WorldWideScience

Sample records for biology physics chemistry

  1. Russian science readings (chemistry, physics, biology)

    CERN Document Server

    Light, L

    1949-01-01

    Some years' experience in teaching Russian to working scientists who had already acquired the rudiments of the grammar convinced me of the need for a reader of the present type that would smooth the path of those wishing to study Russian scientific literature in the original. Although the subject matter comprises what I have described for convenience as chemistry, physics and biology, it could be read with equal profit by those engaged in any branch of pure or applied science. All the passages are taken from school textbooks, and acknowledgements are due to the authors of the works listed at the foot of the contents page.

  2. Charge Migration in DNA Perspectives from Physics, Chemistry, and Biology

    CERN Document Server

    Chakraborty, Tapash

    2007-01-01

    Charge migration through DNA has been the focus of considerable interest in recent years. A deeper understanding of the nature of charge transfer and transport along the double helix is important in fields as diverse as physics, chemistry and nanotechnology. It has also important implications in biology, in particular in DNA damage and repair. This book presents contributions from an international team of researchers active in this field. It contains a wide range of topics that includes the mathematical background of the quantum processes involved, the role of charge transfer in DNA radiation damage, a new approach to DNA sequencing, DNA photonics, and many others. This book should be of value to researchers in condensed matter physics, chemical physics, physical chemistry, and nanoscale sciences.

  3. Dynamic light scattering with applications to chemistry, biology, and physics

    CERN Document Server

    Berne, Bruce J

    2000-01-01

    Lasers play an increasingly important role in a variety of detection techniques, making inelastic light scattering a tool of growing value in the investigation of dynamic and structural problems in chemistry, biology, and physics. Until the initial publication of this work, however, no monograph treated the principles behind current developments in the field.This volume presents a comprehensive introduction to the principles underlying laser light scattering, focusing on the time dependence of fluctuations in fluid systems; it also serves as an introduction to the theory of time correlation f

  4. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  5. 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008. Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report comprises abstracts of 68 communications (oral and posters) presented during the 8. International Conference on Pulse Investigations in Chemistry, Biology and Physics - PULS'2008, held on September 6 - 12, 2008 in Cracow. Presentations cover a variety of research fields representing different fields of pulse radiolysis in chemistry, biology and physics

  6. Students' Energy Understanding Across Biology, Chemistry, and Physics Contexts

    Science.gov (United States)

    Opitz, S. T.; Neumann, K.; Bernholt, S.; Harms, U.

    2017-07-01

    Energy is considered both as a disciplinary core idea and as a concept cutting across science disciplines. Most previous approaches studied progressing energy understanding in specific disciplinary contexts, while disregarding the relation of understanding across them. Hence, this study provides a systematic analysis of cross-disciplinary energy learning. On the basis of a cross-sectional study with n = 742 students from grades 6, 8, and 10, we analyze students' progression in understanding energy across biology, chemistry, and physics contexts. The study is guided by three hypothetical scenarios that describe how the connection between energy understanding in the three disciplinary contexts changes across grade levels. These scenarios are compared using confirmatory factor analysis (CFA). The results suggest that, from grade 6 to grade 10, energy understanding in the three disciplinary contexts is highly interrelated, thus indicating a parallel progression of energy understanding in the three disciplinary contexts. In our study, students from grade 6 onwards appeared to have few problems to apply one energy understanding across the three disciplinary contexts. These findings were unexpected, as previous research concluded that students likely face difficulties in connecting energy learning across disciplinary boundaries. Potential reasons for these results and the characteristics of the observed cross-disciplinary energy understanding are discussed in the light of earlier findings and implications for future research, and the teaching of energy as a core idea and a crosscutting concept are addressed.

  7. Biomaterials — where biology, physics, chemistry, engineering and medicine meet

    Science.gov (United States)

    Hing, K. A.

    2008-03-01

    The success or failure of an implant material in the body depends on a complex interaction between a synthetic 'foreign body' and the 'host tissue'. These interactions occur at many levels from the sub-microscopic level, where subtle changes in the surface physio-chemistry can substantially alter the nature of the biomaterial-host tissue interface, through the microscopical level (e.g. sensitivity to surface topography) to the macrostructural level (e.g. dependence on scaffold porosity). Thus the factors that control these responses are not only biologically determined but also mechanically, physically and chemically mediated, although identifying where one starts and the other finishes can be difficult. Design of a successful medical device has therefore to call on expertise within a wide range of disciplines. In terms of both investigating the basic science behind the factors which orchestrate a biological response and developing research tools that enable study of these responses. However, a medical device must also meet the economic and practical demands of health care professionals who will ultimately be using it in the clinic. Bone graft substitute materials are used in orthopaedics as an alternative or adjunct to autografting, a practice where the patient 'donates' bone from a healthy site to aid bone repair at a damaged or diseased site. These materials are used in a wide range of procedures from total hip revision to spinal fusion and their evolution over the last 10 years illustrates how an interdisciplinary approach has benefited their development and may lead to further innovation in the future.

  8. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  9. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    Science.gov (United States)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  10. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  11. Topological data analysis: A promising big data exploration tool in biology, analytical chemistry and physical chemistry.

    Science.gov (United States)

    Offroy, Marc; Duponchel, Ludovic

    2016-03-03

    An important feature of experimental science is that data of various kinds is being produced at an unprecedented rate. This is mainly due to the development of new instrumental concepts and experimental methodologies. It is also clear that the nature of acquired data is significantly different. Indeed in every areas of science, data take the form of always bigger tables, where all but a few of the columns (i.e. variables) turn out to be irrelevant to the questions of interest, and further that we do not necessary know which coordinates are the interesting ones. Big data in our lab of biology, analytical chemistry or physical chemistry is a future that might be closer than any of us suppose. It is in this sense that new tools have to be developed in order to explore and valorize such data sets. Topological data analysis (TDA) is one of these. It was developed recently by topologists who discovered that topological concept could be useful for data analysis. The main objective of this paper is to answer the question why topology is well suited for the analysis of big data set in many areas and even more efficient than conventional data analysis methods. Raman analysis of single bacteria should be providing a good opportunity to demonstrate the potential of TDA for the exploration of various spectroscopic data sets considering different experimental conditions (with high noise level, with/without spectral preprocessing, with wavelength shift, with different spectral resolution, with missing data). Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Life as physics and chemistry: A system view of biology.

    Science.gov (United States)

    Baverstock, Keith

    2013-04-01

    Cellular life can be viewed as one of many physical natural systems that extract free energy from their environments in the most efficient way, according to fundamental physical laws, and grow until limited by inherent physical constraints. Thus, it can be inferred that it is the efficiency of this process that natural selection acts upon. The consequent emphasis on metabolism, rather than replication, points to a metabolism-first origin of life with the adoption of DNA template replication as a second stage development. This order of events implies a cellular regulatory system that pre-dates the involvement of DNA and might, therefore, be based on the information acquired as peptides fold into proteins, rather than on genetic regulatory networks. Such an epigenetic cell regulatory model, the independent attractor model, has already been proposed to explain the phenomenon of radiation induced genomic instability. Here it is extended to provide an epigenetic basis for the morphological and functional diversity that evolution has yielded, based on natural selection of the most efficient free energy transduction. Empirical evidence which challenges the current genetic basis of cell and molecular biology and which supports the above proposal is discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Pre-Service Science Teachers' Pedagogical Content Knowledge in the Physics, Chemistry, and Biology Topics

    Science.gov (United States)

    Bektas, Oktay

    2015-01-01

    This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…

  14. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  15. Science Grade 7, Chemistry, Physics, Earth Science, Biology. Curriculum Bulletin, 1968-69 Series, No. 15.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.

    This publication is a teacher's guide for teaching seventh grade science in New York City Schools. Activities for four areas -- physics, chemistry, earth science, and biology -- are included. This particular edition is a reprint of Science: Grade 7, Curriculum Bulletin Nos 9a--9d, 1962-1963 Series, which were originally produced in four separate…

  16. Minimum Learning Essentials: Science. Chemistry, Earth Science, Biology, Physics, General Science. Experimental Edition 0/4.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    This guide presents the "minimum teaching essentials" published by the New York City Board of Education, for science education in grades 9-12. Covered are: biology, physics, earth science, and chemistry. Work study skills for all subjects are given with content areas, performance objectives, and suggested classroom activities. (APM)

  17. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  18. Where Is Earth Science? Mining for Opportunities in Chemistry, Physics, and Biology

    Science.gov (United States)

    Thomas, Julie; Ivey, Toni; Puckette, Jim

    2013-01-01

    The Earth sciences are newly marginalized in K-12 classrooms. With few high schools offering Earth science courses, students' exposure to the Earth sciences relies on the teacher's ability to incorporate Earth science material into a biology, chemistry, or physics course. ''G.E.T. (Geoscience Experiences for Teachers) in the Field'' is an…

  19. The integration of the contents of the subject Physics-Chemistry (I in Biology-Chemistry specialty

    Directory of Open Access Journals (Sweden)

    M. Sc. Luis AZCUY LORENZ

    2017-12-01

    Full Text Available This work is the result of a research task developed in the Natural Sciences Education Department during 2013-2014 academic year, and it emerged from the necessity of solving some insufficiencies in the use of the real potentialities offered by the content of the subject Physics-Chemistry (I, that is part of the curriculum of the Biology-Chemistry career. Its main objective is to offer a set of exercises to contribute to achieve the integration of contents from the subject Physics-chemistry (I in the mentioned career at «Ignacio Agramonte Loynaz» University of Camaguey. The exercises proposed are characterized for being related to the real practice and to other subjects of the career. Their implementation through review lessons, partial tests and final evaluations during the formative experiment made possible a better academic result in the learners overall performance.

  20. Pre-Service Science Teachers’ Pedagogical Content Knowledge in The Physics, Chemistry, and Biology Topics

    OpenAIRE

    Bektas, Oktay

    2015-01-01

    This study investigated pre-service science teachers’ pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers (PSTs) by using open-ended questions. Data analysis was performed using descriptive analysis. The results indicated that some PCTs have sufficient infor...

  1. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    OpenAIRE

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers? interest in high school biology, chemistry, and physics classes on students? STEM (science, technology, engineering, and mathematics)?related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from ...

  2. Research Data in Core Journals in Biology, Chemistry, Mathematics, and Physics.

    Science.gov (United States)

    Womack, Ryan P

    2015-01-01

    This study takes a stratified random sample of articles published in 2014 from the top 10 journals in the disciplines of biology, chemistry, mathematics, and physics, as ranked by impact factor. Sampled articles were examined for their reporting of original data or reuse of prior data, and were coded for whether the data was publicly shared or otherwise made available to readers. Other characteristics such as the sharing of software code used for analysis and use of data citation and DOIs for data were examined. The study finds that data sharing practices are still relatively rare in these disciplines' top journals, but that the disciplines have markedly different practices. Biology top journals share original data at the highest rate, and physics top journals share at the lowest rate. Overall, the study finds that within the top journals, only 13% of articles with original data published in 2014 make the data available to others.

  3. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  4. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  5. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  6. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  7. Physical chemistry

    National Research Council Canada - National Science Library

    Atkins, P. W; Atkins, Peter William; Atkins, Peter

    1978-01-01

    Contents: 1) The properties of gases; 2) The first law: the concepts; the machinery; thermochemistry; 3) The second law: the concepts; the machinery; 4) Changes of state: physical transformations of pure materials...

  8. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  9. The Clarinet Reed: AN Introduction to its Biology, Chemistry, and Physics

    Science.gov (United States)

    Casadonte, Donald Jay

    Although clarinet reeds have been used for over two-hundred years, there has been little scientific study of the reed, either from a material science or engineering perspective. This document is intended to be the first large-scale study of the clarinet reed covering its biology, chemistry and physics. The reed is made, most often, from cane--Arundo donax. We present a complete atlas of the anatomy of Arundo donax, and examine the role of each of the cellular components in the clarinet reed performance. We examine the three principal chemical components of the processed clarinet reed: cellulose, xylan, and lignin through the use of instrumental analysis. We examine the breakdown pathways of the clarinet reed, and isolate five: (1) decrystallization of the cellulose microstructure, (2) removal of xylan by saliva, (3) plasticization of the reed material due to alkalai attack in saliva, (4) the culturing of a bacterium, Staph Epidermitis, in the cell wall matrix, (5) density changes due to salival coating of the reed. The physics of the reed is examined, and a finite element model of the modal shapes is presented. We present a theoretical treatment of the two modes of excitation of the reed, a low frequency mode (normal playing mode) due to vortex shedding, and a high frequency mode which is associated with reed squeak.

  10. DNA as information: at the crossroads between biology, mathematics, physics and chemistry.

    Science.gov (United States)

    Cartwright, Julyan H E; Giannerini, Simone; González, Diego L

    2016-03-13

    On the one hand, biology, chemistry and also physics tell us how the process of translating the genetic information into life could possibly work, but we are still very far from a complete understanding of this process. On the other hand, mathematics and statistics give us methods to describe such natural systems-or parts of them-within a theoretical framework. Also, they provide us with hints and predictions that can be tested at the experimental level. Furthermore, there are peculiar aspects of the management of genetic information that are intimately related to information theory and communication theory. This theme issue is aimed at fostering the discussion on the problem of genetic coding and information through the presentation of different innovative points of view. The aim of the editors is to stimulate discussions and scientific exchange that will lead to new research on why and how life can exist from the point of view of the coding and decoding of genetic information. The present introduction represents the point of view of the editors on the main aspects that could be the subject of future scientific debate. © 2016 The Author(s).

  11. Digital biology and chemistry.

    Science.gov (United States)

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  12. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  13. Towards the virtual artery: a multiscale model for vascular physiology at the physics-chemistry-biology interface.

    Science.gov (United States)

    Hoekstra, Alfons G; Alowayyed, Saad; Lorenz, Eric; Melnikova, Natalia; Mountrakis, Lampros; van Rooij, Britt; Svitenkov, Andrew; Závodszky, Gábor; Zun, Pavel

    2016-11-13

    This discussion paper introduces the concept of the Virtual Artery as a multiscale model for arterial physiology and pathologies at the physics-chemistry-biology (PCB) interface. The cellular level is identified as the mesoscopic level, and we argue that by coupling cell-based models with other relevant models on the macro- and microscale, a versatile model of arterial health and disease can be composed. We review the necessary ingredients, both models of arteries at many different scales, as well as generic methods to compose multiscale models. Next, we discuss how this can be combined into the virtual artery. Finally, we argue that the concept of models at the PCB interface could or perhaps should become a powerful paradigm, not only as in our case for studying physiology, but also for many other systems that have such PCB interfaces.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Authors.

  14. FOREWORD: Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology and Mathematics

    Science.gov (United States)

    Kaski, K.; Salomaa, M.

    1990-01-01

    These are Proceedings of the Third Nordic Symposium on Computer Simulation in Physics, Chemistry, Biology, and Mathematics, held August 25-26, 1989, at Lahti (Finland). The Symposium belongs to an annual series of Meetings, the first one of which was arranged in 1987 at Lund (Sweden) and the second one in 1988 at Kolle-Kolle near Copenhagen (Denmark). Although these Symposia have thus far been essentially Nordic events, their international character has increased significantly; the trend is vividly reflected through contributions in the present Topical Issue. The interdisciplinary nature of Computational Science is central to the activity; this fundamental aspect is also responsible, in an essential way, for its rapidly increasing impact. Crucially important to a wide spectrum of superficially disparate fields is the common need for extensive - and often quite demanding - computational modelling. For such theoretical models, no closed-form (analytical) solutions are available or they would be extremely difficult to find; hence one must rather resort to the Art of performing computational investigations. Among the unifying features in the computational research are the methods of simulation employed; methods which frequently are quite closely related with each other even for faculties of science that are quite unrelated. Computer simulation in Natural Sciences is presently apprehended as a discipline on its own right, occupying a broad region somewhere between the experimental and theoretical methods, but also partially overlapping with and complementing them. - Whichever its proper definition may be, the computational approach serves as a novel and an extremely versatile tool with which one can equally well perform "pure" experimental modelling and conduct "computational theory". Computational studies that have earlier been made possible only through supercomputers have opened unexpected, as well as exciting, novel frontiers equally in mathematics (e.g., fractals

  15. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

    Science.gov (United States)

    Foffi, G; Pastore, A; Piazza, F; Temussi, P A

    2013-08-02

    conference held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding

  16. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)

    Science.gov (United States)

    Foffi, G.; Pastore, A.; Piazza, F.; Temussi, P. A.

    2013-08-01

    held in Ascona from 10 to 14 June 2012. In the unique scenario of the Maggiore lake and absorbed in the magic atmosphere of the Centro Stefano Franscini (CSF) at Monte Verità, we enjoyed three-and-a-half days of intense and inspiring activity, where not only many of the most prominent scientists working on macromolecular crowding, but also experts in closely related fields such as colloids and soft matter presented their work. The meeting was intended and has been organized to bring theoreticians and experimentalists together in the attempt to promote an active dialogue. Moreover, we wanted different disciplines to be represented, notably physics and chemistry, besides biology, as cross-fertilization is proving an increasingly fundamental source of inspiration and advancement. This issue of Physical Biology (PB) features a selection of the oral contributions presented at the conference, expanded in the form of research or review articles. PB, one of the scientific journals of the Institute of Physics (IOP), is one of the most dynamic and lively forums active at the interface between biology on one side, and physics and mathematics on the other. As its mission is stated by IOP, PB 'focuses on research in which physics-based approaches lead to new insights into biological systems at all scales of space and time, and all levels of complexity'. For these reasons, and also in view of its high reputation and broad readership, PB appears to be the ideal place for disseminating the thriving pieces of research presented at the conference. We are extremely grateful to PB and its kind and efficient editorial staff who helped make this issue a great scientific follow-up to the conference. The opening lecture of the conference, the first of four day-opening keynote lectures, was given by Allen P Minton from NIH (USA), possibly the most influential among the pioneers in the field. He provided a lucid and well-thought-out overview of the concept of macromolecular crowding through an

  17. Experiments in physical chemistry

    CERN Document Server

    Wilson, J M; Denaro, A R

    1968-01-01

    Experiments in Physical Chemistry, Second Edition provides a compilation of experiments concerning physical chemistry. This book illustrates the link between the theory and practice of physical chemistry. Organized into three parts, this edition begins with an overview of those experiments that generally have a simple theoretical background. Part II contains experiments that are associated with more advanced theory or more developed techniques, or which require a greater degree of experimental skill. Part III consists of experiments that are in the nature of investigations wherein these invest

  18. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  19. Mathematics for physical chemistry

    CERN Document Server

    Mortimer, Robert G

    2005-01-01

    Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data.* Numerous examples and problems interspersed throughout the presentations * Each extensive chapter contains a preview, objectives, and ...

  20. Progress in physical chemistry

    CERN Document Server

    Hempelmann, Rolf

    2008-01-01

    Progress in Physical Chemistry is a collection of recent ""Review Articles"" published in the ""Zeitschrift für Physikalische Chemie"". The second volume of Progress in Physical Chemistry is a collection of thematically closely related minireview articles written by the members of the Collaborative Research Centre (SFB) 277 of the German Research Foundation (DFG). These articles are based on twelve years of intense coordinated research efforts. Central topics are the synthesis and the characterization of interface-dominated, i.e. nanostructured materials, mainly in the solid state but also as

  1. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  2. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  3. Radiation chemistry comes before radiation biology.

    Science.gov (United States)

    O'Neill, Peter; Wardman, Peter

    2009-01-01

    This article seeks to illustrate some contributions of radiation chemistry to radiobiology and related science, and to draw attention to examples where radiation chemistry is central to our knowledge of specific aspects. Radiation chemistry is a mature branch of radiation science which is continually evolving and finding wider applications. This is particularly apparent in the study of the roles of free radicals in biology generally, and radiation biology specifically. The chemical viewpoint helps unite the spatial and temporal insight coming from radiation physics with the diversity of biological responses. While historically, the main application of radiation chemistry of relevance to radiation biology has been investigations of the free-radical processes leading to radiation-induced DNA damage and its chemical characterization, two features of radiation chemistry point to its wider importance. First, its emphasis on quantification and characterization at the molecular level helps provide links between DNA damage, biochemical repair processes, and mutagenicity and radiosensitivity. Second, its central pillar of chemical kinetics aids understanding of the roles of 'reactive oxygen species' in cell signalling and diverse biological effects more generally, and application of radiation chemistry in the development of drugs to enhance radiotherapy and as hypoxia-specific cytotoxins or diagnostic agents. The illustrations of the broader applications of radiation chemistry in this article focus on their relevance to radiation biology and demonstrate the importance of synergy in the radiation sciences. The past contributions of radiation chemistry to radiation biology are evident, but there remains considerable potential to help advance future biological understanding using the knowledge and techniques of radiation chemistry.

  4. Physical chemistry: an advanced treatise

    National Research Council Canada - National Science Library

    1967-01-01

    ... Reactions Physical Chemistry: An Advanced TreatisePHYSICAL An Advanced CHEMISTRY Treatise V O L U M E I / Thermodynamics Edited by W I L H E L M J O S T Institut fiir Chemie der Universitdt Gotting...

  5. Nanoscience The Science of the Small in Physics, Engineering, Chemistry, Biology and Medicine

    CERN Document Server

    Schaefer, Hans-Eckhardt

    2010-01-01

    Nanoscience stands out for its interdisciplinarity. Barriers between disciplines disappear and the fields tend to converge at the very smallest scale, where basic principles and tools are universal. Novel properties are inherent to nanosized systems due to quantum effects and a reduction in dimensionality: nanoscience is likely to continue to revolutionize many areas of human activity, such as materials science, nanoelectronics, information processing, biotechnology and medicine. This textbook spans all fields of nanoscience, covering its basics and broad applications. After an introduction to the physical and chemical principles of nanoscience, coverage moves on to the adjacent fields of microscopy, nanoanalysis, synthesis, nanocrystals, nanowires, nanolayers, carbon nanostructures, bulk nanomaterials, nanomechanics, nanophotonics, nanofluidics, nanomagnetism, nanotechnology for computers, nanochemistry, nanobiology, and nanomedicine. Consequently, this broad yet unified coverage addresses research in academ...

  6. Secondary Physics, Chemistry, and Biology (PCB Teachers’ Views about In-service Training Related to Curricular Change

    Directory of Open Access Journals (Sweden)

    Fatih Çağlayan Mercan

    2015-04-01

    Full Text Available In Turkey the Physics, Chemistry and Biology (PCB curricula were renewed in 2008. However, little in-service training for teachers has been conducted to disseminate the ideas in the new curricula. The purpose of this study was to investigate PCB teachers’ views on in-service training, which may serve as the base knowledge of educational change in Turkey that can be used in further curricular development. In Istanbul 99 teachers voluntarily participated in this qualitative case study. Data were collected utilizing semi-structured interviews and analyzed by employing constant comparative analysis. The data showed that for 40% of the teachers the in-service training was insufficient: the new curricula were not introduced to them adequately. Only 7% of the teachers expressed positive views towards the in-service training. The teachers were concerned about the incompetence of the trainers and the low quality of the training programs. 20% of the teachers felt that they need to keep up to date with the new curricula and establish ways of cooperation among teachers. The results imply that educational change is more than changing the curriculum, which requires serious planning for implementation requiring a reconceptualization of in-service training as part of a larger professional development framework.

  7. NATO Advanced Study Institute on Mixed-Valence Compounds : Theory and Applications in Chemistry, Physics, Geology, and Biology

    CERN Document Server

    1980-01-01

    It has been a decade since two seminal reviews demonstrated that mixed-valence compounds share many unique and fascinating features. The insight pro­ vided by those early works has promoted a great deal of both experimental and theoretical study. As a result of extensive efforts, our understanding of the bonding and properties of mixed-valence compounds has advanced substantially. There has been no compre­ hensive treatment of mixed-valence compounds since 1967, and the meeting convened at Oxford in September, 1979, provided a unique opportunity to examine the subject and its many ramifications. Mixed-valence compounds play an important role in many fields. Although the major impact of the subject has been in chemistry, its importance has become increasingly clear in solid state physics, geology, and biology. Extensive interest and effort in the field of molecular metals has demonstrated that mixed-valency is a prerequisite for high elec­ trical conductivity. The intense colors of many minerals have been s...

  8. Physical chemistry II essentials

    CERN Document Server

    REA, The Editors of

    1992-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Physical Chemistry II includes reaction mechanisms, theoretical approaches to chemical kinetics, gravitational work, electrical and magnetic work, surface work, kinetic theory, collisional and transport properties of gases, statistical mechanics, matter and waves, quantum mechanics, and rotations and vibrations of atoms and molecules.

  9. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  10. PREFACE: Water Interfaces in Physics Chemistry and Biology: a multi-disciplinary approach

    Science.gov (United States)

    Bellissent-Funel, Marie-Claire; Dore, John

    2009-07-01

    This 5-day meeting, sponsored by the European Science Foundation (ESF) in partnership with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) was organised by Marie-Claire Bellissent-Funel (Lab. Léon Brillouin (CEA-CNRS), CEA Saclay) and John Dore (School of Physical Sciences, University of Kent). It took place in the Universitatszcentrum (University of Innsbruck), in the ski resort of Obergurgl, Austria, from 8-13 December 2007. The main aim of the meeting was to bring together various groups working on the characteristics of water in a wide range of different conditions, particularly in relation to the difference in behaviour of bulk water and water in close proximity to an interface. Another focus was on the properties of 'solid water' and the free time during the afternoon provided a good opportunity for studying ice interfaces in a different context as the snow conditions were good for ski-ing! An outline of the programme is contained in the PDF file associated with this preface. There was a wide representation encompassing 30 countries and 130 scientists drawn from different science disciplines. Furthermore there was a good range of young scientists, who made an excellent contribution to the poster session. There were, of course, many animated discussions away from the conference room and the feedback forms showed that almost everyone (96%!) felt that they had enjoyed the sessions and had learned something new. There was support for a further conference on this theme in the future. Inevitably, many of the speakers presented information that was in preparation for publication elsewhere and therefore our compilation of some papers in this brief report is not fully representative of the range of topics discussed at the meeting. Further information on specific work reported at the meeting can be obtained by following the author list through the Web of Science or by contacting the authors directly. We report eight short papers from the

  11. EDITORIAL: Physical Biology

    Science.gov (United States)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  12. Radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    During the establishment and development of radiation biology, radiation chemistry acts like bridge which units the spatial and temporal insight coming from radiation physics with radiation biology. The theory, model, and methodology of radiation chemistry play an important role in promoting research and development of radiation biology. Following research development of radiation biology effects towards systems radiation biology the illustration and exploration both diversity of biological responses and complex process of biological effect occurring remain to need the theory, model, and methodology come from radiation chemistry. (authors)

  13. The physical basis of chemistry

    CERN Document Server

    Warren, Warren S

    2000-01-01

    If the text you're using for general chemistry seems to lack sufficient mathematics and physics in its presentation of classical mechanics, molecular structure, and statistics, this complementary science series title may be just what you're looking for. Written for the advanced lower-division undergraduate chemistry course, The Physical Basis of Chemistry, Second Edition, offers students an opportunity to understand and enrich the understanding of physical chemistry with some quantum mechanics, the Boltzmann distribution, and spectroscopy. Posed and answered are questions concerning eve

  14. Bioscience methodologies in physical chemistry an engineering and molecular approach

    CERN Document Server

    D'Amore, Alberto

    2013-01-01

    The field of bioscience methodologies in physical chemistry stands at the intersection of the power and generality of classical and quantum physics with the minute molecular complexity of chemistry and biology. This book provides an application of physical principles in explaining and rationalizing chemical and biological phenomena. It does not stick to the classical topics that are conventionally considered as part of physical chemistry; instead it presents principles deciphered from a modern point of view, which is the strength of this book.

  15. Rethinking Undergraduate Physical Chemistry Curricula

    Science.gov (United States)

    Miller, Stephen R.

    2016-01-01

    A summary of fundamental changes made to the undergraduate physical chemistry curriculum in the Chemistry Department at Gustavus Adolphus College (beginning in the 2013-2014 academic year) is presented. The yearlong sequence now consists of an introductory semester covering both quantum mechanics and thermodynamics/kinetics, followed by a second…

  16. Physical Chemistry '98: Fourth International Conference on Fundamental and Applied Aspects of Physical Chemistry - Papers

    International Nuclear Information System (INIS)

    Ribnikar, S.; Anic, S.

    1998-01-01

    The proceedings has following chapters: Plenary lectures; Chemical Thermodynamics; Spectroscopy, Molecular Structures, Physical Chemistry of Plasma; Kinetics, Catalysis, Nonlinear Dynamics; Electrochemistry; Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry; Solid State Physical Chemistry, Material Science; Macromolecular Physical Chemistry; Environmental Protection; Phase Boundaries; Complex Compounds; General Physical Chemistry. A separated abstract was prepared for each of the 20 papers selected from the three chapters: Biophysical Chemistry, Photochemistry, Radiation Chemistry; Radiochemistry, Nuclear Chemistry. and Environmental Protection. Refs and figs

  17. AINSE conference on radiation biology and chemistry. Conference handbook

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The conference handbook contains 60 oral and poster presentations dealing with recent advances in radiation chemistry applied to biological studies, radiopharmaceuticals, radiosensitizers as well as to solid state chemical physics.

  18. AINSE conference on radiation biology and chemistry. Conference handbook

    International Nuclear Information System (INIS)

    1994-01-01

    The conference handbook contains 60 oral and poster presentations dealing with recent advances in radiation chemistry applied to biological studies, radiopharmaceuticals, radiosensitizers as well as to solid state chemical physics

  19. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  20. Physical chemistry and the environment

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.; Kolb, C.E. Jr.; Shaw, R.W.; Choppin, G.R.; Wagner, A.F.

    1994-08-01

    From the ozone hole and the greenhouse effect to plastics recycling and hazardous waste disposal, society faces a number of issues, the solutions to which require an unprecedented understanding of the properties of molecules. We are coming to realize that the environment is a coupled set of chemical systems, its dynamics determining the welfare of the biosphere and of humans in particular. These chemical systems are governed by fundamental molecular interactions, and they present chemists with an unparalleled challenge. The application of current concepts of molecular behavior and of up-to-date experimental and computational techniques can provide us with insights into the environment that are needed to mitigate past damage, to anticipate the impact of current human activity, and to avoid future insults to the environment. Environmental chemistry encompasses a number of separate, yet interlocking, areas of research. In all of these areas progress is limited by an inadequate understanding of the underlying chemical processes involved. Participation of all chemical approaches -- experimental, theoretical and computational -- and of all disciplines of chemistry -- organic, inorganic, physical, analytical and biochemistry -- will be required to provide the necessary fundamental understanding. The Symposium on ''Physical Chemistry and the Environment'' was designed to bring the many exciting and challenging physical chemistry problems involved in environmental chemistry to the attention of a larger segment of the physical chemistry community

  1. Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.

    Science.gov (United States)

    Poudyal, Raghav R; Pir Cakmak, Fatma; Keating, Christine D; Bevilacqua, Philip C

    2018-03-21

    This Perspective focuses on RNA in biological and nonbiological compartments resulting from liquid-liquid phase separation (LLPS), with an emphasis on origins of life. In extant cells, intracellular liquid condensates, many of which are rich in RNAs and intrinsically disordered proteins, provide spatial regulation of biomolecular interactions that can result in altered gene expression. Given the diversity of biogenic and abiogenic molecules that undergo LLPS, such membraneless compartments may have also played key roles in prebiotic chemistries relevant to the origins of life. The RNA World hypothesis posits that RNA may have served as both a genetic information carrier and a catalyst during the origin of life. Because of its polyanionic backbone, RNA can undergo LLPS by complex coacervation in the presence of polycations. Phase separation could provide a mechanism for concentrating monomers for RNA synthesis and selectively partition longer RNAs with enzymatic functions, thus driving prebiotic evolution. We introduce several types of LLPS that could lead to compartmentalization and discuss potential roles in template-mediated non-enzymatic polymerization of RNA and other related biomolecules, functions of ribozymes and aptamers, and benefits or penalties imparted by liquid demixing. We conclude that tiny liquid droplets may have concentrated precious biomolecules and acted as bioreactors in the RNA World.

  2. Physical chemistry of foods

    NARCIS (Netherlands)

    Walstra, P.

    2003-01-01

    Exploring the structure and physical and chemical properties of solutions, dispersions, soft solids, fats, and cellular systems, this text describes the physicochemical principles essential to the comprehension and prediction of reactions and conversions that occur during the manufacture, handling,

  3. Allicin: Chemistry and Biological Properties

    Directory of Open Access Journals (Sweden)

    Jan Borlinghaus

    2014-08-01

    Full Text Available Allicin (diallylthiosulfinate is a defence molecule from garlic (Allium sativum L. with a broad range of biological activities. Allicin is produced upon tissue damage from the non-proteinogenic amino acid alliin (S-allylcysteine sulfoxide in a reaction that is catalyzed by the enzyme alliinase. Current understanding of the allicin biosynthetic pathway will be presented in this review. Being a thiosulfinate, allicin is a reactive sulfur species (RSS and undergoes a redox-reaction with thiol groups in glutathione and proteins that is thought to be essential for its biological activity. Allicin is physiologically active in microbial, plant and mammalian cells. In a dose-dependent manner allicin can inhibit the proliferation of both bacteria and fungi or kill cells outright, including antibiotic-resistant strains like methicillin-resistant Staphylococcus aureus (MRSA. Furthermore, in mammalian cell lines, including cancer cells, allicin induces cell-death and inhibits cell proliferation. In plants allicin inhibits seed germination and attenuates root-development. The majority of allicin’s effects are believed to be mediated via redox-dependent mechanisms. In sub-lethal concentrations, allicin has a variety of health-promoting properties, for example cholesterol- and blood pressure-lowering effects that are advantageous for the cardio-vascular system. Clearly, allicin has wide-ranging and interesting applications in medicine and (green agriculture, hence the detailed discussion of its enormous potential in this review. Taken together, allicin is a fascinating biologically active compound whose properties are a direct consequence of the molecule’s chemistry.

  4. Dairy chemistry and physics

    NARCIS (Netherlands)

    Walstra, P.; Jenness, R.

    1984-01-01

    Milk and products made from it affect the lives of a large proportion of the world’s population. Many dairy products are consumed at times and in places far removed from the point at which the milk was produced. This is made possible by the chemical and physical treatments and fractionations applied

  5. Life is physics and chemistry and communication.

    Science.gov (United States)

    Witzany, Guenther

    2015-04-01

    Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life. © 2014 New York Academy of Sciences.

  6. Study of a multitrophical integrated aquatic system for the teaching-learning of the subjects physics, chemistry and biology in the bachelor

    Science.gov (United States)

    Ramirez, Eva; Espinosa, Cecilia

    2017-04-01

    In Mexico exist due to the lack of water in the City, which is where the College of Sciences and Humanities Orient (at UNAM) is located. This is because a point of view from the Chemical, Physics and Biology subjects is important to find learning strategies that motivate students to seek solutions to problems such as these. As Science Mentors, students were asked to propose water treatment from the homes they live in. From these investigations the students concluded that it was necessary to study in depth the wetlands like Multi-trophic Aquatic System that allow the treatment of gray water, so that a prototype of Micro-scale Multitrophic Aquatic System was set up in the laboratory, where the pH was measured , The concentration of oxygen, phosphates, from a Chemical perspective. As for the subject of Biology, we worked on the search for mycorrhizal fungi associated with the growth of plants for the purification of water. In physics we worked the sedimentation system. Artificial wetlands are man-made zones in which, in a controlled manner, mechanisms for the removal of contaminants present in wastewater, occurring in natural wetlands through physical, biological and chemical processes, are constructed mechanically and Is waterproofed to prevent losses of water to the subsoil, the use of substrates different from the original land for rooting the plants and their selection that will colonize the wetland benefit the recovery of water. The present project aims to structure an Artificial Wetland to carry out didactic strategies, activities with students, as well as work on research projects in the sciences of Chemistry, Physics and Biology. Through the application of chemical, biological and physical concepts and processes, so that students of the different semesters of the College of Sciences and Humanities Plantel Oriente, appropriate the relevant knowledge in the area of experimental sciences, developing thinking skills and achieve Significant learning, which are

  7. Radiation applications of physical chemistry

    International Nuclear Information System (INIS)

    Talrose, V.L.

    1993-01-01

    Many chemical energy problems have a physical chemistry nature connected with chemical kinetics and thermodynamics. In our country, the development in this field is associated with the name N.N. Semenov, who was involved in a large number of fundamental and applied physical chemistry problems.Energy development during the last decades created or sharpened new problems. Our new Institute, the Institute of Energy problems of Chemical Physics, USSR Academy of Sciences, is dealing with some of them. The present article is an overview of our work on radiation applications. Examples of the use of radiation in power industry (such as coal gasification), tire production, mechanical joints, metal powder production and sterilization of pharmaceutical products are given. Methods and problems involved in these applications are discussed and the great potential for vast utilization is demonstrated. (authors)

  8. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  9. Physics and Biology Collaborate to Color the World

    Science.gov (United States)

    Liu, Dennis W. C.

    2013-01-01

    To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…

  10. Department of Nuclear Physical Chemistry

    International Nuclear Information System (INIS)

    Mikulski, J.

    1994-01-01

    The research program at the Department of Nuclear Physical Chemistry of the Niewodniczanski Institute of Nuclear Physics is described. The Department consist of three laboratories. First - Laboratory of Physical Chemistry of Separation Processes on which the activity is concentrated on production and separation of neutron deficient isotopes for medical diagnostic. Recently, the main interest was in 111 In which is a promising tracer for cancer diagnostic. To increase the effectiveness of production of indium 111 In the reaction with deuterons on the enriched cadmium target was carried out instead of the previously used one with alpha particles on natural silver. In the second one - Laboratory of Chemistry and Radiochemistry - the systematic studies of physicochemical properties of transition elements in solutions are carried out. The results of the performed experiments were used for the elaboration of new rapid and selective methods for various elements. Some of these results have been applied for separation of trans actinide elements at U-400 cyclotron of JINR Dubna. The third one laboratory -Environmental Radioactivity Laboratory - conducts continuous monitoring of radioactivity contamination of atmosphere. The investigation of different radionuclides concentration in natural environment, mainly in the forest had been carried out

  11. Are Biology and Chemistry Out of Order?

    Science.gov (United States)

    Gaudin, Felix A.

    1984-01-01

    Discusses advantages and disadvantages of standard high school biology and chemistry course sequences. Relates these sequences to Piagetian developmental levels as well as to David Ausubel's cognitive theory. Suggests that the sequences be reexamined in light of issues considered. (JM)

  12. Contributing Chemistry and Compelling Physics

    Directory of Open Access Journals (Sweden)

    Editorial

    2013-04-01

    Full Text Available Chemistry as an integral part of biology has been studied and utilised to yield numerous solutions in healthcare. Both the in vivo and in vitro applications of chemically synthesized compounds as drugs and the culture media used for cell culture respectively have been an indispensable tool in therapeutic and research arena in healthcare. The evolving specialty of regenerative medicine has been exploring the physical characteristics of the cell culture environment to see its effect on the behaviour of cells in vitro. For instance, mere change of matrix stiffness gives rise to a cascade of chemical events leading to different biological outputs as reported (1 in which softer matrices induced the mesenchymal stem cells to give rise to neuronal cells and increasing the matrix stiffness made the same stem cells to differentiate into chondrogenic and osteogenic lineages. The regulated movement of ions across membranes have been found to influence cell morphogenesis and stem cell regeneration (2. The influence of variety of media, reagents, growth factors, scaffolds etc. on the different types of cells and the varying needs of each type of cell are being continuously studied with an aim of advancing regenerative medicine based solutions. In this issue, the article by Kazemnejad et al is reporting the role of wnt signalling on menstrual blood derived stem cells (MenSCs by studying the influence of Lithium chloride on the proliferation of these cells. They have come out results that prove that the MenSCs have unique immunophenotyping properties and that Wnt signaling pathway regulates MenSCs proliferation via the trans-localization of activated-ß-catenin protein. Another article by Sharma et al has focussed on the gene expression pathways and on the specific modification or modulation of a key molecular player of homing and engraftment of the hematopoietic progenitor cells which will help in enhancing the efficacy of hematopoietic stem cell

  13. Physical Chemistry Chemical Kinetics and Reaction Mechanism

    CERN Document Server

    Trimm, Harold H

    2011-01-01

    Physical chemistry covers diverse topics, from biochemistry to materials properties to the development of quantum computers. Physical chemistry applies physics and math to problems that interest chemists, biologists, and engineers. Physical chemists use theoretical constructs and mathematical computations to understand chemical properties and describe the behavior of molecular and condensed matter. Their work involves manipulations of data as well as materials. Physical chemistry entails extensive work with sophisticated instrumentation and equipment as well as state-of-the-art computers. This

  14. Chemistry and biology by new multiple choice

    International Nuclear Information System (INIS)

    Seo, Hyeong Seok; Kim, Seong Hwan

    2003-02-01

    This book is divided into two parts, the first part is about chemistry, which deals with science of material, atom structure and periodic law, chemical combination and power between molecule, state of material and solution, chemical reaction and an organic compound. The second part give description of biology with molecule and cell, energy in cells and chemical synthesis, molecular biology and heredity, function on animal, function on plant and evolution and ecology. This book has explanation of chemistry and biology with new multiple choice.

  15. Supplemental Instruction in Physical Chemistry I

    Science.gov (United States)

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  16. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    Science.gov (United States)

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  17. Quantum physics meets biology.

    Science.gov (United States)

    Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko

    2009-12-01

    Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.

  18. Physics of biological membranes

    Science.gov (United States)

    Mouritsen, Ole G.

    The biological membrane is a complex system consisting of an aqueous biomolecular planar aggregate of predominantly lipid and protein molecules. At physiological temperatures, the membrane may be considered a thin (˜50Å) slab of anisotropic fluid characterized by a high lateral mobility of the various molecular components. A substantial fraction of biological activity takes place in association with membranes. As a very lively piece of condensed matter, the biological membrane is a challenging research topic for both the experimental and theoretical physicists who are facing a number of fundamental physical problems including molecular self-organization, macromolecular structure and dynamics, inter-macromolecular interactions, structure-function relationships, transport of energy and matter, and interfacial forces. This paper will present a brief review of recent theoretical and experimental progress on such problems, with special emphasis on lipid bilayer structure and dynamics, lipid phase transitions, lipid-protein and lipid-cholesterol interactions, intermembrane forces, and the physical constraints imposed on biomembrane function and evolution. The paper advocates the dual point of view that there are a number of interesting physics problems in membranology and, at the same time, that the physical properties of biomembranes are important regulators of membrane function.

