and process tomography, avoids prior methods critical reliance on precalibrated operations that are not generally available, and can achieve unprecedented accuracies. We report on theory and experimental development of adaptive tomography protocols that achieve far higher fidelity in state reconstruction than non-adaptive methods. Finally, we present a new theoretical and experimental analysis of process tomography on multispin systems, and demonstrate how to more effectively detect and characterize quantum noise using carefully tailored ensembles of input states.

  16. GPS-based ionospheric tomography with a constrained adaptive ...

    Indian Academy of Sciences (India)

    According to the continuous smoothness of the variations of ionospheric electron density (IED) among neighbouring voxels, Gauss weighted function is introduced to constrain the tomography system in the new method. It can resolve the dependence on the initial values for those voxels without any GPS rays traversing them ...

  17. Optical tomography of tissues

    International Nuclear Information System (INIS)

    Zimnyakov, D A; Tuchin, Valerii V

    2002-01-01

    Methods of optical tomography of biological tissues are considered, which include pulse-modulation and frequency-modulation tomography, diffusion tomography with the use of cw radiation sources, optical coherent tomography, speckle-correlation tomography of nonstationary media, and optoacoustic tomography. The method for controlling the optical properties of tissues is studied from the point of view of increasing a probing depth in optical coherent tomography. The modern state and prospects of the development of optical tomography are discussed. (review)

  18. In vivo bioluminescence imaging of cell differentiation in biomaterials: a platform for scaffold development.

    Science.gov (United States)

    Bagó, Juli R; Aguilar, Elisabeth; Alieva, Maria; Soler-Botija, Carolina; Vila, Olaia F; Claros, Silvia; Andrades, José A; Becerra, José; Rubio, Nuria; Blanco, Jerónimo

    2013-03-01

    In vivo testing is a mandatory last step in scaffold development. Agile longitudinal noninvasive real-time monitoring of stem cell behavior in biomaterials implanted in live animals should facilitate the development of scaffolds for tissue engineering. We report on a noninvasive bioluminescence imaging (BLI) procedure for simultaneous monitoring of changes in the expression of multiple genes to evaluate scaffold performance in vivo. Adipose tissue-derived stromal mensenchymal cells were dually labeled with Renilla red fluorescent protein and firefly green fluorescent protein chimeric reporters regulated by cytomegalovirus and tissue-specific promoters, respectively. Labeled cells were induced to differentiate in vitro and in vivo, by seeding in demineralized bone matrices (DBMs) and monitored by BLI. Imaging results were validated by RT-polymerase chain reaction and histological procedures. The proposed approach improves molecular imaging and measurement of changes in gene expression of cells implanted in live animals. This procedure, applicable to the simultaneous analysis of multiple genes from cells seeded in DBMs, should facilitate engineering of scaffolds for tissue repair.

  19. Breast tumor segmentation in high resolution x-ray phase contrast analyzer based computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brun, E., E-mail: emmanuel.brun@esrf.fr [European Synchrotron Radiation Facility (ESRF), Grenoble 380000, France and Department of Physics, Ludwig-Maximilians University, Garching 85748 (Germany); Grandl, S.; Sztrókay-Gaul, A.; Gasilov, S. [Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Barbone, G. [Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (United States); Mittone, A.; Coan, P. [Department of Physics, Ludwig-Maximilians University, Garching 85748, Germany and Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, 81377 Munich (Germany); Bravin, A. [European Synchrotron Radiation Facility (ESRF), Grenoble 380000 (France)

    2014-11-01

    Purpose: Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. Methods: The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure’s possible applications. Results: A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. Conclusions: The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.

  20. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gnanvo, Kondo, E-mail: kgnanvo@fit.edu [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar [Department of Physics and Space Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States); Mitra, Debasis [Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL 32901 (United States)

    2011-10-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes ({approx}0.03 L) using GEM-based Muon Tomography.

  1. Imaging of high-Z material for nuclear contraband detection with a minimal prototype of a muon tomography station based on GEM detectors

    International Nuclear Information System (INIS)

    Gnanvo, Kondo; Grasso, Leonard V.; Hohlmann, Marcus; Locke, Judson B.; Quintero, Amilkar; Mitra, Debasis

    2011-01-01

    Muon Tomography based on the measurement of multiple scattering of atmospheric cosmic ray muons in matter is a promising technique for detecting heavily shielded high-Z radioactive materials (U, Pu) in cargo or vehicles. The technique uses the deflection of cosmic ray muons in matter to perform tomographic imaging of high-Z material inside a probed volume. A Muon Tomography Station (MTS) requires position-sensitive detectors with high spatial resolution for optimal tracking of incoming and outgoing cosmic ray muons. Micro Pattern Gaseous Detector (MPGD) technologies such as Gas Electron Multiplier (GEM) detectors are excellent candidates for this application. We have built and operated a minimal MTS prototype based on 30 cmx30 cm GEM detectors for probing targets with various Z values inside the MTS volume. We report the first successful detection and imaging of medium-Z and high-Z targets of small volumes (∼0.03 L) using GEM-based Muon Tomography.

  2. Light Emission Requires Exposure to the Atmosphere in Ex Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Yusuke Inoue

    2006-04-01

    Full Text Available The identification of organs bearing luciferase activity by in vivo bioluminescence imaging (BLI is often difficult, and ex vivo imaging of excised organs plays a complementary role. This study investigated the importance of exposure to the atmosphere in ex vivo BLI. Mice were inoculated with murine pro-B cell line Ba/F3 transduced with firefly luciferase and p190 BCR-ABL. They were killed following in vivo BLI, and whole-body imaging was done after death and then after intraperitoneal air injection. In addition, the right knee was exposed and imaged before and after the adjacent bones were cut. Extensive light signals were seen on in vivo imaging. The luminescence disappeared after the animal was killed, and air injection restored the light emission from the abdomen only, suggesting a critical role of atmospheric oxygen in luminescence after death. Although no substantial light signal at the right knee was seen before bone cutting, light emission was evident after cutting. In conclusion, in ex vivo BLI, light emission requires exposure to the atmosphere. Bone destruction is required to demonstrate luciferase activity in the bone marrow after death.

  3. GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles

    Directory of Open Access Journals (Sweden)

    P. Xia

    2013-10-01

    Full Text Available Traditionally, balloon-based radiosonde soundings are used to study the spatial distribution of atmospheric water vapour. However, this approach cannot be frequently employed due to its high cost. In contrast, GPS tomography technique can obtain water vapour in a high temporal resolution. In the tomography technique, an iterative or non-iterative reconstruction algorithm is usually utilised to overcome rank deficiency of observation equations for water vapour inversion. However, the single iterative or non-iterative reconstruction algorithm has their limitations. For instance, the iterative reconstruction algorithm requires accurate initial values of water vapour while the non-iterative reconstruction algorithm needs proper constraint conditions. To overcome these drawbacks, we present a combined iterative and non-iterative reconstruction approach for the three-dimensional (3-D water vapour inversion using GPS observations and COSMIC profiles. In this approach, the non-iterative reconstruction algorithm is first used to estimate water vapour density based on a priori water vapour information derived from COSMIC radio occultation data. The estimates are then employed as initial values in the iterative reconstruction algorithm. The largest advantage of this approach is that precise initial values of water vapour density that are essential in the iterative reconstruction algorithm can be obtained. This combined reconstruction algorithm (CRA is evaluated using 10-day GPS observations in Hong Kong and COSMIC profiles. The test results indicate that the water vapor accuracy from CRA is 16 and 14% higher than that of iterative and non-iterative reconstruction approaches, respectively. In addition, the tomography results obtained from the CRA are further validated using radiosonde data. Results indicate that water vapour densities derived from the CRA agree with radiosonde results very well at altitudes above 2.5 km. The average RMS value of their

  4. Piecewise-Constant-Model-Based Interior Tomography Applied to Dentin Tubules

    Directory of Open Access Journals (Sweden)

    Peng He

    2013-01-01

    Full Text Available Dentin is a hierarchically structured biomineralized composite material, and dentin’s tubules are difficult to study in situ. Nano-CT provides the requisite resolution, but the field of view typically contains only a few tubules. Using a plate-like specimen allows reconstruction of a volume containing specific tubules from a number of truncated projections typically collected over an angular range of about 140°, which is practically accessible. Classical computed tomography (CT theory cannot exactly reconstruct an object only from truncated projections, needless to say a limited angular range. Recently, interior tomography was developed to reconstruct a region-of-interest (ROI from truncated data in a theoretically exact fashion via the total variation (TV minimization under the condition that the ROI is piecewise constant. In this paper, we employ a TV minimization interior tomography algorithm to reconstruct interior microstructures in dentin from truncated projections over a limited angular range. Compared to the filtered backprojection (FBP reconstruction, our reconstruction method reduces noise and suppresses artifacts. Volume rendering confirms the merits of our method in terms of preserving the interior microstructure of the dentin specimen.

  5. Computerized tomography

    International Nuclear Information System (INIS)

    Rubashov, I.B.

    1985-01-01

    Operating principle is described for the devices of computerized tomography used in medicine for diagnosis of brain diseases. Computerized tomography is considered as a part of computerized diagnosis, as a part of information science. It is shown that computerized tomography is a real existed field of investigations in medicine and industrial production

  6. Dispersion-based stimulated Raman scattering spectroscopy, holography, and optical coherence tomography.

    Science.gov (United States)

    Robles, Francisco E; Fischer, Martin C; Warren, Warren S

    2016-01-11

    Stimulated Raman scattering (SRS) enables fast, high resolution imaging of chemical constituents important to biological structures and functional processes, both in a label-free manner and using exogenous biomarkers. While this technology has shown remarkable potential, it is currently limited to point scanning and can only probe a few Raman bands at a time (most often, only one). In this work we take a fundamentally different approach to detecting the small nonlinear signals based on dispersion effects that accompany the loss/gain processes in SRS. In this proof of concept, we demonstrate that the dispersive measurements are more robust to noise compared to amplitude-based measurements, which then permit spectral or spatial multiplexing (potentially both, simultaneously). Finally, we illustrate how this method may enable different strategies for biochemical imaging using phase microscopy and optical coherence tomography.

  7. Mixed Total Variation and L1 Regularization Method for Optical Tomography Based on Radiative Transfer Equation

    Directory of Open Access Journals (Sweden)

    Jinping Tang

    2017-01-01

    Full Text Available Optical tomography is an emerging and important molecular imaging modality. The aim of optical tomography is to reconstruct optical properties of human tissues. In this paper, we focus on reconstructing the absorption coefficient based on the radiative transfer equation (RTE. It is an ill-posed parameter identification problem. Regularization methods have been broadly applied to reconstruct the optical coefficients, such as the total variation (TV regularization and the L1 regularization. In order to better reconstruct the piecewise constant and sparse coefficient distributions, TV and L1 norms are combined as the regularization. The forward problem is discretized with the discontinuous Galerkin method on the spatial space and the finite element method on the angular space. The minimization problem is solved by a Jacobian-based Levenberg-Marquardt type method which is equipped with a split Bregman algorithms for the L1 regularization. We use the adjoint method to compute the Jacobian matrix which dramatically improves the computation efficiency. By comparing with the other imaging reconstruction methods based on TV and L1 regularizations, the simulation results show the validity and efficiency of the proposed method.

  8. Refraction traveltime tomography based on damped wave equation for irregular topographic model

    Science.gov (United States)

    Park, Yunhui; Pyun, Sukjoon

    2018-03-01

    Land seismic data generally have time-static issues due to irregular topography and weathered layers at shallow depths. Unless the time static is handled appropriately, interpretation of the subsurface structures can be easily distorted. Therefore, static corrections are commonly applied to land seismic data. The near-surface velocity, which is required for static corrections, can be inferred from first-arrival traveltime tomography, which must consider the irregular topography, as the land seismic data are generally obtained in irregular topography. This paper proposes a refraction traveltime tomography technique that is applicable to an irregular topographic model. This technique uses unstructured meshes to express an irregular topography, and traveltimes calculated from the frequency-domain damped wavefields using the finite element method. The diagonal elements of the approximate Hessian matrix were adopted for preconditioning, and the principle of reciprocity was introduced to efficiently calculate the Fréchet derivative. We also included regularization to resolve the ill-posed inverse problem, and used the nonlinear conjugate gradient method to solve the inverse problem. As the damped wavefields were used, there were no issues associated with artificial reflections caused by unstructured meshes. In addition, the shadow zone problem could be circumvented because this method is based on the exact wave equation, which does not require a high-frequency assumption. Furthermore, the proposed method was both robust to an initial velocity model and efficient compared to full wavefield inversions. Through synthetic and field data examples, our method was shown to successfully reconstruct shallow velocity structures. To verify our method, static corrections were roughly applied to the field data using the estimated near-surface velocity. By comparing common shot gathers and stack sections with and without static corrections, we confirmed that the proposed tomography

  9. Model-based image reconstruction in X-ray computed tomography

    NARCIS (Netherlands)

    Zbijewski, Wojciech Bartosz

    2006-01-01

    The thesis investigates the applications of iterative, statistical reconstruction (SR) algorithms in X-ray Computed Tomography. Emphasis is put on various aspects of system modeling in statistical reconstruction. Fundamental issues such as effects of object discretization and algorithm

  10. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects

    Science.gov (United States)

    Dragulescu-Andrasi, Anca; Chan, Carmel T.; Massoud, Tarik F.; Gambhir, Sanjiv S.

    2011-01-01

    Identifying protein–protein interactions (PPIs) is essential for understanding various disease mechanisms and developing new therapeutic approaches. Current methods for assaying cellular intermolecular interactions are mainly used for cells in culture and have limited use for the noninvasive assessment of small animal disease models. Here, we describe red light-emitting reporter systems based on bioluminescence resonance energy transfer (BRET) that allow for assaying PPIs both in cell culture and deep tissues of small animals. These BRET systems consist of the recently developed Renilla reniformis luciferase (RLuc) variants RLuc8 and RLuc8.6, used as BRET donors, combined with two red fluorescent proteins, TagRFP and TurboFP635, as BRET acceptors. In addition to the native coelenterazine luciferase substrate, we used the synthetic derivative coelenterazine-v, which further red-shifts the emission maxima of Renilla luciferases by 35 nm. We show the use of these BRET systems for ratiometric imaging of both cells in culture and deep-tissue small animal tumor models and validate their applicability for studying PPIs in mice in the context of rapamycin-induced FK506 binding protein 12 (FKBP12)-FKBP12 rapamycin binding domain (FRB) association. These red light-emitting BRET systems have great potential for investigating PPIs in the context of drug screening and target validation applications. PMID:21730157

  11. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method

    International Nuclear Information System (INIS)

    Zhu Ning; Jiang Yong; Kato, Seizo

    2005-01-01

    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle

  12. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery.

    Science.gov (United States)

    Chen, Daiqin; Dougherty, Casey A; Zhu, Kaicheng; Hong, Hao

    2015-07-28

    Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Specific expression of bioluminescence reporter gene in cardiomyocyte regulated by tissue specific promoter

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vu Hong; Tae, Seong Ho; Le, Nguyen Uyen Chi; Min, Jung Joon [Chonnam National University Medical School, Gwangju (Korea, Republic of)

    2007-07-01

    As the human heart is not capable of regenerating the great numbers of cardiac cells that are lost after myocardial infarction, impaired cardiac function is the inevitable result of ischemic disease. Recently, human embryonic stem cells (hESCs) have gained popularity as a potentially ideal cell candidate for tissue regeneration. In particular, hESCs are capable of cardiac lineage-specific differentiation and confer improvement of cardiac function following transplantation into animal models. Although such data are encouraging, the specific strategy for in vivo and non-invasive detection of differentiated cardiac lineage is still limited. Therefore, in the present study, we established the gene construction in which the optical reporter gene Firefly luciferase was controlled by Myosin Heavy Chain promoter for specific expressing in heart cells. The vector consisting of - MHC promoter and a firefly luciferase coding sequence flanked by full-length bovine growth hormone (BGH) 3'-polyadenylation sequence based on pcDNA3.1- vector backbone. To test the specific transcription of this promoter in g of MHC-Fluc or CMV-Flue (for control) plasmid DNA in myocardial tissue, 20 phosphate-buffered saline was directly injected into mouse myocardium through a midline sternotomy and liver. After 1 week of injection, MHC-Fluc expression was detected from heart region which was observed under cooled CCD camera of in vivo imaging system but not from liver. In control group injected with CMV-Flue, the bioluminescence was detected from all these organs. The expression of Flue under control of Myosin Heavy Chain promoter may become a suitable optical reporter gene for stem cell-derived cardiac lineage differentiation study.

  14. Design and analysis of a tendon-based computed tomography-compatible robot with remote center of motion for lung biopsy.

    Science.gov (United States)

    Yang, Yunpeng; Jiang, Shan; Yang, Zhiyong; Yuan, Wei; Dou, Huaisu; Wang, Wei; Zhang, Daguang; Bian, Yuan

    2017-04-01

    Nowadays, biopsy is a decisive method of lung cancer diagnosis, whereas lung biopsy is time-consuming, complex and inaccurate. So a computed tomography-compatible robot for rapid and precise lung biopsy is developed in this article. According to the actual operation process, the robot is divided into two modules: 4-degree-of-freedom position module for location of puncture point is appropriate for patient's almost all positions and 3-degree-of-freedom tendon-based orientation module with remote center of motion is compact and computed tomography-compatible to orientate and insert needle automatically inside computed tomography bore. The workspace of the robot surrounds patient's thorax, and the needle tip forms a cone under patient's skin. A new error model of the robot based on screw theory is proposed in view of structure error and actuation error, which are regarded as screw motions. Simulation is carried out to verify the precision of the error model contrasted with compensation via inverse kinematics. The results of insertion experiment on specific phantom prove the feasibility of the robot with mean error of 1.373 mm in laboratory environment, which is accurate enough to replace manual operation.

  15. Muons tomography applied to geosciences and volcanology

    Energy Technology Data Exchange (ETDEWEB)

    Marteau, J., E-mail: marteau@ipnl.in2p3.fr [Institut de Physique Nucleaire de Lyon (UMR CNRS-IN2P3 5822), Universite Lyon 1, Lyon (France); Gibert, D.; Lesparre, N. [Institut de Physique du Globe de Paris (UMR CNRS 7154), Sorbonne Paris Cite, Paris (France); Nicollin, F. [Geosciences Rennes (CNRS UMR 6118), Universite Rennes 1, Bat. 15 Campus de Beaulieu, 35042 Rennes cedex (France); Noli, P. [Universita degli studi di Napoli Federico II and INFN sez. Napoli (Italy); Giacoppo, F. [Laboratory for High Energy Physics, University of Bern, SidlerStrasse 5, CH-3012 Bern (Switzerland)

    2012-12-11

    Imaging the inner part of large geological targets is an important issue in geosciences with various applications. Different approaches already exist (e.g. gravimetry, electrical tomography) that give access to a wide range of information but with identified limitations or drawbacks (e.g. intrinsic ambiguity of the inverse problem, time consuming deployment of sensors over large distances). Here we present an alternative and complementary tomography method based on the measurement of the cosmic muons flux attenuation through the geological structures. We detail the basics of this muon tomography with a special emphasis on the photo-active detectors.

  16. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.

    2012-01-10

    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  17. Small scale imaging using ultrasonic tomography

    International Nuclear Information System (INIS)

    Zakaria, Z.; Abdul Rahim, R.; Megat Ali, M.S.A.; Baharuddin, M.Y.; Jahidin, A.H.

