WorldWideScience

Sample records for biology oenology medicine

  1. Influence of supplementation with different oenological tannins on malvidin-3-monoglucoside copigmentation

    Directory of Open Access Journals (Sweden)

    Gombau Jordi

    2016-01-01

    Full Text Available The effect as copigment of (--epicatechin and five different oenological tannins has been measured in a model wine solution containing malvidine-3-monoglucoside. The results show that all oenological tannins exert a positive effect on the color of the malvidine solution, increasing the global absorptivity spectrum and changing the Cielab coordinates. Specifically, supplementation with oenological tannins increase a* and b* and decreases L*. Overall, the effect as copigments of all oenological tannins was higher than that of (−-epicatechin.

  2. Influence of red wine fermentation oenological additives on inoculated strain implantation.

    Science.gov (United States)

    Duarte, Filomena L; Alves, Ana Claudia; Alemão, Maria Filomena; Baleiras-Couto, M Margarida

    2013-06-01

    Pure selected cultures of Saccharomyces cerevisiae starters are regularly used in the wine industry. A survey of S. cerevisiae populations during red wine fermentations was performed in order to evaluate the influence of oenological additives on the implantation of the inoculated strain. Pilot scale fermentations (500 L) were conducted with active dry yeast (ADY) and other commercial oenological additives, namely two commercial fermentation activators and two commercial tannins. Six microsatellite markers were used to type S. cerevisiae strains. The methodology proved to be very discriminating as a great diversity of wild strains (48 genotypes) was detected. Statistical analysis confirmed a high detection of the inoculated commercial strain, and for half the samples an effective implantation of ADY (over 80 %) was achieved. At late fermentation time, ADY strain implantation in fermentations conducted with commercial additives was lower than in the control. These results question the efficacy of ADY addition in the presence of other additives, indicating that further studies are needed to improve knowledge on oenological additives' use.

  3. Oenology through Multimedia and Distance Learning Education.

    Science.gov (United States)

    Gebhart, Deanna M.

    A study was conducted to determine whether wine experts, already trained in the traditional oenology method, would be interested in learning about wine through multimedia and distance learning. Data were gathered from 113 of the 502 members of the American Wine Society who attended a national conference in November 1995. About 58 percent were male…

  4. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine

    OpenAIRE

    Kai Chen; Carlos Escott; Iris Loira; Juan Manuel del Fresno; Antonio Morata; Wendu Tesfaye; Fernando Calderon; Santiago Benito; Jose Antonio Suárez-Lepe

    2016-01-01

    Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In th...

  5. Oxygen consumption rates by different oenological tannins in a model wine solution.

    Science.gov (United States)

    Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando

    2017-11-01

    The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine.

    Science.gov (United States)

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Benito, Santiago; Suárez-Lepe, Jose Antonio

    2016-10-31

    Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed ( Vitis vinifera ) and French oak ( Quercus robur and Querrus petraea ), were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  7. The Effects of Pre-Fermentative Addition of Oenological Tannins on Wine Components and Sensorial Qualities of Red Wine

    Directory of Open Access Journals (Sweden)

    Kai Chen

    2016-10-01

    Full Text Available Today in the wine industry, oenological tannins are widely used to improve wine quality and prevent oxidation in wine aging. With the development of tannin products, new oenological tannins are developed with many specific functions, such as modifying antioxidant effect, colour stabilization and aroma modifications. The aim of this work is to investigate effects of pre-fermentative addition of oenological tannins on wine colour, anthocyanins, volatile compounds and sensorial properties. In this case, Syrah juice was extracted with classic flash thermovinification from fresh must in order to release more colour and tannins. Three types of oenological tannins, which are, respectively, derived from grape skin, seed (Vitis vinifera and French oak (Quercus robur and Querrus petraea, were selected to carry out the experiments with seven treatments. Results indicated that tannin treatments significantly improved wine aroma complexity and sensorial properties. However, the concentration of some stable pigments such as Vitisin A, Vitisin A-Ac and Vitisin B was negatively affected by tannin additions. Nevertheless, by means of cluster analysis and principal component analysis, it was observed that higher alcohols were significantly promoted by grape seed tannin while most anthocyanins can be improved by addition of grape tannins. In conclusion, low amount of oenological tannin derived from grape seed is a promising method to be applied especially for young red wine making.

  8. Effect of the addition of different types of oenological commercial tannins on phenolic and sensorial red wine characteristics evolution

    Directory of Open Access Journals (Sweden)

    Jordão António M.

    2016-01-01

    Full Text Available The main objective of this work was to understand the effect of the addition of different commercial types of oenological tannins on red wine phenolic compounds and sensorial characteristics evolution. So, six different commercial oenological tannins obtained from different sources at an average dosage recommended by the manufactures were added to a red wine. During 120 wine aging days several phenolic parameters were analyzed (including several individual phenolic compounds by HPLC and also the sensorial characteristics of the wines. Wines treated with oenological tannins showed higher total phenols and flavonoid phenols and lesser color degradation during the aging time considered. After 120 aging days, wines aged with oenological tannins showed more total and individual anthocyanins and significantly more red color that induced significantly color differences in relation to the untreated wine (especially for the wines treated with condensed tannins. From a sensorial point of view it was also possible to detect a clear differentiation between the wines.

  9. The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Francisco Salinas

    Full Text Available Saccharomyces cerevisiae is the main microorganism responsible for wine alcoholic fermentation. The oenological phenotypes resulting from fermentation, such as the production of acetic acid, glycerol, and residual sugar concentration are regulated by multiple genes and vary quantitatively between different strain backgrounds. With the aim of identifying the quantitative trait loci (QTLs that regulate oenological phenotypes, we performed linkage analysis using three crosses between highly diverged S. cerevisiae strains. Segregants from each cross were used as starter cultures for 20-day fermentations, in synthetic wine must, to simulate actual winemaking conditions. Linkage analysis on phenotypes of primary industrial importance resulted in the mapping of 18 QTLs. We tested 18 candidate genes, by reciprocal hemizygosity, for their contribution to the observed phenotypic variation, and validated five genes and the chromosome II right subtelomeric region. We observed that genes involved in mitochondrial metabolism, sugar transport, nitrogen metabolism, and the uncharacterized ORF YJR030W explained most of the phenotypic variation in oenological traits. Furthermore, we experimentally validated an exceptionally strong epistatic interaction resulting in high level of succinic acid between the Sake FLX1 allele and the Wine/European MDH2 allele. Overall, our work demonstrates the complex genetic basis underlying wine traits, including natural allelic variation, antagonistic linked QTLs and complex epistatic interactions between alleles from strains with different evolutionary histories.

  10. Bibliometric analysis of publications by South African viticulture and oenology research centres

    Directory of Open Access Journals (Sweden)

    Rafael Aleixandre-Benavent

    2012-05-01

    Full Text Available We analysed the production, impact factor of, and scientific collaboration involved in viticulture and oenology articles associated with South African research centres published in international journals during the period 1990–2009. The articles under scrutiny were obtained from the Science Citation Index database, accessed via the Web of Knowledge platform. The search strategy employed specific viticulture and oenology terms and was restricted to the field ‘topic’. The results showed that 406 articles were published during the review period, with the most number of publications being in the South African Journal of Enology and Viticulture (n = 34, American Journal of Enology and Viticulture (n = 16 and Journal of Agricultural and Food Chemistry (n = 16. The articles were published by 851 authors from 236 institutions. The collaboration rate was 3.7 authors per article, having grown over the two decades examined. The most productive institutions (i.e. those receiving a greater number of citations were Stellenbosch University (219 published articles and 2592 citations and the Agricultural Research Council (49 published articles and 454 citations, both from South Africa. Graphical representation of co-authorship networks identified 18 groups of authors and a single network of institutions whose core is Stellenbosch University. In conclusion, we have identified a significant growth in South African viticulture and oenology research in recent years, with a high degree of internationalisation and a constant level of domestic collaboration.

  11. Effect of the addition of different types of oenological commercial tannins on phenolic and sensorial red wine characteristics evolution

    OpenAIRE

    Jordão, António; Muxagata, Sara; Fontes, Luísa; Correia, Ana Cristina; Nunes, Fernando; Cosme, Fernanda

    2016-01-01

    The main objective of this work was to understand the effect of the addition of different commercial types of oenological tannins on red wine phenolic compounds and sensorial characteristics evolution. So, six different commercial oenological tannins obtained from different sources at an average dosage recommended by the manufactures were added to a red wine. During 120 wine aging days several phenolic parameters were analyzed (including several individual phenolic compounds by HPLC) and also...

  12. Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts.

    Science.gov (United States)

    Sahay, S; Hamid, B; Singh, P; Ranjan, K; Chauhan, D; Rana, R S; Chaurse, V K

    2013-08-01

    Of the twenty-three morphotypes of yeasts isolated from soil capable of utilizing pectin as sole carbon source at 6°C, two yeast isolates, one psychrotolerant (PT1) and one psychrophilic (SPY11), were selected according to their ability to secrete pectinolytic enzymes under some oenological conditions (temperature 6 and 12°C and pH 3.5) and ability or inability to grow above 20°C, respectively. As compared to their optimal activity, the three pectinolytic enzymes viz., pectin methyl esterase (PME), endopolygalacturonase (endo-PG) and exopolygalacturonase (exo-PG) isolated and assayed at pH 3.5 from PT1 were found to retain 39, 60 and 60% activity at 12°C and 40, 79 and 74% activity at 28°C, respectively. Likewise, the enzymes PME and endo-PG at pH 3.5 from SPY11 displayed 46 and 86% activity at 12°C and 50 and 60% activity at 28°C, respectively. All these enzymes showed 20-90% of residual activity at pH 3.5 and 6°C. The yeast isolates PT1 and SPY11 were identified as Rhodotorula mucilaginosa and Cystofilobasidium capitatum, respectively, on the basis of morphological, physiological and molecular characteristics. This study presents the first report on pectinolytic activities under major oenological conditions from psychrotolerant isolate R. mucilaginosa PT1 and psychrophilic isolate C. capitatum SPY11. The cold-active pectinolytic enzymes (PME, endo-PG and exo-PG) from the newly isolated and identified psychrophilic yeast Cystofilobasidium capitatum SPY11 and psychrotolerant yeast Rhodotorula mucilaginosa PT1that exhibited 50-80% of their optimum activity under some major oenological conditions pH (3.5) and temperatures (6 and 12°C) could be applied to wine production and juice clarification at low temperature. The psychrotrophic yeasts themselves could be applied to cold process for the production of enzymes thus saving cost of energy and protecting process from contamination. © 2013 The Society for Applied Microbiology.

  13. Use of non-Saccharomyces yeasts and oenological tannin in red winemaking: Influence on colour, aroma and sensorial properties of young wines.

    Science.gov (United States)

    Chen, Kai; Escott, Carlos; Loira, Iris; Del Fresno, Juan Manuel; Morata, Antonio; Tesfaye, Wendu; Calderon, Fernando; Suárez-Lepe, Jose Antonio; Han, Shunyu; Benito, Santiago

    2018-02-01

    Today, many non-Saccharomyces strains have been verified can be positive for the development of wine anthocyanin and aroma in different fermentation scenarios. Moreover, oenological tannins are widely used in wine industry to improve the colour profile and aroma complexity. The aim of this work is to analyze the fermentation characters of non-Saccharomyces strains and investigate the effects of pre-fermentative addition of oenological tannins on the wine components as well as sensory properties. For this purpose, five selected non-Saccharomyces strains and grape seed tannin were used to carry out the different fermentation trials. As a result, the grape seed tannin were less likely to influence growth kinetics of non-Saccharomyces strains. Schizosaccharomyces pombe has been proved can be effective to reduce the malic acid content while increase the level of vinylphenolic pyranoanthocyanin, which is positive for wine colour stability. Pre-fermentative use of oenological tannin was verified could be beneficial for the wines fermented with non-Saccharomyces regarding the improvement of wine colour, anthocyanin composition and the complexity of volatile compounds. Nevertheless, sensory analysis showed that oenological tannin could be less effective to modify the aroma impression of non-Saccharomyces wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Oenological Potential of Hanseniaspora uvarum in Simultaneous and Sequential Co-fermentation with Saccharomyces cerevisiae for Industrial Wine Production.

    Science.gov (United States)

    Tristezza, Mariana; Tufariello, Maria; Capozzi, Vittorio; Spano, Giuseppe; Mita, Giovanni; Grieco, Francesco

    2016-01-01

    In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation) and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of non-Saccharomyces in

  15. The oenological potential of Hanseniaspora uvarum in simultaneous and sequential co-fermentation with Saccharomyces cerevisiae for the industrial wine production

    Directory of Open Access Journals (Sweden)

    Mariana eTristezza

    2016-05-01

    Full Text Available In oenology, the utilization of mixed starter cultures composed by Saccharomyces and non-Saccharomyces yeasts is an approach of growing importance for winemakers in order to enhance sensory quality and complexity of the final product without compromising the general quality and safety of the oenological products. In fact, several non-Saccharomyces yeasts are already commercialized as oenological starter cultures to be used in combination with Saccharomyces cerevisiae, while several others are the subject of various studies to evaluate their application. Our aim, in this study was to assess, for the first time, the oenological potential of H. uvarum in mixed cultures (co-inoculation and sequential inoculation with S. cerevisiae for industrial wine production. Three previously characterized H. uvarum strains were separately used as multi-starter together with an autochthonous S. cerevisiae starter culture in lab-scale micro-vinification trials. On the basis of microbial development, fermentation kinetics and secondary compounds formation, the strain H. uvarum ITEM8795 was further selected and it was co- and sequentially inoculated, jointly with the S. cerevisiae starter, in a pilot scale wine production. The fermentation course and the quality of final product indicated that the co-inoculation was the better performing modality of inoculum. The above results were finally validated by performing an industrial scale vinification The mixed starter was able to successfully dominate the different stages of the fermentation process and the H. uvarum strain ITEM8795 contributed to increasing the wine organoleptic quality and to simultaneously reduce the volatile acidity. At the best of our knowledge, the present report is the first study regarding the utilization of a selected H. uvarum strain in multi-starter inoculation with S. cerevisiae for the industrial production of a wine. In addition, we demonstrated, at an industrial scale, the importance of

  16. Mitochondria in biology and medicine

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Rasmussen, Lene Juel

    2012-01-01

    pathologies (Luft, 1994). Since 1959, the understanding of mitochondrial cytopathies has evolved immensely and mitochondrial cytopathies are now known to be the largest group of metabolic diseases and to be resulting in a wide variety of pathologies. "Mitochondria in Biology and Medicine" was the title...... of the first annual conference of Society of Mitochondrial Research and Medicine - India. The conference was organized by A. S. Sreedhar, Keshav Singh and Kumarasamy Thangaraj, and was held at The Centre for Cellular and Molecular Biology (CCMB) Hyderabad, India, during 9-10 December 2011. The conference...

  17. Applications of synchrotron radiation in biology and medicine

    International Nuclear Information System (INIS)

    Khole, V.

    1988-01-01

    This paper discusses the important role of synchrotron radiation in dealing with problems in various branches of biology and medicine, viz. molecular biology, molecular biophysics, biochemistry, cell biology, X-ray microscopy, molecular surgery, medical diagnostics (angiography, X-ray radiography, forensic medicine, element analysis), environmental biology, pollution control and photobiology. (author). 15 refs., 9 figs

  18. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  19. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Synchrotron Radiation in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.

    2008-01-01

    This work is focused on a present status of synchrotron radiation X-ray applications in medicine and biology to imaging, diagnostics, and radio- therapy. Properties of X-ray beams generated by synchrotron sources are compared with radiation produced by classical laboratory X-ray tubes. A list of operating and planned synchrotron facilities applicable to biomedical purposes is given, together with their basic characteristics. A concise overview of typical X-ray synchrotron techniques in biology and medicine is carried out with discussion of their specific properties and examples of typical results. (author)

  1. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms

    International Nuclear Information System (INIS)

    1999-01-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  2. Selection of autochthonous Oenococcus oeni strains according to their oenological properties and vinification results.

    Science.gov (United States)

    Ruiz, Patricia; Izquierdo, Pedro Miguel; Seseña, Susana; Palop, María Llanos

    2010-02-28

    The goal of this study is to carry out a characterization of 84 Oenococcus oeni strains isolated from Tempranillo wine samples taken at the cellars in Castilla-La Mancha, in order to select those showing the highest potential as oenological starter cultures. Various oenological properties were analyzed and the ability of some of these strains to grow and undergo MLF in simulated laboratory microvinifications was tested. Twenty-two strains were selected on the basis of fermentation assays and the eight that produced the best results in the chemical analysis of the wines were chosen for further assays. None of the eight strains was either able to produce biogenic amines or displayed tannase or anthocyanase activities. On the other hand all presented activity against p-NP-beta Glucopyranoside, p-NP-alpha Glucopyranoside and p-NP-beta xylopyranoside. Randomly Amplified Polymorphic DNA (RAPD)-PCR was used to determine the colonizing ability of the inoculated strains. C22L9 and D13L13 strains showed the highest implantation values. On the basis of this characterization, two strains have been selected which are suitable as starter cultures for MLF of Tempranillo wine. Use of these strains will ensure that MLF proceeds successfully and gives retention of the organoleptic characteristics of wines made in Castilla-La Mancha. (c) 2009 Elsevier B.V. All rights reserved.

  3. Mitochondria in biology and medicine--2012

    DEFF Research Database (Denmark)

    Madsen, Claus Desler; Rasmussen, Lene Juel

    2014-01-01

    as biomarkers for the diseases and most important, it opens the possibility of a treatment or a cure for a disease. "Mitochondria in Biology and Medicine" was the title of the second annual conference of Society of Mitochondrial Research and Medicine-India. The conference was organized by Rana P. Singh, Keshav...

  4. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  5. Detectors in Medicine and Biology: Applications of Detectors in Technology, Medicine and Other Fields

    CERN Document Server

    Lecoq, P

    2011-01-01

    Detectors in Medicine and Biology in 'Applications of Detectors in Technology, Medicine and Other Fields', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B2: Detectors for Particles and Radiation. Part 2: Systems and Applications'. This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.1 Detectors in Medicine and Biology' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content: 7.1 Detectors in Medicine and Biology 7.1.1 Dosimetry and medical imaging 7.1.1.1 Radiotherapy and dosimetry 7.1.1.2 Status of medical imaging 7.1.1.3 Towards in-vivo molecular imaging 7.1.2 X-Ray radiography and computed tomography (CT) 7.1.2.1 Different X-Ray imaging modalities 7.1.2.2 Detec...

  6. Biology and Medicine Division: Annual report 1986

    International Nuclear Information System (INIS)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future

  7. Biology and Medicine Division: Annual report 1986

    Energy Technology Data Exchange (ETDEWEB)

    1987-04-01

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  8. Biology and Medicine Division annual report, 1981-1982

    International Nuclear Information System (INIS)

    1983-04-01

    Separate abstracts were prepared for the 61 research reports in the 1981-1982 annual report for the Biology and Medicine Division of the Lawrence Berkeley Laboratory. Programs reviewed include research medicine, Donner Pavilion, environmental physiology, radiation biophysics and structural biophysics

  9. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  10. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  11. [Application of network biology on study of traditional Chinese medicine].

    Science.gov (United States)

    Tian, Sai-Sai; Yang, Jian; Zhao, Jing; Zhang, Wei-Dong

    2018-01-01

    With the completion of the human genome project, people have gradually recognized that the functions of the biological system are fulfilled through network-type interaction between genes, proteins and small molecules, while complex diseases are caused by the imbalance of biological processes due to a number of gene expression disorders. These have contributed to the rise of the concept of the "multi-target" drug discovery. Treatment and diagnosis of traditional Chinese medicine are based on holism and syndrome differentiation. At the molecular level, traditional Chinese medicine is characterized by multi-component and multi-target prescriptions, which is expected to provide a reference for the development of multi-target drugs. This paper reviews the application of network biology in traditional Chinese medicine in six aspects, in expectation to provide a reference to the modernized study of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  12. Alcoholic fermentation under oenological conditions. Use of a combination of data analysis and neural networks to predict sluggish and stuck fermentations

    Energy Technology Data Exchange (ETDEWEB)

    Insa, G. [Inst. National de la Recherche Agronomique, Inst. des Produits de la Vigne, Lab. de Microbiologie et Technologie des Fermentations, 34 - Montpellier (France); Sablayrolles, J.M. [Inst. National de la Recherche Agronomique, Inst. des Produits de la Vigne, Lab. de Microbiologie et Technologie des Fermentations, 34 - Montpellier (France); Douzal, V. [Centre National du Machinisme Agricole du Genie Rural des Eaux et Forets, 92 - Antony (France)

    1995-09-01

    The possibility of predicting sluggish fermentations under oenological conditions was investigated by studying 117 musts of different French grape varieties using an automatic device for fermentation monitoring. The objective was to detect sluggish or stuck fermentations at the halfway point of fermentation. Seventy nine percent of fermentations were correctly predicted by combining data analysis and neural networks. (orig.)

  13. 8th Asia oceania congress of nuclear medicine and biology final program abstracts

    International Nuclear Information System (INIS)

    2004-01-01

    The eighth Asia and Oceania congress of nuclear medicine and biology was held in Beijing, China, October 9-13 2004. The congress also held satellite meeting in Hong Kong SAR, China October 16-17 2004 and in Shanghai, China October 15 2005 respectively. The congress was sponsored by Chinese Society of Nuclear Medicine and organized by Asia and Oceania Federation of Nuclear Medicine and Biology. The final program includes 379 pieces abstracts, whose contents contain nuclear medicine diagnosis and therapy and biology

  14. Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains.

    Science.gov (United States)

    Bravo-Ferrada, B M; Tymczyszyn, E E; Gómez-Zavaglia, A; Semorile, L

    2014-02-01

    The aim of this work was to evaluate the effect of acclimation on the viability, membrane integrity and the ability to consume malic acid of three oenological strains of Lactobacillus plantarum. Cultures in the stationary phase were inoculated in an acclimation medium (Accl.) containing 0, 6 or 10% v/v ethanol and incubated 48 h at 28°C. After incubation, cells were harvested by centrifugation and inoculated in a synthetic wine, containing 14% v/v ethanol and pH 3.5 at 28°C. Viability and membrane integrity were determined by flow cytometry (FC) using carboxyfluorescein diacetate (cFDA) and propidium iodide. Bacterial growth and malic acid consumption were monitored in a synthetic wine during 15 days. In nonacclimated strains, the damage of bacterial membranes produced a dramatic decrease in microbial viability in synthetic wine. In contrast, survival of strains previously acclimated in Accl. with 6 and 10% v/v ethanol was noticeable higher. Therefore, acclimation with ethanol increased the cultivability in synthetic wine and consequently, the consumption of l-malic acid after 15 days of growth. Acclimation of oenological strains in media containing ethanol prior to wine inoculation significantly decreases the membrane damage and improves viability in the harsh wine conditions. The role of membrane integrity is crucial to warrant the degradation of l-malic acid. The efficiency of multiparametric FC in monitoring viability and membrane damage along with the malic acid consumption has a strong impact on winemaking because it represents a useful tool for a quick and highly reliable evaluation of oenological parameters. © 2013 The Society for Applied Microbiology.

  15. In situ biomolecule production by bacteria; a synthetic biology approach to medicine.

    Science.gov (United States)

    Flores Bueso, Yensi; Lehouritis, Panos; Tangney, Mark

    2018-04-10

    The ability to modify existing microbiota at different sites presents enormous potential for local or indirect management of various diseases. Because bacteria can be maintained for lengthy periods in various regions of the body, they represent a platform with enormous potential for targeted production of biomolecules, which offer tremendous promise for therapeutic and diagnostic approaches for various diseases. While biological medicines are currently limited in the clinic to patient administration of exogenously produced biomolecules from engineered cells, in situ production of biomolecules presents enormous scope in medicine and beyond. The slow pace and high expense of traditional research approaches has particularly hampered the development of biological medicines. It may be argued that bacterial-based medicine has been "waiting" for the advent of enabling technology. We propose that this technology is Synthetic Biology, and that the wait is over. Synthetic Biology facilitates a systematic approach to programming living entities and/or their products, using an approach to Research and Development (R&D) that facilitates rapid, cheap, accessible, yet sophisticated product development. Full engagement with the Synthetic Biology approach to R&D can unlock the potential for bacteria as medicines for cancer and other indications. In this review, we describe how by employing Synthetic Biology, designer bugs can be used as drugs, drug-production factories or diagnostic devices, using oncology as an exemplar for the concept of in situ biomolecule production in medicine. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Systems biology technologies enable personalized traditional Chinese medicine: a systematic review.

    Science.gov (United States)

    Wang, Xijun; Zhang, Aihua; Sun, Hui; Wang, Ping

    2012-01-01

    Traditional Chinese medicine (TCM), an alternative medicine, focuses on the treatment of human disease via the integrity of the close relationship between body and syndrome analysis. It remains a form of primary care in most Asian countries and its characteristics showcase the great advantages of personalized medicine. Although this approach to disease diagnosis, prognosis and treatment has served the medical establishment well for thousands of years, it has serious shortcomings in the era of modern medicine that stem from its reliance on reductionist principles of experimentation and analysis. In this way, systems biology offers the potential to personalize medicine, facilitating the provision of the right care to the right patient at the right time. We expect that systems biology will have a major impact on future personalized therapeutic approaches which herald the future of medicine. Here we summarize current trends and critically review the potential limitations and future prospects of such treatments. Some characteristic examples are presented to highlight the application of this groundbreaking platform to personalized TCM as well as some of the necessary milestones for moving systems biology of a state-of-the-art nature into mainstream health care.

  17. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 497

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention.

  18. Biology and Medicine Division annual report, 1981-1982. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for the 61 research reports in the 1981-1982 annual report for the Biology and Medicine Division of the Lawrence Berkeley Laboratory. Programs reviewed include research medicine, Donner Pavilion, environmental physiology, radiation biophysics and structural biophysics. (KRM)

  19. Human biological rhythm in traditional Chinese medicine

    Directory of Open Access Journals (Sweden)

    Tianxing Zhang

    2016-10-01

    Full Text Available Traditional Chinese medicine (TCM has a comprehensive and thorough understanding of biological rhythm. Biological rhythm is an inherent connotation of “harmony between human and nature”, one of the thoughts in TCM. TCM discusses emphatically circadian rhythm, syzygial rhythm and seasonal rhythm, and particularly circadian and seasonal rhythms. Theories of Yin Yang and Five Elements are the principles and methods, with which TCM understands biological rhythms. Based on theories in TCM, biological rhythm in essence is a continuous variation of the human body state synchronized with natural rhythms, and theories of Yin Yang and Five Elements are both language tools to describe this continuous variation and theoretical tools for its investigation and application. The understandings of biological rhythm in TCM can be applied to etiology, health care, disease control and treatment. Many understandings in TCM have been confirmed by modern research and clinical reports, but there are still some pending issues. TCM is distinguished for its holistic viewpoint on biological rhythms.

  20. Physics with illustrative examples from medicine and biology

    CERN Document Server

    Benedek, George B

    Physics: with illustrative examples from medicine and biology is a three-volume set of textbooks in introductory physics written at the calculus level and designed primarily for students with career objectives in the life sciences.

  1. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective

    OpenAIRE

    Shuo Gu; Jianfeng Pei

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regula...

  2. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective

    Directory of Open Access Journals (Sweden)

    Shuo Gu

    2017-01-01

    Full Text Available With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  3. Chinese Herbal Medicine Meets Biological Networks of Complex Diseases: A Computational Perspective.

    Science.gov (United States)

    Gu, Shuo; Pei, Jianfeng

    2017-01-01

    With the rapid development of cheminformatics, computational biology, and systems biology, great progress has been made recently in the computational research of Chinese herbal medicine with in-depth understanding towards pharmacognosy. This paper summarized these studies in the aspects of computational methods, traditional Chinese medicine (TCM) compound databases, and TCM network pharmacology. Furthermore, we chose arachidonic acid metabolic network as a case study to demonstrate the regulatory function of herbal medicine in the treatment of inflammation at network level. Finally, a computational workflow for the network-based TCM study, derived from our previous successful applications, was proposed.

  4. Medicinal plants from Mali: Chemistry and biology.

    Science.gov (United States)

    Wangensteen, Helle; Diallo, Drissa; Paulsen, Berit Smestad

    2015-12-24

    Mali is one of the countries in West Africa where the health system rely the most on traditional medicine. The healers are mainly using medicinal plants for their treatments. The studies performed being the basis for this review is of importance as they will contribute to sustaining the traditional knowledge. They contribute to evaluate and improve locally produced herbal remedies, and the review gives also an overview of the plant preparations that will have the most potential to be evaluated for new Improved Traditional Medicines. The aim of this review is to give an overview of the studies performed related to medicinal plants from Mali in the period 1995-2015. These studies include ethnopharmacology, chemistry and biological studies of the plants that were chosen based on our interviews with the healers in different regions of Mali, and contribute to sustainable knowledge on the medicinal plants. The Department of Traditional Medicine, Bamako, Mali, is responsible for registering the knowledge of the traditional healers on their use of medicinal plants and also identifying compounds in the plants responsible for the bioactivities claimed. The studies reported aimed at getting information from the healers on the use of medicinal plants, and study the biology and chemistry of selected plants for the purpose of verifying the traditional use of the plants. These studies should form the basis for necessary knowledge for the development of registered Improved Traditional Medicines in Mali. The healers were the ethnopharmacological informants. Questions asked initially were related to wound healing. This was because the immune system is involved when wounds are healed, and additionally the immune system is involved in the majority of the illnesses common in Mali. Based on the results of the interviews the plant material for studies was selected. Studies were performed on the plant parts the healers were using when treating their patients. Conventional chromatographic

  5. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why.

    Science.gov (United States)

    Stéphanou, Angélique; Fanchon, Eric; Innominato, Pasquale F; Ballesta, Annabelle

    2018-05-09

    Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.

  6. Suitable activated stable nuclide tracer technique and its applications in biology and medicine

    International Nuclear Information System (INIS)

    Zhang Weicheng

    1989-01-01

    Stable isotopes as tracers in biology and medicine have been more extensively used. Mass spectrometry has been a classic technique in the analysis of stable isotopes because it is very sensitive and precise. Activation analysis has recently been introduced as an analytical tool. Its fast speed and simplicity is a great advantage for handling large batches of samples in isotopic tracer experiments. The combination of enriched stable isotope tracer studies and activation analysis techniques has become an ideal and reliable technique, especially in the fields of biology and medicine. This paper presents a survey of the fundamental principle, the character and the applications in biology and medicine for the suitable activated stable isotope tracer techniques

  7. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 489

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  8. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 498

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  9. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science.

    Science.gov (United States)

    Huang, Kun; Liu, Yunlong; Huang, Yufei; Li, Lang; Cooper, Lee; Ruan, Jianhua; Zhao, Zhongming

    2016-08-22

    We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.

  10. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 483

    Science.gov (United States)

    1999-01-01

    Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  11. US and Russian Cooperation in Space Biology and Medicine

    Science.gov (United States)

    Sawin, C.F.; Hanson, S.I.; House, N.G.; Pestov, I.D.

    2009-01-01

    This slide presentation concerns the 5th volume of a joint publication that describes the cooperation between the United States and Russia in research into space biology and medicine. Each of the chapters is briefly summarized.

  12. Ninth Argentine congress on biology and nuclear medicine; fourth Southernmost sessions of ALASBIMN (Latin-American Association of Biology and Nuclear Medicine); first Spanish-Argentine congress on nuclear medicine; first Argentine sessions on nuclear cardiology

    International Nuclear Information System (INIS)

    1991-01-01

    This work deals with all the papers presented at the 9. Argentine congress on biology and nuclear medicine; IV Southernmost sessions of ALASBIMN; I Spanish-Argentine congress on nuclear medicine and I Sessions Argentine sessions on nuclear cardiology held in Buenos Aires, Argentina, from October 14 - 18, 1991

  13. Nation-Based Occurrence and Endogenous Biological Reduction of Mycotoxins in Medicinal Herbs and Spices.

    Science.gov (United States)

    Do, Kee Hun; An, Tae Jin; Oh, Sang-Keun; Moon, Yuseok

    2015-10-14

    Medicinal herbs have been increasingly used for therapeutic purposes against a diverse range of human diseases worldwide. Moreover, the health benefits of spices have been extensively recognized in recent studies. However, inevitable contaminants, including mycotoxins, in medicinal herbs and spices can cause serious problems for humans in spite of their health benefits. Along with the different nation-based occurrences of mycotoxins, the ultimate exposure and toxicities can be diversely influenced by the endogenous food components in different commodities of the medicinal herbs and spices. The phytochemicals in these food stuffs can influence mold growth, mycotoxin production and biological action of the mycotoxins in exposed crops, as well as in animal and human bodies. The present review focuses on the occurrence of mycotoxins in medicinal herbs and spices and the biological interaction between mold, mycotoxin and herbal components. These networks will provide insights into the methods of mycotoxin reduction and toxicological risk assessment of mycotoxin-contaminated medicinal food components in the environment and biological organisms.

  14. Computer Models and Automata Theory in Biology and Medicine

    CERN Document Server

    Baianu, I C

    2004-01-01

    The applications of computers to biological and biomedical problem solving goes back to the very beginnings of computer science, automata theory [1], and mathematical biology [2]. With the advent of more versatile and powerful computers, biological and biomedical applications of computers have proliferated so rapidly that it would be virtually impossible to compile a comprehensive review of all developments in this field. Limitations of computer simulations in biology have also come under close scrutiny, and claims have been made that biological systems have limited information processing power [3]. Such general conjectures do not, however, deter biologists and biomedical researchers from developing new computer applications in biology and medicine. Microprocessors are being widely employed in biological laboratories both for automatic data acquisition/processing and modeling; one particular area, which is of great biomedical interest, involves fast digital image processing and is already established for rout...

  15. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 494

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes--subject and author are included after the abstract section.

  16. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 504

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes- subject and author are included after the abstract section.

  17. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 490

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  18. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 487

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  19. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 502

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. Two indexes-subject and author are included after the abstract section.

  20. Systems biology and p4 medicine: past, present, and future.

    Science.gov (United States)

    Hood, Leroy

    2013-04-01

    Studying complex biological systems in a holistic rather than a "one gene or one protein" at a time approach requires the concerted effort of scientists from a wide variety of disciplines. The Institute for Systems Biology (ISB) has seamlessly integrated these disparate fields to create a cross-disciplinary platform and culture in which "biology drives technology drives computation." To achieve this platform/culture, it has been necessary for cross-disciplinary ISB scientists to learn one another's languages and work together effectively in teams. The focus of this "systems" approach on disease has led to a discipline denoted systems medicine. The advent of technological breakthroughs in the fields of genomics, proteomics, and, indeed, the other "omics" is catalyzing striking advances in systems medicine that have and are transforming diagnostic and therapeutic strategies. Systems medicine has united genomics and genetics through family genomics to more readily identify disease genes. It has made blood a window into health and disease. It is leading to the stratification of diseases (division into discrete subtypes) for proper impedance match against drugs and the stratification of patients into subgroups that respond to environmental challenges in a similar manner (e.g. response to drugs, response to toxins, etc.). The convergence of patient-activated social networks, big data and their analytics, and systems medicine has led to a P4 medicine that is predictive, preventive, personalized, and participatory. Medicine will focus on each individual. It will become proactive in nature. It will increasingly focus on wellness rather than disease. For example, in 10 years each patient will be surrounded by a virtual cloud of billions of data points, and we will have the tools to reduce this enormous data dimensionality into simple hypotheses about how to optimize wellness and avoid disease for each individual. P4 medicine will be able to detect and treat perturbations in

  1. Systems Biology and P4 Medicine: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Leroy Hood

    2013-04-01

    Full Text Available Studying complex biological systems in a holistic rather than a “one gene or one protein” at a time approach requires the concerted effort of scientists from a wide variety of disciplines. The Institute for Systems Biology (ISB has seamlessly integrated these disparate fields to create a cross-disciplinary platform and culture in which “biology drives technology drives computation.” To achieve this platform/culture, it has been necessary for cross-disciplinary ISB scientists to learn one another’s languages and work together effectively in teams. The focus of this “systems” approach on disease has led to a discipline denoted systems medicine. The advent of technological breakthroughs in the fields of genomics, proteomics, and, indeed, the other “omics” is catalyzing striking advances in systems medicine that have and are transforming diagnostic and therapeutic strategies. Systems medicine has united genomics and genetics through family genomics to more readily identify disease genes. It has made blood a window into health and disease. It is leading to the stratification of diseases (division into discrete subtypes for proper impedance match against drugs and the stratification of patients into subgroups that respond to environmental challenges in a similar manner (e.g. response to drugs, response to toxins, etc.. The convergence of patient-activated social networks, big data and their analytics, and systems medicine has led to a P4 medicine that is predictive, preventive, personalized, and participatory. Medicine will focus on each individual. It will become proactive in nature. It will increasingly focus on wellness rather than disease. For example, in 10 years each patient will be surrounded by a virtual cloud of billions of data points, and we will have the tools to reduce this enormous data dimensionality into simple hypotheses about how to optimize wellness and avoid disease for each individual. P4 medicine will be able to

  2. Ochratoxin A removal from red wine by several oenological fining agents: bentonite, egg albumin, allergen-free adsorbents, chitin and chitosan.

    Science.gov (United States)

    Quintela, S; Villarán, M C; López De Armentia, I; Elejalde, E

    2012-01-01

    The ability of several oenological fining agents to remove ochratoxin A (OTA) from red wine was studied. The adsorbents tested were activated sodium bentonite, egg albumin, allergen-free adsorbents (complex PVPP, plant protein and amorphous silica (complex) and high molecular weight gelatine), and the non-toxic biodegradable polymers (chitin and chitosan). Several dosages within the oenological use range were tested and the wine pH, colour parameters and polyphenol concentration impact associated with each fining agent were studied. Generally, OTA removal achieved in all treatments was higher when the adsorbent dosage increased, but the impact on wine quality also was higher. Chitin at 50 g hl(-1) removed 18% the OTA without affecting significantly the wine-quality parameters. At the highest dosage tested the gelatine and complex treatments achieved greater OTA removal (up to 39-40%) compared with bentonite, egg albumin and chitin. Moreover, the gelatine and the complex had a lower impact on colour parameters and polyphenol concentration compared with chitosan, whilst OTA was reduced to around 40%. Chitosan achieved the greatest OTA removal (67%), but it strongly affected the wine-quality parameters. Otherwise, bentonite showed a relative efficiency to remove OTA, but the CI value decreased considerably. The egg albumin treatment only removed OTA up to 16% and moreover affected strongly the CI value and CIELab parameters. The results of this survey showed that the non-toxic chitin adsorbent and the allergen-free adsorbents tested could be considered as alternative fining agents to reduce OTA in red wine.

  3. BOOK REVIEW Handbook of Physics in Medicine and Biology Handbook of Physics in Medicine and Biology

    Science.gov (United States)

    Tabakov, Slavik

    2010-11-01

    This is a multi-author handbook (66 authors) aiming to describe various applications of physics to medicine and biology, from anatomy and physiology to medical equipment. This unusual reference book has 44 chapters organized in seven sections: 1. Anatomical physics; 2. Physics of perception; 3. Biomechanics; 4. Electrical physics; 5. Diagnostic physics; 6. Physics of accessory medicine; 7. Physics of bioengineering. Each chapter has separate page numbering, which is inconvenient but understandable with the number of authors. Similarly there is some variation in the emphasis of chapters: for some the emphasis is more technical and for others clinical. Each chapter has a separate list of references. The handbook includes hundreds of diagrams, images and tables, making it a useful tool for both medical physicists/engineers and other medical/biology specialists. The first section (about 40 pages) includes five chapters on physics of the cell membrane; protein signaling; cell biology and biophysics of the cell membrane; cellular thermodynamics; action potential transmission and volume conduction. The physics of these is well explained and illustrated with clear diagrams and formulae, so it could be a suitable reference for physicists/engineers. The chapters on cellular thermodynamics and action potential transmission have a very good balance of technical/clinical content. The second section (about 85 pages) includes six chapters on medical decision making; senses; somatic senses: touch and pain; hearing; vision; electroreception. Again these are well illustrated and a suitable reference for physicists/engineers. The chapter on hearing stands out with good balance and treatment of material, but some other chapters contain less physics and are close to typical physiological explanations. One could query the inclusion of the chapter on medical decision making, which also needs more detail. The third section (about 80 pages) includes eight chapters on biomechanics

  4. Education, collaboration, and innovation: intelligent biology and medicine in the era of big data.

    Science.gov (United States)

    Ruan, Jianhua; Jin, Victor; Huang, Yufei; Xu, Hua; Edwards, Jeremy S; Chen, Yidong; Zhao, Zhongming

    2015-01-01

    Here we present a summary of the 2014 International Conference on Intelligent Biology and Medicine (ICIBM 2014) and the editorial report of the supplement to BMC Genomics and BMC Systems Biology that includes 20 research articles selected from ICIBM 2014. The conference was held on December 4-6, 2014 at San Antonio, Texas, USA, and included six scientific sessions, four tutorials, four keynote presentations, nine highlight talks, and a poster session that covered cutting-edge research in bioinformatics, systems biology, and computational medicine.

  5. Intermediate physics for medicine and biology

    CERN Document Server

    Hobbie, Russell K

    2015-01-01

    This classic text has been used in over 20 countries by advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, neuroscience, and biomedical engineering. It bridges the gap between an introductory physics course and the application of physics to the life and biomedical sciences. Extensively revised and updated, the fifth edition incorporates new developments at the interface between physics and biomedicine. New coverage includes cyclotrons, photodynamic therapy, color vision, x-ray crystallography, the electron microscope, cochlear implants, deep brain stimulation, nanomedicine, and other topics highlighted in the National Research Council report BIO2010. As with the previous edition, the first half of the text is primarily biological physics, emphasizing the use of ideas from physics to understand biology and physiology, and the second half is primarily medical physics, describing the use of physics in medicine for diagnosis (mainly imaging) and therapy. Among the m...

  6. The Biology of Emergency Medicine: what have 30 years meant for Rosen's original concepts?

    Science.gov (United States)

    Zink, Brian J

    2011-03-01

    In 1979 Peter Rosen, MD, a leading academic figure in the developing field of emergency medicine (EM), wrote an article, "The Biology of Emergency Medicine," in response to criticism from other specialties and medical leaders that there was no unique biology of EM that would qualify it as a legitimate medical specialty. This essay received much attention at the time and served as rallying cry for emergency physicians (EPs) who were trying to find their places in the house of medicine and especially in medical schools and academic teaching hospitals. Thirty years later, the opposition that prompted many of Rosen's strongly worded impressions and observations on the biology of EM, clinical emergency department (ED) practice, education, and research has largely faded. Many of Rosen's predictions on the eventual success of EM have come true. However, core issues that existed then continue to present challenges for academic EM and clinical emergency practice. © 2011 by the Society for Academic Emergency Medicine.

  7. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 499

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  8. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 485

    Science.gov (United States)

    1999-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1999-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes-subject and author are included after the abstract section.

  9. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 506

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes- subject and author are included after the abstract section.

  10. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 496

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth#s atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract. The NASA CASI price code table, addresses of organizations, and document availability information are included before the abstract section. Two indexes#subject and author are included after the abstract section.

  11. Advances in cryo-electron tomography for biology and medicine.

    Science.gov (United States)

    Koning, Roman I; Koster, Abraham J; Sharp, Thomas H

    2018-05-01

    Cryo-electron tomography (CET) utilizes a combination of specimen cryo-fixation and multi-angle electron microscopy imaging to produce three-dimensional (3D) volume reconstructions of native-state macromolecular and subcellular biological structures with nanometer-scale resolution. In recent years, cryo-electron microscopy (cryoEM) has experienced a dramatic increase in the attainable resolution of 3D reconstructions, resulting from technical improvements of electron microscopes, improved detector sensitivity, the implementation of phase plates, automated data acquisition schemes, and improved image reconstruction software and hardware. These developments also greatly increased the usability and applicability of CET as a diagnostic and research tool, which is now enabling structural biologists to determine the structure of proteins in their native cellular environment to sub-nanometer resolution. These recent technical developments have stimulated us to update on our previous review (Koning, R.I., Koster, A.J., 2009. Cryo-electron tomography in biology and medicine. Ann Anat 191, 427-445) in which we described the fundamentals of CET. In this follow-up, we extend this basic description in order to explain the aforementioned recent advances, and describe related 3D techniques that can be applied to the anatomy of biological systems that are relevant for medicine. Copyright © 2018 Elsevier GmbH. All rights reserved.

  12. Nanodiamonds as platforms for biology and medicine.

    Science.gov (United States)

    Man, Han B; Ho, Dean

    2013-02-01

    Nanoparticles possess a wide range of exceptional properties applicable to biology and medicine. In particular, nanodiamonds (NDs) are being studied extensively because they possess unique characteristics that make them suitable as platforms for diagnostics and therapeutics. This carbon-based material (2-8 nm) is medically relevant because it unites several key properties necessary for clinical applications, such as stability and compatibility in biological environments, and scalability in production. Research by the Ho group and others has yielded ND particles with a variety of capabilities ranging from delivery of chemotherapeutic drugs to targeted labeling and uptake studies. In addition, encouraging new findings have demonstrated the ability for NDs to effectively treat chemoresistant tumors in vivo. In this review, we highlight the progress made toward bringing nanodiamonds from the bench to the bedside.

  13. Nanotechnology: emerging tools for biology and medicine.

    Science.gov (United States)

    Wong, Ian Y; Bhatia, Sangeeta N; Toner, Mehmet

    2013-11-15

    Historically, biomedical research has been based on two paradigms. First, measurements of biological behaviors have been based on bulk assays that average over large populations. Second, these behaviors have then been crudely perturbed by systemic administration of therapeutic treatments. Nanotechnology has the potential to transform these paradigms by enabling exquisite structures comparable in size with biomolecules as well as unprecedented chemical and physical functionality at small length scales. Here, we review nanotechnology-based approaches for precisely measuring and perturbing living systems. Remarkably, nanotechnology can be used to characterize single molecules or cells at extraordinarily high throughput and deliver therapeutic payloads to specific locations as well as exhibit dynamic biomimetic behavior. These advances enable multimodal interfaces that may yield unexpected insights into systems biology as well as new therapeutic strategies for personalized medicine.

  14. Nanotechnology for biology and medicine at the building block level

    CERN Document Server

    Silva, Gabriel A

    2011-01-01

    This text book will bring together a mix of both internationally known and established senior scientists along side up and coming (but already accomplished) junior scientists that have varying expertise in fundamental and applied nanotechnology to biology and medicine.

  15. Evaluation of biological activities and chemical constituent of storage medicinal plant materials used as a traditional medicine in Nepal

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Pandey

    2017-12-01

    Full Text Available Aim: The main aims of the study were to evaluate the phytochemicals, antioxidant, antibacterial and chemical constituents of storage medicinal plant materials used as a traditional medicine in Nepal. Methods: Phytochemical screening, total phenolic content, total flavonoid content, antibacterial activities, anti-oxidant assay of the crude extract (water, methanol, n-hexane and acetone were carried out to identify the biological activities and phytonutrients present in the different extract. The chemical constituents present in the crude extract were analyzed using the high performance liquid chromatography (HPLC equipped with UV detector. Results: Evaluated medicinal plant materials were found to have diverse phytonutrients. Results revealed that methanol extract of Pakhanved and Jethimadhu have highest total flavonoids and polyphenol content. Among the selected medicinal plant materials Jethimadhu extract revealed the highest antioxidant activities. Furthermore, evaluated medicinal plants extract were found to exert a range of in vitro growth inhibition activity against both gram positive and gram negative species. The highest antibacterial activities were observed in the case of methanol extract, whereas, least activity was observed with the hexane extract. HPLC analysis of the acetone extract of Jethimadhu reveals the presence of diosmetin. Conclusions: Our result revealed that among the five evaluated medicinal plant materials, Jethimadhu extract revealed biological activities and exhibits a higher amount of polyphenol and flavonoid content. [J Complement Med Res 2017; 6(4.000: 369-377

  16. An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science.

    Science.gov (United States)

    Chou, Kuo-Chen

    2017-01-01

    The eternal or ultimate goal of medicinal chemistry is to find most effective ways to treat various diseases and extend human beings' life as long as possible. Human being is a biological entity. To realize such an ultimate goal, the inputs or breakthroughs from the advances in biological science are no doubt most important that may even drive medicinal science into a revolution. In this review article, we are to address this from several different angles. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

    Science.gov (United States)

    Egorova, Ksenia S; Gordeev, Evgeniy G; Ananikov, Valentine P

    2017-05-24

    Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in the form of ionic liquid species. The main aim of this Review is to attract a broad audience of chemical, biological, and medical scientists to study advantages of ionic liquid pharmaceutics. Overall, the discussed data highlight the importance of the research direction defined as "Ioliomics", studies of ions in liquids in modern chemistry, biology, and medicine.

