WorldWideScience

Sample records for biology molecular genetics

  1. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  2. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  3. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    J. BULLA

    2013-12-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  4. Molecular Genetics of Williams Syndrome: Windows into Human Biology

    OpenAIRE

    Julie Korenberg

    2009-01-01

    Genetics is my favorite way of thinking: Williams syndrome seen through the eyes of a geneticist. Williams syndrome (WS) is the most compelling model in which to link the basis of human emotion and behavior to their biological origins. The explanatory power of human genetics in WS rests on the recent revolution in understanding the human genome but more specifically on the ability to link genetic with behavioral variation at high resolution. WS is due to the deletion of about 25 g...

  5. Molecular biology and genetics of embryonic eyelid development.

    Science.gov (United States)

    Rubinstein, Tal J; Weber, Adam C; Traboulsi, Elias I

    2016-09-01

    The embryology of the eyelid is a complex process that includes interactions between the surface ectoderm and mesenchymal tissues. In the mouse and human, the eyelids form and fuse before birth; they open prenatally in the human and postnatally in the mouse. In the mouse, cell migration is stimulated by different growth factors such as FGF10, TGF-α, Activin B, and HB-EGF. These growth factors modulate downstream BMP4 signaling, the ERK cascade, and JNK/c-JUN. Several mechanisms, such as the Wnt/β-catenin signaling pathway, may inhibit and regulate eyelid fusion. Eyelid opening, on the other hand, is driven by the BMP/Smad signaling system. Several human genetic disorders result from dysregulation of the above molecular pathways. PMID:26863902

  6. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. PMID:26701310

  7. Genetics and Faith: Religious Enchantment through Creative Engagement with Molecular Biology

    Science.gov (United States)

    Jenkins, Kathleen E.

    2007-01-01

    In this article I develop heuristic types for understanding how the U.S. evangelical Christian subculture engages the newer science of molecular biology as it works to legitimate and enchant religious worldview: 1.) "symbolic engagement," employing genes and DNA as sacred icon; 2.) "disputatious engagement," debating genetic essentialism and…

  8. A role for molecular genetics in biological conservation.

    OpenAIRE

    O'Brien, S J

    1994-01-01

    The recognition of recent accelerated depletion of species as a consequence of human industrial development has spawned a wide interest in identifying threats to endangered species. In addition to ecological and demographic perils, it has become clear that small populations that narrowly survive demographic contraction may undergo close inbreeding, genetic drift, and loss of overall genomic variation due to allelic loss or reduction to homozygosity. I review here the consequences of such gene...

  9. Parallelizing Genetic Linkage Analysis: A Case Study for Applying Parallel Computation in Molecular Biology

    OpenAIRE

    Nadkarni, Prakash; Gelernter, Joel E.; Carriero, Nicholas; Pakstis, Andrew J.; Kidd, Kenneth K.; Miller, Perry L.

    1990-01-01

    Parallel computers offer a solution to improve the lengthy computation time of many conventional, sequential programs used in molecular biology. On a parallel computer, different pieces of the computation are performed simultaneously on different processors. LINKMAP is a sequential program widely used by scientists to perform genetic linkage analysis. We have converted LINKMAP to run on a parallel computer, using the machine-independent parallel programming language, Linda. Using the parallel...

  10. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  11. Molecular biological approach to study genetic architecture of the genus Ipomoea

    International Nuclear Information System (INIS)

    The most significant obstacles in sweet potato breeding are the self- and cross-incompatibilities. It has made cross breeding and genetic analysis very difficult, besides the problems of polyploidy. Recent development of molecular analysis techniques made some of the genetic analyses possible. In this paper, (1) the phylogenetic relations of sweet potato cultivars and their wild relatives are clarified by the use of RFLP analysis and (2) the nature of a cDNA clone specific for pollen and stigma are reported. (author). 16 refs, 7 figs, 2 tabs

  12. Genetic and molecular epidemiology

    OpenAIRE

    John P A Ioannidis

    2007-01-01

    Genetic and molecular epidemiology covers a vast area of research. Given the rapid changes in this field, discussing a research agenda is a precarious and ambitious task. A representative set of high‐priority concepts will be presented here, each of which alone could be the topic of a long series of essays. The wish list includes issues of full transparency and integration of information, dealing efficiently with complex multidimensional biology, juxtaposing the genome and environmental expos...

  13. From Molecular Biology to Biomedicine

    International Nuclear Information System (INIS)

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita Salas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  14. Molecular biology from bench-to-bedside - which colorectal cancer patients should be referred for genetic counselling and risk assessment

    DEFF Research Database (Denmark)

    Jensen, Lars Henrik; Dysager, Lars; Lindebjerg, Jan;

    2010-01-01

    validate our previously suggested clinically applicable strategy based on molecular characteristics for identifying which patients to refer for genetic counselling. The strategy was validated in an unselected cohort of 287 colorectal cancer patients. All tumours were tested for MLH1, PMS2, MSH2 and MSH6...... with hereditary cancer. It is feasible to perform a molecular screening to select patients for genetic counselling....

  15. [The research-study of pneumococci transformation in the laboratory, and the rise of bacterial genetics and molecular biology].