    2009-01-01

    Ultrasound technology progressed through the 1960 from simple A-mode and B-mode scans to today M-mode and Doppler two dimensional (2-D) and even three dimensional (3-D) systems. Modern ultrasound imaging has its roots in sonar technology after it was first described by Lord John Rayleigh over 100 years ago on the interaction of acoustic waves with media. Tomography technique was developed as a diagnostic tool in the medical area since the early of 1970s. This research initially focused on how to retrieve a cross sectional images from living and non-living things. After a decade, the application of tomography systems span into the industrial area. However, the long exposure time of medical radiation-based method cannot tolerate the dynamic changes in industrial process two phase liquid/ gas flow system. An alternative system such as a process tomography systems, can give information on the nature of the flow regime characteristic. The overall aim of this paper is to investigate the use of a small scale ultrasonic tomography method based on ultrasonic transmission mode tomography for online monitoring of liquid/ gas flow in pipe/ vessel system through ultrasonic transceivers application. This non-invasive technique applied sixteen transceivers as the sensing elements to cover the pipe/ vessel cross section. The paper also details the transceivers selection criteria, hardware setup, the electronic measurement circuit and also the image reconstruction algorithm applied. The system was found capable of visualizing the internal characteristics and provides the concentration profile for the corresponding liquid and gas phases. (author)

  18. F-18-fluorodeoxyglucose-positron emission tomography in colorectal cancer

    International Nuclear Information System (INIS)

    Joerg, L.; Langsteger, W.

    2002-01-01

    Whole-body positron emission tomography (PET) with the radiolabeled glucose analog F-18-fluorodeoxyglucose (F-18-FDG) is a sensitive diagnostic tool that images tumors based on increased uptake of glucose. Several recent publications have shown that F-18-fluorodeoxyglucose-positron emission tomography is more sensitive than computed-tomography (CT) in detecting colorectal cancer. In patients with increasing CEA (carcinoembryonic antigen) and no evidence of recurrent disease on CT F-18-fluorodeoxyglucose-positron emission tomography often detects recurrent cancer. In all, patient management seems to be changed in about 25 % of patients who undergo F-18-fluorodeoxyglucose-positron emission tomography in addition to standard staging procedure. Limited reports to date on both chemotherapy and radiotherapy support the role of F-18-fluorodeoxyglucose-positron emission tomography in assessing treatment response. Also regarding preoperative staging of primary colorectal cancer the literature is very limited. (author)

  19. Quantitative imaging of D-2-hydroxyglutarate (D2HG in selected histological tissue areas by a novel bioluminescence technique

    Directory of Open Access Journals (Sweden)

    Nadine Fabienne Voelxen

    2016-03-01

    Full Text Available AbstractPatients with malignant gliomas have a poor prognosis with average survival of less than one year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG, a metabolite, which was discovered first in this tumor entity. D2HG is generated in large amounts due to various gain-of–function mutations in the isocitrate dehydrogenases IDH-1 and IDH-2. Meanwhile, D2HG has been detected in several other tumor entities including intrahepatic bile-duct cancer, chondrosarcoma, acute myeloid leukemia, and angioimmunoblastic T-cell lymphoma. D2HG is barely detectable in healthy tissue (< 0.1 mM, but its concentration increases up to 35 mM in malignant tumor tissues. Consequently, the oncometabolite D2HG has gained increasing interest in the field of tumor metabolism. To facilitate its quantitative measurement without loss of spatial resolution at a microscopical level, we have developed a novel bioluminescence assay for determining D2HG in sections of snap-frozen tissue. The assay was verified independently by photometric tests and liquid chromatography / mass spectrometry (LC/MS. The novel technique allows the microscopically resolved determination of D2HG in a concentration range of 0 – 10 µmol/g tissue (wet weight. In combination with the already established bioluminescence imaging techniques for ATP, glucose, pyruvate, and lactate, the novel D2HG assay enables a comparative characterization of the metabolic profile of individual tumors in a further dimension.

  20. Synchrotron Based Phase Contrast Tomography of Hyper cholesteromic Rat Liver

    Directory of Open Access Journals (Sweden)

    Fatima A

    2017-05-01

    Full Text Available X-ray phase contrast imaging technique has been applied for the study of morphological variations in soft tissues. The effect of an antioxidant, α-lipoic acid in reducing hypercholesterolemia in rats is investigated. The experiment was conducted to measure serum lipid profile and diameter of vessels in rat liver, as liver is the most vital organ in hypolipidemic activity studies. Methods: Four groups of male Wistar rats, control (Group I, hyperlipidemic (Group II, positive control (Group III and treated Group IV were studied for serum lipid profile and liver vessels with synchrotron X-ray phase tomography. The Group I rats received chow diet, in Group II rats, administration of 20% butter rich diet induced hyperlipidemia. Group III, treated rats received hypolipidemic drug Atorvastatin and Group IV animals received a potent antioxidant DL-α-Lipoic acid. The excised liver tissue immersed in 10% formalin. X-ray phase contrast tomography was performed for comparison of diameter of liver vessels. Results: Among the four group of animals, the diameter of liver vessels was much larger in hypercholesterolemic rat (Group II. The liver vessel diameter comparison with X-ray phase contrast tomography and the lipid profile shows reduction in serum lipids and lipoproteins by ALA treatment.

  1. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji [Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2015-03-15

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  2. Volumetric quantification of bone-implant contact using micro-computed tomography analysis based on region-based segmentation

    International Nuclear Information System (INIS)

    Kang, Sung Won; Lee, Woo Jin; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Yi, Won Ji

    2015-01-01

    We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.

  3. RELIABILITY OF POSITRON EMISSION TOMOGRAPHY-COMPUTED TOMOGRAPHY IN EVALUATION OF TESTICULAR CARCINOMA PATIENTS.

    Science.gov (United States)

    Nikoletić, Katarina; Mihailović, Jasna; Matovina, Emil; Žeravica, Radmila; Srbovan, Dolores

    2015-01-01

    The study was aimed at assessing the reliability of 18F-fluorodeoxyglucose positron emission tomography-computed tomography scan in evaluation of testicular carcinoma patients. The study sample consisted of 26 scans performed in 23 patients with testicular carcinoma. According to the pathohistological finding, 14 patients had seminomas, 7 had nonseminomas and 2 patients had a mixed histological type. In 17 patients, the initial treatment was orchiectomy+chemotherapy, 2 patients had orchiectomy+chemotherapy+retroperitoneal lymph node dissection, 3 patients had orchiectomy only and one patient was treated with chemotherapy only. Abnormal computed tomography was the main cause for the oncologist to refer the patient to positron emission tomography-computed tomography scan (in 19 scans), magnetic resonance imaging abnormalities in 1 scan, high level oftumor markers in 3 and 3 scans were perforned for follow-up. Positron emission tomography-computed tomography imaging results were compared with histological results, other imaging modalities or the clinical follow-up of the patients. Positron emission tomography-computed tomography scans were positive in 6 and negative in 20 patients. In two patients, positron emission tomography-computed tomography was false positive. There were 20 negative positron emission omography-computed tomography scans perforned in 18 patients, one patient was lost for data analysis. Clinically stable disease was confirmed in 18 follow-up scans performed in 16 patients. The values of sensitivty, specificity, accuracy, and positive- and negative predictive value were 60%, 95%, 75%, 88% and 90.5%, respectively. A hgh negative predictive value obtained in our study (90.5%) suggests that there is a small possibility for a patient to have future relapse after normal positron emission tomography-computed tomography study. However, since the sensitivity and positive predictive value of the study ire rather low, there are limitations of positive

  4. Simulation of a small muon tomography station system based on RPCs

    Science.gov (United States)

    Chen, S.; Li, Q.; Ma, J.; Kong, H.; Ye, Y.; Gao, J.; Jiang, Y.

    2014-10-01

    In this work, Monte Carlo simulations were used to study the performance of a small muon Tomography Station based on four glass resistive plate chambers(RPCs) with a spatial resolution of approximately 1.0mm (FWHM). We developed a simulation code to generate cosmic ray muons with the appropriate distribution of energies and angles. PoCA and EM algorithm were used to rebuild the objects for comparison. We compared Z discrimination time with and without muon momentum measurement. The relation between Z discrimination time and spatial resolution was also studied. Simulation results suggest that mean scattering angle is a better Z indicator and upgrading to larger RPCs will improve reconstruction image quality.

  5. General rigid motion correction for computed tomography imaging based on locally linear embedding

    Science.gov (United States)

    Chen, Mianyi; He, Peng; Feng, Peng; Liu, Baodong; Yang, Qingsong; Wei, Biao; Wang, Ge

    2018-02-01

    The patient motion can damage the quality of computed tomography images, which are typically acquired in cone-beam geometry. The rigid patient motion is characterized by six geometric parameters and are more challenging to correct than in fan-beam geometry. We extend our previous rigid patient motion correction method based on the principle of locally linear embedding (LLE) from fan-beam to cone-beam geometry and accelerate the computational procedure with the graphics processing unit (GPU)-based all scale tomographic reconstruction Antwerp toolbox. The major merit of our method is that we need neither fiducial markers nor motion-tracking devices. The numerical and experimental studies show that the LLE-based patient motion correction is capable of calibrating the six parameters of the patient motion simultaneously, reducing patient motion artifacts significantly.

  6. Generation of three-dimensional prototype models based on cone beam computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M. [University of Basel, Department of Oral Surgery, University Hospital for Oral Surgery, Oral Radiology and Oral Medicine, Basel (Switzerland); Schumacher, R. [University of Applied Sciences Northwestern Switzerland, School of Life Sciences, Institute for Medical and Analytical Technologies, Muttenz (Switzerland)

    2009-03-15

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  7. Generation of three-dimensional prototype models based on cone beam computed tomography

    International Nuclear Information System (INIS)

    Lambrecht, J.T.; Berndt, D.C.; Zehnder, M.; Schumacher, R.

    2009-01-01

    The purpose of this study was to generate three-dimensional models based on digital volumetric data that can be used in basic and advanced education. Four sets of digital volumetric data were established by cone beam computed tomography (CBCT) (Accuitomo, J. Morita, Kyoto, Japan). Datasets were exported as Dicom formats and imported into Mimics and Magic software programs to separate the different tissues such as nerve, tooth and bone. These data were transferred to a Polyjet 3D Printing machine (Eden 330, Object, Israel) to generate the models. Three-dimensional prototype models of certain limited anatomical structures as acquired volumetrically were fabricated. Generating three-dimensional models based on CBCT datasets is possible. Automated routine fabrication of these models, with the given infrastructure, is too time-consuming and therefore too expensive. (orig.)

  8. First image from a combined positron emission tomography and field-cycled MRI system.

    Science.gov (United States)

    Bindseil, Geron A; Gilbert, Kyle M; Scholl, Timothy J; Handler, William B; Chronik, Blaine A

    2011-07-01

    Combining positron emission tomography and MRI modalities typically requires using either conventional MRI with a MR-compatible positron emission tomography system or a modified MR system with conventional positron emission tomography. A feature of field-cycled MRI is that all magnetic fields can be turned off rapidly, enabling the use of conventional positron emission tomography detectors based on photomultiplier tubes. In this demonstration, two photomultiplier tube-based positron emission tomography detectors were integrated with a field-cycled MRI system (0.3 T/4 MHz) by placing them into a 9-cm axial gap. A positron emission tomography-MRI phantom consisting of a triangular arrangement of positron-emitting point sources embedded in an onion was imaged in a repeating interleaved sequence of ∼1 sec MRI then 1 sec positron emission tomography. The first multimodality images from the combined positron emission tomography and field-cycled MRI system show no additional artifacts due to interaction between the systems and demonstrate the potential of this approach to combining positron emission tomography and MRI. Copyright © 2010 Wiley-Liss, Inc.

  9. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data.

    Science.gov (United States)

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-02-11

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas.

  10. Tomography

    International Nuclear Information System (INIS)

    1985-01-01

    Already widely accepted in medicine, tomography can also be useful in industry. The theory behind tomography and a demonstration of the technique to inspect a motorcycle carburetor is presented. To demonstrate the potential of computer assisted tomography (CAT) to accurately locate defects in three dimensions, a sectioned 5 cm gate valve with a shrink cavity made visible by the sectioning was tomographically imaged using a Co-60 source. The tomographic images revealed a larger cavity below the sectioned surface. The position of this cavity was located with an in-plane and axial precision of approximately +-1 mm. The volume of the cavity was estimated to be approximately 40 mm 3

  11. Real-time bioluminescence imaging of macroencapsulated fibroblasts reveals allograft protection in rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Tarantal, Alice F; Lee, C Chang I; Itkin-Ansari, Pamela

    2009-07-15

    Encapsulation of cells has the potential to eliminate the need for immunosuppression for cellular transplantation. Recently, the TheraCyte device was shown to provide long-term immunoprotection of murine islets in a mouse model of diabetes. In this report, translational studies were undertaken using skin fibroblasts from an unrelated rhesus monkey donor that were transduced with an HIV-1-derived lentiviral vector expressing firefly luciferase permitting the use of bioluminescence imaging (BLI) to monitor cell survival over time and in a noninvasive manner. Encapsulated cells were transplanted subcutaneously (n=2), or cells were injected without encapsulation (n=1) and outcomes compared. BLI was performed to monitor cell survival. The BLI signal from the encapsulated cells remained robust postinsertion and in one animal persisted for up to 1 year. In contrast, the control animal that received unencapsulated cells exhibited a complete loss of cell signal within 14 days. These data demonstrate that TheraCyte encapsulation of allogeneic cells provides robust immune protection in transplanted rhesus monkeys.

  12. Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer

    DEFF Research Database (Denmark)

    Bouchelouche, Kirsten; Capala, Jacek; Oehr, Peter

    2009-01-01

    of a number of diagnostic and therapeutic strategies. J591, a monoclonal antibody, which targets the extracellular domain of prostate-specific membrane antigen, shows promising results. HER2 receptors may also have a potential as target for PET/CT imaging and RIT of advanced prostate cancer. SUMMARY: PET......PURPOSE OF REVIEW: Traditional morphologically based imaging modalities are now being complemented by positron emission tomography (PET)/computed tomography (CT) in prostate cancer. Metastatic prostate cancer is an attractive target for radioimmunotherapy (RIT) as no effective therapies...... are available. This review highlights the most important achievements within the last year in PET/CT and RIT of prostate cancer. RECENT FINDINGS: Conflicting results exist on the use of choline for detection of malignant disease in the prostate gland. The role of PET/CT in N-staging remains to be elucidated...

  13. WE-EF-BRA-01: A Dual-Use Optical Tomography System for Small Animal Radiation Research Platform (SARRP)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, K; Bin, Z; Wong, J [Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Hospital, Baltimore, MD (United States); He, X; Iordachita, I [Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, MD (United States)

    2015-06-15

    Purpose: We develop a novel dual-use configuration for a tri-modality, CBCT/bioluminescence tomography(BLT)/fluorescence tomography(FT), imaging system with the SARRP that can function as a standalone system for longitudinal imaging research and on-board the SARRP to guide irradiation. BLT provides radiation guidance for soft tissue target, while FT offers functional information allowing mechanistic investigations. Methods: The optical assembly includes CCD camera, lens, filter wheel, 3-way mirrors, scanning fiber system and light-tight enclosure. The rotating mirror system directs the optical signal from the animal surface to the camera at multiple projection over 180 degree. The fiber-laser system serves as the external light source for the FT application. Multiple filters are used for multispectral imaging to enhance localization accuracy using BLT. SARRP CBCT provides anatomical information and geometric mesh for BLT/FT reconstruction. To facilitate dual use, the 3-way mirror system is cantilevered in front of the camera. The entire optical assembly is driven by a 1D linear stage to dock onto an independent mouse support bed for standalone application. After completion of on-board optical imaging, the system is retracted from the SARRP to allow irradiation of the mouse. Results: A tissue-simulating phantom and a mouse model with a luminescence light source are used to demonstrate the function of the dual-use optical system. Feasibility data have been obtained based on a manual-docking prototype. The center of mass of light source determined in living mouse with on-board BLT is within 1±0.2mm of that with CBCT. The performance of the motorized system is expected to be the same and will be presented. Conclusion: We anticipate the motorized dual use system provide significant efficiency gain over our manual docking and off-line system. By also supporting off-line longitudinal studies independent of the SARRP, the dual-use system is a highly efficient and cost

  14. Speckle reduction in optical coherence tomography images based on wave atoms

    Science.gov (United States)

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  15. Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy

    NARCIS (Netherlands)

    Parodi, Katia; Paganetti, Harald; Shih, Helen A; Michaud, Susan; Loeffler, Jay S; DeLaney, Thomas F; Liebsch, Norbert J; Munzenrider, John E; Fischman, Alan J; Knopf, Antje; Bortfeld, Thomas

    2007-01-01

    PURPOSE: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. METHODS AND MATERIALS: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3

  16. The transesophageal echocardiography simulator based on computed tomography images.

    Science.gov (United States)

    Piórkowski, Adam; Kempny, Aleksander

    2013-02-01

    Simulators are a new tool in education in many fields, including medicine, where they greatly improve familiarity with medical procedures, reduce costs, and, importantly, cause no harm to patients. This is so in the case of transesophageal echocardiography (TEE), in which the use of a simulator facilitates spatial orientation and helps in case studies. The aim of the project described in this paper is to simulate an examination by TEE. This research makes use of available computed tomography data to simulate the corresponding echocardiographic view. This paper describes the essential characteristics that distinguish these two modalities and the key principles of the wave phenomena that should be considered in the simulation process, taking into account the conditions specific to the echocardiography. The construction of the CT2TEE (Web-based TEE simulator) is also presented. The considerations include ray-tracing and ray-casting techniques in the context of ultrasound beam and artifact simulation. An important aspect of the interaction with the user is raised.

  17. Micro-tomography based Geometry Modeling of Three-Dimensional Braided Composites

    Science.gov (United States)

    Fang, Guodong; Chen, Chenghua; Yuan, Shenggang; Meng, Songhe; Liang, Jun

    2018-06-01

    A tracking and recognizing algorithm is proposed to automatically generate irregular cross-sections and central path of braid yarn within the 3D braided composites by using sets of high resolution tomography images. Only the initial cross-sections of braid yarns in a tomography image after treatment are required to be calibrated manually as searching cross-section template. The virtual geometry of 3D braided composites including some detailed geometry information, such as the braid yarn squeezing deformation, braid yarn distortion and braid yarn path deviation etc., can be reconstructed. The reconstructed geometry model can reflect the change of braid configurations during solidification process. The geometry configurations and mechanical properties of the braided composites are analyzed by using the reconstructed geometry model.

  18. Mathematics of Computed Tomography

    Science.gov (United States)

    Hawkins, William Grant

    A review of the applications of the Radon transform is presented, with emphasis on emission computed tomography and transmission computed tomography. The theory of the 2D and 3D Radon transforms, and the effects of attenuation for emission computed tomography are presented. The algebraic iterative methods, their importance and limitations are reviewed. Analytic solutions of the 2D problem the convolution and frequency filtering methods based on linear shift invariant theory, and the solution of the circular harmonic decomposition by integral transform theory--are reviewed. The relation between the invisible kernels, the inverse circular harmonic transform, and the consistency conditions are demonstrated. The discussion and review are extended to the 3D problem-convolution, frequency filtering, spherical harmonic transform solutions, and consistency conditions. The Cormack algorithm based on reconstruction with Zernike polynomials is reviewed. An analogous algorithm and set of reconstruction polynomials is developed for the spherical harmonic transform. The relations between the consistency conditions, boundary conditions and orthogonal basis functions for the 2D projection harmonics are delineated and extended to the 3D case. The equivalence of the inverse circular harmonic transform, the inverse Radon transform, and the inverse Cormack transform is presented. The use of the number of nodes of a projection harmonic as a filter is discussed. Numerical methods for the efficient implementation of angular harmonic algorithms based on orthogonal functions and stable recursion are presented. The derivation of a lower bound for the signal-to-noise ratio of the Cormack algorithm is derived.

  19. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses ... CT of the Sinuses? What is CT (Computed Tomography) of the Sinuses? Computed tomography, more commonly known ...

  20. Use of L-Glutamic Acid in a New Enrichment Broth (R-TATP Broth) for Detecting the Presence or Absence of Molds in Raw Ingredients/Personal Care Product Formulations by Using an ATP Bioluminescence Assay.