  18. Implementation of Plasma Fractionation in Biological Medicines Production

    OpenAIRE

    Mousavi Hosseini, Kamran; Ghasemzadeh, Mehran

    2016-01-01

    Context The major motivation for the preparation of the plasma derived biological medicine was the treatment of casualties from the Second World War. Due to the high expenses for preparation of plasma derived products, achievement of self-sufficiency in human plasma biotechnological industry is an important goal for developing countries. Evidence Acquisition The complexity of the blood plasma was first revealed by the Nobel Prize laureate, Arne Tiselius and Theodor Svedberg, which resulted in...

  19. Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench

    Science.gov (United States)

    2012-08-01

    1105 Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench Luiz H...fungal community and micropropagated clones of E. purpurea was re-established after acclimatization to soil and the endophytic fungi produced compounds...Diversity and Biological Activities of Endophytic Fungi Associated with Micropropagated Medicinal Plant Echinacea purpurea (L.) Moench 5a. CONTRACT

  20. PCMO L01-Setting Specifications for Biological Investigational Medicinal Products.

    Science.gov (United States)

    Krause, Stephan O

    2015-01-01

    This paper provides overall guidance and best practices for the setting of specifications for clinical biological drug substances and drug products within the framework of ICH guidelines on pharmaceutical development [Q8(R2) and Q11], quality risk management (Q9), and quality systems (Q10). A review is provided of the current regulatory expectations for the specification setting process as part of a control strategy during product development, pointing to existing challenges for the investigational new drug/investigational medicinal product dossier (IND/IMPD) sponsor. A case study illustrates how the investigational medicinal product specification revision process can be managed within a flexible quality system, and how specifications can be set and justified for early and late development stages. This paper provides an overview for the setting of product specifications for investigational medicinal products used in clinical trials. A case study illustrates how product specifications of investigational medicinal products can be justified and managed within a modern product quality system. © PDA, Inc. 2015.

  1. How do precision medicine and system biology response to human body's complex adaptability?

    Science.gov (United States)

    Yuan, Bing

    2016-12-01

    In the field of life sciences, although system biology and "precision medicine" introduce some complex scientifific methods and techniques, it is still based on the "analysis-reconstruction" of reductionist theory as a whole. Adaptability of complex system increase system behaviour uncertainty as well as the difficulties of precise identifification and control. It also put systems biology research into trouble. To grasp the behaviour and characteristics of organism fundamentally, systems biology has to abandon the "analysis-reconstruction" concept. In accordance with the guidelines of complexity science, systems biology should build organism model from holistic level, just like the Chinese medicine did in dealing with human body and disease. When we study the living body from the holistic level, we will fifind the adaptability of complex system is not the obstacle that increases the diffificulty of problem solving. It is the "exceptional", "right-hand man" that helping us to deal with the complexity of life more effectively.

  2. Vignettes from the field of mathematical biology: the application of mathematics to biology and medicine.

    Science.gov (United States)

    Murray, J D

    2012-08-06

    The application of mathematical models in biology and medicine has a long history. From the sparse number of papers in the first half of the twentieth century with a few scientists working in the field it has become vast with thousands of active researchers. We give a brief, and far from definitive history, of how some parts of the field have developed and how the type of research has changed. We describe in more detail just two examples of specific models which are directly related to real biological problems, namely animal coat patterns and the growth and image enhancement of glioblastoma brain tumours.

  3. N-acylsulfonamides: Synthetic routes and biological potential in medicinal chemistry.

    Science.gov (United States)

    Ammazzalorso, Alessandra; De Filippis, Barbara; Giampietro, Letizia; Amoroso, Rosa

    2017-12-01

    Sulfonamide is a common structural motif in naturally occurring and synthetic medicinal compounds. The rising interest in sulfonamides and N-acyl derivatives is attested by the large number of drugs and lead compounds identified in last years, explored in different fields of medicinal chemistry and showing biological activity. Many acylsulfonamide derivatives were designed and synthesized as isosteres of carboxylic acids, being the characteristics of these functional groups very close. Starting from chemical routes to N-acylsulfonamides, this review explores compounds of pharmaceutical interest, developed as enzymatic inhibitors or targeting receptors. © 2017 John Wiley & Sons A/S.

  4. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David

    2017-08-23

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  5. Systems biology of resilience and optimal health: integrating Chinese and Western medicine perspectives

    Directory of Open Access Journals (Sweden)

    Herman van Wietmarschen

    2017-05-01

    Full Text Available Western science has been strong in measuring details of biological systems such as gene expression levels and metabolite concentrations, and has generally followed a bottom up approach with regard to explaining biological phenomena. Chinese medicine in contrast has evolved as a top down approach in which body and mind is seen as a whole, a phenomenological approach based on the organization and dynamics of symptom patterns. Western and Chinese perspectives are developing towards a ‘middle out’ approach. Chinese medicine diagnosis, we will argue, allows bridging the gap between biologists and psychologists and offers new opportunities for the development of health monitoring tools and health promotion strategies.

  6. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David; Marabita, Francesco; Tarazona, Sonia; Cano, Isaac; Roca, Josep; Conesa, Ana; Sabatier, Philippe; Tegner, Jesper

    2017-01-01

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  7. Study of the components of quality in SO2-free wines obtained by innovative vinification protocols. Evaluation of the pre-fermentative addition of lysozyme and oenological tannins.

    OpenAIRE

    Sonni, Francesca

    2010-01-01

    The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process. In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, ...

  8. The medicinal Agaricus mushroom cultivated in Brazil: biology, cultivation and non-medicinal valorisation.

    Science.gov (United States)

    Largeteau, Michèle L; Llarena-Hernández, Régulo Carlos; Regnault-Roger, Catherine; Savoie, Jean-Michel

    2011-12-01

    Sun mushroom is a cultivated mushroom extensively studied for its medicinal properties for several years and literature abounds on the topic. Besides, agronomical aspects were investigated in Brazil, the country the mushroom comes from, and some studies focus on the biology of the fungus. This review aimed to present an overview of the non-medicinal knowledge on the mushroom. Areas of commercial production and marketing trends are presented. Its specific fragrance, taste, nutritional value and potential use of extracts as food additives are compared to those of the most cultivated fungi and laboratory models. The interest of the mushroom for lignocellulosic enzyme production and source of biomolecules for the control of plant pathogens are shown. Investigation of genetic variability among cultivars is reported. Growing and storage of mycelium, as well as cultivation conditions (substrate and casing generally based on local products; indoor and outdoor cultivation; diseases and disorders) are described and compared to knowledge on Agaricus bisporus.

  9. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 486

    Science.gov (United States)

    1999-01-01

    In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  10. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 492

    Science.gov (United States)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  11. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  12. Radionuclides in biology and medicine-review and future

    International Nuclear Information System (INIS)

    Cameron, J.R.

    1996-01-01

    Radioactivity was discovered by Becquerel in France on March 1, 1896. It is appropriate in this centennial year to review its history, especially its applications in biology and medicine. Its future is currently open-quotes under a cloudclose quotes because of the exaggerated fear of health risks from low-level radioactivity. The author is optimistic about its future, but one will have to wait a few decades for the cloud of ignorance to pass and the sunshine of education about radiation to greatly reduce radiation phobia

  13. Radionuclides in biology and medicine-review and future

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, J.R. [Cameron Consultant, Lone Rock, WI (United States)

    1996-12-31

    Radioactivity was discovered by Becquerel in France on March 1, 1896. It is appropriate in this centennial year to review its history, especially its applications in biology and medicine. Its future is currently {open_quotes}under a cloud{close_quotes} because of the exaggerated fear of health risks from low-level radioactivity. The author is optimistic about its future, but one will have to wait a few decades for the cloud of ignorance to pass and the sunshine of education about radiation to greatly reduce radiation phobia.

  14. Using of Quantum Dots in Biology and Medicine.

    Science.gov (United States)

    Pleskova, Svetlana; Mikheeva, Elza; Gornostaeva, Ekaterina

    2018-01-01

    Quantum dots are nanoparticles, which due to their unique physical and chemical (first of all optical) properties, are promising in biology and medicine. There are many ways for quantum dots synthesis, both in the form of nanoislands self-forming on the surfaces, which can be used as single-photon emitters in electronics for storing information, and in the form of colloidal quantum dots for diagnostic and therapeutic purposes in living systems. The paper describes the main methods of quantum dots synthesis and summarizes medical and biological ways of their use. The main emphasis is laid on the ways of quantum dots surface modification. Influence of the size and form of nanoparticles, charge on the surfaces of quantum dots, and cover type on the efficiency of internalization by cells and cell compartments is shown. The main mechanisms of penetration are considered.

  15. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  16. New oenological practice to promote non-Saccharomyces species of interest: saturating grape juice with carbon dioxide.

    Science.gov (United States)

    Chasseriaud, Laura; Coulon, Joana; Marullo, Philippe; Albertin, Warren; Bely, Marina

    2018-04-01

    Non-Saccharomyces yeast species, naturally found in grape must, may impact wine quality positively or negatively. In this study, a mixture of five non-Saccharomyces species (Torulaspora delbrueckii, Metschnikowia spp., Starmerella bacillaris (formerly called Candida zemplinina), Hanseniaspora uvarum, Pichia kluyveri), mimicking the composition of the natural non-Saccharomyces community found in grape must, was used for alcoholic fermentation. The impact of CO 2 saturation of the grape juice was studied first on this mixture alone, and then in the presence of Saccharomyces cerevisiae. Two isogenic strains of this species were used: the first with a short and the second a long fermentation lag phase. This study demonstrated that saturating grape juice with CO 2 had interesting potential as an oenological technique, inhibiting undesirable species (S. bacillaris and H. uvarum) and stimulating non-Saccharomyces of interest (T. delbrueckii and P. kluyveri). This stimulating effect was particularly marked when CO 2 saturation was associated with the presence of S. cerevisiae with long fermentation lag phase. The direct consequence of this association was an enhancement of 3-SH levels in the resulting wine.

  17. Readability assessment of package inserts of biological medicinal products from the European medicines agency website.

    Science.gov (United States)

    Piñero-López, Ma Ángeles; Modamio, Pilar; Lastra, Cecilia F; Mariño, Eduardo L

    2014-07-01

    Package inserts that accompany medicines are a common source of information aimed at patients and should match patient abilities in terms of readability. Our objective was to determine the degree of readability of the package inserts for biological medicinal products commercially available in 2007 and compare them with the readability of the same package inserts in 2010. A total of 33 package inserts were selected and classified into five groups according to the type of medicine: monoclonal antibody-based products, cytokines, therapeutic enzymes, recombinant blood factors and other blood-related products, and recombinant hormones. The package inserts were downloaded from the European Medicines Agency website in 2007 and 2010. Readability was evaluated for the entire text of five of the six sections of the package inserts and for the 'Annex' when there was one. Three readability formulas were used: SMOG (Simple Measure of Gobbledygook) grade, Flesh-Kincaid grade level, and Szigriszt's perspicuity index. No significant differences were found between the readability results for the 2007 package inserts and those from 2010 according to any of the three readability indices studied (p>0.05). However, there were significant differences (preadability scores of the sections of the package inserts in both 2007 and 2010. The readability of the package inserts was above the recommended sixth grade reading level (ages 11-12) and may lead to difficulties of understanding for people with limited literacy. All the sections should be easy to read and, therefore, the readability of the medicine package inserts studied should be improved.

  18. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. Supplement 488

    Science.gov (United States)

    1999-01-01

    This report lists reports, articles and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  19. Biological activities and medicinal properties of Cajanus cajan (L Millsp.

    Directory of Open Access Journals (Sweden)

    Dilipkumar Pal

    2011-01-01

    Full Text Available Cajanus cajan (L Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur (family: Fabaceae is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  20. Biological activities and medicinal properties of Cajanus cajan (L) Millsp.

    Science.gov (United States)

    Pal, Dilipkumar; Mishra, Pragya; Sachan, Neetu; Ghosh, Ashoke K

    2011-10-01

    Cajanus cajan (L) Millsp. (Sanskrit: Adhaki, Hindi: Arhar, English: Pigeon pea, Bengali: Tur) (family: Fabaceae) is the most important grain legume crop of rain-fed agriculture in semi-arid tropics. It is both a food crop and a cover/forage crop with high levels of proteins and important amino acids like methionine, lysine and tryptophan. During the last few decades extensive studies have been carried out regarding the chemistry of C. cajan and considerable progress has been achieved regarding its biological activities and medicinal applications. This review article gives an overview on the biological activities of the compounds isolated, pharmacological actions and clinical studies of C. cajan extracts apart from its general details.

  1. Preparation and application of various nanoparticles in biology and medicine

    OpenAIRE

    Vardan Gasparyan

    2013-01-01

    The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI) contr...

  2. 6th world congress of Nuclear Medicine and Biology, October 23-28, 1994, Sydney, Australia. Abstracts

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The supplement presents 962 abstracts of papers or posters presented at the 6th World Congress of Nuclear Medicine and Biology, held from 23-28 October 1994 in Sydney, Australia. The key subjects of the conference are diagnostic nuclear medicine, with emphasis on scintiscanning, SPET and PET in all fields of medicine. There is an alphabetical author index to facilitate retrieval of individual papers [de

  3. Opportunities and obstacles for deep learning in biology and medicine

    Science.gov (United States)

    2018-01-01

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. PMID:29618526

  4. Opportunities and obstacles for deep learning in biology and medicine.

    Science.gov (United States)

    Ching, Travers; Himmelstein, Daniel S; Beaulieu-Jones, Brett K; Kalinin, Alexandr A; Do, Brian T; Way, Gregory P; Ferrero, Enrico; Agapow, Paul-Michael; Zietz, Michael; Hoffman, Michael M; Xie, Wei; Rosen, Gail L; Lengerich, Benjamin J; Israeli, Johnny; Lanchantin, Jack; Woloszynek, Stephen; Carpenter, Anne E; Shrikumar, Avanti; Xu, Jinbo; Cofer, Evan M; Lavender, Christopher A; Turaga, Srinivas C; Alexandari, Amr M; Lu, Zhiyong; Harris, David J; DeCaprio, Dave; Qi, Yanjun; Kundaje, Anshul; Peng, Yifan; Wiley, Laura K; Segler, Marwin H S; Boca, Simina M; Swamidass, S Joshua; Huang, Austin; Gitter, Anthony; Greene, Casey S

    2018-04-01

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. © 2018 The Authors.

  5. Synergy between medicinal chemistry and biological research.

    Science.gov (United States)

    Moncada, Salvador; Coaker, Hannah

    2014-09-01

    Salvador Moncada studied medicine at the University of El Salvador (El Salvador) before coming to the UK in 1971 to work on a PhD with Professor John Vane at the Institute of Basic Medical Sciences, Royal College of Surgeons (UK). After a short period of research at the University of Honduras (Honduras), he joined the Wellcome Research Laboratories (UK) where he became Head of the Department of Prostaglandin Research and later, Director of Research. He returned to academic life in 1996 as founder and director of the Wolfson Institute for Biomedical Research at University College London (UK). Moncada played a role in the discovery of the mechanism of action of aspirin-like drugs and later led the teams which discover prostacyclin and identified nitric oxide as a biological mediator. In his role as a Director of Research of the Wellcome Laboratories, he oversaw the discovery and development of medicines for epilepsy, migraine, malaria and cancer. Currently, he is working on the regulation of cell proliferation as Director of the Institute of Cancer Sciences at the University of Manchester (UK). Moncada has won numerous awards from the international scientific community and in 2010, he received a knighthood from Her Majesty Queen Elizabeth II for his services to science.

  6. Official Program and Abstracts of the 15. Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97); Iberoamerican Congress of Nuclear Medicine

    International Nuclear Information System (INIS)

    1997-01-01

    This issue contains 117 abstracts of lectures and poster sessions of the 15th Meeting of the Latin-American Association of Biology and Nuclear Medicine Societies (ALASBIMN 97) and Iberoamerican Congress of Nuclear Medicine, held in Lima, Peru, from 26 to 30 October 1997. The key subjects addressed are nuclear medicine and diagnostic techniques on brain, liver, lungs, heart, osteo-articular, cardiology, oncology, endocrinology, radiopharmaceuticals, medical physics, SPECT and their applications in diagnostic medicine. (APC)

  7. Biology and Medicine Division annual report, 1985

    International Nuclear Information System (INIS)

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report

  8. Biology and Medicine Division annual report, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1986-04-01

    This book briefly describes the activities of the Biology and Medicine Division of the Lawrence Berkeley Laboratory. During the past year the Donner Pavilion program on the treatment of arteriovenous malformations in the brain has chalked up very significant successes. The disease control rate has been high and objective measures of success using cerebral angiography have been established. The new high resolution positron emitting tomographic imager has been demonstrated to operate successfully. In the Radiation Biophysics program, the availability of higher mass ions up to uranium has allowed us cell and tissue studies in a radiation domain that is entirely new. Using uranium beams, investigators have already made new and exciting findings that are described in the body of the report.

  9. [New materia medica project: synthetic biology based bioactive metabolites research in medicinal plant].

    Science.gov (United States)

    Wang, Yong

    2017-03-25

    In the last decade, synthetic biology research has been gradually transited from monocellular parts or devices toward more complex multicellular systems. The emerging plant synthetic biology is regarded as the "next chapter" of synthetic biology. The complex and diverse plant metabolism as the entry point, plant synthetic biology research not only helps us understand how real life is working, but also facilitates us to learn how to design and construct more complex artificial life. Bioactive compounds innovation and large-scale production are expected to be breakthrough with the redesigned plant metabolism as well. In this review, we discuss the research progress in plant synthetic biology and propose the new materia medica project to lift the level of traditional Chinese herbal medicine research.

  10. Applications of intelligent optimization in biology and medicine current trends and open problems

    CERN Document Server

    Grosan, Crina; Tolba, Mohamed

    2016-01-01

    This volume provides updated, in-depth material on the application of intelligent optimization in biology and medicine. The aim of the book is to present solutions to the challenges and problems facing biology and medicine applications. This Volume comprises of 13 chapters, including an overview chapter, providing an up-to-date and state-of-the research on the application of intelligent optimization for bioinformatics applications, DNA based Steganography, a modified Particle Swarm Optimization Algorithm for Solving Capacitated Maximal Covering Location Problem in Healthcare Systems, Optimization Methods for Medical Image Super Resolution Reconstruction and breast cancer classification. Moreover, some chapters that describe several bio-inspired approaches in MEDLINE Text Mining, DNA-Binding Proteins and Classes, Optimized Tumor Breast Cancer Classification using Combining Random Subspace and Static Classifiers Selection Paradigms, and Dental Image Registration. The book will be a useful compendium for a broad...

  11. South African Association of Physicists in Medicine and Biology: 26. annual congress

    International Nuclear Information System (INIS)

    1986-01-01

    The twenty-sixth annual congress of the South African Association of Physicists in Medicine and Biology was held from 18-21 March 1986 in Pretoria. Papers delivered on the conference covered subjects like medical physics, radiotherapy, radiation protection, calibration of radiation monitors, radiation detectors, radiation doses and dosimetry

  12. Application of Confocal Laser Scanning Microscopy in Biology and Medicine

    OpenAIRE

    I. A. Volkov; N. V. Frigo; L. F. Znamenskaya; O. R. Katunina

    2014-01-01

    Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As...

  13. Abstracts of 2. symposium on free radicals in biology and medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The abstracts presented in the booklet concern influence of free radicals (frequently generated by ionizing radiation) on DNA, proteins, lipids and chromatin of various living organisms. Works show, that free radicals cause serious damages in biological systems leading to carcinogenesis and many genetic diseases. Thus understanding of mechanisms of free radical action is important issue in medicine and life sciences.

  14. Abstracts of 2. symposium on free radicals in biology and medicine

    International Nuclear Information System (INIS)

    1994-01-01

    The abstracts presented in the booklet concern influence of free radicals (frequently generated by ionizing radiation) on DNA, proteins, lipids and chromatin of various living organisms. Works show, that free radicals cause serious damages in biological systems leading to carcinogenesis and many genetic diseases. Thus understanding of mechanisms of free radical action is important issue in medicine and life sciences

  15. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine

    DEFF Research Database (Denmark)

    Polur, Honey; Joshi, Tejal; Workman, Christopher

    2011-01-01

    Ayurveda, the traditional Indian medicine is one of the most ancient, yet living medicinal traditions. In the present work, we developed an in silico library of natural products from Ayurveda medicine, coupled with structural information, plant origin and traditional therapeutic use. Following this....... We hereby present a number of examples where the traditional medicinal use of the plant matches with the medicinal use of the drug that is structurally similar to a plant component. With this approach, we have brought to light a number of obscure compounds of natural origin (e.g. kanugin......, we compared their structures with those of drugs from DrugBank and we constructed a structural similarity network. Information on the traditional therapeutic use of the plants was integrated in the network in order to provide further evidence for the predicted biologically active natural compounds...

  16. Precision medicine driven by cancer systems biology.

    Science.gov (United States)

    Filipp, Fabian V

    2017-03-01

    Molecular insights from genome and systems biology are influencing how cancer is diagnosed and treated. We critically evaluate big data challenges in precision medicine. The melanoma research community has identified distinct subtypes involving chronic sun-induced damage and the mitogen-activated protein kinase driver pathway. In addition, despite low mutation burden, non-genomic mitogen-activated protein kinase melanoma drivers are found in membrane receptors, metabolism, or epigenetic signaling with the ability to bypass central mitogen-activated protein kinase molecules and activating a similar program of mitogenic effectors. Mutation hotspots, structural modeling, UV signature, and genomic as well as non-genomic mechanisms of disease initiation and progression are taken into consideration to identify resistance mutations and novel drug targets. A comprehensive precision medicine profile of a malignant melanoma patient illustrates future rational drug targeting strategies. Network analysis emphasizes an important role of epigenetic and metabolic master regulators in oncogenesis. Co-occurrence of driver mutations in signaling, metabolic, and epigenetic factors highlights how cumulative alterations of our genomes and epigenomes progressively lead to uncontrolled cell proliferation. Precision insights have the ability to identify independent molecular pathways suitable for drug targeting. Synergistic treatment combinations of orthogonal modalities including immunotherapy, mitogen-activated protein kinase inhibitors, epigenetic inhibitors, and metabolic inhibitors have the potential to overcome immune evasion, side effects, and drug resistance.

  17. The pharmacology and toxicology of three new biologic agents used in pulmonary medicine.

    Science.gov (United States)

    Albertson, T E; Walby, W F; Allen, R P; Tharratt, R S

    1995-01-01

    Biological agents have played an important role in the evolution of modern medical therapeutics. Recent advances in biologicals have in part been stimulated by the biotechnology revolution seen over the last several years. Toxicologists need to be aware of the proposed mechanisms and approved and experimental uses of these new biologic agents. Further, controversies about their use, efficacy, cost issues and potential toxicities should be known. Often these drugs are designed for small patient populations thus limiting the availability of human toxicological data bases. This paper reviews the pharmacology and toxicology of three new biologics (recombinant human DNase I, alpha 1-protease inhibitor, and nitric oxide). These agents appear to have important roles in treating specific diseases or disease states seen in pulmonary medicine.

  18. [Evolutionary medicine: an introduction. Evolutionary biology, a missing element in medical teaching].

    Science.gov (United States)

    Swynghedauw, Bernard

    2009-05-01

    The aim of this brief review article is to help to reconcile medicine with evolutionary biology, a subject that should be taught in medical school. Evolutionary medicine takes the view that contemporary ills are related to an incompatibility between the environment in which humans currently live and their genomes, which have been shaped by diferent environmental conditions during biological evolution. Human activity has recently induced acute environmental modifications that have profoundly changed the medical landscape. Evolutionary biology is an irreversible, ongoing and discontinuous process characterized by periods of stasis followed by accelerations. Evolutionary biology is determined by genetic mutations, which are selected either by Darwinian selective pressure or randomly by genetic drift. Most medical events result from a genome/environment conflict. Some may be purely genetic, as in monogenic diseases, and others purely environmental, such as traffic accidents. Nevertheless, in most common diseases the clinical landscape is determined by the conflict between these two factors, the genetic elements of which are gradually being unraveled Three examples are examined in depth:--The medical consequences of the greenhouse effect. The absence of excess mortality during recent heat waves suggests that the main determinant of mortality in the 2003 heatwave was heatstroke and old age. The projected long-term effects of global warming call for research on thermolysis, a forgotten branch of physiology.--The hygiene hypothesis postulates that the exponential rise in autoimmune and allergic diseases is linked to lesser exposure to infectious agents, possibly involving counter-regulatory factors such as IL-10.--The recent rise in the incidence of obesity and type 2 diabetes in rich countries can be considered to result from a conflict between a calorie-rich environment and gene variants that control appetite. These variants are currently being identified by genome

  19. The "Century of Biology" and the Evolving Role of Medicinal Chemists in Neuroscience.

    Science.gov (United States)

    Doller, Dario

    2017-01-18

    Society expects that the wave of contemporary new discoveries in biological sciences will soon lead to novel treatments for human diseases, including many devastating brain disorders. Historically, medicinal chemists have contributed to drug discovery teams in ways that synergize with those from their partner sciences, and help transform new knowledge into the ultimate tangible asset: a new drug. The optimal balance of resources and the right strategy to minimize the risk of late clinical failure may differ for different therapeutic indications. Recent progress in the oncology and neuroscience therapeutic areas is compared and contrasted, in particular looking at the biological target space and functional attributes of recently FDA-approved drugs and those in the late clinical pipeline. Medicinal chemists are poised to have major influence in neuroscience drug research, and examples of areas of potential impact are presented, together with a discussion of the soft skills they bring to their project teams and why they have been so impactful.

  20. Biology and medicine of soccer: an update.

    Science.gov (United States)

    Shephard, R J

    1999-10-01

    Recent literature on the biology and medicine of soccer (primarily since 1990) has been accumulated by a combination of computer searching of relevant databases and review of the author's extensive files. From a total of 9681 papers, 540 were selected for closer scrutiny and 370 are discussed in the present review. These articles cover patterns of play and the resulting energy demands, the nutritional requirements of soccer, the anthropometric, physiological, biochemical and immunological characteristics of successful players, the influence of environmental stressors (heat, cold, hypoxia and time zone shifts), special features of female and junior competitors, selected issues in training, and the incidence and prevention of injuries. The information presented has important implications for the safety and success of soccer players; the challenge is now to ensure that this information is understood and acted upon by coaches and individual team members.

  1. Computational intelligence, medicine and biology selected links

    CERN Document Server

    Zaitseva, Elena

    2015-01-01

    This book contains an interesting and state-of the art collection of chapters presenting several examples of attempts to developing modern tools utilizing computational intelligence in different real life problems encountered by humans. Reasoning, prediction, modeling, optimization, decision making, etc. need modern, soft and intelligent algorithms, methods and methodologies to solve, in the efficient ways, problems appearing in human activity. The contents of the book is divided into two parts. Part I, consisting of four chapters, is devoted to selected links of computational intelligence, medicine, health care and biomechanics. Several problems are considered: estimation of healthcare system reliability, classification of ultrasound thyroid images, application of fuzzy logic to measure weight status and central fatness, and deriving kinematics directly from video records. Part II, also consisting of four chapters, is devoted to selected links of computational intelligence and biology. The common denominato...

  2. Antioxidant Cerium Oxide Nanoparticles in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Bryant C. Nelson

    2016-05-01

    Full Text Available Previously, catalytic cerium oxide nanoparticles (CNPs, nanoceria, CeO2-x NPs have been widely utilized for chemical mechanical planarization in the semiconductor industry and for reducing harmful emissions and improving fuel combustion efficiency in the automobile industry. Researchers are now harnessing the catalytic repertoire of CNPs to develop potential new treatment modalities for both oxidative- and nitrosative-stress induced disorders and diseases. In order to reach the point where our experimental understanding of the antioxidant activity of CNPs can be translated into useful therapeutics in the clinic, it is necessary to evaluate the most current evidence that supports CNP antioxidant activity in biological systems. Accordingly, the aims of this review are three-fold: (1 To describe the putative reaction mechanisms and physicochemical surface properties that enable CNPs to both scavenge reactive oxygen species (ROS and to act as antioxidant enzyme-like mimetics in solution; (2 To provide an overview, with commentary, regarding the most robust design and synthesis pathways for preparing CNPs with catalytic antioxidant activity; (3 To provide the reader with the most up-to-date in vitro and in vivo experimental evidence supporting the ROS-scavenging potential of CNPs in biology and medicine.

  3. Application of photonuclear methods of analysis in biology, medicine, ecological studies

    International Nuclear Information System (INIS)

    Burmistenko, Yu.N.

    1986-01-01

    Examples of application of photonuclear methods of analysis (PhMA) of the substance composition in biology, medicine, ecology are considered. The methods for determining the element composition of soft and bone tissues, blood, urine are developed. The results of studying the limits of determination of different elements are presented. In ecological investigations PhMA is applied for studying the composition of atmospheric aerosols, industrial sewage, canalization wastes, pollution of soil, plants, animals with toxic elements

  4. Medicinal and Biological Chemistry (MBC) Library: An Efficient Source of New Hits.

    Science.gov (United States)

    Sebastián-Pérez, Víctor; Roca, Carlos; Awale, Mahendra; Reymond, Jean-Louis; Martinez, Ana; Gil, Carmen; Campillo, Nuria E

    2017-09-25

    Identification of new hits is one of the biggest challenges in drug discovery. Creating a library of well-characterized drug-like compounds is a key step in this process. Our group has developed an in-house chemical library called the Medicinal and Biological Chemistry (MBC) library. This collection has been successfully used to start several medicinal chemistry programs and developed in an accumulation of more than 30 years of experience in drug design and discovery of new drugs for unmet diseases. It contains over 1000 compounds, mainly heterocyclic scaffolds. In this work, analysis of drug-like properties and comparative study with well-known libraries by using different computer software are presented here.

  5. Biological activity of common mullein, a medicinal plant.

    Science.gov (United States)

    Turker, Arzu Ucar; Camper, N D

    2002-10-01

    Common Mullein (Verbascum thapsus L., Scrophulariaceae) is a medicinal plant that has been used for the treatment of inflammatory diseases, asthma, spasmodic coughs, diarrhea and other pulmonary problems. The objective of this study was to assess the biological activity of Common Mullein extracts and commercial Mullein products using selected bench top bioassays, including antibacterial, antitumor, and two toxicity assays--brine shrimp and radish seed. Extracts were prepared in water, ethanol and methanol. Antibacterial activity (especially the water extract) was observed with Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Agrobacterium tumefaciens-induced tumors in potato disc tissue were inhibited by all extracts. Toxicity to Brine Shrimp and to radish seed germination and growth was observed at higher concentrations of the extracts.

  6. [Current topics on cancer biology and research strategies for anti-cancer traditional Chinese medicine].

    Science.gov (United States)

    Chen, Xiu-ping; Tang, Zheng-hai; Shi, Zhe; Lu, Jin-jian; Su, Huan-xing; Chen, Xin; Wang, Yi-tao

    2015-09-01

    Cancer, an abnormal cell proliferation resulted from multi-factors,has the highest morbidity and mortality among all the serious diseases. Considerable progress has been made in cancer biology in recent years. Tumor immunology, cancer stem cells (CSCs), autophagy, and epithelial-mesenchymal transition (EMT) have become hot topics of interests in this area. Detailed dissection of these biological processes will provide novel directions, targets, and strategies for the pharmacological evaluation, mechanism elucidation, and new drug development of traditional Chinese medicine.

  7. Knowledge of Adverse Drug Reaction Reporting and the Pharmacovigilance of Biological Medicines: A Survey of Healthcare Professionals in Ireland.

    Science.gov (United States)

    O'Callaghan, J; Griffin, B T; Morris, J M; Bermingham, Margaret

    2018-06-01

    In Europe, changes to pharmacovigilance legislation, which include additional monitoring of medicines, aim to optimise adverse drug reaction (ADR) reporting systems. The legislation also makes provisions related to the traceability of biological medicines. The objective of this study was to assess (i) knowledge and general experience of ADR reporting, (ii) knowledge, behaviours, and attitudes related to the pharmacovigilance of biologicals, and (iii) awareness of additional monitoring among healthcare professionals (HCPs) in Ireland. Hospital doctors (n = 88), general practitioners (GPs) (n = 197), nurses (n = 104) and pharmacists (n = 309) completed an online questionnaire. There were differences in mean knowledge scores relating to ADR reporting and the pharmacovigilance of biologicals among the HCP groups. The majority of HCPs who use biological medicines in their practice generally record biologicals by brand name but practice behaviours relating to batch number recording differed between some professions. HCPs consider batch number recording to be valuable but also regard it as being more difficult than brand name recording. Most respondents were aware of the concept of additional monitoring but awareness rates differed between some groups. Among those who knew about additional monitoring, there was higher awareness of the inverted black triangle symbol among pharmacists (> 86.4%) compared with hospital doctors (35.1%), GPs (35.6%), and nurses (14.9%). Hospital pharmacists had more experience and knowledge of ADR reporting than other practising HCPs. This study highlights the important role hospital pharmacists play in post-marketing surveillance. There is a need to increase pharmacovigilance awareness of biological medicines and improve systems to support their batch traceability.

  8. Pulsed electrical discharges for medicine and biology techniques, processes, applications

    CERN Document Server

    Kolikov, Victor

    2015-01-01

    This book presents the application of pulsed electrical discharges in water and water dispersions of metal nanoparticles in medicine (surgery, dentistry, and oncology), biology, and ecology. The intensive electrical and shock waves represent a novel technique to destroy viruses and this way to  prepare anti-virus vaccines. The method of pulsed electrical discharges in water allows to decontaminate water from almost all known bacteria and spores of fungi being present in human beings. The nanoparticles used are not genotoxic and mutagenic. This book is useful for researchers and graduate students.

  9. BioTCM-SE: a semantic search engine for the information retrieval of modern biology and traditional Chinese medicine.

    Science.gov (United States)

    Chen, Xi; Chen, Huajun; Bi, Xuan; Gu, Peiqin; Chen, Jiaoyan; Wu, Zhaohui

    2014-01-01

    Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM), essentially different from Western Medicine (WM), is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  10. BioTCM-SE: A Semantic Search Engine for the Information Retrieval of Modern Biology and Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2014-01-01

    Full Text Available Understanding the functional mechanisms of the complex biological system as a whole is drawing more and more attention in global health care management. Traditional Chinese Medicine (TCM, essentially different from Western Medicine (WM, is gaining increasing attention due to its emphasis on individual wellness and natural herbal medicine, which satisfies the goal of integrative medicine. However, with the explosive growth of biomedical data on the Web, biomedical researchers are now confronted with the problem of large-scale data analysis and data query. Besides that, biomedical data also has a wide coverage which usually comes from multiple heterogeneous data sources and has different taxonomies, making it hard to integrate and query the big biomedical data. Embedded with domain knowledge from different disciplines all regarding human biological systems, the heterogeneous data repositories are implicitly connected by human expert knowledge. Traditional search engines cannot provide accurate and comprehensive search results for the semantically associated knowledge since they only support keywords-based searches. In this paper, we present BioTCM-SE, a semantic search engine for the information retrieval of modern biology and TCM, which provides biologists with a comprehensive and accurate associated knowledge query platform to greatly facilitate the implicit knowledge discovery between WM and TCM.

  11. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    Science.gov (United States)

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent. © 2014 The Society for Applied Microbiology.

  12. Accelerator produced nuclides for use in biology and medicine. A bibliography, 1939--1973

    International Nuclear Information System (INIS)

    Christman, D.R.; Karlstrom, K.I.; Fowler, J.; Lambrecht, R.; Wolf, A.P.

    1975-04-01

    A bibliography of more than 1300 references on accelerator-produced nuclides for use in biology and medicine is presented. The information is arranged by subject and by specific nuclide. An author index is included. Appendices are provided of medical uses of specific elements and of radioisotopes not included in the main bibliography. (U.S.)

  13. Life sciences: Nuclear medicine, radiation biology, medical physics, 1980-1994. International Atomic Energy Agency Publications

    International Nuclear Information System (INIS)

    1994-11-01

    The catalogue lists all sales publications of the IAEA dealing with Life Sciences issued during the period 1980-1994. The publications are grouped in the following chapters: Nuclear Medicine (including Radiopharmaceuticals), Radiation Biology and Medical Physics (including Dosimetry)

  14. Conservation, genetic characterization, phytochemical and biological investigation of black calla lily: A wild endangered medicinal plant

    Directory of Open Access Journals (Sweden)

    Mai Mohammed Farid

    2016-10-01

    Full Text Available Scientists continue to search for and conserve plants whose medicinal properties have become crucial in the fight against diseases. Moreover, lessons from folk medicine, indigenous knowledge and Chinese medicine on crude extracts points to possible findings of novel promising and strong pharmaceutically bioactive constituents. Arum palaestinum, commonly known as black calla lily, is one of the most important medicinal plants belonging to the family Araceae, which has not been well studied. Little is known about its pharmaceutically bioactive constituents and the effective conservation through the use of biotechnology. Thus, Arum Palaestinum is selected and reviewed for its phytochemical analysis and biological activities. Besides, the tissue culture and genetic characterization developed for effective conservation of the plant were also summarized.

  15. An introduction to nuclear physics, with applications in medicine and biology

    International Nuclear Information System (INIS)

    Dyson, N.A.

    1981-01-01

    A concise account of the applications of nuclear physics to medical and biological science is given. Half the book is devoted to the basic aspects of nuclear and radiation physics such as interactions between radiation and matter, nuclear reactions and the production of isotopes, an introduction to α, β and γ-radiation detectors and finally the radiation from nuclear decay. Information is then given on the applications of radioisotopes and neutrons and other accelerator-based applications in medicine and biology. The book is aimed at not only those undergraduates and postgraduates who are devoting their main effort to medical physics, but also to those students who are looking primarily for an introduction to nuclear physics together with an account of some of the ways in which it impinges on the work of other scientists. (U.K.)

  16. Nuclear medicine physics

    CERN Document Server

    De Lima, Joao Jose

    2011-01-01

    Edited by a renowned international expert in the field, Nuclear Medicine Physics offers an up-to-date, state-of-the-art account of the physics behind the theoretical foundation and applications of nuclear medicine. It covers important physical aspects of the methods and instruments involved in modern nuclear medicine, along with related biological topics. The book first discusses the physics of and machines for producing radioisotopes suitable for use in conventional nuclear medicine and PET. After focusing on positron physics and the applications of positrons in medicine and biology, it descr

  17. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  18. [Evolutionary medicine].

    Science.gov (United States)

    Wjst, M

    2013-12-01

    Evolutionary medicine allows new insights into long standing medical problems. Are we "really stoneagers on the fast lane"? This insight might have enormous consequences and will allow new answers that could never been provided by traditional anthropology. Only now this is made possible using data from molecular medicine and systems biology. Thereby evolutionary medicine takes a leap from a merely theoretical discipline to practical fields - reproductive, nutritional and preventive medicine, as well as microbiology, immunology and psychiatry. Evolutionary medicine is not another "just so story" but a serious candidate for the medical curriculum providing a universal understanding of health and disease based on our biological origin. © Georg Thieme Verlag KG Stuttgart · New York.

  19. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    Eisenberg, David S.

    2008-01-01

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  20. 2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry.

    Science.gov (United States)

    Bozorov, Khurshed; Nie, Li Fei; Zhao, Jiangyu; Aisa, Haji A

    2017-11-10

    2-Aminothiophenes are important five-membered heterocyclic building blocks in organic synthesis, and the chemistry of these small molecules is still developing based on the discovery of cyclization by Gewald. Another attractive feature of 2-aminothiophene scaffolds is their ability to act as synthons for the synthesis of biological active thiophene-containing heterocycles, conjugates and hybrids. Currently, the biological actions of 2-aminothiophenes or their 2-N-substituted analogues are still being investigated because of their various mechanisms of action (e.g., pharmacophore and pharmacokinetic properties). Likewise, the 2-aminothiophene family is used as diverse promising selective inhibitors, receptors, and modulators in medicinal chemistry, and these compounds even exhibit effective pharmacological properties in the various clinical phases of appropriate diseases. In this review, major biological and pharmacological reports on 2-aminothiophenes and related compounds have been highlighted; most perspective drug-candidate hits were selected for discussion and described, along with additional synthetic pathways. In addition, we focused on the literature dedicated to 2-aminothiophenes and 2-N-substituted derivatives, which have been published from 2010 to 2017. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Selected papers from the 7th International Conference on Microtechnologies in Medicine and Biology (MMB 2013)

    Science.gov (United States)

    Meng, Ellis; Takayama, Shuichi

    2014-03-01

    In this special section of Journal of Micromechanics and Microengineering are a collection of the best microengineering papers presented at the 7th International Conference on Microtechnologies in Medicine and Biology (MMB 2013) which took place in the seaside town of Marina del Rey, California, USA on 10-12 April, 2013. During the 3-day conference, participants enjoyed talks from 6 invited keynote speakers and 125 flash oral/poster presentations. The MMB conference is a biennial meeting with the primary purpose of fostering interactions between biologists and medical researchers, clinicians, chemists, physicists and engineers to enhance and strengthen the potential microtechnologies that will revolutionize the fields of medicine and biological sciences. The conference possesses a unique format where all poster presenters provide a brief 60 s oral presentation highlighting their research. This format was devised to provide training and exposure for young researchers, especially PhD students and postdocs, in the field and stimulate interdisciplinary exchanges. Therefore, MMB provides an intimate intellectual venue the facilitate discussions and collaborations to advance new research tools and technologies for medicine and biological sciences. The MMB conference series was co-founded by Professor David Beebe (University of Wisconsin—Madison) and Professor André Dittmar (University of Lyon) and was the first international meeting to provide a forum focusing on emerging applications of microtechnologies to unmet needs in medicine and biology. The series was held for the first time in 2000, in Lyon, France and followed by Madison, USA (2002), Oahu Island in Hawaii, USA (2005), Okinawa, Japan (2006), Québec City, Canada (2009), Lucerne, Switzerland (2011), and Marina del Rey, USA (2013). The next conference will be held in Seoul, Korea in 2015. This collection of articles highlights recent progress in microtechnologies with medical and biological applications. We are

  2. Histochemistry in Biology and Medicine: A Message From the Citing Journals

    Science.gov (United States)

    2015-01-01

    Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories. As expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide range of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology, general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials, as well as in multidisciplinary journals. It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects. PMID:26708189

  3. Histochemistry in biology and medicine: a message from the citing journals

    Directory of Open Access Journals (Sweden)

    Carlo Pellicciari

    2015-12-01

    Full Text Available Especially in recent years, biomedical research has taken advantage of the progress in several disciplines, among which microscopy and histochemistry. To assess the influence of histochemistry in the biomedical field, the articles published during the period 2011-2015 have been selected from different databases and grouped by subject categories: as expected, biological and biomedical studies where histochemistry has been used as a major experimental approach include a wide of basic and applied researches on both humans and other animal or plant organisms. To better understand the impact of histochemical publications onto the different biological and medical disciplines, it was useful to look at the journals where the articles published in a multidisciplinary journal of histochemistry have been cited: it was observed that, in the five-years period considered, 20% only of the citations were in histochemical periodicals, the remaining ones being in journals of Cell & Tissue biology,  general and experimental Medicine, Oncology, Biochemistry & Molecular biology, Neurobiology, Anatomy & Morphology, Pharmacology & Toxicology, Reproductive biology, Veterinary sciences, Physiology, Endocrinology, Tissue engineering & Biomaterials,  as well as in multidisciplinary journals.It is easy to foresee that also in the future the histochemical journals will be an attended forum for basic and applied scientists in the biomedical field. It will be crucial that these journals be open to an audience as varied as possible, publishing articles on the application of refined techniques to very different experimental models: this will stimulate non-histochemist scientists to approach histochemistry whose application horizon could expand to novel and possibly exclusive subjects.

  4. Legislative Regulation of Traditional Medicinal Knowledge in Eritrea vis-à-vis Eritrea's Commitments under the Convention on Biological Diversity: Issues and Alternatives

    Directory of Open Access Journals (Sweden)

    Senai Andemariam

    2010-09-01

    Full Text Available On 21 March 1996, Eritrea acceded to the Convention on Biological Diversity which, among others, obliges states to sustainably conserve and develop customary uses of biological resources. Among the many forms of traditional practices of biological resources is traditional medicinal knowledge. Research has revealed that Eritrea has abundant pool of such knowledge and a high percentage of its population, as it is true with many developing and underdeveloped countries, resorts to traditional medicine for curing numerous ailments. However, no specific policy or legislative framework has yet been developed to sift, preserve and encourage the practice. Analysis of existing Eritrean laws and policies will show that they are neither adequate nor specific enough to be used in the preservation and development of Eritrean traditional medicinal knowledge. This article will, therefore, in view of the rich, yet unregulated, traditional medicinal knowledge resource in Eritrea, highlight the need for the development of a specific legal instrument legislation for Eritrea from the perspective of international and country level experiences. It will be argued that the development of a specific legislation is preferred to the alternative of keeping traditional medicinal knowledge as a component of a legal instrument developed for a larger mass such as health or traditional knowledge.

  5. Highlights of the 6th world congress of nuclear medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Ell, P.J. [Inst. of Nuclear Medicine, University Coll. London Medical School, London (United Kingdom)

    1995-02-01

    The article summarizes the most interesting medical aspects of the 6th World Congress of Nuclear Medicine and Biology, addressing recent developments in the fields of scintiscanning, SPET and PET, oncology, neurology, psychiatry, in the diagnostic evaluation of the cardiovascular system, and new radiopharmaceuticals. (VHE) [Deutsch] Der Artikel gibt einen Ueberblick ueber medizinische Aspekte des 6. Weltkongresses der Nuklearmedizin und -biologie. Aktuelle Entwicklungen bei Szintigraphie, SPET und PET in Onkologie, Neurologie, Psychiatrie, Herz und Kreislauf sowie weitere neue Entwicklungen bei Radiopharmazeutika werden referiert. (VHE)

  6. Evolutionary biology: a basic science for medicine in the 21st century.

    Science.gov (United States)

    Perlman, Robert L

    2011-01-01

    Evolutionary biology was a poorly developed discipline at the time of the Flexner Report and was not included in Flexner's recommendations for premedical or medical education. Since that time, however, the value of an evolutionary approach to medicine has become increasingly recognized. There are several ways in which an evolutionary perspective can enrich medical education and improve medical practice. Evolutionary considerations rationalize our continued susceptibility or vulnerability to disease; they call attention to the idea that the signs and symptoms of disease may be adaptations that prevent or limit the severity of disease; they help us understand the ways in which our interventions may affect the evolution of microbial pathogens and of cancer cells; and they provide a framework for thinking about population variation and risk factors for disease. Evolutionary biology should become a foundational science for the medical education of the future.

  7. Integration of cardiac proteome biology and medicine by a specialized knowledgebase.

    Science.gov (United States)

    Zong, Nobel C; Li, Haomin; Li, Hua; Lam, Maggie P Y; Jimenez, Rafael C; Kim, Christina S; Deng, Ning; Kim, Allen K; Choi, Jeong Ho; Zelaya, Ivette; Liem, David; Meyer, David; Odeberg, Jacob; Fang, Caiyun; Lu, Hao-Jie; Xu, Tao; Weiss, James; Duan, Huilong; Uhlen, Mathias; Yates, John R; Apweiler, Rolf; Ge, Junbo; Hermjakob, Henning; Ping, Peipei

    2013-10-12

    Omics sciences enable a systems-level perspective in characterizing cardiovascular biology. Integration of diverse proteomics data via a computational strategy will catalyze the assembly of contextualized knowledge, foster discoveries through multidisciplinary investigations, and minimize unnecessary redundancy in research efforts. The goal of this project is to develop a consolidated cardiac proteome knowledgebase with novel bioinformatics pipeline and Web portals, thereby serving as a new resource to advance cardiovascular biology and medicine. We created Cardiac Organellar Protein Atlas Knowledgebase (COPaKB; www.HeartProteome.org), a centralized platform of high-quality cardiac proteomic data, bioinformatics tools, and relevant cardiovascular phenotypes. Currently, COPaKB features 8 organellar modules, comprising 4203 LC-MS/MS experiments from human, mouse, drosophila, and Caenorhabditis elegans, as well as expression images of 10,924 proteins in human myocardium. In addition, the Java-coded bioinformatics tools provided by COPaKB enable cardiovascular investigators in all disciplines to retrieve and analyze pertinent organellar protein properties of interest. COPaKB provides an innovative and interactive resource that connects research interests with the new biological discoveries in protein sciences. With an array of intuitive tools in this unified Web server, nonproteomics investigators can conveniently collaborate with proteomics specialists to dissect the molecular signatures of cardiovascular phenotypes.

  8. Readability Analysis of the Package Leaflets for Biological Medicines Available on the Internet Between 2007 and 2013: An Analytical Longitudinal Study.