  19. Roles of radiation chemistry in development and research of radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2009-01-01

    Radiation chemistry acts as a bridge connecting radiation physics with radiation biology in spatial and temporal insight. The theory, model, and methodology coming from radiation chemistry play an important role in the research and development of radiation biology. The chemical changes induced by ionizing radiation are involved not only in early event of biological effects caused by ionizing radiation but in function radiation biology, such as DNA damage and repair, sensitive modification, metabolism and function of active oxygen and so on. Following the research development of radiation biology, systems radiation biology, accurate quality and quantity of radiation biology effects need more methods and perfect tools from radiation chemistry. (authors)

  20. Biological nitric oxide signalling: chemistry and terminology

    Science.gov (United States)

    Heinrich, Tassiele A; da Silva, Roberto S; Miranda, Katrina M; Switzer, Christopher H; Wink, David A; Fukuto, Jon M

    2013-01-01

    Biological nitrogen oxide signalling and stress is an area of extreme clinical, pharmacological, toxicological, biochemical and chemical research interest. The utility of nitric oxide and derived species as signalling agents is due to their novel and vast chemical interactions with a variety of biological targets. Herein, the chemistry associated with the interaction of the biologically relevant nitrogen oxide species with fundamental biochemical targets is discussed. Specifically, the chemical interactions of nitrogen oxides with nucleophiles (e.g. thiols), metals (e.g. hemeproteins) and paramagnetic species (e.g. dioxygen and superoxide) are addressed. Importantly, the terms associated with the mechanisms by which NO (and derived species) react with their respective biological targets have been defined by numerous past chemical studies. Thus, in order to assist researchers in referring to chemical processes associated with nitrogen oxide biology, the vernacular associated with these chemical interactions is addressed. PMID:23617570

  1. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  2. Mathematical methods for physical and analytical chemistry

    CERN Document Server

    Goodson, David Z

    2011-01-01

    Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton's method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical

  3. Physical organic chemistry in the making

    OpenAIRE

    Engberts, J.B.F.N.

    1997-01-01

    The discipline of physical organic chemistry will continue to occupy a central position in chemistry. The rapid increase in instrumentation and important theoretical developments allow the investigation of many problems of great complexity and challenge. In the next century the leading theme will continue to be the quantitative analysis of the effects of structural variation on the properties of molecules and molecular assemblies.

  4. Physical organic chemistry in the making

    NARCIS (Netherlands)

    Engberts, J.B.F.N.

    The discipline of physical organic chemistry will continue to occupy a central position in chemistry. The rapid increase in instrumentation and important theoretical developments allow the investigation of many problems of great complexity and challenge. In the next century the leading theme will

  5. Wilhelm Ostwald, the Father of Physical Chemistry

    Indian Academy of Sciences (India)

    Wilhelm Ostwald was among the pioneers of chemistry in the early 20th century who was largely responsible for establishing physical chem- istry as an acknowledged branch of chemistry. In the early part of his research career, he investi- gated the chemical affinities of various acids and bases. Subsequently, he broadened ...

  6. Areas of research in radiation chemistry fundamental to radiation biology

    International Nuclear Information System (INIS)

    Powers, E.L.

    1980-01-01

    Among all the environmental hazards to which man is exposed, ionizing radiation is the most thoroughly investigated and the most responsibly monitored and controlled. Nevertheless, because of the importance of radiation in modern society from both the hazard as well as the utilitarian standpoints, much more information concerning the biological effects induced and their modification and reversal is required. Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. The necessity of understanding the chemistry of any system, biological or not, that is to be manipulated and controlled, is so obvious as to make trivial a statement to that effect. If any natural phenomenon is to be put to our use, surely the elements of it must be studied and appreciated fully. In the preliminary statements of the various panels of this general group, the need for additional information on the basic radiation chemistry concerned in radiation-induced biological effects pervades throughout

  7. Genus Pouteria: chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Cíntia A. M. Silva

    Full Text Available The genus Pouteria belongs to the family Sapotaceae and can be widely found around the World. These plants have been used as building material, as food, because the eatable fruits, as well as remedies in folk medicine. Some biological activities have been reported to species of this genus such as antioxidant, anti-inflammatory, antibacterial and antifungal. However, the real potential of this genus as source of new drugs or phytomedicines remains unknown. Therefore, a review of the so far known chemical composition and biological activities of this genus is presented to stimulate new studies about the species already reported moreover that species have no reference about chemistry or biological activities could be found until now.

  8. Practical approaches to biological inorganic chemistry

    CERN Document Server

    Louro, Ricardo O

    2012-01-01

    The book reviews the use of spectroscopic and related methods to investigate the complex structures and mechanisms of biological inorganic systems that contain metals. Each chapter presents an overview of the technique including relevant theory, clearly explains what it is and how it works and then presents how the technique is actually used to evaluate biological structures. Practical examples and problems are included to illustrate each technique and to aid understanding. Designed for students and researchers who want to learn both the basics, and more advanced aspects of bioinorganic chemistry. It includes many colour illustrations enable easier visualization of molecular mechanisms and structures. It provides worked examples and problems that are included to illustrate and test the reader's understanding of each technique. It is written by a multi-author team who use and teach the most important techniques used today to analyse complex biological structures.

  9. The 2016 Nobel Prize: Chemistry and Physics

    Directory of Open Access Journals (Sweden)

    José Maria Filardo Bassalo

    2017-08-01

    Full Text Available In this article, we will deal with the 2016 Nobel Prizes: Chemistry and Physics, since they are related to the same theme: nanostructures / molecular machines (conception, fabrication and topological theoretical explanation.

  10. The biological inorganic chemistry of zinc ions.

    Science.gov (United States)

    Krężel, Artur; Maret, Wolfgang

    2016-12-01

    The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is

  11. Physics and chemistry of fission

    International Nuclear Information System (INIS)

    1979-01-01

    Full text: In the pleasant and hospitable atmosphere of the Kernforschungsanlage Juelich in the Federal Republic of Germany, the IAEA symposium on the Physics and Chemistry of Fission took place. Almost 200 scientists attended, 154 abstracts were submitted, and 57 papers presented, but more important than the numbers was the quality of the contributions and the progress reported at the symposium. The neutron was discovered almost 50 years ago; 40 years ago the idea of nuclear fission was born. Since then, a number of laboratories have worked hard to explain the phenomenon of fission One would expect that by now scientists would know exactly what happens in a nucleus before and during the process of fission, particularly as there are hundreds of power and research reactors in operation, and fission of uranium isotopes is the basis of their functioning. At first glance, fission seems a simple process: a neutron hits and penetrates the uranium nucleus which becomes excited, i.e. has a surplus of energy. One way to get rid of this energy is for the nucleus to split into two parts; additional products of this process are energy and more neutrons. Nature, however, seems to dislike such straightforward explanations. In the case of fission, scientists have observed a number of phenomena which disagree with a simple model. Sometimes, a nucleus will split into two parts without being 'attacked' by a neutron; this spontaneous fission opens up a new line of fission research and several contributions at the symposium reported on sophisticated experiments designed to unravel some of its specific details. Sometimes, a fissioning nucleus will emit another particle: ternary fission has become a powerful tool for studying the properties of nuclei during the fission process. For the scientist, it is fascinating to observe how the nucleus behaves during fission. They invent models which are supposed to reproduce the most probable course of events leading to fission. In one of these

  12. Chemistry and biology of insect bioluminescence

    International Nuclear Information System (INIS)

    Colepicolo Neto, P.; Bechara, E.J.H.

    1984-01-01

    Basic aspects on the Chemistry and Biology of bioluminescence are reviewed, with emphasis on insects. Data from the investigation of Lampyridae (fireflies) are collected from literature. With regard to Elateridae (click beetles) and Phengodidae (rail road worms), the least explored families of luminescent insects, new data are presented on the following aspects: (i) 'in vivo' emission spectra, (ii) chemical nature of the luciferin, (iii) conection between bioluminescence and 'oxygen toxicity' as a result of molecular oxygen storage and (iv) the role of light emission by larvae and pupae. (Author) [pt

  13. From coordination chemistry to biological chemistry of aluminium.

    Science.gov (United States)

    Kiss, Tamas

    2013-11-01

    The paper gives a review on the importance of distribution of Al in biological fluids, primarily in the lights of the works of the author in Al chemistry. It starts with studies of interactions of Al(III) with small biomolecules, such as aliphatic and aromatic hydroxycarboxylic acids, and inorganic and organic phosphates. A significant part of this review deals with the problems of description of the biospeciation of Al(III) in serum, where besides the thermodynamic conditions the role of time is also considered in the case of this sluggish metal ion. The Al(III) complexes of the other large group of biomolecules, proteins and their building blocks (oligo)peptides and amino acids are also discussed, where the role of the type of the side chain donors and the extent of preorganisation are considered in the efficiency of metal ion binding. The application of low molecular mass chelator molecules in restoring the dysfunctioning metal ion (including Al(III)) homeostasis in the treatment of Alzheimer's disease is also discussed in the paper. © 2013.

  14. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    Science.gov (United States)

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  15. From biologically-inspired physics to physics-inspired biology From biologically-inspired physics to physics-inspired biology

    Science.gov (United States)

    Kornyshev, Alexei A.

    2010-10-01

    discovery was the 'chemistry' between an enthusiastic biologist (Watson) and physicist (Crick) that helped them to find common language, and as a result discover not only the structure but also the 'function' of DNA. Now we know that the machinery of DNA replication is very complex, promoted by motor proteins such as DNA helicase, polymerase, ligases etc, but the complementary principle of synthesis of two identical DNA molecules on the unwound complimentary single strands as templates remains the same as mentioned in the famous phrase ('It did not escape our attention') of the first Watson-Crick paper. Dogma 4: (Almost literally from a letter from Don Roy Forsdyke, Biochemistry Professor at Queens Ontario). 'Biologists will not read a paper with formulae. The biological literature is vast. Biologists have too many papers to read and too many experiments to make. They will leave aside any reading that looks difficult'. If this is true, and I think it is, we are in big trouble; this brings us to the next dogma. Dogma 5: (Catch 22) It is impossible to publish a serious theoretical paper in a biological journal. Physicists, particularly, theorists need derivations to prove the validity of their findings. But with the derivations in the script, the paper will be rejected. If you still publish it in a physical journal it will not be read by those to whom it is addressed. Dogma 6:Physicists are too ignorant to offer biologists anything useful. Perhaps, some new spectroscopic method or apparatus for force measurement, but that's about it. Leave biology to professionals. Full stop. I make no comments about this extreme point of view, referring the reader to the dispute between Parsegian and Austin, which is still quite relevant today. Next, a pearl of wisdom of a theoretical physicist, Nobel Laureate in Physiology and Medicine, Max Delbrück (Caltech), formulated in his 1949 lecture in Copenhagen, the principles on which organisms of today are based must have been determined by a

  16. Nonlinear Oscillations in Biology and Chemistry

    CERN Document Server

    1986-01-01

    This volume contains the proceedings of a meeting entitled 'Nonlinear Oscillations in Biology and Chemistry', which was held at the University of Utah May 9-11,1985. The papers fall into four major categories: (i) those that deal with biological problems, particularly problems arising in cell biology, (ii) those that deal with chemical systems, (iii) those that treat problems which arise in neurophysiology, and (iv), those whose primary emphasis is on more general models and the mathematical techniques involved in their analysis. Except for the paper by Auchmuty, all are based on talks given at the meeting. The diversity of papers gives some indication of the scope of the meeting, but the printed word conveys neither the degree of interaction between the participants nor the intellectual sparks generated by that interaction. The meeting was made possible by the financial support of the Department of Mathe­ matics of the University of Utah. I am indebted to Ms. Toni Bunker of the Department of Mathematics for...

  17. African Journals Online: Chemistry, Mathematics & Physics

    African Journals Online (AJOL)

    Items 1 - 36 of 36 ... AJCE also encourages issues on chemistry and indigenous knowledge/practice, chemical safety, natural products and related areas. .... a forum for scholars and practitioners in all spheres of biological sciences to publish their research findings or theoretical concepts and ideas of a scientific nature.

  18. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    Science.gov (United States)

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  19. Collection of problems in physical chemistry

    CERN Document Server

    Bareš, Jirí; Fried, Vojtech

    1961-01-01

    Collection of Problems in Physical Chemistry provides illustrations and problems covering the field of physical chemistry. The material has been arranged into illustrations that are solved and supplemented by problems, thus enabling readers to determine the extent to which they have mastered each subject. Most of the illustrations and problems were taken from original papers, to which reference is made. The English edition of this book has been translated from the manuscript of the 2nd Czech edition. It has been changed slightly in some places and enlarged on in others on the basis of further

  20. The Physics behind Systems Biology

    Directory of Open Access Journals (Sweden)

    Radde Nicole E.

    2016-12-01

    Full Text Available Systems Biology is a young and rapidly evolving research field, which combines experimental techniques and mathematical modeling in order to achieve a mechanistic understanding of processes underlying the regulation and evolution of living systems. Systems Biology is often associated with an Engineering approach: The purpose is to formulate a data-rich, detailed simulation model that allows to perform numerical (‘in silico’ experiments and then draw conclusions about the biological system. While methods from Engineering may be an appropriate approach to extending the scope of biological investigations to experimentally inaccessible realms and to supporting data-rich experimental work, it may not be the best strategy in a search for design principles of biological systems and the fundamental laws underlying Biology. Physics has a long tradition of characterizing and understanding emergent collective behaviors in systems of interacting units and searching for universal laws. Therefore, it is natural that many concepts used in Systems Biology have their roots in Physics. With an emphasis on Theoretical Physics, we will here review the ‘Physics core’ of Systems Biology, show how some success stories in Systems Biology can be traced back to concepts developed in Physics, and discuss how Systems Biology can further benefit from its Theoretical Physics foundation.

  1. Integrative Biological Chemistry Program Includes the Use of Informatics Tools, GIS and SAS Software Applications

    Science.gov (United States)

    D'Souza, Malcolm J.; Kashmar, Richard J.; Hurst, Kent; Fiedler, Frank; Gross, Catherine E.; Deol, Jasbir K.; Wilson, Alora

    2015-01-01

    Wesley College is a private, primarily undergraduate minority-serving institution located in the historic district of Dover, Delaware (DE). The College recently revised its baccalaureate biological chemistry program requirements to include a one-semester Physical Chemistry for the Life Sciences course and project-based experiential learning…

  2. Surfactant Adsorption: A Revised Physical Chemistry Lab

    Science.gov (United States)

    Bresler, Marc R.; Hagen, John P.

    2008-01-01

    Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…

  3. Physics and chemistry of the solar system

    National Research Council Canada - National Science Library

    Lewis, John S

    1995-01-01

    ... permission in writing from the publisher. Academic Press, Inc. A Division of Harcourt Brace & Company 525 B Street, Suite 1900, San Diego, California 92101-4495 United Kingdom Edition published by Academic Press Limited 24-28 Oval Road, London NW1 7DX Library of Congress Cataloging-in-Publication Data Lewis, John S. Physics and chemistry of the solar...

  4. Basic radiation physics and chemistry of composites

    International Nuclear Information System (INIS)

    Przybytniak, G.; Zagorski, Z.P.

    2006-01-01

    Composites are increasingly more important in the applied and fundamental polymer science, and the participation of radiation processing of these systems increase. In presented paper the newest achievements of radiation physics and chemistry of composites are reviewed. It is stressed, that although main experimental effort is directed towards the development of composites as such, and investigation of their specific properties, mechanical, physicochemical and physical, the radiation processing will enter the field on the wider scale, especially as concerns specialized plastics

  5. Ultrafast phenomena in molecular sciences femtosecond physics and chemistry

    CERN Document Server

    Bañares, Luis

    2014-01-01

    This book presents the latest developments in Femtosecond Chemistry and Physics for the study of ultrafast photo-induced molecular processes. Molecular systems, from the simplest H2 molecule to polymers or biological macromolecules, constitute central objects of interest for Physics, Chemistry and Biology, and despite the broad range of phenomena that they exhibit, they share some common behaviors. One of the most significant of those is that many of the processes involving chemical transformation (nuclear reorganization, bond breaking, bond making) take place in an extraordinarily short time, in or around the femtosecond temporal scale (1 fs = 10-15 s). A number of experimental approaches - very particularly the developments in the generation and manipulation of ultrashort laser pulses - coupled with theoretical progress, provide the ultrafast scientist with powerful tools to understand matter and its interaction with light, at this spatial and temporal scale. This book is an attempt to reunite some of the ...

  6. Integrated Chemistry and Biology for First-Year College Students

    Science.gov (United States)

    Abdella, Beth R. J.; Walczak, Mary M.; Kandl, Kim A.; Schwinefus, Jeffrey J.

    2011-01-01

    A three-course sequence for first-year students that integrates beginning concepts in biology and chemistry has been designed. The first two courses that emphasize chemistry and its capacity to inform biological applications are described here. The content of the first course moves from small to large particles with an emphasis on membrane…

  7. Basic radiotherapy physics and biology

    CERN Document Server

    Chang, David S; Das, Indra J; Mendonca, Marc S; Dynlacht, Joseph R

    2014-01-01

    This book is a concise and well-illustrated review of the physics and biology of radiation therapy intended for radiation oncology residents, radiation therapists, dosimetrists, and physicists. It presents topics that are included on the Radiation Therapy Physics and Biology examinations and is designed with the intent of presenting information in an easily digestible format with maximum retention in mind. The inclusion of mnemonics, rules of thumb, and reader-friendly illustrations throughout the book help to make difficult concepts easier to grasp. Basic Radiotherapy Physics and Biology is a

  8. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglewski, S.

    2002-01-01

    isotopes in the environment. The ultra-low-background detection methods developed in the laboratory are constantly upgraded, along with amelioration of radiochemical separation procedures. All this allows very low radioactivities to be seen in the live and still nature, from the depths of lakes to stratospheric altitudes. The interest of the team is concentrated upon the natural and artificial alpha emitters, predominantly Pu and Am isotopes, and on the main medium Z components of the radioactive fallout: 90 Sr, 131 I, and 137 Cs. The most important practical aspect of the group's activity is the ability of early warning about nuclear events (since its very beginning, the laboratory is an active part of the appropriate network). In the scientific aspect, the detected contaminations can (and do) serve as very low-cost tracers in a variety of studies on biological, geochemical, meteorological and related processes in the environment. The scientific co-operation of the group is wide. The main institutions involved are the following: the Technical University of Budapest, Hungary, the University of Extremadura, Spain, the Bremen University, Germany, the IAEA, Vienna, Austria, the Academy of Medical Sciences of the Ukraine, the University of Northern Arizona, USA, and among the Polish institutions: the Central Laboratory of Radiation Protection, Warsaw, and the Health Physics Laboratory of our Institute, the Institute of Geography, Jagiellonian University, Cracow, and the Institute of Geology of the Polish Academy of Sciences, Cracow. The Laboratory of Physical Chemistry works on preparation and calibration of sources for various applications. Last year, using a temporary target assembly on the AIC-144 cyclotron, several isotopes were produced, from which the most useful was 85 Sr. In the meantime a remote-control system for the new target assembly was completed by a contractor, in co-operation with the Mechanical Works and the Cyclotron Group of the Institute. Simultaneously

  9. Physics and chemistry of the solar system

    CERN Document Server

    Lewis, John S

    2004-01-01

    Physics and Chemistry of the Solar System, 2nd Edition, is a comprehensive survey of the planetary physics and physical chemistry of our own solar system. It covers current research in these areas and the planetary sciences that have benefited from both earth-based and spacecraft-based experimentation. These experiments form the basis of this encyclopedic reference, which skillfully fuses synthesis and explanation. Detailed chapters review each of the major planetary bodies as well as asteroids, comets, and other small orbitals. Astronomers, physicists, and planetary scientists can use this state-of-the-art book for both research and teaching. This Second Edition features extensive new material, including expanded treatment of new meteorite classes, spacecraft findings from Mars Pathfinder through Mars Odyssey 2001, recent reflections on brown dwarfs, and descriptions of planned NASA, ESA, and Japanese planetary missions.* New edition features expanded treatment of new meteorite classes, the latest spacecraft...

  10. Microfluidics and nanofluidics handbook chemistry, physics, and life science principles

    CERN Document Server

    Mitra, Sushanta K

    2011-01-01

    The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fun...

  11. Biological scaling and physics

    Indian Academy of Sciences (India)

    Unknown

    metabolic rate being the 3/4 power of the factor of 2000 increase in mass. The metabolic rate per unit mass displays correspondingly the (– 1/4) power law. Such universal trends point to some simple and basic under- lying reason behind them. It is natural to seek such an explanation in geometry, or in some basic physics or ...

  12. [Physical methods and molecular biology].

    Science.gov (United States)

    Serdiuk, I N

    2009-01-01

    The review is devoted to the description of the current state of physical and chemical methods used for studying the structural and functional bases of living processes. Special attention is focused on the physical methods that have opened a new page in the research of the structure of biological macromolecules. They include primarily the methods of detecting and manipulating single molecules using optical and magnetic traps. New physical methods, such as two-dimensional infrared spectroscopy, fluorescence correlation spectroscopy and magnetic resonance microscopy are also analyzed briefly in the review. The path that physics and biology have passed for the latest 55 years shows that there is no single method providing all necessary information on macromolecules and their interactions. Each method provides its space-time view of the system. All physical methods are complementary. It is just complementarity that is the fundamental idea justifying the existence in practice of all physical methods, whose description is the aim of the review.

  13. Medicinal plants from Mali: Chemistry and biology.

    Science.gov (United States)

    Wangensteen, Helle; Diallo, Drissa; Paulsen, Berit Smestad

    2015-12-24

    Mali is one of the countries in West Africa where the health system rely the most on traditional medicine. The healers are mainly using medicinal plants for their treatments. The studies performed being the basis for this review is of importance as they will contribute to sustaining the traditional knowledge. They contribute to evaluate and improve locally produced herbal remedies, and the review gives also an overview of the plant preparations that will have the most potential to be evaluated for new Improved Traditional Medicines. The aim of this review is to give an overview of the studies performed related to medicinal plants from Mali in the period 1995-2015. These studies include ethnopharmacology, chemistry and biological studies of the plants that were chosen based on our interviews with the healers in different regions of Mali, and contribute to sustainable knowledge on the medicinal plants. The Department of Traditional Medicine, Bamako, Mali, is responsible for registering the knowledge of the traditional healers on their use of medicinal plants and also identifying compounds in the plants responsible for the bioactivities claimed. The studies reported aimed at getting information from the healers on the use of medicinal plants, and study the biology and chemistry of selected plants for the purpose of verifying the traditional use of the plants. These studies should form the basis for necessary knowledge for the development of registered Improved Traditional Medicines in Mali. The healers were the ethnopharmacological informants. Questions asked initially were related to wound healing. This was because the immune system is involved when wounds are healed, and additionally the immune system is involved in the majority of the illnesses common in Mali. Based on the results of the interviews the plant material for studies was selected. Studies were performed on the plant parts the healers were using when treating their patients. Conventional chromatographic

  14. The Eighth Central European Conference "Chemistry towards Biology": Snapshot.

    Science.gov (United States)

    Perczel, András; Atanasov, Atanas G; Sklenář, Vladimír; Nováček, Jiří; Papoušková, Veronika; Kadeřávek, Pavel; Žídek, Lukáš; Kozłowski, Henryk; Wątły, Joanna; Hecel, Aleksandra; Kołkowska, Paulina; Koča, Jaroslav; Svobodová-Vařeková, Radka; Pravda, Lukáš; Sehnal, David; Horský, Vladimír; Geidl, Stanislav; Enriz, Ricardo D; Matějka, Pavel; Jeništová, Adéla; Dendisová, Marcela; Kokaislová, Alžběta; Weissig, Volkmar; Olsen, Mark; Coffey, Aidan; Ajuebor, Jude; Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J; McAuliffe, Olivia; Waltenberger, Birgit; Mocan, Andrei; Šmejkal, Karel; Heiss, Elke H; Diederich, Marc; Musioł, Robert; Košmrlj, Janez; Polański, Jarosław; Jampílek, Josef

    2016-10-17

    The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.

  15. Strange Bedfellows; Physical and Biological Oceanographers

    Science.gov (United States)

    Wooster, W. S.

    2002-12-01

    When I started graduate study at Scripps in 1947, both the text, "The Oceans", and the curriculum - all students took the introductory courses in physics, chemistry, biology, and geology - conspired to create awareness of the interactions among these fields. In their preface, the authors spoke of the book as "an aid to the beginner and specialist alike in the coordination of the various fields of oceanography." Harald Sverdrup, perhaps the best known physical oceanographer of his day, introduced us to the interdisciplinary organization, ICES, wrote an important paper (1953) on "the vernal blooming of phytoplankton", and together with fishery biologist O.E.Sette, launched the world renowned CalCOFI program. Another noted physical oceanographer, Henry Stommel, 1949, teamed up with biologist Gordon Riley in a major study of the quantitative ecology of plankton. At the time, physical and biological oceanographers often seemed to be engaged in the same mission. The curriculum format, with its four basic courses, spread to most other graduate programs in oceanography, but the forces of specialization also spread. While the biological oceanographers have always seen the need to understand the milieu within which their creatures function, the physicists often seemed to chafe against wasting their time on squishy subjects like biology when there were so many more important and fascinating things to study. Interactions were further complicated by the confusion between "biological oceanography" and "marine biology", and by the status of "fishery biology" which was often disdained by oceanographers of all stripes. I propose to discuss the evolution of the relationship among these fields during the 60 years since "The Oceans" was first published, concluding with the present marriage of convenience, or at least amicable co-habitation, forced by the widespread concern over the threat of global warming and the need to understand its consequences. It has become clear that

  16. Electron spin interactions in chemistry and biology fundamentals, methods, reactions mechanisms, magnetic phenomena, structure investigation

    CERN Document Server

    Likhtenshtein, Gertz

    2016-01-01

    This book presents the versatile and pivotal role of electron spin interactions in nature. It provides the background, methodologies and tools for basic areas related to spin interactions, such as spin chemistry and biology, electron transfer, light energy conversion, photochemistry, radical reactions, magneto-chemistry and magneto-biology. The book also includes an overview of designing advanced magnetic materials, optical and spintronic devices and photo catalysts. This monograph appeals to scientists and graduate students working in the areas related to spin interactions physics, biophysics, chemistry and chemical engineering.

  17. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Impact of Theoretical Chemistry on Chemical and Biological Sciences: Chemistry Nobel Prize – 2013. Saraswathi Vishveshwara. General Article Volume 19 Issue 4 April 2014 pp 347-367 ...

  18. Emerging trends at the interface of Chemistry and Biology ...

    Indian Academy of Sciences (India)

    Emerging trends at the interface of Chemistry and. Biology: Applications to the design of human therapeutics. SANTANU BHATTACHARYA. 1 and RAGHAVAN VARADARAJAN. 2. 1. Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India. e-mail: sb@orgchem.iisc.ernet.in. 2. Molecular ...

  19. Laser experiments for chemistry and physics

    CERN Document Server

    Compton, Robert N

    2016-01-01

    Lasers are employed throughout science and technology, in fundamental research, the remote sensing of atmospheric gases or pollutants, communications, medical diagnostics and therapies, and the manufacturing of microelectronic devices. Understanding the principles of their operation, which underlie all of these areas, is essential for a modern scientific education. This text introduces the characteristics and operation of lasers through laboratory experiments designed for the undergraduate curricula in chemistry and physics. Introductory chapters describe the properties of light, the history of laser invention, the atomic, molecular, and optical principles behind how lasers work, and the kinds of lasers available today. Other chapters include the basic theory of spectroscopy and computational chemistry used to interpret laser experiments. Experiments range from simple in-class demonstrations to more elaborate configurations for advanced students. Each chapter has historical and theoretical background, as well...

  20. Unifying Quantum Physics with Biology

    Science.gov (United States)

    Goradia, Shantilal

    2014-09-01

    We find that the natural logarithm of the age of the universe in quantum mechanical units is close to 137. Since science is not religion, it is our moral duty to recognize the importance of this finding on the following ground. The experimentally obtained number 137 is a mystical number in science, as if written by the hand of God. It is found in cosmology; unlike other theories, it works in biology too. A formula by Boltzmann also works in both: biology and physics, as if it is in the heart of God. His formula simply leads to finding the logarithm of microstates. One of the two conflicting theories of physics (1) Einstein's theory of General Relativity and (2) Quantum Physics, the first applies only in cosmology, but the second applies in biology too. Since we have to convert the age of the universe, 13 billion years, into 1,300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Planck times to get close to 137, quantum physics clearly shows the characteristics of unifying with biology. The proof of its validity also lies in its ability to extend information system observed in biology.

  1. Physical and biological controls on the carbonate chemistry of coral reef waters: effects of metabolism, wave forcing, sea level, and geomorphology.

    Directory of Open Access Journals (Sweden)

    James L Falter

    Full Text Available We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System coupled with the wave transformation model SWAN (Simulating WAves Nearshore. Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO(2, pH, and aragonite saturation state (Ω(ar are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO(2, pH, and Ω(ar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months net offsets in reef-water pCO(2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO(2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO(2.

  2. Physical and Biological Controls on the Carbonate Chemistry of Coral Reef Waters: Effects of Metabolism, Wave Forcing, Sea Level, and Geomorphology

    Science.gov (United States)

    Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin; McCulloch, Malcolm

    2013-01-01

    We present a three-dimensional hydrodynamic-biogeochemical model of a wave-driven coral-reef lagoon system using the circulation model ROMS (Regional Ocean Modeling System) coupled with the wave transformation model SWAN (Simulating WAves Nearshore). Simulations were used to explore the sensitivity of water column carbonate chemistry across the reef system to variations in benthic reef metabolism, wave forcing, sea level, and system geomorphology. Our results show that changes in reef-water carbonate chemistry depend primarily on the ratio of benthic metabolism to the square root of the onshore wave energy flux as well as on the length and depth of the reef flat; however, they are only weakly dependent on channel geometry and the total frictional resistance of the reef system. Diurnal variations in pCO2, pH, and aragonite saturation state (Ωar) are primarily dependent on changes in net production and are relatively insensitive to changes in net calcification; however, net changes in pCO2, pH, and Ωar are more strongly influenced by net calcification when averaged over 24 hours. We also demonstrate that a relatively simple one-dimensional analytical model can provide a good description of the functional dependence of reef-water carbonate chemistry on benthic metabolism, wave forcing, sea level, reef flat morphology, and total system frictional resistance. Importantly, our results indicate that any long-term (weeks to months) net offsets in reef-water pCO2 relative to offshore values should be modest for reef systems with narrow and/or deep lagoons. Thus, the long-term evolution of water column pCO2 in many reef environments remains intimately connected to the regional-scale oceanography of offshore waters and hence directly influenced by rapid anthropogenically driven increases in pCO2. PMID:23326411

  3. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  4. Synthetic biology: lessons from the history of synthetic organic chemistry.

    Science.gov (United States)

    Yeh, Brian J; Lim, Wendell A

    2007-09-01

    The mid-nineteenth century saw the development of a radical new direction in chemistry: instead of simply analyzing existing molecules, chemists began to synthesize them--including molecules that did not exist in nature. The combination of this new synthetic approach with more traditional analytical approaches revolutionized chemistry, leading to a deep understanding of the fundamental principles of chemical structure and reactivity and to the emergence of the modern pharmaceutical and chemical industries. The history of synthetic chemistry offers a possible roadmap for the development and impact of synthetic biology, a nascent field in which the goal is to build novel biological systems.

  5. Academic excellence workshops in chemistry and physics

    Science.gov (United States)

    Mills, Susan Rose

    In the mid-1970's, Uri Treisman, at the University of California, Berkeley, developed an academic excellence workshop program that had important successes in increasing minority student achievement and persistence in calculus. The present dissertation research is an in-depth study of chemistry and physics workshops at the California State Polytechnic University, Pomona. Data for the first, longitudinal component of this study were obtained by tracking to Spring 1998 all workshop minority students, i.e., Latino, African American, and Native American workshop students, a random sample of non-workshop minority students, and a random sample of non-targeted students, i.e., Anglo and Asian students, enrolled in first-quarter General Chemistry or Physics during specific quarters of 1992 or 1993. Data for the second component were obtained by administering questionnaires, conducting interviews, and observing science students during Fall, 1996. Workshop participation was a significant predictor of first-quarter course grade for minority students in both chemistry and physics, while verbal and mathematics Scholastic Aptitude Test (SAT) scores were not significant predictors of beginning course grade for minority science students. The lack of predictive ability of the SAT and the importance of workshop participation in minority students' beginning science course performance are results with important implications for educators and students. In comparing pre-college achievement measures for workshop and non-targeted students, non-targeted students' mathematics SAT scores were significantly higher than chemistry and physics workshop students' scores. Nonetheless, workshop participation "leveled the field" as workshop and non-targeted students performed similarly in beginning science courses. Positive impacts of workshop participation on achievement, persistence, efficiency, social integration, and self-confidence support the continued and expanded funding of workshop programs

  6. The Physics of Marine Biology.

    Science.gov (United States)

    Conn, Kathleen

    1992-01-01

    Discusses ways in which marine biology can be integrated into the physics classroom. Topics suggested for incorporation include the harmonic motion of ocean waves, ocean currents, the interaction of visible light with ocean water, pressure, light absorption, and sound transfer in water. (MDH)

  7. Biological, chemical and medical physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of the actual situation in Brazil, concerning three important areas of physics: biological, chemical and medical. It gives a brief historical of research in these areas. It talks as well, about perspectives and financing. It contains many tables with the main research groups in activity in Brazilian institutions. (A.C.A.S.)

  8. From Physical Chemistry to Quantum Chemistry: How Chemists Dealt with Mathematics

    OpenAIRE

    Kostas Gavroglu; Ana Simões

    2012-01-01

    Discussing the relationship of mathematics to chemistry is closely related to the emergence of physical chemistry and of quantum chemistry. We argue that, perhaps, the most significant issue that the 'mathematization of chemistry' has historically raised is not so much methodological, as it is philosophical: the discussion over the ontological status of theoretical entities which were introduced in the process. A systematic study of such an approach to the mathematization of chemistry may, pe...

  9. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    of all stars were subject to external irradiation during their formation. It is therefore important to investigate the effect of irradiation from intermediate-mass young stars onto low-mass protostellar envelopes. In this thesis, the effect from such irradiation on the physics (such as the temperature...... near the luminous Herbig Be star R CrA. The physics and chemistry of this region are studied with millimetre, submillimetre, and far-infrared observations using both ground- and space-based observatories. To study the temperatures in the region, interferometric maps of several spectral lines...... the density profile of the inner envelope. 1Solar masses; 1 M = 1:99 1030 kg. 2Solar luminosities, 1 L = 3:84 1026 W. 3Astronomical units, the average Earth-Sun distance; 1 AU = 1:496 108 km....

  10. Cobalt oxides from crystal chemistry to physics

    CERN Document Server

    Raveau, Bernard

    2012-01-01

    Unparalleled in the breadth and depth of its coverage of all important aspects, this book systematically treats the electronic and magnetic properties of stoichiometric and non-stoichiometric cobaltites in both ordered and disordered phases. Authored by a pioneer and a rising star in the field, the monograph summarizes, organizes and streamlines the otherwise difficult-to-obtain information on this topic. An introductory chapter sets forth the crystal chemistry of cobalt oxides to lay the groundwork for an understanding of the complex phenomena observed in this materials class. Special emphasis is placed on a comprehensive discussion of cobaltite physical properties in different structural families. Providing a thorough introduction to cobalt oxides from a chemical and physical viewpoint as a basis for understanding their intricacies, this is a must-have for both experienced researchers as well as entrants to the field.

  11. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    electron transfer. (PET) is a very important process, with considerable chemical and biological relevance. GENERAL I ARTICLE of electrons, respectively. This has entirely changed the earlier framework of interpreting reactions in chemistry and biology. This shift in emphasis enables one to understand the elementary.

  12. Electron Transfer in Chemistry and Biology - The Primary Events in ...

    Indian Academy of Sciences (India)

    Electron Transfer in Chemistry and Biology -. The Primary Events in Photosynthesis. V Krishnan. One of the most important chemical reactions is electron transfer from one atomic/molecular unit to another. This reaction, accompanied by proton and hydrogen atom transfers, occurs in a cascade in many biological processes,.

  13. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    molecular dynamics simulations and graph theory as applied to biological systems. Her group has developed network approaches to investigate functionally important amino acids in protein structures. Keywords. Quantum Chemistry, molecular mechanics, force fields, QM/MM hybrid method, systems biology, molecular ...

  14. Analytical Chemistry at the Interface Between Materials Science and Biology

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Janese C. [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    Likedlessentid sciences, anal~cd chetis~continues toreinvent itself. Moving beyond its traditional roles of identification and quantification, analytical chemistry is now expanding its frontiers into areas previously reserved to other disciplines. This work describes several research efforts that lie at the new interfaces between analytical chemistry and two of these disciplines, namely materials science and biology. In the materials science realm, the search for new materials that may have useful or unique chromatographic properties motivated the synthesis and characterization of electrically conductive sol-gels. In the biology realm, the search for new surface fabrication schemes that would permit or even improve the detection of specific biological reactions motivated the design of miniaturized biological arrays. Collectively, this work represents some of analytical chemistry’s newest forays into these disciplines. The introduction section to this dissertation provides a literature review on several of the key aspects of this work. In advance of the materials science discussion, a brief introduction into electrochemically-modulated liquid chromatography (EMLC) and sol-gel chemistry is provided. In advance of the biological discussions, brief overviews of scanning force microscopy (SFM) and the oxidative chemistry used to construct our biological arrays are provided. This section is followed by four chapters, each of which is presented as a separate manuscript, and focuses on work that describes some of our cross-disciplinary efforts within materials science and biology. This dissertation concludes with a general summary and future prospectus.

  15. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  16. Recent advances in the chemistry and biology of pyridopyrimidines.

    Science.gov (United States)

    Buron, F; Mérour, J Y; Akssira, M; Guillaumet, G; Routier, S

    2015-05-05

    The interest in pyridopyrimidine cores for pharmaceutical products makes this scaffold a highly useful building block for organic chemistry. These derivatives have found applications in various areas of medicine such as anticancer, CNS, fungicidal, antiviral, anti-inflammatory, antimicrobial, and antibacterial therapies. This review mainly focuses on the progress achieved since 2004 in the chemistry and biological activity of pyridopyrimidines. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry.

    Science.gov (United States)

    Harris, D Calvin; Jewett, Michael C

    2012-10-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  19. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Petelenz, B.

    1999-01-01

    , UJ) and use of Pu and Cs contaminations as tracers to follow-up natural processes in peat bog (University of Agriculture, Cracow); d) preparation of α-spectrometric sources by electrodeposition (other groups of the Department) and determination of 241 Pu in α-spectrometric Pu sources (Silesian University, Katowice, Poland); e) comparative measurements of γ-background dose rate, using the PMS station, TL detectors and Gamma-Tracer probe (Health Physics Section of the Institute). In recognition of his expertise in radioecology, Dr Mietelski has been admitted as a Regular Member of the U.I.R. (Union Internationale de Radioecologie). Mrs Jasinska, Mr Kozak and Dr Mietelski received the Prize of the President of the City of Cracow for ''Organising and conducting continuous radiological monitoring of the air in Cracow and for the researches at the radioactive contamination of the environment''. The project on construction of the internal target assembly for isotope production was continued in the Laboratory of Physical Chemistry, in cooperation with the Cyclotron Section and Division of Mechanical Constructions of the Institute, and with the JINR, Dubna. In the meantime, in pilot experiments on the internal beam of the AIC-144 cyclotron, small activities of 11 C PET tracer were obtained from proton irradiated B 2 0 3 targets. A joint project with the Silesian Medical Academy, on applications of 32 P sources pure (β - emitter) in intravascular brachytherapy (IVBT), was started. Chemical and ionic methods of preparation of 32 P sources and their TL dosimetry were tested in cooperation with the Laboratory of the Ion Implanter and with the Health Physics Section of the Institute. Measurements of the activity of selenoenzymes in the context of human thyroid health or disease were continued in cooperation with the Medical College of the Jagiellonian University, and with the Rowett Research Institute, Aberdeen, Scotland

  20. Notions of radiation chemistry in biological systems

    International Nuclear Information System (INIS)

    Mastro, N.L. del.

    1989-10-01

    The present paper examines some aspects of the direct and indirect biological radiation effects: pair formation, free radicals, superoxide ion, hydrogen peroxide, hydroxyl radical, oxygen singlet together with the endogen radioprotector mechanisms of organisms and the ways in which an improved radioresistance of biochemical systems can be achieved. (author) [pt

  1. Chemistry and Biology of Orexin Signaling

    OpenAIRE

    Kodadek, Thomas; Cai, Di

    2010-01-01

    The orexins are neurohormones that, in concert with their cognate receptors, regulate a number of important physiological processes, including feeding, sleep, reward seeking and energy homeostasis. The orexin receptors have recently emerged as important drug targets. This review provides an overview of recent development in deciphering the biology of orexin signaling as well as efforts to manipulate orexin signaling pharmacologically.