    Science.gov (United States)

    Yang, Youjun; English, Donald J

    The present study reports the effects of adding L-glutamic acid to a new enrichment broth designated as R-TATP broth, to promote the growth of slow-growing mold microorganisms such as Aspergillus brasiliensis and Aspergillus oryzae , without interfering in the growth of other types of microorganisms. This L-glutamic acid containing enrichment broth would be particularly valuable in a rapid microbial detection assay such as an adenosine triphosphate (ATP) bioluminescence assay. By using this new enrichment broth, the amount of ATP (represented as relative light unit ratio after normalized with the negative test control) from mold growth was significantly increased by reducing the time of detection of microbial contamination in a raw ingredient or personal care product formulation from an incubation period of 48-18 h. By using L-glutamic acid in this enrichment broth, the lag phase of the mold growth cycle was shortened. In response to various concentrations of L-glutamic acid in R-TATP broth, there was an increased amount of ATP that had been produced by mold metabolism in an ATP bioluminescence assay. By using L-glutamic acid in R-TATP broth in an ATP bioluminescence assay, the presence of mold could be detected in 18 h as well as other types of microorganisms that may or may not be present in a test sample. By detecting the presence or absence of microbial contamination in 18 h, it is superior in comparison to a 48-96 h incubation period by using either a standard or rapid detection method.

  1. Clinical optical coherence tomography combined with multiphoton tomography for evaluation of several skin disorders

    Science.gov (United States)

    König, Karsten; Speicher, Marco; Bückle, Rainer; Reckfort, Julia; McKenzie, Gordon; Welzel, Julia; Koehler, Martin J.; Elsner, Peter; Kaatz, Martin

    2010-02-01

    The first clinical trial of optical coherence tomography (OCT) combined with multiphoton tomography (MPT) and dermoscopy is reported. State-of-the-art (i) OCT systems for dermatology (e.g. multibeam swept source OCT), (ii) the femtosecond laser multiphoton tomograph DermaInspectTM, and (iii) digital dermoscopes were applied to 47 patients with a diversity of skin diseases and disorders such as skin cancer, psoriasis, hemangioma, connective tissue diseases, pigmented lesions, and autoimmune bullous skin diseases. Dermoscopy, also called 'epiluminescent microscopy', provides two-dimensional color images of the skin surface. OCT imaging is based on the detection of optical reflections within the tissue measured interferometrically whereas nonlinear excitation of endogenous fluorophores and the second harmonic generation are the bases of MPT images. OCT cross sectional "wide field" image provides a typical field of view of 5 x 2 mm2 and offers fast information on the depth and the volume of the investigated lesion. In comparison, multiphoton tomography presents 0.36 x 0.36 mm2 horizontal or diagonal sections of the region of interest within seconds with submicron resolution and down to a tissue depth of 200 μm. The combination of OCT and MPT provides a synergistic optical imaging modality for early detection of skin cancer and other skin diseases.

  2. Celebral computerized tomography

    International Nuclear Information System (INIS)

    Lofteroed, B.; Sortland, O.

    1985-01-01

    Indications for cerebral computerized tomography (CT) and the diagnostic results from this examination are evaluated in 127 children. Pathological changes were found in 31 children, mostly based on such indications as increasing head size, suspicion of brain tumor, cerebral paresis, delayed psychomotor development and epileptic seizures. A list of indications for CT in children is given

  3. Hunting in bioluminescent light: Vision in the nocturnal box jellyfish Copula sivickisi

    Directory of Open Access Journals (Sweden)

    Anders eGarm

    2016-03-01

    Full Text Available Cubomedusae all have a similar set of six eyes on each of their four rhopalia. Still, there is a great variation in activity patterns with some species being strictly day active while others are strictly night active. Here we have examined the visual ecology of the medusa of the night active Copula sivickisi from Okinawa using optics, morphology, electrophysiology, and behavioural experiments. We found the lenses of both the upper and the lower lens eyes to be image forming but under-focused, resulting in low spatial resolution in the order of 10 – 15 degrees. The photoreceptor physiology is similar in the two lens eyes and they have a single opsin peaking around 460 nm and low temporal resolution with a flicker fusion frequency (fff of 2.5 Hz indicating adaptions to vision in low light intensities. Further, the outer segments have fluid filled swellings, which may concentrate the light in the photoreceptor membrane by total internal reflections, and thus enhance the signal to noise ratio in the eyes. Finally our behavioural experiments confirmed that the animals use vision when hunting. When they are active at night they seek out high prey-concentration by visual attraction to areas with abundant bioluminescent flashes triggered by their prey.

  4. Efficient L1 regularization-based reconstruction for fluorescent molecular tomography using restarted nonlinear conjugate gradient.

    Science.gov (United States)

    Shi, Junwei; Zhang, Bin; Liu, Fei; Luo, Jianwen; Bai, Jing

    2013-09-15

    For the ill-posed fluorescent molecular tomography (FMT) inverse problem, the L1 regularization can protect the high-frequency information like edges while effectively reduce the image noise. However, the state-of-the-art L1 regularization-based algorithms for FMT reconstruction are expensive in memory, especially for large-scale problems. An efficient L1 regularization-based reconstruction algorithm based on nonlinear conjugate gradient with restarted strategy is proposed to increase the computational speed with low memory consumption. The reconstruction results from phantom experiments demonstrate that the proposed algorithm can obtain high spatial resolution and high signal-to-noise ratio, as well as high localization accuracy for fluorescence targets.

  5. Wavelet-based multiscale adjoint waveform-difference tomography using body and surface waves

    Science.gov (United States)

    Yuan, Y. O.; Simons, F. J.; Bozdag, E.

    2014-12-01

    We present a multi-scale scheme for full elastic waveform-difference inversion. Using a wavelet transform proves to be a key factor to mitigate cycle-skipping effects. We start with coarse representations of the seismogram to correct a large-scale background model, and subsequently explain the residuals in the fine scales of the seismogram to map the heterogeneities with great complexity. We have previously applied the multi-scale approach successfully to body waves generated in a standard model from the exploration industry: a modified two-dimensional elastic Marmousi model. With this model we explored the optimal choice of wavelet family, number of vanishing moments and decomposition depth. For this presentation we explore the sensitivity of surface waves in waveform-difference tomography. The incorporation of surface waves is rife with cycle-skipping problems compared to the inversions considering body waves only. We implemented an envelope-based objective function probed via a multi-scale wavelet analysis to measure the distance between predicted and target surface-wave waveforms in a synthetic model of heterogeneous near-surface structure. Our proposed method successfully purges the local minima present in the waveform-difference misfit surface. An elastic shallow model with 100~m in depth is used to test the surface-wave inversion scheme. We also analyzed the sensitivities of surface waves and body waves in full waveform inversions, as well as the effects of incorrect density information on elastic parameter inversions. Based on those numerical experiments, we ultimately formalized a flexible scheme to consider both body and surface waves in adjoint tomography. While our early examples are constructed from exploration-style settings, our procedure will be very valuable for the study of global network data.

  6. Motion-compensated optical coherence tomography using envelope-based surface detection and Kalman-based prediction

    Science.gov (United States)

    Irsch, Kristina; Lee, Soohyun; Bose, Sanjukta N.; Kang, Jin U.

    2018-02-01

    We present an optical coherence tomography (OCT) imaging system that effectively compensates unwanted axial motion with micron-scale accuracy. The OCT system is based on a swept-source (SS) engine (1060-nm center wavelength, 100-nm full-width sweeping bandwidth, and 100-kHz repetition rate), with axial and lateral resolutions of about 4.5 and 8.5 microns respectively. The SS-OCT system incorporates a distance sensing method utilizing an envelope-based surface detection algorithm. The algorithm locates the target surface from the B-scans, taking into account not just the first or highest peak but the entire signature of sequential A-scans. Subsequently, a Kalman filter is applied as predictor to make up for system latencies, before sending the calculated position information to control a linear motor, adjusting and maintaining a fixed system-target distance. To test system performance, the motioncorrection algorithm was compared to earlier, more basic peak-based surface detection methods and to performing no motion compensation. Results demonstrate increased robustness and reproducibility, particularly noticeable in multilayered tissues, while utilizing the novel technique. Implementing such motion compensation into clinical OCT systems may thus improve the reliability of objective and quantitative information that can be extracted from OCT measurements.

  7. GPU-based cone beam computed tomography.

    Science.gov (United States)

    Noël, Peter B; Walczak, Alan M; Xu, Jinhui; Corso, Jason J; Hoffmann, Kenneth R; Schafer, Sebastian

    2010-06-01

    The use of cone beam computed tomography (CBCT) is growing in the clinical arena due to its ability to provide 3D information during interventions, its high diagnostic quality (sub-millimeter resolution), and its short scanning times (60 s). In many situations, the short scanning time of CBCT is followed by a time-consuming 3D reconstruction. The standard reconstruction algorithm for CBCT data is the filtered backprojection, which for a volume of size 256(3) takes up to 25 min on a standard system. Recent developments in the area of Graphic Processing Units (GPUs) make it possible to have access to high-performance computing solutions at a low cost, allowing their use in many scientific problems. We have implemented an algorithm for 3D reconstruction of CBCT data using the Compute Unified Device Architecture (CUDA) provided by NVIDIA (NVIDIA Corporation, Santa Clara, California), which was executed on a NVIDIA GeForce GTX 280. Our implementation results in improved reconstruction times from minutes, and perhaps hours, to a matter of seconds, while also giving the clinician the ability to view 3D volumetric data at higher resolutions. We evaluated our implementation on ten clinical data sets and one phantom data set to observe if differences occur between CPU and GPU-based reconstructions. By using our approach, the computation time for 256(3) is reduced from 25 min on the CPU to 3.2 s on the GPU. The GPU reconstruction time for 512(3) volumes is 8.5 s. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  8. Projection model for flame chemiluminescence tomography based on lens imaging

    Science.gov (United States)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  9. Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer.

    Science.gov (United States)

    De, Abhijit; Gambhir, Sanjiv Sam

    2005-12-01

    This study demonstrates a significant advancement of imaging of a distance-dependent physical process, known as the bioluminescent resonance energy transfer (BRET2) signal in living subjects, by using a cooled charge-coupled device (CCD) camera. A CCD camera-based spectral imaging strategy enables simultaneous visualization and quantitation of BRET signal from live cells and cells implanted in living mice. We used the BRET2 system, which utilizes Renilla luciferase (hRluc) protein and its substrate DeepBlueC (DBC) as an energy donor and a mutant green fluorescent protein (GFP2) as the acceptor. To accomplish this objective in this proof-of-principle study, the donor and acceptor proteins were fused to FKBP12 and FRB, respectively, which are known to interact only in the presence of the small molecule mediator rapamycin. Mammalian cells expressing these fusion constructs were imaged using a cooled-CCD camera either directly from culture dishes or by implanting them into mice. By comparing the emission photon yields in the presence and absence of rapamycin, the specific BRET signal was determined. The CCD imaging approach of BRET signal is particularly appealing due to its capacity to seamlessly bridge the gap between in vitro and in vivo studies. This work validates BRET as a powerful tool for interrogating and observing protein-protein interactions directly at limited depths in living mice.

  10. Detection of lymph node metastasis in patients with nodal prostate cancer relapse using (18)F/(11)C-choline positron emission tomography/computerized tomography.

    Science.gov (United States)

    Jilg, Cordula A; Schultze-Seemann, Wolfgang; Drendel, Vanessa; Vach, Werner; Wieser, Gesche; Krauss, Tobias; Jandausch, Anett; Hölz, Stefanie; Henne, Karl; Reske, Sven N; Grosu, Anca-L; Weber, Wolfgang A; Rischke, H Christian

    2014-07-01

    We evaluated the diagnostic accuracy of choline positron emission tomography/computerized tomography for nodal relapse of prostate cancer according to topographical site and tumor infiltration size in lymph nodes. A total of 72 patients with nodal prostate cancer relapse after primary therapy underwent pelvic and/or retroperitoneal salvage lymph node dissection. Salvage was done after whole body positron emission tomography/computerized tomography with (11)C-choline or (18)F-fluoroethylcholine showed positron emission tomography positive lymph nodes but no other detectable metastasis. Diagnostic accuracy was evaluated in 160 dissected lymph node regions (pelvic left/right and retroperitoneal), 498 subregions (common, external and internal iliac, obturator, presacral, aortic bifurcation, aortal, vena caval and interaortocaval) and 2,122 lymph nodes. Lymph node metastasis was present in 32% of resected lymph nodes (681 of 2,122), resulting in 238 positive subregions and 111 positive regions. Positron emission tomography/computerized tomography was positive for 110 regions and 209 subregions. Sensitivity, specificity, positive and negative predictive values, and accuracy were 91.9%, 83.7%, 92.7%, 82.0% and 89.4% (region based), 80.7%, 93.5%, 91.9%, 84.1% and 87.3% (subregion based), and 57.0%, 98.4%, 94.5%, 82.6% and 84.9% (lesion based), respectively. Of 393 positive lymph node metastases detected by this method 278 (70.7%) were in lymph nodes with a less than 10 mm short axis diameter. Imaging sensitivity was 13.3%, 57.4% and 82.8% for a tumor infiltration depth of 2 or greater to less than 3 mm, 5 or greater to less than 6 mm and 10 or greater to less than 11 mm, respectively. Lymph node metastasis site and the radiotracer ((11)C-choline/(18)F-fluoroethylcholine) had no substantial impact on diagnostic accuracy. Choline positron emission tomography/computerized tomography detects affected lymph node regions (pelvic left/right and retroperitoneal) in patients with

  11. In Vivo Diffuse Optical Tomography and Fluorescence Molecular Tomography

    Directory of Open Access Journals (Sweden)

    Mingze Li

    2010-01-01

    Full Text Available Diffuse optical tomography (DOT and fluorescence molecular tomography (FMT are two attractive imaging techniques for in vivo physiological and psychological research. They have distinct advantages such as non-invasiveness, non-ionizing radiation, high sensitivity and longitudinal monitoring. This paper reviews the key components of DOT and FMT. Light propagation model, mathematical reconstruction algorithm, imaging instrumentation and medical applications are included. Future challenges and perspective on optical tomography are discussed.

  12. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    Science.gov (United States)

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  13. Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography.

    Science.gov (United States)

    Oh, Junghwan; Feldman, Marc D; Kim, Jihoon; Kang, Hyun Wook; Sanghi, Pramod; Milner, Thomas E

    2007-03-01

    A novel method to detect tissue-based macrophages using a combination of superparamagnetic iron oxide (SPIO) nanoparticles and differential phase optical coherence tomography (DP-OCT) with an external oscillating magnetic field is reported. Magnetic force acting on iron-laden tissue-based macrophages was varied by applying a sinusoidal current to a solenoid containing a conical iron core that substantially focused and increased magnetic flux density. Nanoparticle motion was detected with DP-OCT, which can detect tissue movement with nanometer resolution. Frequency response of iron-laden tissue movement was twice the modulation frequency since the magnetic force is proportional to the product of magnetic flux density and gradient. Results of our experiments indicate that DP-OCT can be used to identify tissue-based macrophage when excited by an external focused oscillating magnetic field. (c) 2007 Wiley-Liss, Inc

  14. A reconstruction algorithm for electrical impedance tomography based on sparsity regularization

    KAUST Repository

    Jin, Bangti

    2011-08-24

    This paper develops a novel sparse reconstruction algorithm for the electrical impedance tomography problem of determining a conductivity parameter from boundary measurements. The sparsity of the \\'inhomogeneity\\' with respect to a certain basis is a priori assumed. The proposed approach is motivated by a Tikhonov functional incorporating a sparsity-promoting ℓ 1-penalty term, and it allows us to obtain quantitative results when the assumption is valid. A novel iterative algorithm of soft shrinkage type was proposed. Numerical results for several two-dimensional problems with both single and multiple convex and nonconvex inclusions were presented to illustrate the features of the proposed algorithm and were compared with one conventional approach based on smoothness regularization. © 2011 John Wiley & Sons, Ltd.

  15. Breast ultrasound tomography with total-variation regularization

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lianjie [Los Alamos National Laboratory; Li, Cuiping [KARMANOS CANCER INSTIT.; Duric, Neb [KARMANOS CANCER INSTIT

    2009-01-01

    Breast ultrasound tomography is a rapidly developing imaging modality that has the potential to impact breast cancer screening and diagnosis. A new ultrasound breast imaging device (CURE) with a ring array of transducers has been designed and built at Karmanos Cancer Institute, which acquires both reflection and transmission ultrasound signals. To extract the sound-speed information from the breast data acquired by CURE, we have developed an iterative sound-speed image reconstruction algorithm for breast ultrasound transmission tomography based on total-variation (TV) minimization. We investigate applicability of the TV tomography algorithm using in vivo ultrasound breast data from 61 patients, and compare the results with those obtained using the Tikhonov regularization method. We demonstrate that, compared to the Tikhonov regularization scheme, the TV regularization method significantly improves image quality, resulting in sound-speed tomography images with sharp (preserved) edges of abnormalities and few artifacts.

  16. Synchrotron radiography and tomography of a PEM fuel cell; Synchrotron-Radiographie und -Tomographie einer PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Markoetter, Henning; Manke, Ingo [Helmholtzzentrum Berlin fuer Materialien und Energie, Berlin (Germany). Fachgruppe Bildgebende Verfahren; Arlt, Tobias [TU Berlin, Berlin (Germany); Banhart, John [TU Berlin, Institut fuer angewandte Materialforschung, Berlin (Germany); TU Berlin, Institut fuer Werkstoffwissenschaften und -technologien, Berlin (Germany); Riesemeier, Heinrich [Bundesanstalt fuer Materialforschung und -pruefung (BAM), Arbeitsgruppe Synchrotronstrahlanalytik (Germany); Krueger, Philipp [CONSULECTRA Unternehmensberatung GmbH, Hamburg (Germany); Haussmann, Jan; Klages, Merle [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany); Scholta, Joachim [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung, Stuttgart (Germany). Fachgruppe Brennstoffzellen-Stacks

    2013-06-01

    The three dimensional water distribution and transport pathways in gas diffusion layers (GDL) of a polymer electrolyte membrane fuell cell (PEM FC) are analysed at various operating conditions. The method of quasi in-situ X-ray tomography is used for a three dimensional visualization of the water distribution and the GDL structure. Based on the results of dynamic radiographic measurements water transport pathways are located and subsequently investigated in detail by means of tomography. The combination of 2D and 3D techniques allows for an identification of 3D transport pathways through the GDl.

  17. Image reconstruction method for electrical capacitance tomography based on the combined series and parallel normalization model

    International Nuclear Information System (INIS)

    Dong, Xiangyuan; Guo, Shuqing

    2008-01-01

    In this paper, a novel image reconstruction method for electrical capacitance tomography (ECT) based on the combined series and parallel model is presented. A regularization technique is used to obtain a stabilized solution of the inverse problem. Also, the adaptive coefficient of the combined model is deduced by numerical optimization. Simulation results indicate that it can produce higher quality images when compared to the algorithm based on the parallel or series models for the cases tested in this paper. It provides a new algorithm for ECT application

  18. Inherent Limitations of Hydraulic Tomography

    Science.gov (United States)

    Bohling, Geoffrey C.; Butler, J.J.