    Science.gov (United States)

    Piñero-López, María Ángeles; Modamio, Pilar; Lastra, Cecilia F; Mariño, Eduardo L

    2016-05-25

    The package leaflet included in the packaging of all medicinal products plays an important role in the transmission of medicine-related information to patients. Therefore, in 2009, the European Commission published readability guidelines to try to ensure that the information contained in the package leaflet is understood by patients. The main objective of this study was to calculate and compare the readability levels and length (number of words) of the package leaflets for biological medicines in 2007, 2010, and 2013. The sample of this study included 36 biological medicine package leaflets that were downloaded from the European Medicines Agency website in three different years: 2007, 2010, and 2013. The readability of the selected package leaflets was obtained using the following readability formulas: SMOG grade, Flesch-Kincaid grade level, and Szigriszt's perspicuity index. The length (number of words) of the package leaflets was also measured. Afterwards, the relationship between these quantitative variables (three readability indexes and length) and categorical (or qualitative) variables were analyzed. The categorical variables were the year when the package leaflet was downloaded, the package leaflet section, type of medicine, year of authorization of biological medicine, and marketing authorization holder. The readability values of all the package leaflets exceeded the sixth-grade reading level, which is the recommended value for health-related written materials. No statistically significant differences were found between the three years of study in the readability indexes, although differences were observed in the case of the length (P=.002), which increased over the study period. When the relationship between readability indexes and length and the other variables was analyzed, statistically significant differences were found between package leaflet sections (Preadability indexes (SMOG grade and Flesch-Kincaid grade level: r(2)=.92; SMOG grade and Szigriszt

  9. The Human Genome Project: big science transforms biology and medicine.

    Science.gov (United States)

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called 'big science' - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and analytical tools, and how it brought the expertise of engineers, computer scientists and mathematicians together with biologists. It established an open approach to data sharing and open-source software, thereby making the data resulting from the project accessible to all. The genome sequences of microbes, plants and animals have revolutionized many fields of science, including microbiology, virology, infectious disease and plant biology. Moreover, deeper knowledge of human sequence variation has begun to alter the practice of medicine. The Human Genome Project has inspired subsequent large-scale data acquisition initiatives such as the International HapMap Project, 1000 Genomes, and The Cancer Genome Atlas, as well as the recently announced Human Brain Project and the emerging Human Proteome Project.

  10. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology.

    Science.gov (United States)

    Lapinsky, David J; Johnson, Douglas S

    2015-01-01

    Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol- or lipid-protein interactions and characterization of ligand-binding sites are presented.

  11. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.

    Science.gov (United States)

    Dhakad, Ashok K; Pandey, Vijay V; Beg, Sobia; Rawat, Janhvi M; Singh, Avtar

    2018-02-01

    The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  13. The Emergence of the Dose–Response Concept in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Edward J. Calabrese

    2016-12-01

    Full Text Available A historical assessment of the origin of the dose–response in modern toxicology and its integration as a central concept in biology and medicine is presented. This article provides an overview of how the threshold, linear and biphasic (i.e., hormetic dose–response models emerged in the late 19th and early 20th centuries and competed for acceptance and dominance. Particular attention is directed to the hormetic model for which a general description and evaluation is provided, including its historical basis, and how it was marginalized by the medical and pharmacology communities in the early decades of the 20th century.

  14. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  15. Ex Vivo Antioxidant Activity of Selected Medicinal Plants against Fenton Reaction-Mediated Oxidation of Biological Lipid Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2015-01-01

    Full Text Available Free radical-mediated oxidation is often linked to various degenerative diseases. Biological substrates with lipids as major components are susceptible to oxygen-derived lipid peroxidation due to their composition. Lipid peroxide products act as biomarkers in evaluating the antioxidant potential of various plants and functional foods. The study focused on evaluation of the antioxidant potential of two extracts (methanol and 80% methanol of four medicinal plants, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, against Fenton reaction-mediated oxidation of three biological lipid substrates; cholesterol, low-density lipoprotein, and brain homogenate. The antioxidant activity of the extracts was measured by thiobarbituric acid reactive substances method. Also, the correlation between the polyphenol, flavonoid content, and the antioxidant activity in biological substrates was analyzed. Results indicated highest antioxidant potential by 80% methanol extract of Canthium parviflorum (97.55%, methanol extract of Andrographis paniculata (72.15%, and methanol extract of Canthium parviflorum (49.55% in cholesterol, low-density lipoprotein, and brain, respectively. The polyphenol and flavonoid contents of methanol extract of Andrographis paniculata in cholesterol (r=0.816 and low-density lipoprotein (r=0.948 and Costus speciosus in brain (r=0.977, polyphenols, and r=0.949, flavonoids correlated well with the antioxidant activity. The findings prove the antioxidant potential of the selected medicinal plants against Fenton reaction in biological lipid substrates.

  16. Review: the development of neural stem cell biology and technology in regenerative medicine

    OpenAIRE

    Shanmuganathan, Divyanjali; Sivakumaran, Nivethika

    2018-01-01

    In the middle of the last century, it has been known that neural stem cells (NSCs) play a key role in regenerative medicine to cure the neurodegenerative disease. This review article covers about the introduction to neural stem cell biology and the isolation, differentiation and transplantation methods/techniques of neural stem cells. The neural stem cells can be transplanted into the human brain in the future to replace the damaged and dead neurons. The highly limited access to embryonic ste...

  17. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  18. The future of discovery chemistry: quo vadis? Academic to industrial--the maturation of medicinal chemistry to chemical biology.

    Science.gov (United States)

    Hoffmann, Torsten; Bishop, Cheryl

    2010-04-01

    At Roche, we set out to think about the future role of medicinal chemistry in drug discovery in a project involving both Roche internal stakeholders and external experts in drug discovery chemistry. To derive a coherent strategy, selected scientists were asked to take extreme positions and to derive two orthogonal strategic options: chemistry as the traditional mainstream science and chemistry as the central entrepreneurial science. We believe today's role of medicinal chemistry in industry has remained too narrow. To provide the innovation that industry requires, medicinal chemistry must play its part and diversify at pace with our increasing understanding of chemical biology and network pharmacology. 2010 Elsevier Ltd. All rights reserved.

  19. Iterative Systems Biology for Medicine – time for advancing from network signature to mechanistic equations

    KAUST Repository

    Gomez-Cabrero, David

    2017-05-09

    The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity. Such type of analysis effectively identified and associated molecular network signatures operative in biological processes across different systems. Yet, it has proven difficult to distinguish between causes and consequences, thus making it challenging to attack medical questions where we require precise causative drug targets and disease mechanisms beyond a web of associated markers. Here we review principal advances with regard to identification of structure, dynamics, control, and design of biological systems, following the structure in the visionary review from 2002 by Dr. Kitano. Yet, here we find that the underlying challenge of finding the governing mechanistic system equations enabling precision medicine remains open thus rendering clinical translation of systems biology arduous. However, stunning advances in raw computational power, generation of high-precision multi-faceted biological data, combined with powerful algorithms hold promise to set the stage for data-driven identification of equations implicating a fundamental understanding of living systems during health and disease.

  20. Integrative medicine is a future medicine

    International Nuclear Information System (INIS)

    Samosyuk, I.Z.; Chukhraev, N.V.

    2001-01-01

    An analysis is given of the modern integrative medicine basis which is the synthesis of: 1. Theology, philosophy and sociology; 2. Physico-mathematical sciences, cybernetics, chemistry and astrology; 3. Medico-biological and clinical experience; 4. Traditional and scientific medicine; 5. Use of traditional and new medical technologies. Problems of 'holistic' medicine which considers Man as a unity of biological, emotional, psychological and social phenomena are exposed. Advantages in combining the drug therapy with modern physiotherapy and physioacupuncture methods seem to be obvious. All visible effects of a disease can de represented in the following forms of changes: information-energy - biochemical - ultrastructure - tissue - clinical diseases. Self-regulation of functional systems has a multilevel structure and needs application of different methods for body recovery. Short-wave irradiation (lasers, magnetotherapy) can be used for energy restoration in functional systems or meridians, and acupuncture plays the role of a 'trigger' which activises the body recovery. Integration of Western and Oriental medicines is the way for achieving the qualitative new level of health protection

  1. The International Conference on Intelligent Biology and Medicine (ICIBM) 2016: from big data to big analytical tools.

    Science.gov (United States)

    Liu, Zhandong; Zheng, W Jim; Allen, Genevera I; Liu, Yin; Ruan, Jianhua; Zhao, Zhongming

    2017-10-03

    The 2016 International Conference on Intelligent Biology and Medicine (ICIBM 2016) was held on December 8-10, 2016 in Houston, Texas, USA. ICIBM included eight scientific sessions, four tutorials, one poster session, four highlighted talks and four keynotes that covered topics on 3D genomics structural analysis, next generation sequencing (NGS) analysis, computational drug discovery, medical informatics, cancer genomics, and systems biology. Here, we present a summary of the nine research articles selected from ICIBM 2016 program for publishing in BMC Bioinformatics.

  2. Modulation of radiosensitivity of biological systems by medicinal herbs

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, P.K., E-mail: pkgoyal2002@gmail.com [Radiation and Cancer Biology Laboratory, Department of Zoology, University of Rajasthan, Jaipur (India)

    2012-07-01

    The global environmental pollution is responsible for the exposure of living beings to the influence of various technogenic factors, including ionizing radiation. Exposure to such radiation represents a genuine, increasing threat to mankind and our environment. The steadily increasing applications of radiation in clinical practice, industrial and agricultural activities, residual radio-activity resulting from nuclear test explosions, have a measurable impact contributing to significant radiation hazards in humans. Further, the proliferation of terrorism and asymmetric warfare in the 21st century has rendered the modern world a dangerous place to live and work. With the realization of deleterious effects of ionizing radiation, a need was felt to protect human beings against these harmful effects by using physical and/or chemical means. Many chemical compounds have been tested for radio protective action but their practical applicability remained limited owing to their inherent toxicity at the optimum dose level. Various plants have been used for various ailments in humans since time immemorial, and herbal preparations have usually been considered safe and less toxic than the synthetic compounds. Therefore, screening of natural products present a major avenue for the discovery of new radio protective drugs and such products have drawn the attention of investigators during the last two decades. The Indian system of medicine employs a large number of plants and some of these herbals viz. The extracts of certain medicinal plant like Amla (Emblica officinalis), Rosemary (Rosemary officinalis), Methi (Trigonella foenum graecum) sapthaparna (Alstonia scholaris), Bael (Aegle inarmelos), Bhumi amla (Phyllanthus niruri), Jamun (Syzgium cumini), Gloe (Tinospora cordifolia) have been trialed in this laboratory for their radio protective action in various biological systems of mammals. The extracts of various parts of such plants have appreciable DRF on the basis of survival

  3. Modulation of radiosensitivity of biological systems by medicinal herbs

    International Nuclear Information System (INIS)

    Goyal, P.K.

    2012-01-01

    The global environmental pollution is responsible for the exposure of living beings to the influence of various technogenic factors, including ionizing radiation. Exposure to such radiation represents a genuine, increasing threat to mankind and our environment. The steadily increasing applications of radiation in clinical practice, industrial and agricultural activities, residual radio-activity resulting from nuclear test explosions, have a measurable impact contributing to significant radiation hazards in humans. Further, the proliferation of terrorism and asymmetric warfare in the 21st century has rendered the modern world a dangerous place to live and work. With the realization of deleterious effects of ionizing radiation, a need was felt to protect human beings against these harmful effects by using physical and/or chemical means. Many chemical compounds have been tested for radio protective action but their practical applicability remained limited owing to their inherent toxicity at the optimum dose level. Various plants have been used for various ailments in humans since time immemorial, and herbal preparations have usually been considered safe and less toxic than the synthetic compounds. Therefore, screening of natural products present a major avenue for the discovery of new radio protective drugs and such products have drawn the attention of investigators during the last two decades. The Indian system of medicine employs a large number of plants and some of these herbals viz. The extracts of certain medicinal plant like Amla (Emblica officinalis), Rosemary (Rosemary officinalis), Methi (Trigonella foenum graecum) sapthaparna (Alstonia scholaris), Bael (Aegle inarmelos), Bhumi amla (Phyllanthus niruri), Jamun (Syzgium cumini), Gloe (Tinospora cordifolia) have been trialed in this laboratory for their radio protective action in various biological systems of mammals. The extracts of various parts of such plants have appreciable DRF on the basis of survival

  4. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  5. Review: Biological fertilization and its effect on medicinal and aromatic plants

    Directory of Open Access Journals (Sweden)

    KHALID ALI KHALID

    2012-11-01

    Full Text Available Khalid KA. 2012. Review: Biological fertilization and its effect on medicinal and aromatic plants. Nusantara Bioscience 4: 124-133. The need of increase food production in the most of developing countries becomes an ultimate goal to meet the dramatic expansion of their population. However, this is also associated many cases with a reduction of the areas of arable land which leaves no opinion for farmers but to increase the yield per unit area through the use of improved the crop varieties, irrigation and fertilization. The major problem facing the farmer is that he cannot afford the cost of these goods, particularly that of chemical fertilizers. Moreover, in countries where fertilizer production relies on imported raw materials, the costs are even higher for farmer and for the country. Besides this, chemical fertilizers production and utilization are considered as air, soil and water polluting operations. The utilization of bio-fertilizers is considered today by many scientists as a promising alternative, particularly for developing countries. Bio-fertilization is generally based on altering the rhizosphere flora, by seed or soil inoculation with certain organisms, capable of inducing beneficial effects on a compatible host. Bio-fertilizers mainly comprise nitrogen fixes (Rhizobium, Azotobacter, Azospirellum, Azolla or blue green algae, phosphate dissolvers or vesicular-arbuscular mycorrhizas and silicate bacteria. These organisms may affect their host plant by one or more mechanisms such as nitrogen fixation, production of growth promoting substances or organic acids, enhancing nutrient uptake or protection against plant pathogens. Growth characters, yield, essential oil and its constituents, fixed oil, carbohydrates, soluble sugars and nutrients contents of medicinal and aromatic plants were significantly affected by adding the biological fertilizers compared with recommended chemical fertilizers.

  6. The Gravity of Regenerative Medicine; Physics, Chemistry & Biology behind it

    Directory of Open Access Journals (Sweden)

    Dedeepiya V

    2008-01-01

    Full Text Available The in-vitro expansion of cells of the organs/tissues and their re-implantation into the affected region/ tissue for treating cell/organ failure have been in practice for long, but in limited specialties. The in-vitro cell culture protocols use variety of biological reagents derived from animal sources and recombinant technologies. However, the optimal quantity of such biological components such as growth factors, cytokines etc.,needed for such cells to be grown in a non-physiological environment is still unknown. The use of such biological components have started to stir a controversy of late, due to the recognition of its potential hazards such as spread of prion diseases and contamination with non-human sialic acid proteins. Therefore synthetic reproducible biomaterials are gaining popularity in cell culture and tissue engineering. The biomaterials made of several chemical components based on physical parameters are starting to change certain concepts about the niche of cell culture and that of stem cell expansion and differentiation to specific lineages. Engler et al have already proven that a simple change in the matrix elasticity alone could change the lineage of the cells. Spencer et al have reported that a change in bioelectricity could change the morphogenesis during development. NCRM has been involved in cell culture and tissue engineering using approximately 240 different materials ranging from polymer hydrogel, gel with adherent inserts, nano composite materials, nano-coating technologies, nano-sheets and nano-films. These materials are used in cell culture in different hybrid combinations such as Floating 3D cell culture without adherent components in a homogenous hydrogel. Floating 3D cell culture with anchorage inserts. Flat surface- 2D adherent cell culture. Combined flat surface 2D cell culture (for differentiating cells and floating 3D culture (for undifferentiated cells. These combinations have started yielding several

  7. South African Association of Physicists in Medicine and Biology: 27. Annual congress, 11-13 Mar 1987, BLoemfontein

    International Nuclear Information System (INIS)

    1987-01-01

    The twenty-seventh annual congress of the South African Association of Physicists in Medicine and Biology was held from 11-13 March 1987, in Bloemfontein. Papers delivered at the conference covered subjects like medical physics, radiotherapy, computed tomography, scintigraphy, radiation doses and dosimetry and radioisotopes in diagnosis

  8. 2K09 and thereafter : the coming era of integrative bioinformatics, systems biology and intelligent computing for functional genomics and personalized medicine research

    Science.gov (United States)

    2010-01-01

    Significant interest exists in establishing synergistic research in bioinformatics, systems biology and intelligent computing. Supported by the United States National Science Foundation (NSF), International Society of Intelligent Biological Medicine (http://www.ISIBM.org), International Journal of Computational Biology and Drug Design (IJCBDD) and International Journal of Functional Informatics and Personalized Medicine, the ISIBM International Joint Conferences on Bioinformatics, Systems Biology and Intelligent Computing (ISIBM IJCBS 2009) attracted more than 300 papers and 400 researchers and medical doctors world-wide. It was the only inter/multidisciplinary conference aimed to promote synergistic research and education in bioinformatics, systems biology and intelligent computing. The conference committee was very grateful for the valuable advice and suggestions from honorary chairs, steering committee members and scientific leaders including Dr. Michael S. Waterman (USC, Member of United States National Academy of Sciences), Dr. Chih-Ming Ho (UCLA, Member of United States National Academy of Engineering and Academician of Academia Sinica), Dr. Wing H. Wong (Stanford, Member of United States National Academy of Sciences), Dr. Ruzena Bajcsy (UC Berkeley, Member of United States National Academy of Engineering and Member of United States Institute of Medicine of the National Academies), Dr. Mary Qu Yang (United States National Institutes of Health and Oak Ridge, DOE), Dr. Andrzej Niemierko (Harvard), Dr. A. Keith Dunker (Indiana), Dr. Brian D. Athey (Michigan), Dr. Weida Tong (FDA, United States Department of Health and Human Services), Dr. Cathy H. Wu (Georgetown), Dr. Dong Xu (Missouri), Drs. Arif Ghafoor and Okan K Ersoy (Purdue), Dr. Mark Borodovsky (Georgia Tech, President of ISIBM), Dr. Hamid R. Arabnia (UGA, Vice-President of ISIBM), and other scientific leaders. The committee presented the 2009 ISIBM Outstanding Achievement Awards to Dr. Joydeep Ghosh (UT

  9. Aromatic Medicinal Plants of the Lamiaceae Family from Uzbekistan: Ethnopharmacology, Essential Oils Composition, and Biological Activities

    Directory of Open Access Journals (Sweden)

    Nilufar Z. Mamadalieva

    2017-02-01

    Full Text Available Plants of the Lamiaceae family are important ornamental, medicinal, and aromatic plants, many of which produce essential oils that are used in traditional and modern medicine, and in the food, cosmetics, and pharmaceutical industry. Various species of the genera Hyssopus, Leonurus, Mentha, Nepeta, Origanum, Perovskia, Phlomis, Salvia, Scutellaria, and Ziziphora are widespread throughout the world, are the most popular plants in Uzbek traditional remedies, and are often used for the treatment of wounds, gastritis, infections, dermatitis, bronchitis, and inflammation. Extensive studies of the chemical components of these plants have led to the identification of many compounds, as well as essentials oils, with medicinal and other commercial values. The purpose of this review is to provide a critical overview of the literature surrounding the traditional uses, ethnopharmacology, biological activities, and essential oils composition of aromatic plants of the family Lamiaceae, from the Uzbek flora.

  10. DATA MINING METHODS FOR OMICS AND KNOWLEDGE OF CRUDE MEDICINAL PLANTS TOWARD BIG DATA BIOLOGY

    Directory of Open Access Journals (Sweden)

    Farit M. Afendi

    2013-01-01

    Full Text Available Molecular biological data has rapidly increased with the recent progress of the Omics fields, e.g., genomics, transcriptomics, proteomics and metabolomics that necessitates the development of databases and methods for efficient storage, retrieval, integration and analysis of massive data. The present study reviews the usage of KNApSAcK Family DB in metabolomics and related area, discusses several statistical methods for handling multivariate data and shows their application on Indonesian blended herbal medicines (Jamu as a case study. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, the ingredients of Jamu formulas are modeled using Partial Least Squares Discriminant Analysis (PLS-DA in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% correct classification in predicting efficacy. Permutation test then is used to determine plants that serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. Next, in order to explain the role of plants that serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor block. The resulting N-PLS-DA model reveals that the effects of some pharmacological activities are specific for certain efficacy and the other activities are diverse toward many efficacies. Mathematical modeling introduced in the present study can be utilized in global analysis of big data targeting to reveal the underlying biology.

  11. Phytochemical and biological assessment of medicinally important plant ochradenus arabicus

    International Nuclear Information System (INIS)

    Hussain, J.

    2014-01-01

    Jabal Al-Akhdar (Oman) is one of diverse floral region of Arabian Peninsula. Ochradenus arabicus, is an important medicinal plant to local people of the area. However, little is known about its potential role in biological activities against various emerging ailments. The collected plant samples were extracted with methanol and fractionated into n-hexane (JOAH), ethyl acetate (JOAE), chloroform (JOAC), n-butanol (JOAB) and water (JOAAQ). Various concentrations of these fractions were tested for their antimicrobial, anticancer, antioxidant, antidiabetic, phenolics, flavonoids, allopathic and nutrition quality properties. The results showed that fruits and leaves of O. arabicus have higher levels of carbohydrate, crude fats, fibres, proteins, moisture, ash and energy values. In phytotoxic activities, JOAAQ inhibited the lettuce seed germination and growth. The anticancer activities of fractions showed that JOAE, JOAB and JOAAQ are potent to reduce the cancer cell viability of HT29, HCT116, HepG2 and MCF-7 lines with a concentration of 1000 micro g/ml. JOAB showed a meagre activity of 12% in Glucosidase inhibition assay. The total phenolic and flavonoid contents were significantly higher in JOAE, which also resulted in higher DPPH radical scavenging activity as compared to other fractions and control. JOAE also exhibited higher antibacterial and antifungal activities. The results of current findings suggest that O. arabicus is a potential medicinal plants, which could be subjected to advance column chromatography for lead compounds using a bioassay guided approach. (author)

  12. Review-An overview of Pistacia integerrima a medicinal plant species: Ethnobotany, biological activities and phytochemistry.

    Science.gov (United States)

    Bibi, Yamin; Zia, Muhammad; Qayyum, Abdul

    2015-05-01

    Pistacia integerrima with a common name crab's claw is an ethnobotanically important tree native to Asia. Traditionally plant parts particularly its galls have been utilized for treatment of cough, asthma, dysentery, liver disorders and for snake bite. Plant mainly contains alkaloids, flavonoids, tannins, saponins and sterols in different parts including leaf, stem, bark, galls and fruit. A number of terpenoids, sterols and phenolic compounds have been isolated from Pistacia integerrima extracts. Plant has many biological activities including anti-microbial, antioxidant, analgesic, cytotoxicity and phytotoxicity due to its chemical constituents. This review covers its traditional ethnomedicinal uses along with progresses in biological and phytochemical evaluation of this medicinally important plant species and aims to serve as foundation for further exploration and utilization.

  13. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine

    International Nuclear Information System (INIS)

    Stites, Edward C

    2013-01-01

    Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients. (paper)

  14. A Supramolecular Approach to Medicinal Chemistry: Medicine Beyond the Molecule

    Science.gov (United States)

    Smith, David K.

    2005-03-01

    This article focuses on the essential roles played by intermolecular forces in mediating the interactions between chemical molecules and biological systems. Intermolecular forces constitute a key topic in chemistry programs, yet can sometimes seem disconnected from real-life applications. However, by taking a "supramolecular" view of medicinal chemistry and focusing on interactions between molecules, it is possible to come to a deeper understanding of recent developments in medicine. This allows us to gain a real insight into the interface between biology and chemistry—an interdisciplinary area that is crucial for the development of modern medicinal products. This article emphasizes a conceptual view of medicinal chemistry, which has important implications for the future, as the supramolecular approach to medicinal-chemistry products outlined here is rapidly allowing nanotechnology to converge with medicine. In particular, this article discusses recent developments including the rational design of drugs such as Relenza and Tamiflu, the mode of action of vancomycin, and the mechanism by which bacteria develop resistance, drug delivery using cyclodextrins, and the importance of supramolecular chemistry in understanding protein aggregation diseases such as Alzheimer's and Creutzfield Jacob. The article also indicates how taking a supramolecular approach will enable the development of new nanoscale medicines.

  15. What can radioisotopes do for man? Medicine and biology

    International Nuclear Information System (INIS)

    Knisele, R.M.

    1974-01-01

    This year marks the 40th anniversary of the first use of man-made radioactive isotopes for medical purposes. In 1934, the first working cyclotron at the University of California had produced small amounts of radioactive phosphorus, iodine, and sodium; but widespread applications appeared only after the second world war when nuclear reactors began making large amounts of radioisotopes, and new detectors and electronic equipment emerged for measuring the radiation that they emit. To exploit isotopes in biology and medicine, workers use the unique properties of radioactive decay, whereby energy is released in the form of nuclear particles such as electrons, or electromagnetic radiations such as gamma rays. Because the emissions can be detected with great sensitivity and measured with precision, harmlessly small quantities can be administered to delineate organs or tumors, or to measure bodily function or cellular metabolic processes. The destructive potential of the emitted energy must always be reckoned with, and the doses kept to a safe, low level. Yet this same energy can be exploited when a destructive effect is desired. (author)

  16. Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities.

    Science.gov (United States)

    Wangchuk, Phurpa; Keller, Paul A; Pyne, Stephen G; Taweechotipatr, Malai; Tonsomboon, Aunchalee; Rattanajak, Roonglawan; Kamchonwongpaisan, Sumalee

    2011-09-01

    As many as 229 medicinal plants have been currently used in the Bhutanese Traditional Medicine (BTM) as a chief ingredient of polyherbal formulations and these plants have been individually indicated for treating various types of infections including malaria, tumor, and microbial. We have focused our study only on seven species of these plants. We aim to evaluate the antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities of the seven medicinal plants of Bhutan selected using an ethno-directed bio-rational approach. This study creates a scientific basis for their use in the BTM and gives foundation for further phytochemical and biological evaluations which can result in the discovery of new drug lead compounds. A three stage process was conducted which consisted of: (1) an assessment of a pharmacopoeia and a formulary book of the BTM for their mode of plant uses; (2) selecting 25 anti-infective medicinal plants based on the five established criteria, collecting them, and screening for their major classes of phytochemicals using appropriate test protocols; and (3) finally analyzing the crude extracts of the seven medicinal plants, using the standard test protocols, for their antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities as directed by the ethnopharmacological uses of each plant. Out of 25 medicinal plants screened for their major classes of phytochemicals, the majority contained tannins, alkaloids and flavonoids. Out of the seven plant species investigated for their biological activities, all seven of them exhibited mild antimicrobial properties, five plants gave significant in vitro antiplasmodial activities, two plants gave moderate anti-Trypanosoma brucei rhodesiense activity, and one plant showed mild cytotoxicity. Meconopsis simplicifolia showed the highest antiplasmodial activity with IC(50) values of 0.40 μg/ml against TM4/8.2 strain (a wild type chloroquine and

  17. Systems Medicine: Sketching the Landscape.

    Science.gov (United States)

    Kirschner, Marc

    2016-01-01

    To understand the meaning of the term Systems Medicine and to distinguish it from seemingly related other expressions currently in use, such as precision, personalized, -omics, or big data medicine, its underlying history and development into present time needs to be highlighted. Having this development in mind, it becomes evident that Systems Medicine is a genuine concept as well as a novel way of tackling the manifold complexity that occurs in nowadays clinical medicine-and not just a rebranding of what has previously been done in the past. So looking back it seems clear to many in the field that Systems Medicine has its origin in an integrative method to unravel biocomplexity, namely, Systems Biology. Here scientist by now gained useful experience that is on the verge toward implementation in clinical research and practice.Systems Medicine and Systems Biology have the same underlying theoretical principle in systems-based thinking-a methodology to understand complexity that can be traced back to ancient Greece. During the last decade, however, and due to a rapid methodological development in the life sciences and computing/IT technologies, Systems Biology has evolved from a scientific concept into an independent discipline most competent to tackle key questions of biocomplexity-with the potential to transform medicine and how it will be practiced in the future. To understand this process in more detail, the following section will thus give a short summary of the foundation of systems-based thinking and the different developmental stages including systems theory, the development of modern Systems Biology, and its transition into clinical practice. These are the components to pave the way toward Systems Medicine.

  18. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  19. Biologically active substances of edible insects and their use in agriculture, veterinary and human medicine a review

    Directory of Open Access Journals (Sweden)

    Jiri Mlcek

    2014-12-01

    Full Text Available Possibilities of edible insect use in Western countries is now increasingly debated issue. Insects in Asian, African, American and South Central American cultures are mainly nutritional components. In Europe and other developed countries, however, insect is used in different ways, and this issue is viewed from a different angle. Insects are mainly used as feed for animals, in the organic waste recycling systems, in human and veterinary medicine, material production (such as silk etc. This review summarizes up-to-date knowledge about using edible insects in human, veterinary medicine and agriculture, especially from the viewpoint of the biological and chemical content of active substances and the possibilities of further use in these areas.

  20. Some new insights into biology and medicine through NMR spectroscopy

    International Nuclear Information System (INIS)

    Radda, G.K.

    1990-01-01

    The contributions to biology and medicine by NMR spectroscopy in vivo require careful definition of the problems that are studied. Temporal and spatial resolution of the biochemical information obtained are the key to success, although the latter is limited owing to low sensitivity and small concentrations of the metabolites studied. Using 31 P NMR investigations in four areas are described. Control of energetics by ADP in normal and diseased muscle is shown to be important. Enzyme catalysed fluxes are obtained for creatine kinase and ATP synthase in muscle and in the human brain enzyme activity maps are derived. The measurements on the ionic environment and fluxes for H + , Na + and K + (Rb + ) give us new information about the role of ions in cell proliferation (e.g. in cancer) and hypertension. Molecular architecture of phospholipids in vivo is readily observed and is perturbed in the brain in chronic head injury and demyelination. (author)

  1. Animal-based medicines: biological prospection and the sustainable use of zootherapeutic resources

    Directory of Open Access Journals (Sweden)

    Eraldo M. Costa-Neto

    2005-03-01

    Full Text Available Animals have been used as medicinal resources for the treatment and relieve of a myriad of illnesses and diseases in practically every human culture. Although considered by many as superstition, the pertinence of traditional medicine based on animals cannot be denied since they have been methodically tested by pharmaceutical companies as sources of drugs to the modern medical science. The phenomenon of zootherapy represents a strong evidence of the medicinal use of animal resources. Indeed, drug companies and agribusiness firms have been evaluating animals for decades without paying anything to the countries from where these genetic resources are found. The use of animals' body parts as folk medicines is relevant because it implies additional pressure over critical wild populations. It is argued that many animal species have been overexploited as sources of medicines for the traditional trade. Additionally, animal populations have become depleted or endangered as a result of their use as experimental subjects or animal models. Research on zootherapy should be compatible with the welfare of the medicinal animals, and the use of their by-products should be done in a sustainable way. It is discussed that sustainability is now required as the guiding principle for biological conservation.Os animais são utilizados como recursos medicinais para o tratamento e alívio de um gama de doenças e enfermidades em praticamente toda cultura humana. A pertinência da medicina tradicional baseada em animais, embora considerada como superstição, não deve ser negada uma vez que os animais têm sido testados metodicamente pelas companhias farmacêuticas como fontes de drogas para a ciência médica moderna. O fenômeno da zooterapia representa uma forte evidência do uso medicinal de recursos animais. De fato, as indústrias farmacêuticas e de agronegócios há décadas vêm avaliando animais sem pagar tributos aos países detentores desses recursos gen

  2. Systems biology and medicine

    Indian Academy of Sciences (India)

    work could potentially provide us with ways to identify drug ... appropriately balance cause, effect, and context of a given clinical ... would not provide answers/solutions to multitude of tasks that were ... a major challenge of contemporary biology is to embark on an ... nificantly govern the life and responsiveness of cells.

  3. A proposal to enhance Engineering education in biology and Medicine by following the legacy of René Favaloro.

    Science.gov (United States)

    Armentano, Ricardo L; Cardelino, Juan; Wray, Sandra; Cymberknop, Leandro J; Kun, Luis

    2015-01-01

    The synergy amongst Engineering, Medicine and Biology evolves as fast as these disciplines. We propose to articulate these specialties based on the premise that new professionals must face different situations or crisis due to the so-called islands of excellence. René Favaloro focused his work and struggles against poverty, since malnutrition and environmental degradation may increase the propensity to cardiovascular diseases. Doctor Favaloro has dedicated, throughout his career, a considerable amount of time to prepare and qualify a research group, aware of the importance that an adequate working environment has over the final results. He created a team of young students, engineers, medical doctors, physicists, mathematicians and other specialists. He centered his attention on human resources, in order to disseminate his latest advances in Biology, Medicine and Engineering. We are revising the programs of biomedical engineering education and the application of new pedagogic paradigms, where critical thinking is the key: a holistic challenge that consists of a new way of learning, innovating, communicating and shearing, with a creative attitude that represents quality of perception.

  4. Biological Characteristics of Caspase-14 and Its Expression in Neoplastic Diseases in the View of Translational Medicine

    Directory of Open Access Journals (Sweden)

    Kang-sheng LIU

    2016-06-01

    Full Text Available Caspase-14, a member of caspase family, only exists in mammals. As the most divergent member in the family of mammalian caspases, caspase-14 displays a variety of unique characteristics. It is expressed in a limited number of tissues and has the shortest amino acid sequence within the caspase protein family. At present, it has been found that caspase-14 is functionally different from the inflammatory reaction group of typical caspase family members. It exerts a certain effect in the promotion of final differentiation of epidermal cells and hydration of stratum corneum so as to maintain the steady state of skin barrier. In recent years, caspase-14 expression has been discovered in neoplastic diseases. Translational medicine integrates experimental research results and clinical guidance into the optimal implementation criteria for promoting the prediction, prevention and treatment of diseases. Via human genomics and molecular biology, translational medicine offers a possibility of screening molecular markers so that it can be used to diagnose the neoplastic diseases. In this article, the biological characteristics and substrates of caspase-14 as well as its expression in embryonic period and neoplastic diseases were reviewed.

  5. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    International Nuclear Information System (INIS)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-01-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  6. Radon as a medicine. Therapeutic effectiveness, biological mechanism and comparative risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Deetjen, Peter; Falkenbach, Albrecht; Harder, Dietrich; Joeckel, Hans; Kaul, Alexander; Philipsborn, Henning von

    2014-07-01

    Proofs of the therapeutic efficiency of balneological radon applications administered to patients suffering from rheumatic diseases, investigations into the biological action mechanism associated with the alpha particles emitted by radon and its radioactive daughter products, and the comparative risk assessment of radon treatment and medicinal pain therapy have been the research projects whose results are summarized in this book. Controlled clinical studies, if possible performed as prospective, randomized and placebo-controlled double blind studies, have given evidence that the therapeutic effects of balneological radon applications - long-lasting pain reduction and reduced consumption of medicines compared with controls - are significantly persisting over many post-treatment months. The molecular and cellular mechanism of action underlying these long-lasting therapeutic effects has been identified as the down-regulation of cellular immune responses, initiated by cellular apoptosis sequential to low alpha particle doses and by the subsequent release of anti-inflammatory cytokines. The unwanted side-effects of non-steroidal anti-rheumatic drug treatments have to be compared with the absence of side effects from the balneological radon applications which merely involve radiation doses well below the mean value and the fluctuation width of the annual doses attributable to everybody's natural radiation exposure.

  7. Applying systems biology to biomedical research and health care: a précising definition of systems medicine.

    Science.gov (United States)

    Schleidgen, Sebastian; Fernau, Sandra; Fleischer, Henrike; Schickhardt, Christoph; Oßa, Ann-Kristin; Winkler, Eva C

    2017-11-21

    Systems medicine has become a key word in biomedical research. Although it is often referred to as P4-(predictive, preventive, personalized and participatory)-medicine, it still lacks a clear definition and is open to interpretation. This conceptual lack of clarity complicates the scientific and public discourse on chances, risks and limits of Systems Medicine and may lead to unfounded hopes. Against this background, our goal was to develop a sufficiently precise and widely acceptable definition of Systems Medicine. In a first step, PubMed was searched using the keyword "systems medicine". A data extraction tabloid was developed putting forward a means/ends-division. Full-texts of articles containing Systems Medicine in title or abstract were screened for definitions. Definitions were extracted; their semantic elements were assigned as either means or ends. To reduce complexity of the resulting list, summary categories were developed inductively. In a second step, we applied six criteria for adequate definitions (necessity, non-circularity, non-redundancy, consistency, non-vagueness, and coherence) to these categories to derive a so-called précising definition of Systems Medicine. We identified 185 articles containing the term Systems Medicine in title or abstract. 67 contained at least one definition of Systems Medicine. In 98 definitions, we found 114 means and 132 ends. From these we derived the précising definition: Systems Medicine is an approach seeking to improve medical research (i.e. the understanding of complex processes occurring in diseases, pathologies and health states as well as innovative approaches to drug discovery) and health care (i.e. prevention, prediction, diagnosis and treatment) through stratification by means of Systems Biology (i.e. data integration, modeling, experimentation and bioinformatics). Our study also revealed the visionary character of Systems Medicine. Our insights, on the one hand, allow for a realistic identification of

  8. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  9. The Traditional Medicine and Modern Medicine from Natural Products

    Directory of Open Access Journals (Sweden)

    Haidan Yuan

    2016-04-01

    Full Text Available Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

  10. The Traditional Medicine and Modern Medicine from Natural Products.

    Science.gov (United States)

    Yuan, Haidan; Ma, Qianqian; Ye, Li; Piao, Guangchun

    2016-04-29

    Natural products and traditional medicines are of great importance. Such forms of medicine as traditional Chinese medicine, Ayurveda, Kampo, traditional Korean medicine, and Unani have been practiced in some areas of the world and have blossomed into orderly-regulated systems of medicine. This study aims to review the literature on the relationship among natural products, traditional medicines, and modern medicine, and to explore the possible concepts and methodologies from natural products and traditional medicines to further develop drug discovery. The unique characteristics of theory, application, current role or status, and modern research of eight kinds of traditional medicine systems are summarized in this study. Although only a tiny fraction of the existing plant species have been scientifically researched for bioactivities since 1805, when the first pharmacologically-active compound morphine was isolated from opium, natural products and traditional medicines have already made fruitful contributions for modern medicine. When used to develop new drugs, natural products and traditional medicines have their incomparable advantages, such as abundant clinical experiences, and their unique diversity of chemical structures and biological activities.

  11. Proceedings of the Joint Conference of Australasian College of Physical Scientists and Engineers in Medicine and IEAust College of Biomedical Engineers; Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society

    International Nuclear Information System (INIS)

    1996-01-01

    This is a celebration of the centenary of Rontgen''s discovery of Xrays. It is also the 50th anniversary of the first hospital physicist appointment in New Zealand. The historical element of the programme will complement the emphasis on current applications of the physical and engineering sciences to medicine and an anticipation of future developments. For the first time the Australasian College of Physical Scientists and Engineers in Medicine, together with the IEAust College of Biomedical Engineers, are joined by the Asia/Pacific Region of the IEEE Engineering in Medicine and Biology Society to make this a truly international conference. The proceedings include many papers on radiology and radiotherapy

  12. Re-evaluating concepts of biological function in clinical medicine: towards a new naturalistic theory of disease.

    Science.gov (United States)

    Chin-Yee, Benjamin; Upshur, Ross E G

    2017-08-01

    Naturalistic theories of disease appeal to concepts of biological function, and use the notion of dysfunction as the basis of their definitions. Debates in the philosophy of biology demonstrate how attributing functions in organisms and establishing the function-dysfunction distinction is by no means straightforward. This problematization of functional ascription has undermined naturalistic theories and led some authors to abandon the concept of dysfunction, favoring instead definitions based in normative criteria or phenomenological approaches. Although this work has enhanced our understanding of disease and illness, we need not necessarily abandon naturalistic concepts of function and dysfunction in the disease debate. This article attempts to move towards a new naturalistic theory of disease that overcomes the limitations of previous definitions and offers advantages in the clinical setting. Our approach involves a re-evaluation of concepts of biological function employed by naturalistic theories. Drawing on recent insights from the philosophy of biology, we develop a contextual and evaluative account of function that is better suited to clinical medicine and remains consistent with contemporary naturalism. We also show how an updated naturalistic view shares important affinities with normativist and phenomenological positions, suggesting a possibility for consilience in the disease debate.

  13. Radiology in veterinary medicine

    International Nuclear Information System (INIS)

    Hrusovsky, J.; Benes, J.

    1985-01-01

    A textbook is presented for pregraduate and postgraduate students of veterinary medicine, offering an extensive review of all aspects of radiology as applied in veterinary sciences. Based on findings published in the literature and the authors' own research, the textbook familiarizes the reader with the problems of nuclear physics, biological effects of ionizing radiation on animals, the principles of biological cycles of radionuclides in the atmosphere, the fundamentals of radiochemistry, dosimetry, radiometry and nuclear medicine. Radiation protection of animals, raw materials, feeds, foodstuff and water, and the questions of the aplications of ionizing radiation and of radionuclides in veterinary medicine are discussed in great detail. The publication is complemented with numerous photographs, figures and graphs. (L.O.)

  14. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and (1)H NMR.

    Science.gov (United States)

    Muccilli, Vera; Cardullo, Nunzio; Spatafora, Carmela; Cunsolo, Vincenzo; Tringali, Corrado

    2017-01-15

    Two batches of the oenological tannin Tan'Activ R, (toasted oak wood - Quercus robur), were extracted with ethanol. A fractionation on XAD-16 afforded four fractions for each extract. Extracts and fractions were evaluated for antioxidant activity (DPPH), polyphenol content (GAE) and yeast α-glucosidase inhibitory activity. Comparable results were obtained for both columns, fractions X1B and X2B showing the highest antioxidant activity. Fractions X1C and X2C notably inhibited α-glucosidase, with IC50=9.89 and 8.05μg/mL, respectively. Fractions were subjected to HPLC/ESI-MS/MS and (1)H NMR analysis. The main phenolic constituents of both X1B and X2B were a monogalloylglucose isomer (1), a HHDP-glucose isomer (2), castalin (3) gallic acid (4), vescalagin (5), and grandinin (or its isomer roburin E, 6). X1C and X2C showed a complex composition, including non-phenolic constituents. Fractionation of X2C gave a subfraction, with enhanced α-glucosidase inhibitory activity (IC50=6.15μg/mL), with castalagin (7) as the main constituent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Has Modern Biology Entered the Mouth? The Clinical Impact of Biological Research.

    Science.gov (United States)

    Baum, Bruce J.

    1991-01-01

    Three areas of biological research that are beginning to have an impact on clinical medicine are examined, including molecular biology, cell biology, and biotechnology. It is concluded that oral biologists and educators must work cooperatively to bring rapid biological and biomedical advances into dental training in a meaningful way. (MSE)

  16. Highlights of the 8th Asia Oceania Congress of Nuclear Medicine and Biology, Beijing, China, 2004

    International Nuclear Information System (INIS)

    Zhu Chengmo

    2005-01-01

    The 8th Congress of the Asia and Oceania Confederation of Nuclear Medicine and Biology opened at the old cultural city, Beijing on 9th October 2005. The main theme of the 8th Congress was 'Progress with time - to create a brilliant future'. The congress addressed most of the current trends, developments and achievements in the field of nuclear medicine in an extremely friendly and peaceful environment. Besides the main congress, a Pre-congress colloquium in Beijing by the World Radiopharmaceutical Therapy Council (on 9 October), and two post-congress Satellite meetings at Shanghai and Hong Kong on 15 and 17 October respectively were organized in conjunction with the 8th congress. One of the major achievements of the congress was a record number of 58 invited lectures delivered by a galaxy of internationally reputed professionals in nuclear medicine and allied sciences. Four hundred and fifty-six (456) participants, 230 of them from China and 226 from another 33 countries of Asia and from around the rest of the world; 23 exhibitors representing manufacturers and producers of nuclear medicine equipment, radiopharmaceuticals and consumables, participated in the congress. A total of 384 abstracts were received for presentation from 36 countries, 141 for oral and 243 for poster presentation. Majority of the abstracts came from Asia; significant numbers came from Australia, Europe and North America. The distribution of abstracts in terms of the topics is given. The most popular subject was nuclear oncology, followed by general nuclear medicine, nuclear cardiology, radionuclide therapy, nuclear neurology and radiopharmacy. As compared to the presentations at the 7th AOCNMB; it was observed that there has been increases in presentations on topic related to nuclear oncology, radionuclide therapy, basic nuclear medicine, radiopharmacy and instrumentation at the 8th Congress; whereas significant reduction was observed in the number of presentations related to general nuclear

  17. Personomics: The Missing Link in the Evolution from Precision Medicine to Personalized Medicine

    Directory of Open Access Journals (Sweden)

    Roy C. Ziegelstein

    2017-10-01

    Full Text Available Clinical practice guidelines have been developed for many common conditions based on data from randomized controlled trials. When medicine is informed solely by clinical practice guidelines, however, the patient is not treated as an individual, but rather a member of a group. Precision medicine, as defined herein, characterizes unique biological characteristics of the individual or of specimens obtained from an individual to tailor diagnostics and therapeutics to a specific patient. These unique biological characteristics are defined by the tools of precision medicine: genomics, proteomics, metabolomics, epigenomics, pharmacogenomics, and other “-omics.” Personalized medicine, as defined herein, uses additional information about the individual derived from knowing the patient as a person. These unique personal characteristics are defined by tools known as personomics which takes into account an individual’s personality, preferences, values, goals, health beliefs, social support network, financial resources, and unique life circumstances that affect how and when a given health condition will manifest in that person and how that condition will respond to treatment. In this paradigm, precision medicine may be considered a necessary step in the evolution of medical care to personalized medicine, with personomics as the missing link.

  18. Distinct biological effects of different nanoparticles commonly used in cosmetics and medicine coatings

    Directory of Open Access Journals (Sweden)

    Yu Julia X

    2011-05-01

    Full Text Available Abstract Background Metal oxides in nanoparticle form such as zinc oxide and titanium dioxide now appear on the ingredient lists of household products as common and diverse as cosmetics, sunscreens, toothpaste, and medicine. Previous studies of zinc oxide and titanium dioxide in non-nanoparticle format using animals have found few adverse effects. This has led the FDA to classify zinc oxide as GRAS (generally recognized as safe for use as a food additive. However, there is no regulation specific for the use of these chemicals in nanoparticle format. Recent studies, however, have begun to raise concerns over the pervasive use of these compounds in nanoparticle forms. Unfortunately, there is a lack of easily-adaptable screening methods that would allow for the detection of their biological effects. Results We adapted two image-based assays, a fluorescence resonance energy transfer-based caspase activation assay and a green fluorescent protein coupled-LC3 assay, to test for the biological effects of different nanoparticles in a high-throughput format. We show that zinc oxide nanoparticles are cytotoxic. We also show that titanium dioxide nanoparticles are highly effective in inducing autophagy, a cellular disposal mechanism that is often activated when the cell is under stress. Conclusion We suggest that these image-based assays provide a method of screening for the biological effects of similar compounds that is both efficient and sensitive as well as do not involve the use of animals.

  19. Intermediate Physics for Medicine and Biology

    CERN Document Server

    Hobbie, Russell K

    2007-01-01

    Intended for advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, cell biology, and biomedical engineering, this wide-ranging text bridges the gap between introductory physics and its application to the life and biomedical sciences. This extensively revised and updated fourth edition reflects new developments at the burgeoning interface between physics and biomedicine. Among the many topics treated are: forces in the skeletal system; fluid flow, with examples from the circulatory system; the logistic equation; scaling; transport of neutral particles by diffusion and by solvent drag; membranes and osmosis; equipartition of energy in statistical mechanics; the chemical potential and free energy; biological magnetic fields; membranes and gated channels in membranes; linear and nonlinear feedback systems; nonlinear phenomena, including biological clocks and chaotic behavior; signal analysis, noise and stochastic resonance detection of weak signals; image formation and...

  20. [Precision medicine: new opportunities and challenges for molecular epidemiology].

    Science.gov (United States)

    Song, Jing; Hu, Yonghua

    2016-04-01

    Since the completion of the Human Genome Project in 2003 and the announcement of the Precision Medicine Initiative by U.S. President Barack Obama in January 2015, human beings have initially completed the " three steps" of " genomics to biology, genomics to health as well as genomics to society". As a new inter-discipline, the emergence and development of precision medicine have relied on the support and promotion from biological science, basic medicine, clinical medicine, epidemiology, statistics, sociology and information science, etc. Meanwhile, molecular epidemiology is considered to be the core power to promote precision medical as a cross discipline of epidemiology and molecular biology. This article is based on the characteristics and research progress of medicine and molecular epidemiology respectively, focusing on the contribution and significance of molecular epidemiology to precision medicine, and exploring the possible opportunities and challenges in the future.