  2. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  3. Biology-inspired AMO physics

    International Nuclear Information System (INIS)

    Mathur, Deepak

    2015-01-01

    This Topical Review presents an overview of increasingly robust interconnects that are being established between atomic, molecular and optical (AMO) physics and the life sciences. AMO physics, outgrowing its historical role as a facilitator—a provider of optical methodologies, for instance—now seeks to partner biology in its quest to link systems-level descriptions of biological entities to insights based on molecular processes. Of course, perspectives differ when AMO physicists and biologists consider various processes. For instance, while AMO physicists link molecular properties and dynamics to potential energy surfaces, these have to give way to energy landscapes in considerations of protein dynamics. But there are similarities also: tunnelling and non-adiabatic transitions occur both in protein dynamics and in molecular dynamics. We bring to the fore some such differences and similarities; we consider imaging techniques based on AMO concepts, like 4D fluorescence microscopy which allows access to the dynamics of cellular processes, multiphoton microscopy which offers a built-in confocality, and microscopy with femtosecond laser beams to saturate the suppression of fluorescence in spatially controlled fashion so as to circumvent the diffraction limit. Beyond imaging, AMO physics contributes with optical traps that probe the mechanical and dynamical properties of single ‘live’ cells, highlighting differences between healthy and diseased cells. Trap methodologies have also begun to probe the dynamics governing of neural stem cells adhering to each other to form neurospheres and, with squeezed light to probe sub-diffusive motion of yeast cells. Strong field science contributes not only by providing a source of energetic electrons and γ-rays via laser-plasma accelerations schemes, but also via filamentation and supercontinuum generation, enabling mainstream collision physics into play in diverse processes like DNA damage induced by low-energy collisions to

  4. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1991-05-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiotherapy. Current research topics include: oncogenic transformation assays, mutation studies involving interactions between radiation and environmental contaminants, isolation, characterization and sequencing of a human repair gene, characterization of a dominant transforming gene found in C3H 10T1/2 cells, characterize ab initio the interaction of DNA and radiation, refine estimates of the radiation quality factor Q, a new mechanistic model of oncogenesis showing the role of long-term low dose medium LET radiation, and time dependent modeling of radiation induced chromosome damage and subsequent repair or misrepair

  5. At the Intersection of Chemistry, Biology, and Medicine.

    Science.gov (United States)

    Walsh, Christopher T

    2017-06-20

    After an undergraduate degree in biology at Harvard, I started graduate school at The Rockefeller Institute for Medical Research in New York City in July 1965. I was attracted to the chemical side of biochemistry and joined Fritz Lipmann's large, hierarchical laboratory to study enzyme mechanisms. That work led to postdoctoral research with Robert Abeles at Brandeis, then a center of what, 30 years later, would be called chemical biology. I spent 15 years on the Massachusetts Institute of Technology faculty, in both the Chemistry and Biology Departments, and then 26 years on the Harvard Medical School Faculty. My research interests have been at the intersection of chemistry, biology, and medicine. One unanticipated major focus has been investigating the chemical logic and enzymatic machinery of natural product biosynthesis, including antibiotics and antitumor agents. In this postgenomic era it is now recognized that there may be from 10 5 to 10 6 biosynthetic gene clusters as yet uncharacterized for potential new therapeutic agents.

  6. From physical to biological individuation.

    Science.gov (United States)

    Miquel, Paul-Antoine; Hwang, Su-Young

    2016-10-01

    In this paper, we insist on stressing the epistemic and metaphysical difference between individual and individuation, a distinction originally developed by Gilbert Simondon. Individuation occurs in complex physical systems by the coupling (R 1 ) between the system and its outside conditions. As such the system is not well defined by its sole constituents. Let's characterize (R 2 ) as follows: the system is not entirely defined by its structure at a given time because this structure will change and global emergent properties will appear, as in the paradigmatic example of phase transition. Thus physical individuation is defined both by the coupling of a physical system with its environment (R 1 ) and by its diachronic dynamics taking place (R 2 ). We interpret biological individuation as a second order one, i.e. as a recursive procedure through which physical individuation is also acting on "its own theatre". We represent this procedure like a mapping through which (R 1 R 2 ) are applied to themselves, so that: R N  = (R 1 R 2 ) N . We highlight the relation between this assumption and the concept of extended criticality developed by Bailly, Longo and Montévil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Emerging trends at the interface of chemistry and biology ...

    Indian Academy of Sciences (India)

    This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene ...

  8. Emerging trends at the interface of Chemistry and Biology ...

    Indian Academy of Sciences (India)

    This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene ...

  9. The chemistry and biology of guanidine natural products.

    Science.gov (United States)

    Berlinck, Roberto G S; Bertonha, Ariane F; Takaki, Mirelle; Rodriguez, Julie P G

    2017-11-15

    Covering: 2015 and 2016The chemistry and biology of natural guanidines isolated from microbial culture media, from marine invertebrates, as well as from terrestrial plants and animals, are reviewed. Emphasis is directed to the biosynthesis, total synthesis, ecological roles as well as on the evolution of guanidines isolated from natural sources.

  10. The chemistry and biology of mycolactones

    Directory of Open Access Journals (Sweden)

    Matthias Gehringer

    2017-08-01

    Full Text Available Mycolactones are a group of macrolides excreted by the human pathogen Mycobacterium ulcerans, which exhibit cytotoxic, immunosuppressive and analgesic properties. As the virulence factor of M. ulcerans, mycolactones are central to the pathogenesis of the neglected disease Buruli ulcer, a chronic and debilitating medical condition characterized by necrotic skin ulcers. Due to their complex structure and fascinating biology, mycolactones have inspired various total synthesis endeavors and structure–activity relationship studies. Although this review intends to cover all synthesis efforts in the field, special emphasis is given to the comparison of conceptually different approaches and to the discussion of more recent contributions. Furthermore, a detailed discussion of molecular targets and structure–activity relationships is provided.

  11. Department of Nuclear Physical Chemistry - Overview

    International Nuclear Information System (INIS)

    Szeglowski, Z.

    2000-01-01

    taking part in the proficiency test on the determination of 239 Pu, 241 Pu and 241 Am in mineral matrix, organised by the IAEA. Ten dust samples, delivered by the University of Bremen (Germany) were analysed for the presence of 238 Pu, 239+240 Pu, 241 Pu, 241 Am and 244 Cm. In 1999, the equipment of the Environmental Radioactivity Laboratory was enriched with a low- background liquid scintillator spectrometer (Wallac 1414-003 Guardian), which opened a whole new branch of possible work connected with determination of pure beta-emitters. First isotopes of interest were 90 Sr and 241 Pu accumulated in animal bones. For 90 Sr measurements, an extensive library of scintillation quenching corrections was prepared. The spectrometer was also applied for tests of the purity of 32 P for the Laboratory of Physical Chemistry. A new project on transfer of plutonium from forest soil and litter to fungi and plants has been started. It is a pilot study for a planned in-Lab experiment to be performed during the incoming year at the University of Extremadura, Caceres, Spain. Other projects conducted during 1999 in the Environmental Radioactivity Laboratory are described in short abstracts below. In the Laboratory of Physical Chemistry, the project on construction of the internal target assembly for isotope production was continued, in cooperation with the Institute's Division of Mechanical Construction and with the Cyclotron Section. At the same time, much investment was made into necessary renovations in the radiochemical laboratory. Research in the Laboratory was concentrated on preparation and evaluation of 32 P sources for intravascular brachytherapy. With the help of the Institute's Health Physics Laboratory, liquid Na 2 H 32 PO 4 sources were calibrated by TL dosimetry, and in cooperation with the Department of Nuclear Spectroscopy, some solid state sources containing 32 P were prepared. Liquid 32 P sources calibrated in the Institute were first applied in pre-clinical intravascular

  12. Time in physics and biology

    Directory of Open Access Journals (Sweden)

    BRUNO GÜNTHER

    2004-01-01

    Full Text Available In contrast with classical physics, particularly with Sir Isaac Newton, where time is a continuous function, generally valid, eternally and evenly flowing as an absolute time dimension, in the biological sciences, time is in essence of cyclical nature (physiological periodicities, where future passes to past through an infinitely thin boundary, the present. In addition, the duration of the present (DP leads to the so-called 'granulation of time' in living beings, so that by the fusion of two successive pictures of the world, which are not entirely similar, they attain the perception of 'movement,' both in the real world as well as in the sham-movement in the mass media (TV.

  13. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ''biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons

  15. Radiation physics, biophysics, and radiation biology

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood biological fingerprint'' of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  16. Education-oriented Physics-Chemistry for Universities

    Directory of Open Access Journals (Sweden)

    B. Spoelstra

    1985-03-01

    Full Text Available The shortage of well-qualified Science teachers is discussed, and possible contributing factors are mentioned. The need for an education-oriented university education in Physics and Chemistry, parallel to the existing courses in Physics and Chemistry, is justified. At the University of Zululand a subject called “Physical Science” (“Natuurwetenskap” was established, bearing in mind the specific requirements of a teaching career in Physical Science at secondary level. “Physical Science” is offered at second and third year level and the syllabus covers equal amounts of Chemistry and Physics. A less formal-mathematical and more descriptive approach is followed, and as wide a field as possible is covered which includes new developments in the physical sciences. We believe that this new course will enhance the training of well-prepared teachers of Physical Science for secondary schools, where a severe shortage prevails. Special reference is made here to the situation in Black schools.

  17. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  18. Chemistry and Biology of the Caged Garcinia Xanthones

    Science.gov (United States)

    Chantarasriwong, Oraphin; Batova, Ayse; Chavasiri, Warinthorn

    2011-01-01

    Natural products have been a great source of many small molecule drugs for various diseases. In spite of recent advances in biochemical engineering and fermentation technologies that allow us to explore microorganisms and the marine environment as alternative sources of drugs, more than 70% of the current small molecule therapeutics derive their structures from plants used in traditional medicine. Natural-product-based drug discovery relies heavily on advances made in the sciences of biology and chemistry. Whereas biology aims to investigate the mode of action of a natural product, chemistry aims to overcome challenges related to its supply, bioactivity, and target selectivity. This review summarizes the explorations of the caged Garcinia xanthones, a family of plant metabolites that possess a unique chemical structure, potent bioactivities, and a promising pharmacology for drug design and development. PMID:20648491

  19. Using Physics Principles in the Teaching of Chemistry.

    Science.gov (United States)

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  20. Contextualization and technologies in the Biology and Chemistry textbooks

    Directory of Open Access Journals (Sweden)

    Rozana Gomes de Abreu

    2005-12-01

    Full Text Available We analyze Biology and Chemistry school textbooks to understand how conceptions of contextualization and technologies are overtaken and hybridized. We consider that textbooks produce meanings (senses and signifieds in curricular policies. These are cultural productions that were hybridized and recontextualized according to Basil Bernstein and Stephen Ball. We argue that the focus on contextualization and technologies expressed in those textbooks are hybridized from several influences and they do not represent a consensus about those conceptions.

  1. Physical Biology : challenges for our second decade

    Science.gov (United States)

    Levine, Herbert

    2014-06-01

    understand when the details of proteins and nucleic acids structure and function can be assumed constant when considering the cell. This problem is even more serious as we try to set higher sights and think of cells as constituents of tissue, organ and organism. Trying to understand higher-order biological systems is a bit like trying to play a board game where the pieces and rules are constantly changing, somehow in concert with what is happening at the scale of the game. Others will undoubtedly have their own view of what is really difficult and different about living systems. One of the roles of Physical Biology should therefore be to provide a needed forum to address some of these really difficult questions. Of course, most papers will operate with the safety-setting on, and will use established ideas in physics, either experimental or theoretical, to further our quantitative appreciation of living systems. These papers are without doubt an absolutely necessary part of the field, and we hope that our journal can serve as a home for the best of these. But, my real hope is that we can attract papers that really try to break new ground, that suggest ways in which the living world is not just an extremely messy example of the same phenomena that can be studied in non-biological contexts. Amazingly, this hope is actually shared by many leading biologists. In one of the most influential papers on cancer research in the past decades. Hanahan and Weinberg argue that 'one day, we imagine that cancer biology and treatment—at present, a patchwork quilt of cell biology, genetics, histopathology, biochemistry, immunology, and pharmacology—will become a science with a conceptual structure and logical coherence that rivals that of chemistry or physics.' We should take up the challenge, not just for cancer, and Physical Biology should help. Figuring out exactly how best to do this is now my responsibility, and I look forward to hearing from you and working with all of you, in order

  2. Physical Biology : challenges for our second decade.

    Science.gov (United States)

    Levine, Herbert

    2014-06-01

    understand when the details of proteins and nucleic acids structure and function can be assumed constant when considering the cell. This problem is even more serious as we try to set higher sights and think of cells as constituents of tissue, organ and organism. Trying to understand higher-order biological systems is a bit like trying to play a board game where the pieces and rules are constantly changing, somehow in concert with what is happening at the scale of the game. Others will undoubtedly have their own view of what is really difficult and different about living systems. One of the roles of Physical Biology should therefore be to provide a needed forum to address some of these really difficult questions. Of course, most papers will operate with the safety-setting on, and will use established ideas in physics, either experimental or theoretical, to further our quantitative appreciation of living systems. These papers are without doubt an absolutely necessary part of the field, and we hope that our journal can serve as a home for the best of these. But, my real hope is that we can attract papers that really try to break new ground, that suggest ways in which the living world is not just an extremely messy example of the same phenomena that can be studied in non-biological contexts. Amazingly, this hope is actually shared by many leading biologists. In one of the most influential papers on cancer research in the past decades. Hanahan and Weinberg argue that 'one day, we imagine that cancer biology and treatment-at present, a patchwork quilt of cell biology, genetics, histopathology, biochemistry, immunology, and pharmacology-will become a science with a conceptual structure and logical coherence that rivals that of chemistry or physics.' We should take up the challenge, not just for cancer, and Physical Biology should help. Figuring out exactly how best to do this is now my responsibility, and I look forward to hearing from you and working with all of you, in order to

  3. The biology and chemistry of the zoanthamine alkaloids.

    Science.gov (United States)

    Behenna, Douglas C; Stockdill, Jennifer L; Stoltz, Brian M

    2008-01-01

    Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.

  4. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.; Delegianis, M.J.

    1989-07-01

    An important event of the year was the designation of our Laboratory as a Center for Radiological Research by the Dean of the Faculty of Medicine and Vice-President for Health Sciences. Center status acknowledges the size and importance of the research efforts in this area, and allows a greater measure of independence in administrative matters. While the name has changed from a Laboratory to a Center within the Medical School, the mission and charge remain the same. The efforts of the Center are a multidisciplinary mix of physics, chemistry, and biology, mostly at a basic level, with the admixture of a small proportion of pragmatic or applied research in support of radiation protection or radiation therapy. About a quarter of our funding, mostly individual research awards, could be regarded as in direct support of radiotherapy, with the remainder (an NCI program project grant and DOE grants) being in support of research addressing more basic issues. An important effort currently underway concerns ab-initio calculations of the dielectric response function of condensed water. This investigation has received the coveted designation, ''Grand Challenge Project,'' awarded by DOE to research work which represents ''distinct advance on a major scientific or engineering problem that is broadly recognized as important within the mission of the Department.''

  5. Organic chemistry and biology: chemical biology through the eyes of collaboration.

    Science.gov (United States)

    Hruby, Victor J

    2009-12-18

    From a scientific perspective, efforts to understand biology including what constitutes health and disease has become a chemical problem. However, chemists and biologists "see" the problems of understanding biology from different perspectives, and this has retarded progress in solving the problems especially as they relate to health and disease. This suggests that close collaboration between chemists and biologists is not only necessary but essential for progress in both the biology and chemistry that will provide solutions to the global questions of biology. This perspective has directed my scientific efforts for the past 45 years, and in this overview I provide my perspective of how the applications of synthetic chemistry, structural design, and numerous other chemical principles have intersected in my collaborations with biologists to provide new tools, new science, and new insights that were only made possible and fruitful by these collaborations.

  6. Towards physical principles of biological evolution

    Science.gov (United States)

    Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.

    2018-03-01

    Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice

  7. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    Science.gov (United States)

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  8. Handbook on the physics and chemistry of rare earths

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Eyring, L.

    1982-01-01

    This handbook is a six-volume work which covers the entire rare earth field in an integrated manner. Each chapter is a comprehensive, up-to-date, critical review of a particular segment of the field. The first volume is devoted to the rare earth metals, the second to rare earth alloys and intermetallics, and the third and fourth volumes to the non-metallic rare earth materials, including solutions, complexes and bioinorganic substances, in addition to solid inorganic compounds. The electronic structure of these unique elements is the primary basis of understanding their physical, metallurgical and chemical natures. The interrelationship of the 4f and valence electrons and the observed optical, electrical, magnetic, crystallographic, elastic, thermal, mechanical, chemical, geochemical and biological behaviors is brought forth time and again throughout the chapters. Also discussed are the preparative, separation and solution chemistry of the elements and their compounds and the various chemical and physical analytical methods for determining the rare earths in various materials and impurities in a rare earth matrix. Vol. 5 is a update complement of the previous volumes. Volume 6 is concerned with ternary and higher order materials. (Auth.)

  9. Annual progress report of the physical chemistry department. Basic research 1987

    International Nuclear Information System (INIS)

    1988-01-01

    Basic research for 1987 in physical chemistry of the French Atomic Energy Commission are reviewed. Topics include molecular chemistry, isotopic geochemistry, molecular photophysics, laser photochemistry, solid and surface physical chemistry. A list of publications and thesis is given [fr

  10. 2010 Tetrapyrroles, Chemistry & Biology of Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Angela Wilks

    2010-07-30

    The objective of the Chemistry & Biology of Tetrapyrroles Gordon Conference is to bring together researchers from diverse disciplines that otherwise would not interact. By bringing biologists, chemists, engineers and clinicians with a common interest in tetrapyrroles the conference provides a forum for cross-disciplinary ideas and collaboration. The perspective provided by biologists, chemists, and clinicians working in fields such as newly discovered defects in human porphyrin metabolism, the myriad of strategies for light harvesting in photosynthetic organisms, novel tetrapyrroles that serve as auxiliary chromophores or enzyme cofactors, synthetic strategies in the design of novel tetrapyrrole scaffolds, and tetrapyrrole based cell signaling and regulatory systems, makes this conference unique in the field. Over the years the growing evidence for the role of tetrapyrroles and their reactive intermediates in cell signaling and regulation has been of increasing importance at this conference. The 2010 conference on Chemistry & Biology of Tetrapyrroles will focus on many of these new frontiers as outlined in the preliminary program listed. Speakers will emphasize unpublished results and new findings in the field. The oral sessions will be followed by the highly interactive afternoon poster sessions. The poster sessions provide all conferees with the opportunity to present their latest research and to exchange ideas in a more informal setting. As in the past, this opportunity will continue during the nightly social gathering that takes place in the poster hall following the evening lectures. All conferees are encouraged to submit and present posters. At the conference the best poster in the areas of biology, chemistry and medicine will be selected by a panel of previous conference chairs.

  11. Student Use of Energy Concepts from Physics in Chemistry Courses

    Science.gov (United States)

    Nagel, Megan L.; Lindsey, Beth A.

    2015-01-01

    This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical and…

  12. Some conceptual issues in the transition from chemistry to biology.

    Science.gov (United States)

    Moreno, Alvaro

    2016-12-01

    The transition from chemistry to biology is an extremely complex issue because of the huge phenomenological differences between the two domains and because this transition has many different aspects and dimensions. In this paper, I will try to analyze how chemical systems have developed a cohesive, self-maintaining and functionally differentiated system that recruits its organization to stay far from equilibrium. This organization cannot exist but in an individualized form, and yet, it unfolds both a diachronic-historical and a synchronic collective dimension. I will argue that, far from being a problem, these different dimensions of the phenomenon of life, appear as a consequence of the nature of this individualized organization.

  13. Recent Advances in the Chemistry and Biology of Podophyllotoxins.

    Science.gov (United States)

    Yu, Xiang; Che, Zhiping; Xu, Hui

    2017-04-03

    Podophyllotoxin and its related aryltetralin cyclolignans belong to a family of important products that exhibit various biological properties (e.g., cytotoxic, insecticidal, antifungal, antiviral, anti-inflammatory, neurotoxic, immunosuppressive, antirheumatic, antioxidative, antispasmogenic, and hypolipidemic activities). This Review provides a survey of podophyllotoxin and its analogues isolated from plants. In particular, recent developments in the elegant total chemical synthesis, structural modifications, biosynthesis, and biotransformation of podophyllotoxin and its analogues are summarized. Moreover, a deoxypodophyllotoxin-based chemosensor for selective detection of mercury ion is described. In addition to the most active podophyllotoxin derivatives in each series against human cancer cell lines and insect pests listed in the tables, the structure-activity relationships of podophyllotoxin derivatives as cytotoxic and insecticidal agents are also outlined. Future prospects and further developments in this area are covered at the end of the Review. We believe that this Review will provide necessary information for synthetic, medicinal, and pesticidal chemistry researchers who are interested in the chemistry and biology of podophyllotoxins. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J.M.; Chavanne, J. [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E. [Hasylab at Desy, Hamburg (Germany)] [and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  15. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  16. Intermediate physics for medicine and biology

    CERN Document Server

    Hobbie, Russell K

    2015-01-01

    This classic text has been used in over 20 countries by advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, neuroscience, and biomedical engineering. It bridges the gap between an introductory physics course and the application of physics to the life and biomedical sciences. Extensively revised and updated, the fifth edition incorporates new developments at the interface between physics and biomedicine. New coverage includes cyclotrons, photodynamic therapy, color vision, x-ray crystallography, the electron microscope, cochlear implants, deep brain stimulation, nanomedicine, and other topics highlighted in the National Research Council report BIO2010. As with the previous edition, the first half of the text is primarily biological physics, emphasizing the use of ideas from physics to understand biology and physiology, and the second half is primarily medical physics, describing the use of physics in medicine for diagnosis (mainly imaging) and therapy. Among the m...

  17. Platensimycin and platencin: Inspirations for chemistry, biology, enzymology, and medicine.

    Science.gov (United States)

    Rudolf, Jeffrey D; Dong, Liao-Bin; Shen, Ben

    2017-06-01

    Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Liquid crystals beyond displays chemistry, physics, and applications

    CERN Document Server

    Li, Quan

    2012-01-01

    The chemistry, physics, and applications of liquid crystals beyond LCDs Liquid Crystals (LCs) combine order and mobility on a molecular and supramolecular level. But while these remarkable states of matter are most commonly associated with visual display technologies, they have important applications for a variety of other fields as well. Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications considers these, bringing together cutting-edge research from some of the most promising areas of LC science. Featuring contributions from respected researchers from around the globe, th

  19. Proceedings of the 17. Annual Meeting of the Brazilian Chemistry Society; 7. National Symposium on Inorganic Chemistry. Abstracts

    International Nuclear Information System (INIS)

    1994-01-01

    These 17. Annual Meeting of the Brazilian Chemistry Society and 7. National Symposium on Inorganic Chemistry present several subjects of different interests for the participants, including sections about inorganic chemistry; organic chemistry; environmental chemistry; technological chemistry; electrochemistry; physical chemistry; photochemistry; chemical education; natural products; analytical chemistry and biological chemistry. (C.G.C.)

  20. Basic biology in health physics

    International Nuclear Information System (INIS)

    Wells, J.

    1976-10-01

    This report describes the consequences of the interaction of ionizing radiation with living cells and tissues. The basic processes of living cells, which are relevant to an understanding of health physics problems, are outlined with particular reference to cell-death, cancer induction and genetic effects. (author)

  1. Physical-chemical processes of astrophysical interest: nitrogen chemistry

    International Nuclear Information System (INIS)

    Loison, Jean-Christophe; Hickson, Kevin; Hily-Blant, Pierre; Faure, Alexandre; Vuitton, Veronique; Bacmann, A.; Maret, Sebastien; Legal, Romane; Rist, Claire; Roncero, Octavio; Larregaray, Pascal; Hochlaf, Majdi; Senent, M. L.; Capron, Michael; Biennier, Ludovic; Carles, Sophie; Bourgalais, Jeremy; Le Picard, Sebastien; Cordier, Daniel; Guillemin, Jean-Claude; Trolez, Yann; Bertin, M.; Poderoso, H.A.M.; Michaut, X.; Jeseck, P.; Philippe, L.; Fillion, J.H.; Fayolle, E.C.; Linnartz, H.; Romanzin, C.; Oeberg, K.I.; Roueff, Evelyne; Pagani, Laurent; Padovani, Marco; Wakelam, Veronique; Honvault, Beatrice; Zvereva-Loete, Natalia; Ouk, Chanda-Malis; Scribano, Yohann; Hartmann, J.M.; Pineau des Forets, Guillaume; Hernandez, Mario; Lique, Francois; Kalugina, Yulia N.; Stoecklin, T.; Hochlaf, M.; Crespos, C.; Larregaray, P.; Martin-Gondre, L.; Petuya, R.; Quintas Sanchez, E.L.; Zanchet, Alexandre; Rodriguez-Lazcano, Yamilet; Mate, Belen

    2013-06-01

    This document contains the programme and abstracts of contributions to a workshop on nitrogen chemistry within an astrophysical perspective. These contributions have been presented in sessions: Introduction (opening lecture, experimental approaches to molecular astrophysics, theoretical approaches to astrophysics, observations in molecular astrophysics), Physical-chemical theory of the gas phase (time-dependent approach in elementary activity, statistic approach in elementary activity in the case of the N+H 2 reaction, potential energy surfaces for inelastic and reactive collisions, collision rate for N 2 H + , ortho/para selection rules in the chemistry of nitrogen hydrides, cyanides/iso-cyanides excitation in the ISM, CN excitation, radiative association with N 2 H as new interstellar anion, ro-vibratory excitation of HCN) Laboratory astrophysics (measurement of reaction products in the CRESUSOL project, reactivity of the CN- anion, N 2 photo-desorption in ices, CRESU study of nitrogen chemistry, chemistry of nitrogen complex molecules), Observations and chemistry of astrophysical media (the problem of interstellar nitrogen fractioning, abundance of N 2 in proto-stellar cores, HNC in Titan atmosphere and nitrogen-related mechanisms in hot Jupiters, HCN and HNC in dark clouds or how theoretical modelling helps in interpreting observations, nitrogen chemistry in cold clouds, deuteration of nitrogen hydrides, nitrogen in interstellar ices, biochemical molecules on Titan, coupling between excitation and chemistry, radiative transfer of nitrogen hydrides, ortho/para chemistry of nitrogen hydrides), Physical-chemical theory of gas-grain interactions (nitrogen reactivity on surfaces, IR spectra of ices of NH 3 and NH 3 /N 2 mixtures)

  2. Physics and chemistry of aging - early developments

    CERN Document Server

    Vavra, J

    2003-01-01

    The aging phenomena are very complex physical and chemical processes. The author attempts to qualitatively discuss various physical processes contributing to aging. A satisfactory quantitative explanation is not presently available. In this sense, little progress has been made since the 1986 LBL Aging Workshop. However, what was accomplished during the past decade is a heightened awareness from the research and management sides to pay more attention to this problem, and as a result a number of aging tests have increased in quantity and quality. These efforts will undoubtedly yield some new results in the future. Examples in this paper are mainly from a "pre-LHC and pre-HERA-B era of aging." where the total charge doses are limited to much less than 1 C/cm. (36 refs).

  3. Physics and chemistry of aging early developments

    CERN Document Server

    Vagvra, J

    2002-01-01

    The aging phenomena are very complex physical and chemical processes. The author attempts to qualitatively discuss various physical processes contributing to aging. The satisfactory quantitative explanation is not presently available. In this sense, there is little progress made since the 1986 LBL Aging Workshop. However, what was accomplished during the past decade is a heighten awareness from the research and management sides to pay more attention to this problem, and as a result a number of aging tests have increased in quantity and quality. These efforts will undoubtedly yield some new results in the future. Examples in this paper are mainly from a "pre- LHC and pre-HERA-B era of aging, " where the total charge doses is limited to much less than one C/cm. (37 refs).

  4. Advances in the Biology and Chemistry of Sialic Acids

    Science.gov (United States)

    Chen, Xi; Varki, Ajit

    2010-01-01

    Sialic acids are a subset of nonulosonic acids, which are nine-carbon alpha-keto aldonic acids. Natural existing sialic acid-containing structures are presented in different sialic acid forms, various sialyl linkages, and on diverse underlying glycans. They play important roles in biological, pathological, and immunological processes. Sialobiology has been a challenging and yet attractive research area. Recent advances in chemical and chemoenzymatic synthesis as well as large-scale E. coli cell-based production have provided a large library of sialoside standards and derivatives in amounts sufficient for structure-activity relationship studies. Sialoglycan microarrays provide an efficient platform for quick identification of preferred ligands for sialic acid-binding proteins. Future research on sialic acid will continue to be at the interface of chemistry and biology. Research efforts will not only lead to a better understanding of the biological and pathological importance of sialic acids and their diversity, but could also lead to the development of therapeutics. PMID:20020717

  5. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).

    Science.gov (United States)

    Chagas-Paula, Daniela A; Oliveira, Rejane B; Rocha, Bruno A; Da Costa, Fernando B

    2012-02-01

    The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  6. ZINC: a free tool to discover chemistry for biology.

    Science.gov (United States)

    Irwin, John J; Sterling, Teague; Mysinger, Michael M; Bolstad, Erin S; Coleman, Ryan G

    2012-07-23

    ZINC is a free public resource for ligand discovery. The database contains over twenty million commercially available molecules in biologically relevant representations that may be downloaded in popular ready-to-dock formats and subsets. The Web site also enables searches by structure, biological activity, physical property, vendor, catalog number, name, and CAS number. Small custom subsets may be created, edited, shared, docked, downloaded, and conveyed to a vendor for purchase. The database is maintained and curated for a high purchasing success rate and is freely available at zinc.docking.org.

  7. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  8. Progress in organic and physical chemistry structures and mechanisms

    CERN Document Server

    Zaikov, Gennady E; Lobanov, Anton V

    2013-01-01

    Progress in Organic and Physical Chemistry: Structures and Mechanisms provides a collection of new research in the field of organic and physical properties, including new research on: The physical principles of the conductivity of electrical conducting polymer compounds The dependence on constants of electromagnetic interactions upon electron spacial-energy characteristics Effects of chitosan molecultural weight on rehological behavior of chitosan modified nanoclay at hight hydrated state Bio-structural energy criteria of functional states in normal and pathological conditions Potentiometric study on the international between devalent cations and sodium carboxylates in aqueous solutions Structural characteristic changes in erythrocyte membranes of mice bearing Alzheimer's-like disease caused by the olfactory bulbetomy This volume is intended to provide an overview of new studies and research for engineers, faculty, researchers, and upper-level students in the field of organic and physical chemistry.

  9. The Freezing Point Depression Law in Physical Chemistry.

    Science.gov (United States)

    Franzen, Hugo F.

    1988-01-01

    Suggests a change in physical chemistry courses to use a slightly more complicated but significantly more useful generalization of the simple freezing point depression law. Lists reasons for the change and presents the treatment of solid-liquid equilibria where solid-solution is allowed. Provides a mathematical treatment. (MVL)

  10. Empowering Girls with Chemistry, Exercise and Physical Activity

    Science.gov (United States)

    Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.

    2015-01-01

    Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…

  11. Solar Energy Education. Renewable energy activities for chemistry and physics

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    Information on renewable energy sources is provided for students in this teachers' guide. With the chemistry and physics student in mind, solar energy topics such as absorber plate coatings for solar collectors and energy collection and storage methods are studied. (BCS)

  12. The Contributions of James Moir to Physical Chemistry

    African Journals Online (AJOL)

    NICO

    This article examines his research in physical chemistry, covering the spectral analysis of the ruby and emerald gemstones, a detailed analysis of part of the Fraunhofer lines of the solar spectrum, and an examination of the spectra of cobalt compounds, the permanganate ion, and uranium compounds. Finally, as part of his ...

  13. Micro-segmented flow applications in chemistry and biology

    CERN Document Server

    Cahill, Brian

    2014-01-01

    The book is dedicated to the method and application potential of micro segmented flow. The recent state of development of this powerful technique is presented in 12 chapters by leading researchers from different countries. In the first section, the principles of generation and manipulation of micro-fluidic segments are explained. In the second section, the micro continuous-flow synthesis of different types of nanomaterials is shown as a typical example for the use of advantages of the technique in chemistry. In the third part, the particular importance of the technique in biotechnical applications is presented demonstrating the progress for miniaturized cell-free processes, for molecular biology and DNA-based diagnostis and sequencing as well as for the development of antibiotics and the evaluation of toxic effects in medicine and environment.

  14. Natural product synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Hong, Jiyong

    2014-08-11

    Nature has evolved to produce unique and diverse natural products that possess high target affinity and specificity. Natural products have been the richest sources for novel modulators of biomolecular function. Since the chemical synthesis of urea by Wöhler, organic chemists have been intrigued by natural products, leading to the evolution of the field of natural product synthesis over the past two centuries. Natural product synthesis has enabled natural products to play an essential role in drug discovery and chemical biology. With the introduction of novel, innovative concepts and strategies for synthetic efficiency, natural product synthesis in the 21st century is well poised to address the challenges and complexities faced by natural product chemistry and will remain essential to progress in biomedical sciences. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Perspective: Reaches of chemical physics in biology.

    Science.gov (United States)

    Gruebele, Martin; Thirumalai, D

    2013-09-28

    Chemical physics as a discipline contributes many experimental tools, algorithms, and fundamental theoretical models that can be applied to biological problems. This is especially true now as the molecular level and the systems level descriptions begin to connect, and multi-scale approaches are being developed to solve cutting edge problems in biology. In some cases, the concepts and tools got their start in non-biological fields, and migrated over, such as the idea of glassy landscapes, fluorescence spectroscopy, or master equation approaches. In other cases, the tools were specifically developed with biological physics applications in mind, such as modeling of single molecule trajectories or super-resolution laser techniques. In this introduction to the special topic section on chemical physics of biological systems, we consider a wide range of contributions, all the way from the molecular level, to molecular assemblies, chemical physics of the cell, and finally systems-level approaches, based on the contributions to this special issue. Chemical physicists can look forward to an exciting future where computational tools, analytical models, and new instrumentation will push the boundaries of biological inquiry.

  16. Chemistry and physical properties of estolides

    International Nuclear Information System (INIS)

    Isbell, T.A.

    2011-01-01

    Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to -36 degrees centigrade but suffer poor oxidative stability with RPVOT times of 29 - 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of -36 to - 54 degrees centigrade. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point -5 to -39 degrees centigrade) and good oxidative stability. Estolides from meadow foam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties. (Author).

  17. Material behavior and physical chemistry in liquid metal systems

    International Nuclear Information System (INIS)

    The book gives an overview of current work in liquid metal science and technology. Included are the topics of sodium corrosion and mass transfer, impurities in sodium, lithium corrosion, material behavior, lead corrosion, chemical reactions, analytical chemistry, physical chemistry, solubility in alkali metals, and interstitial elements transfer. The 57 papers include one discussion report; the latter challenges the attempts made as reported in the other papers to determine the diffusing coefficients of the alloying elements during corrosion of austenitic stainless steel in liquid sodium. The preface groups the papers into logical categories and offers several overviews concerning results and findings. The index is to topics

  18. The Chemistry and Physics of Molecular Surfaces

    Science.gov (United States)

    Kaldor, A.; Cox, D. M.; Trevor, D. J.; Zakin, M. R.

    1986-06-01

    This article reviews the results of several recent experiments performed in our laboratory designed to elucidate the fundamental chemical and physical properties of clusters of both transition metals and other refractory elements containing from one to several hundred atoms. The gas-phase reactivity of clusters towards a variety of reagents is explored using a fast-flow reactor system. Strong cluster size-dependent variations in reactivity are observed, especially for the case of hydrogen chemisorption. Measurement of cluster photoionization thresholds (IPs) provides a sensitive probe of the evolution of cluster electronic structure as a function of the number of constituent atoms. Cluster ionization potentials are observed to exhibit fluctuations about the smooth global falloff predicted by the classical drop model, indicating the non-bulk-like behavior of small clusters. Measurement of shifts in IP induced by chemisorption of different reagents provides insight into the nature of adsorbate-cluster bonding. The formation and properties of bare and metal-doped carbon clusters are explored, with particular emphasis on elucidating the photophysics and photochemistry of the postulated ultrastable larger clusters. The results suggest that further work is required to prove soccer ball-like structures for C50, C60, etc. Finally, infrared multiple-photon dissociation (IR-MPD) is demonstrated to be a viable technique for obtaining infrared spectra of absorbate-cluster complexes. This technique is an important new tool for obtaining information about the molecularity of gas-phase reactions beyond that currently available from mass spectrometric analysis. As an illustration of the method, IR-MPD spectra of methanol chemisorbed on small iron clusters are obtained.

  19. Intermediate Physics for Medicine and Biology

    CERN Document Server

    Hobbie, Russell K

    2007-01-01

    Intended for advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, cell biology, and biomedical engineering, this wide-ranging text bridges the gap between introductory physics and its application to the life and biomedical sciences. This extensively revised and updated fourth edition reflects new developments at the burgeoning interface between physics and biomedicine. Among the many topics treated are: forces in the skeletal system; fluid flow, with examples from the circulatory system; the logistic equation; scaling; transport of neutral particles by diffusion and by solvent drag; membranes and osmosis; equipartition of energy in statistical mechanics; the chemical potential and free energy; biological magnetic fields; membranes and gated channels in membranes; linear and nonlinear feedback systems; nonlinear phenomena, including biological clocks and chaotic behavior; signal analysis, noise and stochastic resonance detection of weak signals; image formation and...

  20. Chemistry and physical properties of estolides

    Directory of Open Access Journals (Sweden)

    Isbell, Terry A.

    2011-03-01

    Full Text Available Estolides are a developing class of natural and synthetic compounds that have been synthesized from hydroxy oils like castor and lesquerella or by the condensation of fatty acids across the olefin of a second fatty acid. Castor and lesquerella estolides are derived from either their triglycerides or their free fatty acids utilizing their hydroxyl moiety to establish the estolide bond. The triglyceride estolides have pour points of 9 to –36ºC but suffer poor oxidative stability with RPVOT times of 29 – 52 minutes even with 1% of an anti-oxidant package incorporated into the samples. In contrast to the triglyceride estolides of castor and lesquerella, the estolides from lesquerolic and ricinoleic acids have very good pour points of –36 to –54ºC. Estolides derived from the acid catalyzed condensation of oleic acid with a variety of fatty acids can be made in good yield and posses a wide range of physical properties. Of particular interest are the saturated capped estolides of oleic that have both good low temperature properties (pour point –5 to – 39ºC and good oxidative stability. Estolides from meadowfoam fatty acids do not have good low temperature properties but have been extensively used in cosmetics where they provide good moisturizing properties.

    Los estólidos son una familia de compuestos sintetizados a partir de aceites hidroxilados como los de ricino o lesquerella o mediante la condensación de ácidos grasos sobre el doble enlace de un segundo ácido graso insaturado. Los estólidos de ricino y lesquerela se derivan tanto de sus triglicéridos como de sus ácidos grasos libres empleándose el residuo hidroxilo para formar los ésteres estólidos de los mismos. Los triglicéridos estólidos tienen puntos de fluidez crítica de entre 9 y -36ºC y baja estabilidad, con tiempos de oxidación en recipiente vacío a presión (RPVOT de entre 29 y 52 minutos incluso con la adición de un 1% de una mezcla antioxidante a las

  1. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    antigen interactions. working in different areas such as chemical science, biological science, physical science, material science and so on. On the whole, supramolecular chemistry focuses on two over- lapping areas, 'supramolecules' and ...

  2. Physical mechanisms of biological molecular motors

    International Nuclear Information System (INIS)

    Miller, John H. Jr.; Vajrala, Vijayanand; Infante, Hans L.; Claycomb, James R.; Palanisami, Akilan; Fang Jie; Mercier, George T.

    2009-01-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors

  3. Bridging physics and biology teaching through modeling

    Science.gov (United States)

    Hoskinson, Anne-Marie; Couch, Brian A.; Zwickl, Benjamin M.; Hinko, Kathleen A.; Caballero, Marcos D.

    2014-05-01

    As the frontiers of biology become increasingly interdisciplinary, the physics education community has engaged in ongoing efforts to make physics classes more relevant to life science majors. These efforts are complicated by the many apparent differences between these fields, including the types of systems that each studies, the behavior of those systems, the kinds of measurements that each makes, and the role of mathematics in each field. Nonetheless, physics and biology are both sciences that rely on observations and measurements to construct models of the natural world. In this article, we propose that efforts to bridge the teaching of these two disciplines must emphasize shared scientific practices, particularly scientific modeling. We define modeling using language common to both disciplines and highlight how an understanding of the modeling process can help reconcile apparent differences between the teaching of physics and biology. We elaborate on how models can be used for explanatory, predictive, and functional purposes and present common models from each discipline demonstrating key modeling principles. By framing interdisciplinary teaching in the context of modeling, we aim to bridge physics and biology teaching and to equip students with modeling competencies applicable in any scientific discipline.

  4. Alcohol Pharmacology Education Partnership: Using Chemistry and Biology Concepts to Educate High School Students about Alcohol

    Science.gov (United States)

    Godin, Elizabeth A.; Kwiek, Nicole; Sikes, Suzanne S.; Halpin, Myra J.; Weinbaum, Carolyn A.; Burgette, Lane F.; Reiter, Jerome P.; Schwartz-Bloom, Rochelle D.

    2014-01-01

    We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers (n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional…

  5. Students’ experienced coherence between chemistry and biology in context-based secondary science education

    NARCIS (Netherlands)

    Boer, H.J.; Prins, Gjalt; Goedhart, M.J.; Boersma, Kerst

    2014-01-01

    In current biology and chemistry secondary school practice, coherence between the subjects chemistry and biology is underexposed or even ignored. This is incongruent with the current scientific practice, in which the emphasis is shifting towards inter- and multidisciplinarity. These problems have

  6. The physics and chemistry of the Schottky barrier height

    International Nuclear Information System (INIS)

    Tung, Raymond T.

    2014-01-01

    The formation of the Schottky barrier height (SBH) is a complex problem because of the dependence of the SBH on the atomic structure of the metal-semiconductor (MS) interface. Existing models of the SBH are too simple to realistically treat the chemistry exhibited at MS interfaces. This article points out, through examination of available experimental and theoretical results, that a comprehensive, quantum-mechanics-based picture of SBH formation can already be constructed, although no simple equations can emerge, which are applicable for all MS interfaces. Important concepts and principles in physics and chemistry that govern the formation of the SBH are described in detail, from which the experimental and theoretical results for individual MS interfaces can be understood. Strategies used and results obtained from recent investigations to systematically modify the SBH are also examined from the perspective of the physical and chemical principles of the MS interface

  7. Synthesis at the interface of chemistry and biology.

    Science.gov (United States)

    Wu, Xu; Schultz, Peter G

    2009-09-09

    As the focus of synthesis increasingly shifts from its historical emphasis on molecular structure to function, improved strategies are clearly required for the generation of molecules with defined physical, chemical, and biological properties. In contrast, living organisms are remarkably adept at producing molecules and molecular assemblies with an impressive array of functions - from enzymes and antibodies to the photosynthetic center. Thus, the marriage of Nature's synthetic strategies, molecules, and biosynthetic machinery with more traditional synthetic approaches might enable the generation of molecules with properties difficult to achieve by chemical strategies alone. Here we illustrate the potential of this approach and overview some opportunities and challenges in the coming years.