    2010-01-01

    We offer a cautionary note in response to an increasing level of enthusiasm regarding high-resolution aquifer characterization with hydraulic tomography. We use synthetic examples based on two recent field experiments to demonstrate that a high degree of nonuniqueness remains in estimates of hydraulic parameter fields even when those estimates are based on simultaneous analysis of a number of carefully controlled hydraulic tests. We must, therefore, be careful not to oversell the technique to the community of practicing hydrogeologists, promising a degree of accuracy and resolution that, in many settings, will remain unattainable, regardless of the amount of effort invested in the field investigation. No practically feasible amount of hydraulic tomography data will ever remove the need to regularize or bias the inverse problem in some fashion in order to obtain a unique solution. Thus, along with improving the resolution of hydraulic tomography techniques, we must also strive to couple those techniques with procedures for experimental design and uncertainty assessment and with other more cost-effective field methods, such as geophysical surveying and, in unconsolidated formations, direct-push profiling, in order to develop methods for subsurface characterization with the resolution and accuracy needed for practical field applications. Copyright ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  19. Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data

    International Nuclear Information System (INIS)

    Szigeti, Krisztián; Szabó, Tibor; Korom, Csaba; Czibak, Ilona; Horváth, Ildikó; Veres, Dániel S.; Gyöngyi, Zoltán; Karlinger, Kinga; Bergmann, Ralf; Pócsik, Márta; Budán, Ferenc; Máthé, Domokos

    2016-01-01

    Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann–Whitney post hoc (MWph) tests were used. Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas. The online version of this article (doi:10.1186/s12880-016-0118-z) contains supplementary material, which is available to authorized users

  20. Whole brain imaging with Serial Two-Photon Tomography

    Directory of Open Access Journals (Sweden)

    Stephen P Amato

    2016-03-01

    Full Text Available Imaging entire mouse brains at submicron resolution has historically been a challenging undertaking and largely confined to the province of dedicated atlasing initiatives. The has limited systematic investigations into important areas of neuroscience, such as neural circuits, brain mapping and neurodegeneration. In this paper, we describe in detail Serial Two-Photon (STP tomography, a robust, reliable method for imaging entire brains with histological detail. We provide examples of how the basic methodology can be extended to other imaging modalities, such as optical coherence tomography, in order to provide unique contrast mechanisms. Furthermore we provide a survey of the research that STP tomography has enabled in the field of neuroscience, provide examples of how this technology enables quantitative whole brain studies, and discuss the current limitations of STP tomography-based approaches

  1. Data on analysis of coronary atherosclerosis on computed tomography and 18F-sodium fluoride positron emission tomography

    Directory of Open Access Journals (Sweden)

    Toshiro Kitagawa

    2017-08-01

    Full Text Available This article contains the data showing illustrative examples of plaque classification on coronary computed tomography angiography (CCTA and measurement of 18F-sodium fluoride (18F-NaF uptake in coronary atherosclerotic lesions on positron emission tomography (PET. We divided the lesions into one of three plaque types on CCTA (calcified plaque, non-calcified plaque, partially calcified plaque. Focal 18F-NaF uptake of each lesion was quantified using maximum tissue-to-background ratio. This article also provides a representative case with a non-calcified coronary plaque detected on CCTA and identified on 18F-NaF PET/non-contrast computed tomography based on a location of a vessel branch as a landmark. These complement the data reported by Kitagawa et al. (2017 [1].

  2. Intracranial implantation with subsequent 3D in vivo bioluminescent imaging of murine gliomas.

    Science.gov (United States)

    Abdelwahab, Mohammed G; Sankar, Tejas; Preul, Mark C; Scheck, Adrienne C

    2011-11-06

    The mouse glioma 261 (GL261) is recognized as an in vivo model system that recapitulates many of the features of human glioblastoma multiforme (GBM). The cell line was originally induced by intracranial injection of 3-methyl-cholantrene into a C57BL/6 syngeneic mouse strain (1); therefore, immunologically competent C57BL/6 mice can be used. While we use GL261, the following protocol can be used for the implantation and monitoring of any intracranial mouse tumor model. GL261 cells were engineered to stably express firefly luciferase (GL261-luc). We also created the brighter GL261-luc2 cell line by stable transfection of the luc2 gene expressed from the CMV promoter. C57BL/6-cBrd/cBrd/Cr mice (albino variant of C57BL/6) from the National Cancer Institute, Frederick, MD were used to eliminate the light attenuation caused by black skin and fur. With the use of albino C57BL/6 mice; in vivo imaging using the IVIS Spectrum in vivo imaging system is possible from the day of implantation (Caliper Life Sciences, Hopkinton, MA). The GL261-luc and GL261-luc2 cell lines showed the same in vivo behavior as the parental GL261 cells. Some of the shared histological features present in human GBMs and this mouse model include: tumor necrosis, pseudopalisades, neovascularization, invasion, hypercellularity, and inflammation (1). Prior to implantation animals were anesthetized by an intraperitoneal injection of ketamine (50 mg/kg), xylazine (5 mg/kg) and buprenorphine (0.05 mg/kg), placed in a stereotactic apparatus and an incision was made with a scalpel over the cranial midline. A burrhole was made 0.1 mm posterior to the bregma and 2.3mm to the right of the midline. A needle was inserted to a depth of 3mm and withdrawn 0.4 mm to a depth of 2.6 mm. Two μl of GL261-luc or GL261-luc2 cells (10(7) cells/ml) were infused over the course of 3 minutes. The burrhole was closed with bonewax and the incision was sutured. Following stereotactic implantation the bioluminescent cells are

  3. Development of emission computed tomography in Japan

    International Nuclear Information System (INIS)

    Tanaka, E.

    1984-01-01

    Two positron emission computed tomography (PCT) devices developed in Japan are described. One is for head and the other for wholebody. The devices show fairly quantitative images with slight modifications of the existing algorithms because they were developed based on filtered back-projection. The PCT device seems to be better than the single photon emission computed tomography (SPECT) since it provides adequade compensation for photon attenuation in patients. (M.A.C.) [pt

  4. Positron emission tomography

    International Nuclear Information System (INIS)

    Reivich, M.; Alavi, A.

    1985-01-01

    This book contains 24 selections. Some of the titles are: Positron Emission Tomography Instrumentation, Generator Systems for Positron Emitters, Reconstruction Algorithms, Cerebral Glucose Consumption: Methodology and Validation, Cerebral Blood Flow Tomography Using Xenon-133 Inhalation: Methods and Clinical Applications, PET Studies of Stroke, Cardiac Positron Emission Tomography, and Use of PET in Oncology

  5. Comparison between conventional tomography and computer tomography in diseases of the sacroiliac joints

    International Nuclear Information System (INIS)

    Moritz, J.D.; Ganter, H.; Winter, C.; Evangelisches Krankenhaus, Giessen

    1990-01-01

    16 patients with diseases of the sacroiliac joints were examined both with computer tomography and with conventional tomography. Both techniques were characterized by a high sensitivity. Computer tomography was superior in exactly delineating the extent of the pathologic changes. In conventional tomography the joint surface was more blurred, erosions were larger, and signs of ankylosis were more expanded, so that the joints seemed to be more altered in 8 cases than demonstrated by computer tomography. Very accurate changes like subchondral cysts were recognized only in the computer tomograms. In all cases in which anteroposterior radiographs revealed no clear result, the authors recommend to additionally employ computer tomography. (orig.) [de

  6. Real-time temperature field measurement based on acoustic tomography

    International Nuclear Information System (INIS)

    Bao, Yong; Jia, Jiabin; Polydorides, Nick

    2017-01-01

    Acoustic tomography can be used to measure the temperature field from the time-of-flight (TOF). In order to capture real-time temperature field changes and accurately yield quantitative temperature images, two improvements to the conventional acoustic tomography system are studied: simultaneous acoustic transmission and TOF collection along multiple ray paths, and an offline iteration reconstruction algorithm. During system operation, all the acoustic transceivers send modulated and filtered wideband Kasami sequences simultaneously to facilitate fast and accurate TOF measurements using cross-correlation detection. For image reconstruction, the iteration process is separated and executed offline beforehand to shorten computation time for online temperature field reconstruction. The feasibility and effectiveness of the developed methods are validated in the simulation study. The simulation results demonstrate that the proposed method can reduce the processing time per frame from 160 ms to 20 ms, while the reconstruction error remains less than 5%. Hence, the proposed method has great potential in the measurement of rapid temperature change with good temporal and spatial resolution. (paper)

  7. Development of novel emission tomography system

    Science.gov (United States)

    Fu, Geng

    In recent years, small animals, such as mice and rats, have been widely used as subjects of study in biomedical research while molecular biology and imaging techniques open new opportunities to investigate disease model. With the help of medical imaging techniques, researchers can investigate underlying mechanisms inside the small animal, which are useful for both early diagnosis and treatment monitoring. Based on tracer principle single photon emission computed tomography (SPECT) has increased popularity in small animal imaging due to its higher spatial resolution and variety of single-photon emitting radionuclides. Since the image quality strongly depends on the detector properties, both scintillation and semiconductor detectors are under active investigation for high resolution X-ray and gamma ray photon detection. The desired detector properties include high intrinsic spatial resolution, high energy resolution, and high detection efficiency. In this thesis study, we have made extensive efforts to develop novel emission tomography system, and evaluate the use of both semiconductor and ultra-high resolution scintillation detectors for small animal imaging. This thesis work includes the following three areas. Firstly, we have developed a novel energy-resolved photon counting (ERPC) detector. With the benefits of high energy resolution, high spatial resolution, flexible detection area, and a wide dynamic range of 27--200keV, ERPC detector is well-suited for small animal SPECT applications. For prototype ERPC detector excellent imaging (˜350microm) and spectroscopic performance (4keV Co-57 122keV) has been demonstrated in preliminary study. Secondly, to further improve spatial resolution to hundred-micron level, an ultra-high resolution Intensified EMCCD (I-EMCCD) detector has been designed and evaluated. This detector consists of the newly developed electron multiplying CCD (EMCCD) sensor, columnar CsI(Tl) scintillator, and an electrostatic de-magnifier (DM) tube

  8. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis

    2012-06-01

    The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.

  9. ODTbrain: a Python library for full-view, dense diffraction tomography.

    Science.gov (United States)

    Müller, Paul; Schürmann, Mirjam; Guck, Jochen

    2015-11-04

    Analyzing the three-dimensional (3D) refractive index distribution of a single cell makes it possible to describe and characterize its inner structure in a marker-free manner. A dense, full-view tomographic data set is a set of images of a cell acquired for multiple rotational positions, densely distributed from 0 to 360 degrees. The reconstruction is commonly realized by projection tomography, which is based on the inversion of the Radon transform. The reconstruction quality of projection tomography is greatly improved when first order scattering, which becomes relevant when the imaging wavelength is comparable to the characteristic object size, is taken into account. This advanced reconstruction technique is called diffraction tomography. While many implementations of projection tomography are available today, there is no publicly available implementation of diffraction tomography so far. We present a Python library that implements the backpropagation algorithm for diffraction tomography in 3D. By establishing benchmarks based on finite-difference time-domain (FDTD) simulations, we showcase the superiority of the backpropagation algorithm over the backprojection algorithm. Furthermore, we discuss how measurment parameters influence the reconstructed refractive index distribution and we also give insights into the applicability of diffraction tomography to biological cells. The present software library contains a robust implementation of the backpropagation algorithm. The algorithm is ideally suited for the application to biological cells. Furthermore, the implementation is a drop-in replacement for the classical backprojection algorithm and is made available to the large user community of the Python programming language.

  10. Computed Tomography evaluation of maxillofacial injuries

    Directory of Open Access Journals (Sweden)

    V Natraj Prasad

    2017-01-01

    Full Text Available Background & Objectives: The maxillofacial region, a complex anatomical structure, can be evaluated by conventional (plain films, Tomography, Multidetector Computed Tomography, Three-Dimensional Computed Tomography, Orthopantomogram and Magnetic Resonance Imaging. The study was conducted with objective of describing various forms of maxillofacial injuries, imaging features of different types of maxillofacial fractures and the advantage of using Three- Dimensional Computed Tomography reconstructed image. Materials & Methods: A hospital based cross-sectional study was conducted among 50 patients during April 2014 to September 2016 using Toshiba Aquilion Prime 160 slice Multi Detector Computed Tomography scanner.Results: The maxillofacial fractures were significantly higher in male population (88% than female population (12 %. Road traffic accidents were the most common cause of injury others being physical assault and fall from height. It was most common in 31-40 years (26% and 21-30 (24% years age group. Maxillary sinus was the commonest fracture (36% followed by nasal bone and zygomatic bone (30%, mandible and orbital bones (28%. Soft tissue swelling was the commonest associated finding. Three dimensional images (3 D compared to the axial scans missed some fractures. However, the extension of the complex fracture lines and degree of displacement were more accurately assessed. Complex fractures found were Le fort (6% and naso-orbito-ethmoid (4% fractures.Conclusion: The proper evaluation of complex anatomy of the facial bones requires Multidetector Computed Tomography which offers excellent spatial resolution enabling multiplanar reformations and three dimensional reconstructions for enhanced diagnostic accuracy and surgical planning.

  11. AuTom: a novel automatic platform for electron tomography reconstruction

    KAUST Repository

    Han, Renmin

    2017-07-26

    We have developed a software package towards automatic electron tomography (ET): Automatic Tomography (AuTom). The presented package has the following characteristics: accurate alignment modules for marker-free datasets containing substantial biological structures; fully automatic alignment modules for datasets with fiducial markers; wide coverage of reconstruction methods including a new iterative method based on the compressed-sensing theory that suppresses the “missing wedge” effect; and multi-platform acceleration solutions that support faster iterative algebraic reconstruction. AuTom aims to achieve fully automatic alignment and reconstruction for electron tomography and has already been successful for a variety of datasets. AuTom also offers user-friendly interface and auxiliary designs for file management and workflow management, in which fiducial marker-based datasets and marker-free datasets are addressed with totally different subprocesses. With all of these features, AuTom can serve as a convenient and effective tool for processing in electron tomography.

  12. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D. [UCSF Benioff Children' s Hospital, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States)

    2014-07-15

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  13. Computed tomography depiction of small pediatric vessels with model-based iterative reconstruction

    International Nuclear Information System (INIS)

    Koc, Gonca; Courtier, Jesse L.; Phelps, Andrew; Marcovici, Peter A.; MacKenzie, John D.

    2014-01-01

    Computed tomography (CT) is extremely important in characterizing blood vessel anatomy and vascular lesions in children. Recent advances in CT reconstruction technology hold promise for improved image quality and also reductions in radiation dose. This report evaluates potential improvements in image quality for the depiction of small pediatric vessels with model-based iterative reconstruction (Veo trademark), a technique developed to improve image quality and reduce noise. To evaluate Veo trademark as an improved method when compared to adaptive statistical iterative reconstruction (ASIR trademark) for the depiction of small vessels on pediatric CT. Seventeen patients (mean age: 3.4 years, range: 2 days to 10.0 years; 6 girls, 11 boys) underwent contrast-enhanced CT examinations of the chest and abdomen in this HIPAA compliant and institutional review board approved study. Raw data were reconstructed into separate image datasets using Veo trademark and ASIR trademark algorithms (GE Medical Systems, Milwaukee, WI). Four blinded radiologists subjectively evaluated image quality. The pulmonary, hepatic, splenic and renal arteries were evaluated for the length and number of branches depicted. Datasets were compared with parametric and non-parametric statistical tests. Readers stated a preference for Veo trademark over ASIR trademark images when subjectively evaluating image quality criteria for vessel definition, image noise and resolution of small anatomical structures. The mean image noise in the aorta and fat was significantly less for Veo trademark vs. ASIR trademark reconstructed images. Quantitative measurements of mean vessel lengths and number of branches vessels delineated were significantly different for Veo trademark and ASIR trademark images. Veo trademark consistently showed more of the vessel anatomy: longer vessel length and more branching vessels. When compared to the more established adaptive statistical iterative reconstruction algorithm, model-based

  14. The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in resectable pancreatic cancer.

    Science.gov (United States)

    Crippa, Stefano; Salgarello, Matteo; Laiti, Silvia; Partelli, Stefano; Castelli, Paola; Spinelli, Antonello E; Tamburrino, Domenico; Zamboni, Giuseppe; Falconi, Massimo

    2014-08-01

    The role of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in pancreatic ductal adenocarcinoma is debated. We retrospectively assessed the value of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in addition to conventional imaging as a staging modality in pancreatic cancer. (18)Fluoro-deoxyglucose positron emission tomography/computed tomography was performed in 72 patients with resectable pancreatic carcinoma after multi-detector computed tomography positron emission tomography was considered positive for a maximum standardized uptake value >3. Overall, 21% of patients had a maximum standardized uptake value ≤ 3, and 60% of those had undergone neoadjuvant treatment (P=0.0001). Furthermore, 11% of patients were spared unwarranted surgery since positron emission tomography/computed tomography detected metastatic disease. All liver metastases were subsequently identified with contrast-enhanced ultrasound. Sensitivity and specificity of positron emission tomography/computed tomography for distant metastases were 78% and 100%. The median CA19.9 concentration was 48.8 U/mL for the entire cohort and 292 U/mL for metastatic patients (P=0.112). The widespread application of (18)fluoro-deoxyglucose positron emission tomography/computed tomography in patients with resectable pancreatic carcinoma seems not justified. It should be considered in selected patients at higher risk of metastatic disease (i.e. CA19.9>200 U/mL) after undergoing other imaging tests. Neoadjuvant treatment is significantly associated with low metabolic activity, limiting the value of positron emission tomography in this setting. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  15. Cyst-based measurements for assessing lymphangioleiomyomatosis in computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Lo, P., E-mail: pechinlo@mednet.edu.ucla; Brown, M. S.; Kim, H.; Kim, H.; Goldin, J. G. [Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, California 90024 (United States); Argula, R.; Strange, C. [Division of Pulmonary and Critical Care Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 (United States)

    2015-05-15

    Purpose: To investigate the efficacy of a new family of measurements made on individual pulmonary cysts extracted from computed tomography (CT) for assessing the severity of lymphangioleiomyomatosis (LAM). Methods: CT images were analyzed using thresholding to identify a cystic region of interest from chest CT of LAM patients. Individual cysts were then extracted from the cystic region by the watershed algorithm, which separates individual cysts based on subtle edges within the cystic regions. A family of measurements were then computed, which quantify the amount, distribution, and boundary appearance of the cysts. Sequential floating feature selection was used to select a small subset of features for quantification of the severity of LAM. Adjusted R{sup 2} from multiple linear regression and R{sup 2} from linear regression against measurements from spirometry were used to compare the performance of our proposed measurements with currently used density based CT measurements in the literature, namely, the relative area measure and the D measure. Results: Volumetric CT data, performed at total lung capacity and residual volume, from a total of 49 subjects enrolled in the MILES trial were used in our study. Our proposed measures had adjusted R{sup 2} ranging from 0.42 to 0.59 when regressing against the spirometry measures, with p < 0.05. For previously used density based CT measurements in the literature, the best R{sup 2} was 0.46 (for only one instance), with the majority being lower than 0.3 or p > 0.05. Conclusions: The proposed family of CT-based cyst measurements have better correlation with spirometric measures than previously used density based CT measurements. They show potential as a sensitive tool for quantitatively assessing the severity of LAM.

  16. Comparison of computed tomography scout based reference point localization to conventional film and axial computed tomography.

    Science.gov (United States)

    Jiang, Lan; Templeton, Alistair; Turian, Julius; Kirk, Michael; Zusag, Thomas; Chu, James C H

    2011-01-01

    Identification of source positions after implantation is an important step in brachytherapy planning. Reconstruction is traditionally performed from films taken by conventional simulators, but these are gradually being replaced in the clinic by computed tomography (CT) simulators. The present study explored the use of a scout image-based reconstruction algorithm that replaces the use of traditional film, while exhibiting low sensitivity to metal-induced artifacts that can appear in 3D CT methods. In addition, the accuracy of an in-house graphical software implementation of scout-based reconstruction was compared with seed location reconstructions for 2 phantoms by conventional simulator and CT measurements. One phantom was constructed using a planar fixed grid of 1.5-mm diameter ball bearings (BBs) with 40-mm spacing. The second was a Fletcher-Suit applicator embedded in Styrofoam (Dow Chemical Co., Midland, MI) with one 3.2-mm-diameter BB inserted into each of 6 surrounding holes. Conventional simulator, kilovoltage CT (kVCT), megavoltage CT, and scout-based methods were evaluated by their ability to calculate the distance between seeds (40 mm for the fixed grid, 30-120 mm in Fletcher-Suit). All methods were able to reconstruct the fixed grid distances with an average deviation of <1%. The worst single deviations (approximately 6%) were exhibited in the 2 volumetric CT methods. In the Fletcher-Suit phantom, the intermodality agreement was within approximately 3%, with the conventional sim measuring marginally larger distances, with kVCT the smallest. All of the established reconstruction methods exhibited similar abilities to detect the distances between BBs. The 3D CT-based methods, with lower axial resolution, showed more variation, particularly with the smaller BBs. With a software implementation, scout-based reconstruction is an appealing approach because it simplifies data acquisition over film-based reconstruction without requiring any specialized equipment

  17. Total variation-based neutron computed tomography

    Science.gov (United States)

    Barnard, Richard C.; Bilheux, Hassina; Toops, Todd; Nafziger, Eric; Finney, Charles; Splitter, Derek; Archibald, Rick

    2018-05-01

    We perform the neutron computed tomography reconstruction problem via an inverse problem formulation with a total variation penalty. In the case of highly under-resolved angular measurements, the total variation penalty suppresses high-frequency artifacts which appear in filtered back projections. In order to efficiently compute solutions for this problem, we implement a variation of the split Bregman algorithm; due to the error-forgetting nature of the algorithm, the computational cost of updating can be significantly reduced via very inexact approximate linear solvers. We present the effectiveness of the algorithm in the significantly low-angular sampling case using synthetic test problems as well as data obtained from a high flux neutron source. The algorithm removes artifacts and can even roughly capture small features when an extremely low number of angles are used.