  1. The golden ratio and Loshu-Fibonacci Diagram: novel research view on relationship of Chinese medicine and modern biology.

    Science.gov (United States)

    Chen, Zhao-xue; Huang, Yun-kun; Sun, Ying

    2014-02-01

    Associating geometric arrangements of 9 Loshu numbers modulo 5, investigating property of golden rectangles and characteristics of Fibonacci sequence modulo 10 as well as the two subsequences of its modular sequence by modulo 5, the Loshu-Fibonacci Diagram is created based on strict logical deduction in this paper, which can disclose inherent relationship among Taiji sign, Loshu and Fibonacci sequence modulo 10 perfectly and unite such key ideas of holism, symmetry, holographic thought and yin-yang balance pursuit from Chinese medicine as a whole. Based on further analysis and reasoning, the authors discover that taking the golden ratio and Loshu-Fibonacci Diagram as a link, there is profound and universal association existing between researches of Chinese medicine and modern biology.

  2. Documenting and predicting topic changes in Computers in Biology and Medicine: A bibliometric keyword analysis from 1990 to 2017

    Directory of Open Access Journals (Sweden)

    Oliver Faust

    Full Text Available The Computers in Biology and Medicine (CBM journal promotes the use of computing machinery in the fields of bioscience and medicine. Since the first volume in 1970, the importance of computers in these fields has grown dramatically, this is evident in the diversification of topics and an increase in the publication rate. In this study, we quantify both change and diversification of topics covered in. This is done by analysing the author supplied keywords, since they were electronically captured in 1990. The analysis starts by selecting 40 keywords, related to Medical (M (7, Data (D (10, Feature (F (17 and (AI (6 methods. Automated keyword clustering shows the statistical connection between the selected keywords. We found that the three most popular topics in CBM are: Support Vector Machine (SVM, Electroencephalography (EEG and IMAGE PROCESSING. In a separate analysis step, we bagged the selected keywords into sequential one year time slices and calculated the normalized appearance. The results were visualised with graphs that indicate the CBM topic changes. These graphs show that there was a transition from Artificial Neural Network (ANN to SVM. In 2006 SVM replaced ANN as the most important AI algorithm. Our investigation helps the editorial board to manage and embrace topic change. Furthermore, our analysis is interesting for the general reader, as the results can help them to adjust their research directions. Keywords: Research trends, Topic analysis, Topic detection and tracking, Text mining, Computers in biology and medicine

  3. Reproductive biology and breeding system of Saraca asoca (Roxb.) De Wilde: a vulnerable medicinal plant.

    Science.gov (United States)

    Smitha, G R; Thondaiman, V

    2016-01-01

    Ashoka ( Saraca asoca ) is a perennial, evergreen tree valued for its ornamental flowers and medicinal values. This species is classified as 'vulnerable' under IUCN list due to its dwindling population because of destructive harvesting from natural habitats. Therefore, conservation and multiplication of this species is need of the hour to utilize its astonishing medicinal uses eternally. Conservation approaches of any plant species require in-depth study of its reproductive biology, which is lacking in this species. The present study is the first detailed report on reproductive biology of S. asoca . This tree bears fragrant flowers in paniculate corymbose inflorescence from December end to May, with peak flowering during February-March. The fruits attain its maturity during last week of May-July. Seeds were dispersed from the pod to the tree premises upon complete maturity. The time of anthesis in this species is noticed in the early morning from 3.00 to 5.30 am, which coincided with anther dehiscence, stigma receptivity and insect activity. The length of the stamen and pistil points towards the pollination compatibility in both male and female parts. Pollen viability was maximum within 2 h of anthesis, which decreased thereafter and no pollens were viable after 6 h. The stigma was receptive at the time of anthesis and continued for 24 h. The tree produces bright colour attractive flowers, which changed from yellow/light orange to scarlet/red from the inception of buds to wilting. The bright color of the flowers attracted floral visitors/pollinators thereby facilitated the pollination in this species. The observations of the floral biology and breeding system indicated the cross pollination behaviour, which limited the production of selfed seeds and would help to maintain the sustainable levels of heterozygosity among the various populations. Considerable amount of seeds produced in this species indicated that the species is capable of sustaining its progenies

  4. Classification of Recombinant Biologics in the EU

    DEFF Research Database (Denmark)

    Klein, Kevin; De Bruin, Marie L; Broekmans, Andre W

    2015-01-01

    BACKGROUND AND OBJECTIVE: Biological medicinal products (biologics) are subject to specific pharmacovigilance requirements to ensure that biologics are identifiable by brand name and batch number in adverse drug reaction (ADR) reports. Since Member States collect ADR data at the national level...... of biologics by national authorities responsible for ADR reporting. METHODS: A sample list of recombinant biologics from the European Medicines Agency database of European Public Assessment Reports was created to analyze five Member States (Belgium, the Netherlands, Spain, Sweden, and the UK) according...

  5. Radioisotopes in nuclear medicine

    International Nuclear Information System (INIS)

    Samuel, A.M.

    2002-01-01

    Full text: A number of advances in diverse fields of science and technology and the fruitful synchronization of many a new development to address the issues related to health care in terms of prognosis and diagnosis resulted in the availability of host of modern diagnostic tools in medicine. Nuclear medicine, a unique discipline in medicine is one such development, which during the last four decades has seen exponential growth. The unique contribution of this specialty is the ability to examine the dynamic state of every organ of the body with the help of radioactive tracers. This tracer application in nuclear medicine to monitor the biological molecules that participate in the dynamic state of body constituents has led to a whole new approach to biology and medicine. No other technique has the same level of sensitivity and specificity as obtained in radiotracer technique in the study of in-situ chemistry of body organs. As modem medicine becomes oriented towards molecules rather than organs, nuclear medicine will be in the forefront and will become an integral part of a curative process for regular and routine application. Advances in nuclear medicine will proceed along two principal lines: (i) the development of improved sensitive detectors of radiation, powerful and interpretable data processing, image analysis and display techniques, and (ii) the production of exotic and new but useful radiopharmaceuticals. All these aspects are dealt with in detail in this talk

  6. The VIII International Congress on Stress Proteins in Biology and Medicine: täynnä henkeä.

    Science.gov (United States)

    Bonorino, Cristina; Sistonen, Lea; Eriksson, John; Mezger, Valérie; Santoro, Gabriella; Hightower, Lawrence E

    2018-03-01

    About 150 international scientists gathered in Turku, Finland, in August of 2017 for the eighth in a series of international congresses about the roles of stress proteins in biology and medicine. The scientific theme and title of the 2017 Congress was "Stress Management Mechanisms and Pathways." The meeting covered a broad range of topics, reflecting the wide scope of the Cell Stress Society International (CSSI) and highlighting the numerous recent breakthroughs in stress response biology and medicine. The keynote lecturers included Marja Jäättelä, Richard Morimoto, Anne Bertolotti, and Peter Walter. The Executive Council of the CSSI elected new Fellows and Senior Fellows. The Spirit of Budapest Award was presented to Peter Csermely, Wolfgang Schumann, and Subhash Lakhotia in recognition of pioneering service contributions to the CSSI. The CSSI Medallion for Career Achievement was awarded to Larry Hightower and CSSI president Gabriella Santoro proclaimed Tuesday, August 15, 2017, Robert M. Tanguay Day at the congress in recognition of Robert's many years of scientific accomplishment and work on behalf of the CSSI. Additional special events were the awarding of the Ferruccio Ritossa Early Career Award to Serena Carra and the Alfred Tissières Young Investigator Award to Ayesha Murshid. As is the tradition at CSSI congresses, there were social events that included an exciting piano performance by a trio of young Finnish pianists, at the Sibelius Museum.

  7. Applications of space-electrophoresis in medicine. [for cellular separations in molecular biology

    Science.gov (United States)

    Bier, M.

    1976-01-01

    The nature of electrophoresis is reviewed and potential advances realizable in the field of biology and medicine from a space electrophoresis facility are examined. The ground-based applications of electrophoresis: (1) characterization of an ionized species; (2) determination of the quantitative composition of a complex mixture; and (3) isolation of the components of a mixture, separation achieved on the basis of the difference in transport rates is reviewed. The electrophoresis of living cells is considered, touching upon the following areas: the separation of T and B lymphocytes; the genetic influence on mouse lymphocyte mobilities; the abnormal production of specific and monoclonal immunoproteins; and the study of cancer. Schematic diagrams are presented of three types of electrophoresis apparatus: the column assembly for the static electrophoresis experiment on the Apollo-Soyuz mission, the continuous flow apparatus used in the same mission and a miniaturized electrophoresis apparatus.

  8. The Rise of Mitochondria in Medicine

    Science.gov (United States)

    Picard, Martin; Wallace, Douglas C; Burelle, Yan

    2016-01-01

    Once considered exclusively the cell's powerhouse, mitochondria are now recognized to perform multiple essential cellular functions beyond energy production, impacting most areas of cell biology and medicine. Since the emergence of molecular biology and the discovery of pathogenic mitochondrial DNA defects in the 1980's, research advances have revealed a number of common human diseases which share an underlying pathogenesis involving mitochondrial dysfunction. Mitochondria undergo function-defining dynamic shape changes, communicate with each other, regulate gene expression within the nucleus, modulate synaptic transmission within the brain, release molecules that contribute to oncogenic transformation and trigger inflammatory responses systemically, and influence the regulation of complex physiological systems. Novel “mitopathogenic” mechanisms are thus being uncovered across a number of medical disciplines including genetics, oncology, neurology, immunology, and critical care medicine. Increasing knowledge of the bioenergetic aspects of human disease has provided new opportunities for diagnosis, therapy, prevention, and in connecting various domains of medicine. In this article, we overview specific aspects of mitochondrial biology that have contributed to – and likely will continue to enhance the progress of modern medicine. PMID:27423788

  9. Biological therapeutics

    National Research Council Canada - National Science Library

    Greenstein, Ben; Brook, Daniel A

    2011-01-01

    This introductory textbook covers all the main categories of biological medicines, including vaccines, hormonal preparations, drugs for rheumatoid arthritis and other connective tissue diseases, drugs...

  10. Ayurvedic Medicine

    Science.gov (United States)

    ... to the biologic humors of the ancient Greek system. Using these concepts, Ayurvedic physicians prescribe individualized treatments, including compounds of herbs or proprietary ingredients, and diet, exercise, and lifestyle recommendations. The majority of India’s population uses Ayurvedic medicine ...

  11. Infrastructures for systems medicine in Iran’s health roadmap

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2014-11-01

    Full Text Available Background: Systems medicine denotes a paradigm shift in medicine that arising from fundamental thoughts in systems biology. Systems medicine looks at health and disease using systems approaches. Systems or holistic approaches to studying the complexities of disease, emerging measurement and visualization molecular technologies to exploring of patient data space, and new computational and mathematical tools are fundamentals for this revolution in medicine. Methods: In order to explore the scientific/technological key objectives for systems medicine in “Iran’s Scientific Map in the Health Sector”, the details of goals, policies and requisites of Iran’s Health Roadmap were compared with horizontal and vertical policies of “National Institutes of Health (NIH Roadmap for Medical Research in U.S.A”. Results: A great attention has been paid on information technology, networking, interdisciplinary approach, innovation and high- risk research in Iran’s Health Roadmap. However, areas of research such as biological pathways (including metabolomics and networks structural biology molecular libraries and imaging bioinformatics and computational biology and human genome have not been adequately addressed. Conclusion: In order to react to waves of systems medicine, as a megatrend in health, Iran’s Scientific Map in the Health Sector should be synthesized to paradigm shift of emerging technologies in biomedicine. A framework for a broad interdisciplinary approach in biomedical research should be addressed to change medicine from reactive to proactive.

  12. Attenuated Innate Immunity in Embryonic Stem Cells and Its Implications in Developmental Biology and Regenerative Medicine.

    Science.gov (United States)

    Guo, Yan-Lin; Carmichael, Gordon G; Wang, Ruoxing; Hong, Xiaoxiao; Acharya, Dhiraj; Huang, Faqing; Bai, Fengwei

    2015-11-01

    Embryonic stem cells (ESCs) represent a promising cell source for regenerative medicine. Intensive research over the past 2 decades has led to the feasibility of using ESC-differentiated cells (ESC-DCs) in regenerative medicine. However, increasing evidence indicates that ESC-DCs generated by current differentiation methods may not have equivalent cellular functions to their in vivo counterparts. Recent studies have revealed that both human and mouse ESCs as well as some types of ESC-DCs lack or have attenuated innate immune responses to a wide range of infectious agents. These findings raise important concerns for their therapeutic applications since ESC-DCs, when implanted to a wound site of a patient, where they would likely be exposed to pathogens and inflammatory cytokines. Understanding whether an attenuated immune response is beneficial or harmful to the interaction between host and grafted cells becomes an important issue for ESC-based therapy. A substantial amount of recent evidence has demonstrated that the lack of innate antiviral responses is a common feature to ESCs and other types of pluripotent cells. This has led to the hypothesis that mammals may have adapted different antiviral mechanisms at different stages of organismal development. The underdeveloped innate immunity represents a unique and uncharacterized property of ESCs that may have important implications in developmental biology, immunology, and in regenerative medicine. © 2015 AlphaMed Press.

  13. Application of transcriptomics in Chinese herbal medicine studies

    Directory of Open Access Journals (Sweden)

    Hsin-Yi Lo

    2012-04-01

    Full Text Available Transcriptomics using DNA microarray has become a practical and popular tool for herbal medicine study because of high throughput, sensitivity, accuracy, specificity, and reproducibility. Therefore, this article focuses on the overview of DNA microarray technology and the application of DNA microarray in Chinese herbal medicine study. To understand the number and the objectives of articles utilizing DNA microarray for herbal medicine study, we surveyed 297 frequently used Chinese medicinal herbs listed in Pharmacopoeia Commission of People’s Republic of China. We classified these medicinal herbs into 109 families and then applied PudMed search using “microarray” and individual herbal family as keywords. Although thousands of papers applying DNA microarray in Chinese herbal studies have been published since 1998, most of the articles focus on the elucidation of mechanisms of certain biological effects of herbs. Construction of the bioactivity database containing large-scaled gene expression profiles of quality control herbs can be applied in the future to analyze the biological events induced by herbs, predict the therapeutic potential of herbs, evaluate the safety of herbs, and identify the drug candidate of herbs. Moreover, the linkage of systems biology tools, such as functional genomics, transcriptomics, proteomics, metabolomics, pharmacogenomics and toxicogenomics, will become a new translational platform between Western medicine and Chinese herbal medicine.

  14. The state of the art in nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.

    1999-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been a dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  15. Michael Levitt and Computational Biology

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Michael Levitt and Computational Biology Resources with Michael Levitt, PhD, professor of structural biology at the Stanford University School of Medicine, has function. ... Levitt's early work pioneered computational structural biology, which helped to predict

  16. Convergence of regenerative medicine and synthetic biology to develop standardized and validated models of human diseases with clinical relevance.

    Science.gov (United States)

    Hutmacher, Dietmar Werner; Holzapfel, Boris Michael; De-Juan-Pardo, Elena Maria; Pereira, Brooke Anne; Ellem, Stuart John; Loessner, Daniela; Risbridger, Gail Petuna

    2015-12-01

    In order to progress beyond currently available medical devices and implants, the concept of tissue engineering has moved into the centre of biomedical research worldwide. The aim of this approach is not to replace damaged tissue with an implant or device but rather to prompt the patient's own tissue to enact a regenerative response by using a tissue-engineered construct to assemble new functional and healthy tissue. More recently, it has been suggested that the combination of Synthetic Biology and translational tissue-engineering techniques could enhance the field of personalized medicine, not only from a regenerative medicine perspective, but also to provide frontier technologies for building and transforming the research landscape in the field of in vitro and in vivo disease models. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  17. The Human Dimension: Putting the Person into Personalised Medicine.

    Science.gov (United States)

    Horne, Rob

    2017-04-01

    Technological advances enabling us to personalise medical interventions at the biological level must be matched by parallel advances in how we support the informed choices essential to patient and public participation. We cannot take participation for granted. To be truly personalised, medicine must take account of the perceptions and capabilities that shape participation. To do this, we need a better understanding of how people perceive personalised medicine and how they judge its value and risks. To realise the promise of 4P medicine we need to personalise at the psychosocial as well as biological dimension, putting the person into personalised medicine.

  18. Biology and Medicine Division annual report, 1978-1979

    International Nuclear Information System (INIS)

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include research medicine, cancer research, environmental physiology, radiation biophysics, and structural biophysics

  19. Core principles of evolutionary medicine

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Abstract Background and objectives Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. Methodology The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Results Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. Conclusions and implications This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further. PMID:29493660

  20. Biology and Medicine Division annual report, 1978-1979

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    Summaries of research projects conducted during 1978 and 1979 are presented. Subject areas include research medicine, cancer research, environmental physiology, radiation biophysics, and structural biophysics. (ACR)

  1. Me medicine vs we medicine reclaiming biotechnology for the common good

    CERN Document Server

    Donna

    2013-01-01

    Personalized healthcare—or what the award-winning author Donna Dickenson calls “Me Medicine"—is radically transforming our longstanding, “one-size-fits-all" model. Technologies such as direct-to-consumer genetic testing, pharmacogenetics in cancer care, private umbilical cord blood banking, and neurocognitive enhancement claim to cater to an individual's specific biological character. In some cases, these technologies have shown powerful potential, yet in others, they have produced negligible or even negative results. Whatever is behind the rise of Me Medicine, it isn't just science. So why is Me Medicine rapidly edging out We Medicine, and how has our commitment to collective health suffered as a result? In her balanced, provocative analysis, Dickenson examines the economic and political factors fueling the Me Medicine phenomenon and explores whether it may, over time, damage our individual health as well as our collective well-being. Historically, it is the measures of “We Medicine," such as vaccinatio...

  2. Synthetic Aziridines in Medicinal Chemistry: A Mini-Review.

    Science.gov (United States)

    Singh, Girija S

    2016-01-01

    Azaheterocyclic compounds are well-known to have diverse types of biological activity. Among them, azacyclopropanes, commonly referred as aziridines, occupy a prominent place in synthetic organic and medicinal chemistry due to its occurrence in natural resources, complexity involved in synthesis due to ring-strain, building blocks in organic synthesis, and its biological properties. Several novel compounds containing aziridine ring have been designed and synthesized recently by medicinal chemists for evaluating their biological profile. A number of compounds are reported as cysteine protease inhibitors, antibacterial, antifungal, anticancer, antileishmanial, and antimalarial agents. This review article summarizes the biological activity of such compounds. The preparation of such compounds is also described.

  3. [Pharmacy, one of the emerging sources of new science of technology].

    Science.gov (United States)

    Charlot, Colette

    2015-01-01

    Linking pharmacy and oenology seems to be paradox. The school of Medicine and Pharmacy owe their fame to the historical context of the Languedocian Universities. The role of their naturalist professors is less known. Dr Chaptal's thesis discusses the wine chemical constituents. In 1801 he published a book entitled "the Art of making, managing and perfecting wine", inventor of a distillation machine, his name become an eponym "the chaptalisation", which is specific process, for regions less exposed to sunlight, showing that sugar in the must is needed to obtain alcohol. Jules Emile Planchon, professor of botanic science at the Superior School of Pharmacy will discoverer the parasite disease of the phylloxera, a parasite that destroy vineyards. The cure will be the American grafting. The list of professors who worked on vineyards related frauds and diseases is long. Once Analytical chemistry has become part of the curriculum universities, pharmacists, started investigating wine analysis. It will be part of Bromatology, the science of food ingredients. Pharmacists were then able to carry out the first wine analyses sin their laboratory. It is at that time that Paul Jaulmes, professor of Analytical Chemistry who became Director of the international office of vineyards and Wine (OIV) proposed alongside Prof Nègre, director of the National School of Agronomy, the initiation in 1955 of a new diploma oenology. As a renowned toxicologist, Prof. Jaulmes will lead the committee in charge of the oenology Standards.

  4. Applications of dynamical systems in biology and medicine

    CERN Document Server

    Radunskaya, Ami

    2015-01-01

    This volume highlights problems from a range of biological and medical applications that can be interpreted as questions about system behavior or control.  Topics include drug resistance in cancer and malaria, biological fluid dynamics, auto-regulation in the kidney, anti-coagulation therapy, evolutionary diversification and photo-transduction.  Mathematical techniques used to describe and investigate these biological and medical problems include ordinary, partial and stochastic differentiation equations, hybrid discrete-continuous approaches, as well as 2 and 3D numerical simulation. .

  5. Recent advance in oxazole-based medicinal chemistry.

    Science.gov (United States)

    Zhang, Hui-Zhen; Zhao, Zhi-Long; Zhou, Cheng-He

    2018-01-20

    Oxazole compounds containing nitrogen and oxygen atoms in the five-membered aromatic ring are readily able to bind with a variety of enzymes and receptors in biological systems via diverse non-covalent interactions, and thus display versatile biological activities. The related researches in oxazole-based derivatives including oxazoles, isoxazoles, oxazolines, oxadiazoles, oxazolidones, benzoxazoles and so on, as medicinal drugs have been an extremely active topic, and numerous excellent achievements have been acquired. Noticeably, a large number of oxazole compounds as clinical drugs or candidates have been frequently employed for the treatment of various types of diseases, which have shown their large development value and wide potential as medicinal agents. This work systematically reviewed the recent researches and developments of the whole range of oxazole compounds as medicinal drugs, including antibacterial, antifungal, antiviral, antitubercular, anticancer, anti-inflammatory and analgesic, antidiabetic, antiparasitic, anti-obesitic, anti-neuropathic, antioxidative as well as other biological activities. The perspectives of the foreseeable future in the research and development of oxazole-based compounds as medicinal drugs are also presented. It is hoped that this review will serve as a stimulant for new thoughts in the quest for rational designs of more active and less toxic oxazole medicinal drugs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  7. Selery medicinal plants in the Donbas

    Directory of Open Access Journals (Sweden)

    S.Yu. Naumov

    2017-02-01

    Full Text Available The performed studies determined the real number of species of medicinal plants in Apiaceae family growing on the Donbass territory. The study of literature and conducted field experiments revealed the presence of 41 species of medicinal plants of the celery family (Apiaceae Lindl., among which 11 cultivated species. There was a brief description of botanical species studied, the typical place of growth, and the presence of biologically active compounds that determine the medicinal properties of the studied taxons. The studied plants have various quantitative and spatial relationship: 6 species are rare and are considered as protected plants, 2 species does not grow in Luhansk, 3 — in the Donetsk region, 4 species are considered to be adventitious for our region. Medicinal plants of the family celery cover a wide range of various diseases due to the large number of various biologically active substances and, primarily, essential fatty oils, flavonoids, vitamins and coumarins. It is worth noting that there no agricultural enterprises specialized on medicinal plants cultivating.

  8. Maya medicine in the biological gaze: bioprospecting research as herbal fetishism.

    Science.gov (United States)

    Nigh, Ronald

    2002-06-01

    The relationship of human societies to territory and natural resources is being drastically altered by a series of global agreements concerning trade, intellectual property, and the conservation and use of genetic resources. Through a characteristic style of collective appropriation of their tropical ecosystems, Maya societies have created local institutions for governing access to their common resources. However, new mechanisms of global governance require access to Maya biodiversity for world commercial interests. The Chiapas Highland Maya already face this prospect in the International Cooperative Biodiversity Group drug discovery project, which proposes to use Maya medical knowledge to screen plants for potential pharmaceuticals. The ethnobiological focus of the project emphasizes the naturalistic aspects of Maya medicine, primarily the use of herbal remedies. This biological gaze decontextualizes the situated knowledge of Maya healers, ignoring the cultural context in which they create and apply that knowledge. The search for raw materials for the production of universal medical technology results in symbolic violence to the cultural logic of Maya peoples. Only the full recognition of Maya peoples' collective rights to territory and respect for their local common-resource institutions will provide ultimate protection for their cultural and natural patrimony.

  9. Sasang constitutional medicine as a holistic tailored medicine.

    Science.gov (United States)

    Kim, Jong Yeol; Pham, Duong Duc

    2009-09-01

    Sasang constitutional medicine (SCM) is a unique traditional Korean therapeutic alternative form of medicine. Based on the Yin and Yang theory and on Confucianism, humans are classified into four constitutions. These differ in terms of (i) sensitivity to certain groups of herbs and medicines, (ii) equilibrium among internal organic functions, (iii) physical features and (iv) psychological characteristics. We propose that two main axes in the physiopathology of SCM (food intake/waste discharge and consuming/storing Qi and body fluids) are equivalent to the process of internal-external exchange and catabolism/anabolism in modern physiology, respectively. We then used this hypothesis to discuss the physiological and pathological principles of SCM. Constitution-based medicine is based on the theory that some medicinal herbs and remedies are only appropriate for certain constitutions and can cause adverse effects in others. The constitutional approach of SCM share the same vision as tailored medicine; an individualized therapy that can minimize the risk of adverse reaction while increasing the efficacy and an individualized self-regulation that can help prevent specific susceptible chronic disease and live healthily. There is still a long way to this goal for both SCM and tailored medicine, but we may benefit from systems approaches such as systems biology. We suggest that constitutional perspective of SCM and our hypothesis of two main processes may provide a novel insight for further studies.

  10. Sasang Constitutional Medicine as a Holistic Tailored Medicine

    Directory of Open Access Journals (Sweden)

    Jong Yeol Kim

    2009-01-01

    Full Text Available Sasang constitutional medicine (SCM is a unique traditional Korean therapeutic alternative form of medicine. Based on the Yin and Yang theory and on Confucianism, humans are classified into four constitutions. These differ in terms of (i sensitivity to certain groups of herbs and medicines, (ii equilibrium among internal organic functions, (iii physical features and (iv psychological characteristics. We propose that two main axes in the physiopathology of SCM (food intake/waste discharge and consuming/storing Qi and body fluids are equivalent to the process of internal–external exchange and catabolism/anabolism in modern physiology, respectively. We then used this hypothesis to discuss the physiological and pathological principles of SCM. Constitution-based medicine is based on the theory that some medicinal herbs and remedies are only appropriate for certain constitutions and can cause adverse effects in others. The constitutional approach of SCM share the same vision as tailored medicine; an individualized therapy that can minimize the risk of adverse reaction while increasing the efficacy and an individualized self-regulation that can help prevent specific susceptible chronic disease and live healthily. There is still a long way to this goal for both SCM and tailored medicine, but we may benefit from systems approaches such as systems biology. We suggest that constitutional perspective of SCM and our hypothesis of two main processes may provide a novel insight for further studies.

  11. The state of the art in diagnostic nuclear medicine

    International Nuclear Information System (INIS)

    Scott, A.M.; University of Melbourne, VIC

    2001-01-01

    Recent improvements in the understanding of the physiologic and biologic mechanisms of health and disease have led to an expansion of nuclear medicine applications both in clinical studies and research. Advances in radiopharmaceutical development, instrumentation and computer processing have resulted in the implementation of Positron Emission Tomography for clinical studies, and improved treatments with radiopharmaceuticals particularly in cancer patients. There has also been an dramatic increase in the techniques available with nuclear medicine to detect and measure cellular biologic events in-vivo, which have important implications in clinical and basic science research. Nuclear medicine studies provide unique information on human physiology and remain an integral part of clinical medicine practice

  12. Bioprinting in Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2016-02-01

    Full Text Available Prof. Turksen is a very well known scientist in the stem cell biology field and he is also internationally known for his fundamental studies on claudin-6. In addition to his research activity he is editor for the Stem Cell Biology and Regenerative Medicine series (Humana Press and editor-in-chief of Stem Cell Reviews and Reports.....

  13. Biology and Medicine Division annual report, 1982-1983

    International Nuclear Information System (INIS)

    1984-04-01

    This annual report presents brief summaries of research activities during 1982 to 1983. Program activities have been individually entered into EDB. They include research medicine, radiosurgery, environmental physiology, radiation biophysics, and structural biophysics

  14. Nuclear Medicine in Turkey

    International Nuclear Information System (INIS)

    Durak, H.

    2001-01-01

    Nuclear Medicine is a medical specialty that uses radionuclides for the diagnosis and treatment of diseases and it is one of the most important peaceful applications of nuclear sciences. Nuclear Medicine has a short history both in Turkey and in the world. The first use of I-131 for the treatment of thyrotoxicosis in Turkey was in 1958 at the Istanbul University Cerrahpasa Medical School. In 1962, Radiobiological Institute in Ankara University Medical School was established equipped with well-type counters, radiometers, scalers, external counters and a rectilinear scanner. In 1965, multi-probe external detection systems, color dot scanners and in 1967, anger scintillation camera had arrived. In 1962, wet lab procedures and organ scanning, in 1965 color dot scanning, dynamic studies (blood flow - renograms) and in 1967 analogue scintillation camera and dynamic camera studies have started. In 1974, nuclear medicine was established as independent medical specialty. Nuclear medicine departments have started to get established in 1978. In 1974, The Turkish Society of Nuclear Medicine (TSNM) was established with 10 members. The first president of TSNM was Prof. Dr. Yavuz Renda. Now, in the year 2000, TSNM has 349 members. Turkish Society of Nuclear Medicine is a member of European Association of Nuclear Medicine (EANM), World Federation of Nuclear Medicine and Biology (WFNMB) and WFNMB Asia-Oceania. Since 1974, TSNM has organized 13 national Nuclear Medicine congresses, 4 international Nuclear Oncology congresses and 13 nuclear medicine symposiums. In 1-5 October 2000, 'The VII th Asia and Oceania Congress of Nuclear Medicine and Biology' was held in Istanbul, Turkey. Since 1992, Turkish Journal of Nuclear Medicine is published quarterly and it is the official publication of TSNM. There are a total of 112 Nuclear Medicine centers in Turkey. There are 146 gamma cameras. (52 Siemens, 35 GE, 16 Elscint, 14 Toshiba, 10 Sopha, 12 MIE, 8 Philips, 9 Others) Two cyclotrons are

  15. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 7 papers are interesting for the ETDE database and are analyzed separately. (O.M.)

  16. Mass spectrometry. Environment, biology, oenology, medicine, geology, chemistry, archaeology, mechanisms; Spectrometrie de masse. Environnement, biologie, oenologie, medecine, geologie, chimie, archeologie, mecanismes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document provides the papers (communications and posters) presented at the 16. French days of mass spectrometry, held September 6-9, 1999 in Nancy, France. 5 papers are interesting for the INIS database and are analyzed separately. (O.M.)

  17. Biology and Medicine Division annual report, 1982-1983

    Energy Technology Data Exchange (ETDEWEB)

    1984-04-01

    This annual report presents brief summaries of research activities during 1982 to 1983. Program activities have been individually entered into EDB. They include research medicine, radiosurgery, environmental physiology, radiation biophysics, and structural biophysics. (ACR)

  18. Electromagnetic effects - From cell biology to medicine.

    Science.gov (United States)

    Funk, Richard H W; Monsees, Thomas; Ozkucur, Nurdan

    2009-01-01

    In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.

  19. Space Biology and Medicine. Volume I; Space and Its Exploration

    Science.gov (United States)

    Nicogossian, Arnauld E.; Mohler, Stanley R.; Gazenko, Oleg G.; Grigoryev, Anatoliy I.

    1993-01-01

    and a path to our common future. But for humanity to embark on this path, we need to understand ourselves in a new environment. As such, an understanding of the biological consequences of and opportunities in space flight is essential. In this, the first volume of a joint U.S./Russian series on space biology and medicine, we describe the current status of our understanding of space and present general information that will prove useful when reading subsequent volumes. Since we are witnesses to the beginning of a new era of interplanetary travel, a significant portion of the first volume will concentrate on the physical and ecological conditions that exist in near and outer space, as well as heavenly bodies from the smallest ones to the giant planets and stars. While space exploration is a comparatively recent endeavor, its foundations were laid much more than 30 years ago, and its history has been an eventful one. In the first part of this volume, Rauschenbach, Sokolskiy, and Gurjian address the "Historical Aspects of Space Exploration" from its beginnings to a present-day view of the events of the space age. The nature of space itself and its features is the focus of the second section of the volume. In the first chapter of the part, "Stars and Interstellar Space," the origin and evolution of stars, and the nature of the portions of space most distant from Earth are described by Galeev and Marochnik. In Chapter 2, Pisarenko, Logachev, and Kurt in "The Sun and Interplanetary Space" bring us to the vicinity of our own solar system and provide a description and discussion of the nearest star and its influence on the space environment that our Earth and the other planets inhabit. In our solar system there are many fascinating objects, remnants of the formation of a rather ordinary star in a rather obscure portion of the galaxy. Historical accident has caused us to be much more curious (and knowledgeable) about "The Inner Planets of the Solar System" than about any of

  20. Extrapolation in the development of paediatric medicines: examples from approvals for biological treatments for paediatric chronic immune-mediated inflammatory diseases.

    Science.gov (United States)

    Stefanska, Anna M; Distlerová, Dorota; Musaus, Joachim; Olski, Thorsten M; Dunder, Kristina; Salmonson, Tomas; Mentzer, Dirk; Müller-Berghaus, Jan; Hemmings, Robert; Veselý, Richard

    2017-10-01

    The European Union (EU) Paediatric Regulation requires that all new medicinal products applying for a marketing authorisation (MA) in the EU provide a paediatric investigation plan (PIP) covering a clinical and non-clinical trial programme relating to the use in the paediatric population, unless a waiver applies. Conducting trials in children is challenging on many levels, including ethical and practical issues, which may affect the availability of the clinical evidence. In scientifically justified cases, extrapolation of data from other populations can be an option to gather evidence supporting the benefit-risk assessment of the medicinal product for paediatric use. The European Medicines Agency (EMA) is working on providing a framework for extrapolation that is scientifically valid, reliable and adequate to support MA of medicines for children. It is expected that the extrapolation framework together with therapeutic area guidelines and individual case studies will support future PIPs. Extrapolation has already been employed in several paediatric development programmes including biological treatment for immune-mediated diseases. This article reviews extrapolation strategies from MA applications for products for the treatment of juvenile idiopathic arthritis, paediatric psoriasis and paediatric inflammatory bowel disease. It also provides a summary of extrapolation advice expressed in relevant EMA guidelines and initiatives supporting the use of alternative approaches in paediatric medicine development. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  1. Epistemology, Ethics, and Progress in Precision Medicine.

    Science.gov (United States)

    Hey, Spencer Phillips; Barsanti-Innes, Brianna

    2016-01-01

    The emerging paradigm of precision medicine strives to leverage the tools of molecular biology to prospectively tailor treatments to the individual patient. Fundamental to the success of this movement is the discovery and validation of "predictive biomarkers," which are properties of a patient's biological specimens that can be assayed in advance of therapy to inform the treatment decision. Unfortunately, research into biomarkers and diagnostics for precision medicine has fallen well short of expectations. In this essay, we examine the portfolio of research activities into the excision repair cross complement group 1 (ERCC1) gene as a predictive biomarker for precision lung cancer therapy as a case study in elucidating the epistemological and ethical obstacles to developing new precision medicines.

  2. South African Association of Physicists in Medicine and Biology: 25. Anniversary Congress, 18-22 Mar 1985, Cape Town

    International Nuclear Information System (INIS)

    1985-01-01

    The twenty-fifth anniversary congress of the South African Association of Physicists in Medicine and Biology was held from 18-22 March 1985 in Cape Town. The tremendous growth of nuclear energy and radiation technology in South Africa led to an increasing need for biophysicists, especially health physicists, for the application of radioisotopes and radiation as well as nuclear power, including the uranium industry. Papers delivered on the conference covered subjects like medical physics, radiotherapy, radiopharmaceuticals, radiation protection, the calibration of radiation monitors, radiation detectors, radiation doses and dosimetry

  3. Basics of radiobiology and nuclear medicine

    International Nuclear Information System (INIS)

    Kostadinova, I.; Hadjidekova, V.; Georgieva, R.

    2002-01-01

    The authors successively reveal the topics of the biological impact of radiation (radiobiology) and the diagnostic and the therapeutic application of radiopharmaceuticals (nuclear medicine). Data on the influence of radiation on subcellular, cellular, tissue and organ level are given, on early and late radiation changes, as well. Indication for the application of the different radionuclide methods in the diagnosis of the diseases in the endocrinology, nephrology, cardiology, gastroenterology, haematology of lungs, bones, tumors are pointed out and the main trends of the growing therapeutical use of nuclear medicine are presented. The aim is to teach students the nuclear medicine methods in the complex investigation of the patients, his preliminary preparation and the biological impact of radiation and its risk. Self assessment test for students are proposed and a literature for further reading

  4. Modern science for better quality control of medicinal products "Towards global harmonization of 3Rs in biologicals": The report of an EPAA workshop.

    Science.gov (United States)

    Schutte, Katrin; Szczepanska, Anna; Halder, Marlies; Cussler, Klaus; Sauer, Ursula G; Stirling, Catrina; Uhlrich, Sylvie; Wilk-Zasadna, Iwona; John, David; Bopst, Martin; Garbe, Joerg; Glansbeek, Harrie L; Levis, Robin; Serreyn, Pieter-Jan; Smith, Dean; Stickings, Paul

    2017-07-01

    This article summarizes the outcome of an international workshop organized by the European Partnership for Alternative Approaches to Animal Testing (EPAA) on Modern science for better quality control of medicinal products: Towards global harmonization of 3Rs in biologicals. As regards the safety testing of biologicals, the workshop participants agreed to actively encourage the deletion of abnormal toxicity tests and target animal batch safety tests from all relevant legal requirements and guidance documents (country-specific guidelines, pharmacopoeia monographs, WHO recommendations). To facilitate the global regulatory acceptance of non-animal methods for the potency testing of, e.g., human diphtheria and tetanus vaccines and veterinary swine erysipelas vaccines, international convergence on the scientific principles of the use of appropriately validated in vitro assays for replacing in vivo methods was identified as an overarching goal. The establishment of scientific requirements for new assays was recognized as a further means to unify regulatory approaches in different jurisdictions. It was recommended to include key regulators and manufacturers early in the corresponding discussions. Manufacturers and responsible expert groups, e.g. at the European Directorate for the Quality of Medicines and Health Care of the Council of Europe or the European Medicines Agency, were invited to consider leadership for international collaboration. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Modern bioinformatics meets traditional Chinese medicine.

    Science.gov (United States)

    Gu, Peiqin; Chen, Huajun

    2014-11-01

    Traditional Chinese medicine (TCM) is gaining increasing attention with the emergence of integrative medicine and personalized medicine, characterized by pattern differentiation on individual variance and treatments based on natural herbal synergism. Investigating the effectiveness and safety of the potential mechanisms of TCM and the combination principles of drug therapies will bridge the cultural gap with Western medicine and improve the development of integrative medicine. Dealing with rapidly growing amounts of biomedical data and their heterogeneous nature are two important tasks among modern biomedical communities. Bioinformatics, as an emerging interdisciplinary field of computer science and biology, has become a useful tool for easing the data deluge pressure by automating the computation processes with informatics methods. Using these methods to retrieve, store and analyze the biomedical data can effectively reveal the associated knowledge hidden in the data, and thus promote the discovery of integrated information. Recently, these techniques of bioinformatics have been used for facilitating the interactional effects of both Western medicine and TCM. The analysis of TCM data using computational technologies provides biological evidence for the basic understanding of TCM mechanisms, safety and efficacy of TCM treatments. At the same time, the carrier and targets associated with TCM remedies can inspire the rethinking of modern drug development. This review summarizes the significant achievements of applying bioinformatics techniques to many aspects of the research in TCM, such as analysis of TCM-related '-omics' data and techniques for analyzing biological processes and pharmaceutical mechanisms of TCM, which have shown certain potential of bringing new thoughts to both sides. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine. PMID:28078184

  7. Precision medicine and molecular imaging: new targeted approaches toward cancer therapeutic and diagnosis.

    Science.gov (United States)

    Ghasemi, Mojtaba; Nabipour, Iraj; Omrani, Abdolmajid; Alipour, Zeinab; Assadi, Majid

    2016-01-01

    This paper presents a review of the importance and role of precision medicine and molecular imaging technologies in cancer diagnosis with therapeutics and diagnostics purposes. Precision medicine is progressively becoming a hot topic in all disciplines related to biomedical investigation and has the capacity to become the paradigm for clinical practice. The future of medicine lies in early diagnosis and individually appropriate treatments, a concept that has been named precision medicine, i.e. delivering the right treatment to the right patient at the right time. Molecular imaging is quickly being recognized as a tool with the potential to ameliorate every aspect of cancer treatment. On the other hand, emerging high-throughput technologies such as omics techniques and systems approaches have generated a paradigm shift for biological systems in advanced life science research. In this review, we describe the precision medicine, difference between precision medicine and personalized medicine, precision medicine initiative, systems biology/medicine approaches (such as genomics, radiogenomics, transcriptomics, proteomics, and metabolomics), P4 medicine, relationship between systems biology/medicine approaches and precision medicine, and molecular imaging modalities and their utility in cancer treatment and diagnosis. Accordingly, the precision medicine and molecular imaging will enable us to accelerate and improve cancer management in future medicine.

  8. [Computer evaluation of hidden potential of phytochemicals of medicinal plants of the traditional Indian ayurvedic medicine].

    Science.gov (United States)

    Lagunin, A A; Druzhilovsky, D S; Rudik, A V; Filimonov, D A; Gawande, D; Suresh, K; Goel, R; Poroikov, V V

    2015-01-01

    Applicability of our computer programs PASS and PharmaExpert to prediction of biological activity spectra of rather complex and structurally diverse phytocomponents of medicinal plants, both separately and in combinations has been evaluated. The web-resource on phytochemicals of 50 medicinal plants used in Ayurveda was created for the study of hidden therapeutic potential of Traditional Indian Medicine (TIM) (http://ayurveda.pharmaexpert.ru). It contains information on 50 medicinal plants, their using in TIM and their pharmacology activities, also as 1906 phytocomponents. PASS training set was updated by addition of information about 946 natural compounds; then the training procedure and validation were performed, to estimate the quality of PASS prediction. It was shown that the difference between the average accuracy of prediction obtained in leave-5%-out cross-validation (94,467%) and in leave-one-out cross-validation (94,605%) is very small. These results showed high predictive ability of the program. Results of biological activity spectra prediction for all phytocomponents included in our database are in good correspondence with the experimental data. Additional kinds of biological activity predicted with high probability provide the information about most promising directions of further studies. The analysis of prediction results of sets of phytocomponents in each of 50 medicinal plants was made by PharmaExpert software. Based on this analysis, we found that the combination of phytocomponents from Passiflora incarnata may exhibit nootropic, anticonvulsant and antidepressant effects. Experiments carried out in mice models confirmed the predicted effects of Passiflora incarnata extracts.

  9. The biological subject of aesthetic medicine

    NARCIS (Netherlands)

    Edmonds, A.

    2013-01-01

    This article explores how race, sexual attractiveness and ‘female nature’ are biologised in plastic surgery. I situate this analysis in relation to recent debates over the limits of social constructionism and calls for more engagement with biology in feminist theory and science studies. I analyse

  10. Optical interferometry for biology and medicine

    CERN Document Server

    Nolte, David D

    2012-01-01

    This book presents the fundamental physics of optical interferometry as applied to biophysical, biological and medical research. Interference is at the core of many types of optical detection and is a powerful probe of cellular and tissue structure in interfererence microscopy and in optical coherence tomography. It is also the root cause of speckle and other imaging artefacts that limit range and resolution. For biosensor applications, the inherent sensitivity of interferometry enables ultrasensitive detection of molecules in biological samples for medical diagnostics. In this book, emphasis is placed on the physics of light scattering, beginning with the molecular origins of refraction as light propagates through matter, and then treating the stochastic nature of random fields that ultimately dominate optical imaging in cells and tissue. The physics of partial coherence plays a central role in the text, with a focus on coherence detection techniques that allow information to be selectively detected out of ...

  11. Systems biology, connectivity and the future of medicine

    NARCIS (Netherlands)

    Greef, J. van der

    2005-01-01

    The concept of systems-based strategies in medicine is emerging, with systems pathology guiding an understanding of the multidimensional aspects of disease system fingerprints and systems pharmacology providing insight into dynamic system responses upon (multiple) drug perturbations. Knowledge of

  12. The Center for Regenerative Biology and Medicine at Mount Desert Island Biological Laboratory

    Science.gov (United States)

    2013-06-01

    Polypterus samples respectively. Employing similar biostatistical parameters, we identified 33-shared miRNAs that are highly downregulated during...Wheaton College, Dr. Kenneth Poss from Duke Medical Center and Dr. Jorge Contreras from University of New Jersey School of Medicine and Dentistry

  13. Current developments of coumarin compounds in medicinal chemistry.

    Science.gov (United States)

    Peng, Xin-Mei; Damu, Guri L V; Zhou, Cheng- He

    2013-01-01

    Coumarin compounds represent an important type of naturally occurring and synthetic oxygen-containing heterocycles with typical benzopyrone framework. This type of special benzopyrone structure enables its derivatives readily interact with a diversity of enzymes and receptors in organisms through weak bond interactions, thereby exhibit wide potentiality as medicinal drugs. So far, some coumarin-based drugs such as anticoagulant and antineurodegenerative agents have been extensively used in clinic. Coumarin-containing supramolecular medicinal agents as a new increasing expansion of supramolecular chemistry in pharmaceutical science have also been actively investigated in recent years. Coumarin-derived artificial ion receptors, fluorescent probes and biological stains are growing quickly and have a variety of potential applications in monitoring timely enzyme activity, complex biological events as well as accurate pharmacological and pharmacokinetic properties. This review provides a systematic summary and insight of the whole range of medicinal chemistry in the current developments of coumarin compounds as anticoagulant, antineurodegenerative, anticancer, antioxidative, antibacterial, antifungal, antiviral, antiparasitic, antiinflammatory and analgesic, antidiabetic, antidepressive and other bioactive agents as well as supramolecular medicinal drugs, diagnostic agents and pathologic probes, and biological stains. Some rational design strategies, structure-activity relationships and action mechanisms are discussed. The perspectives of the future development of coumarinbased medicinal chemistry are also presented.

  14. [Teaching family medicine in Lausanne].

    Science.gov (United States)

    Bischoff, Thomas; Junod, Michel; Cornuz, Jacques; Herzig, Lilli; Bonvin, Raphael

    2010-12-01

    The Faculty of Biology and Medicine of Lausanne has integrated education of family medicine all along its new undergraduate medical curriculum. The Institute of general medicine is in charge to implement those offers among which two are presented hereafter. In the new module "Generalism" several courses cover the specificities of the discipline as for example medical decision in the practice. A mandatory one-month internship in the medical practice offers an experiential immersion into family medicine for all students. In a meeting at the end of their internship, students discuss in group with their peers their individual experiences and are asked to identify, based on their personal experience, the general concepts of the specialty of family medicine and general practice.

  15. Biological activities of commonly used medicinal plants from ghazi brotha, attock district

    International Nuclear Information System (INIS)

    Shinwari, Z.K.; Malik, S.

    2015-01-01

    Medicinal plants are important natural source of possibly secure drugs. They have been playing a significant role in mitigating human miseries by contributing herbal medicines in the primary health care systems of remote areas. About 70% population of rural and remote areas depends on folklore and traditional medicines to cure various ailments. The traditional medicines have gained much popularity due to the high cost and adverse effects of allopathic medicines which encouraged manufacturers of Greco-Arab and Ayurvedic systems of medicines to fuse their orthodox medicines with local traditional medicines in order to spread health coverage at a reasonable rate. Keeping in view the importance of ethnobotanical survey the current survey was carried out in Attock District, Punjab which comes under the Rawalpindi Division. The region has rural values of old civilizations and customs. The inhabitants of this area have their own trends for a village site, house, family, childbirth, death ceremonies, cultural functions, festivals and socio-religious belief. The ladies are more energetic and laborious as compared to gents. There is a lack of communication with current civilization which has kept them closer to nature from where they fulfill many of their daily needs. The inhabitants of the area are very close to natural flora, both in their habitat and livelihood. People of the area have speculative observations of nature and by communicating with other people of their culture, they discover the inherent knowledge of the local plants. As a result they gain indigenous knowledge, generation after generation. Plants and their derivatives available from the local area are utilized for many purposes such as food, fodder, medicine, veterinary medicines, timbers, households, oilseeds and also for socio-religious and various other purposes. In this way important medicinal plants are collected throughout the year for advertising, personal and entire community use. Due to random and

  16. Biological screening of Brazilian medicinal plants

    Directory of Open Access Journals (Sweden)

    Tânia Maria de Almeida Alves

    2000-06-01

    Full Text Available In this study, we screened sixty medicinal plant species from the Brazilian savanna ("cerrado" that could contain useful compounds for the control of tropical diseases. The plant selection was based on existing ethnobotanic information and interviews with local healers. Plant extracts were screened for: (a molluscicidal activity against Biomphalaria glabrata, (b toxicity to brine shrimp (Artemia salina L., (c antifungal activity in the bioautographic assay with Cladosporium sphaerospermum and (d antibacterial activity in the agar diffusion assay against Staphylococcus aureus, Escherichia coli, Bacillus cereus and Pseudomonas aeruginosa. Forty-two species afforded extracts that showed some degree of activity in one or more of these bioassays.