  8. PREFACE: Nanobiology: from physics and engineering to biology

    Science.gov (United States)

    Nussinov, Ruth; Alemán, Carlos

    2006-03-01

    Biological systems are inherently nano in scale. Unlike nanotechnology, nanobiology is characterized by the interplay between physics, materials science, synthetic organic chemistry, engineering and biology. Nanobiology is a new discipline, with the potential of revolutionizing medicine: it combines the tools, ideas and materials of nanoscience and biology; it addresses biological problems that can be studied and solved by nanotechnology; it devises ways to construct molecular devices using biomacromolecules; and it attempts to build molecular machines utilizing concepts seen in nature. Its ultimate aim is to be able to predictably manipulate these, tailoring them to specified needs. Nanobiology targets biological systems and uses biomacromolecules. Hence, on the one hand, nanobiology is seemingly constrained in its scope as compared to general nanotechnology. Yet the amazing intricacy of biological systems, their complexity, and the richness of the shapes and properties provided by the biological polymers, enrich nanobiology. Targeting biological systems entails comprehension of how they work and the ability to use their components in design. From the physical standpoint, ultimately, if we are to understand biology we need to learn how to apply physical principles to figure out how these systems actually work. The goal of nanobiology is to assist in probing these systems at the appropriate length scale, heralding a new era in the biological, physical and chemical sciences. Biology is increasingly asking quantitative questions. Quantitation is essential if we are to understand how the cell works, and the details of its regulation. The physical sciences provide tools and strategies to obtain accurate measurements and simulate the information to allow comprehension of the processes. Nanobiology is at the interface of the physical and the biological sciences. Biology offers to the physical sciences fascinating problems, sophisticated systems and a rich repertoire of

  9. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.

    1994-05-01

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described

  10. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1993--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1994-05-01

    Research at the Center for Radiological Research is a blend of physics, chemistry and biology and epitomizes the multidisciplinary approach towards understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. To an increasing extent, the focus of attention is on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights from the past year are briefly described.

  11. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  12. The Impact of Nanoparticle Surface Chemistry on Biological Systems

    Science.gov (United States)

    Thorn, Angie Sue Morris

    The unique properties of nanomaterials, such as their small size and large surface area-to-volume ratios, have attracted tremendous interest in the scientific community over the last few decades. Thus, the synthesis and characterization of many different types of nanoparticles has been well defined and reported on in the literature. Current research efforts have redirected from the basic study of nanomaterial synthesis and their properties to more application-based studies where the development of functionally active materials is necessary. Today such nanoparticle-based systems exist for a range of biomedical applications including imaging, drug delivery and sensors. The inherent properties of the nanomaterial, although important, aren't always ideal for specific applications. In order to optimize nanoparticles for biomedical applications it is often desirable to tune their surface properties. Researchers have shown that these surface properties (such as charge, hydrophobicity, or reactivity) play a direct role in the interactions between nanoparticles and biological systems can be altered by attaching molecules to the surface of nanoparticles. In this work, the effects of physicochemical properties of a wide variety of nanoparticles was investigated using in vitro and in vivo models. For example, copper oxide (CuO) nanoparticles were of interest due to their instability in biological media. These nanoparticles undergo dissolution when in an aqueous environment and tend to aggregate. Therefore, the cytotoxicity of two sizes of CuO NPs was evaluated in cultured cells to develop a better understanding of how these propertied effect toxicity outcomes in biological systems. From these studies, it was determined that CuO NPs are cytotoxic to lung cells in a size-dependent manner and that dissolved copper ions contribute to the cytotoxicity however it is not solely responsible for cell death. Moreover, silica nanoparticles are one of the most commonly used nanomaterials

  13. Competency-based reforms of the undergraduate biology curriculum: integrating the physical and biological sciences.

    Science.gov (United States)

    Thompson, Katerina V; Chmielewski, Jean; Gaines, Michael S; Hrycyna, Christine A; LaCourse, William R

    2013-06-01

    The National Experiment in Undergraduate Science Education project funded by the Howard Hughes Medical Institute is a direct response to the Scientific Foundations for Future Physicians report, which urged a shift in premedical student preparation from a narrow list of specific course work to a more flexible curriculum that helps students develop broad scientific competencies. A consortium of four universities is working to create, pilot, and assess modular, competency-based curricular units that require students to use higher-order cognitive skills and reason across traditional disciplinary boundaries. Purdue University; the University of Maryland, Baltimore County; and the University of Miami are each developing modules and case studies that integrate the biological, chemical, physical, and mathematical sciences. The University of Maryland, College Park, is leading the effort to create an introductory physics for life sciences course that is reformed in both content and pedagogy. This course has prerequisites of biology, chemistry, and calculus, allowing students to apply strategies from the physical sciences to solving authentic biological problems. A comprehensive assessment plan is examining students' conceptual knowledge of physics, their attitudes toward interdisciplinary approaches, and the development of specific scientific competencies. Teaching modules developed during this initial phase will be tested on multiple partner campuses in preparation for eventual broad dissemination.

  14. Surface treatments for biological, chemical and physical applications

    CERN Document Server

    Karaman, Mustafa

    2017-01-01

    A step-by-step guide to the topic with a mix of theory and practice in the fields of biology, chemistry and physics. Straightforward and well-structured, the first chapter introduces fundamental aspects of surface treatments, after which examples from nature are given. Subsequent chapters discuss various methods to surface modification, including chemical and physical approaches, followed by the characterization of the functionalized surfaces. Applications discussed include the lotus effect, diffusion barriers, enzyme immobilization and catalysis. Finally, the book concludes with a look at future technology advances. Throughout the text, tutorials and case studies are used for training purposes to grant a deeper understanding of the topic, resulting in an essential reference for students as well as for experienced engineers in R&D.

  15. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  16. Pragmatic information in biology and physics.

    Science.gov (United States)

    Roederer, Juan G

    2016-03-13

    I will show how an objective definition of the concept of information and the consideration of recent results about information processing in the human brain help clarify some fundamental aspects of physics and biology. Rather than attempting to define information ab initio, I introduce the concept of interaction between material bodies as a primary concept. Two distinct categories can be identified: (i) interactions which can always be reduced to a superposition of physical interactions (forces) between elementary constituents; and (ii) interactions between complex bodies which cannot be expressed as a superposition of interactions between parts, and in which patterns and forms (in space and/or time) play the determining role. Pragmatic information is then defined as the link between a given pattern and the ensuing pattern-specific change. I will show that pragmatic information is a biological concept; it plays no active role in the purely physical domain-it only does so when a living organism intervenes. The consequences for physics (including foundations of quantum mechanics) and biology (including brain function) will be discussed. This will include speculations about three fundamental transitions, from the quantum to the classical domain, from natural inanimate to living systems, and from subhuman to human brain information-processing operations, introduced here in their direct connection with the concept of pragmatic information. © 2016 The Author(s).

  17. The Physics and Physical Chemistry of Molecular Machines.

    Science.gov (United States)

    Astumian, R Dean; Mukherjee, Shayantani; Warshel, Arieh

    2016-06-17

    The concept of a "power stroke"-a free-energy releasing conformational change-appears in almost every textbook that deals with the molecular details of muscle, the flagellar rotor, and many other biomolecular machines. Here, it is shown by using the constraints of microscopic reversibility that the power stroke model is incorrect as an explanation of how chemical energy is used by a molecular machine to do mechanical work. Instead, chemically driven molecular machines operating under thermodynamic constraints imposed by the reactant and product concentrations in the bulk function as information ratchets in which the directionality and stopping torque or stopping force are controlled entirely by the gating of the chemical reaction that provides the fuel for the machine. The gating of the chemical free energy occurs through chemical state dependent conformational changes of the molecular machine that, in turn, are capable of generating directional mechanical motions. In strong contrast to this general conclusion for molecular machines driven by catalysis of a chemical reaction, a power stroke may be (and often is) an essential component for a molecular machine driven by external modulation of pH or redox potential or by light. This difference between optical and chemical driving properties arises from the fundamental symmetry difference between the physics of optical processes, governed by the Bose-Einstein relations, and the constraints of microscopic reversibility for thermally activated processes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. NASA physics and chemistry experiments in-space program

    Science.gov (United States)

    Gabris, E. A.

    1981-01-01

    The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.

  19. Gamification and Physics and Chemistry of Secondary Education

    Directory of Open Access Journals (Sweden)

    Felipe QUINTANAL PEREZ

    2016-12-01

    Full Text Available Research proposal was made during the 2014–2015 school year with 4th year’s students of Secondary Education who have chosen as optional the subject of Physics and Chemistry. This project is based on the use of various gamebased strategies applied to the subject of Physics and Chemistry. We have chosen this theme by the pedagogical benefits that games have on the attraction of students and the development of their motivation. Students have participated individually, in pairs and in teams. Games used have been “chemical formulas on the run”, “chemical formulas championship”, “wheel of Physics and Chemistry”, “the sunken treasure” and “challenge problems”. The students have also developed a game based on the theme of waves and several teams did using Scratch. Finally there has been an increase in the academic performance of the subject. This experience was a success according to the results of the evaluation by the students. They have highlighted chemical formulas championship, the sunken treasure and the development of the game based on waves. As conclusions are that gamifying is not limited to only use video games, it can be gamify with little technology, personal, social and intellectual skills are developed and the method employed can be extrapolated to other subjects and courses.

  20. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-01-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics. A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite…

  1. Exploration of the central dogma at the interface of chemistry and biology: 2010 Yale Chemical Biology Symposium.

    Science.gov (United States)

    Zhou, Alice Qinhua

    2010-09-01

    Ever since the term "central dogma" was coined in 1958, researchers have sought to control information flow from nucleic acids to proteins. Talks delivered by Drs. Anna Pyle and Hiroaki Suga at this year's Chemical Biology Symposium at Yale in May 2010 applauded recent advances in this area, at the interface between chemistry and biology.

  2. Introduction to Physics and Chemistry of Combustion Explosion, Flame, Detonation

    CERN Document Server

    Liberman, Michael A

    2008-01-01

    Most of the material covered in this book deals with the fundamentals of chemistry and physics of key processes and fundamental mechanisms for various combustion and combustion related phenomena in gaseous combustible mixture. It provides the reader with basic knowledge of burning processes and mechanisms of reaction wave propagation. The combustion of a gas mixture (flame, explosion, detonation) is necessarily accompanied by motion of the gas. The process of combustion is therefore not only a chemical phenomenon but also one of gas dynamics. The material selection focuses on the gas phase and

  3. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    Science.gov (United States)

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  4. Getting the chemistry right: protonation, tautomers and the importance of H atoms in biological chemistry.

    Science.gov (United States)

    Bax, Ben; Chung, Chun Wa; Edge, Colin

    2017-02-01

    There are more H atoms than any other type of atom in an X-ray crystal structure of a protein-ligand complex, but as H atoms only have one electron they diffract X-rays weakly and are `hard to see'. The positions of many H atoms can be inferred by our chemical knowledge, and such H atoms can be added with confidence in `riding positions'. For some chemical groups, however, there is more ambiguity over the possible hydrogen placements, for example hydroxyls and groups that can exist in multiple protonation states or tautomeric forms. This ambiguity is far from rare, since about 25% of drugs have more than one tautomeric form. This paper focuses on the most common, `prototropic', tautomers, which are isomers that readily interconvert by the exchange of an H atom accompanied by the switch of a single and an adjacent double bond. Hydrogen-exchange rates and different protonation states of compounds (e.g. buffers) are also briefly discussed. The difference in heavy (non-H) atom positions between two tautomers can be small, and careful refinement of all possible tautomers may single out the likely bound ligand tautomer. Experimental methods to determine H-atom positions, such as neutron crystallography, are often technically challenging. Therefore, chemical knowledge and computational approaches are frequently used in conjugation with experimental data to deduce the bound tautomer state. Proton movement is a key feature of many enzymatic reactions, so understanding the orchestration of hydrogen/proton motion is of critical importance to biological chemistry. For example, structural studies have suggested that, just as a chemist may use heat, some enzymes use directional movement to protonate specific O atoms on phosphates to catalyse phosphotransferase reactions. To inhibit `wriggly' enzymes that use movement to effect catalysis, it may be advantageous to have inhibitors that can maintain favourable contacts by adopting different tautomers as the enzyme `wriggles'.

  5. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics.

    Science.gov (United States)

    Swenson, Tami L; Karaoz, Ulas; Swenson, Joel M; Bowen, Benjamin P; Northen, Trent R

    2018-01-02

    Metagenomic sequencing provides a window into microbial community structure and metabolic potential; however, linking these data to exogenous metabolites that microorganisms process and produce (the exometabolome) remains challenging. Previously, we observed strong exometabolite niche partitioning among bacterial isolates from biological soil crust (biocrust). Here we examine native biocrust to determine if these patterns are reproduced in the environment. Overall, most soil metabolites display the expected relationship (positive or negative correlation) with four dominant bacteria following a wetting event and across biocrust developmental stages. For metabolites that were previously found to be consumed by an isolate, 70% are negatively correlated with the abundance of the isolate's closest matching environmental relative in situ, whereas for released metabolites, 67% were positively correlated. Our results demonstrate that metabolite profiling, shotgun sequencing and exometabolomics may be successfully integrated to functionally link microbial community structure with environmental chemistry in biocrust.

  6. Coordination Compounds in Biology-The Chemistry of Vitamin B12 ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Coordination Compounds in Biology - The Chemistry of Vitamin B12 and Model Compounds. K Hussian Reddy. Volume 16 Issue 12 December 2011 pp 1273-1283 ...

  7. Coordination chemistry and biological activity of 5'-OH modified quinoline-B12 derivatives.

    Science.gov (United States)

    Zelenka, Karel; Brandl, Helmut; Spingler, Bernhard; Zelder, Felix

    2011-10-14

    The consequences of structural modifications at the 5'-OH ribofuranotide moiety of quinoline modified B12 derivatives are discussed in regard of the coordination chemistry, the electrochemical properties and the biological behaviour of the compound.

  8. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    Science.gov (United States)

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  9. Introduction to solitons and their applications in physics and biology

    International Nuclear Information System (INIS)

    Peyrard, M.

    1995-01-01

    The response of most of the physical systems to combined excitations is not a simple superposition of their response to individual stimuli. This is particularly true for biological systems in which the nonlinear effects are often the dominant ones. The intrinsic treatment of nonlinearities in mathematical models and physical systems has led to the emergence of the chaos and solitons concepts. The concept of soliton, relevant for systems with many degrees of freedom, provides a new tool in the studies of biomolecules because it has no equivalent in the world of linear excitations. The aim of this lecture is to present the main ideas that underline the soliton concept and to discuss some applications. Solitons are solitary waves, that propagate at constant speed without changing their shape. They are extremely stable to perturbations, in particular to collisions with small amplitude linear waves and with other solitons. Conditions to have solitons and equations of solitons propagation are analysed. Solitons can be divided into two main classes: topological and non-topological solitons which can be found at all scales and in various domains of physics and chemistry. Using simple examples, this paper shows how linear expansions can miss completely essential physical properties of a system. This is particularly characteristic for the pendulum chain example. Soliton theory offers alternative methods. Multiple scale approximations, or expansion on a soliton basis, can be very useful to provide a description of some physical phenomena. Nonlinear energy localization is also a very important concept valid for a large variety of systems. These concepts are probably even more relevant for biological molecules than for solid state physics, because these molecules are very deformable objects where large amplitude nonlinear motions or conformational changes are crucial for function. (J.S.). 14 refs., 9 figs

  10. Using active learning methodologies in physical chemistry in CLIL contexts

    Directory of Open Access Journals (Sweden)

    David Recatalá

    2016-03-01

    Full Text Available One of the main objectives of the European Higher Education Area (EHEA is to promote a change toward a student-centred education model. This fact has led to the implementation of novel methodologies based on active learning, aimed at engaging students’ interest. This implementation has been usually accompanied by significant changes in both the teaching and learning processes in European universities. Furthermore, teaching a subject through the medium of a foreign language has also been gaining attention over the past few years. More specifically, this approach commonly known as Content and Language Integrated Learning (CLIL has been employed for the simultaneous learning of content and English in a number of European countries. In this contribution we report on the active learning methods implemented in a Physical Chemistry course, as well as the efforts devoted to Content and English Language Integration in this subject. This research analyses a series of factors that can contribute to the global learning and teaching experience when both active learning and CLIL are implemented in the Physical Chemistry classroom. Some examples of them include changes in attitudes towards the subject, engagement and motivation during the course, perception of English learning, and in general, students’ satisfaction with the learning process.

  11. Workshop on Processing Physic-Chemistry Advanced – WPPCA

    International Nuclear Information System (INIS)

    2016-01-01

    In the present volume of Journal of Physics: Conference Series we publish the proceedings of the “2nd Workshop on Processing Physic-Chemistry advanced (WPPCA)”, that was held from, April 4-8, 2016, at the Universidad Industrial de Santander (UIS), Bucaramanga, Colombia. The proceedings consist of 17 contributions that were presented as plenary talks at the event. The abstracts of all participants contributions were published in the Abstract Book with ISSN 2500-8420. The scientific program of the 2nd WPPCA consisted of 12 Magisterial Conferences, 28 Poster Presentations and 2 Courses with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Spain, Unite States of America, Mexico and Chile. Moreover, the 2nd WPPCA allowed to establish a shared culture of the research and innovation that enriches the area of the processing physical-chemistry of the materials and the industrial applications. All papers in these Proceedings refer to one from the following topics: Semiconductors, Superconductivity, Nanostructure Materials and Modelling, Simulation and Diagnostics. The editor hopes that those interested in the area of the science of materials can to enjoy this reading, that reflects a wide variety of current issues. On behalf of the organizing committee of the 2nd WPPCA, we are extremely thankful to all authors for providing their valuable contributions for these Proceedings as well as the reviewers for their constructive recommendations and criticism aiding to improve the presented articles. Besides, especially we appreciate the great support provided by the Sponsors and Partners. (paper)

  12. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  13. Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants

    OpenAIRE

    Karl Egil Malterud

    2017-01-01

    The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems poss...

  14. A tracer aided study on silicon chemistry in biological systems

    NARCIS (Netherlands)

    Brasser, H.J.

    2009-01-01

    Silicon (Si) is omnipresent in nature, and it is involved in important but diverse roles in a broad range of organisms, including diatoms, higher plants and humans. Some organisms, like the diatoms, need high amounts of silicon, and master silicon chemistry to a high extend using several enzymes.

  15. The Cytoskeleton: Mechanical, Physical, and Biological Interactions

    Science.gov (United States)

    1996-01-01

    This workshop, entitled "The Cytoskeleton: Mechanical, Physical, and Biological Interactions," was sponsored by the Center for Advanced Studies in the Space Life Sciences at the Marine Biological Laboratory. This Center was established through a cooperative agreement between the MBL and the Life Sciences Division of the National Aeronautics and Space Administration. To achieve these goals, the Center sponsors a series of workshops on various topics in the life sciences. Elements of the cytoskeleton have been implicated in the effects of gravity on the growth of plants fungi. An intriguing finding in this regard is the report indicating that an integrin-like protein may be the gravireceptor in the internodal cells of Chara. Involvement of the cytoskeleton in cellular graviperception of the basidiomycete Flammulina velutipes has also been reported. Although the responses of mammalian cells to gravity are not well documented, it has been proposed that integrins can act as mechanochemical transducers in mammalian cells. Little is known about the integrated mechanical and physical properties of cytoplasm, this workshop would be the best place to begin developing interdisciplinary approaches to the effects of mechanical stresses on cells and their most likely responsive cytoplasmic elements- the fibrous proteins comprising the cytoskeleton.

  16. Robustness: confronting lessons from physics and biology.

    Science.gov (United States)

    Lesne, Annick

    2008-11-01

    The term robustness is encountered in very different scientific fields, from engineering and control theory to dynamical systems to biology. The main question addressed herein is whether the notion of robustness and its correlates (stability, resilience, self-organisation) developed in physics are relevant to biology, or whether specific extensions and novel frameworks are required to account for the robustness properties of living systems. To clarify this issue, the different meanings covered by this unique term are discussed; it is argued that they crucially depend on the kind of perturbations that a robust system should by definition withstand. Possible mechanisms underlying robust behaviours are examined, either encountered in all natural systems (symmetries, conservation laws, dynamic stability) or specific to biological systems (feedbacks and regulatory networks). Special attention is devoted to the (sometimes counterintuitive) interrelations between robustness and noise. A distinction between dynamic selection and natural selection in the establishment of a robust behaviour is underlined. It is finally argued that nested notions of robustness, relevant to different time scales and different levels of organisation, allow one to reconcile the seemingly contradictory requirements for robustness and adaptability in living systems.

  17. Physical properties of biological entities: an introduction to the ontology of physics for biology.

    Directory of Open Access Journals (Sweden)

    Daniel L Cook

    Full Text Available As biomedical investigators strive to integrate data and analyses across spatiotemporal scales and biomedical domains, they have recognized the benefits of formalizing languages and terminologies via computational ontologies. Although ontologies for biological entities-molecules, cells, organs-are well-established, there are no principled ontologies of physical properties-energies, volumes, flow rates-of those entities. In this paper, we introduce the Ontology of Physics for Biology (OPB, a reference ontology of classical physics designed for annotating biophysical content of growing repositories of biomedical datasets and analytical models. The OPB's semantic framework, traceable to James Clerk Maxwell, encompasses modern theories of system dynamics and thermodynamics, and is implemented as a computational ontology that references available upper ontologies. In this paper we focus on the OPB classes that are designed for annotating physical properties encoded in biomedical datasets and computational models, and we discuss how the OPB framework will facilitate biomedical knowledge integration.

  18. Guide for Teaching Chemistry-Physics Combined 1-2, 3-4 (PSSC - CHEMS).

    Science.gov (United States)

    Millstone, H. George

    This guide is written for a combined physics-chemistry course taught over a two-year period. The subject matter contains the major ideas in Chemical Education Materials Study (CHEMS) Chemistry and Physical Science Study Committee (PSSC) Physics. The guide includes discussion of text references, laboratory experiments, films, testing and evaluation…

  19. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Exploration of the Central Dogma at the Interface of Chemistry and Biology

    Science.gov (United States)

    Zhou, Alice Qinhua

    2010-01-01

    Ever since the term “central dogma” was coined in 1958, researchers have sought to control information flow from nucleic acids to proteins. Talks delivered by Drs. Anna Pyle and Hiroaki Suga at this year’s Chemical Biology Symposium at Yale in May 2010 applauded recent advances in this area, at the interface between chemistry and biology. PMID:20885900

  1. Exploration of the Central Dogma at the Interface of Chemistry and Biology

    OpenAIRE

    Zhou, Alice Qinhua

    2010-01-01

    Ever since the term ?central dogma? was coined in 1958, researchers have sought to control information flow from nucleic acids to proteins. Talks delivered by Drs. Anna Pyle and Hiroaki Suga at this year?s Chemical Biology Symposium at Yale in May 2010 applauded recent advances in this area, at the interface between chemistry and biology.

  2. Overview. Department of Nuclear Physical Chemistry. Section 9

    Energy Technology Data Exchange (ETDEWEB)

    Szeglowski, Z. [Institute of Nuclear Physics, Cracow (Poland)

    1995-12-31

    In the papers presented bellow the activities of the Department of Nuclear Physical Chemistry in 1994 are presented. A further effort was made towards routine production of neutron-deficient isotopes for nuclear medicine - and namely {sup 67} Ga and {sup 139} Ce. Small activities of {sup 111} In were produced by the {alpha} bombardment of Ag target. In order to improve the {sup 111} In production the deuterons reaction with cadmium target was studied. The other field of the Department research is studying of the physicochemical properties of transactinoid elements (104,105, 106). The Department is also engaged in works of the National Network of Early Detection of Radioactive Contamination in Air. In this section, apart of the detail descriptions of mentioned activities, the information about personnel employed in the Department, papers and reports published in 1994, contribution to conferences and grants are also given.

  3. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint.

    Science.gov (United States)

    Pezzotti, Giuseppe

    2014-06-11

    Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past.

  4. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzotti

    2014-06-01

    Full Text Available Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past.

  5. Introduction to the Thematic Minireview Series: Green biological chemistry.

    Science.gov (United States)

    Jez, Joseph M

    2018-04-06

    Plants and their green cousins cyanobacteria and algae use sunlight to drive the chemistry that lets them grow, survive, and perform an amazing range of biochemical reactions. The ability of these organisms to use a freely available energy source makes them attractive as sustainable and renewable platforms for more than just food production. They are also a source of metabolic tools for engineering microbes for "green" chemistry. This Thematic Minireview Series discusses how green organisms capture light and protect their photosynthetic machinery from too much light; new structural snapshots of the clock complex that orchestrates signaling during the light/dark cycle; challenges for improving stress responses in crops; harnessing cyanobacteria as biofactories; and efforts to engineer microbes for "green" biopolymer production. © 2018 Jez.

  6. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise.

    Science.gov (United States)

    Rapp, Teresa L; Phillips, Susan R; Dmochowski, Ivan J

    2016-12-13

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, light-driven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes that provide a sterically bulky, photolabile moiety for transiently "caging" biologically active molecules. Photouncaging involves the use of visible (1-photon) or near-IR (2-photon) light to break one or more bonds between ruthenium and coordinated ligand(s), which can occur on short time scales and in high quantum yields. In this work we demonstrate the use of a model "caged" acetonitrile complex, Ru(2,2'-bipyridine) 2 (acetonitrile) 2 , or RuMeCN in an advanced synthesis and physical chemistry laboratory. Students made RuMeCN in an advanced synthesis laboratory course and performed UV-vis spectroscopy and electrochemistry. The following semester students investigated RuMeCN photolysis kinetics in a physical chemistry laboratory. These two exercises may also be combined to create a 2-week module in an advanced undergraduate laboratory course.

  7. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1984-08-01

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  8. Seeking the chemical roots of darwinism: bridging between chemistry and biology.

    Science.gov (United States)

    Pross, Addy

    2009-08-24

    Chemistry and biology are intimately connected sciences yet the chemistry-biology interface remains problematic and central issues regarding the very essence of living systems remain unresolved. In this essay we build on a kinetic theory of replicating systems that encompasses the idea that there are two distinct kinds of stability in nature-thermodynamic stability, associated with "regular" chemical systems, and dynamic kinetic stability, associated with replicating systems. That fundamental distinction is utilized to bridge between chemistry and biology by demonstrating that within the parallel world of replicating systems there is a second law analogue to the second law of thermodynamics, and that Darwinian theory may, through scientific reductionism, be related to that second law analogue. Possible implications of these ideas to the origin of life problem and the relationship between chemical emergence and biological evolution are discussed.

  9. Biological Movement and Laws of Physics.

    Science.gov (United States)

    Latash, Mark L

    2017-07-01

    Living systems may be defined as systems able to organize new, biology-specific, laws of physics and modify their parameters for specific tasks. Examples include the force-length muscle dependence mediated by the stretch reflex, and the control of movements with modification of the spatial referent coordinates for salient performance variables. Low-dimensional sets of referent coordinates at a task level are transformed to higher-dimensional sets at lower hierarchical levels in a way that ensures stability of performance. Stability of actions can be controlled independently of the actions (e.g., anticipatory synergy adjustments). Unintentional actions reflect relaxation processes leading to drifts of corresponding referent coordinates in the absence of changes in external load. Implications of this general framework for movement disorders, motor development, motor skill acquisition, and even philosophy are discussed.

  10. Biological Physics : Poincaré seminar

    CERN Document Server

    Bio-physique : séminaire Poincaré

    2011-01-01

    This new volume in the Poincaré Seminar Series, describing recent developments at the interface between physics and biology, is directed towards a broad audience of physicists, biologists, and mathematicians. Both the theoretical and experimental aspects are covered, and particular care is devoted to the pedagogical nature of the presentations. The first survey article, by Jean-Francois Joanny and Jacques Prost, describes the theoretical advances made in the study of "active gels", with applications to liquid crystals and cell motility. Jasper van der Gucht and Cécile Sykes then report on recent advances made with biomimetic model systems in the understanding of cytokinesis. The next article, by Jonathon Howard, presents several molecular models for motor proteins, which are compared with experimental results for kinesin. David Lacoste and Kirone Mallick then show theoretically that similar ratchet models of motor proteins naturally satisfy a fundamental time-reversal symmetry, the Gallavotti-Cohen fluctuat...

  11. Alcohol Pharmacology Education Partnership: Using Chemistry and Biology Concepts To Educate High School Students about Alcohol.

    Science.gov (United States)

    Godin, Elizabeth A; Kwiek, Nicole; Sikes, Suzanne S; Halpin, Myra J; Weinbaum, Carolyn A; Burgette, Lane F; Reiter, Jerome P; Schwartz-Bloom, Rochelle D

    2014-02-11

    We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers ( n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional development either at a conference-based workshop (NSTA or NCSTA) or via distance learning to learn how to incorporate the APEP modules into their teaching. They field-tested the modules in their classes during the following year. Teacher knowledge of chemistry and biology concepts increased significantly following professional development, and was maintained for at least a year. Their students ( n = 14 014) demonstrated significantly higher scores when assessed for knowledge of both basic and advanced chemistry and biology concepts compared to students not using APEP modules in their classes the previous year. Higher scores were achieved as the number of modules used increased. These findings are consistent with our previous studies, demonstrating higher scores in chemistry and biology after students use modules that integrate topics interesting to them, such as drugs (the Pharmacology Education Partnership).

  12. Integrating pharmacology topics in high school biology and chemistry classes improves performance

    Science.gov (United States)

    Schwartz-Bloom, Rochelle D.; Halpin, Myra J.

    2003-11-01

    Although numerous programs have been developed for Grade Kindergarten through 12 science education, evaluation has been difficult owing to the inherent problems conducting controlled experiments in the typical classroom. Using a rigorous experimental design, we developed and tested a novel program containing a series of pharmacology modules (e.g., drug abuse) to help high school students learn basic principles in biology and chemistry. High school biology and chemistry teachers were recruited for the study and they attended a 1-week workshop to learn how to integrate pharmacology into their teaching. Working with university pharmacology faculty, they also developed classroom activities. The following year, teachers field-tested the pharmacology modules in their classrooms. Students in classrooms using the pharmacology topics scored significantly higher on a multiple choice test of basic biology and chemistry concepts compared with controls. Very large effect sizes (up to 1.27 standard deviations) were obtained when teachers used as many as four modules. In addition, biology students increased performance on chemistry questions and chemistry students increased performance on biology questions. Substantial gains in achievement may be made when high school students are taught science using topics that are interesting and relevant to their own lives.

  13. Alcohol Pharmacology Education Partnership: Using Chemistry and Biology Concepts To Educate High School Students about Alcohol

    Science.gov (United States)

    2015-01-01

    We developed the Alcohol Pharmacology Education Partnership (APEP), a set of modules designed to integrate a topic of interest (alcohol) with concepts in chemistry and biology for high school students. Chemistry and biology teachers (n = 156) were recruited nationally to field-test APEP in a controlled study. Teachers obtained professional development either at a conference-based workshop (NSTA or NCSTA) or via distance learning to learn how to incorporate the APEP modules into their teaching. They field-tested the modules in their classes during the following year. Teacher knowledge of chemistry and biology concepts increased significantly following professional development, and was maintained for at least a year. Their students (n = 14 014) demonstrated significantly higher scores when assessed for knowledge of both basic and advanced chemistry and biology concepts compared to students not using APEP modules in their classes the previous year. Higher scores were achieved as the number of modules used increased. These findings are consistent with our previous studies, demonstrating higher scores in chemistry and biology after students use modules that integrate topics interesting to them, such as drugs (the Pharmacology Education Partnership). PMID:24803686

  14. Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants.

    Science.gov (United States)

    Malterud, Karl Egil

    2017-02-21

    The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum , Burkea africana , Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems possible that the use in traditional medicine of these plants may have a rational basis, although more clinical studies are needed.

  15. Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Karl Egil Malterud

    2017-02-01

    Full Text Available The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems possible that the use in traditional medicine of these plants may have a rational basis, although more clinical studies are needed.

  16. The universal numbers. From Biology to Physics.

    Science.gov (United States)

    Marchal, Bruno

    2015-12-01

    I will explain how the mathematicians have discovered the universal numbers, or abstract computer, and I will explain some abstract biology, mainly self-reproduction and embryogenesis. Then I will explain how and why, and in which sense, some of those numbers can dream and why their dreams can glue together and must, when we assume computationalism in cognitive science, generate a phenomenological physics, as part of a larger phenomenological theology (in the sense of the greek theologians). The title should have been "From Biology to Physics, through the Phenomenological Theology of the Universal Numbers", if that was not too long for a title. The theology will consist mainly, like in some (neo)platonist greek-indian-chinese tradition, in the truth about numbers' relative relations, with each others, and with themselves. The main difference between Aristotle and Plato is that Aristotle (especially in its common and modern christian interpretation) makes reality WYSIWYG (What you see is what you get: reality is what we observe, measure, i.e. the natural material physical science) where for Plato and the (rational) mystics, what we see might be only the shadow or the border of something else, which might be non physical (mathematical, arithmetical, theological, …). Since Gödel, we know that Truth, even just the Arithmetical Truth, is vastly bigger than what the machine can rationally justify. Yet, with Church's thesis, and the mechanizability of the diagonalizations involved, machines can apprehend this and can justify their limitations, and get some sense of what might be true beyond what they can prove or justify rationally. Indeed, the incompleteness phenomenon introduces a gap between what is provable by some machine and what is true about that machine, and, as Gödel saw already in 1931, the existence of that gap is accessible to the machine itself, once it is has enough provability abilities. Incompleteness separates truth and provable, and machines can

  17. Applying combinatorial chemistry and biology to food research.

    Science.gov (United States)

    Wong, Dominic; Robertson, George

    2004-12-01

    In the past decade combinatorial chemistry has become a major focus of research activity in the pharmaceutical industry for accelerating the development of novel therapeutic compounds. The same combinatorial strategies could be applied to a broad spectrum of areas in agricultural and food research, including food safety and nutrition, development of product ingredients, and processing and conversion of natural products. In contrast to "rational design", the combinatorial approach relies on molecular diversity and high-throughput screening. The capability of exploring the structural and functional limits of a vast population of diverse chemical and biochemical molecules makes it possible to expedite the creation and isolation of compounds of desirable and useful properties. Several studies in recent years have demonstrated the utility of combinatorial methods for food research. These include the discovery of synthetic antimicrobial, antioxidative, and aflatoxin-binding peptides, the identification and analysis of unique flavor compounds, the generation of new enzyme inhibitors, the development of therapeutic antibodies for botulinum neurotoxins, the synthesis of unnatural polyketides and carotenoids, and the modification of food enzymes with novel properties. The results of such activities could open a large area of applications with potential benefits to the food industry. This review describes the current techniques of combinatorial chemistry and their applications, with emphasis on examples in food science research.

  18. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  19. Biological Actions of Artemisinin: Insights from Medicinal Chemistry Studies

    Directory of Open Access Journals (Sweden)

    Jian Li

    2010-03-01

    Full Text Available Artemisinins have become essential antimalarial drugs for increasingly widespread drug-resistant malaria strains. Although tremendous efforts have been devoted to decipher how this class of molecules works, their exact antimalarial mechanism is still an enigma. Several hypotheses have been proposed to explain their actions, including alkylation of heme by carbon-centered free radicals, interference with proteins such as the sarcoplasmic/endoplasmic calcium ATPase (SERCA, as well as damaging of normal mitochondrial functions. Besides artemisinins, other endoperoxides with various backbones have also been synthesized, some of which showed comparable or even higher antimalarial effects. It is noteworthy that among these artemisinin derivatives, some enantiomers displayed similar in vitro malaria killing efficacy. In this article, the proposed mechanisms of action of artemisinins are reviewed in light of medicinal chemistry findings characterized by efficacy-structure studies, with the hope of gaining more insight into how these potent drugs work.

  20. Ontology of physics for biology: representing physical dependencies as a basis for biological processes.

    Science.gov (United States)

    Cook, Daniel L; Neal, Maxwell L; Bookstein, Fred L; Gennari, John H

    2013-12-02

    In prior work, we presented the Ontology of Physics for Biology (OPB) as a computational ontology for use in the annotation and representations of biophysical knowledge encoded in repositories of physics-based biosimulation models. We introduced OPB:Physical entity and OPB:Physical property classes that extend available spatiotemporal representations of physical entities and processes to explicitly represent the thermodynamics and dynamics of physiological processes. Our utilitarian, long-term aim is to develop computational tools for creating and querying formalized physiological knowledge for use by multiscale "physiome" projects such as the EU's Virtual Physiological Human (VPH) and NIH's Virtual Physiological Rat (VPR). Here we describe the OPB:Physical dependency taxonomy of classes that represent of the laws of classical physics that are the "rules" by which physical properties of physical entities change during occurrences of physical processes. For example, the fluid analog of Ohm's law (as for electric currents) is used to describe how a blood flow rate depends on a blood pressure gradient. Hooke's law (as in elastic deformations of springs) is used to describe how an increase in vascular volume increases blood pressure. We classify such dependencies according to the flow, transformation, and storage of thermodynamic energy that occurs during processes governed by the dependencies. We have developed the OPB and annotation methods to represent the meaning-the biophysical semantics-of the mathematical statements of physiological analysis and the biophysical content of models and datasets. Here we describe and discuss our approach to an ontological representation of physical laws (as dependencies) and properties as encoded for the mathematical analysis of biophysical processes.

  1. Click chemistry mediated functionalization of vertical nanowires for biological applications

    DEFF Research Database (Denmark)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica

    2016-01-01

    is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use...

  2. Simple glycolipids of microbes: Chemistry, biological activity and metabolic engineering

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammad Abdel-Mawgoud

    2018-03-01

    Full Text Available Glycosylated lipids (GLs are added-value lipid derivatives of great potential. Besides their interesting surface activities that qualify many of them to act as excellent ecological detergents, they have diverse biological activities with promising biomedical and cosmeceutical applications. Glycolipids, especially those of microbial origin, have interesting antimicrobial, anticancer, antiparasitic as well as immunomodulatory activities. Nonetheless, GLs are hardly accessing the market because of their high cost of production. We believe that experience of metabolic engineering (ME of microbial lipids for biofuel production can now be harnessed towards a successful synthesis of microbial GLs for biomedical and other applications. This review presents chemical groups of bacterial and fungal GLs, their biological activities, their general biosynthetic pathways and an insight on ME strategies for their production.

  3. Recent advances in the chemistry and biology of benzothiazoles.

    Science.gov (United States)

    Gill, Rupinder K; Rawal, Ravindra K; Bariwal, Jitender

    2015-03-01

    Benzothiazole is a privileged heterocyclic scaffold having a benzene ring fused with a five-membered thiazole ring. This moiety has attracted considerable attention because of its wide range of pharmacological activities such as antitubercular, antimicrobial, antimalarial, anticonvulsant, anthelmintic, analgesic, anti-inflammatory, antidiabetic, antitumor activity, etc. In the last few years, some novel benzothiazoles have been developed with varied biological activities. To access this scaffold in high yield and to introduce diversity, a variety of new synthetic methods have been invented. In this review, we highlight the development of novel benzothiazoles for various biological activities along with the best synthetic protocols for their synthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    Science.gov (United States)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  5. Impact of Theoretical Chemistry on Chemical and Biological Sciences

    Indian Academy of Sciences (India)

    IAS Admin

    mechanics (MM) force fields, using physical concepts. However, great challenges had to be met in order to obtain relevant param- eters for a vast number of chemical groups and molecules to reproduce experimentally observable properties. Experimentally and quantum mechanically derived quantities have been exten-.

  6. Physics and Chemistry of Fission. Proceedings of the Second IAEA Symposium on the Physics and Chemistry of Fission

    International Nuclear Information System (INIS)

    1969-01-01

    Fission studies have developed rapidly and significantly since the first IAEA Symposium on the Physics and Chemistry of Fission, held in 1965 in Salzburg. Several surprising discoveries and some excellent experimental results have given rise to many new theoretical investigations. From the individual theoretical models, laboriously improved and carefully fitted to the experimental data, a more general theoretical picture has begun to take shape and this has provided fresh ideas for experimental work. The Second Symposium on the Physics and Chemistry of Fission, held at the IAEA Headquarters in Vienna from 28 July to 1 August 1969, was a short pause in the rapid flow of developing theoretical concepts and new experimental investigations; it was devoted to the discussion, comparison and analysis of the recent achievements, and to a glance at the way fission studies are likely to develop in the near future. Two facts, the emphasis on theory and the important interplay of theory and experiment, left a strong mark on the contributions and discussions. The number of papers dealing with theoretical aspects is substantially larger than at the earlier symposium; this points to the fact that with increased efforts the theoreticians have succeeded in narrowing the wide gap between the large amount of empirical data and the theoretical understanding of it. The titles of individual sessions indicate the new trends in fission research. Theories of fragment distribution, shell structure effects in fissioning nuclei, intermediate structure, and isomeric fission are topics which were discussed with a great deal of uncertainty at the Salzburg symposium. At the present meeting, they were far more prominent and they were argued with great confidence and with the intensity and enthusiasm that only such exciting ideas can arouse. From the extensiveness of the discussion records the vivid interest of the participants is clearly seen; the pertinent problems still to be solved are also

  7. ROSics: chemistry and proteomics of cysteine modifications in redox biology.

    Science.gov (United States)

    Kim, Hee-Jung; Ha, Sura; Lee, Hee Yoon; Lee, Kong-Joo

    2015-01-01

    Post-translational modifications (PTMs) occurring in proteins determine their functions and regulations. Proteomic tools are available to identify PTMs and have proved invaluable to expanding the inventory of these tools of nature that hold the keys to biological processes. Cysteine (Cys), the least abundant (1-2%) of amino acid residues, are unique in that they play key roles in maintaining stability of protein structure, participating in active sites of enzymes, regulating protein function and binding to metals, among others. Cys residues are major targets of reactive oxygen species (ROS), which are important mediators and modulators of various biological processes. It is therefore necessary to identify the Cys-containing ROS target proteins, as well as the sites and species of their PTMs. Cutting edge proteomic tools which have helped identify the PTMs at reactive Cys residues, have also revealed that Cys residues are modified in numerous ways. These modifications include formation of disulfide, thiosulfinate and thiosulfonate, oxidation to sulfenic, sulfinic, sulfonic acids and thiosulfonic acid, transformation to dehydroalanine (DHA) and serine, palmitoylation and farnesylation, formation of chemical adducts with glutathione, 4-hydroxynonenal and 15-deoxy PGJ2, and various other chemicals. We present here, a review of relevant ROS biology, possible chemical reactions of Cys residues and details of the proteomic strategies employed for rapid, efficient and sensitive identification of diverse and novel PTMs involving reactive Cys residues of redox-sensitive proteins. We propose a new name, "ROSics," for the science which describes the principles of mode of action of ROS at molecular levels. © 2014 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

  8. Physics with illustrative examples from medicine and biology

    CERN Document Server

    Benedek, George B

    Physics: with illustrative examples from medicine and biology is a three-volume set of textbooks in introductory physics written at the calculus level and designed primarily for students with career objectives in the life sciences.