  18. Attenuation Correction Strategies for Positron Emission Tomography/Computed Tomography and 4-Dimensional Positron Emission Tomography/Computed Tomography

    OpenAIRE

    Pan, Tinsu; Zaidi, Habib

    2013-01-01

    This article discusses attenuation correction strategies in positron emission tomography/computed tomography (PET/CT) and 4 dimensional PET/CT imaging. Average CT scan derived from averaging the high temporal resolution CT images is effective in improving the registration of the CT and the PET images and quantification of the PET data. It underscores list mode data acquisition in 4 dimensional PET and introduces 4 dimensional CT popular in thoracic treatment planning to 4 dimensional PET/CT. ...

  19. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    Science.gov (United States)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  20. The new cold neutron tomography set-up at SINQ

    CERN Document Server

    Baechler, S; Cauwels, P; Dierick, M; Jolie, J; Materna, T; Mondelaers, W

    2002-01-01

    A new cold neutron tomography set-up is operational at the neutron spallation source SINQ of the Paul Scherrer Institute (PSI) in Villigen, Switzerland. The detection system is based on a sup 6 LiF/ZnS:Ag conversion screen and a CCD camera. Several tests have been carried out to characterize the quality of the tomography system, such as homogeneity, reproducibility, L/D-ratio and spatial resolution. The high flux and the good efficiency of the detector lead to very short exposure times. Thus, a typical set of tomography scans can be performed in only 20 min. Then, 3D computed tomography objects were calculated using the filtered back-projection reconstruction method. Initial results of various samples show that cold neutron tomography can be a useful tool for industry, geology and dentistry. Furthermore, suitable applications can be found in the field of archaeology.

  1. Secure fingerprint identification based on structural and microangiographic optical coherence tomography.

    Science.gov (United States)

    Liu, Xuan; Zaki, Farzana; Wang, Yahui; Huang, Qiongdan; Mei, Xin; Wang, Jiangjun

    2017-03-10

    Optical coherence tomography (OCT) allows noncontact acquisition of fingerprints and hence is a highly promising technology in the field of biometrics. OCT can be used to acquire both structural and microangiographic images of fingerprints. Microangiographic OCT derives its contrast from the blood flow in the vasculature of viable skin tissue, and microangiographic fingerprint imaging is inherently immune to fake fingerprint attack. Therefore, dual-modality (structural and microangiographic) OCT imaging of fingerprints will enable more secure acquisition of biometric data, which has not been investigated before. Our study on fingerprint identification based on structural and microangiographic OCT imaging is, we believe, highly innovative. In this study, we performed OCT imaging study for fingerprint acquisition, and demonstrated the capability of dual-modality OCT imaging for the identification of fake fingerprints.

  2. Calcium score of small coronary calcifications on multidetector computed tomography

    DEFF Research Database (Denmark)

    Groen, J M; Kofoed, K F; Zacho, M

    2013-01-01

    Multi detector computed tomography (MDCT) underestimates the coronary calcium score as compared to electron beam tomography (EBT). Therefore clinical risk stratification based on MDCT calcium scoring may be inaccurate. The aim of this study was to assess the feasibility of a new phantom which...

  3. Development of Axial Tomography for Steam Explosion Study

    International Nuclear Information System (INIS)

    Lee, Jae Young; Seo, Shi Won; Song, Jin Ho

    2006-01-01

    Visual understanding of complicated system leads us often to the intuitive enlightenment of the invisible causes of the effect. When it is formulated based on the rigorous mathematics, the produced formula or correlation will be very useful in design and analysis of the engineering system. In this point of view, the tomography technology can be a tool to meet such a purpose. However, the traditional hard ray tomography using high energy radiation cannot meet the case due to heavy shielding structure which obstructs access of the sensing unit to the very complicated and limited space. Therefore, the recent development of the electric tomography is noteworthy in the application to the industrial process monitoring. It has the merit not only of low cost but also of easier access to the limited space than the hard ray tomography

  4. Emission computed tomography

    International Nuclear Information System (INIS)

    Ott, R.J.

    1986-01-01

    Emission Computed Tomography is a technique used for producing single or multiple cross-sectional images of the distribution of radionuclide labelled agents in vivo. The techniques of Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) are described with particular regard to the function of the detectors used to produce images and the computer techniques used to build up images. (UK)

  5. Reconstruction methods for sound visualization based on acousto-optic tomography

    DEFF Research Database (Denmark)

    Torras Rosell, Antoni; Lylloff, Oliver; Barrera Figueroa, Salvador

    2013-01-01

    The visualization of acoustic fields using acousto-optic tomography has recently proved to yield satisfactory results in the audible frequency range. The current implementation of this visualization technique uses a laser Doppler vibrometer (LDV) to measure the acousto-optic effect, that is, the ...

  6. Toxicity evaluation of e-juice and its soluble aerosols generated by electronic cigarettes using recombinant bioluminescent bacteria responsive to specific cellular damages.

    Science.gov (United States)

    Bharadwaj, Shiv; Mitchell, Robert J; Qureshi, Anjum; Niazi, Javed H

    2017-04-15

    Electronic-cigarettes (e-cigarette) are widely used as an alternative to traditional cigarettes but their safety is not well established. Herein, we demonstrate and validate an analytical method to discriminate the deleterious effects of e-cigarette refills (e-juice) and soluble e-juice aerosol (SEA) by employing stress-specific bioluminescent recombinant bacterial cells (RBCs) as whole-cell biosensors. These RBCs carry luxCDABE-operon tightly controlled by promoters that specifically induced to DNA damage (recA), superoxide radicals (sodA), heavy metals (copA) and membrane damage (oprF). The responses of the RBCs following exposure to various concentrations of e-juice/SEA was recorded in real-time that showed dose-dependent stress specific-responses against both the e-juice and vaporized e-juice aerosols produced by the e-cigarette. We also established that high doses of e-juice (4-folds diluted) lead to cell death by repressing the cellular machinery responsible for repairing DNA-damage, superoxide toxicity, ion homeostasis and membrane damage. SEA also caused the cellular damages but the cells showed enhanced bioluminescence expression without significant growth inhibition, indicating that the cells activated their global defense system to repair these damages. DNA fragmentation assay also revealed the disintegration of total cellular DNA at sub-toxic doses of e-juice. Despite their state of matter, the e-juice and its aerosols induce cytotoxicity and alter normal cellular functions, respectively that raises concerns on use of e-cigarettes as alternative to traditional cigarette. The ability of RBCs in detecting both harmful effects and toxicity mechanisms provided a fundamental understanding of biological response to e-juice and aerosols. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Review of muon tomography

    International Nuclear Information System (INIS)

    Feng Hanliang; Jiao Xiaojing

    2010-01-01

    As a new detection technology, Muon tomography has some potential benefits, such as being able to form a three- dimensional image, without radiation, low cost, fast detecting etc. Especially, muon tomography will play an important role in detecting nuclear materials. It introduces the theory of Muon tomography, its advantages and the Muon tomography system developed by decision sciences corporation and Los Alamos national laboratory. (authors)

  8. Bioluminescence imaging of chondrocytes in rabbits by intraarticular injection of D-luciferin

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Sung Min; Min, Jung Joon; Kim, Sung Mi; Bom, Hee Seung [Chonnam National University Medical School, Gwangju (Korea, Republic of); Oh, Suk Jung; Kang, Han Saem; Kim, Kwang Yoon [ECOBIO INC., Gwangju (Korea, Republic of); Kim, Young Ho [College of Natural Science, Chosun University, Gwangju (Korea, Republic of)

    2007-02-15

    Luciferase is one of the most commonly used reporter enzymes in the field of in vivo optical imaging. D-luciferin, the substrate for firefly luciferase has very high cost that allows this kind of experiment limited to small animals such as mice and rats. In this current study, we validated local injection of D-luciferin in the articular capsule for bioluminescence imaging in rabbits. Chondrocytes were cultured and infected by replication-defective adenoviral vector encoding firefly luciferase (Fluc). Chondrocytes expressing Fluc were injected or implanted in the left knee joint. The rabbits underwent optical imaging studies after local injection of D-luciferin at 1, 5, 7, 9 days after cellular administration. We sought whether optimal imaging signals was could be by a cooled CCD camera after local injection of D-luciferin. Imaging signal was not observed from the left knee joint after intraperitoneal injection of D-luciferin (15 mg/kg), whereas it was observed after intraarticular injection. Photon intensity from the left knee joint of rabbits was compared between cell injected and implanted groups after intraarticular injection of D-luciferin. During the period of imaging studies, photon intensity of the cell implanted group was 5-10 times higher than that of the cell injected group. We successfully imaged chondrocytes expressing Fluc after intraarticular injection of D-luciferin. This technique may be further applied to develop new drugs for knee joint disease.

  9. First experiences with model based iterative reconstructions influence on quantitative plaque volume and intensity measurements in coronary computed tomography angiography

    DEFF Research Database (Denmark)

    Precht, Helle; Kitslaar, Pieter H.; Broersen, Alexander

    2017-01-01

    Purpose: Investigate the influence of adaptive statistical iterative reconstruction (ASIR) and the model- based IR (Veo) reconstruction algorithm in coronary computed tomography angiography (CCTA) im- ages on quantitative measurements in coronary arteries for plaque volumes and intensities. Methods...

  10. A Micromegas-based telescope for muon tomography: The WatTo experiment

    Science.gov (United States)

    Bouteille, S.; Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I.; Procureur, S.; Riallot, M.; Winkler, M.

    2016-10-01

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm2 resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  11. A Micromegas-based telescope for muon tomography: The WatTo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bouteille, S. [CEA, Centre de Saclay, Irfu/SPhN, 91191 Gif sur Yvette (France); Attié, D.; Baron, P.; Calvet, D.; Magnier, P.; Mandjavidze, I. [CEA, Centre de Saclay, Irfu/Sedi, 91191 Gif sur Yvette (France); Procureur, S., E-mail: Sebastien.Procureur@cea.fr [CEA, Centre de Saclay, Irfu/SPhN, 91191 Gif sur Yvette (France); Riallot, M.; Winkler, M. [CEA, Centre de Saclay, Irfu/Sedi, 91191 Gif sur Yvette (France)

    2016-10-21

    This paper reports about the first Micromegas-based telescope built for applications in muon tomography. The telescope consists of four, 50×50 cm{sup 2} resistive multiplexed Micromegas with a 2D layout and a self-triggering electronics based on the Dream chip. Thanks to the multiplexing, the four detectors were readout with a single Front-End Unit. The high voltages were provided by a dedicated card using low consumption CAEN miniaturized modules. A nano-PC (Hummingboard) ensured the HV control and monitoring coupled with a temperature feedback as well as the data acquisition and storage. The overall consumption of the instrument yielded 30 W only, i.e. the equivalent of a standard bulb. The telescope was operated outside during 3.5 months to image the water tower of the CEA-Saclay research center, including a 1.5-month campaign with solar panels. The development of autonomous, low consumption muon telescopes with unprecedented accuracy opens new applications in imaging as well as in the field of muon metrology.

  12. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J.; Pankratz, Logan M.; Kuhn, Richard J.; Lanman, Jason K.; Liu, Jun; Jiang, Wen

    2015-01-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. PMID:26455556

  13. A fast cross-validation method for alignment of electron tomography images based on Beer-Lambert law.

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    In electron tomography, accurate alignment of tilt series is an essential step in attaining high-resolution 3D reconstructions. Nevertheless, quantitative assessment of alignment quality has remained a challenging issue, even though many alignment methods have been reported. Here, we report a fast and accurate method, tomoAlignEval, based on the Beer-Lambert law, for the evaluation of alignment quality. Our method is able to globally estimate the alignment accuracy by measuring the goodness of log-linear relationship of the beam intensity attenuations at different tilt angles. Extensive tests with experimental data demonstrated its robust performance with stained and cryo samples. Our method is not only significantly faster but also more sensitive than measurements of tomogram resolution using Fourier shell correlation method (FSCe/o). From these tests, we also conclude that while current alignment methods are sufficiently accurate for stained samples, inaccurate alignments remain a major limitation for high resolution cryo-electron tomography. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Ground-glass opacity: High-resolution computed tomography and 64-multi-slice computed tomography findings comparison

    International Nuclear Information System (INIS)

    Sergiacomi, Gianluigi; Ciccio, Carmelo; Boi, Luca; Velari, Luca; Crusco, Sonia; Orlacchio, Antonio; Simonetti, Giovanni

    2010-01-01

    Objective: Comparative evaluation of ground-glass opacity using conventional high-resolution computed tomography technique and volumetric computed tomography by 64-row multi-slice scanner, verifying advantage of volumetric acquisition and post-processing technique allowed by 64-row CT scanner. Methods: Thirty-four patients, in which was assessed ground-glass opacity pattern by previous high-resolution computed tomography during a clinical-radiological follow-up for their lung disease, were studied by means of 64-row multi-slice computed tomography. Comparative evaluation of image quality was done by both CT modalities. Results: It was reported good inter-observer agreement (k value 0.78-0.90) in detection of ground-glass opacity with high-resolution computed tomography technique and volumetric Computed Tomography acquisition with moderate increasing of intra-observer agreement (k value 0.46) using volumetric computed tomography than high-resolution computed tomography. Conclusions: In our experience, volumetric computed tomography with 64-row scanner shows good accuracy in detection of ground-glass opacity, providing a better spatial and temporal resolution and advanced post-processing technique than high-resolution computed tomography.

  15. Positron Emission Tomography/Computed Tomography Imaging of Residual Skull Base Chordoma Before Radiotherapy Using Fluoromisonidazole and Fluorodeoxyglucose: Potential Consequences for Dose Painting

    Energy Technology Data Exchange (ETDEWEB)

    Mammar, Hamid, E-mail: hamid.mammar@unice.fr [Radiation Oncology Department, Antoine Lacassagne Center, Nice (France); CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Kerrou, Khaldoun; Nataf, Valerie [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France); Pontvert, Dominique [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Clemenceau, Stephane [Department of Neurosurgery, Pitie-Salpetriere Hospital, Paris (France); Lot, Guillaume [Department of Neurosurgery, Adolph De Rothschild Foundation, Paris (France); George, Bernard [Department of Neurosurgery, Lariboisiere Hospital, Paris (France); Polivka, Marc [Department of Pathology, Lariboisiere Hospital, Paris (France); Mokhtari, Karima [Department of Pathology, Pitie-Salpetriere Hospital, Paris (France); Ferrand, Regis; Feuvret, Loiec; Habrand, Jean-louis [Proton Therapy Center of Orsay, Curie Institute, Paris (France); Pouyssegur, Jacques; Mazure, Nathalie [CNRS-UMR 6543, Institute of Developmental Biology and Cancer, University of Nice Sophia Antipolis, Nice (France); Talbot, Jean-Noeel [Department of Nuclear Medicine and Radiopharmacy, Tenon Hospital, and University Pierre et Marie Curie, Paris (France)

    2012-11-01

    Purpose: To detect the presence of hypoxic tissue, which is known to increase the radioresistant phenotype, by its uptake of fluoromisonidazole (18F) (FMISO) using hybrid positron emission tomography/computed tomography (PET/CT) imaging, and to compare it with the glucose-avid tumor tissue imaged with fluorodeoxyglucose (18F) (FDG), in residual postsurgical skull base chordoma scheduled for radiotherapy. Patients and Methods: Seven patients with incompletely resected skull base chordomas were planned for high-dose radiotherapy (dose {>=}70 Gy). All 7 patients underwent FDG and FMISO PET/CT. Images were analyzed qualitatively by visual examination and semiquantitatively by computing the ratio of the maximal standardized uptake value (SUVmax) of the tumor and cerebellum (T/C R), with delineation of lesions on conventional imaging. Results: Of the eight lesion sites imaged with FDG PET/CT, only one was visible, whereas seven of nine lesions were visible on FMISO PET/CT. The median SUVmax in the tumor area was 2.8 g/mL (minimum 2.1; maximum 3.5) for FDG and 0.83 g/mL (minimum 0.3; maximum 1.2) for FMISO. The T/C R values ranged between 0.30 and 0.63 for FDG (median, 0.41) and between 0.75 and 2.20 for FMISO (median,1.59). FMISO T/C R >1 in six lesions suggested the presence of hypoxic tissue. There was no correlation between FMISO and FDG uptake in individual chordomas (r = 0.18, p = 0.7). Conclusion: FMISO PET/CT enables imaging of the hypoxic component in residual chordomas. In the future, it could help to better define boosted volumes for irradiation and to overcome the radioresistance of these lesions. No relationship was founded between hypoxia and glucose metabolism in these tumors after initial surgery.

  16. Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer

    Directory of Open Access Journals (Sweden)

    Yan Chastagnier

    2018-01-01

    Full Text Available A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from image processing to ratio quantification. We share this open source solution and a step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset proposes (1 image background subtraction, (2 image alignment over time, (3 a composite thresholding method of the image used as the denominator of the ratio to refine the precise limits of the sample, (4 pixel by pixel division of the images and efficient distribution of the ratio intensity on a pseudocolor scale, and (5 quantification of the ratio mean intensity and standard variation among pixels in chosen areas. In addition to systematize the analysis process, we show that the BRET-Analyzer allows proper reconstitution and quantification of the ratiometric image in time and space, even from heterogeneous subcellular volumes. Indeed, analyzing twice the same images, we demonstrate that compared to standard analysis BRET-Analyzer precisely define the luminescent specimen limits, enlightening proficient strengths from small and big ensembles over time. For example, we followed and quantified, in live, scaffold proteins interaction dynamics in neuronal sub-cellular compartments including dendritic spines, for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient toolset for automated reproducible and meaningful image ratio analysis.

  17. DNA Nanoparticles: Detection of Long-Term Transgene Activity in Brain using Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    David M. Yurek

    2011-09-01

    Full Text Available In this study, we used bioluminescence imaging (BLI to track long-term transgene activity following the transfection of brain cells using a nonviral gene therapy technique. Formulations of deoxyribonucleic acid (DNA combined with 30-mer lysine polymers (substituted with 10 kDa polyethylene glycol form nanoparticles that transfect brain cells in vivo and produce transgene activity. Here we show that a single intracerebral injection of these DNA nanoparticles (DNPs into the rat cortex, striatum, or substantia nigra results in long-term and persistent luciferase transgene activity over an 8- to 11-week period as evaluated by in vivo BLI analysis, and single injections of DNPs into the mouse striatum showed stable luciferase transgene activity for 1 year. Compacted DNPs produced in vivo signals 7- to 34-fold higher than DNA alone. In contrast, ex vivo BLI analysis, which is subject to less signal quenching from surrounding tissues, demonstrated a DNP to DNA alone ratio of 76- to 280-fold. Moreover, the ex vivo BLI analysis confirmed that signals originated from the targeted brain structures. In summary, BLI permits serial analysis of luciferase transgene activity at multiple brain locations following gene transfer with DNPs. Ex vivo analysis may permit more accurate determination of relative activities of gene transfer vectors.

  18. A dental implant-based registration method for measuring mandibular kinematics using cone beam computed tomography-based fluoroscopy.