  17. 4. Workshop on heavy charged particles in biology and medicine in connection with the XV PTCOG meeting. Book of abstracts

    International Nuclear Information System (INIS)

    Kraft, G.

    1991-09-01

    The fourth workshop on heavy charged particles in biology and medicine is held after a long break of 4 years. For the biological response of cells or subcellar objects, the experiment is still the only source of safe information. A large and still growing community performs these experiments as it is demonstrated by the numerous presentations of this workshop. This research has been extended to a more molecular level like DNA as well as to completly different systems like the cellular membran. There again, new and surprising results have been found. Finally, the problems of radiobiological research has stimulated atomic physicists to reconsider and to measure the emission of electrons in heavy ion-atom collisions. These experiments indicate that the conventional understanding of track formation has to be revised too. (orig./VHE)

  18. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  19. Systems medicine: a new approach to clinical practice.

    Science.gov (United States)

    Cardinal-Fernández, Pablo; Nin, Nicolás; Ruíz-Cabello, Jesús; Lorente, José A

    2014-10-01

    Most respiratory diseases are considered complex diseases as their susceptibility and outcomes are determined by the interaction between host-dependent factors (genetic factors, comorbidities, etc.) and environmental factors (exposure to microorganisms or allergens, treatments received, etc.) The reductionist approach in the study of diseases has been of fundamental importance for the understanding of the different components of a system. Systems biology or systems medicine is a complementary approach aimed at analyzing the interactions between the different components within one organizational level (genome, transcriptome, proteome), and then between the different levels. Systems medicine is currently used for the interpretation and understanding of the pathogenesis and pathophysiology of different diseases, biomarker discovery, design of innovative therapeutic targets, and the drawing up of computational models for different biological processes. In this review we discuss the most relevant concepts of the theory underlying systems medicine, as well as its applications in the various biological processes in humans. Copyright © 2013 SEPAR. Published by Elsevier Espana. All rights reserved.

  20. Proceedings of 2nd Korea-China Congress of Nuclear Medicine and the Korean Society Nuclear Medicine Spring Meeting 2000

    International Nuclear Information System (INIS)

    2000-01-01

    This proceedings contains articles of 2nd Korea-China Congress of Nuclear Medicine and 2000 spring meeting of the Korean Society Nuclear Medicine. It was held on May 17-19, 2000 in Seoul, Korean. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, oncology, radiopharmacy and biology, nuclear cardiology, nuclear cardiology: physics and instrumentation and so on. (Yi, J. H.)

  1. Biology and medicine division annual report, 1979-1980

    International Nuclear Information System (INIS)

    1981-03-01

    Progress for 1979-1980 is reported from the following research groups and/or areas: research medicine; Donner Pavilion; Peralta Cancer Research Institute; environmental physiology; radiation biophysics and structural biophysics. Abstracts have been prepared for the 61 separate research programs described in this report for inclusion in the Energy Data Base

  2. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  3. Biology and Medicine Division annual report, 1987

    International Nuclear Information System (INIS)

    1988-04-01

    Modern biology is characterized by rapid change. The development of new tools and the results derived from their application to various biological systems require significant shifts in our concepts and the strategies that are adopted to analyze and elucidate mechanisms. In parallel with exciting new scientific developments our organizational structure and programmatic emphases have altered. These changes and developments have enabled the life sciences at LBL to be better positioned to create and respond to new opportunities. The work summarized in this annual report reflects a vital multifaceted research program that is in the vanguard of the areas represented. We are committed to justifying the confidence expressed by LBL through the new mission statement and reorganizational changes designed to give greater prominence to the life sciences

  4. Biology and Medicine Division annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1988-04-01

    Modern biology is characterized by rapid change. The development of new tools and the results derived from their application to various biological systems require significant shifts in our concepts and the strategies that are adopted to analyze and elucidate mechanisms. In parallel with exciting new scientific developments our organizational structure and programmatic emphases have altered. These changes and developments have enabled the life sciences at LBL to be better positioned to create and respond to new opportunities. The work summarized in this annual report reflects a vital multifaceted research program that is in the vanguard of the areas represented. We are committed to justifying the confidence expressed by LBL through the new mission statement and reorganizational changes designed to give greater prominence to the life sciences.

  5. Sparking Thinking: Studying Modern Precision Medicine Will Accelerate the Progression of Traditional Chinese Medicine Patterns.

    Science.gov (United States)

    Liu, Bao-Cheng; Ji, Guang

    2017-07-01

    Incorporating "-omics" studies with environmental interactions could help elucidate the biological mechanisms responsible for Traditional Chinese Medicine (TCM) patterns. Based on the authors' own experiences, this review outlines a model of an ideal combination of "-omics" biomarkers, environmental factors, and TCM pattern classifications; provides a narrative review of the relevant genetic and TCM studies; and lists several successful integrative examples. Two integration tools are briefly introduced. The first is the integration of modern devices into objective diagnostic methods of TCM patterning, which would improve current clinical decision-making and practice. The second is the use of biobanks and data platforms, which could broadly support biological and medical research. Such efforts will transform current medical management and accelerate the progression of precision medicine.

  6. The developments and applications of molecular nuclear medicine

    International Nuclear Information System (INIS)

    Fang Shengwei; Xi Wang; Zhang Hong

    2009-01-01

    Molecular nuclear medicine including PET and SPECT is one of the most important parts of the molecular imaging. The combinations of molecular unclear medicine with CT, MRI, ultrasound or optical imaging and synthesis of multimodality radiopharmaceuticals are the major trends of the development of nuclear medicine. Molecular nuclear medicine has more and more and more important value on the monitoring of response to biology involved gene therapy or stem cell therapy and the developments of new drug. (authors)

  7. Developing a library of authenticated Traditional Chinese Medicinal (TCM) plants for systematic biological evaluation--rationale, methods and preliminary results from a Sino-American collaboration.

    Science.gov (United States)

    Eisenberg, David M; Harris, Eric S J; Littlefield, Bruce A; Cao, Shugeng; Craycroft, Jane A; Scholten, Robert; Bayliss, Peter; Fu, Yanling; Wang, Wenquan; Qiao, Yanjiang; Zhao, Zhongzhen; Chen, Hubiao; Liu, Yong; Kaptchuk, Ted; Hahn, William C; Wang, Xiaoxing; Roberts, Thomas; Shamu, Caroline E; Clardy, Jon

    2011-01-01

    While the popularity of and expenditures for herbal therapies (aka "ethnomedicines") have increased globally in recent years, their efficacy, safety, mechanisms of action, potential as novel therapeutic agents, cost-effectiveness, or lack thereof, remain poorly defined and controversial. Moreover, published clinical trials evaluating the efficacy of herbal therapies have rightfully been criticized, post hoc, for their lack of quality assurance and reproducibility of study materials, as well as a lack of demonstration of plausible mechanisms and dosing effects. In short, clinical botanical investigations have suffered from the lack of a cohesive research strategy which draws on the expertise of all relevant specialties. With this as background, US and Chinese co-investigators with expertise in Traditional Chinese Medicine (TCM), botany, chemistry and drug discovery, have jointly established a prototype library consisting of 202 authenticated medicinal plant and fungal species that collectively represent the therapeutic content of the majority of all commonly prescribed TCM herbal prescriptions. Currently housed at Harvard University, the library consists of duplicate or triplicate kilogram quantities of each authenticated and processed species, as well as "detanninized" extracts and sub-fractions of each mother extract. Each species has been collected at 2-3 sites, each separated geographically by hundreds of miles, with precise GPS documentation, and authenticated visually and chemically prior to testing for heavy metals and/or pesticides contamination. An explicit decision process has been developed whereby samples with the least contamination were selected to undergo ethanol extraction and HPLC sub-fractionation in preparation for high throughput screening across a broad array of biological targets including cancer biology targets. As envisioned, the subfractions in this artisan collection of authenticated medicinal plants will be tested for biological activity

  8. Taking Systems Medicine to Heart.

    Science.gov (United States)

    Trachana, Kalliopi; Bargaje, Rhishikesh; Glusman, Gustavo; Price, Nathan D; Huang, Sui; Hood, Leroy E

    2018-04-27

    Systems medicine is a holistic approach to deciphering the complexity of human physiology in health and disease. In essence, a living body is constituted of networks of dynamically interacting units (molecules, cells, organs, etc) that underlie its collective functions. Declining resilience because of aging and other chronic environmental exposures drives the system to transition from a health state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction problem that requires deep understanding of biology and innovation in study design, technology, and data analysis. With a focus on the principles of systems medicine, this Review discusses approaches for deciphering this biological complexity from a novel perspective, namely, understanding how disease-perturbed networks function; their study provides insights into fundamental disease mechanisms. The immediate goals for systems medicine are to identify early transitions to cardiovascular (and other chronic) diseases and to accelerate the translation of new preventive, diagnostic, or therapeutic targets into clinical practice, a critical step in the development of personalized, predictive, preventive, and participatory (P4) medicine. © 2018 American Heart Association, Inc.

  9. Occupational medicine and toxicology

    Directory of Open Access Journals (Sweden)

    Fischer Axel

    2006-02-01

    Full Text Available Abstract This editorial is to announce the Journal of Occupational Medicine and Toxicology, a new Open Access, peer-reviewed, online journal published by BioMed Central. Occupational medicine and toxicology belong to the most wide ranging disciplines of all medical specialties. The field is devoted to the diagnosis, prevention, management and scientific analysis of diseases from the fields of occupational and environmental medicine and toxicology. It also covers the promotion of occupational and environmental health. The complexity of modern industrial processes has dramatically changed over the past years and today's areas include effects of atmospheric pollution, carcinogenesis, biological monitoring, ergonomics, epidemiology, product safety and health promotion. We hope that the launch of the Journal of Occupational Medicine and Toxicology will aid in the advance of these important areas of research bringing together multi-disciplinary research findings.

  10. Infrastructures for systems medicine in Iran’s health roadmap

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2014-01-01

    Background: Systems medicine denotes a paradigm shift in medicine that arising from fundamental thoughts in systems biology. Systems medicine looks at health and disease using systems approaches. Systems or holistic approaches to studying the complexities of disease, emerging measurement and visualization molecular technologies to exploring of patient data space, and new computational and mathematical tools are fundamentals for this revolution in medicine. Methods: In order to explore the sci...

  11. From Curanderas to Gas Chromatography: Medicinal Plants

    Science.gov (United States)

    O'Connell, Mary; Lara, Antonio

    2005-01-01

    The Medicinal Plants of the Southwest summer workshop is an inquiry-based learning approach to increase interest and skills in biomedical research. Working in teams, Hispanic and Native American students discover the chemical and biological basis for the medicinal activity of regional plants used by healers. (Contains 4 tables and 1 figure.)

  12. Modular Applications with Smartphones and Smartpads in Shape, Color and Spectral Measurements for Industry, Biology and Medicine plus Science, Education and Training

    International Nuclear Information System (INIS)

    Hofmann, Prof Dr Dietrich; Gärtner, Dr Claudia; Dittrich, B Eng Paul-Gerald; Düntsch, B Eng Eric; Kraus, Daniel; Klemm, Dipl-Ing Richard

    2013-01-01

    Aim of the paper is the demonstration of a paradigm shift in shape, color and spectral measurements in industry, biology and medicine as well as in measurement science, education and training. Laboratory applications will be supplemented and replaced by innovative in-field and point-of-care applications. Innovative functional modules are smartphones and/or smartpads supplemented by additional hardware apps and software apps. Specific examples are given for numerous practical applications concerning optodigital methods. The methodological classification distinguishes between different levels for combinations of hardware apps (hwapps) and software apps (swapps) with smartphones and/or smartpads. These methods are fundamental enablers for the transformation from conventional stationary working places in industry, biology, medicine plus science, education and training towards innovative mobile working places with in-field and point-of-care characteristics as well as mobile open online courses MOOCs. The innovative approach opens so far untapped enormous markets for measurement science and engineering. These working conditions will be very common due to their convenience, reliability and affordability. The fundamental enablers are smartphones and/or smartpads. A highly visible advantage of smartphones and/or smartpads is the huge number of their distribution, their worldwide connectivity via Internet and cloud services and the experienced capabilities of their users for practical operations. Young people are becoming the pioneers

  13. Integrating genomics into evolutionary medicine.

    Science.gov (United States)

    Rodríguez, Juan Antonio; Marigorta, Urko M; Navarro, Arcadi

    2014-12-01

    The application of the principles of evolutionary biology into medicine was suggested long ago and is already providing insight into the ultimate causes of disease. However, a full systematic integration of medical genomics and evolutionary medicine is still missing. Here, we briefly review some cases where the combination of the two fields has proven profitable and highlight two of the main issues hindering the development of evolutionary genomic medicine as a mature field, namely the dissociation between fitness and health and the still considerable difficulties in predicting phenotypes from genotypes. We use publicly available data to illustrate both problems and conclude that new approaches are needed for evolutionary genomic medicine to overcome these obstacles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. OWL Reasoning Framework over Big Biological Knowledge Network

    Science.gov (United States)

    Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong

    2014-01-01

    Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076

  15. Molecular infection biology : interactions between microorganisms and cells

    National Research Council Canada - National Science Library

    Hacker, Jörg (Jörg Hinrich); Heesemann, Jurgen

    2002-01-01

    ... and epidemiology of infectious diseases. Investigators, specialists, clinicians, and graduate students in biology, pharmacy, and medicine will find Molecular Infection Biology an invaluable addition to their professional libraries...

  16. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    Science.gov (United States)

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.

  17. Core principles of evolutionary medicine: A Delphi study.

    Science.gov (United States)

    Grunspan, Daniel Z; Nesse, Randolph M; Barnes, M Elizabeth; Brownell, Sara E

    2018-01-01

    Evolutionary medicine is a rapidly growing field that uses the principles of evolutionary biology to better understand, prevent and treat disease, and that uses studies of disease to advance basic knowledge in evolutionary biology. Over-arching principles of evolutionary medicine have been described in publications, but our study is the first to systematically elicit core principles from a diverse panel of experts in evolutionary medicine. These principles should be useful to advance recent recommendations made by The Association of American Medical Colleges and the Howard Hughes Medical Institute to make evolutionary thinking a core competency for pre-medical education. The Delphi method was used to elicit and validate a list of core principles for evolutionary medicine. The study included four surveys administered in sequence to 56 expert panelists. The initial open-ended survey created a list of possible core principles; the three subsequent surveys winnowed the list and assessed the accuracy and importance of each principle. Fourteen core principles elicited at least 80% of the panelists to agree or strongly agree that they were important core principles for evolutionary medicine. These principles over-lapped with concepts discussed in other articles discussing key concepts in evolutionary medicine. This set of core principles will be helpful for researchers and instructors in evolutionary medicine. We recommend that evolutionary medicine instructors use the list of core principles to construct learning goals. Evolutionary medicine is a young field, so this list of core principles will likely change as the field develops further.

  18. Third workshop on heavy charged particles in biology and medicine

    International Nuclear Information System (INIS)

    Kraft, G.; Grundinger, U.

    1987-07-01

    The book of abstracts contains 67 papers presented at the workshop. Main topics are: Physics, chemistry, DNA, cell biology, cellular and molecular repair, space biology, tumor and tissue biology, predictive assays, cancer therapy, and new projects. Separate entries in the database are prepared for all of these papers. (MG)

  19. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  20. Biological and medical sensor technologies

    CERN Document Server

    Iniewski, Krzysztof

    2012-01-01

    Biological and Medical Sensor Technologies presents contributions from top experts who explore the development and implementation of sensors for various applications used in medicine and biology. Edited by a pioneer in the area of advanced semiconductor materials, the book is divided into two sections. The first part covers sensors for biological applications. Topics include: Advanced sensing and communication in the biological world DNA-derivative architectures for long-wavelength bio-sensing Label-free silicon photonics Quartz crystal microbalance-based biosensors Lab-on-chip technologies fo

  1. Precision medicine in breast cancer: reality or utopia?

    Science.gov (United States)

    Bettaieb, Ali; Paul, Catherine; Plenchette, Stéphanie; Shan, Jingxuan; Chouchane, Lotfi; Ghiringhelli, François

    2017-06-17

    Many cancers, including breast cancer, have demonstrated prognosis and support advantages thanks to the discovery of targeted therapies. The advent of these new approaches marked the rise of precision medicine, which leads to improve the diagnosis, prognosis and treatment of cancer. Precision medicine takes into account the molecular and biological specificities of the patient and their tumors that will influence the treatment determined by physicians. This new era of medicine is accessible through molecular genetics platforms, the development of high-speed sequencers and means of analysis of these data. Despite the spectacular results in the treatment of cancers including breast cancer, described in this review, not all patients however can benefit from this new strategy. This seems to be related to the many genetic mutations, which may be different from one patient to another or within the same patient. It comes to give new impetus to the research-both from a technological and biological point of view-to make the hope of precision medicine accessible to all.

  2. Overview of plasma technology used in medicine

    Science.gov (United States)

    Ryan, Thomas P.; Stalder, Kenneth R.; Woloszko, Jean

    2013-02-01

    Plasma Medicine is a growing field that is having an impact in several important areas in therapeutic patient care, combining plasma physics, biology, and clinical medicine. Historically, plasmas in medicine were used in electrosurgery for cautery and non-contact hemostasis. Presently, non-thermal plasmas have attained widespread use in medicine due to their effectiveness and compatibility with biological systems. The paper will give a general overview of how low temperature, non-equilibrium, gas plasmas operate, both from physics and biology perspectives. Plasma is commonly described as the fourth state of matter and is typically comprised of charged species, active molecules and atoms, as well as a source of UV and photons. The most active areas of plasma technology applications are in wound treatment; tissue regeneration; inactivation of pathogens, including biofilms; treating skin diseases; and sterilization. There are several means of generating plasmas for use in medical applications, including plasma jets, dielectric barrier discharges, capacitively or inductively coupled discharges, or microplasmas. These systems overcome the former constraints of high vacuum, high power requirements and bulky systems, into systems that use room air and other gases and liquids at low temperature, low power, and hand-held operation at atmospheric pressure. Systems will be discussed using a variety of energy sources: pulsed DC, AC, microwave and radiofrequency, as well as the range of frequency, pulse duration, and gas combinations in an air environment. The ionic clouds and reactive species will be covered in terms of effects on biological systems. Lastly, several commercial products will be overviewed in light of the technology utilized, health care problems being solved, and clinical trial results.

  3. Application of nuclear irradiation to traditional chinese medicine

    International Nuclear Information System (INIS)

    Liang Jianping; Li Xuehu; Lu Xihong; Tao Lei; Wang Shuyang

    2010-01-01

    The application of nuclear irradiation in the field of traditional Chinese medicine has received much attention. In this paper we reviewed the application of nuclear radiation on the cultivation, breeding and disinfection of traditional Chinese medicine, and pointed out that the combination of radiation-induced mutagenesis and biological technology would promise broad prospects for increasing the cellular mutation rate and speeding up the genetic improvement of traditional Chinese medicine. (authors)

  4. Radiation physics in medicine and veterinary medicine studies

    International Nuclear Information System (INIS)

    Popovic, D.; Djuric, G.

    2000-01-01

    Medical and veterinary medicine staff and specialists represent an important decision making group in national administration and institutions dealing with radiation protection and environmental protection matters in general. Still, their education in physics, especially in radiation physics is fragmentary and loose, both from technical and theoretical point of view. Within medicine and veterinary medicine studies as well as within other biomedical sciences (biology, pharmacology, biotechnology) radiation physics is usually incorporated in the first year curricula as a part of general physics or biophysics course. Some segments of radiation physics mainly as a technical base for different instrumentation methods and techniques could be also found within different graduate and post-graduate courses of radiology, physical therapy, radiation hygiene, environmental protection, etc. But the traditional approach in presenting the matter and inflexibility of the educational system strongly confront the growing public concern for the environmental problems dealing with radiation and demands for better informing and technical education for those involved in informing and administration. This paper considers some of these problems presenting a new approach in education in radiation physics for medical and veterinary medicine students based on education through student projects and work in the field, as well as on the strong collaboration among administration, universities and professional societies on the national and international level. (author)

  5. Perivascular cells for regenerative medicine

    NARCIS (Netherlands)

    M. Crisan (Mihaela); M. Corselli (Mirko); W.C. Chen (William); B. Péault (Bruno)

    2012-01-01

    textabstractMesenchymal stem/stromal cells (MSC) are currently the best candidate therapeutic cells for regenerative medicine related to osteoarticular, muscular, vascular and inflammatory diseases, although these cells remain heterogeneous and necessitate a better biological characterization. We

  6. Chemiluminescence. Principles and applications in biology and medicine

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, A K

    1988-01-01

    Chemiluminescence, the emission of light caused by a chemical reaction, is a phenomenon used for many applications and of wide biological importance. It occurs in bacteria and insects (including glow-worms and fireflies), in many of the animals in the deep sea and even in human cells. The last 25 years have witnessed fast progress in the elucidation of the reactions and mechanisms underlying bioluminescence and light production by synthetic systems. Together with the development of highly sensitive light detectors, this has made available new biomedical methods and has given rise to new concepts concerning the biology and pathology of the cell. The book describes the occurrence, chemistry and measurement of chemiluminescence. It deals with the biological function and evolutionary significance, and looks at the many biomedical applications. The author describes the uses of chemiluminescence to measure enzymes, substrates and metabolites, to detect the changes of calcium concentration in living cells, to determine oxygen radicals or to replace the radioactive labels in immunoassays. Future applications in research and clinical laboratories are also discussed.

  7. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    Science.gov (United States)

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Evolutionary prediction of medicinal properties in the genus Euphorbia L

    DEFF Research Database (Denmark)

    Ernst, Madeleine; Saslis Lagoudakis, Haris; Grace, Olwen M.

    2016-01-01

    The current decrease of new drugs brought to the market has fostered renewed interest in plant-based drug discovery. Given the alarming rate of biodiversity loss, systematic methodologies in finding new plant-derived drugs are urgently needed. Medicinal uses of plants were proposed as proxy...... for bioactivity, and phylogenetic patterns in medicinal plant uses have suggested that phylogeny can be used as predictive tool. However, the common practice of grouping medicinal plant uses into standardised categories may restrict the relevance of phylogenetic predictions. Standardised categories are mostly...... associated to systems of the human body and only poorly reflect biological responses to the treatment. Here we show that medicinal plant uses interpreted from a perspective of a biological response can reveal different phylogenetic patterns of presumed underlying bioactivity compared to standardised methods...

  9. Network biology: Describing biological systems by complex networks. Comment on "Network science of biological systems at different scales: A review" by M. Gosak et al.

    Science.gov (United States)

    Jalili, Mahdi

    2018-03-01

    I enjoyed reading Gosak et al. review on analysing biological systems from network science perspective [1]. Network science, first started within Physics community, is now a mature multidisciplinary field of science with many applications ranging from Ecology to biology, medicine, social sciences, engineering and computer science. Gosak et al. discussed how biological systems can be modelled and described by complex network theory which is an important application of network science. Although there has been considerable progress in network biology over the past two decades, this is just the beginning and network science has a great deal to offer to biology and medical sciences.

  10. Nuclear medicine and mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Pedroso de Lima, J.J. [Dept. de Biofisica e Proc. de Imagem, IBILI - Faculdade de Medicina, Coimbra (Portugal)

    1996-06-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new `allies` of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  11. Nuclear medicine and mathematics

    International Nuclear Information System (INIS)

    Pedroso de Lima, J.J.

    1996-01-01

    The purpose of this review is not to present a comprehensive description of all the mathematical tools used in nuclear medicine, but to emphasize the importance of the mathematical method in nuclear medicine and to elucidate some of the mathematical concepts currently used. We can distinguish three different areas in which mathematical support has been offered to nuclear medicine: Physiology, methodology and data processing. Nevertheless, the boundaries between these areas can be indistinct. It is impossible in a single article to give even an idea of the extent and complexity of the procedures currently usede in nuclear medicine, such as image processing, reconstruction from projections and artificial intelligence. These disciplines do not belong to nuclear medicine: They are already branches of engineering, and my interest will reside simply in revealing a little of the elegance and the fantastic potential of these new 'allies' of nuclear medicine. In this review the mathematics of physiological interpretation and methodology are considered together in the same section. General aspects of data-processing methods, including image processing and artificial intelligence, are briefly analysed. The mathematical tools that are most often used to assist the interpretation of biological phenomena in nuclear medicine are considered; these include convolution and deconvolution methods, Fourier analysis, factorial analysis and neural networking. (orig.)

  12. Chemical characterization and biological activity of Chaga (Inonotus obliquus) a medicinal "mushroom"

    NARCIS (Netherlands)

    Glamoclija, J.; Ciric, A.; Nikolic, M.; Fernandes, A.; Barros, L.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sokovic, M.; Griensven, van L.J.L.D.

    2015-01-01

    ETHNOPHARMACOLOGICAL RELEVANCE: In Russian traditional medicine, an extract from the mushroom Inonotus obliquus (Fr.) Pil´at is used as an anti-tumor medicine and diuretic. It has been reported that Inonotus obliquus has therapeutic effects, such as anti-inflammatory, immuno-modulatory and

  13. Biology, cultivation, and medicinal functions of the mushroom Hericium erinaceum

    Directory of Open Access Journals (Sweden)

    Sławomir Sokół

    2016-01-01

    Full Text Available Hericium erinaceum (Bull.: Fr. Pers. is an edible fungus of great significance in medicine. It is rarely found in Europe, in contrast, it is common in Japan and North America. Its fruitbodies have been well-known for hundreds of years in traditional Chinese medicine and cuisine. A cradle of H. erinaceum cultivation is Asia. In Eastern Europe is rare in natural habitats, but can be successfully cultivated. Both fruitbodies and mycelia are rich in active, health promoting substances. Tests of substances extracted from this mushroom carried out on animals and in vitro have given good results. They can be used in the treatment of cancer, hepatic disorders, Alzheimer’s and Parkinson’s diseases, wound healing. They improve cognitive abilities, support the nervous and immune systems. Promising results have been reported in clinical trials and case reports about the human treatment (e.g., recovery from schizophrenia, an improvement of the quality of sleep, alleviation of the menopause symptoms. The subject of this paper is to summarize information about the development of mycelium, the best conditions for cultivation of fruitbodies, bioactive substances and their use in medicine.

  14. The great opportunity: Evolutionary applications to medicine and public health.

    Science.gov (United States)

    Nesse, Randolph M; Stearns, Stephen C

    2008-02-01

    Evolutionary biology is an essential basic science for medicine, but few doctors and medical researchers are familiar with its most relevant principles. Most medical schools have geneticists who understand evolution, but few have even one evolutionary biologist to suggest other possible applications. The canyon between evolutionary biology and medicine is wide. The question is whether they offer each other enough to make bridge building worthwhile. What benefits could be expected if evolution were brought fully to bear on the problems of medicine? How would studying medical problems advance evolutionary research? Do doctors need to learn evolution, or is it valuable mainly for researchers? What practical steps will promote the application of evolutionary biology in the areas of medicine where it offers the most? To address these questions, we review current and potential applications of evolutionary biology to medicine and public health. Some evolutionary technologies, such as population genetics, serial transfer production of live vaccines, and phylogenetic analysis, have been widely applied. Other areas, such as infectious disease and aging research, illustrate the dramatic recent progress made possible by evolutionary insights. In still other areas, such as epidemiology, psychiatry, and understanding the regulation of bodily defenses, applying evolutionary principles remains an open opportunity. In addition to the utility of specific applications, an evolutionary perspective fundamentally challenges the prevalent but fundamentally incorrect metaphor of the body as a machine designed by an engineer. Bodies are vulnerable to disease - and remarkably resilient - precisely because they are not machines built from a plan. They are, instead, bundles of compromises shaped by natural selection in small increments to maximize reproduction, not health. Understanding the body as a product of natural selection, not design, offers new research questions and a framework for

  15. Aerospace Medicine and Biology. A continuing bibliography with indexes

    Science.gov (United States)

    1982-01-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included.

  16. Aerospace medicine and biology. A continuing bibliography with indexes

    International Nuclear Information System (INIS)

    1982-03-01

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

  17. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This proceedings contains articles of 2002 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 15-16, 2002 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, General nuclear medicine. (Yi, J. H.)

  18. Sex as a Biological Variable in Emergency Medicine Research and Clinical Practice: A Brief Narrative Review

    Directory of Open Access Journals (Sweden)

    Alyson J. McGregor

    2017-10-01

    Full Text Available The National Institutes of Health recently highlighted the significant role of sex as a biological variable (SABV in research design, outcome and reproducibility, mandating that this variable be accounted for in all its funded research studies. This move has resulted in a rapidly increasing body of literature on SABV with important implications for changing the clinical practice of emergency medicine (EM. Translation of this new knowledge to the bedside requires an understanding of how sex-based research will ultimately impact patient care. We use three case-based scenarios in acute myocardial infarction, acute ischemic stroke and important considerations in pharmacologic therapy administration to highlight available data on SABV in evidence-based research to provide the EM community with an important foundation for future integration of patient sex in the delivery of emergency care as gaps in research are filled.

  19. Programme Biology - Health protection

    International Nuclear Information System (INIS)

    1975-01-01

    The scientific results for 1975, of the five-year Biology-Health Protection programme adopted in 1971, are presented in two volumes. In volume one, Research in Radiation Protection are developed exclusively, including the following topics: measurement and interpretation of radiation (dosimetry); transfer of radioactive nuclides in the constituents of the environment; hereditary effects of radiation; short-term effects (acute irradiation syndrome and its treatment); long-term effects and toxicology of radioactive elements. In volume, two Research on applications in Agriculture and Medicine are developed. It includes: mutagenesis; soil-plant relations; radiation analysis; food conservation; cell culture; radioentomology. Research on applications in Medicine include: Nuclear Medicine and Neutron Dosimetry

  20. Asian School of Nuclear Medicine

    International Nuclear Information System (INIS)

    Sundram, F.X.

    2007-01-01

    A number of organisations are involved in the field of nuclear medicine education. These include International Atomic Energy Agency (IAEA), World Federation of Nuclear Medicine and Biology (WFNMB), Asia-Oceania Federation of Nuclear Medicine and Biology (AOFNMB), Society of Nuclear Medicine (SNM in USA), European Association of Nuclear Medicine (EANM). Some Universities also have M.Sc courses in Nuclear Medicine. In the Asian Region, an Asian Regional Cooperative Council for Nuclear Medicine (ARCCNM) was formed in 2000, initiated by China, Japan and Korea, with the main aim of fostering the spread of Nuclear Medicine in Asia. The Asian School of Nuclear Medicine (ASNM) was formed in February 2003, with the ARCCNM as the parent body. The Aims of ASNM are: to foster Education in Nuclear Medicine among the Asian countries, particularly the less developed regions; to promote training of Nuclear Medicine Physicians in cooperation with government agencies, IAEA and universities and societies; to assist in national and regional training courses, award continuing medical education (CME) points and provide regional experts for advanced educational programmes; and to work towards awarding of diplomas or degrees in association with recognised universities by distance learning and practical attachments, with examinations. There are 10 to 12 teaching faculty members from each country comprising of physicists, radio pharmacists as well as nuclear medicine physicians. From this list of potential teaching experts, the Vice-Deans and Dean of ASNM would then decide on the 2 appropriate teaching faculty member for a given assignment or a course in a specific country. The educational scheme could be in conjunction with the ARCCNM or with the local participating countries and their nuclear medicine organisations, or it could be a one-off training course in a given country. This teaching faculty is purely voluntary with no major expenses paid by the ASNM; a token contribution could be

  1. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 2001

    International Nuclear Information System (INIS)

    2001-01-01

    This proceedings contains articles of 2001 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 16-17, 2001 in Seoul, Korea. This proceedings is comprised of 6 sessions. The subject titles of session are as follows: Cancer, Physics of nuclear medicine, Neurology, Radiopharmacy and biology, Nuclear cardiology, General nuclear medicine. (Yi, J. H.)

  2. Metabolomics in transfusion medicine.

    Science.gov (United States)

    Nemkov, Travis; Hansen, Kirk C; Dumont, Larry J; D'Alessandro, Angelo

    2016-04-01

    Biochemical investigations on the regulatory mechanisms of red blood cell (RBC) and platelet (PLT) metabolism have fostered a century of advances in the field of transfusion medicine. Owing to these advances, storage of RBCs and PLT concentrates has become a lifesaving practice in clinical and military settings. There, however, remains room for improvement, especially with regard to the introduction of novel storage and/or rejuvenation solutions, alternative cell processing strategies (e.g., pathogen inactivation technologies), and quality testing (e.g., evaluation of novel containers with alternative plasticizers). Recent advancements in mass spectrometry-based metabolomics and systems biology, the bioinformatics integration of omics data, promise to speed up the design and testing of innovative storage strategies developed to improve the quality, safety, and effectiveness of blood products. Here we review the currently available metabolomics technologies and briefly describe the routine workflow for transfusion medicine-relevant studies. The goal is to provide transfusion medicine experts with adequate tools to navigate through the otherwise overwhelming amount of metabolomics data burgeoning in the field during the past few years. Descriptive metabolomics data have represented the first step omics researchers have taken into the field of transfusion medicine. However, to up the ante, clinical and omics experts will need to merge their expertise to investigate correlative and mechanistic relationships among metabolic variables and transfusion-relevant variables, such as 24-hour in vivo recovery for transfused RBCs. Integration with systems biology models will potentially allow for in silico prediction of metabolic phenotypes, thus streamlining the design and testing of alternative storage strategies and/or solutions. © 2015 AABB.

  3. Reproductive biology in the medicinal plant, Plumbago zeylanica L ...

    African Journals Online (AJOL)

    Plumbago zeylanica L. is an important medicinal plant traditionally used for the treatment of various diseases. Phenology from seed germination via vegetative growth to reproductive development was studied under glasshouse and nursery conditions. Seeds rapidly germinated on a mixture of nursery soil and cattle dung in ...

  4. The spectre of race in American medicine.

    Science.gov (United States)

    Fofana, Mariam O

    2013-12-01

    Controversies and debates surrounding race have long been a fixture in American medicine. In the past, the biological concept of race-the idea that race is biologically determined and meaningful-has served to justify the institution of slavery and the conduct of unethical research trials. Although these days may seem far behind, contemporary debates over the race-specific approval of drugs and the significance of genetic differences are evidence that race still yields tremendous influence on medical research and clinical practice. In many ways, the use of race in medicine today reflects the internalisation of racial hierarchies borne out of the history of slavery and state-mandated segregation, and there is still much uncertainty over its benefits and harms. Although using race in research can help elucidate disparities, the reflexive use of race as a variable runs the risk of reifying the biological concept of race and blinding researchers to important underlying factors such as socioeconomic status. Similarly, in clinical practice, the use of race in assessing a patient's risk of certain conditions (eg, sickle cell) turns harmful when the heuristic becomes a rule. Through selected historical and contemporary examples, I aim to show how the biological concept of race that gave rise to past abuses remains alive and harmful, and propose changes in medical education as a potential solution. By learning from the past, today's physicians will be better armed to discern-and correct-the ways in which contemporary medicine perpetuates historical injustices.

  5. Safety of Traditional Arab Herbal Medicine

    Directory of Open Access Journals (Sweden)

    Bashar Saad

    2006-01-01

    Full Text Available Herbal remedies are widely used for the treatment and prevention of various diseases and often contain highly active pharmacological compounds. Many medicinal herbs and pharmaceutical drugs are therapeutic at one dose and toxic at another. Toxicity related to traditional medicines is becoming more widely recognized as these remedies become popular in the Mediterranean region as well as worldwide. Most reports concerning the toxic effects of herbal medicines are associated with hepatotoxicity although reports of other toxic effects including kidney, nervous system, blood, cardiovascular and dermatologic effects, mutagenicity and carcinogenicity have also been published in the medical literature. This article presents a systematic review on safety of traditional Arab medicine and the contribution of Arab scholars to toxicology. Use of modern cell biological, biochemical, in vitro and in vivo techniques for the evaluation of medicinal plants safety is also discussed.

  6. The technological singularity and exponential medicine

    Directory of Open Access Journals (Sweden)

    Iraj Nabipour

    2016-01-01

    Full Text Available The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested that three revolutions in science and technology consisting genetic and molecular science, nanotechnology, and robotic (artificial intelligence provided an exponential growth rate for medicine. The "exponential medicine" is going to create more disruptive technologies in healthcare industry. The exponential medicine shifts the paradigm of medical philosophy and produces significant impacts on the healthcare system and patient-physician relationship.   

  7. Innovation in medicine and healthcare 2015

    CERN Document Server

    Torro, Carlos; Tanaka, Satoshi; Howlett, Robert; Jain, Lakhmi

    2016-01-01

    Innovation in medicine and healthcare is an interdisciplinary research area, which combines the advanced technologies and problem solving skills with medical and biological science. A central theme of this proceedings is Smart Medical and Healthcare Systems (modern intelligent systems for medicine and healthcare), which can provide efficient and accurate solution to problems faced by healthcare and medical practitioners today by using advanced information communication techniques, computational intelligence, mathematics, robotics and other advanced technologies. The techniques developed in this area will have a significant effect on future medicine and healthcare.    The volume includes 53 papers, which present the recent trend and innovations in medicine and healthcare including Medical Informatics; Biomedical Engineering; Management for Healthcare; Advanced ICT for Medical and Healthcare; Simulation and Visualization/VR for Medicine; Statistical Signal Processing and Artificial Intelligence; Smart Medic...

  8. Converting energy to medical progress [nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases.

  9. Converting energy to medical progress [nuclear medicine

    International Nuclear Information System (INIS)

    2001-01-01

    For over 50 years the Office of Biological and Environmental Research (BER) of the United States Department of Energy (DOE) has been investing to advance environmental and biomedical knowledge connected to energy. The BER Medical Sciences program fosters research to develop beneficial applications of nuclear technologies for medical diagnosis and treatment of many diseases. Today, nuclear medicine helps millions of patients annually in the United States. Nearly every nuclear medicine scan or test used today was made possible by past BER-funded research on radiotracers, radiation detection devices, gamma cameras, PET and SPECT scanners, and computer science. The heart of biological research within BER has always been the pursuit of improved human health. The nuclear medicine of tomorrow will depend greatly on today's BER-supported research, particularly in the discovery of radiopharmaceuticals that seek specific molecular and genetic targets, the design of advanced scanners needed to create meaningful images with these future radiotracers, and the promise of new radiopharmaceutical treatments for cancers and genetic diseases

  10. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    International Nuclear Information System (INIS)

    Gribkov, V A; Miklaszewski, R; Paduch, M; Zielinska, E; Chernyshova, M; Pisarczyk, T; Sadowski, M J; Pimenov, V N; Demina, E V; Niemela, J; Crespo, M-L; Cicuttin, A; Tomaszewski, K; Skladnik-Sadowska, E; Pytel, K; Zawadka, A; Giannini, G; Longo, F; Talab, A; Ul'yanenko, S E

    2015-01-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project 'Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses'. The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics. (paper)

  11. Dense Plasma Focus: physics and applications (radiation material science, single-shot disclosure of hidden illegal objects, radiation biology and medicine, etc.)

    Science.gov (United States)

    Gribkov, V. A.; Miklaszewski, R.; Paduch, M.; Zielinska, E.; Chernyshova, M.; Pisarczyk, T.; Pimenov, V. N.; Demina, E. V.; Niemela, J.; Crespo, M.-L.; Cicuttin, A.; Tomaszewski, K.; Sadowski, M. J.; Skladnik-Sadowska, E.; Pytel, K.; Zawadka, A.; Giannini, G.; Longo, F.; Talab, A.; Ul'yanenko, S. E.

    2015-03-01

    The paper presents some outcomes obtained during the year of 2013 of the activity in the frame of the International Atomic Energy Agency Co-ordinated research project "Investigations of Materials under High Repetition and Intense Fusion-Relevant Pulses". The main results are related to the effects created at the interaction of powerful pulses of different types of radiation (soft and hard X-rays, hot plasma and fast ion streams, neutrons, etc. generated in Dense Plasma Focus (DPF) facilities) with various materials including those that are counted as perspective ones for their use in future thermonuclear reactors. Besides we discuss phenomena observed at the irradiation of biological test objects. We examine possible applications of nanosecond powerful pulses of neutrons to the aims of nuclear medicine and for disclosure of hidden illegal objects. Special attention is devoted to discussions of a possibility to create extremely large and enormously diminutive DPF devices and probabilities of their use in energetics, medicine and modern electronics.

  12. The technological singularity and exponential medicine

    OpenAIRE

    Iraj Nabipour; Majid Assadi

    2016-01-01

    The "technological singularity" is forecasted to occur in 2045. It is a point when non-biological intelligence becomes more intelligent than humans and each generation of intelligent machines re-designs itself smarter. Beyond this point, there is a symbiosis between machines and humans. This co-existence will produce incredible impacts on medicine that its sparkles could be seen in healthcare industry and the future medicine since 2025. Ray Kurzweil, the great futurist, suggested th...

  13. [Proteomics and transfusion medicine].

    Science.gov (United States)

    Lion, N; Prudent, M; Crettaz, D; Tissot, J-D

    2011-04-01

    The term "proteomics" covers tools and techniques that are used to analyze and characterize complex mixtures of proteins from various biological samples. In this short review, a typical proteomic approach, related to the study of particular and illustrative situation related to transfusion medicine is reported. This "case report" will allow the reader to be familiar with a practical proteomic approach of a real situation, and will permit to describe the tools that are usually used in proteomic labs, and, in a second part, to present various proteomic applications in transfusion medicine. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Theoretical Biology and Medical Modelling: ensuring continued growth and future leadership.

    Science.gov (United States)

    Nishiura, Hiroshi; Rietman, Edward A; Wu, Rongling

    2013-07-11

    Theoretical biology encompasses a broad range of biological disciplines ranging from mathematical biology and biomathematics to philosophy of biology. Adopting a broad definition of "biology", Theoretical Biology and Medical Modelling, an open access journal, considers original research studies that focus on theoretical ideas and models associated with developments in biology and medicine.

  15. Sixth Computational Biomechanics for Medicine Workshop

    CERN Document Server

    Nielsen, Poul MF; Miller, Karol; Computational Biomechanics for Medicine : Deformation and Flow

    2012-01-01

    One of the greatest challenges for mechanical engineers is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, biomedical sciences, and medicine. This book is an opportunity for computational biomechanics specialists to present and exchange opinions on the opportunities of applying their techniques to computer-integrated medicine. Computational Biomechanics for Medicine: Deformation and Flow collects the papers from the Sixth Computational Biomechanics for Medicine Workshop held in Toronto in conjunction with the Medical Image Computing and Computer Assisted Intervention conference. The topics covered include: medical image analysis, image-guided surgery, surgical simulation, surgical intervention planning, disease prognosis and diagnostics, injury mechanism analysis, implant and prostheses design, and medical robotics.

  16. A critical analysis of the new biology and the biological revolution: their impact - from medicine to evolution.

    Science.gov (United States)

    Dev, Sukhendu B

    2010-01-01

    In this article, I critically analyze the impact of the new biology and the biological revolution. I argue that indiscriminate use of the words such as 'interdisciplinary,' 'integrative,' and 'revolution' has caused only confusion when applied to biology. The recent debate, especially after the exploding field of systems biology, has brought back the controversy whether molecular biology is reductionist or holistic. I look at the issues involved critically. I discuss the problem of defining the word 'gene' and argue that recent attempts to redefine the central dogma of molecular biology about the information flow from DNA to RNA to protein are not justified. I support my view with comments from the scientist who discovered RNA splicing. Several aspects of evo-devo, a new branch of biology, are discussed. I give examples from this evolution-developmental biology to show how some of Darwin's inspired guesses have had resounding victory when it was found that specific genes during embryonic development of the Galapagos finches decided the size and shape of their beaks. I discuss the recent publications which show that the conditions in the island, such as wet to dry to wet season, can bring about evolutionary changes from year to year. Thus it is essential to monitor both short and long-term evolutionary changes to get the full picture of evolution.

  17. Aspirin to Zoloft: Ways Medicines Work

    Science.gov (United States)

    ... View All Articles | Inside Life Science Home Page Aspirin to Zoloft: Ways Medicines Work By Emily Carlson ... biology of how cancer cells grow. Antihistamines, Antidepressants, Aspirin Adrenergic receptor with carazolol, a beta-blocker. View ...

  18. Proceedings: Regenerative Medicine for Lung Diseases: A CIRM Workshop Report.

    Science.gov (United States)

    Kadyk, Lisa C; DeWitt, Natalie D; Gomperts, Brigitte

    2017-10-01

    The mission of the California Institute of Regenerative Medicine (CIRM) is to accelerate treatments to patients with unmet medical needs. In September 2016, CIRM sponsored a workshop held at the University of California, Los Angeles, to discuss regenerative medicine approaches for treatment of lung diseases and to identify the challenges remaining for advancing such treatments to the clinic and market approval. Workshop participants discussed current preclinical and clinical approaches to regenerative medicine in the lung, as well as the biology of lung stem cells and the role of stem cells in the etiology of various lung diseases. The outcome of this effort was the recognition that whereas transient cell delivery approaches are leading the way in the clinic, recent advances in the understanding of lung stem cell biology, in vitro and in vivo disease modeling, gene editing and replacement methods, and cell engraftment approaches raise the prospect of developing cures for some lung diseases in the foreseeable future. In addition, advances in in vitro modeling using lung organoids and "lung on a chip" technology are setting the stage for high quality small molecule drug screening to develop treatments for lung diseases with complex biology. Stem Cells Translational Medicine 2017;6:1823-1828. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  19. Category of Metabolic-Replication Systems in Biology and Medicine

    OpenAIRE

    I. C. Baianu

    2012-01-01

    Metabolic-repair models, or (M,R)-systems were introduced in Relational Biology by Robert Rosen. Subsequently, Rosen represented such (M,R)-systems (or simply MRs)in terms of categories of sets, deliberately selected without any structure other than the discrete topology of sets. Theoreticians of life's origins postulated that Life on Earth has begun with the simplest possible organism, called the primordial. Mathematicians interested in biology attempted to answer this important questio...

  20. Systems Biology of Metabolism: A Driver for Developing Personalized and Precision Medicine

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2017-01-01

    for advancing the development of personalized and precision medicine to treat metabolic diseases like insulin resistance, obesity, NAFLD, NASH, and cancer. It will be illustrated how the concept of genome-scale metabolic models can be used for integrative analysis of big data with the objective of identifying...... novel biomarkers that are foundational for personalized and precision medicine....

  1. Branching processes in biology

    CERN Document Server

    Kimmel, Marek

    2015-01-01

    This book provides a theoretical background of branching processes and discusses their biological applications. Branching processes are a well-developed and powerful set of tools in the field of applied probability. The range of applications considered includes molecular biology, cellular biology, human evolution and medicine. The branching processes discussed include Galton-Watson, Markov, Bellman-Harris, Multitype, and General Processes. As an aid to understanding specific examples, two introductory chapters, and two glossaries are included that provide background material in mathematics and in biology. The book will be of interest to scientists who work in quantitative modeling of biological systems, particularly probabilists, mathematical biologists, biostatisticians, cell biologists, molecular biologists, and bioinformaticians. The authors are a mathematician and cell biologist who have collaborated for more than a decade in the field of branching processes in biology for this new edition. This second ex...

  2. The state of the art of nuclear medicine in 1980

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1982-01-01

    The second congress of World Federation of Nuclear Medicine and Biology proved that nuclear medicine is returning to physiology. Around 1951, when motorized detector was introduced and when GM tube was replaced by scintillation crystal detector, physiologic nuclear medicine moved to anatomic nuclear medicine. Since 1970, when research on cardiology developed, nuclear medicine has been returning to physiology. Since 1963 Kuhl has been doing research on quantitative tomography which develops to emission computerized tomography emphasizing the physiological aspects of medicine. The recent contribution of nuclear medicine to medical science is the concept that human body is a unity of dynamic structure consisting of millions of cubes moving physio-chemically. (RUW)

  3. Applied computing in medicine and health

    CERN Document Server

    Al-Jumeily, Dhiya; Mallucci, Conor; Oliver, Carol

    2015-01-01

    Applied Computing in Medicine and Health is a comprehensive presentation of on-going investigations into current applied computing challenges and advances, with a focus on a particular class of applications, primarily artificial intelligence methods and techniques in medicine and health. Applied computing is the use of practical computer science knowledge to enable use of the latest technology and techniques in a variety of different fields ranging from business to scientific research. One of the most important and relevant areas in applied computing is the use of artificial intelligence (AI) in health and medicine. Artificial intelligence in health and medicine (AIHM) is assuming the challenge of creating and distributing tools that can support medical doctors and specialists in new endeavors. The material included covers a wide variety of interdisciplinary perspectives concerning the theory and practice of applied computing in medicine, human biology, and health care. Particular attention is given to AI-bas...