  9. Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology

    OpenAIRE

    Anumukonda, Lakshmi N.; Young, Avery; Lynn, David G.; Buckley, Ragan; Warrayat, Amena; Graves, Christina L.; Bean, Heather D.; Hud, Nicholas V.

    2011-01-01

    Many high school laboratory experiments demonstrate concepts related to biological evolution, but few exist that allow students to investigate life?s chemical origins. This series of laboratory experiments has been developed to allow students to explore and appreciate the deep connection that exists between prebiotic chemistry, chemical evolution, and contemporary biological systems. In the first experiment of the series, students synthesize adenine, one of the purine nucleobases of DNA and R...

  10. Advances in metabolome information retrieval: turning chemistry into biology. Part I: analytical chemistry of the metabolome.

    Science.gov (United States)

    Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya

    2017-08-24

    Metabolites are small molecules produced by enzymatic reactions in a given organism. Metabolomics or metabolic phenotyping is a well-established omics aimed at comprehensively assessing metabolites in biological systems. These comprehensive analyses use analytical platforms, mainly nuclear magnetic resonance spectroscopy and mass spectrometry, along with associated separation methods to gather qualitative and quantitative data. Metabolomics holistically evaluates biological systems in an unbiased, data-driven approach that may ultimately support generation of hypotheses. The approach inherently allows the molecular characterization of a biological sample with regard to both internal (genetics) and environmental (exosome, microbiome) influences. Metabolomics workflows are based on whether the investigator knows a priori what kind of metabolites to assess. Thus, a targeted metabolomics approach is defined as a quantitative analysis (absolute concentrations are determined) or a semiquantitative analysis (relative intensities are determined) of a set of metabolites that are possibly linked to common chemical classes or a selected metabolic pathway. An untargeted metabolomics approach is a semiquantitative analysis of the largest possible number of metabolites contained in a biological sample. This is part I of a review intending to give an overview of the state of the art of major metabolic phenotyping technologies. Furthermore, their inherent analytical advantages and limits regarding experimental design, sample handling, standardization and workflow challenges are discussed.

  11. Click Chemistry Mediated Functionalization of Vertical Nanowires for Biological Applications.

    Science.gov (United States)

    Vutti, Surendra; Schoffelen, Sanne; Bolinsson, Jessica; Buch-Månson, Nina; Bovet, Nicolas; Nygård, Jesper; Martinez, Karen L; Meldal, Morten

    2016-01-11

    Semiconductor nanowires (NWs) are gaining significant importance in various biological applications, such as biosensing and drug delivery. Efficient and controlled immobilization of biomolecules on the NW surface is crucial for many of these applications. Here, we present for the first time the use of the Cu(I) -catalyzed alkyne-azide cycloaddition and its strain-promoted variant for the covalent functionalization of vertical NWs with peptides and proteins. The potential of the approach was demonstrated in two complementary applications of measuring enzyme activity and protein binding, which is of general interest for biological studies. The attachment of a peptide substrate provided NW arrays for the detection of protease activity. In addition, green fluorescent protein was immobilized in a site-specific manner and recognized by antibody binding to demonstrate the proof-of-concept for the use of covalently modified NWs for diagnostic purposes using minute amounts of material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Do Advanced Mathematics Skills Predict Success in Biology and Chemistry Degrees?

    Science.gov (United States)

    Adkins, Michael; Noyes, Andrew

    2018-01-01

    The mathematical preparedness of science undergraduates has been a subject of debate for some time. This paper investigates the relationship between school mathematics attainment and degree outcomes in biology and chemistry across England, a much larger scale of analysis than has hitherto been reported in the literature. A unique dataset which…

  13. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  14. Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry

    Science.gov (United States)

    Burrows, Andrea C.; Breiner, Jonathan M.; Keiner, Jennifer; Behm, Chris

    2014-01-01

    This article explores the vertical alignment of two high school classes, biology and chemistry, around the core concept of biodiesel fuel production. High school teachers and university faculty members investigated biodiesel as it relates to societal impact through a National Science Foundation Research Experience for Teachers. Using an action…

  15. Electron Transfer in Chemistry and Biology-The Primary Events in ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 12. Electron Transfer in Chemistry and Biology – The Primary Events in Photosynthesis. V Krishnan. General Article Volume 2 Issue 12 December 1997 pp 77-86. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Radiation physics, biophysics, and radiation biology: Progress report, December 1, 1987-November 30, 1988

    International Nuclear Information System (INIS)

    Hall, E.J.; Zaider, M.; Delegianis, M.J.

    1988-07-01

    Research at the Radiological Research Laboratory is a blend of physics, chemistry, and biology, involving research at the basic level with the admixture of a small proportion of pragmatic or applied research in support of radiation protection and/or radiation therapy. At the current level of funding, approximately one quarter of the research of the Laboratory could be regarded as in support of radiotherapy, with the remainder addressing more basic issues. The new initiatives have been in two directions. First, there has been an increased emphasis on research in radiation chemistry, inasmuch as this subject which involves the study of free radicals and fast radiation chemistry processes starts to bridge the gap between physics and biology, between the initial deposition of radiant energy and its final expression in terms of biological consequences. Second, the emphasis in the biological research has moved towards studies at the molecular level, with the appointment of new members of staff with expertise in this area. Individual chapters were processed separately for the data base

  17. Design, Development, and Psychometric Analysis of a General, Organic, and Biological Chemistry Topic Inventory Based on the Identified Main Chemistry Topics Relevant to Nursing Clinical Practice

    Science.gov (United States)

    Brown, Corina E.

    2013-01-01

    This two-stage study focused on the undergraduate nursing course that covers topics in general, organic, and biological (GOB) chemistry. In the first stage, the central objective was to identify the main concepts of GOB chemistry relevant to the clinical practice of nursing. The collection of data was based on open-ended interviews of both nursing…

  18. Nonlinear optical polarization analysis in chemistry and biology

    CERN Document Server

    Simpson, Garth J

    2017-01-01

    This rigorous yet accessible guide presents a molecular-based description of nonlinear optical polarization analysis of chemical and biological assemblies. It includes discussion of the most common nonlinear optical microscopy and interfacial measurements used for quantitative analysis, specifically second harmonic generation (SHG), two-photon excited fluorescence (2PEF), vibrational sum frequency generation (SFG), and coherent anti-Stokes Raman spectroscopy/stimulated Raman spectroscopy (CARS/SRS). A linear algebra mathematical framework is developed, allowing step-wise systematic connections to be made between the observable measurements and the molecular response. Effects considered include local field corrections, the molecular orientation distribution, rotations between the molecular frame, the local frame and the laboratory frame, and simplifications from molecular and macromolecular symmetry. Specific examples are provided throughout the book, working from the common and relatively simple case studies ...

  19. Chemistry and biology of terpene trilactones from Ginkgo biloba.

    Science.gov (United States)

    Strømgaard, Kristian; Nakanishi, Koji

    2004-03-19

    Ginkgo biloba, the ginkgo tree, is the oldest living tree, with a long history of use in traditional Chinese medicine. In recent years, the leaf extracts have been widely sold as phytomedicine in Europe and as a dietary supplement worldwide. Effects of Ginkgo biloba extracts have been postulated to include improvement of memory, increased blood circulation, as well as beneficial effects to sufferers of Alzheimer's disease. The most unique components of the extracts are the terpene trilactones, that is, ginkgolides and bilobalide. These structurally complex molecules have been attractive targets for total synthesis. Terpene trilactones are believed to be partly responsible for the neuromodulatory properties of Ginkgo biloba extracts, and several biological effects of the terpene trilactones have been discovered in recent years, making them attractive pharmacological tools that could provide insight into the effects of Ginkgo biloba extracts.

  20. Biological regulation of atmospheric chemistry en route to planetary oxygenation.

    Science.gov (United States)

    Izon, Gareth; Zerkle, Aubrey L; Williford, Kenneth H; Farquhar, James; Poulton, Simon W; Claire, Mark W

    2017-03-28

    Emerging evidence suggests that atmospheric oxygen may have varied before rising irreversibly ∼2.4 billion years ago, during the Great Oxidation Event (GOE). Significantly, however, pre-GOE atmospheric aberrations toward more reducing conditions-featuring a methane-derived organic-haze-have recently been suggested, yet their occurrence, causes, and significance remain underexplored. To examine the role of haze formation in Earth's history, we targeted an episode of inferred haze development. Our redox-controlled (Fe-speciation) carbon- and sulfur-isotope record reveals sustained systematic stratigraphic covariance, precluding nonatmospheric explanations. Photochemical models corroborate this inference, showing Δ 36 S/Δ 33 S ratios are sensitive to the presence of haze. Exploiting existing age constraints, we estimate that organic haze developed rapidly, stabilizing within ∼0.3 ± 0.1 million years (Myr), and persisted for upward of ∼1.4 ± 0.4 Myr. Given these temporal constraints, and the elevated atmospheric CO 2 concentrations in the Archean, the sustained methane fluxes necessary for haze formation can only be reconciled with a biological source. Correlative δ 13 C Org and total organic carbon measurements support the interpretation that atmospheric haze was a transient response of the biosphere to increased nutrient availability, with methane fluxes controlled by the relative availability of organic carbon and sulfate. Elevated atmospheric methane concentrations during haze episodes would have expedited planetary hydrogen loss, with a single episode of haze development providing up to 2.6-18 × 10 18 moles of O 2 equivalents to the Earth system. Our findings suggest the Neoarchean likely represented a unique state of the Earth system where haze development played a pivotal role in planetary oxidation, hastening the contingent biological innovations that followed.

  1. Terahertz time-domain spectroscopy in physics, chemistry, and biology

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd

    In the recent years there has been a tremendous increasing interest in the far-infrared, or THz spectral region. The field of THz photonics has broadened its scope from source- and detector development into application areas in a wide range of scientific disciplines. Today researchers and compani...

  2. Chemistry and Biological Activities of Flavonoids: An Overview

    Science.gov (United States)

    Kumar, Shashank; Pandey, Abhay K.

    2013-01-01

    There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production. PMID:24470791

  3. Chemistry and Biological Activities of Flavonoids: An Overview

    Directory of Open Access Journals (Sweden)

    Shashank Kumar

    2013-01-01

    Full Text Available There has been increasing interest in the research on flavonoids from plant sources because of their versatile health benefits reported in various epidemiological studies. Since flavonoids are directly associated with human dietary ingredients and health, there is need to evaluate structure and function relationship. The bioavailability, metabolism, and biological activity of flavonoids depend upon the configuration, total number of hydroxyl groups, and substitution of functional groups about their nuclear structure. Fruits and vegetables are the main dietary sources of flavonoids for humans, along with tea and wine. Most recent researches have focused on the health aspects of flavonoids for humans. Many flavonoids are shown to have antioxidative activity, free radical scavenging capacity, coronary heart disease prevention, hepatoprotective, anti-inflammatory, and anticancer activities, while some flavonoids exhibit potential antiviral activities. In plant systems, flavonoids help in combating oxidative stress and act as growth regulators. For pharmaceutical purposes cost-effective bulk production of different types of flavonoids has been made possible with the help of microbial biotechnology. This review highlights the structural features of flavonoids, their beneficial roles in human health, and significance in plants as well as their microbial production.

  4. BOOK REVIEW Handbook of Physics in Medicine and Biology Handbook of Physics in Medicine and Biology

    Science.gov (United States)

    Tabakov, Slavik

    2010-11-01

    This is a multi-author handbook (66 authors) aiming to describe various applications of physics to medicine and biology, from anatomy and physiology to medical equipment. This unusual reference book has 44 chapters organized in seven sections: 1. Anatomical physics; 2. Physics of perception; 3. Biomechanics; 4. Electrical physics; 5. Diagnostic physics; 6. Physics of accessory medicine; 7. Physics of bioengineering. Each chapter has separate page numbering, which is inconvenient but understandable with the number of authors. Similarly there is some variation in the emphasis of chapters: for some the emphasis is more technical and for others clinical. Each chapter has a separate list of references. The handbook includes hundreds of diagrams, images and tables, making it a useful tool for both medical physicists/engineers and other medical/biology specialists. The first section (about 40 pages) includes five chapters on physics of the cell membrane; protein signaling; cell biology and biophysics of the cell membrane; cellular thermodynamics; action potential transmission and volume conduction. The physics of these is well explained and illustrated with clear diagrams and formulae, so it could be a suitable reference for physicists/engineers. The chapters on cellular thermodynamics and action potential transmission have a very good balance of technical/clinical content. The second section (about 85 pages) includes six chapters on medical decision making; senses; somatic senses: touch and pain; hearing; vision; electroreception. Again these are well illustrated and a suitable reference for physicists/engineers. The chapter on hearing stands out with good balance and treatment of material, but some other chapters contain less physics and are close to typical physiological explanations. One could query the inclusion of the chapter on medical decision making, which also needs more detail. The third section (about 80 pages) includes eight chapters on biomechanics

  5. Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins.

    Science.gov (United States)

    Peters, Carsten; Wagner, Melanie; Völkert, Martin; Waldmann, Herbert

    2002-09-01

    We have developed a basic concept for studying cell biological phenomena using an interdisciplinary approach starting from organic chemistry. Based on structural information available for a given biological phenomenon, unsolved chemical problems are identified. For their solution, new synthetic pathways and methods are developed, which reflect the state of the art in synthesising lipidated peptide conjugates. These compounds are used as molecular probes for the investigation of biological phenomena that involve both the determination of biophysical properties and cell biological studies. The interplay between organic synthesis, biophysics and cell biology in the study of protein lipidation may open up new and alternative opportunities to gain knowledge about the biological phenomenon that could not be obtained by employing biological techniques alone. This fruitful combination is highlighted using the Ras protein as an outstanding example. Included herein is: the development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of the biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and proteins in cell biological experiments.

  6. Physics and the origins of molecular biology

    Indian Academy of Sciences (India)

    the new European Molecular Biology Organisation (EMBO). Symonds later joined Bill Hayes's MRC Unit of ... from matter, based on a course of twenty lectures, in an ar- ticle 'A physicist looks at biology', or in a related ... and also at Caltech, were instrumental in training many sci- entists who then entered the field of phage ...

  7. 2013 Gordon Research Conference on metals in biology and seminar on bioinorganic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, Amy C. [Northwestern Univ., Evanston, IL (United States)

    2013-01-25

    Typical topics for lectures and posters include: biochemical and biophysical characterization of new metal containing proteins, enzymes, nucleic acids, factors, and chelators from all forms of life; synthesis, detailed characterization, and reaction chemistry of biomimetic compounds; novel crystal and solution structures of biological molecules and synthetic metal-chelates; discussions of the roles that metals play in medicine, maintenance of the environment, and biogeochemical processes; metal homeostasis; application of theory and computations to the structure and mechanism of metal-containing biological systems; and novel applications of spectroscopy to metals in biological systems.

  8. Fusing a Reversed and Informal Learning Scheme and Space: Student Perceptions of Active Learning in Physical Chemistry

    Science.gov (United States)

    Donnelly, Julie; Hernández, Florencio E.

    2018-01-01

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…

  9. Chemistry and physics of fogwater collection. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jaeschke, W.; Enderle, K.H. (eds.)

    1988-01-01

    Increasing interest in the problems of air pollution and source receptor relationships has led to a significant expansion of knowledge in the field of atmospheric chemistry. In recent years the multiphase atmospheric chemistry was given great scholarly attention, and slogans like acid precipitation, dirty cloud or killer fog indicated these phenomena. The report describes results of collection and chemical analysis of fog water with emphasis or fog microphysics, of the heterogeneous atmospheric chemistry project in the Po-valley, of the development of the Great Dun Fell project, of the mountain cloud chemistry project in eastern U.S., of the design of fog water collectors and of the numerical study of the radiation fog event on October 10/11, 1982 in Albany, N.Y.

  10. PSL Chemical Biology Symposia First 2016 Edition: When Chemistry and Biology Share the Language of Discovery.

    Science.gov (United States)

    Gautier, Arnaud; Rodriguez, Raphaël

    2017-05-18

    Chemical biology, the science of understanding biological processes at the molecular level, has grown exponentially with the development of chemical strategies to manipulate and quantify biology with unprecedented precision. Recent advances presented at the Université Paris Sciences et Lettres symposium are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  12. Biosynthetic inorganic chemistry.

    Science.gov (United States)

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  13. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Lapinsky, David J; Johnson, Douglas S

    2015-01-01

    Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol- or lipid-protein interactions and characterization of ligand-binding sites are presented.

  14. Radiological and Environmental Research Division annual report, October 1979-September 1980: fundamental molecular physics and chemistry

    International Nuclear Information System (INIS)

    1981-09-01

    Research is reported on the physics and chemistry of atoms, ions, and molecules, especially their interactions with external agents such as photons and electrons. Individual items from the report were prepared separately for the data base

  15. General Chemistry and Cellular and Molecular Biology: An Experiment in Curricular Symbiosis

    Science.gov (United States)

    Truman Schwartz, A.; Serie, Jan

    2001-11-01

    During the 1998-99 academic year, with the support of the Howard Hughes Medical Institute, we co-taught integrated courses in general chemistry and cell biology to 23 first-year students. The double course was organized around six units: I. Energetics: Harvesting (Bio)Chemical Energy; II. The Regulation of Biological Processes: Chemical Kinetics and Equilibrium; III. Membranes and Electrochemical Gradients; IV. Acids and Bases and the Regulation of pH; V. Intracellular Compartments and Transport; and VI. Cellular Communication. The chemistry and biology were both taught in a manner meant to enhance understanding of these major themes and to emphasize the relationships between the two disciplines. Both of us were present for all class sessions and shared teaching responsibilities. The examinations, which corresponded to the units, also stressed the interdependence of biology and chemistry. The laboratory components were not integrated; rather the students were dispersed among laboratory sections shared with students from more traditional lecture sections. The paper reports on this experiment in curricular symbiosis, which proved to be a challenging and rewarding learning experience for both the students and us.

  16. Understanding recognition and self-assembly in biology using the chemist's toolbox. Insight into medicinal chemistry.

    Science.gov (United States)

    Quirolo, Z B; Benedini, L A; Sequeira, M A; Herrera, M G; Veuthey, T V; Dodero, V I

    2014-01-01

    Medicinal chemistry is intimately connected with basic science such as organic synthesis, chemical biology and biophysical chemistry among other disciplines. The reason of such connections is due to the power of organic synthesis to provide designed molecules; chemical biology to give tools to discover biological and/or pathological pathways and biophysical chemistry which provides the techniques to characterize and the theoretical background to understand molecular behaviour. The present review provides some selective examples of these research areas. Initially, template dsDNA organic synthesis and the spatio-temporal control of transcription are presenting following by the supramolecular entities used in drug delivery, such as liposomes and liquid crystal among others. Finally, peptides and protein self-assembly is connected with biomaterials and as an important event in the balance between health and disease. The final aim of the present review is to show the power of chemical tools not only for the synthesis of new molecules but also to improve our understanding of recognition and self-assembly in the biological context.

  17. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 2000

    DEFF Research Database (Denmark)

    2001-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. Theresearch in physics is concentrated on neutron...

  18. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1999

    DEFF Research Database (Denmark)

    2000-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. Theresearch in physics is concentrated on neutron...

  19. Coordinating an IPLS class with a biology curriculum: NEXUS/Physics

    Science.gov (United States)

    Redish, Edward

    2014-03-01

    A multi-disciplinary team of scientists has been reinventing the Introductory Physics for Life Scientists (IPLS) course at the University of Maryland. We focus on physics that connects elements common to the curriculum for all life scientists - molecular and cellular biology - with building general scientific competencies, such as mathematical modeling, reasoning from core principles, and multi-representation translation. The prerequisites for the class include calculus, chemistry, and biology. In addition to building the basic ideas of the Newtonian framework, electric currents, and optics, our prerequisites allow us to include topics such as atomic interactions and chemical bonding, random motion and diffusion, thermodynamics (including entropy and free energy), and spectroscopy. Our chemical bonding unit helps students link the view of energy developed in traditional macroscopic physics with the idea of chemical bonding as a source of energy presented in their chemistry and biology classes. Education research has played a central role in our design, as has a strong collaboration between our Discipline-Based Education and the Biophysics Research groups. These elements permit us to combine modern pedagogy with cutting-edge insights into the physics of living systems. Supported in part by a grant from HHMI and the US NSF grant #1122818/.

  20. Chemistry and biological activity of steroidal glycosides from the Lilium genus.

    Science.gov (United States)

    Munafo, John P; Gianfagna, Thomas J

    2015-03-01

    Plants from the Lilium genus are a rich source of chemical diversity and have been the focus of natural products chemistry research for over twenty years. This manuscript provides a background on the chemistry and nomenclature of steroidal glycosides, as well as a chronological account of the progress between the years of 1989 up to 2014, with respect to their isolation and characterization from the genus. This review highlights the traditional use of lilies, as both food and medicine, and brings attention to the fact that the genus contains 110 accepted species of which the chemistry and biological activity of the steroidal glycosides from the majority have not been investigated to date. Thus, making the genus a relatively untapped resource that contains a potential treasure trove of chemical diversity waiting to be discovered.

  1. A Decade of Click Chemistry in Protein Palmitoylation: Impact on Discovery and New Biology.

    Science.gov (United States)

    Gao, Xinxin; Hannoush, Rami N

    2018-03-15

    Protein palmitoylation plays diverse roles in regulating the trafficking, stability, and activity of cellular proteins. The advent of click chemistry has propelled the field of protein palmitoylation forward by providing specific, sensitive, rapid, and easy-to-handle methods for studying protein palmitoylation. This year marks the 10th anniversary since the first click chemistry-based fatty acid probes for detecting protein lipid modifications were reported. The goal of this review is to highlight key biological advancements in the field of protein palmitoylation during the past 10 years. In particular, we discuss the impact of click chemistry on enabling protein palmitoylation proteomics methods, uncovering novel lipid modifications on proteins and elucidating their functions, as well as the development of non-radioactive biochemical and enzymatic assays. In addition, this review provides context for building and exploring new research avenues in protein palmitoylation through the use of clickable fatty acid probes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Recent Advances in the Chemistry and Biology of Naturally Occurring Antibiotics

    Science.gov (United States)

    Chen, Jason S.; Edmonds, David J.; Estrada, Anthony A.

    2009-01-01

    Lead-in Ever since the world-shaping discovery of penicillin, nature’s molecular diversity has been extensively screened for new medications and lead compounds in drug discovery. The search for anti-infective agents intended to combat infectious diseases has been of particular interest and has enjoyed a high degree of success. Indeed, the history of antibiotics is marked with impressive discoveries and drug development stories, the overwhelming majority of which have their origins in nature. Chemistry, and in particular chemical synthesis, has played a major role in bringing naturally occurring antibiotics and their derivatives to the clinic, and no doubt these disciplines will continue to be key enabling technologies for future developments in the field. In this review article, we highlight a number of recent discoveries and advances in the chemistry, biology, and medicine of naturally occurring antibiotics, with particular emphasis on the total synthesis, analog design, and biological evaluation of molecules with novel mechanisms of action. PMID:19130444

  3. A Simple Physical-Organic Chemistry Experiment A s

    Indian Academy of Sciences (India)

    Note that this rate constant is much larger [4] than the one determined directly by Steenken et al [3] ... The solvolysis reaction can be initiated by making a 100- fold dilution of a solution of the substrate in .... (b) Calvin D Ritchie, Canadian Journal of Chemistry, Vol.64, pp.2239–. 50, 1986. [6] a) John P Richard and William P ...

  4. Physics and the origins of molecular biology

    Indian Academy of Sciences (India)

    They thought that future studies of the gene might reveal new principles or paradoxes, ... of molecules, or as a living organism; you could make obser- vations that tell you where the molecules are, or you could ... nal influence on future biology (Timofeeff-Ressovsky et al. 1935). Genetics had demonstrated that genes are ...

  5. History, biology and chemistry of Mycobacterium ulcerans infections (Buruli ulcer disease).

    Science.gov (United States)

    Chany, Anne-Caroline; Tresse, Cédric; Casarotto, Virginie; Blanchard, Nicolas

    2013-12-01

    Mycobacterium ulcerans infections (Buruli ulcer disease) have a long history that can be traced back 150 years. The successive discoveries of the mycobacteria in 1948 and of mycolactone A/B in 1999, the toxin responsible for this dramatic necrotic skin disease, resulted in a paradigm shift concerning the disease itself and in a broader sense, delineated an entirely new role for bioactive polyketides as virulence factors. The fascinating history, biology and chemistry of M. ulcerans infections are discussed in this review.

  6. An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science.

    Science.gov (United States)

    Chou, Kuo-Chen

    2017-01-01

    The eternal or ultimate goal of medicinal chemistry is to find most effective ways to treat various diseases and extend human beings' life as long as possible. Human being is a biological entity. To realize such an ultimate goal, the inputs or breakthroughs from the advances in biological science are no doubt most important that may even drive medicinal science into a revolution. In this review article, we are to address this from several different angles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Adenine Synthesis in a Model Prebiotic Reaction: Connecting Origin of Life Chemistry with Biology.

    Science.gov (United States)

    Anumukonda, Lakshmi N; Young, Avery; Lynn, David G; Buckley, Ragan; Warrayat, Amena; Graves, Christina L; Bean, Heather D; Hud, Nicholas V

    2011-12-01

    Many high school laboratory experiments demonstrate concepts related to biological evolution, but few exist that allow students to investigate life's chemical origins. This series of laboratory experiments has been developed to allow students to explore and appreciate the deep connection that exists between prebiotic chemistry, chemical evolution, and contemporary biological systems. In the first experiment of the series, students synthesize adenine, one of the purine nucleobases of DNA and RNA, from plausibly prebiotic precursor molecules. Students compare their product to authentic standards using thin-layer chromatography. The second and third experiments of the series allow students to extract DNA from a familiar organism, the strawberry, and hydrolyze it, releasing adenine, which they can then compare to the previously chemically-synthesized adenine. A fourth, optional experiment is included where the technique of thin-layer chromatography is introduced and chromatographic skills are developed for use in the other three experiments that comprise this series. Concepts relating to organic and analytical chemistry, as well as biochemistry and DNA structure, are incorporated throughout, allowing this series of laboratory experiments to be easily inserted into existing laboratory courses and to reinforce concepts already included in any high school chemistry or biology curriculum.

  8. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Inorganic sulfur-nitrogen compounds: from gunpowder chemistry to the forefront of biological signaling.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Butler, Anthony R; Woollins, J Derek; Feelisch, Martin

    2016-04-14

    The reactions between inorganic sulfur and nitrogen-bearing compounds to form S-N containing species have a long history and, besides assuming importance in industrial synthetic processes, are of relevance to microbial metabolism; waste water treatment; aquatic, soil and atmospheric chemistry; and combustion processes. The recent discovery that hydrogen sulfide and nitric oxide exert often similar, sometimes mutually dependent effects in a variety of biological systems, and that the chemical interaction of these two species leads to formation of S-N compounds brought this chemistry to the attention of physiologists, biochemists and physicians. We here provide a perspective about the potential role of S-N compounds in biological signaling and briefly review their chemical properties and bioactivities in the context of the chronology of their discovery. Studies of the biological role of NO revealed why its chemistry is ideally suited for the tasks Nature has chosen for it; realising how the distinctive properties of sulfur can enrich this bioactivity does much to revive 'die Freude am experimentellen Spiel' of the pioneers in this field.

  10. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  11. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides.

    Science.gov (United States)

    Bruce King, S

    2013-02-01

    Hydrogen sulfide, an important gaseous signaling agent generated in numerous biological tissues, influences many physiological processes. This biological profile seems reminiscent of nitric oxide, another important endogenously synthesized gaseous signaling molecule. Hydrogen sulfide reacts with nitric oxide or oxidized forms of nitric oxide and nitric oxide donors in vitro to form species that display distinct biology compared to both hydrogen sulfide and NO. The products of these interesting reactions may include small-molecule S-nitrosothiols or nitroxyl, the one-electron-reduced form of nitric oxide. In addition, thionitrous acid or thionitrite, compounds structurally analogous to nitrous acid and nitrite, may constitute a portion of the reaction products. Both the chemistry and the biology of thionitrous acid and thionitrite, compared to nitric oxide or hydrogen sulfide, remain poorly defined. General mechanisms for the formation of S-nitrosothiols, nitroxyl, and thionitrous acid based upon the ability of hydrogen sulfide to act as a nucleophile and a reducing agent with reactive nitric oxide-based intermediates are proposed. Hydrogen sulfide reactivity seems extensive and could have an impact on numerous areas of redox-controlled biology and chemistry, warranting more work in this exciting and developing area. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Radiation physics, biophysics, and radiation biology

    International Nuclear Information System (INIS)

    Hall, E.J.

    1992-05-01

    The following research programs from the Center for Radiological Research of Columbia University are described: Design and development of a new wall-less ultra miniature proportional counter for nanodosimetry; some recent measurements of ionization distributions for heavy ions at nanometer site sizes with a wall-less proportional counter; a calculation of exciton energies in periodic systems with helical symmetry: application to a hydrogen fluoride chain; electron energy-loss function in polynucleotide and the question of plasmon excitation; a non-parametric, microdosimetric-based approach to the evaluation of the biological effects of low doses of ionizing radiation; high-LET radiation risk assessment at medium doses; high-LET radiobiological effects: increased lesion severity or increased lesion proximity; photoneutrons generated by high energy medical linacs; the biological effectiveness of neutrons; implications for radiation protection; molecular characterization of oncogenes induced by neutrons; and the inverse dose-rate effect for oncogenic transformation by charged particles is LET dependent

  13. Chemistry

    International Nuclear Information System (INIS)

    Gomez G, H.

    1989-01-01

    A brief description about the development and activities executed in chemistry, in the Instituto de Asuntos Nucleares, during the last years is presented. The plans and feasibility of nuclear techniques in Colombia are also described

  14. Physical chemistry of the interface between oxide and aqueous solution

    International Nuclear Information System (INIS)

    Jolivet, J.P.

    1997-01-01

    The behavior and properties of small oxide particles in aqueous suspension are dominated by the physico-chemistry of their surface. It is electrostatically charged and strongly solvated. The origin of the surface charge is discussed through the MUSIC model [Hiemstra 1996], allowing to estimate the acid-base behavior of surface oxygen atoms. The stability of aqueous dispersions of particles is analysed following the DLVO model, with a special attention on the hydration layers allowing the peptization of flocs. Different adsorption mechanisms of metal cations are presented in terms of coordination chemistry (outer- and inner-sphere complexes) emphasizing the coordinating ability of the surface towards metal complexes in solution. The anion adsorption is also studied in relation with some interesting consequences on spinel iron oxide nano-particles. (author)

  15. Physical aspects of biological activity and cancer

    Science.gov (United States)

    Pokorný, Jiří

    2012-03-01

    Mitochondria are organelles at the boundary between chemical-genetic and physical processes in living cells. Mitochondria supply energy and provide conditions for physical mechanisms. Protons transferred across the inner mitochondrial membrane diffuse into cytosol and form a zone of a strong static electric field changing water into quasi-elastic medium that loses viscosity damping properties. Mitochondria and microtubules form a unique cooperating system in the cell. Microtubules are electrical polar structures that make possible non-linear transformation of random excitations into coherent oscillations and generation of coherent electrodynamic field. Mitochondria supply energy, may condition non-linear properties and low damping of oscillations. Electrodynamic activity might have essential significance for material transport, organization, intra- and inter-cellular interactions, and information transfer. Physical processes in cancer cell are disturbed due to suppression of oxidative metabolism in mitochodria (Warburg effect). Water ordering level in the cell is decreased, excitation of microtubule electric polar oscilations diminished, damping increased, and non-linear energy transformation shifted towards the linear region. Power and coherence of the generated electrodynamic field are reduced. Electromagnetic activity of healthy and cancer cells may display essential differences. Local invasion and metastastatic growth may strongly depend on disturbed electrodynamic activity. Nanotechnological measurements may disclose yet unknown properties and parameters of electrodynamic oscillations and other physical processes in healthy and cancer cells.

  16. Free Will, Physics, Biology, and the Brain

    Science.gov (United States)

    Koch, Christof

    This introduction reviews the traditionally conceived question of free will from the point of view of a physicist turned neurobiologist. I discuss the quantum mechanic evidence that has brought us to the view that the world, including our brains, is not completely determined by physics and that even very simple nervous systems are subject to deterministic chaos. However, it is unclear how consciousness or any other extra-physical agent could take advantage of this situation to effect a change in the world, except possibly by realizing one quantum possibility over another. While the brain is a highly nonlinear and stochastic system, it remains unclear to what extent individual quantum effects can affect its output behavior. Finally, I discuss several cognitive neuroscience experiments suggesting that in many instances, our brain decides prior to our conscious mind, and that we often ignorant of our brain's decisions.

  17. Influence of Biological Macromolecules and Aquatic Chemistries on the Inhibition of Nitrifying Bacteria by Silver Nanoparticles

    Science.gov (United States)

    Radniecki, T. S.; Anderson, J. W.; Schneider, M. C.; Stankus, D. P.; Nason, J. A.; Semprini, L.

    2010-12-01

    The use of silver nanoparticles (Ag-NP) as a broad spectrum biocide in a wide range of consumer goods has grown exponentially since 2006 (1), which may result in an increased release of Ag-NP into wastewater streams and ultimately the receiving bodies of water. Ammonia oxidizing bacteria (AOB) play a critical role in the global nitrogen cycle through the oxidation of ammonia (NH3) to nitrite (NO2-) and are widely considered to be the most sensitive microbial fauna in the environment being readily inhibited by contaminants, including Ag-NP (2). This research used physiological techniques in combination with physical/chemical assays to characterize the inhibition of Nitrosomonas europaea, the model AOB, by silver ions (Ag+), 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP under a variety of aqueous chemistries. In addition, the stability of Ag-NP suspensions was examined under a variety of aqueous chemistries including in the presences of divalent cations, chloride anions, natural organic matter (NOM), proteins (BSA) and lipopolysaccharides (alginate). Using the stable Ag-NP/test media suspensions, N. europaea was found to be extremely sensitive to Ag+, 3-5 nm Ag-NP, 20 nm Ag-NP and 80 nm Ag-NP with concentrations of 0.1, 0.12, 0.5 and 1.5 ppm, respectively, resulting in a 50% decrease in nitrification rates. The inhibition was correlated with the amount of Ag+ released into solution. It is suspected that the inhibition observed from Ag-NP exposure is caused by the liberated Ag+. The aquatic chemistry of the test media was found to have a profound influence on the stability of Ag-NP suspensions. The presence of Ag ligands (e.g. EDTA and Cl-) reduced toxicity of Ag-NP through the formation of Ag-ligand complexes with the liberated Ag+. The presence of divalent cations (e.g. Ca2+ or Mg2+) resulted in the rapid aggregation of Ag-NP leading to a decrease in Ag+ liberation and thus a decrease in N. europaea inhibition. The presence of 5 ppm NOM resulted in a highly stable Ag

  18. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-12-01

    The Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) is engaged by the DOE to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU; primarily neptunium, plutonium, and americium; Np, Pu, Am) and technetium T c in alkaline media. This work is being supported by the DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and T c , are alkaline, and the chemistries of TRU and T c are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. Work continuing in FY 1996 will focus more on the applied chemistry of the TRU and T c in alkaline media and continue effort on the coprecipitation task

  19. Technical liaison with the Institute of Physical Chemistry (Russian Academy of Science)

    International Nuclear Information System (INIS)

    Delegard, C.

    1996-01-01

    DOE has engaged the Institute of Physical Chemistry of the Russian Academy of Science (IPC/RAS) to conduct studies of the fundamental and applied chemistry of the transuranium elements (TRU, primarily neptunium, plutonium, and americium) and technetium in alkaline media. This work is supported by DOE because the radioactive wastes stored in underground tanks at DOE sites (Hanford, Savannah River, and Oak Ridge) contain TRU and technetium, are alkaline, and the chemistries of TRU and technetium are not well developed in this system. Previous studies at the IPC/RAS centered on the fundamental chemistry and on coprecipitation. In FY 1996, the work will focus more on the applied chemistry of TR and technetium in alkaline media and work will continue on the coprecipitation task

  20. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel.

  1. IPEN's Nuclear Physics and Chemistry Department - Progress report - 1995-1996

    International Nuclear Information System (INIS)

    1997-01-01

    The biannual progress report of 1995-1996 of IPEN's Nuclear Physics and Chemistry Department - Brazilian organization - introduces the next main topics: neutron activation and radiochemical analysis; nuclear structure and reactions; neutron diffraction; hyperfine interactions; applied physics and instrumentation; publications; academic activities; services; and personnel

  2. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

    Science.gov (United States)

    Srnec, Matthew N.; Upadhyay, Shiv; Madura, Jeffry D.

    2017-01-01

    In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

  3. Radiation Chemistry and Physical Chemistry of Chitosan and Other Polysaccharides. Fundamental Studies and Practical Applications

    International Nuclear Information System (INIS)

    Rosiak, Janusz M.; Czechowska-Biskup, Renata; Rokita, Bożena; Olejnik, Alicja K.

    2010-01-01

    This report summarizes the second year of activities performed at the Institute of Applied Radiation Chemistry (IARC) within the framework of the CRP project. It consists of two parts. Part I is a brief account of the activities related to design, tests, sample procurement and characterization and formulation of “Protocol for determination of intrinsic viscosity of chitosan” designed to be the basis of the interlaboratory study on viscometric determination of chitosan molecular weight as well as on radiation degradation of chitosan in controlled conditions. Part II contains the text of the Protocol, and is given in the Annex. (author)

  4. Liaison activities with the Institute of Physical Chemistry, Russian Academy of Sciences: FY 1997

    International Nuclear Information System (INIS)

    Delegard, C.H.; Elovich, R.J.

    1997-09-01

    The Institute of Physical Chemistry of the Russian Academy of Sciences is conducting a program of fundamental and applied research into the chemistry of the actinides and technetium in alkaline media such as are present in the Hanford Site underground waste storage tanks. This work is being coordinated and the results disseminated through a technical liaison maintained at the Pacific Northwest National Laboratory. The technical liaison is performing laboratory studies on plutonium chemistry in alkaline media. The activities at the Institute of Physical Chemistry and through the liaison are pursued to improve understanding of the chemical behavior of key long-lived radioactive elements under current operating and proposed tank waste processing conditions. Both activities are supported by the Efficient Separations and Processing Crosscutting Program under the Office of Science and Technology of the U.S. Department of Energy

  5. Chemistry and the worm: Caenorhabditis elegans as a platform for integrating chemical and biological research.

    Science.gov (United States)

    Hulme, S Elizabeth; Whitesides, George M

    2011-05-16

    This Review discusses the potential usefulness of the worm Caenorhabditis elegans as a model organism for chemists interested in studying living systems. C. elegans, a 1 mm long roundworm, is a popular model organism in almost all areas of modern biology. The worm has several features that make it attractive for biology: it is small (biology, the Review provides examples of current research with C. elegans that is chemically relevant. It also describes tools-biological, chemical, and physical-that are available to researchers studying the worm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Isoprostanes, neuroprostanes and phytoprostanes: An overview of 25years of research in chemistry and biology.

    Science.gov (United States)

    Galano, Jean-Marie; Lee, Yiu Yiu; Oger, Camille; Vigor, Claire; Vercauteren, Joseph; Durand, Thierry; Giera, Martin; Lee, Jetty Chung-Yung

    2017-10-01

    Since the beginning of the 1990's diverse types of metabolites originating from polyunsaturated fatty acids, formed under autooxidative conditions were discovered. Known as prostaglandin isomers (or isoprostanoids) originating from arachidonic acid, neuroprostanes from docosahexaenoic acid, and phytoprostanes from α-linolenic acid proved to be prevalent in biology. The syntheses of these compounds by organic chemists and the development of sophisticated mass spectrometry methods has boosted our understanding of the isoprostanoid biology. In recent years, it has become accepted that these molecules not only serve as markers of oxidative damage but also exhibit a wide range of bioactivities. In addition, isoprostanoids have emerged as indicators of oxidative stress in humans and their environment. This review explores in detail the isoprostanoid chemistry and biology that has been achieved in the past three decades. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    Integrated modelling of physical, chemical and biological weather has been widely considered during the recent decades. Such modelling includes interactions of atmospheric physics and chemical/biological aerosol concentrations. Emitted aerosols are subject to atmospheric transport, dispersion...... and deposition, but in turn they impact the radiation as well as cloud and precipitation formation. The present study focuses on birch pollen modelling as well as on physical and chemical weather with emphasis on black carbon (BC) aerosol modelling. The Enviro-HIRLAM model has been used for the study...

  8. [Scientific-Pedagogic School of Biological and Medical Chemistry of the O. O. Bogomolets National Medical University (on the 160th year of its founding)].

    Science.gov (United States)

    Hubs'kyĭ, Iu I; Khmelevs'kyĭ, Iu V; Velykyĭ, M M

    2002-01-01

    In this work the most important stages of the scientific-pedagogic school of biologic and medical chemistry formation in Bogomolets National Medical University starting from the period of foundation as early as in 1863 till nowadays the Chair of Medical Chemistry and Physics as a part of Medical Faculty of Saint Volodymyr Emperor University in the city of Kyiv have been estimated and generalized. The especial attention is attracted to the fact, that it was Kyiv University where firstly the Chair of Biochemistry was created in order of stuyding the regularities of biochemical processes running in the human organism and metabolism disturbances inducing the pathologic processes at some diseases. The scientific and scientific-pedagogical trends of the chair work in different periods of its development are presented, simltneously the leading role of famous Ukrainian scientists--biochemicians in foundation and development of biologic and medical chemistry scientific school in the University are emphasized. Nowadays the Chair is the educational and scientific center supporting and developing the best traditions on training the specialists of different qualification levels: physicians Masters of Science, Philosophy Doctors and Doctors of Science in Medicine and Biology. The Chair is considered to be a basic one among the Ukraine higher medic and pharmaceutic educational institutions having the III-IV accreditation rate on the problems of teaching-organizational, educational-methodical and scientific work. On the Chair base there is functioning the Scientific Problem-Solving Commission of Ministry of health Protections of Academy of Medical Sciences of Ukraine "Biological and medical Chemistry" (the chairman is the Corresponding-Member of Academy of Medical Sciences of Ukraine, Prof. Yu.I. Gubsky. The Chair personnel compiled and issued the contemporary manuals in Ukraine language on Biologic and Bioorganic Chemistry.

  9. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  10. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  11. Medicinal and Biological Chemistry (MBC) Library: An Efficient Source of New Hits.