    Science.gov (United States)

    Lin, Cheng-Chung; Chen, Chien-Chih; Chen, Yunn-Jy; Lu, Tung-Wu; Hong, Shih-Wun

    2014-01-01

    This study aimed to develop and evaluate experimentally an implant-based registration method for measuring three-dimensional (3D) kinematics of the mandible and dental implants in the mandible based on dental cone beam computed tomography (CBCT), modified to include fluoroscopic function. The proposed implant-based registration method was based on the registration of CBCT data of implants/bones with single-plane fluoroscopy images. Seven registration conditions that included one to three implants were evaluated experimentally for their performance in a cadaveric porcine headmodel. The implant-based registration method was shown to have measurement errors (SD) of less than -0.2 (0.3) mm, 1.1 (2.2) mm, and 0.7 degrees (1.3 degrees) for the in-plane translation, out-of-plane translation, and all angular components, respectively, regardless of the number of implants used. The corresponding errors were reduced to less than -0.1 (0.1) mm, -0.3 (1.7) mm, and 0.5 degree (0.4 degree) when three implants were used. An implant-based registration method was developed to measure the 3D kinematics of the mandible/implants. With its high accuracy and reliability, the new method will be useful for measuring the 3D motion of the bones/implants for relevant applications.

  19. Quantitative imaging of magnetic nanoparticles by magneto-relaxometric tomography for biomedical applications; Quantitative Bildgebung magnetischer Nanopartikel mittels magnetrelaxometrischer Tomographie fuer biomedizinische Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Maik

    2016-11-18

    Current biomedical research focuses on the development of novel biomedical applications based on magnetic nanoparticles (MNPs), e.g. for local cancer treatment. These therapy approaches employ MNPs as remotely controlled drug carriers or local heat generators. Since location and quantity of MNPs determine drug enrichment and heat production, quantitative knowledge of the MNP distribution inside a body is essential for the development and success of these therapies. Magnetorelaxometry (MRX) is capable to provide such quantitative information based on the specific response of the MNPs after switching-off an applied magnetic field. Applying a uniform (homogeneous) magnetic field to a MNP distribution and measuring the MNP response by multiple sensors at different locations allows for spatially resolved MNP quantification. However, to reconstruct the MNP distribution from this spatially resolved MRX data, an ill posed inverse problem has to be solved. So far, the solution of this problem was stabilized incorporating a-priori knowledge in the forward model, e.g. by setting priors on the vertical position of the distribution using a 2D reconstruction grid or setting priors on the number and geometry of the MNP sources inside the body. MRX tomography represents a novel approach for quantitative 3D imaging of MNPs, where the inverse solution is stabilized by a series of MRX measurements. In MRX tomography, only parts of the MNP distribution are sequentially magnetized by the use of inhomogeneous magnetic fields. Each magnetizing is followed by detection of the response of the corresponding part of the distribution by multiple sensors. The 3D reconstruction of the MNP distribution is then accomplished by a common evaluation of the distinct MRX measurement series. In this thesis the first experimental setup for MRX tomography was developed for quantitative 3D imaging of biomedical MNP distributions. It is based on a multi-channel magnetizing unit which has been engineered to

  20. Tomography for two-dimensional gas temperature distribution based on TDLAS

    Science.gov (United States)

    Luo, Can; Wang, Yunchu; Xing, Fei

    2018-03-01

    Based on tunable diode laser absorption spectroscopy (TDLAS), the tomography is used to reconstruct the combustion gas temperature distribution. The effects of number of rays, number of grids, and spacing of rays on the temperature reconstruction results for parallel ray are researched. The reconstruction quality is proportional to the ray number. The quality tends to be smoother when the ray number exceeds a certain value. The best quality is achieved when η is between 0.5 and 1. A virtual ray method combined with the reconstruction algorithms is tested. It is found that virtual ray method is effective to improve the accuracy of reconstruction results, compared with the original method. The linear interpolation method and cubic spline interpolation method, are used to improve the calculation accuracy of virtual ray absorption value. According to the calculation results, cubic spline interpolation is better. Moreover, the temperature distribution of a TBCC combustion chamber is used to validate those conclusions.

  1. Model-based respiratory motion compensation for emission tomography image reconstruction

    International Nuclear Information System (INIS)

    Reyes, M; Malandain, G; Koulibaly, P M; Gonzalez-Ballester, M A; Darcourt, J

    2007-01-01

    In emission tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations, imprecise diagnosis, impairing of fusion with other modalities, etc. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested, which lead to improvements over the spatial activity distribution in lungs lesions, but which have the disadvantages of requiring additional instrumentation or the need of discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion compensation directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the maximum likelihood expectation maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data

  2. Polycapillary based μXRF station for 3D colour tomography

    Science.gov (United States)

    Hampai, D.; Cherepennikov, Yu. M.; Liedl, A.; Cappuccio, G.; Capitolo, E.; Iannarelli, M.; Azzutti, C.; Gladkikh, Yu. P.; Marcelli, A.; Dabagov, S. B.

    2018-04-01

    The "Rainbow X-Ray" (RXR) experimental station at XLab Frascati of the Frascati's National Laboratories (LNF) INFN is a dedicated station for X-ray fluorescence studies based on the use of polycapillary lenses in a confocal geometry. The flexible RXR layout allows investigating specimens of the dimensions ranging from several millimeters up to half meter and weighting up to several tens of kilograms. Compared to similar existing XRF stations, apart of the possibility for investigating large samples, the main advantage of this equipment is the detection system with two spectrometers optimized to work separately at high and at low X-ray energies. The confocal geometry combined with a 3-axes fine motion system makes possible 3D μXRF elemental tomographic acquisitions (colour tomography). At present this station in operation at high XRF energies is used for cultural heritage and geological applications. We present and discuss here the analytical performances of this experimental station pointing out the advantages in different application areas.

  3. Optimal Tikhonov Regularization in Finite-Frequency Tomography

    Science.gov (United States)

    Fang, Y.; Yao, Z.; Zhou, Y.

    2017-12-01

    The last decade has witnessed a progressive transition in seismic tomography from ray theory to finite-frequency theory which overcomes the resolution limit of the high-frequency approximation in ray theory. In addition to approximations in wave propagation physics, a main difference between ray-theoretical tomography and finite-frequency tomography is the sparseness of the associated sensitivity matrix. It is well known that seismic tomographic problems are ill-posed and regularizations such as damping and smoothing are often applied to analyze the tradeoff between data misfit and model uncertainty. The regularizations depend on the structure of the matrix as well as noise level of the data. Cross-validation has been used to constrain data uncertainties in body-wave finite-frequency inversions when measurements at multiple frequencies are available to invert for a common structure. In this study, we explore an optimal Tikhonov regularization in surface-wave phase-velocity tomography based on minimization of an empirical Bayes risk function using theoretical training datasets. We exploit the structure of the sensitivity matrix in the framework of singular value decomposition (SVD) which also allows for the calculation of complete resolution matrix. We compare the optimal Tikhonov regularization in finite-frequency tomography with traditional tradeo-off analysis using surface wave dispersion measurements from global as well as regional studies.

  4. Reconstruction for limited-projection fluorescence molecular tomography based on projected restarted conjugate gradient normal residual.

    Science.gov (United States)

    Cao, Xu; Zhang, Bin; Liu, Fei; Wang, Xin; Bai, Jing

    2011-12-01

    Limited-projection fluorescence molecular tomography (FMT) can greatly reduce the acquisition time, which is suitable for resolving fast biology processes in vivo but suffers from severe ill-posedness because of the reconstruction using only limited projections. To overcome the severe ill-posedness, we report a reconstruction method based on the projected restarted conjugate gradient normal residual. The reconstruction results of two phantom experiments demonstrate that the proposed method is feasible for limited-projection FMT. © 2011 Optical Society of America

  5. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray ... What is CT Scanning of the Head? Computed tomography, more commonly known as a CT or CAT ...

  6. Computerized tomography in radiodiagnosis of pneumonia

    International Nuclear Information System (INIS)

    Degtyareva, I.A.; Mamaev, V.V.; Savchenko, A.P.

    1989-01-01

    Experience in the use of computerized tomography (CT) in combined radiodiagnosis of pneumonia was analysed. It has been concluded that CT objectively reflects morphological inflammatory changes and permits their all-round assessment over time. The diagnosis of pneumonia in CT is based on classical x-ray symptoms. As compared to survery radiography CT reveals symptoms of pneumonia to the full at earlier stages. CT is an important additional method of investigation of inflammatory pulmonary diseases but it should not be used separately without survey radiography. In a majority of cases when CT is performed there is no need in x-ray tomography

  7. Dental calculus image based on optical coherence tomography

    Science.gov (United States)

    Hsieh, Yao-Sheng; Ho, Yi-Ching; Lee, Shyh-Yuan; Chuang, Ching-Cheng; Wang, Chun-Yang; Sun, Chia-Wei

    2011-03-01

    In this study, the dental calculus was characterized and imaged by means of swept-source optical coherence tomography (SSOCT). The refractive indices of enamel, dentin, cementum and calculus were measured as 1.625+/-0.024, 1.534+/-0.029, 1.570+/-0.021 and 1.896+/-0.085, respectively. The dental calculus lead strong scattering property and thus the region can be identified under enamel with SSOCT imaging. An extracted human tooth with calculus was covered by gingiva tissue as in vitro sample for SSOCT imaging.

  8. Indication for dental computed tomography. Case reports

    International Nuclear Information System (INIS)

    Schom, C.; Engelke, W.; Kopka, L.; Fischer, U.; Grabbe, E.

    1996-01-01

    Based on case reports, common indications for dental computed tomography are demonstrated and typical findings are analysed. From a group of 110 patients who had a reformatted computed tomography of the maxilla and mandibula, 10 typical cases were chosen as examples and are presented with a detailed description of the findings. The most important indication was the analysis of the morphology of the alveolar ridge needed in presurgical planning for osseointegrated implants as well as in special cases of postsurgical control. Apart from implantology, the method could be used in cases of mandibular cysts and bony destructions. In conclusion, dental computed tomography has become established mainly in implantology. It can provide valuable results in cases where a demonstration of the bone in all dimensions and free of overlappings and distortions is needed. (orig.) [de

  9. Fiber-Based Polarization Diversity Detection for Polarization-Sensitive Optical Coherence Tomography

    Directory of Open Access Journals (Sweden)

    Hamid Pahlevaninezhad

    2014-09-01

    Full Text Available We present a new fiber-based polarization diversity detection (PDD scheme for polarization sensitive optical coherence tomography (PSOCT. This implementation uses a new custom miniaturized polarization-maintaining fiber coupler with single mode (SM fiber inputs and polarization maintaining (PM fiber outputs. The SM fiber inputs obviate matching the optical lengths of the two orthogonal OCT polarization channels prior to interference while the PM fiber outputs ensure defined orthogonal axes after interference. Advantages of this detection scheme over those with bulk optics PDD include lower cost, easier miniaturization, and more relaxed alignment and handling issues. We incorporate this PDD scheme into a galvanometer-scanned OCT system to demonstrate system calibration and PSOCT imaging of an achromatic quarter-wave plate, fingernail in vivo, and chicken breast, salmon, cow leg, and basa fish muscle samples ex vivo.

  10. Stroke Diagnosis using Microstrip Patch Antennas Based on Microwave Tomography Systems

    Directory of Open Access Journals (Sweden)

    Sakthisudhan K

    2017-03-01

    Full Text Available Microwave tomography (MT based on stroke diagnosis is one of the alternative methods for determinations of the haemorrhagic, ischemic and stroke in brain nervous systems. It is focusing on the brain imaging, continuous monitoring, and preclinical applications. It provides cost effective system and able to use the rural and urban medical clinics that lack the necessary resources in effective stroke diagnosis during emerging applications in road accident and pre-ambulance clinical treatment. In the early works, the design of microstrip patch antennas (MPAs involved the implementation of MT system. Consequently, the MT system presented a few limitations since it required an efficient MPA design with appropriate parameters. Moreover, there were no specific diagnosis modules and body centric features in it. The present research proposes the MPA designs in the forms of diagnosis modules and implements it on the MT system.

  11. Image Reconstruction Based on Homotopy Perturbation Inversion Method for Electrical Impedance Tomography

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-01-01

    Full Text Available The image reconstruction for electrical impedance tomography (EIT mathematically is a typed nonlinear ill-posed inverse problem. In this paper, a novel iteration regularization scheme based on the homotopy perturbation technique, namely, homotopy perturbation inversion method, is applied to investigate the EIT image reconstruction problem. To verify the feasibility and effectiveness, simulations of image reconstruction have been performed in terms of considering different locations, sizes, and numbers of the inclusions, as well as robustness to data noise. Numerical results indicate that this method can overcome the numerical instability and is robust to data noise in the EIT image reconstruction. Moreover, compared with the classical Landweber iteration method, our approach improves the convergence rate. The results are promising.

  12. Computed tomography of surface related radionuclide distributions ('BONN'-tomography)

    International Nuclear Information System (INIS)

    Bockisch, A.; Koenig, R.

    1989-01-01

    A method called the 'BONN' tomography is described to produce planar projections of circular activity distributions using standard single photon emission computed tomography. The clinical value of the method is demonstrated for bone scans of the jaw, thorax, and pelvis. Numerical or projection-related problems are discussed. (orig.) [de

  13. Field programmable gate array-based real-time optical Doppler tomography system for in vivo imaging of cardiac dynamics in the chick embryo

    DEFF Research Database (Denmark)

    Thrane, Lars; Larsen, Henning Engelbrecht; Norozi, Kambiz

    2009-01-01

    efficient and compact implementation by combining the conversion to an analytic signal with a pulse shaping function without the need for extra resources as compared to the Hilbert transform method. The conversion of the analytic signal to amplitude and phase is done by use of the coordinate rotation......We demonstrate a field programmable gate-array-based real-time optical Doppler tomography system. A complex-valued bandpass filter is used for the first time in optical coherence tomography signal processing to create the analytic signal. This method simplifies the filter design, and allows...

  14. 3D and 4D magnetic susceptibility tomography based on complex MR images

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  15. Computed Tomography (CT) -- Sinuses

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Sinuses Computed tomography (CT) of the sinuses uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  16. Computed Tomography (CT) -- Head

    Medline Plus

    Full Text Available ... Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Head Computed tomography (CT) of the head uses special x-ray equipment ... story here Images × Image Gallery Patient undergoing computed tomography (CT) scan. View full size with caption Pediatric Content ...

  17. Efficient non-negative constrained model-based inversion in optoacoustic tomography

    International Nuclear Information System (INIS)

    Ding, Lu; Luís Deán-Ben, X; Lutzweiler, Christian; Razansky, Daniel; Ntziachristos, Vasilis

    2015-01-01

    The inversion accuracy in optoacoustic tomography depends on a number of parameters, including the number of detectors employed, discrete sampling issues or imperfectness of the forward model. These parameters result in ambiguities on the reconstructed image. A common ambiguity is the appearance of negative values, which have no physical meaning since optical absorption can only be higher or equal than zero. We investigate herein algorithms that impose non-negative constraints in model-based optoacoustic inversion. Several state-of-the-art non-negative constrained algorithms are analyzed. Furthermore, an algorithm based on the conjugate gradient method is introduced in this work. We are particularly interested in investigating whether positive restrictions lead to accurate solutions or drive the appearance of errors and artifacts. It is shown that the computational performance of non-negative constrained inversion is higher for the introduced algorithm than for the other algorithms, while yielding equivalent results. The experimental performance of this inversion procedure is then tested in phantoms and small animals, showing an improvement in image quality and quantitativeness with respect to the unconstrained approach. The study performed validates the use of non-negative constraints for improving image accuracy compared to unconstrained methods, while maintaining computational efficiency. (paper)

  18. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial.

    Science.gov (United States)

    Schuster, David M; Nieh, Peter T; Jani, Ashesh B; Amzat, Rianot; Bowman, F Dubois; Halkar, Raghuveer K; Master, Viraj A; Nye, Jonathon A; Odewole, Oluwaseun A; Osunkoya, Adeboye O; Savir-Baruch, Bital; Alaei-Taleghani, Pooneh; Goodman, Mark M

    2014-05-01

    We prospectively evaluated the amino acid analogue positron emission tomography radiotracer anti-3-[(18)F]FACBC compared to ProstaScint® ((111)In-capromab pendetide) single photon emission computerized tomography-computerized tomography to detect recurrent prostate carcinoma. A total of 93 patients met study inclusion criteria who underwent anti-3-[(18)F]FACBC positron emission tomography-computerized tomography plus (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for suspected recurrent prostate carcinoma within 90 days. Reference standards were applied by a multidisciplinary board. We calculated diagnostic performance for detecting disease. In the 91 of 93 patients with sufficient data for a consensus on the presence or absence of prostate/bed disease anti-3-[(18)F]FACBC had 90.2% sensitivity, 40.0% specificity, 73.6% accuracy, 75.3% positive predictive value and 66.7% negative predictive value compared to (111)In-capromab pendetide with 67.2%, 56.7%, 63.7%, 75.9% and 45.9%, respectively. In the 70 of 93 patients with a consensus on the presence or absence of extraprostatic disease anti-3-[(18)F]FACBC had 55.0% sensitivity, 96.7% specificity, 72.9% accuracy, 95.7% positive predictive value and 61.7% negative predictive value compared to (111)In-capromab pendetide with 10.0%, 86.7%, 42.9%, 50.0% and 41.9%, respectively. Of 77 index lesions used to prove positivity histological proof was obtained in 74 (96.1%). Anti-3-[(18)F]FACBC identified 14 more positive prostate bed recurrences (55 vs 41) and 18 more patients with extraprostatic involvement (22 vs 4). Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography correctly up-staged 18 of 70 cases (25.7%) in which there was a consensus on the presence or absence of extraprostatic involvement. Better diagnostic performance was noted for anti-3-[(18)F]FACBC positron emission tomography-computerized tomography than for (111)In-capromab pendetide single

  19. Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

    DEFF Research Database (Denmark)

    Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

    2017-01-01

    The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted...

  20. Computed tomography

    International Nuclear Information System (INIS)

    Wells, P.; Davis, J.; Morgan, M.

    1994-01-01

    X-ray or gamma-ray transmission computed tomography (CT) is a powerful non-destructive evaluation (NDE) technique that produces two-dimensional cross-sectional images of an object without the need to physically section it. CT is also known by the acronym CAT, for computerised axial tomography. This review article presents a brief historical perspective on CT, its current status and the underlying physics. The mathematical fundamentals of computed tomography are developed for the simplest transmission CT modality. A description of CT scanner instrumentation is provided with an emphasis on radiation sources and systems. Examples of CT images are shown indicating the range of materials that can be scanned and the spatial and contrast resolutions that may be achieved. Attention is also given to the occurrence, interpretation and minimisation of various image artefacts that may arise. A final brief section is devoted to the principles and potential of a range of more recently developed tomographic modalities including diffraction CT, positron emission CT and seismic tomography. 57 refs., 2 tabs., 14 figs

  1. Decision logic for retreatment of asymptomatic lung cancer recurrence based on positron emission tomography findings

    International Nuclear Information System (INIS)

    Frank, Albert; Lefkowitz, David; Jaeger, Stanley; Gobar, Lisa; Sunderland, John; Gupta, Naresh; Scott, Walter; Mailliard, James; Lynch, Henry; Bishop, John; Thorpe, Patricia; Dewan, Naresh

    1995-01-01

    Purpose: The purpose of the study was to determine if Positron emission tomography (PET) 2-[F-18] fluoro-2-deoxy-D-glucose (FDG) imaging could detect subclinical local lung cancer recurrence and whether retreatment of such recurrence was feasible and beneficial. Methods and Materials: Twenty patients with biopsy proven lung cancer were studied with Positron emission tomography for the purpose of detecting subclinical lung cancer recurrence over a period of 4.25 years. All patients were treated with external radiation as part or all of their therapy. Twenty patients had baseline PET and computed tomography (CT) studies for comparison with later studies. Surviving patients had a total of 40 sequential PET scans and 35 CT scans. The follow-up interval ranged from 5 to 40 months posttreatment. The differential uptake ratio (DUR) was determined for regions of interest of increased FDG uptake. Results: The median DUR value of the 20 baseline PET studies was 5.59. The DUR value of greater than 3 was empirically selected as being positive for tumor detection. On baseline studies, PET had a 100% correlation with the CT findings in regard to detection of the site of primary tumor involvement. Four of 20 patients showed areas of discordance in the mediastinal and hilar areas on initial PET and CT studies. Seven of 17 patients showed discordant posttreatment PET-CT findings. Two false positive PET studies were due to radiation pneumonitis and one to macrophage glycolysis in tumor necrosis. For detection of asymptomatic tumor recurrence, analysis of sequential PET and CT studies, biopsy results, and the patient's clinical course suggested that PET had a sensitivity of 100%, specificity of 89.3%, and accuracy of 92.5%. Computerized Tomography was found to have a sensitivity of 67%, specificity of 85%, and accuracy of 82% for detection of such early-stage recurrence. Five patients went on to have retreatment with external irradiation based upon the PET evidence. Four retreated

  2. Cone-based Electrical Resistivity Tomography

    Science.gov (United States)

    Pidlisecky, A.; Knight, R.; Haber, E.