  4. Peptide radioimmunoassays in clinical medicine

    International Nuclear Information System (INIS)

    Geokas, M.C.; Yalow, R.S.; Straus, E.W.; Gold, E.M.

    1982-01-01

    The radioimmunoassay technique, first developed for the determination of hormones, has been applied to many substances of biologic interest by clinical and research laboratories around the world. It has had an enormous effect in medicine and biology as a diagnostic tool, a guide to therapy, and a probe for the fine structure of biologic systems. For instance, the assays of insulin, gastrin, secretin, prolactin, and certain tissue-specific enzymes have been invaluable in patient care. Further refinements of current methods, as well as the emergence of new immunoassay techniques, are expected to enhance precision, specificity, reliability, and convenience of the radioimmunoassay in both clinical and research laboratories

  5. Precision medicine for psychopharmacology: a general introduction.

    Science.gov (United States)

    Shin, Cheolmin; Han, Changsu; Pae, Chi-Un; Patkar, Ashwin A

    2016-07-01

    Precision medicine is an emerging medical model that can provide accurate diagnoses and tailored therapeutic strategies for patients based on data pertaining to genes, microbiomes, environment, family history and lifestyle. Here, we provide basic information about precision medicine and newly introduced concepts, such as the precision medicine ecosystem and big data processing, and omics technologies including pharmacogenomics, pharamacometabolomics, pharmacoproteomics, pharmacoepigenomics, connectomics and exposomics. The authors review the current state of omics in psychiatry and the future direction of psychopharmacology as it moves towards precision medicine. Expert commentary: Advances in precision medicine have been facilitated by achievements in multiple fields, including large-scale biological databases, powerful methods for characterizing patients (such as genomics, proteomics, metabolomics, diverse cellular assays, and even social networks and mobile health technologies), and computer-based tools for analyzing large amounts of data.

  6. Personalized medicine: from genotypes, molecular phenotypes and the quantified self, towards improved medicine.

    Science.gov (United States)

    Dudley, Joel T; Listgarten, Jennifer; Stegle, Oliver; Brenner, Steven E; Parts, Leopold

    2015-01-01

    Advances in molecular profiling and sensor technologies are expanding the scope of personalized medicine beyond genotypes, providing new opportunities for developing richer and more dynamic multi-scale models of individual health. Recent studies demonstrate the value of scoring high-dimensional microbiome, immune, and metabolic traits from individuals to inform personalized medicine. Efforts to integrate multiple dimensions of clinical and molecular data towards predictive multi-scale models of individual health and wellness are already underway. Improved methods for mining and discovery of clinical phenotypes from electronic medical records and technological developments in wearable sensor technologies present new opportunities for mapping and exploring the critical yet poorly characterized "phenome" and "envirome" dimensions of personalized medicine. There are ambitious new projects underway to collect multi-scale molecular, sensor, clinical, behavioral, and environmental data streams from large population cohorts longitudinally to enable more comprehensive and dynamic models of individual biology and personalized health. Personalized medicine stands to benefit from inclusion of rich new sources and dimensions of data. However, realizing these improvements in care relies upon novel informatics methodologies, tools, and systems to make full use of these data to advance both the science and translational applications of personalized medicine.

  7. Carcinogenic risk in diagnostic nuclear medicine: biological and epidemiological considerations

    International Nuclear Information System (INIS)

    Overbeek, F.; Pauwels, E.K.J.; Broerse, J.J.

    1994-01-01

    During the last decade new data have become available on the mechanism of carcinogenesis and on cancer induction by ionizing radiation. This review concentrates on these two items in relation to the use of radiopharmaceuticals in diagnostic nuclear medicine. On the basis of reports of expert committees, the concept of radiation risk is elucidated for high and low doses. Mortality risk factors due to ionizing radiation are put in perspective to other risks. The extra risk for patients who undergo a scintigraphic examination for fatal cancer is very small and is of the order of 1.4 x 10 -4 . It is most unlikely that this figure can even be verified by actual measurement since the majority of nuclear medicine patients will die of other causes before the radiogenic cancer manifests itself. (orig.)

  8. Advances in individualized and regenerative medicine.

    Science.gov (United States)

    Blum, Hubert E

    2014-03-01

    Molecular and cell biology have resulted in major advances in our understanding of disease pathogenesis as well as in novel strategies for the diagnosis, therapy and prevention of human diseases. Based on modern molecular, genetic and biochemical methodologies it is on the one hand possible to identify for example disease-related point mutations and single nucleotide polymorphisms. On the other hand, using high throughput array and other technologies, it is for example possible to simultaneously analyze thousands of genes or gene products (RNA and proteins), resulting in an individual gene or gene expression profile ('signature'). Such data increasingly allow to define the individual disposition for a given disease and to predict disease prognosis as well as the efficacy of therapeutic strategies in the individual patient ('individualized medicine'). At the same time, the basic discoveries in cell biology, including embryonic and adult stem cells, induced pluripotent stem cells, genetically modified cells and others, have moved regenerative medicine into the center of biomedical research worldwide with a major translational impact on tissue engineering as well as transplantation medicine. All these aspects have greatly contributed to the recent advances in regenerative medicine and the development novel concepts for the treatment of many human diseases, including liver diseases. Copyright © 2014 Medical University of Bialystok. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. Strategies for structuring interdisciplinary education in Systems Biology: an European perspective

    NARCIS (Netherlands)

    Cvijovic, Marija; Höfer, Thomas; Acimovic, Jure; Alberghina, Lilia; Almaas, Eivind; Besozzi, Daniela; Blomberg, Anders; Bretschneider, Till; Cascante, Marta; Collin, Olivier; Atauri, de Pedro; Depner, Cornelia; Dickinson, Robert; Dobrzynski, Maciej; Fleck, C.; Garcia-Ojalvo, Jordi; Gonze, Didier; Hahn, Jens; Hess, Heide Marie; Hollmann, Susanne; Krantz, Marcus; Kummer, Ursula; Lundh, Torbjörn; Martial, Gifta; Martins dos Santos, V.A.P.; Mauer-Oberthür, Angela; Regierer, Babette; Skene, Barbara; Stalidzans, Egils; Stelling, Jörg; Teusink, Bas; Workman, Christopher T.; Hohmann, Stefan

    2016-01-01

    Systems Biology is an approach to biology and medicine that has the potential to lead to a better understanding of how biological properties emerge from the interaction of genes, proteins, molecules, cells and organisms. The approach aims at elucidating how these interactions govern biological

  10. The Spectre of Race in American Medicine

    Science.gov (United States)

    Fofana, Mariam O.

    2014-01-01

    Controversies and debates surrounding race have long been a fixture in American medicine. In the past, the biological concept of race—the idea that race is biologically determined and meaningful—has served to justify the institution of slavery and the conduct of unethical research trials. Although these days may seem far behind, contemporary debates over the race-specific approval of drugs and the significance of genetic differences are evidence that race still yields tremendous influence on medical research and clinical practice. In many ways, the use of race in medicine today reflects the internalization of racial hierarchies borne out of the history of slavery and state-mandated segregation, and there is still much uncertainty over its benefits and harms. Although using race in research can help elucidate disparities, the reflexive use of race as a variable runs the risk of reifying the biological concept of race and blinding researchers to important underlying factors such as socioeconomic status. Similarly, in clinical practice, the use of race in assessing a patient’s risk of certain conditions (e.g., sickle cell) turns harmful when the heuristic becomes a rule. Through selected historical and contemporary examples, I aim to show how the biological concept of race that gave rise to past abuses remains alive and harmful and propose changes in medical education as a potential solution. By learning from the past, today’s physicians will be better armed to discern—and correct—the ways in which contemporary medicine perpetuates historical injustices. PMID:23988563

  11. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nuclear medicine : occupational health issues

    International Nuclear Information System (INIS)

    Rossleigh, M.

    1988-01-01

    The occupational health aspects of nuclear medicine are discussed. There is a lack of demonstrable biological effects from low level radiation. The radiation protection measures that are applied to ensure that staff are exposed to as low a level of radiation as is possible are outlined

  13. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    Science.gov (United States)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  14. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  15. Molecular methods in nuclear medicine therapy

    International Nuclear Information System (INIS)

    Lee, Kyung Han

    2001-01-01

    Nuclear medicine has traditionally contributed to molecular oncology by allowing noninvasive monitoring of tumor metabolism, growth and genetic changes, thereby providing a basis for appropriate biology-based treatment planning. However, NM techniques are now being applied as an active therapeutic tool in novel molecular approaches for cancer treatment. Such areas include research on cancer therapy with radiolabeled ligands or oligonucleotides, and utilization of synergism between NM radiotherapy and gene transfer techniques. Here we will focus on novel aspects of nuclear medicine therapy

  16. From cumulative cultural transmission to evidence-based medicine: evolution of medicinal plant knowledge in Southern Italy

    Science.gov (United States)

    Leonti, Marco; Staub, Peter O.; Cabras, Stefano; Castellanos, Maria Eugenia; Casu, Laura

    2015-01-01

    In Mediterranean cultures written records of medicinal plant use have a long tradition. This written record contributed to building a consensus about what was perceived to be an efficacious pharmacopeia. Passed down through millennia, these scripts have transmitted knowledge about plant uses, with high fidelity, to scholars and laypersons alike. Herbal medicine's importance and the long-standing written record call for a better understanding of the mechanisms influencing the transmission of contemporary medicinal plant knowledge. Here we contextualize herbal medicine within evolutionary medicine and cultural evolution. Cumulative knowledge transmission is approached by estimating the causal effect of two seminal scripts about materia medica written by Dioscorides and Galen, two classical Greco-Roman physicians, on today's medicinal plant use in the Southern Italian regions of Campania, Sardinia, and Sicily. Plant-use combinations are treated as transmissible cultural traits (or “memes”), which in analogy to the biological evolution of genetic traits, are subjected to mutation and selection. Our results suggest that until today ancient scripts have exerted a strong influence on the use of herbal medicine. We conclude that the repeated empirical testing and scientific study of health care claims is guiding and shaping the selection of efficacious treatments and evidence-based herbal medicine. PMID:26483686

  17. From cumulative cultural transmission to evidence-based medicine: evolution of medicinal plant knowledge in Southern Italy.

    Science.gov (United States)

    Leonti, Marco; Staub, Peter O; Cabras, Stefano; Castellanos, Maria Eugenia; Casu, Laura

    2015-01-01

    In Mediterranean cultures written records of medicinal plant use have a long tradition. This written record contributed to building a consensus about what was perceived to be an efficacious pharmacopeia. Passed down through millennia, these scripts have transmitted knowledge about plant uses, with high fidelity, to scholars and laypersons alike. Herbal medicine's importance and the long-standing written record call for a better understanding of the mechanisms influencing the transmission of contemporary medicinal plant knowledge. Here we contextualize herbal medicine within evolutionary medicine and cultural evolution. Cumulative knowledge transmission is approached by estimating the causal effect of two seminal scripts about materia medica written by Dioscorides and Galen, two classical Greco-Roman physicians, on today's medicinal plant use in the Southern Italian regions of Campania, Sardinia, and Sicily. Plant-use combinations are treated as transmissible cultural traits (or "memes"), which in analogy to the biological evolution of genetic traits, are subjected to mutation and selection. Our results suggest that until today ancient scripts have exerted a strong influence on the use of herbal medicine. We conclude that the repeated empirical testing and scientific study of health care claims is guiding and shaping the selection of efficacious treatments and evidence-based herbal medicine.

  18. Sample collections from healthy volunteers for biological variation estimates' update: a new project undertaken by the Working Group on Biological Variation established by the European Federation of Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Carobene, Anna; Strollo, Marta; Jonker, Niels; Barla, Gerhard; Bartlett, William A; Sandberg, Sverre; Sylte, Marit Sverresdotter; Røraas, Thomas; Sølvik, Una Ørvim; Fernandez-Calle, Pilar; Díaz-Garzón, Jorge; Tosato, Francesca; Plebani, Mario; Coşkun, Abdurrahman; Serteser, Mustafa; Unsal, Ibrahim; Ceriotti, Ferruccio

    2016-10-01

    Biological variation (BV) data have many fundamental applications in laboratory medicine. At the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) the reliability and limitations of current BV data were discussed. The EFLM Working Group on Biological Variation is working to increase the quality of BV data by developing a European project to establish a biobank of samples from healthy subjects to be used to produce high quality BV data. The project involved six European laboratories (Milan, Italy; Bergen, Norway; Madrid, Spain; Padua, Italy; Istanbul, Turkey; Assen, The Netherlands). Blood samples were collected from 97 volunteers (44 men, aged 20-60 years; 43 women, aged 20-50 years; 10 women, aged 55-69 years). Initial subject inclusion required that participants completed an enrolment questionnaire to verify their health status. The volunteers provided blood specimens once per week for 10 weeks. A short questionnaire was completed and some laboratory tests were performed at each sampling consisting of blood collected under controlled conditions to provide serum, K2EDTA-plasma and citrated-plasma samples. Samples from six out of the 97 enroled subjects were discarded as a consequence of abnormal laboratory measurements. A biobank of 18,000 aliquots was established consisting of 120 aliquots of serum, 40 of EDTA-plasma, and 40 of citrated-plasma from each subject. The samples were stored at -80 °C. A biobank of well-characterised samples collected under controlled conditions has been established delivering a European resource to enable production of contemporary BV data.

  19. Technological advances in precision medicine and drug development.

    Science.gov (United States)

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  20. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes

    Science.gov (United States)

    1987-09-01

    drug against motion sickness more closely than any other medication. Author A87-35422 THE USE OF EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY IN AVIATORS A87...diagnosis and treatment Denmark) Aviation, Space, and Environmental Medicine (ISSN Extracorporeal shock wave lithotripsy (ESWL) has recently become 0095...and M. J. GRIFFIN ( Southampton , University, functional mechanisms are insufficient. Solutions are discussed England) Aviation, Space, and Environmental

  1. The public production of medicines compared to the National Policy of Medicines and the burden of disease in Brazil

    Directory of Open Access Journals (Sweden)

    Tatiana Aragão Figueiredo

    2017-09-01

    Full Text Available Abstract: The public production of medicines in Brazil by Government Pharmaceutical Laboratories has once again become the object of incentives, and Industrial Development Partnerships are one of the mechanisms adopted for the production of strategic medicines for the Brazilian Unified National Health System (SUS. Considering that burden-of-disease studies have been used as a tool to define priority and essential medicines, the article compares the product portfolios of the country’s Official Pharmaceutical Laboratories (OPL and the list of strategic medicines for the SUS and burden of disease in Brazil in 2008. Of the 205 strategic medicines for the SUS and 111 from the portfolios, 73% and 89%, respectively, are on the National List of Essential Medicines (RENAME 2014. Some strategic medicines for the SUS are already produced by OPL and feature the selection of cancer drugs and biologicals. The current study contributes to the discussion on the public production of medicines in light of the country’s current industrial policy and highlights the need to define priority drugs and the role of OPL in guaranteeing access to them.

  2. Biological Monitoring Prospects in Occupational and Environmental Medicine

    CERN Document Server

    Angerer, Jürgen

    2003-01-01

    At the invitation of the Deutsche Forschungsgemeinschaft (DFG), a round-table discussion was held on 9 and 10 March 2000, dealing with future possibilities for biomonitoring in occupational and environmental medicine. Biomonitoring has reached a high standard in Germany over the past 30 years, not least due to the fact that the results of the Senate commission on materials hazardous to health at the workplace have been directly implemented as part of the jurisdiction relating to occupational safety. This book combines the expertise gathered from various areas within toxicology, occupational me

  3. The potential medicinal value of plants from Asteraceae family with antioxidant defense enzymes as biological targets.

    Science.gov (United States)

    Koc, Suheda; Isgor, Belgin S; Isgor, Yasemin G; Shomali Moghaddam, Naznoosh; Yildirim, Ozlem

    2015-05-01

    Plants and most of the plant-derived compounds have long been known for their potential pharmaceutical effects. They are well known to play an important role in the treatment of several diseases from diabetes to various types of cancers. Today most of the clinically effective pharmaceuticals are developed from plant-derived ancestors in the history of medicine. The aim of this study was to evaluate the free radical scavenging activity and total phenolic and flavonoid contents of methanol, ethanol, and acetone extracts from flowers and leaves of Onopordum acanthium L., Carduus acanthoides L., Cirsium arvense (L.) Scop., and Centaurea solstitialis L., all from the Asteraceae family, for investigating their potential medicinal values of biological targets that are participating in the antioxidant defense system such as catalase (CAT), glutathione S-transferase (GST), and glutathione peroxidase (GPx). In this study, free radical scavenging activity and total phenolic and flavonoid contents of the plant samples were assayed by DPPH, Folin-Ciocalteu, and aluminum chloride colorimetric methods. Also, the effects of extracts on CAT, GST, and GPx enzyme activities were investigated. The highest phenolic and flavonoid contents were detected in the acetone extract of C. acanthoides flowers, with 90.305 mg GAE/L and 185.43 mg Q/L values, respectively. The highest DPPH radical scavenging was observed with the methanol leaf extracts of C. arvense with an IC50 value of 366 ng/mL. The maximum GPx and GST enzyme inhibition activities were observed with acetone extracts from the flower of C. solstitialis with IC50 values of 79 and 232 ng/mL, respectively.

  4. Micro modules for mobile shape, color and spectral imaging with smartpads in industry, biology and medicine

    Science.gov (United States)

    Hofmann, Dietrich; Dittrich, Paul-Gerald; Düntsch, Eric; Kraus, Daniel

    2014-02-01

    Aim of the paper is the demonstration of a paradigm shift in shape, color and spectral measurements in industry, biology and medicine as well as in measurement education and training. Innovative hardware apps (hwapps) and software apps (swapps) with smartpads are fundamental enablers for the transformation from conventional stationary working places towards innovative mobile working places with in-field measurements and point-of-care (POC) diagnostics. Mobile open online courses (MOOCs) are transforming the study habits. Practical examples for the application of innovative photonic micro shapemeters, colormeters and spectrometers will be given. The innovative approach opens so far untapped enormous markets for measurement science, engineering and training. These innovative working conditions will be fast accepted due to their convenience, reliability and affordability. A highly visible advantage of smartpads is the huge number of their distribution, their worldwide connectivity via Internet and cloud services, the standardized interfaces like USB and HDMI and the experienced capabilities of their users for practical operations, learned with their private smartpads.

  5. Human development I: Twenty Fundamental Problems of Biology, Medicine, and Neuro-Psychology Related to Biological Information

    Directory of Open Access Journals (Sweden)

    Tyge Dahl Hermansen

    2006-01-01

    Full Text Available In a new series of papers, we address a number of unsolved problems in biology today. First of all, the unsolved enigma concerning how the differentiation from a single zygote to an adult individual happens has been object for severe research for decades. By uncovering a new holistic biological paradigm that introduces an energetic-informational interpretation of reality as a new way to experience biology, these papers will try to solve the problems connected with the events of biological ontogenesis involving a fractal hierarchy, from a single cell to the function of the human brain. The problems discussed are interpreted within the frames of a universe of roomy fractal structures containing energetic patterns that are able to deliver biological information. We think biological organization is guided by energetic changes on the level of quantum mechanics, interacting with the intention that again guides the energetic conformation of the fractal structures to gain disorders or healthiness. Furthermore, we introduce two new concepts: “metamorphous top down” evolution and “adult human metamorphosis”. The first is a new evolutionary theory involving metamorphosis as a main concept of evolution. The last is tightly linked to the evolutionary principle and explains how human self-recovery is governed. Other subjects of special interest that we shall look deeper into are the immunological self-nonself discrimination, the structure and function of the human brain, the etiology and salutogenesis of mental and somatic diseases, and the structure of the consciousness of a human being. We shall criticize Szentagothai’s model for the modulated structure of the human cerebral cortex and Jerne’s theory of the immunological regulatory anti-idiotypic network.

  6. Milestones in Health and Medicine.

    Science.gov (United States)

    Harding, Anne S.

    This book includes more than 500 entries describing advances in the treatment of disease and the understanding of human health. The emphasis is on significant advances in diseases, treatments, and health issues. Topics included are: alternative or nonwestern medicine; anesthesia and analgesia; antibiotics; cancer; cell biology and physiology;…

  7. Comparative Medicine: An Inclusive Crossover Discipline.

    Science.gov (United States)

    Macy, James; Horvath, Tamas L

    2017-09-01

    Comparative Medicine is typically defined as a discipline which relates and leverages the biological similarities and differences among animal species to better understand the mechanism of human and animal disease. It has also been defined as a field of study concentrating on similarities and differences between human and veterinary medicine and is increasingly associated with animal models of human disease, including the critical role veterinarians, animal resource centers, and Institutional Animal Care and Use Committees play in facilitating and ensuring humane and reproducible laboratory animal care and use. To this end, comparative medicine plays a pivotal role in reduction, refinement, and replacement in animals in biomedical research. On many levels, comparative medicine facilitates the translation of basic science knowledge into clinical applications; applying comparative medicine concepts throughout the translation process is critical for success. In addition to the supportive role of comparative medicine in the research enterprise, its role as a distinct and independent scientific discipline should not be lost. Although comparative medicine's research "niche" is not one particular discipline or disease process, rather, it is the investigative mindset that seeks to reveal common threads that weave different pathophysiologic processes into translatable approaches and outcomes using various models.

  8. Molecular medicine - To be or not to be.

    Science.gov (United States)

    Brunori, Maurizio; Gianni, Stefano

    2016-01-01

    Molecular medicine is founded on the synergy between Chemistry, Physics, Biology and Medicine, with the ambitious goal of tackling diseases from a molecular perspective. This Review aims at retracing a personal outlook of the birth and development of molecular medicine, as well as at highlighting some of the most urgent challenges linked to aging and represented by incurable neurodegenerative diseases caused by protein misfolding. Furthermore, we emphasize the emerging role of the retromer dysfunctions and improper protein sorting in Alzheimer's disease and other important neurological disordered. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Critical thinking in Norwegian upper secondary biology education: The cases of complementary-alternative-medicine and health claims in the media

    Directory of Open Access Journals (Sweden)

    Sverre Pettersen

    2005-11-01

    Full Text Available By definition, complementary alternative medicine (CAM treatments are not scientifically proven. Scientific deficient health claiming news seems to flourish in the media. The aims of this questionnaire study was to explore: (1 attitudes towards CAM among 3rd year students of the health sciences in Norway, who either have immersed themselves in the 2nd and 3rd year upper secondary biology courses, or taken the 1st year compulsory natural science course, exclusively, and (2 these students’ skills in requesting for scientific information in highly deficient health news briefs. There were no significant differences in the frequencies of positive attitude towards the use of CAM treatments between the two health sciences student categories, and most students in both categories “failed” in the test set out to measure their skills in requesting for scientific information in four highly scientific deficient health news briefs. The results suggest that teaching of the Norwegian upper secondary biology courses does probably not contribute extensively to pupils’ development of scepticism towards CAM, and skills in evaluating health claims, scientifically.

  10. Towards molecular medicine: a case for a biological periodic table.

    Science.gov (United States)

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  11. The biology of personalized cancer medicine: facing individual complexities underlying hallmark capabilities.

    Science.gov (United States)

    De Palma, Michele; Hanahan, Douglas

    2012-04-01

    It is a time of great promise and expectation for the applications of knowledge about mechanisms of cancer toward more effective and enduring therapies for human disease. Conceptualizations such as the hallmarks of cancer are providing an organizing principle with which to distill and rationalize the abject complexities of cancer phenotypes and genotypes across the spectrum of the human disease. A countervailing reality, however, involves the variable and often transitory responses to most mechanism-based targeted therapies, returning full circle to the complexity, arguing that the unique biology and genetics of a patient's tumor will in the future necessarily need to be incorporated into the decisions about optimal treatment strategies, the frontier of personalized cancer medicine. This perspective highlights considerations, metrics, and methods that may prove instrumental in charting the landscape of evaluating individual tumors so to better inform diagnosis, prognosis, and therapy. Integral to the consideration is remarkable heterogeneity and variability, evidently embedded in cancer cells, but likely also in the cell types composing the supportive and interactive stroma of the tumor microenvironment (e.g., leukocytes and fibroblasts), whose diversity in form, regulation, function, and abundance may prove to rival that of the cancer cells themselves. By comprehensively interrogating both parenchyma and stroma of patients' cancers with a suite of parametric tools, the promise of mechanism-based therapy may truly be realized. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  12. Imaging of primary bone tumors in veterinary medicine: Which differences?

    Energy Technology Data Exchange (ETDEWEB)

    Vanel, Maïa, E-mail: maiavanel@yahoo.fr [Diagnostic Imaging Department, Faculty of Veterinary Medicine, University of Montreal, 3200 Rue Sicotte, PO Box 5000, Saint-Hyacinthe, QC (Canada); Blond, Laurent [Diagnostic Imaging Department, Faculty of Veterinary Medicine, University of Montreal, 3200 Rue Sicotte, PO Box 5000, Saint-Hyacinthe, QC (Canada); Vanel, Daniel [The Rizzoli Institute, Via del Barbiano 1-10, 40136, Bologna (Italy)

    2013-12-01

    Veterinary medicine is most often a mysterious world for the human doctors. However, animals are important for human medicine thanks to the numerous biological similarities. Primary bone tumors are not uncommon in veterinary medicine and especially in small domestic animals as dogs and cats. As in human medicine, osteosarcoma is the most common one and especially in the long bones extremities. In the malignant bone tumor family, chondrosarcoma, fibrosarcoma and hemangiosarcoma are following. Benign bone tumors as osteoma, osteochondroma and bone cysts do exist but are rare and of little clinical significance. Diagnostic modalities used depend widely on the owner willing to treat his animal. Radiographs and bone biopsy are the standard to make a diagnosis but CT, nuclear medicine and MRI are more an more used. As amputation is treatment number one in appendicular bone tumor in veterinary medicine, this explains on the one hand why more recent imaging modalities are not always necessary and on the other hand, that pronostic on large animals is so poor that it is not much studied. Chemotherapy is sometimes associated with the surgery procedure, depending on the agressivity of the tumor. Although, the strakes differs a lot between veterinary and human medicine, biological behavior are almost the same and should led to a beneficial team work between all.

  13. Imaging of primary bone tumors in veterinary medicine: Which differences?

    International Nuclear Information System (INIS)

    Vanel, Maïa; Blond, Laurent; Vanel, Daniel

    2013-01-01

    Veterinary medicine is most often a mysterious world for the human doctors. However, animals are important for human medicine thanks to the numerous biological similarities. Primary bone tumors are not uncommon in veterinary medicine and especially in small domestic animals as dogs and cats. As in human medicine, osteosarcoma is the most common one and especially in the long bones extremities. In the malignant bone tumor family, chondrosarcoma, fibrosarcoma and hemangiosarcoma are following. Benign bone tumors as osteoma, osteochondroma and bone cysts do exist but are rare and of little clinical significance. Diagnostic modalities used depend widely on the owner willing to treat his animal. Radiographs and bone biopsy are the standard to make a diagnosis but CT, nuclear medicine and MRI are more an more used. As amputation is treatment number one in appendicular bone tumor in veterinary medicine, this explains on the one hand why more recent imaging modalities are not always necessary and on the other hand, that pronostic on large animals is so poor that it is not much studied. Chemotherapy is sometimes associated with the surgery procedure, depending on the agressivity of the tumor. Although, the strakes differs a lot between veterinary and human medicine, biological behavior are almost the same and should led to a beneficial team work between all

  14. Stem cells and the future of regenerative medicine

    National Research Council Canada - National Science Library

    National Research Council, Committee on the Biological and Biomedical Applications of Stem Cell Research; Commission on Life Sciences; National Research Council; Board on Life Sciences; Board on Neuroscience and Behavioral Health; Division on Earth and Life Studies; Institute of Medicine

    2002-01-01

    .... Stem Cells and the Future of Regenerative Medicine provides a deeper exploration of the biological, ethical, and funding questions prompted by the therapeutic potential of undifferentiated human cells...

  15. Introductory physics of nuclear medicine

    International Nuclear Information System (INIS)

    Chandra, R.

    1976-01-01

    This presentation is primarily addressed to resident physicians in nuclear medicine, as well as residents in radiology, pathology, and internal medicine. Topics covered include: basic review; nuclides and radioactive processes; radioactivity-law of decay, half-life, and statistics; production of radionuclides; radiopharmaceuticals; interaction of high-energy radiation with matter; radiation dosimetry; detection of high-energy radiation; in-vitro radiation detection; in-vivo radiation detection using external detectors; detectability or final contrast in a scan; resolution and sensitivity of a scanner; special techniques and instruments; therapeutic uses of radionuclides; biological effects of radiation; and safe handling of radionuclides

  16. What Is Trust? Ethics and Risk Governance in Precision Medicine and Predictive Analytics.

    Science.gov (United States)

    Adjekum, Afua; Ienca, Marcello; Vayena, Effy

    2017-12-01

    Trust is a ubiquitous term used in emerging technology (e.g., Big Data, precision medicine), innovation policy, and governance literatures in particular. But what exactly is trust? Even though trust is considered a critical requirement for the successful deployment of precision medicine initiatives, nonetheless, there is a need for further conceptualization with regard to what qualifies as trust, and what factors might establish and sustain trust in precision medicine, predictive analytics, and large-scale biology. These new fields of 21st century medicine and health often deal with the "futures" and hence, trust gains a temporal and ever-present quality for both the present and the futures anticipated by new technologies and predictive analytics. We address these conceptual gaps that have important practical implications in the way we govern risk and unknowns associated with emerging technologies in biology, medicine, and health broadly. We provide an in-depth conceptual analysis and an operative definition of trust dynamics in precision medicine. In addition, we identify three main types of "trust facilitators": (1) technical, (2) ethical, and (3) institutional. This three-dimensional framework on trust is necessary to building and maintaining trust in 21st century knowledge-based innovations that governments and publics invest for progressive societal change, development, and sustainable prosperity. Importantly, we analyze, identify, and deliberate on the dimensions of precision medicine and large-scale biology that have carved out trust as a pertinent tool to its success. Moving forward, we propose a "points to consider" on how best to enhance trust in precision medicine and predictive analytics.

  17. The public's belief about biology.

    Science.gov (United States)

    Wolpert, L

    2007-02-01

    This short review is concerned with a topic that has been neglected and is still very poorly understood: what the general public think and believe about biology (including health and medicine, and bioethics), and, in particular, about biotechnology.

  18. Chalcone: A Privileged Structure in Medicinal Chemistry.

    Science.gov (United States)

    Zhuang, Chunlin; Zhang, Wen; Sheng, Chunquan; Zhang, Wannian; Xing, Chengguo; Miao, Zhenyuan

    2017-06-28

    Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.

  19. Perspectives in molecular imaging through translational research, human medicine, and veterinary medicine.

    Science.gov (United States)

    Berry, Clifford R; Garg, Predeep

    2014-01-01

    The concept of molecular imaging has taken off over the past 15 years to the point of the renaming of the Society of Nuclear Medicine (Society of Nuclear Medicine and Molecular Imaging) and Journals (European Journal of Nuclear Medicine and Molecular Imaging) and offering of medical fellowships specific to this area of study. Molecular imaging has always been at the core of functional imaging related to nuclear medicine. Even before the phrase molecular imaging came into vogue, radionuclides and radiopharmaceuticals were developed that targeted select physiological processes, proteins, receptor analogs, antibody-antigen interactions, metabolites and specific metabolic pathways. In addition, with the advent of genomic imaging, targeted genomic therapy, and theranostics, a number of novel radiopharmaceuticals for the detection and therapy of specific tumor types based on unique biological and cellular properties of the tumor itself have been realized. However, molecular imaging and therapeutics as well as the concept of theranostics are yet to be fully realized. The purpose of this review article is to present an overview of the translational approaches to targeted molecular imaging with application to some naturally occurring animal models of human disease. © 2013 Published by Elsevier Inc.

  20. Researches on regenerative medicine-current state

    Directory of Open Access Journals (Sweden)

    WANG Zheng-guo

    2012-11-01

    Full Text Available 【Abstract】 Since 1980s, the rapid development of tissue engineering and stem cell research has pushed re-generative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD for the research on regenerative medicine. In order to push the translation of regenerative medicine forward—from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue—Regenerative Medi-cine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years. Key words: Regenerative medicine; Tissue engineering; Stem cells; Wound healing

  1. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  2. Systems biology-based diagnostic principles as pillars of the bridge between Chinese and Western medicine

    NARCIS (Netherlands)

    Greef, J. van der; Wietmarschen, H. van; Schroën, J.; Wang, M.; Hankemeier, T.; Xu, G.

    2010-01-01

    Innovative systems approaches to develop medicine and health care are emerging from the integration of Chinese and Western medicine strategies, philosophies and practices. The two medical systems are highly complementary as the reductionist aspects of Western medicine are favourable in acute disease

  3. Chinese materia medica used in medicinal diets.

    Science.gov (United States)

    Tan, Fang; Chen, Yalin; Tan, Xiaolei; Ma, Yunyun; Peng, Yong

    2017-07-12

    Medicinal diets have a history of more than 2000 years. Locally referred to as yaoshan (Chinese: ), a medicinal diet is understood in China as a dietary product that combines herbs and food with the purpose of preventing and treating diseases or improving health under the guidance of traditional Chinese medicine theory. Medicinal diets are used in Chinese people's daily life and in specialized restaurants. Hundreds of Chinese materia medica (CMM) are used in medicinal diets; however, a comprehensive evaluation of medicinal diets is lacking. This is an exploratory study that aims to identify the CMM that are most frequently used in medicinal diets and to provide an updated view of the current situation of medicinal diets in China. A field study of 1221 people in 32 Chinese provinces was conducted over a period of approximately 6 months and included various types of interviews as well as a written questionnaire. Two approaches were used to analyse the data collected in the survey: (1) estimating the frequency of CMM consumed in daily diets; and (2) collecting CMM used in medicinal diet restaurants. Complementary information on the selected CMM was obtained from relevant databases, including PubMed, Google Scholar, Baidu Scholar, CNKI, and Web of Science. Ten CMM were reported as commonly used by more than 50% of the participants. Among these 10 species, most medicinally used parts were seeds and fruits. Pharmacological data from the literature revealed that these species are associated with a wide spectrum of biological properties, including antitumour (80%), antioxidant (50%), anti-diabetic (40%), antilipemic (40%), anti-aging (40%), antimicrobial (40%) and cardioprotective (40%) activities. Our survey shows that most medicinal diet restaurants are located in the eastern part of China, with the greatest numbers being found in Beijing and Guangzhou. Only Dioscoreae Rhizoma, Lycii Fructus, Chrysanthemi Flos and Longan Arillus were frequently consumed both in daily

  4. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry.

    Science.gov (United States)

    Chen, Guilin; Huang, Bill X; Guo, Mingquan

    2018-05-21

    Medicinal plants have played an important role in maintaining human health for thousands of years. However, the interactions between the active components in medicinal plants and some certain biological targets during a disease are still unclear in most cases. To conduct the high-throughput screening for small active molecules that can interact with biological targets, which is of great theoretical significance and practical value. The ultrafiltration mass spectrometry (UF-LC/MS) is a powerful bio-analytical method by combining affinity ultrafiltration and liquid chromatography-mass spectrometry (LC/MS), which could rapidly screen and identify small active molecules that bind to biological targets of interest at the same time. Compared with other analytical methods, affinity UF-LC/MS has the characteristics of fast, sensitive and high throughput, and is especially suitable for the complicated extracts of medicinal plants. In this review, the basic principle, characteristics and some most recent challenges in UF-LC/MS have been demonstrated. Meanwhile, the progress and applications of affinity UF-LC/MS in the discovery of the active components from natural medicinal plants and the interactions between small molecules and biological target proteins are also briefly summarised. In addition, the future directions for UF-LC/MS are also prospected. Affinity UF-LC/MS is a powerful tool in studies on the interactions between small active molecules and biological protein targets, especially in the high-throughput screening of active components from the natural medicinal plants. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Nanotechnology-based drug delivery systems and herbal medicines: a review.

    Science.gov (United States)

    Bonifácio, Bruna Vidal; Silva, Patricia Bento da; Ramos, Matheus Aparecido Dos Santos; Negri, Kamila Maria Silveira; Bauab, Taís Maria; Chorilli, Marlus

    2014-01-01

    Herbal medicines have been widely used around the world since ancient times. The advancement of phytochemical and phytopharmacological sciences has enabled elucidation of the composition and biological activities of several medicinal plant products. The effectiveness of many species of medicinal plants depends on the supply of active compounds. Most of the biologically active constituents of extracts, such as flavonoids, tannins, and terpenoids, are highly soluble in water, but have low absorption, because they are unable to cross the lipid membranes of the cells, have excessively high molecular size, or are poorly absorbed, resulting in loss of bioavailability and efficacy. Some extracts are not used clinically because of these obstacles. It has been widely proposed to combine herbal medicine with nanotechnology, because nanostructured systems might be able to potentiate the action of plant extracts, reducing the required dose and side effects, and improving activity. Nanosystems can deliver the active constituent at a sufficient concentration during the entire treatment period, directing it to the desired site of action. Conventional treatments do not meet these requirements. The purpose of this study is to review nanotechnology-based drug delivery systems and herbal medicines.

  6. The Manila Declaration concerning the ethical utilization of Asian biological resources

    NARCIS (Netherlands)

    NN,

    1992-01-01

    — the maintenance of biological and cultural diversity is of global concern — developing countries are major centres of biological and cultural diversity — there is increased interest in biological material with medicinal and other economic values — indigenous peoples frequently possess knowledge

  7. Biological aspects of radiation in nuclear medicine

    International Nuclear Information System (INIS)

    Kotzerke, J.; Universitaetsklinikum Dresden; Forschungszentrum Dresden-Rossendorf e.V.; Oehme, L.; Forschungszentrum Dresden-Rossendorf e.V.

    2010-01-01

    Radiotherapy with unsealed radionuclides differs from external radiotherapy with regard to the radiation quality and energy range, the regional dose uniformity and the time course of irradiation regimen. External radiotherapy is planned precisely and can be applied to a target volume independently from blood flow during a course of irradiation fractions. In contrary, administered radiopharmaceuticals distribute according to their pharmacokinetic properties and generate a continuous irradiation corresponding to the effective halflife. The resulting dose rates are approximately 1 Gy/min and 1 Gy/h, respectively. The bio-kinetics of radiopharmaceuticals involves cellular accumulation and retention with highly variable affinity to specific organs that can be modulated as well. A remarkable dose gradient is found at the edge of volumes with enhanced uptake. The biological effect of an irradiation with decreasing intensity can be compared with the radiation effect caused by conventional fractionation with 2 Gy a day in external beam therapy by means of the linear-quadratic model. However, the experimental validation of this translation is still under investigation. Radionuclide therapy is usually performed in several cycles some month apart. This procedure fails to meet external radiotherapy. The vision of a combined external-internal radiotherapy requires efforts for a common dosimetry approach both in vitro and in vivo with a physical and biological verification of the results. (orig.)

  8. From cumulative cultural transmission to evidence-based medicine: Evolution of medicinal plant knowledge in Southern Italy

    Directory of Open Access Journals (Sweden)

    Marco eLeonti

    2015-09-01

    Full Text Available In Mediterranean cultures written records of medicinal plant use have a long tradition. This written record contributed to building a consensus about what was perceived to be an efficacious pharmacopoeia. Passed down through millennia, these scripts have transmitted knowledge about plant uses, with high fidelity, to scholars and laypersons alike. Herbal medicine’s importance and the long-standing written record call for a better understanding of the mechanisms influencing the transmission of contemporary medicinal plant knowledge. Here we contextualize herbal medicine within evolutionary medicine and cultural evolution. Cumulative knowledge transmission is approached by estimating the causal effect of two seminal scripts about materia medica written by Dioscorides and Galen, two classical Greco-Roman physicians, on today’s medicinal plant use in the Southern Italian regions of Campania, Sardinia and Sicily. Plant-use combinations are treated as transmissible cultural traits (or memes, which in analogy to the biological evolution of genetic traits, are subjected to mutation and selection. Our results suggest that until today ancient scripts have exerted a strong influence on the use of herbal medicine. We conclude that the repeated empirical testing and scientific study of health care claims is guiding and shaping the selection of efficacious treatments and evidence-based herbal medicine.

  9. Cell and biomolecule delivery for regenerative medicine

    Science.gov (United States)

    Smith, Ian O; Ma, Peter X

    2010-01-01

    Regenerative medicine is an exciting field that aims to create regenerative alternatives to harvest tissues for transplantation. In this approach, the delivery of cells and biological molecules plays a central role. The scaffold (synthetic temporary extracellular matrix) delivers cells to the regenerative site and provides three-dimensional environments for the cells. To fulfil these functions, we design biodegradable polymer scaffolds with structural features on multiple size scales. To enhance positive cell–material interactions, we design nano-sized structural features in the scaffolds to mimic the natural extracellular matrix. We also integrate micro-sized pore networks to facilitate mass transport and neo tissue regeneration. We also design novel polymer devices and self-assembled nanospheres for biomolecule delivery to recapitulate key events in developmental and wound healing processes. Herein, we present recent work in biomedical polymer synthesis, novel processing techniques, surface engineering and biologic delivery. Examples of enhanced cellular/tissue function and regenerative outcomes of these approaches are discussed to demonstrate the excitement of the biomimetic scaffold design and biologic delivery in regenerative medicine. PMID:27877317

  10. Design control considerations for biologic-device combination products.

    Science.gov (United States)

    Anderson, Dave; Liu, Roger; Anand Subramony, J; Cammack, Jon

    2017-03-01

    Combination products are therapeutic and diagnostic medical products that combine drugs, devices, and/or biological products with one another. Historically, biologics development involved identifying efficacious doses administered to patients intravenously or perhaps by a syringe. Until fairly recently, there has been limited focus on developing an accompanying medical device, such as a prefilled syringe or auto-injector, to enable easy and more efficient delivery. For the last several years, and looking forward, where there may be little to distinguish biologics medicines with relatively similar efficacy profiles, the biotechnology market is beginning to differentiate products by patient-focused, biologic-device based combination products. As innovative as biologic-device combination products are, they can pose considerable development, regulatory, and commercialization challenges due to unique physicochemical properties and special clinical considerations (e.g., dosing volumes, frequency, co-medications, etc.) of the biologic medicine. A biologic-device combination product is a marriage between two partners with "cultural differences," so to speak. There are clear differences in the development, review, and commercialization processes of the biologic and the device. When these two cultures come together in a combination product, developers and reviewers must find ways to address the design controls and risk management processes of both the biologic and device, and knit them into a single entity with supporting product approval documentation. Moreover, digital medicine and connected health trends are pushing the boundaries of combination product development and regulations even further. Despite an admirable cooperation between industry and FDA in recent years, unique product configurations and design features have resulted in review challenges. These challenges have prompted agency reviewers to modernize consultation processes, while at the same time, promoting

  11. Taking Bioinformatics to Systems Medicine.

    Science.gov (United States)

    van Kampen, Antoine H C; Moerland, Perry D

    2016-01-01

    Systems medicine promotes a range of approaches and strategies to study human health and disease at a systems level with the aim of improving the overall well-being of (healthy) individuals, and preventing, diagnosing, or curing disease. In this chapter we discuss how bioinformatics critically contributes to systems medicine. First, we explain the role of bioinformatics in the management and analysis of data. In particular we show the importance of publicly available biological and clinical repositories to support systems medicine studies. Second, we discuss how the integration and analysis of multiple types of omics data through integrative bioinformatics may facilitate the determination of more predictive and robust disease signatures, lead to a better understanding of (patho)physiological molecular mechanisms, and facilitate personalized medicine. Third, we focus on network analysis and discuss how gene networks can be constructed from omics data and how these networks can be decomposed into smaller modules. We discuss how the resulting modules can be used to generate experimentally testable hypotheses, provide insight into disease mechanisms, and lead to predictive models. Throughout, we provide several examples demonstrating how bioinformatics contributes to systems medicine and discuss future challenges in bioinformatics that need to be addressed to enable the advancement of systems medicine.

  12. International Journal of Medicine and Biomedical Research ...

    African Journals Online (AJOL)

    It also publishes valuable studies in areas of Biological Sciences related to health ... Medicine, Nursing, Physiotherapy, and Medical Ethics and Medical Education. ... The Journal charges US $ 250 (for overseas authors) and N 25,000 (for ...

  13. Role of biologics in intractable urticaria

    Directory of Open Access Journals (Sweden)

    Cooke A

    2015-04-01

    Full Text Available Andrew Cooke,1 Adeeb Bulkhi,1,2 Thomas B Casale1 1Department of Internal Medicine, Division of Allergy and Immunology, University of South Florida, Tampa, FL, USA; 2Department of Internal Medicine, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia Abstract: Chronic urticaria (CU is a common condition faced by many clinicians. CU has been estimated to affect approximately 0.5%–1% of the population, with nearly 20% of sufferers remaining symptomatic 20 years after onset. Antihistamines are the first-line therapy for CU. Unfortunately, nearly half of these patients will fail this first-line therapy and require other medication, including immune response modifiers or biologics. Recent advances in our understanding of urticarial disorders have led to more targeted therapeutic options for CU and other urticarial diseases. The specific biologic agents most investigated for antihistamine-refractory CU are omalizumab, rituximab, and intravenous immunoglobulin (IVIG. Of these, the anti-IgE monoclonal antibody omalizumab is the best studied, and has recently been approved for the management of CU. Other agents, such as interleukin-1 inhibitors, have proved beneficial for Schnitzler syndrome and cryopyrin-associated periodic syndromes (CAPS, diseases associated with urticaria. This review summarizes the relevant data regarding the efficacy of biologics in antihistamine-refractory CU. Keywords: chronic urticaria, omalizumab, intravenous immunoglobulin, anakinra, canakinumab

  14. Loranthus micranthus Linn.: Biological Activities and Phytochemistry

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    2013-01-01

    Full Text Available Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.

  15. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  16. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion related to a notification from the Oenological Products and Practices International Association (OENOPPIA) on lysozyme from hen‟s egg to be used in the manufacture of wine as an anti-microbial stabilizer

    DEFF Research Database (Denmark)

    Tetens, Inge

    Following a request from the European Commission, the Panel on Dietetic Products, Nutrition and Allergies (NDA) was asked to deliver a scientific opinion related to a notification from the Oenological Products and Practices International Association (OENOPPIA) on lysozyme from hen‟s egg used in t...... reactions in susceptible individuals under the conditions of use proposed by the applicant. © European Food Safety Authority, 2011...... in the manufacture of wine as an anti-microbial stabilizer/additive pursuant to Article 6, paragraph 11 of Directive 2000/13/EC – for permanent exemption from labelling. Allergic sensitisation against lysozyme is common among egg allergic individuals. In winemaking, lysozyme is used for the control of lactic acid...... individuals have been demonstrated in wines treated with lysozyme, and a number of clinical reports (including one double-blind placebo-controlled food challenge with lysozyme) described clinical allergic reactions to lysozyme. The Panel concludes that wines treated with lysozyme may trigger adverse allergic...

  17. Precision Medicine in Gastrointestinal Pathology.

    Science.gov (United States)

    Wang, David H; Park, Jason Y

    2016-05-01

    -Precision medicine is the promise of individualized therapy and management of patients based on their personal biology. There are now multiple global initiatives to perform whole-genome sequencing on millions of individuals. In the United States, an early program was the Million Veteran Program, and a more recent proposal in 2015 by the president of the United States is the Precision Medicine Initiative. To implement precision medicine in routine oncology care, genetic variants present in tumors need to be matched with effective clinical therapeutics. When we focus on the current state of precision medicine for gastrointestinal malignancies, it becomes apparent that there is a mixed history of success and failure. -To present the current state of precision medicine using gastrointestinal oncology as a model. We will present currently available targeted therapeutics, promising new findings in clinical genomic oncology, remaining quality issues in genomic testing, and emerging oncology clinical trial designs. -Review of the literature including clinical genomic studies on gastrointestinal malignancies, clinical oncology trials on therapeutics targeted to molecular alterations, and emerging clinical oncology study designs. -Translating our ability to sequence thousands of genes into meaningful improvements in patient survival will be the challenge for the next decade.

  18. The emerging potential for network analysis to inform precision cancer medicine.

    Science.gov (United States)

    Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E; Bejar, Rafael; Carter, Hannah

    2018-06-14

    Precision cancer medicine promises to tailor clinical decisions to patients using genomic information. Indeed, successes of drugs targeting genetic alterations in tumors, such as imatinib that targets BCR-ABL in chronic myelogenous leukemia, have demonstrated the power of this approach. However biological systems are complex, and patients may differ not only by the specific genetic alterations in their tumor, but by more subtle interactions among such alterations. Systems biology and more specifically, network analysis, provides a framework for advancing precision medicine beyond clinical actionability of individual mutations. Here we discuss applications of network analysis to study tumor biology, early methods for N-of-1 tumor genome analysis and the path for such tools to the clinic. Copyright © 2018. Published by Elsevier Ltd.