    Science.gov (United States)

    Sebastián-Pérez, Víctor; Roca, Carlos; Awale, Mahendra; Reymond, Jean-Louis; Martinez, Ana; Gil, Carmen; Campillo, Nuria E

    2017-09-25

    Identification of new hits is one of the biggest challenges in drug discovery. Creating a library of well-characterized drug-like compounds is a key step in this process. Our group has developed an in-house chemical library called the Medicinal and Biological Chemistry (MBC) library. This collection has been successfully used to start several medicinal chemistry programs and developed in an accumulation of more than 30 years of experience in drug design and discovery of new drugs for unmet diseases. It contains over 1000 compounds, mainly heterocyclic scaffolds. In this work, analysis of drug-like properties and comparative study with well-known libraries by using different computer software are presented here.

  12. Taming sulfur dioxide: a breakthrough for its wide utilization in chemistry and biology.

    Science.gov (United States)

    Bisseret, Philippe; Blanchard, Nicolas

    2013-09-07

    Although sulfur dioxide (SO2) has been used as a reagent for organic chemistry for more than one hundred years, being endowed with quite a distinct and varied reactivity profile, which allows the synthesis of a large range of compounds, its notorious toxicity as well as its gaseous state have impeded its frequent utilization by chemists. We summarize recent studies in this emerging area aimed at stimulating its utilization in organic (including organometallic) chemistry thanks to the development of innocuous, bench-stable reliable SO2 donors. Proof-of-concept experiments have also been recently performed in biology with the design of organic SO2 donors having controlled release profiles under physiological conditions, either active against mycobacteria or used for clarifying the role of endogenously produced SO2 in living cells.

  13. Physical activity and biological maturation: a systematic review

    Directory of Open Access Journals (Sweden)

    Eliane Denise Araújo Bacil

    2015-03-01

    Full Text Available OBJECTIVE: To analyze the association between physical activity (PA and biological maturation in children and adolescents. DATA SOURCE: We performed a systematic review in April 2013 in the electronic databases of PubMed/MEDLINE, SportDiscus, Web of Science and LILACS without time restrictions. A total of 628 potentially relevant articles were identified and 10 met the inclusion criteria for this review: cross-sectional or longitudinal studies, published in Portuguese, English or Spanish, with schoolchildren aged 9-15 years old of both genders. DATA SYNTHESIS: Despite the heterogeneity of the studies, there was an inverse association between PA and biological maturation. PA decreases with increased biological and chronological age in both genders. Boys tend to be more physically active than girls; however, when controlling for biological age, the gender differences disappear. The association between PA and timing of maturation varies between the genders. Variation in the timing of biological maturation affects the tracking of PA in early adolescent girls. This review suggests that mediators (BMI, depression, low self-esteem, and concerns about body weight can explain the association between PA and biological maturation. CONCLUSIONS: There is an association between PA and biological maturation. PA decreases with increasing biological age with no differences between genders. As for the timing of biological maturation, this association varies between genders.

  14. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology

    Science.gov (United States)

    2013-01-01

    Background The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. Results We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. Conclusions The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl. PMID:23895341

  15. Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology.

    Science.gov (United States)

    Hill, David P; Adams, Nico; Bada, Mike; Batchelor, Colin; Berardini, Tanya Z; Dietze, Heiko; Drabkin, Harold J; Ennis, Marcus; Foulger, Rebecca E; Harris, Midori A; Hastings, Janna; Kale, Namrata S; de Matos, Paula; Mungall, Christopher J; Owen, Gareth; Roncaglia, Paola; Steinbeck, Christoph; Turner, Steve; Lomax, Jane

    2013-07-29

    The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI. We have examined and integrated the ChEBI structural hierarchy into the GO resource through computationally-assisted manual curation of both GO and ChEBI. Our work has resulted in the creation of computable definitions of GO terms that contain fully defined semantic relationships to corresponding chemical terms in ChEBI. The set of logical definitions using both the GO and ChEBI has already been used to automate aspects of GO development and has the potential to allow the integration of data across the domains of biology and chemistry. These logical definitions are available as an extended version of the ontology from http://purl.obolibrary.org/obo/go/extensions/go-plus.owl.

  16. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  17. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    International Nuclear Information System (INIS)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry

  18. Fundamental molecular physics and chemistry. Radiological and Environmental Research Division annual report, October 1981-December 1982. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    1983-12-01

    This document is the twelfth Annual Report of our Fundamental Molecular Physics and Chemistry Program. Scientifically, the work of the program deals with aspects of the physics and chemistry of molecules related to their interactions with photons, electrons, and other external agents. We chose these areas of study in view of our matic goals; that is to say, we chose them so that the eventual outcome of our work meets some of the needs of the US Department of Energy (DOE) and of other government agencies that support our research. First, we endeavor to determine theoretically and experimentally cross sections for electron and photon interactions with molecules, because those cross sections are indispensable for detailed microscopic analyses of the earliest processes of radiation action on any molecular substance, including biological materials. Those analyses in turn provide a sound basis for radiology and radiation dosimetry. Second, we study the spectroscopy of certain molecules and of small clusters of molecules because this topic is fundamental to the full understanding of atmospheric-pollutant chemistry.

  19. Fractal landscapes in physics and biology

    Science.gov (United States)

    Eugene Stanley, H.

    1992-07-01

    This article is based upon the Thirtieth Saha Memorial Lecture (delivered on 4 January 1992) and the Fourth Bose Memorial Lecture (delivered on 5 January 1992). I felt deeply touched to have been so honored by invitations to deliver these lectures, especially in view of the list of illustrious predecessors who have held this honor. At the outset I wish to acknowledge that almost all of my work is connected in one way or another to random walks, a topic about which I learned most from the classic 1943 review of the great Indian physicist S. Chandrasekar. I also wish to acknowledge my personal debt to the great culture and music of India, and to the many Indian scholars who have taught me their unique insights into the mysteries of physics. In particular, I wish to dedicate this work to the late Bengali genius Satyajit Ray, whose recent passing has left the world immeasurably poorer. It was my dream while in Calcutta to have the opportunity of meeting this hero of mine, but his ill health at that time prevented our meeting.

  20. 2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry.

    Science.gov (United States)

    Bozorov, Khurshed; Nie, Li Fei; Zhao, Jiangyu; Aisa, Haji A

    2017-11-10

    2-Aminothiophenes are important five-membered heterocyclic building blocks in organic synthesis, and the chemistry of these small molecules is still developing based on the discovery of cyclization by Gewald. Another attractive feature of 2-aminothiophene scaffolds is their ability to act as synthons for the synthesis of biological active thiophene-containing heterocycles, conjugates and hybrids. Currently, the biological actions of 2-aminothiophenes or their 2-N-substituted analogues are still being investigated because of their various mechanisms of action (e.g., pharmacophore and pharmacokinetic properties). Likewise, the 2-aminothiophene family is used as diverse promising selective inhibitors, receptors, and modulators in medicinal chemistry, and these compounds even exhibit effective pharmacological properties in the various clinical phases of appropriate diseases. In this review, major biological and pharmacological reports on 2-aminothiophenes and related compounds have been highlighted; most perspective drug-candidate hits were selected for discussion and described, along with additional synthetic pathways. In addition, we focused on the literature dedicated to 2-aminothiophenes and 2-N-substituted derivatives, which have been published from 2010 to 2017. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Chemistry and Biology of HPAs: A Family of Ceramide Trafficking Inhibitors.

    Science.gov (United States)

    Berkeš, Dušan; Daïch, Adam; Santos, Cécile; Ballereau, Stéphanie; Génisson, Yves

    2016-12-05

    In 2001, two years before the disclosure of the CERT-associated Cer transfer machinery, N-(3-hydroxy-1-hydroxymethyl-3-phenylpropyl)alkanamides (HPAs) were described as the first, and to date unique, family of intracellular Cer trafficking inhibitors. The dodecanamide derivative, HPA-12, turned out to be a benchmark as a cellular inhibitor of CERT-mediated de novo sphingomyelin biosynthesis. In only 15 years after its first disclosure, this compound has prompted a growing number of biological and chemical studies. Its initial chemical development closely paralleled the study of the CERT protein. It was only after its structural revision in 2011 that HPA-12 received broad attention from the synthetic chemistry community, leading to novel analogues with enhanced protein binding. This Minireview aims at presenting an exhaustive report of the syntheses of HPA-12 and analogues. Biological activities of this CERT inhibitor and structure-activity relationships are also presented to afford a comprehensive overview of the chemistry and biology of the HPA series. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling.

    Science.gov (United States)

    Wagner, Bridget K; Clemons, Paul A

    2009-12-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe-discovery and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of 'virtual' profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe-discovery and drug-discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections.

  3. N-acylsulfonamides: Synthetic routes and biological potential in medicinal chemistry.

    Science.gov (United States)

    Ammazzalorso, Alessandra; De Filippis, Barbara; Giampietro, Letizia; Amoroso, Rosa

    2017-12-01

    Sulfonamide is a common structural motif in naturally occurring and synthetic medicinal compounds. The rising interest in sulfonamides and N-acyl derivatives is attested by the large number of drugs and lead compounds identified in last years, explored in different fields of medicinal chemistry and showing biological activity. Many acylsulfonamide derivatives were designed and synthesized as isosteres of carboxylic acids, being the characteristics of these functional groups very close. Starting from chemical routes to N-acylsulfonamides, this review explores compounds of pharmaceutical interest, developed as enzymatic inhibitors or targeting receptors. © 2017 John Wiley & Sons A/S.

  4. The chemistry-biology-medicine continuum and the drug discovery and development process in academia.

    Science.gov (United States)

    Nicolaou, K C

    2014-09-18

    Admirable as it is, the drug discovery and development process is continuously undergoing changes and adjustments in search of further improvements in efficiency, productivity, and profitability. Recent trends in academic-industrial partnerships promise to provide new opportunities for advancements of this process through transdisciplinary collaborations along the entire spectrum of activities involved in this complex process. This perspective discusses ways to promote the emerging academic paradigm of the chemistry-biology-medicine continuum as a means to advance the drug discovery and development process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Advances in metabolome information retrieval: turning chemistry into biology. Part II: biological information recovery.

    Science.gov (United States)

    Tebani, Abdellah; Afonso, Carlos; Bekri, Soumeya

    2017-08-25

    This work reports the second part of a review intending to give the state of the art of major metabolic phenotyping strategies. It particularly deals with inherent advantages and limits regarding data analysis issues and biological information retrieval tools along with translational challenges. This Part starts with introducing the main data preprocessing strategies of the different metabolomics data. Then, it describes the main data analysis techniques including univariate and multivariate aspects. It also addresses the challenges related to metabolite annotation and characterization. Finally, functional analysis including pathway and network strategies are discussed. The last section of this review is devoted to practical considerations and current challenges and pathways to bring metabolomics into clinical environments.

  6. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2013-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly), which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed Illustrations and links to reference material online help further comprehension. The

  7. Radiation physics and chemistry of biomolecules. Recent developments

    Science.gov (United States)

    Spotheim-Maurizot, Melanie

    2016-11-01

    A chapter of the book ;Radiation chemistry. From basics to application in materials and life sciences (EDP Science, Paris, France, 2008); was devoted to the state-of-the-art in the research on ionizing radiation (IR) effects on biomolecules. An update, eight years later, seemed pertinent enough to the editors of this journal who accepted to dedicate a Special Issue to the latest developments in this area of high interest for cancer radiotherapy, nuclear workers' radioprotection and food radiosterilisation. We sincerely thank them and the authors who accepted to present reviews of their most recent work. Obviously, only a small part of the research in the fascinating domain of molecular radiobiology can be covered here. Some articles are presenting the contribution of biophysical models and computational techniques to the understanding of IR effects on molecules such as DNA and proteins, or on larger systems such as chromatin, chromosomes and even cells (Nikjoo et al., Štěpán & Davídková, Ballarini & Carante, and Nikitaki et al.). In these papers, as well as in many others, several qualities of IR are compared in order to explain the observed differences of effects. The damages induced by the low energy electrons and new techniques involved in their study are discussed in great detail (Sanche and Fromm & Boulanouar). The chemistry behind the IR induced damages (single or clustered), studied in many laboratories around the world is presented in several papers (Cadet & Wagner, Sevilla et al., Chatgilialoglu et al., and Greenberg). One of them addresses a very useful comparison between the effects of IR and UV exposure on DNA (Ravanat & Douki). The majority of the papers in this Special Issue is dealing with DNA and this reflects the real situation: damages of DNA are more studied than those of other biomolecules. This is due to the role of DNA as main support of hereditary information. Nevertheless, more and more studies are outlining the influence of epigenetic

  8. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    Science.gov (United States)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student

  9. Enthalpy of Vaporization by Gas Chromatography: A Physical Chemistry Experiment

    Science.gov (United States)

    Ellison, Herbert R.

    2005-01-01

    An experiment is conducted to measure the enthalpy of vaporization of volatile compounds like methylene chloride, carbon tetrachloride, and others by using gas chromatography. This physical property was measured using a very tiny quantity of sample revealing that it is possible to measure the enthalpies of two or more compounds at the same time.

  10. Workshop on the interface between radiation chemistry and radiation physics

    International Nuclear Information System (INIS)

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10 - 16 to 10 - 12 second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted

  11. Workshop on the interface between radiation chemistry and radiation physics

    Energy Technology Data Exchange (ETDEWEB)

    1983-03-01

    Twenty-four papers are grouped under the session headings: measurements of physical and chemical properties, track structure modeling, spurs and track structure, and the 10/sup -16/ to 10/sup -12/ second region. Separate abstracts were prepared for 12 of the papers; four of the remaining papers had previously been abstracted. (DLC)

  12. Review of the genus Ipomoea: traditional uses, chemistry and biological activities

    Directory of Open Access Journals (Sweden)

    Marilena Meira

    Full Text Available Approximately 600-700 species of Ipomoea, Convolvulaceae, are found throughout tropical and subtropical regions of the world. Several of those species have been used as ornamental plants, food, medicines or in religious ritual. The present work reviews the traditional uses, chemistry and biological activities of Ipomoea species and illustrates the potential of the genus as a source of therapeutic agents. These species are used in different parts of the world for the treatment of several diseases, such as, diabetes, hypertension, dysentery, constipation, fatigue, arthritis, rheumatism, hydrocephaly, meningitis, kidney ailments and inflammations. Some of these species showed antimicrobial, analgesic, spasmolitic, spasmogenic, hypoglycemic, hypotensive, anticoagulant, anti-inflammatory, psychotomimetic and anticancer activities. Alkaloids, phenolics compounds and glycolipids are the most common biologically active constituents from these plant extracts.

  13. [Research progress and trend analysis of biology and chemistry of Taxus medicinal resources].

    Science.gov (United States)

    Hao, Da-Cheng; Xiao, Pei-Gen; Peng, Yong; Liu, Ming; Huo, Li

    2012-07-01

    Taxus is the source plant of anti-cancer drug paclitaxel and its biosynthetic precursor, analogs and derivatives, which has been studying for decades. There are many endemic Taxus species in China, which have been studied in the field of multiple disciplines. Based on the recent studies of the researchers, this review comments on the study of Taxus biology and chemistry. The bibliometric method is used to quantify the global scientific production of Taxus-related research, and identify patterns and tendencies of Taxus-related articles. Gaps are present in knowledge about the genomics, epigenomics, transcriptomics, proteomics, metabolomics and bioinformatics of Taxus and their endophytic fungi. Systems biology and various omics technologies will play an increasingly important role in the coming decades.

  14. Review and needs in actinide chemistry in relation with biological purposes

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E.; Moulin, V.; Bion, L.; Doizi, D.; Moulin, C.; Cote, G.; Madic, C.; Van der Lee, J

    2004-07-01

    In case of accidental release of radionuclides in the environment, actinides could occur and may present an healthy risk for human beings. In order to study their behavior in human organism (metabolism, retention, excretion), it is of prime importance to know solution actinide chemistry, and more particularly thermodynamic constants, which will allow to determine their speciation: speciation governs biological availability and toxicity of elements and is also of great interest for decorporation purposes. In this framework, a CEA working group on speciation has been created in order to share data both on thermodynamic constants and on speciation analytical methods, interesting chemists, environmentalists and biologists. It has been focused, in a first time, on actinides. The purpose of this paper is to present the state of the art on actinide speciation within biological media and to focus on the lack of information in order to orientate future research. (authors)

  15. Bringing the physical sciences into your cell biology research.

    Science.gov (United States)

    Robinson, Douglas N; Iglesias, Pablo A

    2012-11-01

    Historically, much of biology was studied by physicists and mathematicians. With the advent of modern molecular biology, a wave of researchers became trained in a new scientific discipline filled with the language of genes, mutants, and the central dogma. These new molecular approaches have provided volumes of information on biomolecules and molecular pathways from the cellular to the organismal level. The challenge now is to determine how this seemingly endless list of components works together to promote the healthy function of complex living systems. This effort requires an interdisciplinary approach by investigators from both the biological and the physical sciences.

  16. A Study of Faculty Approaches to Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael Ryan

    Chemistry education researchers have not adequately studied teaching and learning experiences at all levels in the undergraduate chemistry curriculum leaving gaps in discipline-based STEM education communities understanding about how the upper- division curricula works (National Research Council, 2012b; Towns, 2013). This study explored faculty approaches to teaching in upper-division physical chemistry course settings using an interview-based methodology. Two conceptualizations of approaches to teaching emerged from a phenomenographic analysis of interview transcripts: (1) faculty beliefs about the purposes for teaching physical chemistry and (2) their conceptions of their role as an instructor in these course settings. Faculty who reported beliefs predominantly centered on helping students develop conceptual knowledge and problem-solving skills in physical chemistry often worked with didactic models of teaching, which emphasized the transfer of expert knowledge to students. When faculty expressed beliefs that were more inclusive of conceptual, epistemic, and social learning goals in science education they often described more student-centered models of teaching and learning, which put more responsibilities on them to facilitate students' interactive engagement with the material and peers during regularly scheduled class time. Knowledge of faculty thinking, as evinced in a rich description of their accounts of their experience, provides researchers and professional developers with useful information about the potential opportunities or barriers that exist for helping faculty align their beliefs and goals for teaching with research-based instructional strategies.

  17. Physics in Brazil in the next decade: atomic, molecular and optical physics, biological, chemical and medical physics, physics teaching and plasma physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is an overview of physics in Brazil in the next decade. It is specially concerned with atomic, molecular and optical physics, biological chemical and medical physics, and also teaching of physics and plasma physics. It presents the main research groups in Brazil in the above mentioned areas. It talks as well, about financing new projects and the costs involved to improve these areas. (A.C.A.S.)

  18. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  19. Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity.

    Science.gov (United States)

    Zhang, Wen; Guo, Yue-Wei; Gu, Yucheng

    2006-01-01

    The increasing demand for new lead compounds in the pharmaceutical and agrochemical industries has driven scientists to search for new sources of bioactive natural products. Marine invertebrates are a rich source of novel, bioactive secondary metabolites and they have attracted a great deal of attention from scientists in the fields of chemistry, pharmacology, ecology, and molecular biology. During the past 25 years, many complex and structurally unique secondary metabolites have been isolated from the invertebrates inhabiting the South China Sea. These metabolites are responsible for various bioactivities such as anti-tumor, anti-inflammation and antioxidant activities, and/or they act on the cardiovascular system. This review will focus on the marine natural product chemistry of invertebrates from the South China Sea, aiming to give the reader a brief view of the compounds isolated from these invertebrates, as well as their biological activities. The article covers the literature published during the period from the beginning of 1980 to the end of 2005, with 340 citations and 811 compounds from invertebrates from the South China Sea, including sponges, coelenterates, molluscs and echinoderms.

  20. Variational Principles and Methods in Theoretical Physics and Chemistry

    Science.gov (United States)

    Nesbet, Robert K.

    2005-07-01

    Preface; Part I. Classical Mathematics and Physics: 1. History of variational theory; 2. Classical mechanics; 3. Applied mathematics; Part II. Bound States in Quantum Mechanics: 4. Time-independent quantum mechanics; 5. Independent-electron models; 6. Time-dependent theory and linear response; Part III. Continuum States and Scattering Theory: 7. Multiple scattering theory for molecules and solids; 8. Variational methods for continuum states; 9. Electron-impact rovibrational excitation of molecules; Part IV. Field Theories: 10. Relativistic Lagrangian theories.

  1. PREFACE: Physics and biology of neurodegenerative diseases Physics and biology of neurodegenerative diseases

    Science.gov (United States)

    Pastore, Annalisa

    2012-06-01

    , about 15 years after the original reports, it is clear that amyloids are special structures that occur in nature under several different guises, some good, some evil [3]. The number of diseases associated with misfolding and fibrillogenesis has steadily increased. Examples of fairly common pathologies associated with fibre formation include Alzheimer's disease (currently one of the major threats for human health in our increasingly aging world), Parkinson's disease and several rare, but not less severe, pathologies. On the other hand, it is also clear that amyloid formation is a convenient mechanism for storing peptides and/or proteins in a compact and resistant way. The number of organisms/tissues in which amyloid deposits are found is thus increasing. It is also not too far-fetched to expect that the mechanical properties of amyloids could be used in biotechnology to design new materials. Because of the importance of this topic in so many scientific fields, we have dedicated this special issue of Journal of Physics: Condensed Matter to the topic of protein aggregation and disease. In the following pages we have collected two reviews and five articles that explore new and interesting developments in the field. References [1] Olby R 1994 The Path of the Double Helix: The Discovery of DNA (New York: Dover) [2] Dobson C M 2004 Principles of protein folding, misfolding and aggregation Semin. Cell Dev. Biol. 15 3-16 [3] Hammer N D, Wang X, McGuffie B A, Chapman M R 2008 Amyloids: friend or foe? J. Alzheimers Dis. 13 407-19 Physics and biology of neurodegenerative diseases contents Protein aggregation and misfolding: good or evil?Annalisa Pastore and Pierandrea Temussi Alzheimer's disease: biological aspects, therapeutic perspectives and diagnostic toolsM Di Carlo, D Giacomazza and P L San Biagio Entrapment of Aβ1-40 peptide in unstructured aggregatesC Corsale, R Carrotta, M R Mangione, S Vilasi, A Provenzano, G Cavallaro, D Bulone and P L San Biagio Elemental micro

  2. A Game-Based Approach to an Entire Physical Chemistry Course

    Science.gov (United States)

    Daubenfeld, Thorsten; Zenker, Dietmar

    2015-01-01

    We designed, implemented, and evaluated a game-based learning approach to increase student motivation and achievement for an undergraduate physical chemistry course. By focusing only on the most important game aspects, the implementation was realized with a production ratio of 1:8 (study load in hours divided by production effort in hours).…

  3. Computational Modeling of the Optical Rotation of Amino Acids: An "in Silico" Experiment for Physical Chemistry

    Science.gov (United States)

    Simpson, Scott; Autschbach, Jochen; Zurek, Eva

    2013-01-01

    A computational experiment that investigates the optical activity of the amino acid valine has been developed for an upper-level undergraduate physical chemistry laboratory course. Hybrid density functional theory calculations were carried out for valine to confirm the rule that adding a strong acid to a solution of an amino acid in the l…

  4. A Writing and Ethics Component for a Quantum Mechanics, Physical Chemistry Course

    Science.gov (United States)

    Reilly, John T.; Strickland, Michael

    2010-01-01

    A writing-across-the-curriculum and ethics component is presented for a second-semester, physical chemistry course. The activity involves introducing ethical issues pertinent to scientists. Students are asked to read additional material, participate in discussions, and write essays and a paper on an ethical issue. The writing and discussion…

  5. The Puzzle of Falling Enrolments in Physics and Chemistry Courses: Putting Some Pieces Together

    Science.gov (United States)

    Lyons, Terry

    2006-01-01

    This paper reports and discusses the principal findings of an Australian study exploring the decisions of high achieving Year 10 students about taking physics and chemistry courses (Lyons, 2003). The study used a "multiple worlds" framework to explore the diverse background characteristics that previous quantitative research had shown…

  6. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  7. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  8. 3D Printed Potential and Free Energy Surfaces for Teaching Fundamental Concepts in Physical Chemistry

    Science.gov (United States)

    Kaliakin, Danil S.; Zaari, Ryan R.; Varganov, Sergey A.

    2015-01-01

    Teaching fundamental physical chemistry concepts such as the potential energy surface, transition state, and reaction path is a challenging task. The traditionally used oversimplified 2D representation of potential and free energy surfaces makes this task even more difficult and often confuses students. We show how this 2D representation can be…

  9. For the Love of Learning Science: Connecting Learning Orientation and Career Productivity in Physics and Chemistry

    Science.gov (United States)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John

    2010-01-01

    An individual's motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this…

  10. Retention of Differential and Integral Calculus: A Case Study of a University Student in Physical Chemistry

    Science.gov (United States)

    Jukic Matic, Ljerka; Dahl, Bettina

    2014-01-01

    This paper reports a study on retention of differential and integral calculus concepts of a second-year student of physical chemistry at a Danish university. The focus was on what knowledge the student retained 14 months after the course and on what effect beliefs about mathematics had on the retention. We argue that if a student can quickly…

  11. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  12. Fluorescence Correlation Spectroscopy of Spermine-DNA Interactions - Nanostructure and Physical Supramolecular Chemistry of DNA Condensation

    Czech Academy of Sciences Publication Activity Database

    Kral, Teresa; Langner, M.; Hof, Martin; Adjimatera, N.; Blagbrough, I. S.

    2004-01-01

    Roč. 98, Supplement (2004), s22-s23 ISSN 0009-2770 Institutional research plan: CEZ:AV0Z4040901 Keywords : fluorescence * nanostructure * DNA condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.348, year: 2004

  13. Faculty Beliefs about the Purposes for Teaching Undergraduate Physical Chemistry Courses

    Science.gov (United States)

    Mack, Michael R.; Towns, Marcy H.

    2016-01-01

    We report the results of a phenomenographic analysis of faculty beliefs about the purposes for teaching upper-division physical chemistry courses in the undergraduate curriculum. A purposeful sampling strategy was used to recruit a diverse group of faculty for interviews. Collectively, the participating faculty regularly teach or have taught…

  14. Physics for Medicine and Biology: Determining Body Fat Content

    Science.gov (United States)

    Aaron, Ronald; Altman, Albert

    2011-04-01

    Hydrostatic weighing is a technique for determining body fat content that is based on Archimedes principle and varied applications of the ideal gas law. We use this procedure as an example of the types of physics material which should be presented in an introductory course for students that are interested in careers in biology and medicine.

  15. Biologic and physical fractionation effects of random geometric errors

    NARCIS (Netherlands)

    van Herk, Marcel; Witte, Marnix; van der Geer, Joris; Schneider, Christoph; Lebesque, Joos V.

    2003-01-01

    PURPOSE: We are developing a system to model the effect of random and systematic geometric errors on radiotherapy delivery. The purpose of this study was to investigate biologic and physical fractionation effects of random geometric errors and respiration motion and compare the resulting dose

  16. Subject Didactic Studies of Research Training in Biology and Physics.

    Science.gov (United States)

    Lybeck, Leif

    1984-01-01

    The objectives and design of a 3-year study of research training and supervision in biology and physics are discussed. Scientific problems arising from work on the thesis will be a focus for the postgraduate students and their supervisors. Attention will be focused on supervisors' and students' conceptions of science, subject range, research,…

  17. Milkweed Seed Dispersal: A Means for Integrating Biology and Physics.

    Science.gov (United States)

    Bisbee, Gregory D.; Kaiser, Cheryl A.

    1997-01-01

    Describes an activity that integrates biology and physics concepts by experimenting with the seed dispersal of common milkweed or similar wind-dispersed seeds. Student teams collect seeds and measure several parameters, review principles of trajectory motion, perform experiments, and graph data. Students examine the ideas of…

  18. Optimization of physical and biological parameters for transient ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... Majid and Parveez (2007) optimized different physical and biological parameters for transient expression of. GUS and GFP reporter genes in oil palm through particle bombardment. Similar experiments were also conducted on selectable markers and reporter gene expressions in banana by Sreeramanan ...

  19. Integrated Ph. D. Programme in Biological, Chemical and Physical ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Integrated Ph. D. Programme in Biological, Chemical and Physical Sciences at Indian Institute of Sciences Introductory Summer School on Astronomy and Astrophysics. Information and Announcements Volume 1 Issue 2 February 1996 pp 121- ...

  20. Electrostatic correlations at the Stern layer: physics or chemistry?

    Science.gov (United States)

    Travesset, A; Vangaveti, S

    2009-11-14

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge ("chemical binding"). It is shown that the "chemical" model can be appropriately described by an underlying "physical" model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids.

  1. Perspectives on theory at the interface of physics and biology

    Science.gov (United States)

    Bialek, William

    2018-01-01

    Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.

  2. The physical basis of thermodynamics with applications to chemistry

    CERN Document Server

    Richet, Pascal

    2001-01-01

    Given that thermodynamics books are not a rarity on the market, why would an additional one be useful? The answer is simple: at any level, thermodynamics is usually taught as a somewhat abstruse discipline where many students get lost in a maze of difficult concepts. However, thermodynamics is not as intricate a subject as most people feel. This book fills a niche between elementary textbooks and mathematically oriented treatises, and provides readers with a distinct approach to the subject. As indicated by the title, this book explains thermodynamic phenomena and concepts in physical terms before proceeding to focus on the requisite mathematical aspects. It focuses on the effects of pressure, temperature and chemical composition on thermodynamic properties and places emphasis on rapidly evolving fields such as amorphous materials, metastable phases, numerical simulations of microsystems and high-pressure thermodynamics. Topics like redox reactions are dealt with in less depth, due to the fact that there is a...

  3. Academic Achievement in Physics-Chemistry: The Predictive Effect of Attitudes and Reasoning Abilities

    Directory of Open Access Journals (Sweden)

    Paulo N. Vilia

    2017-06-01

    Full Text Available Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students’ attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student’s attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008. The participants were 470 students (267 girls – 56.8% and 203 boys – 43.2%, aged 14–16 years old (μ = 14.3 ± 0.58. The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ and, the Reasoning Test Battery (RTB was used to assess the students reasoning abilities. Achievement was measured using the students’ quarterly (9-week grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β, calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student’s grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with

  4. Academic Achievement in Physics-Chemistry: The Predictive Effect of Attitudes and Reasoning Abilities.

    Science.gov (United States)

    Vilia, Paulo N; Candeias, Adelinda A; Neto, António S; Franco, Maria Da Glória S; Melo, Madalena

    2017-01-01

    Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students' attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student's attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008). The participants were 470 students (267 girls - 56.8% and 203 boys - 43.2%), aged 14-16 years old (μ = 14.3 ± 0.58). The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ) and, the Reasoning Test Battery (RTB) was used to assess the students reasoning abilities. Achievement was measured using the students' quarterly (9-week) grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β), calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student's grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with student's achievement in

  5. Integrated modelling of physical, chemical and biological weather

    DEFF Research Database (Denmark)

    Kurganskiy, Alexander

    forecasts. The BC modelling study was performed for a modelling domain covering most of the Northern Hemisphere with focus on the EU and Arctic regions. Verification of BC concentrations against observations showed a good agreement for the EU air quality measurement sites. However, the Arctic region turned......Integrated modelling of physical, chemical and biological weather has been widely considered during the recent decades. Such modelling includes interactions of atmospheric physics and chemical/biological aerosol concentrations. Emitted aerosols are subject to atmospheric transport, dispersion...... and deposition, but in turn they impact the radiation as well as cloud and precipitation formation. The present study focuses on birch pollen modelling as well as on physical and chemical weather with emphasis on black carbon (BC) aerosol modelling. The Enviro-HIRLAM model has been used for the study...

  6. Developing and Evaluating an Eighth Grade Curriculum Unit That Links Foundational Chemistry to Biological Growth: Using Student Measures to Evaluate the Promise of the Intervention

    Science.gov (United States)

    Herrmann-Abell, Cari F.; Flanagan, Jean C.; Roseman, Jo Ellen

    2013-01-01

    Students often have trouble understanding key biology ideas, in part because they lack an understanding of foundational chemistry ideas. AAAS [American Association for the Advancement of Science] is collaborating with BSCS [Biological Sciences Curriculum Study] in the development of a curriculum unit that connects core chemistry and biology ideas…

  7. Physical chemistry and modelling of the sintering of actinide oxides

    International Nuclear Information System (INIS)

    Lechelle, Jacques

    2013-01-01

    This report gives a synthesis of the work I have carried out or to which I have numerically contributed to from 1996 up to 2012 in the Department of Plutonium Uranium and minor Actinides in Cadarache CEA Center. Their main goal is the study and the modeling of the sintering process of nuclear fuels which is the unifying thread of this document. Both in order to take into account the physical and chemical features of the actinide bearing oxide material and in order to combine the different transport phenomena leading to sintering, a sub-granular scale model is under development. Extension to a varying chemical composition as well as exchanges with the gaseous phase are foreseen. A simulation on a larger scale (pellet scale) is ongoing in the framework of a PhD thesis. Validation means have been tested with (U,Pu)O 2 material on the scale of the pellet (Small Angle Neutron Diffusion), on the scale of powder granules (X-Ray High Resolution Micro-Tomography) and with CeO 2 at the 'Institut de Chimie Separative' in Marcoule on a single crystal scale (Environmental Scanning Electron Microscope). The required microstructure homogeneity for nuclear fuels has led to a campaign of experimental studies about the role of Cr 2 O 3 as a sintering aid. Whole of these studies improve our understanding of fuel sintering and hence leads to an improved mastering of this process. (author) [fr

  8. Lithography of Polymer Nanostructures on Glass for Teaching Polymer Chemistry and Physics.

    Science.gov (United States)

    Sahar-Halbany, Adi; Vance, Jennifer M; Drain, Charles Michael

    2011-05-01

    As nanolithography becomes increasingly important in technology and daily life, a variety of inexpensive and creative methods toward communicating the concepts underpinning these processes in the classroom are necessary. An experiment is described that uses simple CD-Rs, C-clamps, an oven, and a freezer to provide concrete examples and insights into the chemistry and principles of nanolithography. The experiment also has flexibility, making it suitable for a range of classroom levels from high school to more advanced labs in college. Because CD-Rs are composed of grooves of polycarbonate, the experiment provides a basis for discussions and exploration into the chemistry and physics of polymers on the nanoscale.

  9. K1-95-HW, cruise report 1995: preliminary results. Phase III: sediment chemistry and biological sampling survey

    Science.gov (United States)

    Torresan, M.E.; Hampton, M.A.; Barber, J.H.; Wong, F.L.

    1995-01-01

    Mamala Bay, off the south shore of the island of Oahu, has been used as a repository of dredged material primarily from Pearl and Honolulu Harbors for over a century. The U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Environmental Protection Agency are conducting an integrated study on the distribution and character of dredged materials as well as the effects of dredged material on the marine environment. A three phase study is providing information to evaluate the effects on seafloor substrate and the benthic fauna. The studies include geophysical profiling and imaging, bottom photography, sampling, chemical and physical analyses of sediment, and evaluations of the benthic population, population density, and adverse impacts to the benthic fauna. Phase 1, conducted in 1993, inventoried the seafloor via remote sensing. Sidescan sonar and subbottom profilers characterized the seafloor in and around the disposal sites, and the resulting products reveal the character and extent of the dredged material. These data were used to plan Phase 2 in 1994, a sampling program that employed subbottom profilers, video and still photography, and seafloor sampling to ground truth the sonar mosaic and identify the seafloor substrates responsible for the various acoustic signatures on the sonar images and subbottom profiles. Box coring provided the samples necessary to distinguish dredged material from native sediment, and for the chemical analyses used to determine contaminant concentrations. Phase 3 studies conducted in June of 1995 consisted of box core sampling for chemical and biological analyses. Specific studies include: infaunal taxonomy and population density, bioassay/bioaccumulation, sediment chemistry, and post-disposal resuspension and transport. The 1995 survey, conducted June 14 through 17, resulted in the collection of 39 box cores from 20 different stations. Multiple box cores were composited at 7 different locations occupied in 1994, to provide

  10. The effects of urbanization on the biological, physical, and chemical characteristics of coastal New England streams

    Science.gov (United States)

    Coles, James F.; Cuffney, Thomas F.; McMahon, Gerard; Beaulieu, Karen M.

    2004-01-01

    During August 2000, responses of biological communities (invertebrates, fish, and algae), physical habitat, and water chemistry to urban intensity were compared among 30 streams within 80 miles of Boston, Massachusetts. Sites chosen for sampling represented a gradient of the intensity of urban development (urban intensity) among drainage basins that had minimal natural variability. In this study, spatial differences were used as surrogates for temporal changes to represent the effects of urbanization over time. The degree of urban intensity for each drainage basin was characterized with a standardized urban index (0-100, lowest to highest) derived from land cover, infrastructure, and socioeconomic variables. Multivariate and multimetric analyses were used to compare urban index values with biological, physical, and chemical data to determine how the data indicated responses to urbanization. Multivariate ordinations were derived for the invertebrate-, fish-, and algae-community data by use of correspondence analysis, and ordinations were derived for the chemical and physical data by use of principal-component analysis. Site scores from each of the ordinations were plotted in relation to the urban index to test for a response. In all cases, the primary axis scores showed the strongest response to the urban index, indicating that urbanization was a primary factor affecting the data ordination. For the multimetric analyses, each of the biological data sets was used to calculate a series of community metrics. For the sets of chemical and physical data, the individual variables and various combinations of individual variables were used as measured and derived metrics, respectively. Metrics that were generally most responsive to the urban index for each data set included: EPT (Ephemeroptera, Plecoptera, Trichoptera) taxa for invertebrates; cyprinid taxa for fish; diatom taxa for algae; bicarbonate, conductivity, and nitrogen for chemistry; and water depth and temperature

  11. Breaking Frontiers: Submicron Structures in Physics and Biology - 52 Zakopane School of Physics

    International Nuclear Information System (INIS)

    2008-01-01

    The 52 Zakopane School of Physics held in Zakopane from 19 to 24 May 2008. The main task of the symposium was to present the newest results of research in field of submicron structures in physics, biology and medicine. Some new technologies as well as their applications are also presented

  12. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B. [ed.

    2001-03-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 2000 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  13. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    Energy Technology Data Exchange (ETDEWEB)

    Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au) 2 tabs., 142 ills., 169 refs.

  14. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    International Nuclear Information System (INIS)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  15. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1998

    International Nuclear Information System (INIS)

    Bechgaard, K.; Clausen, K.N.; Feidenhans'l, R.; Johannsen, I.

    1999-04-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical properties of materials. The principal activities in the year 1998 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  16. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    International Nuclear Information System (INIS)

    Lebech, B.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  17. Annual progress report of the Condensed Matter Physics and Chemistry Department 1 January - 31 December 1997

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, M.; Bechgaard, K.; Clausen, K.N.; Feidenhans`l, R.; Johannsen, I. [eds.

    1998-01-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1997 are presented in this progress report. The research in physics in concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scale structures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems in undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au). 129 ills., 213 refs.

  18. Annual progress report of the Condensed Matter Physics and Chemistry Department. 1 January - 31 December 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lebech, B. [ed.

    2000-02-01

    The Condensed Matter Physics and Chemistry Department is concerned with both fundamental and applied research into the physical and chemical properties of materials. The principal activities in the year 1999 are presented in this progress report. The research in physics is concentrated on neutron and x-ray scattering measurements and the problems studied include two- and three-dimensional structures, magnetic ordering and spin dynamics, superconductivity, phase transitions and nano-scalestructures. The research in chemistry includes chemical synthesis and physico-chemical investigation of small molecules and polymers, with emphasis on polymers with new optical properties, block copolymers, surface-modified polymers, and supramolecular structures. Theoretical work related to these problems is undertaken, including Monte Carlo simulations, computer simulation of molecules and polymers and methods of data analysis. (au)

  19. Before big science the pursuit of modern chemistry and physics, 1800-1940

    CERN Document Server

    Nye, Mary Jo

    1999-01-01

    Today's vast multinational scientific monoliths bear little resemblance to the modest laboratories of the early nineteenth century. Yet early in the nineteenth century--when heat and electricity were still counted among the elements--changes were already under way that would revolutionize chemistry and physics into the "big science" of the late twentieth century, expanding tiny, makeshift laboratories into bustling research institutes and replacing the scientific amateurs and generalist savants of the early Victorian era with the professional specialists of contemporary physical science. Mary Jo Nye traces the social and intellectual history of the physical sciences from the early 1800s to the beginning of the Second World War, examining the sweeping transformation of scientific institutions and professions during the period and the groundbreaking experiments that fueled that change, from the earliest investigations of molecular chemistry and field dynamics to the revolutionary breakthroughs of quantum mecha...

  20. Biomorphodynamics: Physical-biological feedbacks that shape landscapes

    Science.gov (United States)

    Murray, A.B.; Knaapen, M.A.F.; Tal, M.; Kirwan, M.L.

    2008-01-01

    Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the

  1. Biomorphodynamics: Physical-biological feedbacks that shape landscapes

    Science.gov (United States)

    Murray, A. B.; Knaapen, M. A. F.; Tal, M.; Kirwan, M. L.

    2008-11-01

    Plants and animals affect morphological evolution in many environments. The term "ecogeomorphology" describes studies that address such effects. In this opinion article we use the term "biomorphodynamics" to characterize a subset of ecogeomorphologic studies: those that investigate not only the effects of organisms on physical processes and morphology but also how the biological processes depend on morphology and physical forcing. The two-way coupling precipitates feedbacks, leading to interesting modes of behavior, much like the coupling between flow/sediment transport and morphology leads to rich morphodynamic behaviors. Select examples illustrate how even the basic aspects of some systems cannot be understood without considering biomorphodynamic coupling. Prominent examples include the dynamic interactions between vegetation and flow/sediment transport that can determine river channel patterns and the multifaceted biomorphodynamic feedbacks shaping tidal marshes and channel networks. These examples suggest that the effects of morphology and physical processes on biology tend to operate over the timescale of the evolution of the morphological pattern. Thus, in field studies, which represent a snapshot in the pattern evolution, these effects are often not as obvious as the effects of biology on physical processes. However, numerical modeling indicates that the influences on biology from physical processes can play a key role in shaping landscapes and that even local and temporary vegetation disturbances can steer large-scale, long-term landscape evolution. The prevalence of biomorphodynamic research is burgeoning in recent years, driven by societal need and a confluence of complex systems-inspired modeling approaches in ecology and geomorphology. To make fundamental progress in understanding the dynamics of many landscapes, our community needs to increasingly learn to look for two-way, biomorphodynamic feedbacks and to collect new types of data to support the

  2. The role of energy in the emergence of biology from chemistry.

    Science.gov (United States)

    Dibrova, Daria V; Chudetsky, Michail Y; Galperin, Michael Y; Koonin, Eugene V; Mulkidjanian, Armen Y

    2012-10-01

    Any scenario of the transition from chemistry to biology should include an "energy module" because life can exist only when supported by energy flow(s). We addressed the problem of primordial energetics by combining physico-chemical considerations with phylogenomic analysis. We propose that the first replicators could use abiotically formed, exceptionally photostable activated cyclic nucleotides both as building blocks and as the main energy source. Nucleoside triphosphates could replace cyclic nucleotides as the principal energy-rich compounds at the stage of the first cells, presumably because the metal chelates of nucleoside triphosphates penetrated membranes much better than the respective metal complexes of nucleoside monophosphates. The ability to exploit natural energy flows for biogenic production of energy-rich molecules could evolve only gradually, after the emergence of sophisticated enzymes and ion-tight membranes. We argue that, in the course of evolution, sodium-dependent membrane energetics preceded the proton-based energetics which evolved independently in bacteria and archaea.