    2005-05-01

    Determining the 3D spatial distribution of subsurface properties is a critical part of managing the clean-up of contaminated sites. Most standard hydrologic methods sample small regions immediately adjacent to wells or testing devices. This provides data which are not representative of the entire region of interest. Furthermore, at many contaminated sites invasive methods are not acceptable, due to the risks associated with contacting and spreading the contaminants. To address these issues, we have developed a minimally invasive technology that provides information about the 3D distribution of electrical conductivity. This new technique, cone-based electrical resistivity tomography (C-bert), involves placing several permanent current electrodes in the subsurface and using electrodes mounted on a cone penetrometer to measure the resultant potential field while advancing the cone into the subsurface. In addition to potential field measurements, we obtain the standard suite of cone-penetration measurements, including high resolution resistivity logs; these data can then be used to constrain the inversion of the potential field data. A major challenge of working with these data is that the cone penetrometer is highly conductive, and thus presents a large local perturbation around the measurement location. As the cone is very small (approximately 30mm in diameter) with respect to the total model space, explicitly modeling the cone is computationally demanding. We developed a method for solving the forward model that reduces computational time by an order of magnitude. This solution method, iteratively determined boundary conditions, makes it possible to correct for the cone effect before inversion of the data. Results from synthetic experiments suggest that the C-bert method of data acquisition can result in high quality electrical conductivity images of the subsurface. We tested the practicality of this technique by performing a field test of the C-bert system to image

  3. Quantitative cone beam X-ray luminescence tomography/X-ray computed tomography imaging

    International Nuclear Information System (INIS)

    Chen, Dongmei; Zhu, Shouping; Chen, Xueli; Chao, Tiantian; Cao, Xu; Zhao, Fengjun; Huang, Liyu; Liang, Jimin

    2014-01-01

    X-ray luminescence tomography (XLT) is an imaging technology based on X-ray-excitable materials. The main purpose of this paper is to obtain quantitative luminescence concentration using the structural information of the X-ray computed tomography (XCT) in the hybrid cone beam XLT/XCT system. A multi-wavelength luminescence cone beam XLT method with the structural a priori information is presented to relieve the severe ill-posedness problem in the cone beam XLT. The nanophosphors and phantom experiments were undertaken to access the linear relationship of the system response. Then, an in vivo mouse experiment was conducted. The in vivo experimental results show that the recovered concentration error as low as 6.67% with the location error of 0.85 mm can be achieved. The results demonstrate that the proposed method can accurately recover the nanophosphor inclusion and realize the quantitative imaging

  4. Neutron Tomography Application for Aircraft-parts and Root of Ginseng

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yi Kyung; Lee, Seung Wook; Sim, Chul Mu; Jeon, Jin Su; Kim, Tae Ju [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The neutron computerized tomography is considered to be a complementary tool to X-ray tomography in the sense that neutron interacts with atomic nucleus, otherwise X-ray interacts with an orbital electron of atom. The neutron tomography compared with X-ray tomography has a relatively short history. It is employed in stationary, as neutron sources are produced by the nuclear reactor. The full potential of the neutron tomography has yet to be investigated. Since, HANARO NRF was installed in 1995, the neutron radiography research group of KAERI has been developed the non-destructive testing methods by the computer tomography served for aerospace industry and agricultural industry. Concerning to NDT for aerospace, research was cooperated with Korean Air force. At the first stage, research was focused to find the micro-cracks based on internal passages inside aircraft parts and residual core of turbine blade. Concerning to NDT for agriculture, research was cooperated with the Agricultural Development and Technology Center. Research was focused to find the alive roots of Korean ginseng.

  5. Forward transformation for high resolution eddy current tomography using whitney elements

    International Nuclear Information System (INIS)

    Szewczyk, R.; Salach, J.; Nowicki, M.; Ruokolainen, J.; Raback, P.

    2014-01-01

    Tomographic methods are intensively developed field of non-destructive testing. The main advantage of this type of NDT method is 3D information concerning the shape of the discontinuities in investigated material. On the other hand, the most common tomography method utilizing X-rays creates the significant risks typical to X-ray technique. As a result, Xray tomography is difficult to use in industry. Introduced to the industry in 2007, the eddy current tomography is safe and cost effective. However, in opposite to X-ray tomography, eddy current tomography requires sophisticated and time consuming inverse transformation creating 2D or 3D view of discontinuities. For this reason solutions presented previously are focused on 2D inverse transformation and exhibit limited resolution. For eddy current tomography, the forward tomographic transformation is most important, which is the base of inverse transformation. This paper presents the novel, fast and cost-effective solution utilizing Whitney elements method for such forward transformation. As a result, new possibilities of development in the area of high resolution 3D eddy current tomography are created. (authors)

  6. [Treatment choice in dacryostenosis based on single-photon emission computed tomography and X-ray computed tomography findings].

    Science.gov (United States)

    At'kova, E L; Yartsev, V D; Tomashevskiy, I O; Krakhovetskiy, N N

    2016-01-01

    To develop surgical indications in dacryostenosis within the vertical portion of lacrimal pathways that would consider findings of single-photon emission computed tomography (SPECT) combined with X-ray computed tomography (CT). A total of 96 patients with isolated vertical-portion dacryostenosis (127 cases) were enrolled. The examination included collecting Munk's scores for epiphora, optical coherence tomography of the lower tear meniscus, lacrimal scintigraphy, and SPECT/CT. Group 1 (40 cases) was composed of patients with lacrimal obstruction on CT, group 2 (87 cases) - of those whose lacrimal pathways proved passable. There were also 3 patients (4 cases) from group 1, whose lacrimal pathways, despite being blocked on CT, were still passable on SPECT. Surgeries performed in group 1 were endoscopic endonasal dacryocystorhinostomy (DCR) (36 cases) and pathways recanalization with bicanalicular intubation and balloon dacryoplasty (DCP) (4 cases). In group 2, all patients (87 cases) underwent recanalization with bicanalicular intubation (supplemented with balloon DCP in 32 cases). Surgical results were evaluated 8-12 months after the treatment. In group 2, particular attention was paid to the concordance in locations of dacryostenosis provided by CT and SPECT scans. Favorable outcomes of endoscopic endonasal DCR were obtained in as many as 32 cases from group 1 (88.9%), while in 4 cases (12.1%) the condition relapsed. Of those patients whose stenosis was not complete on SPECT, 3 cases (75.0%) improved, 1 (25.0%) - relapsed. In group 2, favorable outcomes were obtained in 65 cases (74.7%), relapses were 22 (25.3%). A high concordance in stenosis locations by CT and SPECT was noted in 60 cases of those who improved (92.3%) and 3 cases of those who relapsed (13.6%). The value of information provided by SPECT/CT has proved high in patients with nasolacrimal duct stenosis or obstruction. A combined scan allows to establish causal relationships between anatomical changes

  7. Hybrid model based unified scheme for endoscopic Cerenkov and radio-luminescence tomography: Simulation demonstration

    Science.gov (United States)

    Wang, Lin; Cao, Xin; Ren, Qingyun; Chen, Xueli; He, Xiaowei

    2018-05-01

    Cerenkov luminescence imaging (CLI) is an imaging method that uses an optical imaging scheme to probe a radioactive tracer. Application of CLI with clinically approved radioactive tracers has opened an opportunity for translating optical imaging from preclinical to clinical applications. Such translation was further improved by developing an endoscopic CLI system. However, two-dimensional endoscopic imaging cannot identify accurate depth and obtain quantitative information. Here, we present an imaging scheme to retrieve the depth and quantitative information from endoscopic Cerenkov luminescence tomography, which can also be applied for endoscopic radio-luminescence tomography. In the scheme, we first constructed a physical model for image collection, and then a mathematical model for characterizing the luminescent light propagation from tracer to the endoscopic detector. The mathematical model is a hybrid light transport model combined with the 3rd order simplified spherical harmonics approximation, diffusion, and radiosity equations to warrant accuracy and speed. The mathematical model integrates finite element discretization, regularization, and primal-dual interior-point optimization to retrieve the depth and the quantitative information of the tracer. A heterogeneous-geometry-based numerical simulation was used to explore the feasibility of the unified scheme, which demonstrated that it can provide a satisfactory balance between imaging accuracy and computational burden.

  8. Computerized tomography in the diagnosis of hyperparathyroidism

    International Nuclear Information System (INIS)

    Sobota, J.; Girl, J.; Sotornik, I.; Kocandrle, V.

    1990-01-01

    Long-term experience in the application of computerized tomography to the diagnosis of hyperparathyroidism is summarized. Based on a large number of examinations (164) of parathyroid glands associated with the possibility of verification and comparison with the results of ultrasonography and other imaging methods, the potential of computerized tomography in the diagnosis of hyperparathyroidism and its advantages and limitations are summarized. It is concluded that owing to its high diagnostic precision, this technique can be regarded reliable in detecting enlarged parathyroid glands. (author). 11 figs., 1 tab., 19 refs

  9. Single photon emission tomography

    International Nuclear Information System (INIS)

    Buvat, Irene

    2011-09-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion

  10. Transmission computed tomography data acquisition with a SPECT system

    International Nuclear Information System (INIS)

    Greer, K.L.; Harris, C.C.; Jaszczak, R.J.; Coleman, R.E.; Hedlund, L.W.; Floyd, C.E.; Manglos, S.H.

    1987-01-01

    Phantom and animal transmission computed tomography (TCT) scans were performed with a camera-based single photon emission computed tomography (SPECT) system to determine system linearity as a function of object density, which is important in the accurate determination of attenuation coefficients for SPECT attenuation compensation. Results from phantoms showed promise in providing a linear relationship in measuring density while maintaining good image resolution. Animal images were essentially free of artifacts. Transmission computed tomography scans derived from a SPECT system appear to have the potential to provide data suitable for incorporation in an attenuation compensation algorithm at relatively low (calculated) radiation doses to the subjects

  11. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method

    Science.gov (United States)

    Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei

    2017-06-01

    In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.

  12. The cosmic ray muon tomography facility based on large scale MRPC detectors

    Science.gov (United States)

    Wang, Xuewu; Zeng, Ming; Zeng, Zhi; Wang, Yi; Zhao, Ziran; Yue, Xiaoguang; Luo, Zhifei; Yi, Hengguan; Yu, Baihui; Cheng, Jianping

    2015-06-01

    Cosmic ray muon tomography is a novel technology to detect high-Z material. A prototype of TUMUTY with 73.6 cm×73.6 cm large scale position sensitive MRPC detectors has been developed and is introduced in this paper. Three test kits have been tested and image is reconstructed using MAP algorithm. The reconstruction results show that the prototype is working well and the objects with complex structure and small size (20 mm) can be imaged on it, while the high-Z material is distinguishable from the low-Z one. This prototype provides a good platform for our further studies of the physical characteristics and the performances of cosmic ray muon tomography.

  13. Quantitative image analysis of vertebral body architecture - improved diagnosis in osteoporosis based on high-resolution computed tomography

    International Nuclear Information System (INIS)

    Mundinger, A.; Wiesmeier, B.; Dinkel, E.; Helwig, A.; Beck, A.; Schulte Moenting, J.

    1993-01-01

    71 women, 64 post-menopausal, were examined by single-energy quantitative computed tomography (SEQCT) and by high-resolution computed tomography (HRCT) scans through the middle of lumbar vertebral bodies. Computer-assisted image analysis of the high-resolution images assessed trabecular morphometry of the vertebral spongiosa texture. Texture parameters differed in women with and without age-reduced bone density, and in the former group also in patients with and without vertebral fractures. Discriminating parameters were the total number, diameter and variance of trabecular and intertrabecular spaces as well as the trabecular surface (p < 0.05)). A texture index based on these statistically selected morphometric parameters identified a subgroup of patients suffering from fractures due to abnormal spongiosal architecture but with a bone mineral content not indicative for increased fracture risk. The combination of osteodensitometric and trabecular morphometry improves the diagnosis of osteoporosis and may contribute to the prediction of individual fracture risk. (author)

  14. HAADF-STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy.

    Science.gov (United States)

    Lefebvre, W; Hernandez-Maldonado, D; Moyon, F; Cuvilly, F; Vaudolon, C; Shinde, D; Vurpillot, F

    2015-12-01

    The geometry of atom probe tomography tips strongly differs from standard scanning transmission electron microscopy foils. Whereas the later are rather flat and thin (atom probe tomography specimens. Based on simulations (electron probe propagation and image simulations), the possibility to apply quantitative high angle annular dark field scanning transmission electron microscopy to of atom probe tomography specimens has been tested. The influence of electron probe convergence and the benefice of deconvolution of electron probe point spread function electron have been established. Atom counting in atom probe tomography specimens is for the first time reported in this present work. It is demonstrated that, based on single projections of high angle annular dark field imaging, significant quantitative information can be used as additional input for refining the data obtained by correlative analysis of the specimen in APT, therefore opening new perspectives in the field of atomic scale tomography. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Applications of X-ray Computed Tomography and Emission Computed Tomography

    International Nuclear Information System (INIS)

    Seletchi, Emilia Dana; Sutac, Victor

    2005-01-01

    Computed Tomography is a non-destructive imaging method that allows visualization of internal features within non-transparent objects such as sedimentary rocks. Filtering techniques have been applied to circumvent the artifacts and achieve high-quality images for quantitative analysis. High-resolution X-ray computed tomography (HRXCT) can be used to identify the position of the growth axis in speleothems by detecting subtle changes in calcite density between growth bands. HRXCT imagery reveals the three-dimensional variability of coral banding providing information on coral growth and climate over the past several centuries. The Nuclear Medicine imaging technique uses a radioactive tracer, several radiation detectors, and sophisticated computer technologies to understand the biochemical basis of normal and abnormal functions within the brain. The goal of Emission Computed Tomography (ECT) is to accurately determine the three-dimensional radioactivity distribution resulting from the radiopharmaceutical uptake inside the patient instead of the attenuation coefficient distribution from different tissues as obtained from X-ray Computer Tomography. ECT is a very useful tool for investigating the cognitive functions. Because of the low radiation doses associated with Positron Emission Tomography (PET), this technique has been applied in clinical research, allowing the direct study of human neurological diseases. (authors)

  16. Novelty detection-based internal fingerprint segmentation in optical coherence tomography images

    CSIR Research Space (South Africa)

    Khutlang, R

    2014-12-01

    Full Text Available present an automatic segmentation of the papillary layer method, in 3-D swept source optical coherence tomography (SS-OCT) images. The papillary contour represents the internal fingerprint, which does not suffer external skin problems. The slices composing...

  17. Novelty detection-based internal fingerprint segmentation in optical coherence tomography images

    CSIR Research Space (South Africa)

    Khutlang, Rethabile

    2017-08-01

    Full Text Available present an automatic segmentation of the papillary layer method, from images acquired using contact-less 3-D swept source optical coherence tomography (OCT). The papillary contour represents the internal fingerprint, which does not suffer from the external...

  18. Positron emission tomography of malignant tumours at head and neck. Evaluation of the diagnostic value of positron emission tomography by comparison with computed tomography

    International Nuclear Information System (INIS)

    Kettler, Nele

    2011-01-01

    Imaging methods for early, accurate diagnosis and aftercare of malignant growths is currently one of the most important research topics. The objective of this thesis is to evaluate the diagnostic value of FDG-positron emission tomography by comparison with computed tomography for patients with squamous cell carcinoma, malignant melanoma or sarcoma at head and neck. Measurement criteria are sensitivity and specificity. A retrospective evaluation of 100 examinations on 85 patients of University clinic Aachen was performed. The examination reports were supported by reports from histology, positron emission tomography and computed tomography. In each case, the histological results were assumed to provide a reliable benchmark. Sensitivity and specificity for the primary tumour site, metastatic lymphatic nodes and defined anatomic structures were compared across all patients. Comparisons were also performed on sub groups separated by gender, cancer type and the time and frequency at which tumours arose. The statistic analysis was done with MedCalc. Results: The results for sensitivity and specificity of the primary tumour site were 86.42% and 42.86%, and 64.71% and 66.07%, for positron emission tomography and computed tomography respectively. The results for the lymphatic nodes were 51.52% and 92.86% and 64.71% and 66.07%. When the constituent anatomic structures were evaluated separately, the specificity was significantly higher. The separation by gender showed no difference. Because the classification by tumor type resulted in samples that were of varying size, a comparison was difficult. For the diagnosis of primary tumours, the examination with positron emission tomography was superior, whereas computed tomography proved more effective for the diagnosis of recurrent tumours. For the diagnosis of the main tumour site, both methods were shown to be equally suitable. For the assessment of lymphatic nodes, positron emission tomography was superior to computed tomography

  19. Multiscale GPS tomography during COPS: validation and applications

    Science.gov (United States)

    Champollion, Cédric; Flamant, Cyrille; Masson, Frédéric; Gégout, Pascal; Boniface, Karen; Richard, Evelyne

    2010-05-01

    Accurate 3D description of the water vapour field is of interest for process studies such as convection initiation. None of the current techniques (LIDAR, satellite, radio soundings, GPS) can provide an all weather continuous 3D field of moisture. The combination of GPS tomography with radio-soundings (and/or LIDAR) has been used for such process studies using both advantages of vertically resolved soundings and high temporal density of GPS measurements. GPS tomography has been used at short scale (10 km horizontal resolution but in a 50 km² area) for process studies such as the ESCOMPTE experiment (Bastin et al., 2005) and at larger scale (50 km horizontal resolution) during IHOP_2002. But no extensive statistical validation has been done so far. The overarching goal of the COPS field experiment is to advance the quality of forecasts of orographically induced convective precipitation by four-dimensional observations and modeling of its life cycle for identifying the physical and chemical processes responsible for deficiencies in QPF over low-mountain regions. During the COPS field experiment, a GPS network of about 100 GPS stations has been continuously operating during three months in an area of 500 km² in the East of France (Vosges Mountains) and West of Germany (Black Forest). If the mean spacing between the GPS is about 50 km, an East-West GPS profile with a density of about 10 km is dedicated to high resolution tomography. One major goal of the GPS COPS experiment is to validate the GPS tomography with different spatial resolutions. Validation is based on additional radio-soundings and airborne / ground-based LIDAR measurement. The number and the high quality of vertically resolved water vapor observations give an unique data set for GPS tomography validation. Numerous tests have been done on real data to show the type water vapor structures that can be imaging by GPS tomography depending of the assimilation of additional data (radio soundings), the

  20. A wavelet phase filter for emission tomography

    International Nuclear Information System (INIS)

    Olsen, E.T.; Lin, B.