  19. [Precision medicine : a required approach for the general internist].

    Science.gov (United States)

    Waeber, Gérard; Cornuz, Jacques; Gaspoz, Jean-Michel; Guessous, Idris; Mooser, Vincent; Perrier, Arnaud; Simonet, Martine Louis

    2017-01-18

    The general internist cannot be a passive bystander of the anticipated medical revolution induced by precision medicine. This latter aims to improve the predictive and/or clinical course of an individual by integrating all biological, genetic, environmental, phenotypic and psychosocial knowledge of a person. In this article, national and international initiatives in the field of precision medicine are discussed as well as the potential financial, ethical and limitations of personalized medicine. The question is not to know if precision medicine will be part of everyday life but rather to integrate early the general internist in multidisciplinary teams to ensure optimal information and shared-decision process with patients and individuals.

  20. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1998

    International Nuclear Information System (INIS)

    1998-01-01

    This proceedings contains articles of 1998 Autumn meeting of the Korean Society Nuclear Medicine. It was held on November 13-14, 1998 in Seoul, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  1. Proceedings of the Korean Society Nuclear Medicine Autumn Meeting 1997

    International Nuclear Information System (INIS)

    1997-01-01

    This proceedings contains articles of 1997 autumn meeting of the Korean Society Nuclear Medicine. It was held on November 21, 1997 in Kwangju, Korea. This proceedings is comprised of 5 sessions. The subject titles of session are as follows: general nuclear medicine, neurology, radiopharmacy and biology, nuclear cardiology, physics and instrumentation. (Yi, J. H.)

  2. Getting personal: can systems medicine integrate scientific and humanistic conceptions of the patient?

    Science.gov (United States)

    Vogt, Henrik; Ulvestad, Elling; Eriksen, Thor Eirik; Getz, Linn

    2014-12-01

    The practicing doctor, and most obviously the primary care clinician who encounters the full complexity of patients, faces several fundamental but intrinsically related theoretical and practical challenges - strongly actualized by so-called medically unexplained symptoms (MUS) and multi-morbidity. Systems medicine, which is the emerging application of systems biology to medicine and a merger of molecular biomedicine, systems theory and mathematical modelling, has recently been proposed as a primary care-centered strategy for medicine that promises to meet these challenges. Significantly, it has been proposed to do so in a way that at first glance may seem compatible with humanistic medicine. More specifically, it is promoted as an integrative, holistic, personalized and patient-centered approach. In this article, we ask whether and to what extent systems medicine can provide a comprehensive conceptual account of and approach to the patient and the root causes of health problems that can be reconciled with the concept of the patient as a person, which is an essential theoretical element in humanistic medicine. We answer this question through a comparative analysis of the theories of primary care doctor Eric Cassell and systems biologist Denis Noble. We argue that, although systems biological concepts, notably Noble's theory of biological relativity and downward causation, are highly relevant for understanding human beings and health problems, they are nevertheless insufficient in fully bridging the gap to humanistic medicine. Systems biologists are currently unable to conceptualize living wholes, and seem unable to account for meaning, value and symbolic interaction, which are central concepts in humanistic medicine, as constraints on human health. Accordingly, systems medicine as currently envisioned cannot be said to be integrative, holistic, personalized or patient-centered in a humanistic medical sense. © 2014 The Authors. Journal of Evaluation in Clinical

  3. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  4. European Medicines Agency, CAT Secretariat & US Food and Drug Administration.

    Science.gov (United States)

    2011-11-01

    The European Medicines Agency (EMA) and the Committee for Advanced Therapies (CAT) are responsible for reviewing applications for marketing authorization for Advanced Therapy Medicinal Products (ATMP), which include (stem) cell-based medicines, for the ATMP classification and certification procedure, and to provide scientific advice to developers of ATMPs. The CAT, an expert committee dedicated to ATMPs, was established by the Regulation (EC) No 1394/2007 on Advanced Therapies. The CAT came into operation in January 2009. ATMPs are defined in this Regulation as gene therapy and cell therapy medicinal products, and tissue-engineered products. The US FDA's Center for Biologics Evaluation and Research is responsible for ensuring the safety, purity, potency and effectiveness of many biologically derived products, including blood intended for transfusion, blood components and derivatives, vaccines and allergenic extracts, and cell, tissue and gene therapy products for the prevention, diagnosis and treatment of human diseases, conditions or injury. Human cells or tissue intended for implantation, transplantation, infusion or transfer into a human recipient are regulated as human cells, tissues, and cellular and tissue-based products (HCT/Ps).

  5. Seasonal allergic rhinitis and systems biology-oriented biomarker discovery

    NARCIS (Netherlands)

    Baars, E.W.; Nierop, A.F.M.; Savelkoul, H.F.J.

    2015-01-01

    There is an increasing interest in science and medicine in the systems approach. Instead of the reductionist approach that focuses on the physical and chemical properties of the individual components, systems biology aims to describe, understand, and explain from the complex biological systems

  6. Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Berg, Lise Charlotte; Betts, Dean H.

    2009-01-01

    This paper provides a bird's-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine.The understanding of equine stem cell biology, biofactors, and scaffolds...... mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering - cells, biological...... factors, and biomaterials - are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources.The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently...

  7. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  8. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  9. [Biological characteristics of calliphoridae and its application in forensic medicine].

    Science.gov (United States)

    Zhao, Boa; Wen, Charn; Qi, Li-Li; Wang, He; Wang, Ji

    2013-12-01

    Diptera Calliphoridae is the first major kind of flies that appears on the decomposed corpses. In forensic entomology, according to the living characteristics of Calliphoridae flies, we could accurately estimate postmortem interval (PMI) in a murder or unidentified case and could provide useful clues to solve the case. This paper introduces the characteristics of the biology and morphology of Diptera Calliphoridae, and reviews the combined application of forensic entomology, molecular biology, mathematical morphology and toxicology.

  10. Exploration of Disease Markers under Translational Medicine Model

    Directory of Open Access Journals (Sweden)

    Rajagopal Krishnamoorthy

    2015-06-01

    Full Text Available Disease markers are defined as the biomarkers with specific characteristics during the general physical, pathological or therapeutic process, the detection of which can inform the progression of present biological process of organisms. However, the exploration of disease markers is complicated and difficult, and only a few markers can be used in clinical practice and there is no significant difference in the mortality of cancers before and after biomarker exploration. Translational medicine focuses on breaking the blockage between basic medicine and clinical practice. In addition, it also establishes an effective association between researchers engaged on basic scientific discovery and clinical physicians well informed of patients' requirements, and gives particular attentions on how to translate the basic molecular biological research to the most effective and appropriate methods for the diagnosis, treatment and prevention of diseases, hoping to translate basic research into the new therapeutic methods in clinic. Therefore, this study mainly summarized the exploration of disease markers under translational medicine model so as to provide a basis for the translation of basic research results into clinical application.

  11. Stem cell bioprinting for applications in regenerative medicine.

    Science.gov (United States)

    Tricomi, Brad J; Dias, Andrew D; Corr, David T

    2016-11-01

    Many regenerative medicine applications seek to harness the biologic power of stem cells in architecturally complex scaffolds or microenvironments. Traditional tissue engineering methods cannot create such intricate structures, nor can they precisely control cellular position or spatial distribution. These limitations have spurred advances in the field of bioprinting, aimed to satisfy these structural and compositional demands. Bioprinting can be defined as the programmed deposition of cells or other biologics, often with accompanying biomaterials. In this concise review, we focus on recent advances in stem cell bioprinting, including performance, utility, and applications in regenerative medicine. More specifically, this review explores the capability of bioprinting to direct stem cell fate, engineer tissue(s), and create functional vascular networks. Furthermore, the unique challenges and concerns related to bioprinting living stem cells, such as viability and maintaining multi- or pluripotency, are discussed. The regenerative capacity of stem cells, when combined with the structural/compositional control afforded by bioprinting, provides a unique and powerful tool to address the complex demands of tissue engineering and regenerative medicine applications. © 2016 New York Academy of Sciences.

  12. Medicine 4.0”

    Directory of Open Access Journals (Sweden)

    Wolf Bernhard

    2017-09-01

    Full Text Available Not only in the technological world (“Industry 4.0”, but also in medicine, a paradigmatic change is taking place: We are already on the threshold of “Medicine 4.0”. Molecular biology has long played a leading role in life sciences. Scientists now realise that, with increasing miniaturisation, microelectronic systems downsized to the dimensions of cellular systems will facilitate new therapeutic approaches. But conventional telecommunications systems can also be equipped with sensors and transformed into intelligent medical monitoring devices that can help patients become part of the diagnostic and therapeutic process. This article illustrates development trends that will lead to modern, electronically supported healthcare concepts.

  13. Orthobiologics in Pediatric Sports Medicine.

    Science.gov (United States)

    Bray, Christopher C; Walker, Clark M; Spence, David D

    2017-07-01

    Orthobiologics are biological substances that allow injured muscles, tendons, ligaments, and bone to heal more quickly. They are found naturally in the body; at higher concentrations they can aid in the healing process. These substances include autograft bone, allograft bone, demineralized bone matrix, bone morphogenic proteins, growth factors, stem cells, plasma-rich protein, and ceramic grafts. Their use in sports medicine has exploded in efforts to increase graft incorporation, stimulate healing, and get athletes back to sport with problems including anterior cruciate ligament ruptures, tendon ruptures, cartilage injuries, and fractures. This article reviews orthobiologics and their applications in pediatric sports medicine. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Five critical elements to ensure the precision medicine.

    Science.gov (United States)

    Chen, Chengshui; He, Mingyan; Zhu, Yichun; Shi, Lin; Wang, Xiangdong

    2015-06-01

    The precision medicine as a new emerging area and therapeutic strategy has occurred and was practiced in the individual and brought unexpected successes, and gained high attentions from professional and social aspects as a new path to improve the treatment and prognosis of patients. There will be a number of new components to appear or be discovered, of which clinical bioinformatics integrates clinical phenotypes and informatics with bioinformatics, computational science, mathematics, and systems biology. In addition to those tools, precision medicine calls more accurate and repeatable methodologies for the identification and validation of gene discovery. Precision medicine will bring more new therapeutic strategies, drug discovery and development, and gene-oriented treatment. There is an urgent need to identify and validate disease-specific, mechanism-based, or epigenetics-dependent biomarkers to monitor precision medicine, and develop "precision" regulations to guard the application of precision medicine.

  15. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  16. 2nd Anglo-Croatian Medicinal Symposium on Macrocycles Medicinal Chemistry and Beyond-the-Rule-of-Five

    Directory of Open Access Journals (Sweden)

    Vitomir Šunjić

    2016-09-01

    Full Text Available Second international symposium was jointly organized by the Biological and Medicinal Sector of the Royal Society of Chemistry (RSC and by the Croatian Chemical Society (CCS on October 17–18, 2016, in Zagreb, Croatia. This work is licensed under a Creative Commons Attribution 4.0 International License.

  17. Applications of Free Electron Lasers in Biology and Medicine

    International Nuclear Information System (INIS)

    Pelka, J.B.; Tybor, K.R.; Nietubyc, R.; Wrochna, G.

    2010-01-01

    The advent of free electron lasers opens up new opportunities to probe the dynamics of ultrafast processes and the structure of matter with unprecedented spatial and temporal resolution. New methods inaccessible with other known types of radiation sources can be developed, resulting in a breakthrough in deep understanding the fundamentals of life as well as in numerous medical and biological applications. In the present work the properties of free electron laser radiation that make the sources excellent for probing biological matter at an arbitrary wavelength, in a wide range of intensities and pulse durations are briefly discussed. A number of biophysical and biomedical applications of the new sources, currently considered among the most promising in the field, are presented. (author)

  18. Introduction to nuclear medicine

    International Nuclear Information System (INIS)

    Denhartog, P.; Wilmot, D.M.

    1987-01-01

    In this chapter, the fundamentals of nuclear medicine, the advantages and disadvantages of this modality (compared with radiography and ultrasound), and some of the areas in diagnosis and treatment in which it has found widest acceptance will be discussed. Nuclear medicine procedures can be broadly categorized into three groups: in vivo imaging, usually requiring the injection of an organ-specific radiopharmaceutical; in vitro procedures, in which the radioactive agent is mixed with the patient's blood in a test tube; and in vivo nonimaging procedures, in which the patient receives the radiopharmaceutical (intravenously or orally) after which a measurement of the amount appearing in a particular biological specimen (blood, urine, stool) is performed. In vivo imaging procedures will be the principal topics of this chapter

  19. Evolutionary medicine: its scope, interest and potential.

    Science.gov (United States)

    Stearns, Stephen C

    2012-11-07

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host-pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous.

  20. The Spectre of Race in American Medicine

    OpenAIRE

    Fofana, Mariam O.

    2013-01-01

    Controversies and debates surrounding race have long been a fixture in American medicine. In the past, the biological concept of race—the idea that race is biologically determined and meaningful—has served to justify the institution of slavery and the conduct of unethical research trials. Although these days may seem far behind, contemporary debates over the race-specific approval of drugs and the significance of genetic differences are evidence that race still yields tremendous influence on ...

  1. Clinical Holistic Medicine: Applied Consciousness-Based Medicine

    Directory of Open Access Journals (Sweden)

    Søren Ventegodt

    2004-01-01

    Full Text Available Consciousness-based medicine is our term for a form of medical treatment that works by direct appeal to the consciousness of the patient, in contrast to modern biomedical treatment where drugs are used to affect body chemistry. With this concept, maybe we are (in a sense turning back to the “old medicine”, where the family physician was the all-concerned “old country doctor” who knew the child, the siblings, the parents, the family, and the village. In a series of papers on clinical holistic medicine, we would like to present the classic art of healing, where the physician works mostly with his hands, then show how the modern biomedical physician performs with biochemistry, and finally introduce consciousness-based medicine. Some of our questions will be: If you improve your quality of life, will you also improve your health? Will learning more about yourself bring more purpose in your life? Will finding someone to live with in a loving and mutually respectful relationship improve your health? Scientists and thinkers like Antonovsky, Frankl, Maslow, and Jung have pointed to love as a unique way to coherence in life, and thus to biological order and a better health. Several scientific studies have also suggested that patients who focus on improving their quality of life usually will not follow the general statistics for survival, since somehow other factors are at play, which sometimes you will find referred to as “exceptional”.

  2. Physical and enzymatic conditioning of oenological wastes to improve biogas production

    OpenAIRE

    Bracchitta, Mirko

    2012-01-01

    A fundamental assumption for by-product from winery industy waste-management is their economic and commercial increase in value. High energetic value recovery from winery industry is an attractive economic solution to stimulate new sustainable process. Approach of this work is based about physic and biological treatment with grape stalks and grape marc to increase polysaccharides components of cell wall and energetic availability of this by-products. Grape stalks for example have a high perce...

  3. ITFoM - The IT Future of Medicine

    NARCIS (Netherlands)

    Lehrach, H.; Subrak, R.; Boyle, P.; Pasterk, M.; Zatloukal, K.; Muller, H.; Hubbard, T.; Brand, A.; Girolami, M.; Jameson, D.; Bruggeman, F.J.; Westerhoff, H.V.

    2011-01-01

    Molecular medicine is undergoing a revolution, creating a data fog that may obscure understanding. The functioning human is analogous to a biological factory controlled by an incredibly complex Information and Communication (IC) network. It is proposed that 7 billion computational replicas be made

  4. Blood transcriptomics and metabolomics for personalized medicine.

    Science.gov (United States)

    Li, Shuzhao; Todor, Andrei; Luo, Ruiyan

    2016-01-01

    Molecular analysis of blood samples is pivotal to clinical diagnosis and has been intensively investigated since the rise of systems biology. Recent developments have opened new opportunities to utilize transcriptomics and metabolomics for personalized and precision medicine. Efforts from human immunology have infused into this area exquisite characterizations of subpopulations of blood cells. It is now possible to infer from blood transcriptomics, with fine accuracy, the contribution of immune activation and of cell subpopulations. In parallel, high-resolution mass spectrometry has brought revolutionary analytical capability, detecting > 10,000 metabolites, together with environmental exposure, dietary intake, microbial activity, and pharmaceutical drugs. Thus, the re-examination of blood chemicals by metabolomics is in order. Transcriptomics and metabolomics can be integrated to provide a more comprehensive understanding of the human biological states. We will review these new data and methods and discuss how they can contribute to personalized medicine.

  5. Global view on the radiological protection of patients: Position paper by the World Federation of Nuclear Medicine and Biology

    International Nuclear Information System (INIS)

    Amaral, H.

    2001-01-01

    The World Federation of Nuclear Medicine and Biology (WFNMB) is an organization with 60 member countries that are represented by their national nuclear medicine societies and whose main aim is to promote the correct use of this form of medical specialization. Medical research must now comply with strict bioethics criteria that are applied almost universally. Factors such as social value, scientific validity, the risk/benefit ratio and respect for people participating in research are now indispensable in the design of any scientific project. One of the great advances in medicine and medical research has been the acceptance that obtaining the informed consent of people participating in the research is an essential requirement. This also means that we have to make sure that the individuals understand the aim of the study and are aware of its risks and potential benefits as well as the existence of possible alternatives. We are thus obliged to respect their free-dom of choice to participate in, or subject themselves to, a study on an entirely voluntary basis, and their complete freedom to leave a study if they so desire. I would like to take up one final point that relates to the rational use of resources. Until quite recently, it was thought that any lawfully available technological resource could be used, a view that was especially true in relation to medicine. Nowadays, however, there is a strong trend towards the view that the use of both diagnostic and therapeutic techniques must be based on scientific evidence of their usefulness. The empirical use of available resources, without some evidence justifying this use and without a favourable cost-benefit ratio, is no longer accepted as good practice. Conferences such as this one are undoubtedly the most serious manner in which we can tackle these problems, and the conclusions and recommendations we reach must be widely disseminated in the community. The medical applications of radiation have the greatest potential

  6. Clinical decision-making and secondary findings in systems medicine.

    Science.gov (United States)

    Fischer, T; Brothers, K B; Erdmann, P; Langanke, M

    2016-05-21

    Systems medicine is the name for an assemblage of scientific strategies and practices that include bioinformatics approaches to human biology (especially systems biology); "big data" statistical analysis; and medical informatics tools. Whereas personalized and precision medicine involve similar analytical methods applied to genomic and medical record data, systems medicine draws on these as well as other sources of data. Given this distinction, the clinical translation of systems medicine poses a number of important ethical and epistemological challenges for researchers working to generate systems medicine knowledge and clinicians working to apply it. This article focuses on three key challenges: First, we will discuss the conflicts in decision-making that can arise when healthcare providers committed to principles of experimental medicine or evidence-based medicine encounter individualized recommendations derived from computer algorithms. We will explore in particular whether controlled experiments, such as comparative effectiveness trials, should mediate the translation of systems medicine, or if instead individualized findings generated through "big data" approaches can be applied directly in clinical decision-making. Second, we will examine the case of the Riyadh Intensive Care Program Mortality Prediction Algorithm, pejoratively referred to as the "death computer," to demonstrate the ethical challenges that can arise when big-data-driven scoring systems are applied in clinical contexts. We argue that the uncritical use of predictive clinical algorithms, including those envisioned for systems medicine, challenge basic understandings of the doctor-patient relationship. Third, we will build on the recent discourse on secondary findings in genomics and imaging to draw attention to the important implications of secondary findings derived from the joint analysis of data from diverse sources, including data recorded by patients in an attempt to realize their

  7. Anatomy and Physiology of Multiscale Modeling and Simulation in Systems Medicine.

    Science.gov (United States)

    Mizeranschi, Alexandru; Groen, Derek; Borgdorff, Joris; Hoekstra, Alfons G; Chopard, Bastien; Dubitzky, Werner

    2016-01-01

    Systems medicine is the application of systems biology concepts, methods, and tools to medical research and practice. It aims to integrate data and knowledge from different disciplines into biomedical models and simulations for the understanding, prevention, cure, and management of complex diseases. Complex diseases arise from the interactions among disease-influencing factors across multiple levels of biological organization from the environment to molecules. To tackle the enormous challenges posed by complex diseases, we need a modeling and simulation framework capable of capturing and integrating information originating from multiple spatiotemporal and organizational scales. Multiscale modeling and simulation in systems medicine is an emerging methodology and discipline that has already demonstrated its potential in becoming this framework. The aim of this chapter is to present some of the main concepts, requirements, and challenges of multiscale modeling and simulation in systems medicine.

  8. Tissue engineering and regenerative medicine: manufacturing challenges.

    Science.gov (United States)

    Williams, D J; Sebastine, I M

    2005-12-01

    Tissue engineering and regenerative medicine are interdisciplinary fields that apply principles of engineering and life sciences to develop biological substitutes, typically composed of biological and synthetic components, that restore, maintain or improve tissue function. Many tissue engineering technologies are still at a laboratory or pre-commercial scale. The short review paper describes the most significant manufacturing and bio-process challenges inherent in the commercialisation and exploitation of the exciting results emerging from the biological and clinical laboratories exploring tissue engineering and regenerative medicine. A three-generation road map of the industry has been used to structure a view of these challenges and to define where the manufacturing community can contribute to the commercial success of the products from these emerging fields. The first-generation industry is characterised by its demonstrated clinical applications and products in the marketplace, the second is characterised by emerging clinical applications, and the third generation is characterised by aspirational clinical applications. The paper focuses on the cost reduction requirement of the first generation of the industry to allow more market penetration and consequent patient impact. It indicates the technological requirements, for instance the creation of three-dimensional tissue structures, and value chain issues in the second generation of the industry. The third-generation industry challenges lie in fundamental biological and clinical science. The paper sets out a road map of these generations to identify areas for research.

  9. Chaos and The Changing Nature of Science and Medicine. Proceedings

    International Nuclear Information System (INIS)

    Herbert, D.E.; Croft, P.; Silver, D.S.; Williams, S.G.; Woodall, M.

    1996-01-01

    These proceedings represent the lectures given at the workshop on chaos and the changing nature of science and medicine. The workshop was sponsored by the University of South Alabama and the American Association of Physicists in Medicine. The topics discussed covered nonlinear dynamical systems, complexity theory, fractals, chaos in biology and medicine and in fluid dynamics. Applications of chaotic dynamics in climatology were also discussed. There were 8 lectures at the workshop and all 8 have been abstracted for the Energy Science and Technology database

  10. Chemical biology of Glycosylphosphatidylinositol (GPI) anchors

    Indian Academy of Sciences (India)

    Admin

    CSIR-IIIM. Chemical biology of. Glycosylphosphatidylinositol (GPI) anchors. Ram Vishwakarma. CSIR-Indian Institute of Integrative Medicine, Jammu. N ti l I tit t f I l. N. D lhi. National Institute of Immunology, New Delhi. Piramal Life Sciences Ltd, Mumbai ...

  11. Reproductive medicine and the concept of 'quality'

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2008-01-01

    Selection in reproductive medicine today relies on normative assessments of what ‘good life’ consists of. This paper explores the terms under which such assessments are made by focusing on three particular concepts of ‘quality’: quality of life, biological quality and population quality....... It is suggested that the apparently conflicting hypes, hopes and fears that surround reproductive medicine can co-circulate because of the different forms of normative assessment that these concepts allow. To ensure clarity in bioethical deliberations about selection, it is necessary to highlight how...

  12. Application and Characteristics of Chinese Herbal Medicine Containing Schisandra

    Science.gov (United States)

    Zhao, Hui; Mao, Mingsan

    2018-01-01

    Schisandra is the dried and ripe fruit of Chinese magnoliavine, which has the functions of protecting the liver and gallbladder, lowering blood sugar, antibacterial and antiaging. Schisandra contains biological activity is very high. As a commonly used blind Chinese herbal medicine, Schisandra often appear in the treatment of vertigo, palpitations, insomnia in the proprietary Chinese medicine, play a nourishing liver and kidney, nourishing the nerves and so on. Chinese Pharmacopoeia contains a total of 102 kinds of Chinese medicine containing Schisandra, according to the dosage form will contain Schisandra proprietary Chinese medicine is divided into pills, tablets, granules and other 8 categories, according to the compatibility of Schisandra application, will contain Schisandra proprietary Chinese medicine functional Class 9. In this paper, the main clinical application of proprietary Chinese medicines containing Schisandra chinensis was analyzed by analyzing the classification and functional treatment of Chinese medicinal constituents containing Schisandra in pharmacopoeia, and then providing the basis for the analysis of Schisandra in proprietary Chinese medicine and The study is conducted to give guidance.

  13. The Frontlines of Medicine Project: a proposal for the standardized communication of emergency department data for public health uses including syndromic surveillance for biological and chemical terrorism.

    Science.gov (United States)

    Barthell, Edward N; Cordell, William H; Moorhead, John C; Handler, Jonathan; Feied, Craig; Smith, Mark S; Cochrane, Dennis G; Felton, Christopher W; Collins, Michael A

    2002-04-01

    The Frontlines of Medicine Project is a collaborative effort of emergency medicine (including emergency medical services and clinical toxicology), public health, emergency government, law enforcement, and informatics. This collaboration proposes to develop a nonproprietary, "open systems" approach for reporting emergency department patient data. The common element is a standard approach to sending messages from individual EDs to regional oversight entities that could then analyze the data received. ED encounter data could be used for various public health initiatives, including syndromic surveillance for chemical and biological terrorism. The interlinking of these regional systems could also permit public health surveillance at a national level based on ED patient encounter data. Advancements in the Internet and Web-based technologies could allow the deployment of these standardized tools in a rapid time frame.

  14. Race, money and medicines.

    Science.gov (United States)

    Bloche, M Gregg

    2006-01-01

    Taking notice of race is both risky and inevitable, in medicine no less than in other endeavors. On the one hand, race can be a useful stand-in for unstudied genetic and environmental factors that yield differences in disease expression and therapeutic response. Attention to race can make a therapeutic difference, to the point of saving lives. On the other hand, racial distinctions have social meanings that are often pejorative or worse, especially when these distinctions are cast as culturally or biologically fixed. I argue in this essay that we should start with a presumption against racial categories in medicine, but permit their use when it might prolong lives or meaningfully improve health. Use of racial categories should be understood as an interim step; follow-up inquiry into the factors that underlie race-correlated clinical differences is important both to improve the efficacy of clinical care and to prevent race in itself from being misunderstood as a biological determinant. If we pursue such inquiry with vigor, the pernicious effects of racial categories on public understanding can be managed. But perverse market and regulatory incentives create the danger that use of race will be "locked-in," once drugs or other therapies are approved. These incentives should be revisited.

  15. RESEARCH AND DEVELOPMENT INTO HERBAL MEDICINES ...

    African Journals Online (AJOL)

    Recent advances in the Research and development of Herbal Medicines are highlighted and a scheme for R & D work is presented. The need for adequate information (chemical, biological, botanical and so on) on local plants is highlighted. There is also the need to standardize the herbal product, prepare it in an ...

  16. Systems medicine advances in interstitial lung disease.

    Science.gov (United States)

    Greiffo, Flavia R; Eickelberg, Oliver; Fernandez, Isis E

    2017-09-30

    Fibrotic lung diseases involve subject-environment interactions, together with dysregulated homeostatic processes, impaired DNA repair and distorted immune functions. Systems medicine-based approaches are used to analyse diseases in a holistic manner, by integrating systems biology platforms along with clinical parameters, for the purpose of understanding disease origin, progression, exacerbation and remission.Interstitial lung diseases (ILDs) refer to a heterogeneous group of complex fibrotic diseases. The increase of systems medicine-based approaches in the understanding of ILDs provides exceptional advantages by improving diagnostics, unravelling phenotypical differences, and stratifying patient populations by predictable outcomes and personalised treatments. This review discusses the state-of-the-art contributions of systems medicine-based approaches in ILDs over the past 5 years. Copyright ©ERS 2017.

  17. Dilong: Food for Thought and Medicine

    Directory of Open Access Journals (Sweden)

    Edwin L. Cooper

    2012-10-01

    Full Text Available Earthworms have several names in different countries (In Chinese: 地龍 dì lóng, Japanese: Mimizu, Korean: Jireongi, Spanish: Lombriz de tierra, French: Ver de terre, German: Regenwurm, Italian: Lombrico, Swedish: Daggmask, Portuguese: Minhoca. They have long been used as a food source as well as treatments of various ailments. Many alternative and traditional disciplines of medicine, such as those in China, Japan, and Korea, developed medicinal uses of dilong from an initial utilization as nutrition. Increased curiosity in the potential medicinal properties of dilong has come to fruition through bioprospecting and evidence based research. This increased questioning and searching spawned first from a growing knowledge base about the earthworm's innate immune system. Their importance in understanding the evolution of the innate immune system has long been overlooked because of the ecological importance in soil preservation, earthworm immune systems, being full of leukocytes and humoral products, offer significant advantages when used as medicines. Earthworms offer an unanticipated slew of potential health benefits without common drawbacks that come with other biological, alternative forms of medicine such as cost, ethical and pathological concerns of animal testing.

  18. Combining biologic and phototherapy treatments for psoriasis: safety, efficacy, and patient acceptability

    Directory of Open Access Journals (Sweden)

    Farahnik B

    2016-07-01

    Full Text Available Benjamin Farahnik,1 Viraat Patel,2 Kourosh Beroukhim,3 Tian Hao Zhu,4 Michael Abrouk,2 Mio Nakamura,5 Rasnik Singh,3 Kristina Lee,5 Tina Bhutani,5 John Koo5 1University of Vermont College of Medicine, Burlington, VT; 2School of Medicine, University of California, Irvine, 3David Geffen School of Medicine, University of California, Los Angeles, 4University of Southern California Keck School of Medicine, Los Angeles, 5Department of Dermatology, Psoriasis and Skin Treatment Center, University of California, San Francisco, CA, USA Background: The efficacy and safety of biologic and phototherapy in treating moderate-to-severe psoriasis is well known. However, some patients may not respond well to biologic agents or phototherapy on their own and may require combination therapy. Skillfully combining a biologic agent and phototherapy may provide an additive improvement without much increase in risks.Objective: To summarize the current state of evidence for the efficacy and safety of combining biologics with phototherapy in the treatment of moderate-to-severe plaque psoriasis.Methods: We conducted an extensive search on Pubmed database for English language literature that evaluated the use of a combination of biologic and phototherapy for the treatment of moderate-to-severe psoriasis through January 2016. The search included the following keywords: psoriasis, etanercept, adalimumab, infliximab, ustekinumab, biologics, phototherapy, and combination therapy.Results: The primary literature included randomized controlled trials, a head-to-head study, open-label controlled and uncontrolled trials, case series, and case reports. Etanercept was used in over half of the reported cases, but other biologic agents used included ustekinumab, adalimumab, and infliximab. The vast majority of phototherapy was narrowband ultraviolet B (NBUVB radiation. Most cases reported enhanced improvement with combination therapy. Serious adverse events throughout the study duration

  19. Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses.

    Science.gov (United States)

    Croaker, Andrew; King, Graham J; Pyne, John H; Anoopkumar-Dukie, Shailendra; Liu, Lei

    2016-08-27

    Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant's history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S. canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.

  20. European medicinal polypores--a modern view on traditional uses.

    Science.gov (United States)

    Grienke, Ulrike; Zöll, Margit; Peintner, Ursula; Rollinger, Judith M

    2014-07-03

    In particular five polypore species, i.e. Laetiporus sulphureus, Fomes fomentarius, Fomitopsis pinicola, Piptoporus betulinus, and Laricifomes officinalis, have been widely used in central European folk medicines for the treatment of various diseases, e.g. dysmenorrhoea, haemorrhoids, bladder disorders, pyretic diseases, treatment of coughs, cancer, and rheumatism. Prehistoric artefacts going back to over 5000 years underline the long tradition of using polypores for various applications ranging from food or tinder material to medicinal-spiritual uses as witnessed by two polypore species found among items of Ötzi, the Iceman. The present paper reviews the traditional uses, phytochemistry, and biological activity of the five mentioned polypores. All available information on the selected polypore taxa used in traditional folk medicine was collected through evaluation of literature in libraries and searches in online databases using SciFinder and Web of Knowledge. Mycochemical studies report the presence of many primary (e.g. polysaccharides) and secondary metabolites (e.g. triterpenes). Crude extracts and isolated compounds show a wide spectrum of biological properties, such as anti-inflammatory, cytotoxic, and antimicrobial activities. The investigated polypores possess a longstanding ethnomycological tradition in Europe. Here, we compile biological results which highlight their therapeutic value. Moreover, this work provides a solid base for further investigations on a molecular level, both compound- and target-wise. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  1. A summary of activities of the US/Soviet-Russian joint working group on space biology and medicine

    Science.gov (United States)

    Doarn, Charles R.; Nicogossian, Arnauld E.; Grigoriev, Anatoly I.; Tverskaya, Galina; Orlov, Oleg I.; Ilyin, Eugene A.; Souza, Kenneth A.

    2010-10-01

    The very foundation of cooperation between the United States (US) and Russia (former Soviet Union) in space exploration is a direct result of the mutual desire for scientific understanding and the creation of a collaborative mechanism—the Joint Working Group (JWG) on Space Biology and Medicine. From the dawn of the space age, it has been the quest of humankind to understand its place in the universe. While nations can and do solve problems independently, it takes nations, working together, to accomplish great things. The formation of the JWG provided an opportunity for the opening of a series of productive relationships between the superpowers, the US and the Union of Soviet Socialist Republics (USSR); and served as a justification for continued relationship for medical assistance in spaceflight, and to showcase Earth benefits from space medicine research. This relationship has been played out on an international scale with the construction and operation of the International Space Station. The fundamental reason for this successful endeavor is a direct result of the spirit and perseverance of the men and women who have worked diligently side-by-side to promote science and move our understanding of space forward. This manuscript provides a historical perspective of the JWG; how it came about; its evolution; what it accomplished; and what impact it has had and continues to have in the 21st century with regard to human spaceflight and space life sciences research. It captures the spirit of this group, which has been in continuous existence for over 40 years, and provides a never before reported summary of its activities.

  2. Collective health and family medicine

    Directory of Open Access Journals (Sweden)

    Donovan Casas Patiño

    2013-05-01

    Full Text Available In Mexico, the arrangement of clinical practice has been influenced by a decision-making process that seeks to improve health indicators, thus transforming the patient into a number. Family medicine has been practiced within the limits of an institutional biomedical model where the health-disease process is approached from a biologist perspective. On the other hand, collective health understands this process as stemming from the collective sphere and includes social and biological perspectives, giving an important standing to society. Likewise, it puts policy as a determinant in bettering social health bringing together public policy with health matters. Family medicine must become the axis around which health needs are catered to, together with social conditioning factors that affect families and individuals. This leads to a trans-disciplinary approach to communities set free from a mere biomedical profile. In this context, collective health provides theoretical support to the upcoming debate on family medicine.

  3. Biological radiation effects

    International Nuclear Information System (INIS)

    Kiefer, J.

    1989-01-01

    The book covers all aspects of biological radiation effects. The physical basis is dealt with in some detail, and the effects at the subcellular and the cellular level are discussed, taking into account modern developments and techniques. The effects on the human organism are reviewed, both from the point of view of applications in medicine as well as with regard to radiation hazards (teratogenic, gonadal and carcinogenic effects)

  4. Nuclear Medicine Engineering

    International Nuclear Information System (INIS)

    Mateescu, Gheorghe; Craciunescu, Teddy

    2000-01-01

    'An image is more valuable than a thousand words' - this is the thought that underlies the authors' vision about the field of nuclear medicine. The monograph starts with a review of some theoretical and engineering notions that grounds the field of nuclear medicine: nuclear radiation, interaction of radiation with matter, radiation detection and measurement, numerical analysis. Products and methods needed for the implementation of diagnostic and research procedures in nuclear medicine are presented: radioisotopes and radiopharmaceuticals, equipment for in-vitro (radioimmunoassay, liquid scintillation counting) and in-vivo investigations (thyroid uptake, renography, dynamic studies, imaging). A special attention is focused on medical imaging theory and practice as a source of clinical information (morphological and functional). The large variety of parameters, components, biological structures and specific properties of live matter determines the practical use of three-dimensional tomographic techniques based on diverse physical principles: single-photon emission, positron emission, X-rays transmission, nuclear magnetic resonance, ultrasounds transmission and reflection, electrical impedance measurement. The fundamental reconstruction algorithms i.e., algorithms based on the projection theorem and Fourier filtering, algebraic reconstruction techniques and the algorithms based on statistical principles: maximum entropy, maximum likelihood, Monte Carlo algorithms, are depicted in details. A method based on the use of the measured point spread function is suggested. Some classical but often used techniques like linear scintigraphy and Anger gamma camera imaging are also presented together with some image enhancement techniques like Wiener filtering and blind deconvolution. The topic of the book is illustrated with some clinical samples obtained with nuclear medicine devices developed in the Nuclear Medicine Laboratory of the National Institute of Nuclear Physics and

  5. Editorial Nano structures for Medicine and Pharmaceuticals

    International Nuclear Information System (INIS)

    Xing-Jie, L.; Kumar, A.; Donglu, S.; Daxiang, C.

    2012-01-01

    The rapid developments in nano structured materials and nano technology will have profound impact in many areas of biomedical applications including delivery of drugs and biomolecules, tissue engineering, detection of bio markers, cancer diagnosis, cancer therapy, and imaging. This field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application of materials, for controlling shape and size at nanometer scale to develop highly advanced materials for biomedical application and even to design better pharmaceutical products. In recent years, novel nano structure with multi functionalities has been focused on the use of nano structures toward solving problems of biology and medicine. The main scope of this special issue is to demonstrate the latest achievement of nano technology and its application in nano medicine particularly in new approaches for drug delivery such as targeted drug delivery system, nano structure for drug storage, nano materials for tissue engineering, medical diagnosis and treatment, and generation of new kinds of materials from biological sources. Therefore, many critical issues in nano structured materials, particularly their applications in biomedicine, must be addressed before clinical applications. This special issue devotes several review and research articles encompassing various aspects of nano materials for medicine and pharmaceuticals.

  6. Research traditions and evolutionary explanations in medicine.

    Science.gov (United States)

    Méthot, Pierre-Olivier

    2011-02-01

    In this article, I argue that distinguishing 'evolutionary' from 'Darwinian' medicine will help us assess the variety of roles that evolutionary explanations can play in a number of medical contexts. Because the boundaries of evolutionary and Darwinian medicine overlap to some extent, however, they are best described as distinct 'research traditions' rather than as competing paradigms. But while evolutionary medicine does not stand out as a new scientific field of its own, Darwinian medicine is united by a number of distinctive theoretical and methodological claims. For example, evolutionary medicine and Darwinian medicine can be distinguished with respect to the styles of evolutionary explanations they employ. While the former primarily involves 'forward looking' explanations, the latter depends mostly on 'backward looking' explanations. A forward looking explanation tries to predict the effects of ongoing evolutionary processes on human health and disease in contemporary environments (e.g., hospitals). In contrast, a backward looking explanation typically applies evolutionary principles from the vantage point of humans' distant biological past in order to assess present states of health and disease. Both approaches, however, are concerned with the prevention and control of human diseases. In conclusion, I raise some concerns about the claim that 'nothing in medicine makes sense except in the light of evolution'.

  7. Applicability of the activation analysis with prompt neutron in medicine

    International Nuclear Information System (INIS)

    Yaghubian-Malhami, R.

    1975-04-01

    The concentrations of boron and cadmium in the human body are of great importance in medicine. The author determined their concentration by prompt neutron activation analysis in aqueous solutions and in urine. The results show that this technique may be used in medical diagnosis. The author discusses the qualities and the applicability of delayed and prompt neutron activation analysis in biology and medicine. (C.R.)

  8. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  9. Radiochemistry in nuclear medicine. Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Samochocka, K.

    1999-01-01

    Radionuclides and radiopharmaceuticals play a kay role in nuclear medicine, both in diagnostics and therapy. Incorporation of radionuclides into biomolecules, and syntheses of radiolabelled compounds of high biological selectivity are a task for radiochemists working in the multidisciplinary field of radiopharmaceutical chemistry. The most commonly used radionuclide, 99m Tc, owes this popularity to its both nearly ideal nuclear properties in respect to medical imaging, and availability from inexpensive radionuclide generators. Also numerous other radionuclides are widely used for medical imaging and therapy. Labelling of biomolecules with radioiodine and various positron emitters is getting increasingly important. This review describes some chemical and radiochemical problems we meet while synthesizing and using 99m Tc-radiopharmaceuticals and radioiodine-labelled biomolecules. Also represented are the recent developments in the design and use of the second generation radiopharmaceuticals based on bifunctional radiochelates. Several principal routes of fast chemical synthesis concerning incorporation of short-lived positron emitters into biomolecules are outlined as well. The search for chemical structures of high biological selectivity, which would be activated by slow neutrons, is related to the method of Neutron Capture Therapy, an interesting option in nuclear medicine. (author)

  10. Biological physics and synchrotron radiation

    International Nuclear Information System (INIS)

    Filhol, J.M.; Chavanne, J.; Weckert, E.

    2001-01-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  11. Biological physics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Filhol, J M; Chavanne, J [European Synchrotron Radiation Facility, 38 - Grenoble (France); Weckert, E [Hasylab at Desy, Hamburg (Germany); and others

    2001-07-01

    This conference deals with the applications of synchrotron radiation to current problems in biology and medicine. Seven sessions take stock on the subject: sources and detectors; inelastic scattering and dynamics; muscle diffraction; reaction mechanisms; macromolecular assemblies; medical applications; imaging and spectroscopy. The document presents the papers abstracts. (A.L.B.)

  12. XIV Mediterranean Conference on Medical and Biological Engineering and Computing

    CERN Document Server

    Christofides, Stelios; Pattichis, Constantinos

    2016-01-01

    This volume presents the proceedings of Medicon 2016, held in Paphos, Cyprus. Medicon 2016 is the XIV in the series of regional meetings of the International Federation of Medical and Biological Engineering (IFMBE) in the Mediterranean. The goal of Medicon 2016 is to provide updated information on the state of the art on Medical and Biological Engineering and Computing under the main theme “Systems Medicine for the Delivery of Better Healthcare Services”. Medical and Biological Engineering and Computing cover complementary disciplines that hold great promise for the advancement of research and development in complex medical and biological systems. Research and development in these areas are impacting the science and technology by advancing fundamental concepts in translational medicine, by helping us understand human physiology and function at multiple levels, by improving tools and techniques for the detection, prevention and treatment of disease. Medicon 2016 provides a common platform for the cross fer...

  13. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  14. Researches on regenerative medicine-current state and prospect.

    Science.gov (United States)

    Wang, Zheng-Guo; Xiao, Kai

    2012-01-01

    Since 1980s, the rapid development of tissue engineering and stem cell research has pushed regenerative medicine to a new fastigium, and regenerative medicine has become a noticeable research field in the international biology and medicine. In China, about 100 million patients need repair and regeneration treatment every year, while the number is much larger in the world. Regenerative medicine could provide effective salvation for these patients. Both Chinese Academy of Sciences and Chinese Academy of Engineering have made roadmaps of 2010-2050 and 2011-2030 for regenerative medicine. The final goal of the two roadmaps is to make China go up to leading position in most research aspects of regenerative medicine. In accord with this strategy, the government and some enterprises have invested 3-5 billion RMB (0.5-0.8 billion USD) for the research on regenerative medicine. In order to push the translation of regenerative medicine forward-from bench to bedside, a strategic alliance has been established, and it includes 27 top-level research institutes, medical institutes, colleges, universities and enterprises in the field of stem cell and regeneration medicine. Recently the journal, Science, has published a special issue-Regenerative Medicine in China, consisting of 35 papers dealing with stem cell and regeneration, tissue engineering and regeneration, trauma and regeneration and bases for tissue repair and regenerative medicine. It is predicated that a greater breakthrough in theory and practice of regenerative medicine will be achieved in the near future (20 to 30 years).

  15. Physics for students of medicine and natural sciences

    International Nuclear Information System (INIS)

    Breuer, H.

    1978-01-01

    This textbook deals with the physics subjects of interest to students of medicine and biology. The author endlavoured to explain the physical and chemical fundamentals and their interrelationships as clear as possible on the basis of didactically descriptive examples. (RW) [de

  16. Efficacy of selected complementary and alternative medicine interventions for chronic pain.

    Science.gov (United States)

    Tan, Gabriel; Craine, Michael H; Bair, Matthew J; Garcia, M Kay; Giordano, James; Jensen, Mark P; McDonald, Shelley M; Patterson, David; Sherman, Richard A; Williams, Wright; Tsao, Jennie C I

    2007-01-01

    Complementary and alternative medicine (CAM) is a group of diverse medical and healthcare systems, therapies, and products that are not presently considered part of conventional medicine. This article provides an up-to-date review of the efficacy of selected CAM modalities in the management of chronic pain. Findings are presented according to the classification system developed by the National Institutes of Health National Center for Complementary and Alternative Medicine (formerly Office of Alternative Medicine) and are grouped into four domains: biologically based medicine, energy medicine, manipulative and body-based medicine, and mind-body medicine. Homeopathy and acupuncture are discussed separately as "whole or professionalized CAM practices." Based on the guidelines of the Clinical Psychology Division of the American Psychological Association, findings indicate that some CAM modalities have a solid track record of efficacy, whereas others are promising but require additional research. The article concludes with recommendations to pain practitioners.

  17. "Reinventing Life": Introductory Biology for a Rapidly Evolving World

    Science.gov (United States)

    Coker, Jeffrey Scott

    2009-01-01

    Evolutionary concepts are essential for a scientific understanding of most issues surrounding modern medicine, agriculture, biotechnology, and the environment. If the mantra for biology education in the 20th century was, "Nothing in biology makes sense except in the light of evolution," the mantra for the 21st century must be, "Nothing in biology…

  18. Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses

    Directory of Open Access Journals (Sweden)

    Andrew Croaker

    2016-08-01

    Full Text Available Sanguinaria canadensis, also known as bloodroot, is a traditional medicine used by Native Americans to treat a diverse range of clinical conditions. The plants rhizome contains several alkaloids that individually target multiple molecular processes. These bioactive compounds, mechanistically correlate with the plant’s history of ethnobotanical use. Despite their identification over 50 years ago, the alkaloids of S. canadensis have not been developed into successful therapeutic agents. Instead, they have been associated with clinical toxicities ranging from mouthwash induced leukoplakia to cancer salve necrosis and treatment failure. This review explores the historical use of S. canadensis, the molecular actions of the benzophenanthridine and protopin alkaloids it contains, and explores natural alkaloid variation as a possible rationale for the inconsistent efficacy and toxicities encountered by S. canadensis therapies. Current veterinary and medicinal uses of the plant are studied with an assessment of obstacles to the pharmaceutical development of S. canadensis alkaloid based therapeutics.

  19. How philosophy of medicine has changed medical ethics.

    Science.gov (United States)

    Veatch, Robert M

    2006-12-01

    The celebration of thirty years of publication of The Journal of Medicine and Philosophy provides an opportunity to reflect on how medical ethics has evolved over that period. The reshaping of the field has occurred in no small part because of the impact of branches of philosophy other than ethics. These have included influences from Kantian theory of respect for persons, personal identity theory, philosophy of biology, linguistic analysis of the concepts of health and disease, personhood theory, epistemology, and political philosophy. More critically, medicine itself has begun to be reshaped. The most fundamental restructuring of medicine is currently occurring--stemming, in part, from the application of contemporary philosophy of science to the medical field. There is no journal more central to these critical events of the past three decades than The Journal of Medicine and Philosophy.

  20. Abstracts of the 10. Annual meeting of the Federation of the Experimental Biological Societies

    International Nuclear Information System (INIS)

    1995-01-01

    The meeting was about experimental biology and it was discussed topics related to medicine, pharmacology, cellular biology, biophysics, toxicology, physiology, immunology, radiobiology, photobiology, natural products and environment

  1. Biologic Treatments for Sports Injuries II Think Tank-Current Concepts, Future Research, and Barriers to Advancement, Part 1: Biologics Overview, Ligament Injury, Tendinopathy.

    Science.gov (United States)

    LaPrade, Robert F; Geeslin, Andrew G; Murray, Iain R; Musahl, Volker; Zlotnicki, Jason P; Petrigliano, Frank; Mann, Barton J

    2016-12-01

    Biologic therapies, including stem cells, platelet-rich plasma, growth factors, and other biologically active adjuncts, have recently received increased attention in the basic science and clinical literature. At the 2015 AOSSM Biologics II Think Tank held in Colorado Springs, Colorado, a group of orthopaedic surgeons, basic scientists, veterinarians, and other investigators gathered to review the state of the science for biologics and barriers to implementation of biologics for the treatment of sports medicine injuries. This series of current concepts reviews reports the summary of the scientific presentations, roundtable discussions, and recommendations from this think tank. © 2016 The Author(s).