  3. DNA confinement in nanochannels: physics and biological applications

    DEFF Research Database (Denmark)

    Reisner, Walter; Pedersen, Jonas Nyvold; Austin, Robert H

    2012-01-01

    direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined...... in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense...... biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100μm range. (Some...

  4. Delayed Reaction: The Tardy Embrace of Physical Organic Chemistry by the German Chemical Community.

    Science.gov (United States)

    Weininger, Stephen J

    2018-02-01

    The emergence of physical organic chemistry, which focuses on the mechanisms and structures of organic reactions and molecules using the tools of physical chemistry, was a major development in twentieth-century chemistry. It first flourished in the interwar period, in the UK and then in the US. Germany, by contrast, did not embrace the field until almost a half century later. The great success of classical organic chemistry, especially in synthesis, encouraged indifference to the new field among German chemists, as did their inductivist research philosophy, as enunciated by Walter Hückel's ground-breaking textbook (1931). This author also resisted new concepts and representations, especially those of the American theoretician, Linus Pauling. The arrival of the Nazi regime reinforced such resistance. Postwar conditions initiated a reaction against this conservative, nationalistic attitude, especially in the American Occupation Zone. Exposure to American textbooks and visiting lecturers influenced attitudes of younger chemists. The accompanying shift towards a more explanatory, less hierarchical mode of pedagogy was consonant with larger social and political developments.

  5. Calamintha nepeta (L. Savi and its Main Essential Oil Constituent Pulegone: Biological Activities and Chemistry

    Directory of Open Access Journals (Sweden)

    Mijat Božović

    2017-02-01

    Full Text Available Medicinal plants play an important role in the treatment of a wide range of diseases, even if their chemical constituents are not always completely recognized. Observations on their use and efficacy significantly contribute to the disclosure of their therapeutic properties. Calamintha nepeta (L. Savi is an aromatic herb with a mint-oregano flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including antimicrobial, antioxidant and anti-inflammatory, as well as anti-ulcer and insecticidal properties. This study aims to review the scientific findings and research reported to date on Calamintha nepeta (L. Savi that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, pulegone, the major chemical constituent of Calamintha nepeta (L. Savi essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested

  6. Mentha suaveolens Ehrh. (Lamiaceae) Essential Oil and Its Main Constituent Piperitenone Oxide: Biological Activities and Chemistry.

    Science.gov (United States)

    Božović, Mijat; Pirolli, Adele; Ragno, Rino

    2015-05-13

    Since herbal medicines play an important role in the treatment of a wide range of diseases, there is a growing need for their quality control and standardization. Mentha suaveolens Ehrh. (MS) is an aromatic herb with fruit and a spearmint flavor, used in the Mediterranean areas as a traditional medicine. It has an extensive range of biological activities, including cytotoxic, antimicrobial, antioxidant, anti-inflammatory, hypotensive and insecticidal properties, among others. This study aims to review the scientific findings and research reported to date on MS that prove many of the remarkable various biological actions, effects and some uses of this species as a source of bioactive natural compounds. On the other hand, piperitenone oxide (PO), the major chemical constituent of the carvone pathway MS essential oil, has been reported to exhibit numerous bioactivities in cells and animals. Thus, this integrated overview also surveys and interprets the present knowledge of chemistry and analysis of this oxygenated monoterpene, as well as its beneficial bioactivities. Areas for future research are suggested.

  7. Didactic Principles in the Acquisition of Skills in the Practical Classes of Physical-Chemistry II

    Directory of Open Access Journals (Sweden)

    Plácida Miriam Salazar-Arrastre

    2016-04-01

    Full Text Available In this paper the experiences of teachers who teach the subject Physical Chemistry II, at the Faculty of Chemical Engineering at the University of East in the application of teaching principles in the development of practical classes of the course are exposed Physical Chemistry II, in order to properly develop in students the skills declared in the program itself.  It shows how considering the didactic principles discussed here during the development of the Practice Classes, ie emphasizing the correct structure that must have these, planning, and systematization including teaching principles, is possible developing their own skills and influence the course preparing students to face increasingly complex problem situations in later courses.Generalized Scheme of Activities (GSA of the subject, which help to develop logical thinking, look for the best solution algorithm and progressively strengthen the skills through these students are acquiring CP are presented.

  8. Guide to essential math a review for physics, chemistry and engineering students

    CERN Document Server

    Blinder, Sy M

    2008-01-01

    This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) which is needed to succeed in science courses. The focus is on math actually used in physics, chemistry and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student''s ability to think in mathematical terms and to apply quantitative methods to scientific problems. By the author''s design, no problems are included in the text, to allow the students to focus on their science course assignments.- Highly accessible presentation of fundamental mathematical techniques needed in science and engineering courses- Use of proven pedagogical techniques develolped during the author's 40 years of teaching experience- illustrations and links to reference material on World-Wide-Web- Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, speci...

  9. MADNESS applied to density functional theory in chemistry and nuclear physics

    International Nuclear Information System (INIS)

    Fann, G I; Harrison, R J; Beylkin, G; Jia, J; Hartman-Baker, R; Shelton, W A; Sugiki, S

    2007-01-01

    We describe some recent mathematical results in constructing computational methods that lead to the development of fast and accurate multiresolution numerical methods for solving quantum chemistry and nuclear physics problems based on Density Functional Theory (DFT). Using low separation rank representations of functions and operators in conjunction with representations in multiwavelet bases, we developed a multiscale solution method for integral and differential equations and integral transforms. The Poisson equation, the Schrodinger equation, and the projector on the divergence free functions provide important examples with a wide range of applications in computational chemistry, nuclear physics, computational electromagnetic and fluid dynamics. We have implemented this approach along with adaptive representations of operators and functions in the multiwavelet basis and low separation rank (LSR) approximation of operators and functions. These methods have been realized and implemented in a software package called Multiresolution Adaptive Numerical Evaluation for Scientific Simulation (MADNESS)

  10. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  11. Processes that Drove the Transition from Chemistry to Biology: Concepts and Evidence

    Science.gov (United States)

    Pohorille, Andrew

    2012-01-01

    Two properties are particularly germane to the transition from chemistry to biology. One is the emergence of complex molecules (polymers) capable of performing non-trivial functions, such as catalysis, energy transduction or transport across cell walls. The other is the ability of several functions to work in concert to provide reproductive advantage to systems hosting these functions. Biological systems exhibit these properties at remarkable levels of efficiency and accuracy in a way that appears effortless. However, dissection of these properties reveals great complexities that are involved. This opens a question: how a simple, ancestral system could have acquired the required properties? Other questions follow. What are the chances that a functional polymer emerges at random? What is the minimum structural complexity of a polymer to carry out a function at a reasonable level of efficiency? Can we identify concrete, protobiologically plausible mechanisms that yield advantageous coupling between different functions? These and similar questions are at the core of the main topic of this session: how soulless chemistry became life? Clearly, we do not have complete answers to any of these questions. However, in recent years a number of new and sometimes unexpected clues have been brought to light. Of particular interest are proteins because they are the main functional polymers in contemporary cells. The emergence of protein functions is a puzzle. It is widely accepted that a well ]defined, compact structure (fold) is a prerequisite for function. It is equally widely accepted that compact folds are rare among random amino acid polymers. Then, how did protein functionality start? According to one hypothesis well folded were preceded by their poorly folded, yet still functional ancestors. Only recently, however, experimental evidence supporting this hypothesis has been presented. In particular, a small enzyme capable of ligating two RNA fragments with the rate of 106

  12. Future directions for radiological physics: An interface with molecular biology

    International Nuclear Information System (INIS)

    Braby, L.A.

    1987-01-01

    Recent experiments with low energy x-rays and fast molecular ions have shown that the products of the interaction of several ionizations within a few nanometers dominate radiation effects. However, the authors still can only make assumptions about the physical and chemical nature of this initial damage. Enzymatic repair of DNA damage is another key factor, but they have little idea of what governs the success or failure (misrepair) of these processes. Unresolved problems like these dictate the future direction of radiological physics. Molecular biology techniques are being applied to determine molecular alterations which result in observed damage. Interpretation of these experiments will require new data on the physics of energy transfer to macromolecules and the stochastics of energy deposition in time. Future studies will attempt to identify the initial damage, before biological processes have amplified it. This will require a detailed understanding of the role of chromatin structure in governing gene expression, the transport of energy within macromolecules, the transport of ions and radicals in the semiordered environment near DNA strands, and many other physical characteristics within the living cell

  13. Development of Teaching Materials for a Physical Chemistry Experiment Using the QR Code

    OpenAIRE

    吉村, 忠与志

    2008-01-01

    The development of teaching materials with the QR code was attempted in an educational environment using a mobile telephone. The QR code is not sufficiently utilized in education, and the current study is one of the first in the field. The QR code is encrypted. However, the QR code can be deciphered by mobile telephones, thus enabling the expression of text in a small space.Contents of "Physical Chemistry Experiment" which are available on the Internet are briefly summarized and simplified. T...

  14. Use of ionising radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    2000-01-01

    The guide lays down the safety requirements for the use of radiation in school education, as well as the principles regulating the use of radiation sources without the safety licence referred to in section 16 of the Finnish Radiation Act (592/1991). The guide covers the use of radiation sources emitting ionising radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions

  15. Use of ionizing radiation in the teaching of physics and chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    The guide specifies the safety requirements for the use of radiation in school education as well as the principles regulating the use of radiation sources without the safety license referred to the Section 16 of the Finnish Radiation Act (592/91). The guide covers the use of radiation sources emitting ionizing radiation in elementary schools and high schools, as well as the use of radiation in the teaching of physics and chemistry in vocational training institutions and corresponding educational institutions. (3 refs.)

  16. Current Status and Future Perspectives in Flavor Research: Highlights of the 11th Wartburg Symposium on Flavor Chemistry & Biology.

    Science.gov (United States)

    Hofmann, Thomas; Krautwurst, Dietmar; Schieberle, Peter

    2018-03-14

    The 11th Wartburg Symposium on Flavor Chemistry & Biology, held at the hotel "Auf der Wartburg" in Eisenach, Germany, from June 21 to 24 in 2016, offered a venue for global exchange on cutting-edge research in chemistry and biology of odor and taste. The focus areas were (1) functional flavor genomics and biotechnology, (2) flavor generation and precursors, (3) new approaches and precursors, (4) new approaches and technologies, (5) new molecules and structure/activity relationships, (6) food-borne bioactives and chemosensory health prevention, and (7) chemosensory reception, processing, and perception. Selected from more than 250 applicants, 160 distinguished scientists and rising stars from academia and industry from 24 countries participated in this multidisciplinary event. This special issue comprises a selection of 33 papers from oral presentations and poster contributions and is prefaced by this symposium introduction to carve out essential achievements in odor and taste chemistry and to share future research perspectives.

  17. Biological Water or Rather Water in Biology?

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel

    2015-01-01

    Roč. 6, č. 13 (2015), s. 2449-2451 ISSN 1948-7185 Institutional support: RVO:61388963 Keywords : biological water * protein * interface Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.539, year: 2015

  18. The Mediating Role of Physical Self-Concept on Relations between Biological Maturity Status and Physical Activity in Adolescent Females

    Science.gov (United States)

    Cumming, Sean P.; Standage, Martyn; Loney, Tom; Gammon, Catherine; Neville, Helen; Sherar, Lauren B.; Malina, Robert M.

    2011-01-01

    The current study examined the mediating role of physical self-concept on relations between biological maturity status and self-reported physical activity in adolescent British females. Biological maturity status, physical self-concept and physical activity were assessed in 407 female British year 7-9 pupils (M age = 13.2 years, SD = 1.0).…

  19. Beyond prostaglandins - chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids

    Czech Academy of Sciences Publication Activity Database

    Jahn, Ullrich; Galano, J. M.; Durand, T.

    2008-01-01

    Roč. 47, č. 32 (2008), s. 5894-5955 ISSN 1433-7851 Institutional research plan: CEZ:AV0Z40550506 Keywords : biological activity * fatty acids * isoprostanes * oxidation * total synthesis Subject RIV: CC - Organic Chemistry Impact factor: 10.879, year: 2008

  20. Two Methods of Determining Total Phenolic Content of Foods and Juices in a General, Organic, and Biological (GOB) Chemistry Lab

    Science.gov (United States)

    Shaver, Lee Alan; Leung, Sam H.; Puderbaugh, Amy; Angel, Stephen A.

    2011-01-01

    The determination of total phenolics in foods and fruit juices was used successfully as a laboratory experiment in our undergraduate general, organic, and biological (GOB) chemistry course. Two different colorimetric methods were used over three years and comparative student results indicate that a ferrous ammonium sulfate (FAS) indicator…

  1. Water as Life, Death, and Power: Building an Integrated Interdisciplinary Course Combining Perspectives from Anthropology, Biology, and Chemistry

    Science.gov (United States)

    Willermet, Cathy; Mueller, Anja; Juris, Stephen J.; Drake, Eron; Upadhaya, Samik; Chhetri, Pratik

    2013-01-01

    In response to a request from a campus student organization, faculty from three fields came together to develop and teach an integrated interdisciplinary course on water issues and social activism. This course, "Water as Life, Death, and Power", brought together topics from the fields of anthropology, biology and chemistry to explore…

  2. What are Contaminants of Emerging Concern (CECs) ?Examples of Biological and Chemistry Approaches to their Detection, Exposure and Effects?

    Science.gov (United States)

    This presentation will overview what Contaminants of Emerging Concern (CECs) are, provide some examples of various CECs and some of the biological and chemistry approaches to assess their exposure and effects to aquatic life. The term CECs has been used since the 1990s to identif...

  3. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  4. The Effects Of Physical And Biological Cohesion On Bedforms

    Science.gov (United States)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield

  5. Food carbohydrate chemistry

    National Research Council Canada - National Science Library

    Wrolstad, R. E

    2012-01-01

    .... Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates...

  6. The Influence of Physical & Biological Cohesion on Dune Development

    Science.gov (United States)

    Schindler, Robert; Parsons, Daniel; Ye, Leiping; Baas, Jaco; Hope, Julie; Manning, Andy; Malarkey, Jonathan; Aspden, Rebecca; Lichtman, Dougal; Thorne, Peter; Peakall, Jeff; Patterson, David; Davies, Alan; Bass, Sarah; O'Boyle, Louise

    2014-05-01

    Existing predictions for dune bedforms are based on simplified physical parameters, with assumptions that sediment consists only of cohesionless sand. They do not include the complexities of mud: physical cohesion is imparted by cohesive clays and biological cohesion is created by the presence of organisms which, among other things, generate extra-cellular polymers (EPS). Using controlled experiments we show the profound influence on the size, development and equilibrium morphology of dune bedforms of both physical and biological cohesion. Experiments were completed at the Total Environment Simulator facility at Hull University, UK in a 10 x 2 m channel. A flat sediment bed was laid to 0.15 m depth. A unidirectional flow of 0.25 m depth was passed over the sediment for 10 h. In Phase 1 eight different sand:clay mixes were examined, where clay content was 18.0 - 2.1%. In Phase 2, the same mixtures were used with additions of EPS. A velocity of 0.8 m s-1 was used throughout, corresponding to the dune regime for the selected sand. Bedform development was monitored via ultrasonic ranging transducers, sediment cores and water samples. Phase 1 showed substantial differences in bedform type with clay content, with size inversely related to clay content, e.g. Run 1 (18.0% clay) generated 2D ripples; Run 7 (2.1% clay) generated 3D dunes. Transitional forms, included dunes with superimposed ripples, were present between these extremes. In Phase 2, EPS contents equivalent to only 1/30th of 1% by mass prevented the development of bedforms. Bedforms were generated in sediments with 1/20th and 1/10th of 1%, with an inverse relationship between bedform size and EPS content. Comparison of Phase 1 and Phase 2 runs with equal sand:mud ratios reveals that EPS acts to severely inhibit bedform development compared with the mud-only case. We can conclude that (1) the ripple-dune transition can occur under constant flow conditions, i.e. clay content may dictate bedform type, that (2) EPS

  7. Framing a program designed to train new chemistry/physics teachers for California outlying regions

    Science.gov (United States)

    Bodily, Gerald P., Jr.

    The purpose of this study was to develop guidelines for a new high school chemistry and physics teacher training program. Eleven participants were interviewed who attended daylong workshops, every other Saturday, for 10 months. The instructors used Modeling Instruction pedagogy and curriculum. All the instructors had high school teaching experience, but only one possessed a doctorate degree. The interview questions focused on four themes: motivation, epistemology, meta-cognition, and self-regulation; and the resulting transcripts were analyzed using a methodology called Interpretive Phenomenological Analysis. The cases expressed a strong preference for the program's instruction program over learning subject matter knowledge in university classrooms. The data indicated that the cases, as a group, were disciplined scholars seeking a deep understanding of the subject matter knowledge needed to teach high school chemistry and physics. Based on these results a new approach to training teachers was proposed, an approach that offers novel answers to the questions of how and who to train as science teachers. The how part of the training involves using a program called Modeling Instruction. Modeling instruction is currently used to upgrade experienced science teachers and, in the new approach, replaces the training traditionally administered by professional scientists in university science departments. The who aspect proposes that the participants be college graduates, selected not for university science training, but for their high school math and science background. It is further proposed that only 10 months of daily, face-to-face instruction is required to move the learner to a deep understanding of subject matter knowledge required to teach high school chemistry and physics. Two outcomes are sought by employing this new training paradigm, outcomes that have been unachievable by current educational practices. First, it is hoped that new chemistry and physics teachers can

  8. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  9. A spatially extensive, 25-year time series of urbanization impacts on stream chemistry and biological response

    Science.gov (United States)

    Baker, M. E.; Schley, M. L.; Martin, H. M.; Sexton, J. O.

    2013-12-01

    Over the past quarter-century, urban expansion has posed an increasingly serious threat to freshwater systems, yet most studies investigating urban impacts rely on space-for-time analysis to characterize chemical and biological responses or infer causal mechanisms. Despite a well-articulated rationale, such inference is often confounded by inability to separate gradients of urbanization from strong spatial covariates and historical legacies. Temporal analysis of monitoring can control for these covariates, but continuous urbanization data have been lacking. Thus, we know relatively little about the chemical and biological trajectories of streams during urbanization, from which to derive expectations following mitigation. We used a newly developed 25-y annual time series of 30m impervious cover (IC) encompassing the DC-Baltimore metropolitan corridor to relate urbanization patterns to long-term stream biota and water quality monitoring data in 50 watersheds from Maryland's core/trend program. We assessed seasonal chemical data (3 month average) for trends in magnitude and variation, as well as the frequency of extreme values. Stream macroinvertebrates were analyzed for taxon-specific changes in abundance and/or occurrence frequency using Threshold Indicator Taxon Analysis (TITAN), and change points were compared with shifts in both impervious surface and stream chemistry. At surprisingly low (0-3% IC) levels of watershed urbanization, we noted marked increases in measures of fall and winter dissolved material and pulses of alkalinity corresponding with increases in impervious cover. At moderate (3-8% IC) levels, we found continued correspondence between increasing impervious cover and both dissolved material and alkalinity in all seasons, and marked changes in macroinvertebrate community composition. Changes in macroinvertebrates appeared more closely associated with pulses of development than changes in monthly water chemistry. However, at higher levels of

  10. Biological-based and physical-based optimization for biological evaluation of prostate patient's plans

    Science.gov (United States)

    Sukhikh, E.; Sheino, I.; Vertinsky, A.

    2017-09-01

    Modern modalities of radiation treatment therapy allow irradiation of the tumor to high dose values and irradiation of organs at risk (OARs) to low dose values at the same time. In this paper we study optimal radiation treatment plans made in Monaco system. The first aim of this study was to evaluate dosimetric features of Monaco treatment planning system using biological versus dose-based cost functions for the OARs and irradiation targets (namely tumors) when the full potential of built-in biological cost functions is utilized. The second aim was to develop criteria for the evaluation of radiation dosimetry plans for patients based on the macroscopic radiobiological criteria - TCP/NTCP. In the framework of the study four dosimetric plans were created utilizing the full extent of biological and physical cost functions using dose calculation-based treatment planning for IMRT Step-and-Shoot delivery of stereotactic body radiation therapy (SBRT) in prostate case (5 fractions per 7 Gy).

  11. An integrated physical and biological model for anaerobic lagoons.

    Science.gov (United States)

    Wu, Binxin; Chen, Zhenbin

    2011-04-01

    A computational fluid dynamics (CFD) model that integrates physical and biological processes for anaerobic lagoons is presented. In the model development, turbulence is represented using a transition k-ω model, heat conduction and solar radiation are included in the thermal model, biological oxygen demand (BOD) reduction is characterized by first-order kinetics, and methane yield rate is expressed as a linear function of temperature. A test of the model applicability is conducted in a covered lagoon digester operated under tropical climate conditions. The commercial CFD software, ANSYS-Fluent, is employed to solve the integrated model. The simulation procedures include solving fluid flow and heat transfer, predicting local resident time based on the converged flow fields, and calculating the BOD reduction and methane production. The simulated results show that monthly methane production varies insignificantly, but the time to achieve a 99% BOD reduction in January is much longer than that in July. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  13. XVIII Mendeleev congress on general and applied chemistry. Summaries of reports in five volumes. Volume 5. IV Russian-French symposium Supramolecular systems in chemistry and biology. II Russian-Indian symposium on organic chemistry. International symposium on present-day radiochemistry Radiochemistry: progress and prospects. International symposium Green chemistry, stable evolution and social responsibility of chemists. Symposium Nucleophilic hydrogen substitution in aromatic systems and related reactions

    International Nuclear Information System (INIS)

    2007-01-01

    The 5 volume of the XVIII Mendeleev congress on general and applied chemistry includes summaries of reports on the subjects of sypramolecular systems in chemistry and biology, organic chemistry, modern radiochemistry, green chemistry - development and social responsibility of chemists, nucleophilic hydrogen substitution in aromatic systems and related chemical reactions [ru

  14. Influence of different natural physical fields on biological processes

    Science.gov (United States)

    Mashinsky, A. L.

    2001-01-01

    In space flight conditions gravity, magnetic, and electrical fields as well as ionizing radiation change both in size, and in direction. This causes disruptions in the conduct of some physical processes, chemical reactions, and metabolism in living organisms. In these conditions organisms of different phylogenetic level change their metabolic reactions undergo changes such as disturbances in ionic exchange both in lower and in higher plants, changes in cell morphology for example, gyrosity in Proteus ( Proteus vulgaris), spatial disorientation in coleoptiles of Wheat ( Triticum aestivum) and Pea ( Pisum sativum) seedlings, mutational changes in Crepis ( Crepis capillaris) and Arabidopsis ( Arabidopsis thaliana) seedling. It has been found that even in the absence of gravity, gravireceptors determining spatial orientation in higher plants under terrestrial conditions are formed in the course of ontogenesis. Under weightlessness this system does not function and spatial orientation is determined by the light flux gradient or by the action of some other factors. Peculiarities of the formation of the gravireceptor apparatus in higher plants, amphibians, fish, and birds under space flight conditions have been observed. It has been found that the system in which responses were accompanied by phase transition have proven to be gravity-sensitive under microgravity conditions. Such reactions include also the process of photosynthesis which is the main energy production process in plants. In view of the established effects of microgravity and different natural physical fields on biological processes, it has been shown that these processes change due to the absence of initially rigid determination. The established biological effect of physical fields influence on biological processes in organisms is the starting point for elucidating the role of gravity and evolutionary development of various organisms on Earth.

  15. Research at the interface of physics and biology: bridging the two fields.

    Science.gov (United States)

    Shukla, Kamal

    2014-10-08

    I firmly believe that interaction between physics and biology is not only natural, but inevitable. Kamal Shukla provides a personal perspective on working at the interface between the physical and biological sciences.

  16. Foundations of anticipatory logic in biology and physics.

    Science.gov (United States)

    Bettinger, Jesse S; Eastman, Timothy E

    2017-12-01

    Recent advances in modern physics and biology reveal several scenarios in which top-down effects (Ellis, 2016) and anticipatory systems (Rosen, 1980) indicate processes at work enabling active modeling and inference such that anticipated effects project onto potential causes. We extrapolate a broad landscape of anticipatory systems in the natural sciences extending to computational neuroscience of perception in the capacity of Bayesian inferential models of predictive processing. This line of reasoning also comes with philosophical foundations, which we develop in terms of counterfactual reasoning and possibility space, Whitehead's process thought, and correlations with Eastern wisdom traditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Biological and Physical Principles in Self-Organization of Brain

    Science.gov (United States)

    Kröger, H.

    2007-04-01

    Complexity is a widespread phenomenon in nature. The brain is a foremost example of complexity. We address the question: How does such complexity emerge in brain? Which are the biological, chemical or physical principles at work which organize the formation of complixity? In particular we address the topics (i) adaptive learning, (ii) neuron cell death and pruning of synaptic connection afterbirth, (iii) small world and scale free architecture of neural connectivity, (iv) feature maps and the Kohonen model, (v) self-organized criticality and 1/f frequency scaling.

  18. Resource Letter PFBi-1: Physical frontiers in biology

    Science.gov (United States)

    Mielczarek, Eugenie Vorburger

    2006-05-01

    This Resource Letter provides a guide to the literature on physical frontiers in biology. Books and review articles are cited as well as journal articles for the following topics: cells and cellular mats; conformational dynamics/folding; electrostatics; enzymes, proteins, and molecular machines; material-biomineralization; miscellaneous topics; nanoparticles and nanobiotechnology; neuroscience; photosynthesis; quantum mechanics theory; scale and energy; spectroscopy and microscopy: experiments and instrumentation; single-molecule dynamics; and water and hydrogen-bonded solvents. A list of web resources and videotapes is also given.

  19. Different pathways but same result? Comparing chemistry and biological effects of burned and decomposed litter

    Science.gov (United States)

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; El-Gawad, Ahmed M. Abd; Sarker, Tushar Chandra; Cesarano, Gaspare; Saulino, Luigi; Saracino, Antonio; Castro Rego, Francisco

    2017-04-01

    Litter burning and biological decomposition are oxidative processes co-occurring in many terrestrial ecosystems, producing organic matter with different chemical properties and differently affecting plant growth and soil microbial activity. Here, we tested the chemical convergence hypothesis (i.e. materials with different initial chemistry tend to converge towards a common profile, with similar biological effects, as the oxidative process advances) for burning and decomposition. We compared the molecular composition of 63 organic materials - 7 litter types either fresh, decomposed for 30, 90, 180 days, or heated at 100, 200, 300, 400, 500 °C - as assessed by 13C NMR. We used litter water extracts (5% dw) as treatments in bioassays on plant (Lepidium sativum) and fungal (Aspergillus niger) growth, and a washed quartz sand amended with litter materials (0.5 % dw) to assess heterotrophic respiration by CO2 flux chamber. We observed different molecular variations for materials either burning (i.e. a sharp increase of aromatic C and a decrease of most other fractions above 200 °C) or decomposing (i.e. early increase of alkyl, methoxyl and N-alkyl C and decrease of O-alkyl and di-O-alkyl C fractions). Soil respiration and fungal growth progressively decreased with litter age and temperature. Plant growth underwent an inhibitory effect by untreated litter, more and less rapidly released over decomposing and burning materials, respectively. Correlation analysis between NMR and bioassay data showed that opposite responses for soil respiration and fungi, compared to plants, are related to essentially the same C molecular types. Our findings suggest a functional convergence of decomposed and burnt organic substrates, emerging from the balance between the bioavailability of labile C sources and the presence of recalcitrant and pyrogenic compounds, oppositely affecting different trophic levels.

  20. Health: The No-Man's-Land Between Physics and Biology.

    Science.gov (United States)

    Mansfield, Peter J

    2015-10-01

    Health as a positive attribute is poorly understood because understanding requires concepts from physics, of which physicians and other life scientists have a very poor grasp. This paper reviews the physics that bears on biology, in particular complex quaternions and scalar fields, relates these to the morphogenetic fields proposed by biologists, and defines health as an attribute of living action within these fields. The distinction of quality, as juxtaposed with quantity, proves essential. Its basic properties are set out, but a science and mathematics of quality are awaited. The implications of this model are discussed, particularly as proper health enhancement could set a natural limit to demand for, and therefore the cost of, medical services.

  1. Report of the work of the Biological and Medical Research, Radiological Physics, and Health Services Divisions for the quarterly period ending September 30, 1953.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1953-10-01

    The monthly progress report from the Argonne National Laboratory includes material from one-third of the Laboratory. The three divisions into which the work has been divided are: (l) Reactor Engineering, Physics, Instrument Research and Development, and Electronics, (2) Biological and Medical Research, Radiological Physics, and Health Services, and (3) Chemistry and Chemical Engineering, Metallurgy, and Remote Control Engineering. The present monthly progress report covers the work in Biological and Medical Research, Radiological Physics, and Health Services for the quarterly period ending September 30, 1953.

  2. Physical and biological factors determining the effective proton range

    International Nuclear Information System (INIS)

    Grün, Rebecca; Friedrich, Thomas; Krämer, Michael; Scholz, Michael; Zink, Klemens; Durante, Marco; Engenhart-Cabillic, Rita

    2013-01-01

    Purpose: Proton radiotherapy is rapidly becoming a standard treatment option for cancer. However, even though experimental data show an increase of the relative biological effectiveness (RBE) with depth, particularly at the distal end of the treatment field, a generic RBE of 1.1 is currently used in proton radiotherapy. This discrepancy might affect the effective penetration depth of the proton beam and thus the dose to the surrounding tissue and organs at risk. The purpose of this study was thus to analyze the impact of a tissue and dose dependent RBE of protons on the effective range of the proton beam in comparison to the range based on a generic RBE of 1.1.Methods: Factors influencing the biologically effective proton range were systematically analyzed by means of treatment planning studies using the Local Effect Model (LEM IV) and the treatment planning software TRiP98. Special emphasis was put on the comparison of passive and active range modulation techniques.Results: Beam energy, tissue type, and dose level significantly affected the biological extension of the treatment field at the distal edge. Up to 4 mm increased penetration depth as compared to the depth based on a constant RBE of 1.1. The extension of the biologically effective range strongly depends on the initial proton energy used for the most distal layer of the field and correlates with the width of the distal penumbra. Thus, the range extension, in general, was more pronounced for passive as compared to active range modulation systems, whereas the maximum RBE was higher for active systems.Conclusions: The analysis showed that the physical characteristics of the proton beam in terms of the width of the distal penumbra have a great impact on the RBE gradient and thus also the biologically effective penetration depth of the beam

  3. REDOX CHEMISTRY OF MOLYBDENUM IN NATURAL WATERS AND ITS INVOLVEMENT IN BIOLOGICAL EVOLUTION

    Directory of Open Access Journals (Sweden)

    Deli eWang

    2012-12-01

    Full Text Available The transition element molybdenum (Mo possesses diverse valances (+II to +VI, and is involved in forming cofactors in more than 60 enzymes in biology. Redox switching of the element in these enzymes catalyzes a series of metabolic reactions in both prokaryotes and eukaryotes, and the element therefore plays a fundamental role in the global carbon, nitrogen, and sulfur cycling. In the present oxygenated waters, oxidized Mo(VI predominates thermodynamically, whilst reduced Mo species are mainly confined within specific niches including cytoplasm. Only recently has the reduced Mo(V been separated from Mo(VI in sulfidic mats and even in some reducing waters. Given the presence of reduced Mo(V in contemporary anaerobic habitats, it seems that reduced Mo species were present in the ancient reducing ocean (probably under both ferrigenous and sulfidic conditions, prompting the involvement of Mo in enzymes including nitrogenase and nitrate reductase. During the global transition to oxic conditions, reduced Mo species were constrained to specific anaerobic habitats, and efficient uptake systems of oxidized Mo(VI became a selective advantage both for prokaryotic and eukaryotic cells. Some prokaryotes are still able to directly utilize reduced Mo if any exists in ambient environments. In total, this mini-review describes the redox chemistry and biogeochemistry of Mo over the Earth’s history.

  4. Supporting students in building interdisciplinary connections across physics and biology

    Science.gov (United States)

    Turpen, Chandra

    2014-03-01

    Our research team has been engaged in the iterative redesign of an Introductory Physics course for Life Science (IPLS) majors to explicitly bridge biology and physics in ways that are authentic to the disciplines. Our interdisciplinary course provides students opportunities to examine how modeling decisions (e.g. knowing when and how to use different concepts, identifying implicit assumptions, making and justifying assumptions) may differ depending on canonical disciplinary aims and interests. Our focus on developing students' interdisciplinary reasoning skills requires 1) shifting course topics to focus on core ideas that span the disciplines, 2) shifting epistemological expectations, and 3) foregrounding typically tacit disciplinary assumptions. In working to build an authentic interdisciplinary course that bridges physics and biology, we pay careful attention to supporting students in constructing these bridges. This course has been shown to have important impacts: a) students seek meaningful connections between the disciplines, b) students perceive relevance and utility of ideas from different disciplines, and c) students reconcile challenging disciplinary ideas. Although our focus has been on building interdisciplinary coherence, we have succeeded in maintaining strong student learning gains on fundamental physics concepts and allowed students to deepen their understanding of challenging concepts in thermodynamics. This presentation will describe the shifts in course content and the modern pedagogical approaches that have been integrated into the course, and provide an overview of key research results from this project. These results may aid physicists in reconsidering how they can meaningfully reach life-science students. This work is supported by NSF-TUES DUE 11-22818, the HHMI NEXUS grant, and a NSF Graduate Research Fellowship (DGE 0750616).

  5. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  6. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Primary Kinetic Isotope Effect in the Hypochlorite Oxidation of 1-Phenylethanol in the Physical Chemistry Laboratory

    Science.gov (United States)

    Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.

    2017-01-01

    A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…

  7. Physics and Chemistry of the Interstellar Medium. General Colloquium, 19-21 November 2012, Paris

    International Nuclear Information System (INIS)

    Aguillon, Francois; Alata, Ivan; Alcaraz, Christian; Alves, Marta; Andre, Philippe; Bachiller, Rafael; Bacmann, Aurore; Baklouti, Donia; Bernard, Jean-Philippe; Berne, Olivier; Beroff, Karine; Bertin, Mathieu; Biennier, Ludovic; Bocchio, Marco; Bonal, Lydie; Bontemps, Sylvain; Bouchez Giret, Aurelia; Boulanger, Francois; Bracco, Andrea; Bron, Emeric; Brunetto, Rosario; Cabrit, Sylvie; Canosa, Andre; Capron, Michael; Ceccarelli, Cecilia; Cernicharo, Jose; Chaabouni, Henda; Chabot, Marin; Chen, Hui-Chen; Chiavassa, Thierry; Cobut, Vincent; Commercon, Benoit; Congiu, Emanuele; Coutens, Audrey; Danger, Gregoire; Daniel, Fabien; Dartois, Emmanuel; Demyk, Karine; Denis, Alpizar; Despois, Didier; D'hendecourt, Louis; Dontot, Leo; Doronin, Mikhail; Dubernet, Marie-Lise; Dulieu, Francois; Dumouchel, Fabien; Duvernay, Fabrice; Ellinger, Yves; Falgarone, Edith; Falvo, Cyril; Faure, Alexandre; Fayolle, Edith; Feautrier, Nicole; Feraud, Geraldine; Fillion, Jean-Hugues; Gamboa, Antonio; Gardez, Aline; Gavilan, Lisseth; Gerin, Maryvonne; Ghesquiere, Pierre; Godard, Benjamin; Godard, Marie; Gounelle, Matthieu; Gratier, Pierre; Grenier, Isabelle; Gruet, Sebastien; Gry, Cecile; Guillemin, Jean-Claude; Guilloteau, Stephane; Gusdorf, Antoine; Guzman, Viviana; Habart, Emilie; Hennebelle, Patrick; Herrera, Cinthya; Hily-Blant, Pierre; Hincelin, Ugo; Hochlaf, Majdi; Huet, Therese; Iftner, Christophe; Jallat, Aurelie; Joblin, Christine; Kahane, Claudine; Kalugina, Yulia; Kleiner, Isabelle; Koehler, Melanie; Kokkin, Damian; Koutroumpa, Dimitra; Krim, Lahouari; Lallement, Rosine; Lanza, Mathieu; Lattelais, Marie; Le Bertre, Thibaut; Le Gal, Romane; Le Petit, Franck; Le Picard, Sebastien; Lefloch, Bertrand; Lemaire, Jean Louis; Lesaffre, Pierre; Lique, Francois; Loison, Jean-Christophe; Lopez Sepulcre, Ana; Maillard, Jean-Pierre; Margules, Laurent; Martin, Celine; Mascetti, Joelle; Michaut, Xavier; Minissale, Marco; Miville-Deschenes, Marc-Antoine; Mokrane, Hakima; Momferratos, Georgios; Montillaud, Julien; Montmerle, Thierry; Moret-Bailly, Jacques; Motiyenko, Roman; Moudens, Audrey; Noble, Jennifer; Padovani, Marco; Pagani, Laurent; Pardanaud, Cedric; Parisel, Olivier; Pauzat, Francoise; Pernet, Amelie; Pety, Jerome; Philippe, Laurent; Piergiorgio, Casavecchia; Pilme, Julien; Pinto, Cecilia; Pirali, Olivier; Pirim, Claire; Puspitarini, Lucky; Rist, Claire; Ristorcelli, Isabelle; Romanzin, Claire; Roueff, Evelyne; Rousseau, Patrick; Sabbah, Hassan; Saury, Eleonore; Schneider, Ioan; Schwell, Martin; Sims, Ian; Spielfiedel, Annie; Stoecklin, Thierry; Talbi, Dahbia; Taquet, Vianney; Teillet-Billy, Dominique; Theule, Patrice; Thi, Wing-Fai; Trolez, Yann; Valdivia, Valeska; Van Dishoeck, Ewine; Verstraete, Laurent; Vinogradoff, Vassilissa; Wiesenfeld, Laurent; Ysard, Nathalie; Yvart, Walter; Zicler Eleonore

    2012-11-01

    This document publishes the oral contributions and the 66 posters presented during a colloquium on physics and chemistry of interstellar medium. The following themes have been addressed: New views on the interstellar medium with Herschel, Planck and Alma, Cycle of interstellar dusts, Physics and Dynamics of the interstellar medium, Molecular complexifying and the link towards pre-biotic chemistry. More precisely, the oral contributions addressed the following topics: Interstellar medium with Herschel and Planck; The anomalous microwave emission: a new window on the physics of small grains; Sub-millimetre spectroscopy of complex molecules and of radicals for ALMA and Herschel missions; Analysing observations of molecules in the ISM: theoretical and experimental studies of energy transfer; Unravelling the labyrinth of star formation with Herschel; Star formation regions with Herschel and Alma: astro-chemistry in the Netherlands; Physical structure of gas and dust in photo-dissociation regions observed with Herschel; Photo-desorption of analogues of interstellar ices; Formation of structures in the interstellar medium: theoretical and numerical aspects; Towards a 3D mapping of the galactic ISM by inversion of absorption individual measurements; Low velocity shocks as signatures of turbulent dissipation in diffuse irradiated gas; Early phases of solar system formation: 3D physical and chemical modelling of the collapse of pre-stellar dense core; Cosmic-ray propagation in molecular clouds; Protostellar shocks in the time of Herschel; A new PDR model of the physics and chemistry of the interstellar gas; Molecular spectroscopy in the ALMA era and laboratory Astrophysics in Spain; Which molecules to be searched for in the interstellar medium; Physics and chemistry of UV illuminated neutral gas: the Horsehead case; Nitrogen fractionation in dark clouds; Molecular spectral surveys from millimetre range to far infrared; Mechanisms and synthesis at the surface of cold grains

  8. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    Science.gov (United States)

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.

  9. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  10. The Redox Chemistry and Chemical Biology of H2S, Hydropersulfides and Derived Species: Implications to Their Possible Biological Activity and Utility

    Science.gov (United States)

    Ono, Katsuhiko; Akaike, Takaake; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A.; Tantillo, Dean J.; Hobbs, Adrian J.; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M.

    2014-01-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. In spite of its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. A particular focus of this review are the per- and poly-sulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. PMID:25229186

  11. Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility.

    Science.gov (United States)

    Ono, Katsuhiko; Akaike, Takaaki; Sawa, Tomohiro; Kumagai, Yoshito; Wink, David A; Tantillo, Dean J; Hobbs, Adrian J; Nagy, Peter; Xian, Ming; Lin, Joseph; Fukuto, Jon M

    2014-12-01

    Hydrogen sulfide (H2S) is an endogenously generated and putative signaling/effector molecule. Despite its numerous reported functions, the chemistry by which it elicits its functions is not understood. Moreover, recent studies allude to the existence of other sulfur species besides H2S that may play critical physiological roles. Herein, the basic chemical biology of H2S as well as other related or derived species is discussed and reviewed. This review particularly focuses on the per- and polysulfides which are likely in equilibrium with free H2S and which may be important biological effectors themselves. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014)

    Science.gov (United States)

    2014-04-01

    2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar

  13. Physical plasma in biological solids: a possible mechanism for resonant interactions between low intensity microwaves and biological systems.

    Science.gov (United States)

    Zon, J R

    1979-01-01

    Observed semiconductor properties of biological material in vitro indicate possible involvement of semiconduction in biological processes. Since in inorganic semiconductors solid-state plasma occurs, it is hypothesized that in organic semiconductors solid-state plasma similarly occurs. Some results of experimental investigation of resonant effects of microwaves in biological systems are considered in the light of that hypothesis. The conditions necessary for the existence of physical plasma in biological solid structures are discussed, and certain parameters of physical plasma in these structures are evaluated. Its is proposed that microwave radiation may support or damp plasma oscillations, thereby stimulating or suppressing biological functions.

  14. The influence of the biological pump on ocean chemistry: implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems.