    1995-01-01

    The presence of a high level of noise is a characteristic in some tomographic imaging techniques such as positron emission tomography (PET). Wavelet methods can smooth out noise while preserving significant features of images. Mallat et al. proposed a wavelet based denoising scheme exploiting wavelet modulus maxima, but the scheme is sensitive to noise. In this study, the authors explore the properties of wavelet phase, with a focus on reconstruction of emission tomography images. Specifically, they show that the wavelet phase of regular Poisson noise under a Haar-type wavelet transform converges in distribution to a random variable uniformly distributed on [0, 2π). They then propose three wavelet-phase-based denoising schemes which exploit this property: edge tracking, local phase variance thresholding, and scale phase variation thresholding. Some numerical results are also presented. The numerical experiments indicate that wavelet phase techniques show promise for wavelet based denoising methods

  1. Fourier-based approach to interpolation in single-slice helical computed tomography

    International Nuclear Information System (INIS)

    La Riviere, Patrick J.; Pan Xiaochuan

    2001-01-01

    It has recently been shown that longitudinal aliasing can be a significant and detrimental presence in reconstructed single-slice helical computed tomography (CT) volumes. This aliasing arises because the directly measured data in helical CT are generally undersampled by a factor of at least 2 in the longitudinal direction and because the exploitation of the redundancy of fanbeam data acquired over 360 degree sign to generate additional longitudinal samples does not automatically eliminate the aliasing. In this paper we demonstrate that for pitches near 1 or lower, the redundant fanbeam data, when used properly, can provide sufficient information to satisfy a generalized sampling theorem and thus to eliminate aliasing. We develop and evaluate a Fourier-based algorithm, called 180FT, that accomplishes this. As background we present a second Fourier-based approach, called 360FT, that makes use only of the directly measured data. Both Fourier-based approaches exploit the fast Fourier transform and the Fourier shift theorem to generate from the helical projection data a set of fanbeam sinograms corresponding to equispaced transverse slices. Slice-by-slice reconstruction is then performed by use of two-dimensional fanbeam algorithms. The proposed approaches are compared to their counterparts based on the use of linear interpolation - the 360LI and 180LI approaches. The aliasing suppression property of the 180FT approach is a clear advantage of the approach and represents a step toward the desirable goal of achieving uniform longitudinal resolution properties in reconstructed helical CT volumes

  2. Implementation of biological tissue Mueller matrix for polarization-sensitive optical coherence tomography based on LabVIEW

    Science.gov (United States)

    Lin, Yongping; Zhang, Xiyang; He, Youwu; Cai, Jianyong; Li, Hui

    2018-02-01

    The Jones matrix and the Mueller matrix are main tools to study polarization devices. The Mueller matrix can also be used for biological tissue research to get complete tissue properties, while the commercial optical coherence tomography system does not give relevant analysis function. Based on the LabVIEW, a near real time display method of Mueller matrix image of biological tissue is developed and it gives the corresponding phase retardant image simultaneously. A quarter-wave plate was placed at 45 in the sample arm. Experimental results of the two orthogonal channels show that the phase retardance based on incident light vector fixed mode and the Mueller matrix based on incident light vector dynamic mode can provide an effective analysis method of the existing system.

  3. Rapid and Quantitative Assessment of Cancer Treatment Response Using In Vivo Bioluminescence Imaging

    Directory of Open Access Journals (Sweden)

    Alnawaz Rehemtulla

    2000-01-01

    Full Text Available Current assessment of orthotopic tumor models in animals utilizes survival as the primary therapeutic end point. In vivo bioluminescence imaging (BLI is a sensitive imaging modality that is rapid and accessible, and may comprise an ideal tool for evaluating antineoplastic therapies [1 ]. Using human tumor cell lines constitutively expressing luciferase, the kinetics of tumor growth and response to therapy have been assessed in intraperitoneal [2], subcutaneous, and intravascular [3] cancer models. However, use of this approach for evaluating orthotopic tumor models has not been demonstrated. In this report, the ability of BLI to noninvasively quantitate the growth and therapeuticinduced cell kill of orthotopic rat brain tumors derived from 9L gliosarcoma cells genetically engineered to stably express firefly luciferase (9LLuc was investigated. Intracerebral tumor burden was monitored over time by quantitation of photon emission and tumor volume using a cryogenically cooled CCD camera and magnetic resonance imaging (MRI, respectively. There was excellent correlation (r=0.91 between detected photons and tumor volume. A quantitative comparison of tumor cell kill determined from serial MRI volume measurements and BLI photon counts following 1,3-bis(2-chloroethyl-1-nitrosourea (BCNU treatment revealed that both imaging modalities yielded statistically similar cell kill values (P=.951. These results provide direct validation of BLI imaging as a powerful and quantitative tool for the assessment of antineoplastic therapies in living animals.

  4. Meaning of Interior Tomography

    Science.gov (United States)

    Wang, Ge; Yu, Hengyong

    2013-01-01

    The classic imaging geometry for computed tomography is for collection of un-truncated projections and reconstruction of a global image, with the Fourier transform as the theoretical foundation that is intrinsically non-local. Recently, interior tomography research has led to theoretically exact relationships between localities in the projection and image spaces and practically promising reconstruction algorithms. Initially, interior tomography was developed for x-ray computed tomography. Then, it has been elevated as a general imaging principle. Finally, a novel framework known as “omni-tomography” is being developed for grand fusion of multiple imaging modalities, allowing tomographic synchrony of diversified features. PMID:23912256

  5. Doppler Tomography

    Science.gov (United States)

    Marsh, T. R.

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  6. Positron emission tomography

    International Nuclear Information System (INIS)

    Wienhard, K.; Heiss, W.D.

    1984-01-01

    The principles and selected clinical applications of positron emission tomography are described. In this technique a chemical compound is labeled with a positron emitting isotope and its biochemical pathway is traced by coincidence detection of the two annihilation photons. The application of the techniques of computed tomography allows to reconstruct the spatial distribution of the radioactivity within a subject. The 18 F-deoxyglucose method for quantitative measurement of local glucose metabolism is discussed in order to illustrate the possibilities of positron emission tomography to record physiological processes in vivo. (orig.) [de

  7. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    International Nuclear Information System (INIS)

    Shirvani, Shervin M.; Komaki, Ritsuko; Heymach, John V.; Fossella, Frank V.; Chang, Joe Y.

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non–small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39–86). The median follow-up duration was 21 months (range, 4–58) in all patients and 26 months (range, 4–58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive

  8. Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shirvani, Shervin M.; Komaki, Ritsuko [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Heymach, John V.; Fossella, Frank V. [Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States); Chang, Joe Y., E-mail: jychang@mdanderson.org [Department of Radiation Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX (United States)

    2012-01-01

    Purpose: Omitting elective nodal irradiation from planning target volumes does not compromise outcomes in patients with non-small-cell lung cancer, but whether the same is true for those with limited-stage small-cell lung cancer (LS-SCLC) is unknown. Therefore, in the present study, we sought to determine the clinical outcomes and the frequency of elective nodal failure in patients with LS-SCLC staged using positron emission tomography/computed tomography and treated with involved-field intensity-modulated radiotherapy. Methods and Materials: Between 2005 and 2008, 60 patients with LS-SCLC at our institution underwent disease staging using positron emission tomography/computed tomography before treatment using an intensity-modulated radiotherapy plan in which elective nodal irradiation was intentionally omitted from the planning target volume (mode and median dose, 45 Gy in 30 fractions; range, 40.5 Gy in 27 fractions to 63.8 Gy in 35 fractions). In most cases, concurrent platinum-based chemotherapy was administered. We retrospectively reviewed the clinical outcomes to determine the overall survival, relapse-free survival, and failure patterns. Elective nodal failure was defined as recurrence in initially uninvolved hilar, mediastinal, or supraclavicular nodes. Survival was assessed using the Kaplan-Meier method. Results: The median age of the study patients at diagnosis was 63 years (range, 39-86). The median follow-up duration was 21 months (range, 4-58) in all patients and 26 months (range, 4-58) in the survivors. The 2-year actuarial overall survival and relapse-free survival rate were 58% and 43%, respectively. Of the 30 patients with recurrence, 23 had metastatic disease and 7 had locoregional failure. We observed only one isolated elective nodal failure. Conclusions: To our knowledge, this is the first study to examine the outcomes in patients with LS-SCLC staged with positron emission tomography/computed tomography and treated with definitive intensity

  9. Positron emission tomography for the assessment of myocardial viability

    International Nuclear Information System (INIS)

    Schelbert, H.R.

    1991-01-01

    The detection of viable myocardium or ischemically injured myocardium with a reversible impairment of contractile function remains clinically important but challenging. Detection of reversible dysfunction and distinction from irreversible tissue injury by positron emission tomography is based on identification of preserved or even enhanced glucose metabolism with F-18 2-fluoro 2-deoxyglucose. Regional patterns of myocardial glucose utilization and blood flow, defined as perfusion-metabolism mismatches or matches, on positron emission tomography in patients with chronic or even acute ischemic heart disease are highly accurate in predicting the functional outcome after interventional revascularization. Compared with thallium-201 redistribution scintigraphy, positron emission tomography appears to be diagnostically more accurate, especially in patients with severely impaired left ventricular function. While larger clinical trials are needed for further confirmation, positron emission tomography has already proved clinically useful for stratifying patients with poor left ventricular function to the most appropriate therapeutic approach

  10. Prior-based artifact correction (PBAC) in computed tomography

    International Nuclear Information System (INIS)

    Heußer, Thorsten; Brehm, Marcus; Ritschl, Ludwig; Sawall, Stefan; Kachelrieß, Marc

    2014-01-01

    Purpose: Image quality in computed tomography (CT) often suffers from artifacts which may reduce the diagnostic value of the image. In many cases, these artifacts result from missing or corrupt regions in the projection data, e.g., in the case of metal, truncation, and limited angle artifacts. The authors propose a generalized correction method for different kinds of artifacts resulting from missing or corrupt data by making use of available prior knowledge to perform data completion. Methods: The proposed prior-based artifact correction (PBAC) method requires prior knowledge in form of a planning CT of the same patient or in form of a CT scan of a different patient showing the same body region. In both cases, the prior image is registered to the patient image using a deformable transformation. The registered prior is forward projected and data completion of the patient projections is performed using smooth sinogram inpainting. The obtained projection data are used to reconstruct the corrected image. Results: The authors investigate metal and truncation artifacts in patient data sets acquired with a clinical CT and limited angle artifacts in an anthropomorphic head phantom data set acquired with a gantry-based flat detector CT device. In all cases, the corrected images obtained by PBAC are nearly artifact-free. Compared to conventional correction methods, PBAC achieves better artifact suppression while preserving the patient-specific anatomy at the same time. Further, the authors show that prominent anatomical details in the prior image seem to have only minor impact on the correction result. Conclusions: The results show that PBAC has the potential to effectively correct for metal, truncation, and limited angle artifacts if adequate prior data are available. Since the proposed method makes use of a generalized algorithm, PBAC may also be applicable to other artifacts resulting from missing or corrupt data

  11. An analysis of true- and false-positive results of vocal fold uptake in positron emission tomography-computed tomography imaging.

    Science.gov (United States)

    Seymour, N; Burkill, G; Harries, M

    2018-03-01

    Positron emission tomography-computed tomography with fluorine-18 fluorodeoxy-D-glucose has a major role in the investigation of head and neck cancers. Fluorine-18 fluorodeoxy-D-glucose is not a tumour-specific tracer and can also accumulate in benign pathology. Therefore, positron emission tomography-computed tomography scan interpretation difficulties are common in the head and neck, which can produce false-positive results. This study aimed to investigate patients detected as having abnormal vocal fold uptake on fluorine-18 fluorodeoxy-D-glucose positron emission tomography-computed tomography. Positron emission tomography-computed tomography scans were identified over a 15-month period where reports contained evidence of unilateral vocal fold uptake or vocal fold pathology. Patients' notes and laryngoscopy results were analysed. Forty-six patients were identified as having abnormal vocal fold uptake on positron emission tomography-computed tomography. Twenty-three patients underwent positron emission tomography-computed tomography and flexible laryngoscopy: 61 per cent of patients had true-positive positron emission tomography-computed tomography scans and 39 per cent had false-positive scan results. Most patients referred to ENT for abnormal findings on positron emission tomography-computed tomography scans had true-positive findings. Asymmetrical fluorine-18 fluorodeoxy-D-glucose uptake should raise suspicion of vocal fold pathology, accepting a false-positive rate of approximately 40 per cent.

  12. Laboratory soft x-ray microscopy and tomography

    International Nuclear Information System (INIS)

    Bertilson, Michael

    2011-01-01

    Soft x-ray microscopy in the water-window (λ = 2.28 nm - 4.36 nm) is based on zone-plate optics and allows high-resolution imaging of, e.g., cells and soils in their natural or near-natural environment. Three-dimensional imaging is provided via tomographic techniques, soft x-ray cryo tomography. However, soft x-ray microscopes with such capabilities have been based on large-scale synchrotron x-ray facilities, thereby limiting their accessibility for a wider scientific community. This Thesis describes the development of the Stockholm laboratory soft x-ray microscope to three-dimensional cryo tomography and to new optics-based contrast mechanisms. The microscope relies on a methanol or nitrogen liquid-jet laser-plasma source, normal-incidence multilayer or zone-plate condenser optics, in-house fabricated zone-plate objectives, and allows operation at two wavelengths in the water-window, λ = 2.48 nm and λ = 2.48 nm. With the implementation of a new state-of-the-art normal-incidence multilayer condenser for operation at λ = 2.48 nm and a tiltable cryogenic sample stage the microscope now allows imaging of dry, wet or cryo-fixed samples. This arrangement was used for the first demonstration of laboratory soft x-ray cryo microscopy and tomography. The performance of the microscope has been demonstrated in a number of experiments described in this Thesis, including, tomographic imaging with a resolution of 140 nm, cryo microscopy and tomography of various cells and parasites, and for studies of aqueous soils and clays. The Thesis also describes the development and implementation of single-element differential-interference and Zernike phase-contrast zone-plate objectives. The enhanced contrast provided by these optics reduce exposure times or lowers the dose in samples and are of major importance for harder x-ray microscopy. The implementation of a high-resolution 50 nm compound zone-plate objective for sub-25-nm resolution imaging is also described. All experiments

  13. Single-photon emission computed tomography

    International Nuclear Information System (INIS)

    Budinger, T.F.

    1986-01-01

    Single photon tomography dates from the early 1960's when the idea of emission transverse section tomography was presented by Kuhl and Edwards. They used a rectilinear scanner and analogue back-projection methods to detect emissions from a series of sequential positions transverse to the cephaldcaudad axis of the body. This chapter presents an explanation of emission tomography by describing longitudinal and transverse section tomography. In principle all modes of tomography can be considered under the general topic of coded apertures wherein the code ranges from translation of a pinhole collimator to rotation of a parallel hole or focused collimator array

  14. Cone Beam X-ray Luminescence Computed Tomography Based on Bayesian Method.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Liu, Jie; Luo, Jianwen; Xie, Yaoqin; Bai, Jing; Xing, Lei

    2017-01-01

    X-ray luminescence computed tomography (XLCT), which aims to achieve molecular and functional imaging by X-rays, has recently been proposed as a new imaging modality. Combining the principles of X-ray excitation of luminescence-based probes and optical signal detection, XLCT naturally fuses functional and anatomical images and provides complementary information for a wide range of applications in biomedical research. In order to improve the data acquisition efficiency of previously developed narrow-beam XLCT, a cone beam XLCT (CB-XLCT) mode is adopted here to take advantage of the useful geometric features of cone beam excitation. Practically, a major hurdle in using cone beam X-ray for XLCT is that the inverse problem here is seriously ill-conditioned, hindering us to achieve good image quality. In this paper, we propose a novel Bayesian method to tackle the bottleneck in CB-XLCT reconstruction. The method utilizes a local regularization strategy based on Gaussian Markov random field to mitigate the ill-conditioness of CB-XLCT. An alternating optimization scheme is then used to automatically calculate all the unknown hyperparameters while an iterative coordinate descent algorithm is adopted to reconstruct the image with a voxel-based closed-form solution. Results of numerical simulations and mouse experiments show that the self-adaptive Bayesian method significantly improves the CB-XLCT image quality as compared with conventional methods.

  15. Wave equation tomography using the unwrapped phase - Analysis of the traveltime sensitivity kernels

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2013-01-01

    equation tomography (WET) tries to improve on traveltime tomography, by better adhering to the requirements of our finite-frequency data. However, conventional (WET), based on the crosscorelaion lag, yields the popular hallow banana sensitivity kernel

  16. Rapid data processing for ultrafast X-ray computed tomography using scalable and modular CUDA based pipelines

    Science.gov (United States)

    Frust, Tobias; Wagner, Michael; Stephan, Jan; Juckeland, Guido; Bieberle, André

    2017-10-01

    Ultrafast X-ray tomography is an advanced imaging technique for the study of dynamic processes basing on the principles of electron beam scanning. A typical application case for this technique is e.g. the study of multiphase flows, that is, flows of mixtures of substances such as gas-liquidflows in pipelines or chemical reactors. At Helmholtz-Zentrum Dresden-Rossendorf (HZDR) a number of such tomography scanners are operated. Currently, there are two main points limiting their application in some fields. First, after each CT scan sequence the data of the radiation detector must be downloaded from the scanner to a data processing machine. Second, the current data processing is comparably time-consuming compared to the CT scan sequence interval. To enable online observations or use this technique to control actuators in real-time, a modular and scalable data processing tool has been developed, consisting of user-definable stages working independently together in a so called data processing pipeline, that keeps up with the CT scanner's maximal frame rate of up to 8 kHz. The newly developed data processing stages are freely programmable and combinable. In order to achieve the highest processing performance all relevant data processing steps, which are required for a standard slice image reconstruction, were individually implemented in separate stages using Graphics Processing Units (GPUs) and NVIDIA's CUDA programming language. Data processing performance tests on different high-end GPUs (Tesla K20c, GeForce GTX 1080, Tesla P100) showed excellent performance. Program Files doi:http://dx.doi.org/10.17632/65sx747rvm.1 Licensing provisions: LGPLv3 Programming language: C++/CUDA Supplementary material: Test data set, used for the performance analysis. Nature of problem: Ultrafast computed tomography is performed with a scan rate of up to 8 kHz. To obtain cross-sectional images from projection data computer-based image reconstruction algorithms must be applied. The

  17. Tomography

    International Nuclear Information System (INIS)

    Barrett, H.H.; Gordon, S.; Swindell, W.

    1980-01-01

    Apparatus is described for generating a two-dimensional back-projected image of a slice of an object in tomography. The apparatus uses optical techniques to perform the functions of filtering and back projection. Central to the technique is a cylindrical drum which rotates at a fast rate and whose rotational axis tilts at a slower rate. The novel method overcomes the problem of image blurring due to motion which occurs in many tomographic techniques. It also has the advantages of being less expensive and simpler compared to tomography using digital processing techniques which require fast computers. (UK)

  18. Three Dimensional Digital Sieving of Asphalt Mixture Based on X-ray Computed Tomography

    Directory of Open Access Journals (Sweden)

    Chichun Hu

    2017-07-01

    Full Text Available In order to perform three-dimensional digital sieving based on X-ray computed tomography images, the definition of digital sieve size (DSS was proposed, which was defined as the minimum length of the minimum bounding squares of all possible orthographic projections of an aggregate. The corresponding program was developed to reconstruct aggregate structure and to obtain DSS. Laboratory experiments consisting of epoxy-filled aggregate specimens were conducted to investigate the difference between mechanical sieve analysis and the digital sieving technique. It was suggested that concave surface of aggregate was the possible reason for the disparity between DSS and mechanical sieve size. A comparison between DSS and equivalent diameter was also performed. Moreover, the digital sieving technique was adopted to evaluate the gradation of stone mastic asphalt mixtures. The results showed that the closest proximity of the laboratory gradation curve was achieved by calibrated DSS, among gradation curves based on calibrated DSS, un-calibrated DSS and equivalent diameter.

  19. Children's (Pediatric) CT (Computed Tomography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z Children's (Pediatric) CT (Computed Tomography) Pediatric computed tomography (CT) ... are the limitations of Children's CT? What is Children's CT? Computed tomography, more commonly known as a ...

  20. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release

    DEFF Research Database (Denmark)

    Arouri, Ahmad; Trojnar, Jakub; Schmidt, Steffen

    2015-01-01

    models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we...