  2. Antibacterial, antioxidant and antitumor properties of Moroccan medicinal plants: A review

    Directory of Open Access Journals (Sweden)

    Abdelhakim Bouyahya

    2017-01-01

    Full Text Available Aromatic and medicinal plants have been traditionally used since antiquity to fight against illnesses. Recently, several researches have focused on the pharmacological properties and various bioactivities of natural products are extracted from medicinal plants, including the properties of antibacterial, antitumor and antioxidant activities. The products of medicinal plants are the secondary metabolites belonging to different compound classes such as essential oils, polyphenols, flavonoids and other phytochemical classes. In Morocco, medicinal plants are the major source of bioactive compounds and the majority of them are used in phytotherapy. The biological potential of various Moroccan medicinal plants attracts a lot of interest in the literature. They include antibacterial, antioxidant and antitumor investigations. In this context, this work aims at discussing antibacterial, antitumor and antioxidant properties of Moroccan medicinal plants.

  3. Insects: an underrepresented resource for the discovery of biologically active natural products

    Directory of Open Access Journals (Sweden)

    Lauren Seabrooks

    2017-07-01

    Full Text Available Nature has been the source of life-changing and -saving medications for centuries. Aspirin, penicillin and morphine are prime examples of Nature׳s gifts to medicine. These discoveries catalyzed the field of natural product drug discovery which has mostly focused on plants. However, insects have more than twice the number of species and entomotherapy has been in practice for as long as and often in conjunction with medicinal plants and is an important alternative to modern medicine in many parts of the world. Herein, an overview of current traditional medicinal applications of insects and characterization of isolated biologically active molecules starting from approximately 2010 is presented. Insect natural products reviewed were isolated from ants, bees, wasps, beetles, cockroaches, termites, flies, true bugs, moths and more. Biological activities of these natural products from insects include antimicrobial, antifungal, antiviral, anticancer, antioxidant, anti-inflammatory and immunomodulatory effects.

  4. Review: Bioenergetic Fields and Their Biologic Effects Mechanism

    Directory of Open Access Journals (Sweden)

    Zahra Movaffaghi

    2007-04-01

    Full Text Available As interests in complementary and alternative medicine grows, the scientists are looking forward in researches which determine the mechanisms in which they exert their effectiveness. Some of these modalities like Yoga, Acupuncture, and especially other bio-field therapies such as none contact therapeutic touch, affects the bio-field which spreads throughout the body and into the space around it. According to physic’s law, when electricity flows throw the living tissues, like what happens in our heart and brain, biomagnetic fields are being induced in the surrounding space. Beside that moving charges like ions and free radicals which finally produce electromagnetic fields. Using very sensitive magnetometers, biomagnetic fields have been detected and get amplified up to 1000 times by meditation. This phenomenon could be the basis for most of most complementaty therapeutic approaches like therapeutic touch. On the other hand the electrical, magnetic and bio-magnetic fields have a well known application in conventional medicine. Modern research about bio-magnetism and magneto-biology suggests that in term of both aspects, the effects and the mechanisms for all the different looking modalities used in conventional medicine and complementary medicine which have commons in their fundamentals. This article reviews some of the recent works on biological effects of natural or artificial electromagnetic fields.

  5. Biología, medicina y eugenesia en Uruguay

    OpenAIRE

    Barrán, Juan Pedro

    1999-01-01

    In this work are analyzed the deep relationships between biology, medicine and society that were settled down in the Uruguay along the XIX century as well as the process of «medicalization» and «biologization» of the social thought that take place along the first decades of the XX century, and the role that played the eugenic ideas and defenders of eugenics in that process.

    En este trabajo se analizan las profundas relaciones entre biología, medicina y sociedad que se estab...

  6. Recent Advances of Metallocenes for Medicinal Chemistry.

    Science.gov (United States)

    Santos, Miguel M; Bastos, Pedro; Catela, Isabelle; Zalewska, Karolina; Branco, Luis C

    2017-01-01

    The recent advances for the synthesis and application of different metallocenes for Medicinal Chemistry is reviewed. This manuscript presents the different metallocene scaffolds, with special emphasis on ferrocene derivatives, and their potential pharmaceutical application. Over the last years, the synthesis of new metallocene compounds and their biological and medicinal effects against some types of diseases (e.g. anti-tumoral, antibiotics, anti-viral) have been reported. From the medicinal point of view, the attractive properties of metallocene derivatives, such as their high stability, low toxicity and appealing redox behaviors are particularly relevant. This area has attracted many researchers as well as the pharmaceutical industry due to the promising results of some metallocenes, in particular ferrocene compounds, in breast cancer and malaria. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. A CTAB Procedure Of Total Genomic DNA Extraction For Medicinal Mushrooms

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hussaini Mohd Mustafa; Muhammad Hanif Azhari Noor; Rosnani Abdul Rashid; Hasan Hamdani Hasan Mutaat; Meswan Meskom; Mat Rasol Awang

    2014-01-01

    Medicinal mushroom is defined as mushrooms used in medicine or medical research. Isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including Polymerase Chain Reaction (PCR), endonuclease restriction digestion, Southern blot analysis, and genomic library construction. The most important and prerequisite towards reliable molecular biology work is the total genomic DNA of a sample must be in good quality. Five freshly samples of medicinal mushroom were used in this work known as Auriculariapolytricha, Lentinus edode, Pleurotus sayorcaju, Sczhizopyllum commune and Ganodermalucidum. 5 mg of each sample were used to extraction the DNA, prepared in 3 replications and repeated twice. PCR based technique by using ISSR markers were used in checking the amplification ability of the total genomic extraction. A standard Doyle and Doyle protocol for genomic DNA extraction was modified in optimizing the total genomic DNA from the medicinal mushroom.The modification parameters were percentage of CTAB, incubation period and temperature. The results reveal that each sample required a certain combinations of time and period of incubation. Besides, percentage of CTAB in the buffer was found significant in giving a high yielding of extracted total genomic DNA. The extracted total genomic DNA from the medicinal mushroom yielded from 39.7 ng/ μl to 919.1 ng/ μl. The different yield among the samples found to be corresponded to polysaccharide content in the medicinal mushrooms. The objective of this works is to optimize total genomic DNA extraction of medicinal mushrooms towards a high quality intact genomic DNA for molecular activities. (author)

  8. Personalized medicine. Closing the gap between knowledge and clinical practice.

    Science.gov (United States)

    Anaya, Juan-Manuel; Duarte-Rey, Carolina; Sarmiento-Monroy, Juan C; Bardey, David; Castiblanco, John; Rojas-Villarraga, Adriana

    2016-08-01

    Personalized medicine encompasses a broad and evolving field informed by a patient distinctive information and biomarker profile. Although terminology is evolving and some semantic interpretations exist (e.g., personalized, individualized, precision), in a broad sense personalized medicine can be coined as: "To practice medicine as it once used to be in the past using the current biotechnological tools." A humanized approach to personalized medicine would offer the possibility of exploiting systems biology and its concept of P5 medicine, where predictive factors for developing a disease should be examined within populations in order to establish preventive measures on at-risk individuals, for whom healthcare should be personalized and participatory. Herein, the process of personalized medicine is presented together with the options that can be offered in health care systems with limited resources for diseases like rheumatoid arthritis and type 1 diabetes. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Advancing pig cloning technologies towards application in regenerative medicine.

    Science.gov (United States)

    Nagashima, H; Matsunari, H; Nakano, K; Watanabe, M; Umeyama, K; Nagaya, M

    2012-08-01

    Regenerative medicine is expected to make a significant contribution by development of novel therapeutic treatments for intractable diseases and for improving the quality of life of patients. Many advances in regenerative medicine, including basic and translational research, have been developed and tested in experimental animals; pigs have played an important role in various aspects of this work. The value of pigs as a model species is being enhanced by the generation of specially designed animals through cloning and genetic modifications, enabling more sophisticated research to be performed and thus accelerating the clinical application of regenerative medicine. This article reviews the significant aspects of the creation and application of cloned and genetically modified pigs in regenerative medicine research and considers the possible future directions of the technology. We also discuss the importance of reproductive biology as an interface between basic science and clinical medicine. © 2012 Blackwell Verlag GmbH.

  10. Nuclear medicine in China

    International Nuclear Information System (INIS)

    Wang, Shihchen; Liu, Xiujie

    1986-01-01

    Since China first applied isotopes to medical research in 1956, over 800 hospitals and research institutions with 4000 staff have taken up nuclear technology. So far, over 120 important biologically active materials have been measured by radioimmunoassay in China, and 44 types of RIA kit have been supplied commercially. More than 50,000 cases of hyperthyroidism have been treated satisfactorily with 131 I. Radionuclide imaging of practically all organs and systems of the human body has been performed, and adrenal imaging and nuclear cardiology have become routine clinical practice in several large hospitals. The thyroid iodine uptake test, renogram tracing and cardiac function studies with a cardiac probe are also commonly used in most Chinese hospitals. The active principles of more than 60 medicinal herbs have been labelled with isotopes in order to study the drug metabolism and mechanism of action. Through the use of labelled neurotransmitters or deoxyglucose, RIA, radioreceptor assay and autoradiography, Chinese researchers have made remarkable achievements in the study of the scientific basis of acupuncture analgesia. In 1980 the Chinese Society of Nuclear Medicine was founded, and since 1981 the Chinese Journal of Nuclear Medicine has been published. Although nuclear medicine in China has already made some progress, when compared with advanced countries, much progress is still to be made. It is hoped that international scientific exchange will be strengthened in the future. (author)

  11. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... IJBCS publishes original research papers, critical up-to-date and concise ... Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio ...

  12. [Interaction of effective ingredients from traditional Chinese medicines with intestinal microbiota].

    Science.gov (United States)

    Zu, Xian-Peng; Lin, Zhang; Xie, Hai-Sheng; Yang, Niao; Liu, Xin-Ru; Zhang, Wei-Dong

    2016-05-01

    A large number and wide varieties of microorganisms colonize in the human gastrointestinal tract. They construct an intestinal microecological system in the intestinal environment. The intestinal symbiotic flora regulates a series of life actions, including digestion and absorption of nutrient, immune response, biological antagonism, and is closely associated with the occurrence and development of many diseases. Therefore, it is greatly essential for the host's health status to maintain the equilibrium of intestinal microecological environment. After effective compositions of traditional Chinese medicines are metabolized or biotransformed by human intestinal bacteria, their metabolites can be absorbed more easily, and can even decrease or increase toxicity and then exhibit significant different biological effects. Meanwhile, traditional Chinese medicines can also regulate the composition of the intestinal flora and protect the function of intestinal mucosal barrier to restore the homeostasis of intestinal microecology. The relevant literatures in recent 15 years about the interactive relationship between traditional Chinese medicines and gut microbiota have been collected in this review, in order to study the classification of gut microflora, the relationship between intestinal dysbacteriosis and diseases, the important roles of gut microflora in intestinal bacterial metabolism in effective ingredients of traditional Chinese medicines and bioactivities, as well as the modulation effects of Chinese medicine on intestinal dysbacteriosis. In addition, it also makes a future prospect for the research strategies to study the mechanism of action of traditional Chinese medicines based on multi-omics techniques. Copyright© by the Chinese Pharmaceutical Association.

  13. The Significance of an Enhanced Concept of the Organism for Medicine

    Science.gov (United States)

    2016-01-01

    Recent developments in evolutionary biology, comparative embryology, and systems biology suggest the necessity of a conceptual shift in the way we think about organisms. It is becoming increasingly evident that molecular and genetic processes are subject to extremely refined regulation and control by the cell and the organism, so that it becomes hard to define single molecular functions or certain genes as primary causes of specific processes. Rather, the molecular level is integrated into highly regulated networks within the respective systems. This has consequences for medical research in general, especially for the basic concept of personalized medicine or precision medicine. Here an integrative systems concept is proposed that describes the organism as a multilevel, highly flexible, adaptable, and, in this sense, autonomous basis for a human individual. The hypothesis is developed that these properties of the organism, gained from scientific observation, will gradually make it necessary to rethink the conceptual framework of physiology and pathophysiology in medicine. PMID:27446221

  14. Integrative methods for analyzing big data in precision medicine.

    Science.gov (United States)

    Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša

    2016-03-01

    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Marine medicinal glycomics

    Directory of Open Access Journals (Sweden)

    Vitor Hugo Pomin

    2014-01-01

    Full Text Available Glycomics is an international initiative aimed to understand the structure and function of the glycans from a given type of cell, tissue, organism, kingdom or even environment, as found under certain conditions. Glycomics is one of the latest areas of intense biological research. Glycans of marine sources are unique in terms of structure and function. They differ considerably from those of terrestrial origin. This review discusses the most known marine glycans of potential therapeutic properties. They are chitin, chitosan, and sulfated polysaccharides named glycosaminoglycans, sulfated fucans and sulfated galactans. Their medical actions are very broad. When certain structural requirements are found, these glycans can exhibit beneficial effects in inflammation, coagulation, thrombosis, cancer growth/metastasis and vascular biology. Both structure and therapeutic mechanisms of action of these marine glycans are discussed here in straight context with the current glycomic age through a project suggestively named Marine Medicinal Glycomics.

  16. Integrated omics analysis of specialized metabolism in medicinal plants.

    Science.gov (United States)

    Rai, Amit; Saito, Kazuki; Yamazaki, Mami

    2017-05-01

    Medicinal plants are a rich source of highly diverse specialized metabolites with important pharmacological properties. Until recently, plant biologists were limited in their ability to explore the biosynthetic pathways of these metabolites, mainly due to the scarcity of plant genomics resources. However, recent advances in high-throughput large-scale analytical methods have enabled plant biologists to discover biosynthetic pathways for important plant-based medicinal metabolites. The reduced cost of generating omics datasets and the development of computational tools for their analysis and integration have led to the elucidation of biosynthetic pathways of several bioactive metabolites of plant origin. These discoveries have inspired synthetic biology approaches to develop microbial systems to produce bioactive metabolites originating from plants, an alternative sustainable source of medicinally important chemicals. Since the demand for medicinal compounds are increasing with the world's population, understanding the complete biosynthesis of specialized metabolites becomes important to identify or develop reliable sources in the future. Here, we review the contributions of major omics approaches and their integration to our understanding of the biosynthetic pathways of bioactive metabolites. We briefly discuss different approaches for integrating omics datasets to extract biologically relevant knowledge and the application of omics datasets in the construction and reconstruction of metabolic models. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  17. Translational research of optical molecular imaging for personalized medicine.

    Science.gov (United States)

    Qin, C; Ma, X; Tian, J

    2013-12-01

    In the medical imaging field, molecular imaging is a rapidly developing discipline and forms many imaging modalities, providing us effective tools to visualize, characterize, and measure molecular and cellular mechanisms in complex biological processes of living organisms, which can deepen our understanding of biology and accelerate preclinical research including cancer study and medicine discovery. Among many molecular imaging modalities, although the penetration depth of optical imaging and the approved optical probes used for clinics are limited, it has evolved considerably and has seen spectacular advances in basic biomedical research and new drug development. With the completion of human genome sequencing and the emergence of personalized medicine, the specific drug should be matched to not only the right disease but also to the right person, and optical molecular imaging should serve as a strong adjunct to develop personalized medicine by finding the optimal drug based on an individual's proteome and genome. In this process, the computational methodology and imaging system as well as the biomedical application regarding optical molecular imaging will play a crucial role. This review will focus on recent typical translational studies of optical molecular imaging for personalized medicine followed by a concise introduction. Finally, the current challenges and the future development of optical molecular imaging are given according to the understanding of the authors, and the review is then concluded.

  18. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  19. Holistic Medicine: Advances and Shortcomings

    OpenAIRE

    Shapiro, Edward

    1982-01-01

    Holistic medicine is an attitudinal approach to health care rather than a particular set of techniques. It addresses the psychological, familial, societal, ethical and spiritual as well as biological dimensions of health and illness. The holistic approach emphasizes the uniqueness of each patient, the mutuality of the doctor-patient relationship, each person's responsibility for his or her own health care and society's responsibility for the promotion of health.

  20. [Species diversity of ex-situ cultivated Chinese medicinal plants].

    Science.gov (United States)

    Que, Ling; Chi, Xiu-Lian; Zang, Chun-Xin; Zhang, Yu; Chen, Min; Yang, Guang; Jin, An-Qi

    2018-03-01

    Ex-situ conservation is an important means to protect biological genetic resources. Resource protection has received more and more attention with the continuous improvement of the comprehensive utilization of traditional Chinese medicine resources. In this paper, the research and compilation of the species list of ex-situ cultivated medicinal plants in 12 Chinese Academy of Sciences botanic gardens and 19 specialized medicinal botanic gardens in China were carried out. Based on the Species 2000(2017) and other classification databases, species diversity of medicinal plants ex-situ cultivated in these botanical gardens were analyzed. The study found that there were 16 351 higher plant species in our country, belonging to 276 families and 1 936 genera. Of these, 6 949 specieswere medicinal plants, accounting for 50.4% of the total medicinal plants. There were 1 280 medicinal plants were in threatened status, accounting for 19.6% of all threatened species in the Chinese Biodiversity Red List, with ex-situ cultivated proportion of 59.5%. And 3 988 medicinal plants were Chinese endemic species, accounting for 22.5% of all Chinese endemic species, with ex-situ cultivated proportion of 53.3%. This article has reference significance for the management and protection of medicinal plant resources. Copyright© by the Chinese Pharmaceutical Association.

  1. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources

    OpenAIRE

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-01

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additive...

  2. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    Science.gov (United States)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  3. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  4. Paul Langerhans: a prilgrim "traveling" from functional histology to marine biology.

    Science.gov (United States)

    Raica, Marius; Cimpean, Anca Maria

    2017-06-01

    The nineteenth century was the time of a real revolution in science and medicine. A lot of seminal discoveries in medicine and biology were done in this time, and many of them were coincident with the introduction of the compound microscope by Hermann van Deijl and the standard histological technique by Paul Ehrlich. The main tissue types and individual cells were characterized and originally classified more than hundred years ago, although less attention was paid to their basic functions. This was mainly due to the modality of tissue specimen processing that allowed particularly detailed descriptive studies. Even so, we can notice some attempts to correlate the structure with the function. The German scientist Paul Langerhans, well-known for the discovery of Langerhans islets of the pancreas and Langerhans cells from the epidermis, tried to change the conventional fate of morphological studies introducing in his works functional hypothesis based on traditional microscopic observations even from the beginning of his scientific career. Paul Langerhans was a complex personality of the second half of the nineteenth century, not only in medicine, but also in other fields of biology. In the present review, presented is the life and research activity of Paul Langerhans, not only because of the importance of his discoveries, but also for perspectives that were opened by these findings in unexpected fields of medicine and biology.

  5. [Key points of poverty alleviation of Chinese herbal medicine industry and classification of recommended Chinese herbal medicines].

    Science.gov (United States)

    Huang, Lu-Qi; Su, Gang-Qiang; Zhang, Xiao-Bo; Sun, Xiao-Ming; Wu, Xiao-Jun; Guo, Lan-Ping; Li, Meng; Wang, Hui; Jing, Zhi-Xian

    2017-11-01

    To build a well-off society in an all-round way, eliminate poverty, improve people's livelihood and improve the level of social and economic development in poverty-stricken areas is the frontier issues of the government and science and technology workers at all levels. Chinese herbal medicine is the strategic resource of the people's livelihood, Chinese herbal medicine cultivation is an important part of China's rural poor population income. As most of the production of Chinese herbal medicine by the biological characteristics of their own and the interaction of natural ecological environment factors, showing a strong regional character.the Ministry of Traditional Chinese Medicine and the State Council Poverty Alleviation Office and other five departments jointly issued the "China Herbal Industry Poverty Alleviation Action Plan (2017-2020)", according to local conditions of guidance and planning of Chinese herbal medicine production practice, promote Chinese herbal medicine industry poverty alleviation related work In this paper, based on the relevant data of poverty-stricken areas, this paper divides the areas with priority to the poverty alleviation conditions of Chinese herbal medicine industry, and analyzes and catalogs the list of Chinese herbal medicines grown in poverty-stricken areas at the macro level. The results show that there are at least 10% of the poor counties in the counties where the poverty-stricken counties and the concentrated areas are concentrated in the poverty-stricken areas. There is already a good base of Chinese herbal medicine industry, which is the key priority area for poverty alleviation of Chinese herbal medicine industry. Poverty-stricken counties, with a certain degree of development of Chinese medicine industry poverty alleviation conditions, the need to strengthen the relevant work to expand the foundation and capacity of Chinese herbal medicine industry poverty alleviation; 37% of poor counties to develop Chinese medicine

  6. Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry

    National Research Council Canada - National Science Library

    Wilson, Charles Owens; Beale, John Marlowe; Block, John H

    2011-01-01

    ... and chemistry students as well as practicing pharmacists. Fully updated for the Twelfth Edition, the book begins with the fundamental principles of chemistry, biochemistry, and biology that underlie the discipline of medicinal chemistry...

  7. Attenuated radon transform: theory and application in medicine and biology

    Energy Technology Data Exchange (ETDEWEB)

    Gullberg, G.T.

    1979-06-01

    A detailed analysis is given of the properties of the attenuated Radon transform and of how increases in photon attenuation influence the numerical accuracy and computation efficiency of iterative and convolution algorithms used to determine its inversion. The practical applications for this work involve quantitative assessment of the distribution of injected radiopharmaceuticals and radionuclides in man and animals for basic physiological and biochemical studies as well as clinical studies in nuclear medicine. A mathematical structure is developed using function theory and the theory of linear operators on Hilbert spaces which lends itself to better understanding the spectral properties of the attenuated Radon transform. The continuous attenuated Radon transform reduces to a matrix operator for discrete angular and lateral sampling, and the reconstruction problem reduces to a system of linear equations. For the situation of variable attenuation coefficient frequently found in nuclear medicine applications of imaging the heart and chest, the procedure developed in this thesis involves iterative techniques of performing the generalized inverse. For constant attenuation coefficient less than 0.15 cm/sup -1/, convolution methods can reliably reconstruct a 30 cm object with 0.5 cm resolution. However, for high attenuation coefficients or for the situation where there is variable attenuation such as reconstruction of distribution of isotopes in the heart, iterative techniques developed in this thesis give the best results. (ERB)

  8. Asthma pharmacogenetics and the development of genetic profiles for personalized medicine

    Directory of Open Access Journals (Sweden)

    Ortega VE

    2015-01-01

    Full Text Available Victor E Ortega, Deborah A Meyers, Eugene R Bleecker Center for Genomics and Personalized Medicine Research, Pulmonary Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA Abstract: Human genetics research will be critical to the development of genetic profiles for personalized or precision medicine in asthma. Genetic profiles will consist of gene variants that predict individual disease susceptibility and risk for progression, predict which pharmacologic therapies will result in a maximal therapeutic benefit, and predict whether a therapy will result in an adverse response and should be avoided in a given individual. Pharmacogenetic studies of the glucocorticoid, leukotriene, and β2-adrenergic receptor pathways have focused on candidate genes within these pathways and, in addition to a small number of genome-wide association studies, have identified genetic loci associated with therapeutic responsiveness. This review summarizes these pharmacogenetic discoveries and the future of genetic profiles for personalized medicine in asthma. The benefit of a personalized, tailored approach to health care delivery is needed in the development of expensive biologic drugs directed at a specific biologic pathway. Prior pharmacogenetic discoveries, in combination with additional variants identified in future studies, will form the basis for future genetic profiles for personalized tailored approaches to maximize therapeutic benefit for an individual asthmatic while minimizing the risk for adverse events. Keywords: asthma, pharmacogenetics, response heterogeneity, single nucleotide polymorphism, genome-wide association study

  9. Feasibility of sterilizing traditional Chinese medicines by gamma-irradiation

    International Nuclear Information System (INIS)

    Fang Xingwang; Wu Jilan

    1998-01-01

    The feasibility of sterilizing traditional Chinese medicines (TCMs) by γ-irradiation has been systematically evaluated by the biological, toxicological and physicochemical tests on irradiated hundreds of TCMs. Those TCMs investigated in general show no significant biological or toxicological changes after irradiation, yet physicochemical changes are detectable in some irradiated TCMs, and water in TCMs enhances the effects. Those results obtained from radiolysis of some major effective components of TCMs in aqueous or ethanolic solutions reveal that the site selection of radiolytically generated radicals follows the example of simple compounds with same function groups. Wholesomeness and chemical clearance present a bright future to sterilizing TCMs by γ irradiation, however, some important measures and steps should be adopted: (1) The producers must strictly execute manufacturing procedure to reduce microbiological contamination thus lower the applied dose for sterilization which is recommended to be controlled under 5, 7 or 10 kGy for dry herb, 7 kGy for herbal medicine and 5 kGy for some special herbal medicine; (2) Herb to be sterilized by γ-irradiation should exist in possible dry state; (3) Powder TCMs is recommended to mix with honey forming bolus, which can minimize the decomposition of herb

  10. Genus Pouteria: chemistry and biological activity

    Directory of Open Access Journals (Sweden)

    Cíntia A. M. Silva

    Full Text Available The genus Pouteria belongs to the family Sapotaceae and can be widely found around the World. These plants have been used as building material, as food, because the eatable fruits, as well as remedies in folk medicine. Some biological activities have been reported to species of this genus such as antioxidant, anti-inflammatory, antibacterial and antifungal. However, the real potential of this genus as source of new drugs or phytomedicines remains unknown. Therefore, a review of the so far known chemical composition and biological activities of this genus is presented to stimulate new studies about the species already reported moreover that species have no reference about chemistry or biological activities could be found until now.

  11. Adjuvant Biological Therapies in Chronic Leg Ulcers

    Directory of Open Access Journals (Sweden)

    Natalia Burgos-Alonso

    2017-11-01

    Full Text Available Current biological treatments for non-healing wounds aim to address the common deviations in healing mechanisms, mainly inflammation, inadequate angiogenesis and reduced synthesis of extracellular matrix. In this context, regenerative medicine strategies, i.e., platelet rich plasmas and mesenchymal stromal cell products, may form part of adjuvant interventions in an integral patient management. We synthesized the clinical experience on ulcer management using these two categories of biological adjuvants. The results of ten controlled trials that are included in this systematic review favor the use of mesenchymal stromal cell based-adjuvants for impaired wound healing, but the number and quality of studies is moderate-low and are complicated by the diversity of biological products. Regarding platelet-derived products, 18 controlled studies investigated their efficacy in chronic wounds in the lower limb, but the heterogeneity of products and protocols hinders clinically meaningful quantitative synthesis. Most patients were diabetic, emphasizing an unmet medical need in this condition. Overall, there is not sufficient evidence to inform routine care, and further clinical research is necessary to realize the full potential of adjuvant regenerative medicine strategies in the management of chronic leg ulcers.

  12. Gene mutation-based and specific therapies in precision medicine.

    Science.gov (United States)

    Wang, Xiangdong

    2016-04-01

    Precision medicine has been initiated and gains more and more attention from preclinical and clinical scientists. A number of key elements or critical parts in precision medicine have been described and emphasized to establish a systems understanding of precision medicine. The principle of precision medicine is to treat patients on the basis of genetic alterations after gene mutations are identified, although questions and challenges still remain before clinical application. Therapeutic strategies of precision medicine should be considered according to gene mutation, after biological and functional mechanisms of mutated gene expression or epigenetics, or the correspondent protein, are clearly validated. It is time to explore and develop a strategy to target and correct mutated genes by direct elimination, restoration, correction or repair of mutated sequences/genes. Nevertheless, there are still numerous challenges to integrating widespread genomic testing into individual cancer therapies and into decision making for one or another treatment. There are wide-ranging and complex issues to be solved before precision medicine becomes clinical reality. Thus, the precision medicine can be considered as an extension and part of clinical and translational medicine, a new alternative of clinical therapies and strategies, and have an important impact on disease cures and patient prognoses. © 2015 The Author. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  13. New Proposals for the Design of Integrated Online Wine Industry Dictionaries

    DEFF Research Database (Denmark)

    Leroyer, Patrick

    2013-01-01

    Abstract: The specialised lexicographic treatment of oenology and viticulture usually consists in the compiling of articles describing the language of wine in general language dictionaries, or presenting professional knowledge of wine in specialised multi-field dictionaries and encyclopedias. Thi...... dictionaries should not stand alone, as they could benefit from a full integration with the websites of the wine industry, and consequently transform into genuine lexicographic information tools.......Abstract: The specialised lexicographic treatment of oenology and viticulture usually consists in the compiling of articles describing the language of wine in general language dictionaries, or presenting professional knowledge of wine in specialised multi-field dictionaries and encyclopedias....... This treatment also encompasses the terminological compilation of single field dictionaries describing the language and/or knowledge of wine. Lexicographically speaking, all this is but a fraction of the complete picture. Indeed, the specialised lexicography of oenology and viticulture is multifaceted and goes...

  14. [Advances in researches on mechanism of anti-Toxoplasma Chinese herbal medicine].

    Science.gov (United States)

    Yu, Zhao-Yun; Zhang, Bao-de; Ning, Jun-ya; Wang, Yuan-yuan; Yuan, Wen-ying

    2015-10-01

    Toxoplasma gondii is an opportunity cellular parasite, related to the infection of various animals and human beings and severely impairing agriculture and human health. Because of the complexity of T. gondii life cycle, its different biological characteristics, and multifarious pathogenesis, there are no specific treatment and preventive medicines at present. Chinese herbal medicine can balance "yin-yang" and regulate the immunity and its side-effect is slight. Now, it has been a hot topic of the research on effective and secure medicines in anti-toxoplasmosis. This paper summarizes and analyzes the curative effect and mechanism of anti-Toxoplasma Chinese herbal medicine, such as Scutellaria baicalensis, Inontus obliquus polysaccharide, Radix glycyrrhizae, pumpkin seeds, and Semen arecae.

  15. Metabolomics and Integrative Omics for the Development of Thai Traditional Medicine

    Science.gov (United States)

    Khoomrung, Sakda; Wanichthanarak, Kwanjeera; Nookaew, Intawat; Thamsermsang, Onusa; Seubnooch, Patcharamon; Laohapand, Tawee; Akarasereenont, Pravit

    2017-01-01

    In recent years, interest in studies of traditional medicine in Asian and African countries has gradually increased due to its potential to complement modern medicine. In this review, we provide an overview of Thai traditional medicine (TTM) current development, and ongoing research activities of TTM related to metabolomics. This review will also focus on three important elements of systems biology analysis of TTM including analytical techniques, statistical approaches and bioinformatics tools for handling and analyzing untargeted metabolomics data. The main objective of this data analysis is to gain a comprehensive understanding of the system wide effects that TTM has on individuals. Furthermore, potential applications of metabolomics and systems medicine in TTM will also be discussed. PMID:28769804

  16. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  17. Space Biology in the 21st century

    Science.gov (United States)

    Halstead, Thora W.; Krauss, Robert W.

    1990-01-01

    Space Biology is poised to make significant contributions to science in the next century. A carefully crafted, but largely ground-based, program in the United States has evolved major questions that require answers through experiments in space. Science, scientists, and the new long-term spacecrafts designed by NASA will be available for the first time to mount a serious Space Biology effort. The scientific challenge is of such importance that success will provide countless benefits to biologically dependent areas such as medicine, food, and commerce in the decades ahead. The international community is rapidly expanding its role in this field. The United States should generate the resources that will allow progress in Space Biology to match the recognized progress made in aeronautics and the other space sciences.

  18. [Recent advances of synthetic biology for production of functional ingredients in Chinese materia medica].

    Science.gov (United States)

    Su, Xin-Yao; Xue, Jian-Ping; Wang, Cai-Xia

    2016-11-01

    The functional ingredients in Chinese materia medica are the main active substance for traditional Chinese medicine and most of them are secondary metabolites derivatives. Until now,the main method to obtain those functional ingredients is through direct extraction from the Chinese materia medica. However, the income is very low because of the high extraction costs and the decreased medicinal plants. Synthetic biology technology, as a new and microbial approach, can be able to carry out large-scale production of functional ingredients and greatly ease the shortage of traditional Chinese medicine ingredients. This review mainly focused on the recent advances in synthetic biology for the functional ingredients production. Copyright© by the Chinese Pharmaceutical Association.

  19. Induced pluripotent stem cells for regenerative medicine.

    Science.gov (United States)

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  20. Bioelectromagnetic and subtle energy medicine

    CERN Document Server

    Rosch, Paul J

    2014-01-01

    PREFACEPreface: Why and How This Book Was Assembled; Paul J. RoschA Tribute to W. Ross Adey: A Man for All Seasons; Paul J. RoschCHAPTERS REPRODUCED FROM THE FIRST EDITIONPreface from the First Edition; Paul J. RoschPotential Therapeutic Applications of Nonthermal Electromagnetic Fields: Ensemble Organization of Cells in Tissue as a Factor in Biological Field Sensing; W. Ross AdeyA Fundamental Basis for the Effects of EMFs in Biology and Medicine: The Interface between Matter and Function; Jacques BenvenisteSubtle Energies and Their Roles in Bioelectromagnetic Phenomena; William A. TillerElectromagnetism versus Bioelectromagnetism; William A. TillerMagneto-Metabolic Therapy for Advanced Malignancy and Cardiomyopathy; Demetrio Sodi Pallares and Paul J. RoschIs There an Electrical Circulatory System That Communicates Internally and Externally?; Paul J. Rosch and Björn E.W. NordenströmSUBTLE ENERGIES: THEORIES AND THERAPIESLife is Water Electric; Mae-Wan HoWhy Biological Water Differs from H2O and Acts Like a ...

  1. Twinflower (Linnaea borealis L. – plant species of potential medicinal properties

    Directory of Open Access Journals (Sweden)

    Thiem Barbara

    2017-09-01

    Full Text Available Twinflower (Linnaea borealis L. is a widespread circumboreal plant species belonging to Linnaeaceae family (previously Caprifoliaceae. L. borealis commonly grows in taiga and tundra. In some countries in Europe, including Poland, twinflower is protected as a glacial relict. Chemical composition of this species is not well known, however in folk medicine of Scandinavian countries, L. borealis has a long tradition as a cure for skin diseases and rheumatism. It is suggested that twinflower has potential medicinal properties. The new study on lead secondary metabolites responsible for biological activity are necessary. This short review summarizes very sparse knowledge on twinflower: its biology, distribution, conservation status, chemical constituents, and describes the role of this plant in folk tradition of Scandinavian countries.

  2. Personalized Lifestyle Medicine: Relevance for Nutrition and Lifestyle Recommendations

    Directory of Open Access Journals (Sweden)

    Deanna M. Minich

    2013-01-01

    Full Text Available Public health recommendations for lifestyle modification, including diet and physical activity, have been widely disseminated for the prevention and treatment of disease. These guidelines are intended for the overall population without significant consideration for the individual with respect to one’s genes and environment. Personalized lifestyle medicine is a newly developed term that refers to an approach to medicine in which an individual’s health metrics from point-of-care diagnostics are used to develop lifestyle medicine-oriented therapeutic strategies for improving individual health outcomes in managing chronic disease. Examples of the application of personalized lifestyle medicine to patient care include the identification of genetic variants through laboratory tests and/or functional biomarkers for the purpose of designing patient-specific prescriptions for diet, exercise, stress, and environment. Personalized lifestyle medicine can provide solutions to chronic health problems by harnessing innovative and evolving technologies based on recent discoveries in genomics, epigenetics, systems biology, life and behavioral sciences, and diagnostics and clinical medicine. A comprehensive, personalized approach to medicine is required to promote the safety of therapeutics and reduce the cost of chronic disease. Personalized lifestyle medicine may provide a novel means of addressing a patient’s health by empowering them with information they need to regain control of their health.

  3. Wilderness medicine at high altitude: recent developments in the field

    OpenAIRE

    Shah, Neeraj M; Hussain, Sidra; Cooke, Mark; O’Hara, John P; Mellor, Adrian

    2015-01-01

    Neeraj M Shah,1 Sidra Hussain,2 Mark Cooke,3 John P O’Hara,3 Adrian Mellor3,4 1Division of Asthma, Allergy and Lung Biology, King’s College London, UK; 2School of Medicine, University College London, London, UK; 3Research Institute for Sport, Physical Activity and Leisure, Leeds Beckett University, Leeds, UK; 4Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, Birmingham, UK Abstract: Travel to high altitude is increasingly p...

  4. PIXE-PIGE analysis of some Indian medicinal plants

    Science.gov (United States)

    Nomita Devi, K.; Nandakumar Sarma, H.

    2010-06-01

    The quantitative estimation of various trace element concentrations in medicinal plants is necessary for determining their effectiveness in treating various diseases and for understanding their pharmacological action. Elemental concentrations of some selected medicinal plants of north east India was measured by proton induced X-ray emission (PIXE) and proton induced γ-ray emission (PIGE) techniques. PIXE measurements were carried out using 2.4 MeV collimated protons from the 3 MV tandetron accelerator of NCCCM, Hyderabad (India) while the PIGE measurements were carried out using 3 MeV protons from the same accelerator in the same laboratory. Accuracy and precision of the techniques were assured by analyzing certified reference materials in the same experimental conditions. Various elements of biological importance in man's metabolism were found to be present in varying concentrations in the studied medicinal plants and no toxic heavy metals were detected. The concentration of the various elements in the medicinal plants and their role in treating various diseases are discussed.

  5. PIXE-PIGE analysis of some Indian medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Nomita Devi, K., E-mail: nomita_k@rediffmail.co [Department of Physics, Manipur University, Canchipur, Imphal 795003 (India); Nandakumar Sarma, H. [Department of Physics, Manipur University, Canchipur, Imphal 795003 (India)

    2010-06-15

    The quantitative estimation of various trace element concentrations in medicinal plants is necessary for determining their effectiveness in treating various diseases and for understanding their pharmacological action. Elemental concentrations of some selected medicinal plants of north east India was measured by proton induced X-ray emission (PIXE) and proton induced {gamma}-ray emission (PIGE) techniques. PIXE measurements were carried out using 2.4 MeV collimated protons from the 3 MV tandetron accelerator of NCCCM, Hyderabad (India) while the PIGE measurements were carried out using 3 MeV protons from the same accelerator in the same laboratory. Accuracy and precision of the techniques were assured by analyzing certified reference materials in the same experimental conditions. Various elements of biological importance in man's metabolism were found to be present in varying concentrations in the studied medicinal plants and no toxic heavy metals were detected. The concentration of the various elements in the medicinal plants and their role in treating various diseases are discussed.

  6. The medicinal plants of Chepan Mountain (Western Bulgaria)

    Science.gov (United States)

    Zahariev, Dimcho

    2015-12-01

    Bulgaria is one of the European countries with the greatest biodiversity, including biodiversity of medicinal plants. The object of this study is Chepan Mountain. It is located in Western Bulgaria and it is part of Balkan Mountain. On the territory of the Chepan Mountain (only 80 km2) we found 344 species of medicinal plants from 237 genera and 83 families. The floristic analysis indicates, that the most of the families and the genera are represented by a small number of inferior taxa. The hemicryptophytes dominate among the life forms with 49.71%. The biological types are represented mainly by perennial herbaceous plants (60.47%). There are 7 types of floristic elements divided in 27 groups. The largest percentage of species are of the European type (58.43%). Among the medicinal plants, there are two Balkan endemic species and 18 relic species. We described 23 species with protection statute. The anthropophytes among the medicinal plants are 220 species (63.95%).

  7. War and Medicine in a Culture of Peace. 2. Synopsis of Biological Weapons

    OpenAIRE

    Pierard, Gérald

    2001-01-01

    Biological warfare has a long history. Despite the 1972 international convention and several attempts at biological weapon eradication, some countries and non governmental groups still retain some of these agents. According to their potential use, they belong to bioterrorism or to massive destruction weapons. Any biological warfare put the civilian medical and paramedical assets at the frontline and at high risk for being rapidly contaminated. The prompt recognition of a bioterrorist attack a...

  8. Introduction to bioengineering: melding of engineering and biological sciences.

    Science.gov (United States)

    Shoureshi, Rahmat A

    2005-04-01

    Engineering has traditionally focused on the external extensions of organisms, such as transportation systems, high-rise buildings, and entertainment systems. In contrast, bioengineering is concerned with inward processes of biologic organisms. Utilization of engineering principles and techniques in the analysis and solution of problems in medicine and biology is the basis for bioengineering. This article discusses subspecialties in bioengineering and presents examples of projects in this discipline.

  9. Influence of Grape Berry Maturity on Juice and Base Wine Composition and Foaming Properties of Sparkling Wines from the Champagne Region.

    Science.gov (United States)

    Liu, Pin-He; Vrigneau, Céline; Salmon, Thomas; Hoang, Duc An; Boulet, Jean-Claude; Jégou, Sandrine; Marchal, Richard

    2018-06-06

    In sparkling wine cool-climate regions like Champagne, it is sometimes necessary to pick the healthy grape clusters that have a relatively low maturity level to avoid the deleterious effects of Botrytis cinerea . In such conditions, we know that classical oenological parameters (sugars, pH, total acidity) may change but there is little information concerning the impact of grape berry maturity on wine proteins and foaming properties. Therefore, healthy grapes (Chardonnay and Pinot meunier) in 2015 and 2016 were picked at different maturity levels within the range of common industrial maturity for potential alcohol content 8⁻11% v/v in the Champagne region. Base wine protein content and foamability, and oenological parameters in grape juice and their corresponding base wines, were investigated. The results showed that base wine protein contents (analyzed by the Bradford method and by electrophoresis) and foamability were higher when the grapes were riper. The Pearson’s correlation test found significant positive correlations ( r = 0.890⁻0.997, p < 0.05) between Chardonnay grape berry maturity degree (MD) and base wine foamability in both vintages. Strong correlations between MD and most of the oenological parameters in grape juice and base wine were also found for the two cultivars. Under the premise of guaranteed grape health, delaying harvest date is an oenological decision capable of improving base wine protein content and foamability.

  10. MIANN models in medicinal, physical and organic chemistry.

    Science.gov (United States)

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  11. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  12. Medical Critique [Krytyka Lekarska]: a journal of medicine and philosophy-1897-1907.

    Science.gov (United States)

    Löwy, I

    1990-12-01

    Medico-philosophical reflections were developed in the 19th and the 20th centuries by three consecutive generations of Polish physicians, active in what was later named the Polish School of Philosophy of Medicine. The second generation of this school published its own journal, Medical Critique [Krytika Lekarska], from 1897 to 1907. Medical Critique included numerous articles on the nature of medical knowledge, the reductionism versus holism debate in biology and medicine, the importance of teleologically-oriented approaches in medicine, the influence of theories and of a priori ideas on clinical observations and on 'clinical facts', the problem of classification of diseases, the normative and ethical dimension of medicine, and the ion relationships between philosophy, history and medicine. The existence of a journal dealing specifically with theoretical reflections on medicine undoubtedly contributed to the propagation of original work in the philosophy of medicine in Poland.

  13. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    Science.gov (United States)

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Natural Antioxidants in Foods and Medicinal Plants: Extraction, Assessment and Resources.

    Science.gov (United States)

    Xu, Dong-Ping; Li, Ya; Meng, Xiao; Zhou, Tong; Zhou, Yue; Zheng, Jie; Zhang, Jiao-Jiao; Li, Hua-Bin

    2017-01-05

    Natural antioxidants are widely distributed in food and medicinal plants. These natural antioxidants, especially polyphenols and carotenoids, exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis and anticancer. The effective extraction and proper assessment of antioxidants from food and medicinal plants are crucial to explore the potential antioxidant sources and promote the application in functional foods, pharmaceuticals and food additives. The present paper provides comprehensive information on the green extraction technologies of natural antioxidants, assessment of antioxidant activity at chemical and cellular based levels and their main resources from food and medicinal plants.

  15. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies

    CERN Document Server

    Kramar, Peter

    2016-01-01

    This volume presents the proceedings of the 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies (WC2015). The congress took place in Portorož, Slovenia, during the week of September 6th to 10th, 2015. The scientific part of the Congress covered different aspects of electroporation and related technologies and included the following main topics:   ·         Application of pulsed electric fields technology in food: challenges and opportunities ·         Electrical impedance measurement for assessment of electroporation yield ·         Electrochemistry and electroporation ·         Electroporation meets electrostimulation ·         Electrotechnologies for food and biomass treatment ·         Food and biotechnology applications ·         In vitro electroporation - basic mechanisms ·         Interfacial behaviour of lipid-assemblies, membranes and cells in electric f...

  16. Precision medicine needs pioneering clinical bioinformaticians.

    Science.gov (United States)

    Gómez-López, Gonzalo; Dopazo, Joaquín; Cigudosa, Juan C; Valencia, Alfonso; Al-Shahrour, Fátima

    2017-10-25

    Success in precision medicine depends on accessing high-quality genetic and molecular data from large, well-annotated patient cohorts that couple biological samples to comprehensive clinical data, which in conjunction can lead to effective therapies. From such a scenario emerges the need for a new professional profile, an expert bioinformatician with training in clinical areas who can make sense of multi-omics data to improve therapeutic interventions in patients, and the design of optimized basket trials. In this review, we first describe the main policies and international initiatives that focus on precision medicine. Secondly, we review the currently ongoing clinical trials in precision medicine, introducing the concept of 'precision bioinformatics', and we describe current pioneering bioinformatics efforts aimed at implementing tools and computational infrastructures for precision medicine in health institutions around the world. Thirdly, we discuss the challenges related to the clinical training of bioinformaticians, and the urgent need for computational specialists capable of assimilating medical terminologies and protocols to address real clinical questions. We also propose some skills required to carry out common tasks in clinical bioinformatics and some tips for emergent groups. Finally, we explore the future perspectives and the challenges faced by precision medicine bioinformatics. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Conserving forest biological diversity: How the Montreal Process helps achieve sustainability

    Science.gov (United States)

    Mark Nelson; Guy Robertson; Kurt. Riitters

    2015-01-01

    Forests support a variety of ecosystems, species and genes — collectively referred to as biological diversity — along with important processes that tie these all together. With the growing recognition that biological diversity contributes to human welfare in a number of important ways such as providing food, medicine and fiber (provisioning services...

  18. [Biological treatment of rare inflammatory rheumatic diseases

    DEFF Research Database (Denmark)

    Baslund, B.

    2008-01-01

    The current status of the use of biological medicine in the treatment of adult onset morbus still, Wegeners granulomatosis and systemic lupus erythematosus (SLE) is reviewed. The need for controlled trials is emphasized. Anti-CD20 treatment for SLE patients with kidney involvement and patients wi...

  19. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine☆

    Science.gov (United States)

    Zhang, Xue-Qing; Xu, Xiaoyang; Bertrand, Nicolas; Pridgen, Eric; Swami, Archana; Farokhzad, Omid C.

    2012-01-01

    The application of nanotechnology to personalized medicine provides an unprecedented opportunity to improve the treatment of many diseases. Nanomaterials offer several advantages as therapeutic and diagnostic tools due to design flexibility, small sizes, large surface-to-volume ratio, and ease of surface modification with multivalent ligands to increase avidity for target molecules. Nanomaterials can be engineered to interact with specific biological components, allowing them to benefit from the insights provided by personalized medicine techniques. To tailor these interactions, a comprehensive knowledge of how nanomaterials interact with biological systems is critical. Herein, we discuss how the interactions of nanomaterials with biological systems can guide their design for diagnostic, imaging and drug delivery purposes. A general overview of nanomaterials under investigation is provided with an emphasis on systems that have reached clinical trials. Finally, considerations for the development of personalized nanomedicines are summarized such as the potential toxicity, scientific and technical challenges in fabricating them, and regulatory and ethical issues raised by the utilization of nanomaterials. PMID:22917779

  20. Personalised medicine in 2012: editorial to the special issue of New Biotechnology on "molecular diagnostics & personalised medicine".

    Science.gov (United States)

    Desiere, Frank; Romano Spica, Vincenzo

    2012-09-15

    This special issue of New Biotechnology is focused on molecular diagnostics and personalised medicine and appears at an epochal moment in the development of the field. The practice of medicine is taking a significant and irrevocable turn towards personalisation, due to the great progress in areas such as genomics, pharmacogenomics and molecular diagnosis. It becomes increasingly apparent that to deliver the promise of personalised treatments, more and more novel medicines discovered today will be presented together with innovative companion diagnostics. The contributions to this volume touch on many disciplines, ranging from cell biology to genetics, immunology, molecular diagnostics, pharmaceutics and economic issues. The contributions of clinicians and basic scientists are synergistically presented to underline better the wide spectrum of studies that can contribute to the new field of personalised medicine. The promising perspectives of individualised treatments are related not only to higher effectiveness, but also to increased efficiency. This is relevant not only for the individual patient, but even more so for the general public, within a wider economical perspective where resources are limited and it becomes more and more mandatory to close the gap between social costs and benefits. This approach follows the steps of a stratified and individualised medicine and finds its final goal in an individualised healthcare. Copyright © 2012 Elsevier B.V. All rights reserved.