    Science.gov (United States)

    Meyer, K M; Ridgwell, A; Payne, J L

    2016-05-01

    The net export of organic matter from the surface ocean and its respiration at depth create vertical gradients in nutrient and oxygen availability that play a primary role in structuring marine ecosystems. Changes in the properties of this 'biological pump' have been hypothesized to account for important shifts in marine ecosystem structure, including the Cambrian explosion. However, the influence of variation in the behavior of the biological pump on ocean biogeochemistry remains poorly quantified, preventing any detailed exploration of how changes in the biological pump over geological time may have shaped long-term shifts in ocean chemistry, biogeochemical cycling, and ecosystem structure. Here, we use a 3-dimensional Earth system model of intermediate complexity to quantitatively explore the effects of the biological pump on marine chemistry. We find that when respiration of sinking organic matter is efficient, due to slower sinking or higher respiration rates, anoxia tends to be more prevalent and to occur in shallower waters. Consequently, the Phanerozoic trend toward less bottom-water anoxia in continental shelf settings can potentially be explained by a change in the spatial dynamics of nutrient cycling rather than by any change in the ocean phosphate inventory. The model results further suggest that the Phanerozoic decline in the prevalence ocean anoxia is, in part, a consequence of the evolution of larger phytoplankton, many of which produce mineralized tests. We hypothesize that the Phanerozoic trend toward greater animal abundance and metabolic demand was driven more by increased oxygen concentrations in shelf environments than by greater food (nutrient) availability. In fact, a lower-than-modern ocean phosphate inventory in our closed system model is unable to account for the Paleozoic prevalence of bottom-water anoxia. Overall, these model simulations suggest that the changing spatial distribution of photosynthesis and respiration in the oceans has

  15. Symposium on the Physical Chemistry of Solar Energy Conversion, Indianapolis American Chemical Society Meetings, Fall 2013

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Tianquan [PI, Emory Univ.

    2013-09-20

    The Symposium on the Physical Chemistry of Solar Energy Conversion at the Fall ACS Meeting in Indianapolis, IN (Sept. 8-12) featured the following sessions (approx. 6 speakers per session): (1) Quantum Dots and Nanorods for Solar Energy Conversion (2 half-day sessions); (2) Artificial Photosynthesis: Water Oxidation; (3) Artificial Photosynthesis: Solar Fuels (2 half-day sessions); (4) Organic Solar Cells; (5) Novel Concepts for Solar Energy Conversion (2 half-day sessions); (6) Emerging Techniques for Solar Energy Conversion; (7) Interfacial Electron Transfer

  16. Symmetry-adapted basis sets automatic generation for problems in chemistry and physics

    CERN Document Server

    Avery, John Scales; Avery, James Emil

    2012-01-01

    In theoretical physics, theoretical chemistry and engineering, one often wishes to solve partial differential equations subject to a set of boundary conditions. This gives rise to eigenvalue problems of which some solutions may be very difficult to find. For example, the problem of finding eigenfunctions and eigenvalues for the Hamiltonian of a many-particle system is usually so difficult that it requires approximate methods, the most common of which is expansion of the eigenfunctions in terms of basis functions that obey the boundary conditions of the problem. The computational effort needed

  17. Bunsen conference 1999. Atmospheric physical chemistry; Bunsentagung 1999. Physikalische Chemie der Atmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, P.J.; Zellner, R. [comps.

    2000-07-01

    The main subject of the 1999 Bunsen conference was atmospheric physical chemistry. There were lectures and posters on measurement and distribution of atmospheric trace gases, photochemical reactions in the different parts of the atmosphere, natural and anthropogenic emissions resulting from biomass combustion, thermodynamics and microphysics of aerosol, and air pollution abatement. [German] Die Bunsentagung 1999 beschaeftigte sich mit dem Thema Physikalische Chemie der Atmosphaere. Themen der Vortraege und Poster waren u.a. die Messung und Verteilung von Spurengasen in der Atmosphaere, photochemische Reaktionen in den verschiedenen Schichten der Atmosphaere, natuerliche und anthropogene Emissionen durch Verbrennung von Biomasse, Thermodynamik und Microphysik von Aerosolen und Klimaschutz.

  18. Marriages of mathematics and physics: A challenge for biology.

    Science.gov (United States)

    Islami, Arezoo; Longo, Giuseppe

    2017-12-01

    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of "geometric judgments" from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) "space" should be revisited for the purposes of life sciences. Copyright © 2017. Published by Elsevier Ltd.

  19. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    1971-01-01

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  20. Scanning near-field optical microscopy on rough surfaces: applications in chemistry, biology, and medicine

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available Shear-force apertureless scanning near-field optical microscopy (SNOM with very sharp uncoated tapered waveguides relies on the unexpected enhancement of reflection in the shear-force gap. It is the technique for obtaining chemical (materials contrast in the optical image of “real world” surfaces that are rough and very rough without topographical artifacts, and it is by far less complicated than other SNOM techniques that can only be used for very flat surfaces. The experimental use of the new photophysical effect is described. The applications of the new technique are manifold. Important mechanistic questions in solid-state chemistry (oxidation, diazotization, photodimerization, surface hydration, hydrolysis are answered with respect to simultaneous AFM (atomic force microscopy and detailed crystal packing. Prehistoric petrified bacteria and concomitant pyrite inclusions are also investigated with local RAMAN SNOM. Polymer beads and unstained biological objects (rabbit heart, shrimp eye allow for nanoscopic analysis of cell organelles. Similarly, human teeth and a cancerous tissue are analyzed. Bladder cancer tissue is clearly differentiated from healthy tissue without staining and this opens a new highly promising diagnostic tool for precancer diagnosis. Industrial applications are demonstrated at the corrosion behavior of dental alloys (withdrawal of a widely used alloy, harmless substitutes, improvement of paper glazing, behavior of blood bags upon storage, quality assessment of metal particle preparations for surface enhanced RAMAN spectroscopy, and determination of diffusion coefficient and light fastness in textile fiber dyeing. The latter applications include fluorescence SNOM. Local fluorescence SNOM is also used in the study of partly aggregating dye nanoparticles within resin/varnish preparations. Unexpected new insights are obtained in all of the various fields that cannot be obtained by other techniques.

  1. Liaison activities with the Institute of Physical Chemistry/Russian Academy of Science Fiscal Year 1995

    International Nuclear Information System (INIS)

    Delegard, C.H.

    1995-09-01

    Investigations into the chemistry of alkaline Hanford Site tank waste (TTP RL4-3-20-04) were conducted in Fiscal Year 1995 at Westinghouse Hanford Company under the support of the Efficient Separations and Processing Crosscutting Program (EM-53). The investigation had two main subtasks: liaison with the Institute of Physical Chemistry of the Russian Academy of Science and further laboratory testing of the chemistry of thermal reconstitution of Hanford Site tank waste. Progress, which was achieved in the liaison subtask during Fiscal Year 1995, is summarized as follows: (1) A technical dialogue has been established with Institute scientists. (2) Editing was done on a technical literature review on the chemistry of transuranic elements and technetium in alkaline media written by researchers at the Institute. The report was issued in May 1995 as a Westinghouse Hanford Company document. (3) Four tasks from the Institute were selected for support by the U.S. Department of Energy. Work on three tasks commenced on 1 March 1995; the fourth task commenced on 1 April 1995. (4) Technical information describing the composition of Hanford Site tank waste was supplied to the Institute. (5) A program review of the four tasks was conducted at the Institute during a visit 25 August to 1 September, 1995. A lecture on the origin, composition, and proposed treatment of Hanford Site tank wastes was presented during this visit. Eight additional tasks were proposed by Institute scientists for support in Fiscal Year 1996. (6) A paper was presented at the Fifth International Conference on Radioactive Waste Management and Environmental Remediation (ICEM'95) in Berlin, Germany on 3 to 9 September, 1995 on the solubility of actinides in alkaline media

  2. Physical habitat and water chemistry changes induced by logging and gold mining in French Guiana streams

    Directory of Open Access Journals (Sweden)

    Dedieu N.

    2014-01-01

    Full Text Available Understanding the effects of disturbances on the physical-chemical quality of ecosystems is a crucial step to the development of ecosystem assessment tools. 95 sampling sites distributed among 4 categories of disturbance, i.e.: reference, logging, formerly and currently gold mining, were characterized using stream physical and chemical variables. Our hypotheses were: (i logging and gold mining activities primarily affect the physical habitat structure of streams and (ii both have an effect on chemical environments through nutrient and/or fine particulate resuspension. We demonstrate that physical variables describing the river bottom, and suspended solids discriminate both current and formerly gold mined sites from reference sites, while, whatever the type of impact encountered, nutrient concentrations do not prove relevant to measure human impacts. To understand distribution patterns of aquatic organism across FG, future research should thus aim at examining the match between physical-chemical and biological classifications of small streams under reference and impacted conditions.

  3. Quantum Processes and Dynamic Networks in Physical and Biological Systems.

    Science.gov (United States)

    Dudziak, Martin Joseph

    Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain

  4. Biological and physical conditions of macroinvertebrates in reference lowland streams

    Science.gov (United States)

    de Brouwer, Jan; Eekhout, Joris; Verdonschot, Piet

    2016-04-01

    Channelisation measures taken halfway the 20th century have had destructive consequences for the diversity of the ecology in the majority of the lowland streams in countries such as the Netherlands. Currently, stream restoration measures are being implemented in these degraded lowland streams, where design principles are often based on outdated relationships between biological and physical conditions. Little is known about the reference conditions in these streams. Therefore, the aim of this research is to quantify the relationships between biological and physical conditions of macroinvertebrates in reference lowland streams. The research was conducted in four near-natural lowland streams in Central Poland. Field data were obtained during a field campaign in 2011. The following data were obtained in a 50-m reach in each of the four streams: macroinvertebrate sampling, spatial habitat patterns, bathymetry, and flow-velocity. Furthermore, water level, light sensitivity and temperature sensors were installed to obtain the temporal dynamic of these streams. Macroinvertebrates were sampled in 9 different habitat types, i.e. sand, gravel, fine organic matter, stones, branches, leaves, silt, vegetation, and wood. Macroinvertebrates were determined to the highest taxonomic level possible. Data from the bathymetrical surveys were interpolated on a grid and bathymetrical metrics were determined. Flow velocity measurements were related to habitats and flow velocity metrics were determined. Analysis of the data shows that flow conditions vary among the different habitat, with a gradient from hard substrates towards soft substrates. Furthermore, the data show that stream as a unit best explains species composition, but also specific habitat conditions, such as substrate type and flow velocity, correlate with species composition. More specific, the data shows a strong effect of wood on species composition. These findings may have implications for stream restoration design, which

  5. Mendeleev-2013. VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials. Book of abstracts. Section 4. Organic chemistry

    International Nuclear Information System (INIS)

    2013-01-01

    VII All-Russian conference of young scientists, postgraduate students and students with international participation on chemistry and nanomaterials was conducted on the Chemistry department of Saint-Petersburg University on April, 2-5, 2013. In the conference participants from 14 countries took part. There were five sections: Nanochemistry and nanomaterials, Analytic chemistry, Inorganic chemistry, Organic chemistry, Physical chemistry. In the collection (Section 2 - Organic chemistry) there are the abstracts concerning different aspects of organic chemistry: synthesis and study of properties of heterocyclic, organometallic, biologically active, medicinal compounds, new ion exchange materials, reagents for analytic chemistry, etc [ru

  6. Handbook on the physics and chemistry of the actinides. vol. 1

    International Nuclear Information System (INIS)

    Freeman, A.J.

    1984-01-01

    It is the purpose of this Handbook to describe in detail the present understanding of the actinides by means of comprehensive, critical, broad and up to date reviews covering both the physics and chemistry of these exotic elements. The chapters serve as an introduction to the subject for the non-specialist, as a convenient reference work for the specialist, and as guides for charting pathways for future research. The rapid accelerated pace of research in the last decade continues and carries with it new vigor, ferment and excitement to a field in a state of transition. In this volume some aspects of the physics of the actinides are reviewed: atomic properties, sample preparation and crystal growth, electronic structure and bulk ground state properties, electron spectroscopy, optical and magneto-optical properties and neutron elastic scattering. (Auth.)

  7. Inquiry-based course in physics and chemistry for preservice K-8 teachers

    Directory of Open Access Journals (Sweden)

    Michael E. Loverude

    2011-05-01

    Full Text Available We describe an inquiry-based course in physics and chemistry for preservice K-8 teachers developed at California State University Fullerton. The course is one of three developed primarily to enhance the science content understanding of prospective teachers. The course incorporates a number of innovative instructional strategies and is somewhat unusual for its interdisciplinary focus. We describe the course structure in detail, providing examples of course materials and assessment strategies. Finally, we provide research data illustrating both the need for the course and the effectiveness of the course in developing student understanding of selected topics. Student responses to various questions reflect a lack of understanding of many relatively simple physical science concepts, and a level of performance that is usually lower than that in comparable courses serving a general education audience. Additional data suggest that course activities improve student understanding of selected topics, often dramatically.

  8. Space Radiation and Manned Mission: Interface Between Physics and Biology

    Science.gov (United States)

    Hei, Tom

    2012-07-01

    The natural radiation environment in space consists of a mixed field of high energy protons, heavy ions, electrons and alpha particles. Interplanetary travel to the International Space Station and any planned establishment of satellite colonies on other solar system implies radiation exposure to the crew and is a major concern to space agencies. With shielding, the radiation exposure level in manned space missions is likely to be chronic, low dose irradiation. Traditionally, our knowledge of biological effects of cosmic radiation in deep space is almost exclusively derived from ground-based accelerator experiments with heavy ions in animal or in vitro models. Radiobiological effects of low doses of ionizing radiation are subjected to modulations by various parameters including bystander effects, adaptive response, genomic instability and genetic susceptibility of the exposed individuals. Radiation dosimetry and modeling will provide conformational input in areas where data are difficult to acquire experimentally. However, modeling is only as good as the quality of input data. This lecture will discuss the interdependent nature of physics and biology in assessing the radiobiological response to space radiation.

  9. Physical, chemical, and biological properties of wonder kelp--Laminaria.

    Science.gov (United States)

    Kim, Se-Kwon; Bhatnagar, Ira

    2011-01-01

    Laminaria is a kelp that finds its place in the brown algae family. It has been an area of study for past many years, and its wonderful biological properties have always attracted medical professionals and researchers to explore more and more from this wonder kelp. The constituents of Laminaria include iodine, potassium, magnesium, calcium and iron. Iodine compounds, TEA-hydroiodide in particular, are great lipolytic agents as they stimulate lipase activity. Laminarins on the other hand are used as a tumor angiogenic blocker. This genus of the kelps is also rich in algin, a high molecular weight polysaccharide that forms viscous colloidal solutions or gels in water leading to the use of kelp derivatives as bulk laxatives. It has great applications in cosmeceutical science, as well as some antibacterial properties have also been assigned to Laminaria. A deeper insight into the physical, biological, and chemical properties of this wonder kelp would lead to further exploitation of Laminaria for medicinal and cosmeceutical purpose. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Assessment in Physics and in Chemistry: what kind of learning is favoured in secondary school teaching?

    Directory of Open Access Journals (Sweden)

    Claudia Alejandra Mazzitelli

    2013-10-01

    Full Text Available The teaching and learning process of Natural Science, nowadays, presents some difficulties which become evident, among others, in the students’ low academic achievement. With the aim of deepening our knowledge about this problem in order to promote actions which contribute to the improvement of the quality of the educational system, we carried out an experience during which we studied the processes involved in the teaching and learning of Physics and Chemistry. Secondary school students and teachers of Physics and Chemistry took part in the experience. We believe that assessment is a key factor of the teaching and learning process and of the school curriculum development. For this reason, we analyzed the evaluations that teachers carry out in class and their interrelationship with the teaching-learning process. The strategies implemented by the teachers, as well as the evaluation process, have allowed us to infer the background which supports their conception of what learning science means. The results obtained suggest that students have better achievement when they are asked to memorize, and this could be related to the students’ low performance in activities which demand more complex cognitive abilities. Favouring a learning process based only on memory may lead to erroneous conceptions about the building up of scientific knowledge and, besides, may not contribute to the development of meaningful and autonomous learning.

  11. Scientific projection paper for radiation chemistry

    International Nuclear Information System (INIS)

    Simic, M.G.

    1980-01-01

    Together with radiation physics, an understanding of radiation chemistry is necessary for full appreciation of biological effects of high and low energy radiations, and for the development of prophylactic, therapeutic and potentiating methods and techniques in biological organisms. Areas covered in some detail in this report include: the early chemical events involved in the deposition of radiation energy; the kinetics of free radical and excited state reactions; the application of radiation chemistry to radiation biology; and the availability of instrumentation

  12. Developing and Evaluating an Eighth Grade Curriculum Unit That Links Foundational Chemistry to Biological Growth: Changing the Research-Based Curriculum

    Science.gov (United States)

    Kruse, Rebecca; Howes, Elaine V.; Carlson, Janet; Roth, Kathleen; Bourdelat-Parks, Brooke; Roseman, Jo Ellen; Herrmann-Abell, Cari F.; Flanagan, Jean C.

    2013-01-01

    Much of modern biology has become increasingly chemical in character. Not surprisingly, students often have trouble understanding key ideas in biology because they lack foundational chemistry ideas. AAAS and BSCS are collaborating to develop and study a curriculum unit that supports students' ability to explain a variety of biological processes…

  13. Developing and Evaluating an Eighth Grade Curriculum Unit That Links Foundational Chemistry to Biological Growth: Paper 5--Using Teacher Measures to Evaluate the Promise of the Intervention

    Science.gov (United States)

    Flanagan, Jean C.; Herrmann-Abell, Cari F.; Roseman, Jo Ellen

    2013-01-01

    AAAS (American Association for the Advancement of Science) is collaborating with BSCS (Biological Sciences Curriculum Study) in the development of a curriculum unit for eighth grade students that connects fundamental chemistry and biology concepts to better prepare them for high school biology. Recognizing that teachers play an influential role in…

  14. Radiation physics, biophysics, and radiation biology. Progress report, December 1, 1992--November 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hall, E.J.; Zaider, M.

    1993-05-01

    Research at the Center for Radiological Research is a multidisciplenary blend of physics, chemistry and biology aimed at understanding the mechanisms involved in the health problems resulting from human exposure to ionizing radiations. The focus is increased on biochemistry and the application of the techniques of molecular biology to the problems of radiation biology. Research highlights of the program from the past year are described. A mathematical model describing the production of single-strand and double-strand breaks in DNA as a function radiation quality has been completed. For the first time Monte Carlo techniques have been used to obtain directly the spatial distribution of DNA moieties altered by radiation. This information was obtained by including the transport codes a realistic description of the electronic structure of DNA. We have investigated structure activity relationships for the potential oncogenicity of a new generation of bioreductive drugs that function as hypoxic cytotoxins. Experimental and theoretical investigation of the inverse dose rate effect, whereby medium LET radiations actually produce an c effect when the dose is protracted, is now at a point where the basic mechanisms are reasonably understood and the complex interplay between dose, dose rate and radiation quality which is necessary for the effect to be present can now be predicted at least in vitro. In terms of early radiobiological damage, a quantitative link has been established between basic energy deposition and locally multiply damaged sites, the radiochemical precursor of DNA double strand breaks; specifically, the spatial and energy deposition requirements necessary to form LMDs have been evaluated. For the first time, a mechanically understood ``biological fingerprint`` of high-LET radiation has been established. Specifically measurement of the ratio of inter-to intra-chromosomal aberrations produces a unique signature from alpha-particles or neutrons.

  15. Physical biological coupling in the Pearl River Estuary

    Science.gov (United States)

    Harrison, Paul J.; Yin, Kedong; Lee, J. H. W.; Gan, Jianping; Liu, Hongbin

    2008-07-01

    The Pearl River Estuary is a subtropical estuary and the second largest in China based on discharge volume from the Pearl River. Processes in the estuary vary spatially and temporally (wet vs dry season). In the dry season at the head of the estuary, hypoxic and nearly anoxic conditions occur and NH 4 reaches >600 μM, NO 3 is ˜300 μM and nitrite is ˜60 μM indicating that nitrification and denitrification may be important dry season processes in the region extending 40 km upstream of the Humen outlet. There are very few biological studies conducted in this upper section of the estuary in either the dry or wet seasons and hence there is a need for further research in this region of the river. In the wet season, the salinity wedge extends to the Hongqimen outlet and oxygen is low (35-80% saturation). Nitrate is ˜100 μM, silicate ˜140 μM; and phosphate is relatively low at ˜0.5 μM, yielding an N:P ratio up to ˜200:1 in summer. Nutrients decrease in the lower estuary and primary productivity may become potentially P-limited. Eutrophication is not as severe as one would expect from the nutrient inputs from the Pearl River and from Hong Kong's sewage discharge. This estuary shows a remarkable capacity to cope with excessive nutrients. Physical processes such as river discharge, tidal flushing, turbulent dispersion, wind-induced mixing, and estuarine circulation play an important role in controlling the production and accumulation of algal blooms and the potential occurrence of hypoxia. Superimposed on the physical processes of the estuary are the chemical and biological processes involved in the production of the bloom. For example, the 100N:1P ratio indicates that P potentially limits the amount of algal biomass (and potential biological oxygen demand) in summer. While extended periods of hypoxia are rare in Hong Kong waters, episodic events have been reported to occur during late summer due to factors such as low wind, high rainfall and river discharge which

  16. Evaluation of conformal radiotherapy techniques through physics and biologic criteria

    International Nuclear Information System (INIS)

    Bloch, Jonatas Carrero

    2012-01-01

    In the fight against cancer, different irradiation techniques have been developed based on technological advances and aiming to optimize the elimination of tumor cells with the lowest damage to healthy tissues. The radiotherapy planning goal is to establish irradiation technical parameters in order to achieve the prescribed dose distribution over the treatment volumes. While dose prescription is based on radiosensitivity of the irradiated tissues, the physical calculations on treatment planning take into account dosimetric parameters related to the radiation beam and the physical characteristics of the irradiated tissues. To incorporate tissue's radiosensitivity into radiotherapy planning calculations can help particularize treatments and establish criteria to compare and elect radiation techniques, contributing to the tumor control and the success of the treatment. Accordingly, biological models of cellular response to radiation have to be well established. This work aimed to study the applicability of using biological models in radiotherapy planning calculations to aid evaluating radiotherapy techniques. Tumor control probability (TCP) was studied for two formulations of the linear-quadratic model, with and without repopulation, as a function of planning parameters, as dose per fraction, and of radiobiological parameters, as the α/β ratio. Besides, the usage of biological criteria to compare radiotherapy techniques was tested using a prostate planning simulated with Monte Carlo code PENELOPE. Afterwards, prostate planning for five patients from the Hospital das Clinicas da Faculdade de Medicina de Ribeirao Preto, USP, using three different techniques were compared using the tumor control probability. In that order, dose matrices from the XiO treatment planning system were converted to TCP distributions and TCP-volume histograms. The studies performed allow the conclusions that radiobiological parameters can significantly influence tumor control

  17. The relationship between the chemistry and biological activity of the bisphosphonates.

    Science.gov (United States)

    Ebetino, Frank H; Hogan, Anne-Marie L; Sun, Shuting; Tsoumpra, Maria K; Duan, Xuchen; Triffitt, James T; Kwaasi, Aaron A; Dunford, James E; Barnett, Bobby L; Oppermann, Udo; Lundy, Mark W; Boyde, Alan; Kashemirov, Boris A; McKenna, Charles E; Russell, R Graham G

    2011-07-01

    The ability of bisphosphonates ((HO)(2)P(O)CR(1)R(2)P(O)(OH)(2)) to inhibit bone resorption has been known since the 1960s, but it is only recently that a detailed molecular understanding of the relationship between chemical structures and biological activity has begun to emerge. The early development of chemistry in this area was largely empirical and based on modifying R(2) groups in a variety of ways. Apart from the general ability of bisphosphonates to chelate Ca(2+) and thus target the calcium phosphate mineral component of bone, attempts to refine clear structure-activity relationships had led to ambiguous or seemingly contradictory results. However, there was increasing evidence for cellular effects, and eventually the earliest bisphosphonate drugs, such as clodronate (R(1)=R(2)=Cl) and etidronate (R(1)=OH, R(2)=CH(3)), were shown to exert intracellular actions via the formation in vivo of drug derivatives of ATP. The observation that pamidronate, a bisphosphonate with R(1)=OH and R(2)=CH(2)CH(2)NH(2), exhibited higher potency than previously known bisphosphonate drugs represented the first step towards the later recognition of the critical importance of having nitrogen in the R(2) side chain. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates took place particularly in the 1980s, but still with an incomplete understanding of their structure-activity relationships. A major advance was the discovery that the anti-resorptive effects of the nitrogen-containing bisphosphonates (including alendronate, risedronate, ibandronate, and zoledronate) on osteoclasts appear to result from their potency as inhibitors of the enzyme farnesyl pyrophosphate synthase (FPPS), a key branch-point enzyme in the mevalonate pathway. FPPS generates isoprenoid lipids utilized in sterol synthesis and for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Effects on other cellular targets

  18. Mössbauer spectroscopy: applications in chemistry, biology, industry, and nanotechnology

    National Research Council Canada - National Science Library

    Sharma, Virender K; Klingelhofer, Gostar; Nishida, Tetsuaki

    2013-01-01

    "A one-stop reference for determining the oxidation states of elements so that oxidation eduction chemistry can be studied across a wide variety of systems, this book presents advances in the field...

  19. Using Mathematical Software to Introduce Fourier Transforms in Physical Chemistry to Develop Improved Understanding of Their Applications in Analytical Chemistry

    Science.gov (United States)

    Miller, Tierney C.; Richardson, John N.; Kegerreis, Jeb S.

    2016-01-01

    This manuscript presents an exercise that utilizes mathematical software to explore Fourier transforms in the context of model quantum mechanical systems, thus providing a deeper mathematical understanding of relevant information often introduced and treated as a "black-box" in analytical chemistry courses. The exercise is given to…

  20. Preface: Special Issue of the 5th International Symposium on Biological and Environmental Chemistry of DMS(P) and Related Compounds, Goa, India, 19–22 October 2010

    Digital Repository Service at National Institute of Oceanography (India)

    Stefels, J.; Shenoy, D.M.; Simo, R.; Malin, G.; Levasseur, M.; Belviso, S.; DileepKumar, M.

    This Special Issue of Biogeochemistry contains a selection of papers presented at the 5th International Symposium on Biological and Environmental Chemistry of DMS(P) and Related Compounds, organized at the National Institute of Oceanography (NIO...

  1. Sustainable Materials Management (SMM) Web Academy Webinar: Compost from Food Waste: Understanding Soil Chemistry and Soil Biology on a College/University Campus

    Science.gov (United States)

    This page contains information about the Sustainable Materials Management (SMM) Web Academy Webinar Series titled Compost from Food Waste:Understanding Soil Chemistry and Soil Biology on a College/University Campus

  2. PREFACE: 2013 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2013)

    Science.gov (United States)

    Lumban Gaol, Ford

    2013-03-01

    The 2013 International Conference on Science and Engineering in Mathematics, Chemistry and Physics (ScieTech 2013), was held at the Aston Rasuna Hotel, Jakarta, Indonesia, on 24-25 January 2013. The ScieTech 2013 conference aims to bring together scholars, leading researchers and experts from diverse backgrounds and applications areas. Special emphasis is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics, all areas of sciences and applied mathematics. We would like to thank the invited and plenary speakers as well as all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program. This year, we received 197 papers and, after rigorous review, 67 papers were accepted. The participants come from 21 countries. There are 6 (six) Plenary and Invited Speakers. It is an honour to present this volume of Journal of Physics: Conference Series and we thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed ScieTech 2013 be be sucyh a success. The Editors of the ScieTech 2013 Proceedings Dr Ford Lumban Gaol Dr Hoga Saragih Tumpal Pandiangan Dr Mohamed Bououdina The PDF also contains the abstracts of the Invited and Plenary talks, and some photographs taken during the conference.

  3. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  4. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications.

    Science.gov (United States)

    Lu, Hua; Wang, Jing; Song, Ziyuan; Yin, Lichen; Zhang, Yanfeng; Tang, Haoyu; Tu, Chunlai; Lin, Yao; Cheng, Jianjun

    2014-01-07

    Polypeptides are fascinating materials with unique properties for various biological materials. We highlight here recent advances in amino acid N-carboxyanhydrides (NCAs) and synthetic polypeptides from the aspects of chemistry, self-assembly and biological applications. New synthetic methodologies, mechanistic studies and optimization of polymerization conditions for the preparation of well-defined novel polypeptides are comprehensively reviewed and evaluated. Functional polypeptides, mostly prepared from novel NCA monomers, with ultra-stable helical conformation, stimuli-sensitive properties, or glycoprotein mimetics are summarized. We also highlight a number of interesting self-assembled structures of polypeptides in solid state and solution, with particular emphasis on those structures other than amphiphilic self-assembly. The biological applications of polypeptides in drug and gene delivery are also reviewed. Future directions and perspectives are discussed in the conclusion.

  5. Radiation chemistry of heavy particles

    International Nuclear Information System (INIS)

    Magee, J.L.; Chatterjee, A.

    1980-01-01

    The physical aspects of the energy deposit of fast particles in matter initiate chemical effects which are merged with the early physical processes. Here only radiation chemistry and its relationship to the initial energy deposit are of concern. The primary objective of our track studies is, however, application to biology. In the radiolytic decomposition of water energy is absorbed almost exclusively in water, and the principal chemistry is that of radiation decomposition of water. The track structure in water is expected to be virtually the same as that in a biological system. The study of radiation chemistry of dilute solutions, therefore, provides another method to investigate the structure of tracks as they are likely to be present in an irradiated biological system but at times much longer than they are accessible to purely physical measurements

  6. Electron Bifurcation: Thermodynamics and Kinetics of Two-Electron Brokering in Biological Redox Chemistry.

    Science.gov (United States)

    Zhang, Peng; Yuly, Jonathon L; Lubner, Carolyn E; Mulder, David W; King, Paul W; Peters, John W; Beratan, David N

    2017-09-19

    processes of their own. We dissect the thermodynamics and kinetics of electron bifurcation in Nfn and find that the key features of electron bifurcation are (1) spatially separated transfer pathways that diverge from a two-electron donor, (2) one thermodynamically uphill and one downhill redox pathway, with a large negative shift in the donor's reduction potential after departure of the first electron, and (3) electron tunneling and activation factors that enable bifurcation, producing a 1:1 partitioning of electrons onto the two pathways. Electron bifurcation is found in the CO 2 reducing pathways of methanogenic archaea, in the hydrogen pathways of hydrogenases, in the nitrogen fixing pathway of Fix, and in the mitochondrial charge transfer chain of complex III, cytochrome bc 1 . While crossed potentials may offer the biological advantage of producing tightly regulated high energy reactive species, neither kinetic nor thermodynamic considerations mandate crossed potentials to generate successful electron bifurcation. Taken together, the theoretical framework established here, focusing on the underpinning electron tunneling barriers and activation free energies, explains the logic of electron bifurcation that enables energy conversion and conservation in Nfn, points toward bioinspired schemes to execute multielectron redox chemistry, and establishes a roadmap for examining novel electron bifurcation networks in nature.

  7. Innovation Developments of Coal Chemistry Science in L.M. Litvinenko Institute of Physical-Organic Chemistry and Coal Chemistry of NAS of Ukraine

    Directory of Open Access Journals (Sweden)

    Shendrik, T.G.

    2015-11-01

    Full Text Available The article presents short historical review and innovation developments of Coal Chemistry Department of L.M. Litvinenko Institute, NAS of Ukraine connected with coal mine exploitation problems, search for decisions toward prevention of spontaneous combustion, dust control in mines, establishing structural chemical features of coal with different genesis and stages of metamorphism with the aim to develop new methods of their modification and rational use. The methods of obtaining inexpensive sorbents from Ukrainian raw materials (including carbon containing waste are proposed. The problems of modern coal chemistry science in IPOCC of NAS of Ukraine are outlined.

  8. Estuary-ocean connectivity: fast physics, slow biology.

    Science.gov (United States)

    Raimonet, Mélanie; Cloern, James E

    2017-06-01

    Estuaries are connected to both land and ocean so their physical, chemical, and biological dynamics are influenced by climate patterns over watersheds and ocean basins. We explored climate-driven oceanic variability as a source of estuarine variability by comparing monthly time series of temperature and chlorophyll-a inside San Francisco Bay with those in adjacent shelf waters of the California Current System (CCS) that are strongly responsive to wind-driven upwelling. Monthly temperature fluctuations inside and outside the Bay were synchronous, but their correlations weakened with distance from the ocean. These results illustrate how variability of coastal water temperature (and associated properties such as nitrate and oxygen) propagates into estuaries through fast water exchanges that dissipate along the estuary. Unexpectedly, there was no correlation between monthly chlorophyll-a variability inside and outside the Bay. However, at the annual scale Bay chlorophyll-a was significantly correlated with the Spring Transition Index (STI) that sets biological production supporting fish recruitment in the CCS. Wind forcing of the CCS shifted in the late 1990s when the STI advanced 40 days. This shift was followed, with lags of 1-3 years, by 3- to 19-fold increased abundances of five ocean-produced demersal fish and crustaceans and 2.5-fold increase of summer chlorophyll-a in the Bay. These changes reflect a slow biological process of estuary-ocean connectivity operating through the immigration of fish and crustaceans that prey on bivalves, reduce their grazing pressure, and allow phytoplankton biomass to build. We identified clear signals of climate-mediated oceanic variability in this estuary and discovered that the response patterns vary with the process of connectivity and the timescale of ocean variability. This result has important implications for managing nutrient inputs to estuaries connected to upwelling systems, and for assessing their responses to changing

  9. Biology meets Physics: Reductionism and Multi-scale Modeling of Morphogenesis

    DEFF Research Database (Denmark)

    Green, Sara; Batterman, Robert

    2017-01-01

    from philosophers of biology. Specifically, scholars have pointed to the impossibility of deducing biological explanations from physical ones, and to the irreducible nature of distinctively biological processes such as gene regulation and evolution. This paper takes a step back in asking whether bottom......-up modeling is feasible even when modeling simple physical systems across scales. By comparing examples of multi-scale modeling in physics and biology, we argue that the “tyranny of scales” problem present a challenge to reductive explanations in both physics and biology. The problem refers to the scale......-dependency of physical and biological behaviors that forces researchers to combine different models relying on different scale-specific mathematical strategies and boundary conditions. Analyzing the ways in which different models are combined in multi-scale modeling also has implications for the relation between physics...

  10. Liaison activities with the institute of physical chemistry, Russian academy of sciences: FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, C.H.

    1996-09-23

    The task ``IPC/RAS Liaison and Tank Waste Testing`` is a program being conducted in fiscal year (FY) 1996 with the support of the U.S. Department of Energy (DOE) Office of Science and Technology, EM-53 Efficient Separations and Processing (ESP) Crosscutting Program, under the technical task plan RLA6C342. The principal investigator is Cal Delegard of the Westinghouse Hanford Company. The task involves a technical liaison with the Institute of Physical Chemistry of the Russian Academy of Sciences (IPC/RAS) and their DOE-supported investigations into the fundamental and applied chemistry of the transuranium elements (primarily neptunium, plutonium, and americium) and technetium in alkaline media. The task has three purposes: 1. Providing technical information and technical direction to the IPC/RAS. 2. Disseminating IPC/RAS data and information to the DOE technical community. 3. Verifying IPC/RAS results through laboratory testing and comparison with published data. This report fulfills the milestone ``Provide End-of-Year Report to Focus Area,`` due September 30, 1996.

  11. Insights into the physics and chemistry of chalcogenides obtained from x-ray absorption spectroscopy

    Science.gov (United States)

    Kolobov, Alexander V.; Fons, Paul

    2017-12-01

    In this review, after a brief description of the underlying principles of x-ray absorption spectroscopy, we describe the results that enable one to obtain fundamental new insights into the rich physics and chemistry of chalcogenides. We start with chalcogenide glasses taking the readers from the structure of amorphous selenium and confined single Se chains and carry on to photo-induced structural changes. We subsequently describe application of EXAFS to monolayers of transition-metal dichalcogenides. The review is concluded by the results that were seminal to understand the phase-transition mechanism in so-called phase-change alloys that are widely used in optical and non-volatile memory devices. We place special accent on the conclusions that were only possible to draw based on the local nature of x-ray absorption spectroscopy.

  12. Handbook on the physics and chemistry of rare earths. Vol. 8

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Iowa State Univ. of Science and Technology, Ames; Eyring, L.

    1986-01-01

    This handbook covers the entire rare earth field in an integrated manner and each chapter is a review of a particular segment of the field. In the first chapter the phase relationships in the binary intra rare earth alloy systems and the variation in their lattice spacings due to alloying are reviewed. In the following chapter the polarographic analysis of the rare earth elements are described. Recent developments in this field have led to methods which are simple and easy to perform and can be used to determine at micro-molar levels either the individual elements or the total amount of rare earths. The next chapter is the first of two articles in which the inorganic, crystal and physical chemistry of complex inorganic compounds are examined. In the final chapter, the use of rare earth ions and compounds in organic synthesis, a relatively young field, is described. (Auth.)

  13. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    Science.gov (United States)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  14. Research on teaching and learning in Physics and Chemistry in NorDiNa Papers

    Directory of Open Access Journals (Sweden)

    Päivi Kinnunen

    2016-04-01

    Full Text Available This article provides an overview of teaching and learning processes in research on physics and chemistry education published in NorDiNa 2005–2013. Using the didactic triangle as our theoretical framework we developed a typology to analyse the data and used this to categorise 89 related research papers, from all levels of education (primary, secondary and tertiary. The results suggest that students’ characteristics, their understanding of the content and learning outcomes are studied frequently. In contrast, science teachers are studied much less. Most papers reported studies that had been done at the teaching organisation level. Course level studies and society level studies were also frequent. However, international level studies were few in this data pool. We conclude by discussing less popular research topics in the science education field.

  15. Using Physical Organic Chemistry To Shape the Course of Electrochemical Reactions.

    Science.gov (United States)

    Moeller, Kevin D

    2018-03-02

    While organic electrochemistry can look quite different to a chemist not familiar with the technique, the reactions are at their core organic reactions. As such, they are developed and optimized using the same physical organic chemistry principles employed during the development of any other organic reaction. Certainly, the electron transfer that triggers the reactions can require a consideration of new "wrinkles" to those principles, but those considerations are typically minimal relative to the more traditional approaches needed to manipulate the pathways available to the reactive intermediates formed downstream of that electron transfer. In this review, three very different synthetic challenges-the generation and trapping of radical cations, the development of site-selective reactions on microelectrode arrays, and the optimization of current in a paired electrolysis-are used to illustrate this point.

  16. Jahn-Teller effect fundamentals and implications for physics and chemistry

    CERN Document Server

    Koppel, Horst; Barentzen, Heinz

    2009-01-01

    The Jahn-Teller effect continues to be a paradigm for structural instabilities and dynamical processes in molecules and in the condensed phase. While the basic theorem, first published in 1937, had to await experimental verification for 15 years, the intervening years have seen rapid development, initially in the theoretical arena, followed increasingly by experimental work on molecules and crystals. Among the many important developments in the field we mention cooperative phenomena in crystals, the general importance of pseudo-Jahn-Teller couplings for symmetry-lowering phenomena in molecular systems, nonadiabatic processes at conical intersections of potential energy surfaces and extensions of the basic theory in relation to the discovery of fullerenes and other icosahedral systems. The aim of the present volume is to provide a survey of the state-of-the art in Jahn-Teller interactions at the interface of quantum chemistry and condensed matter physics.

  17. On determining important aspects of mathematical models: Application to problems in physics and chemistry

    Science.gov (United States)

    Rabitz, Herschel

    1987-01-01

    The use of parametric and functional gradient sensitivity analysis techniques is considered for models described by partial differential equations. By interchanging appropriate dependent and independent variables, questions of inverse sensitivity may be addressed to gain insight into the inversion of observational data for parameter and function identification in mathematical models. It may be argued that the presence of a subset of dominantly strong coupled dependent variables will result in the overall system sensitivity behavior collapsing into a simple set of scaling and self similarity relations amongst elements of the entire matrix of sensitivity coefficients. These general tools are generic in nature, but herein their application to problems arising in selected areas of physics and chemistry is presented.

  18. Many-electron approaches in physics, chemistry and mathematics a multidisciplinary view

    CERN Document Server

    Site, Luigi

    2014-01-01

    This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.

  19. Physical origin of selectivity in ionic channels of biological membranes.

    Science.gov (United States)

    Laio, A; Torre, V

    1999-01-01

    This paper shows that the selectivity properties of monovalent cation channels found in biological membranes can originate simply from geometrical properties of the inner core of the channel without any critical contribution from electrostatic interactions between the permeating ions and charged or polar groups. By using well-known techniques of statistical mechanics, such as the Langevin equations and Kramer theory of reaction rates, a theoretical equation is provided relating the permeability ratio PB/PA between ions A and B to simple physical properties, such as channel geometry, thermodynamics of ion hydration, and electrostatic interactions between the ion and charged (or polar) groups. Diffusive corrections and recrossing rates are also considered and evaluated. It is shown that the selectivity found in usual K+, gramicidin, Na+, cyclic nucleotide gated, and end plate channels can be explained also in the absence of any charged or polar group. If these groups are present, they significantly change the permeability ratio only if the ion at the selectivity filter is in van der Waals contact with them, otherwise these groups simply affect the channel conductance, lowering the free energy barrier of the same amount for the two ions, thus explaining why single channel conductance, as it is experimentally observed, can be very different in channels sharing the same selectivity sequence. The proposed theory also provides an estimate of channel minimum radius for K+, gramicidin, Na+, and cyclic nucleotide gated channels.

  20. For the love of learning science: Connecting learning orientation and career productivity in physics and chemistry

    Directory of Open Access Journals (Sweden)

    Robert H. Tai

    2010-05-01

    Full Text Available An individual’s motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this paper: performance orientation or motivation to demonstrate one’s ability or performance to others, and learning orientation or motivation through the desire to learn about a topic. The data were obtained as part of Project Crossover, a mixed-methods study which focused on studying the transition from graduate student to scientist in the physical sciences and included a survey of members of two national professional physical science organizations. Using regression analysis on data from 2353 physicists and chemists, results indicate that physicists and chemists who reported a learning orientation as their motivation for going to graduate school were more productive, in terms of total career primary and/or first-author publications and grant funding, than those reporting a performance orientation. Furthermore, given equal salary, learning-oriented individuals produced more primary and/or first-author publications than their nonlearning oriented counterparts.