    Science.gov (United States)

    Carrada-Bravo, Teodoro

    2016-02-01

    The virulence of pneumococci for mice depends on the production of a polysaccharide-capsule, which encloses the bacteria and protects it against phagocytosis. Capsulated pneumococci yield smooth, brilliant colonies designated S, but mutant strains arise frequently which have lost the capacity to sinthetise the capsule, are avirulent and rough designated R. F. Griffith discovery of bacterial "transformation" in 1928, is a landmark in the history of genetics, because hereditary determinants could be transferred from one bacteria to another, and laid the foundation for the subsequent recognition of deoxyribonucleic acid (DNA) as the hereditary material. A systematic analysis of the chemical nature of the "transforming principle", by O. T. Avery and his colleagues during next 10 years, culminated in a formidable weight of evidence that it possessed all properties of DNA. In 1953, J. D. Watson and F. H. C Crick by a brilliant synthesis, fitted the chemical X-ray diffraction data together into a symmetrical double-helix structure, which possessed the inherent properties of genetic material, and carries the information necessary to direct all biochemical-cellular activities and self-replications. This paper describes de early rise and development of bacterial genetics and molecular biology. PMID:26965880

  16. Development of molecular biology techniques for the detection of genetically modified organisms in maize food products

    OpenAIRE

    Sousa, S.C.; Mafra, I; Silva, C.S. Ferreira da; Amaral, J S; Oliveira, M.B.P.P.

    2008-01-01

    In the last years, the increase in the cultivated area of genetically modified (GM) maize has become a reality. GA21, MON810 and MON 863 maize crops are some of the authorized maize events for food and feed under the European Union (EU) regulations. These crops of transgenic maize bring profit towards the conventional ones, as they confer resistence to some plagues and/or herbices. Concerning the raise of production and consumption of foodstuffs derived from genetically modified organisms (GM...

  17. Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    International Nuclear Information System (INIS)

    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention

  18. Molecular genetics, physiology and biology of self-incompatibility in Brassicaceae

    OpenAIRE

    Watanabe, Masao; Suwabe, Keita; Suzuki, Go

    2012-01-01

    Self-incompatibility (SI) is defined as the inability to produce zygotes after self-pollination in a fertile hermaphrodite plant, which has stamens and pistils in the same flower. This structural organization of the hermaphrodite flower increases the risk of self-pollination, leading to low genetic diversity. To avoid this problem plants have established several pollination systems, among which the most elegant system is surely SI. The SI trait can be observed in Brassica crops, including cab...

  19. Ontologies for molecular biology.

    Science.gov (United States)

    Schulze-Kremer, S

    1998-01-01

    Molecular biology has a communication problem. There are many databases using their own labels and categories for storing data objects and some using identical labels and categories but with a different meaning. A prominent example is the concept "gene" which is used with different semantics by major international genomic databases. Ontologies are one means to provide a semantic repository to systematically order relevant concepts in molecular biology and to bridge the different notions in various databases by explicitly specifying the meaning of and relation between the fundamental concepts in an application domain. Here, the upper level and a database branch of a prospective ontology for molecular biology (OMB) is presented and compared to other ontologies with respect to suitability for molecular biology (http:/(/)igd.rz-berlin.mpg.de/approximately www/oe/mbo.html). PMID:9697223

  20. The system-biological GLOBE 3D Genome Platform. : A new holistic genome viewer for molecular genetics

    NARCIS (Netherlands)

    M. Lesnussa (Michael); F.N. Kepper (Nick); H.J.F.M.M. Eussen (Bert); T.A. Knoch (Tobias)

    2009-01-01

    textabstractGenomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the

  1. Glycobiology Current Molecular Biology

    OpenAIRE

    Sabire KARAÇALI

    2003-01-01

    Carbohydrate chemistry evolved into carbohydrate biochemistry and gradually into the biology of carbohydrates, or glycobiology, at the end of the last century. Glycobiology is the new research area of modern molecular biology, and it investigates the structure, biosynthesis and biological functions of glycans. The numbers, linkage types (a or b), positions, binding points and functional group differences of monosaccharides create microheterogeneity. Thus, numerous glycoforms with precise stru...

  2. Research Status of Molecular Biology in Flax

    Institute of Scientific and Technical Information of China (English)

    Wu Jian-zhong

    2016-01-01

    Flax is a kind of worldwide fiber and oil crops, and it has a very important role in economic crop production in the world. With the development of molecular biology techniques, the research of flax molecular level has a very big breakthrough. But, flax molecular biology researches are less reported due to the later starting. This paper summarized the latest research progress of molecular biology of flax, including molecular marker technology, construction of genetic map, gene engineering and omics researches, in order to provide the reference to understand the development and research status for flax molecular breeding researchers.

  3. Primer on molecular genetics

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  4. A Molecular Biology Database Digest

    OpenAIRE

    Bry, François; Kröger, Peer

    2000-01-01

    Computational Biology or Bioinformatics has been defined as the application of mathematical and Computer Science methods to solving problems in Molecular Biology that require large scale data, computation, and analysis [18]. As expected, Molecular Biology databases play an essential role in Computational Biology research and development. This paper introduces into current Molecular Biology databases, stressing data modeling, data acquisition, data retrieval, and the integration...

  5. Molecular biology: Self-sustaining chemistry

    OpenAIRE

    Wrede Paul

    2007-01-01

    Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are qu...

  6. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  7. Molecular genetics of Thiobacillus ferrooxidans.

    Science.gov (United States)

    Rawlings, D E; Kusano, T

    1994-03-01

    Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms. PMID:8177170

  8. The Molecular Era of Surfactant Biology

    OpenAIRE

    Jeffrey A Whitsett

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  9. Molecular genetics of ependymoma

    Institute of Scientific and Technical Information of China (English)

    Yuan Yao; Stephen C.Mack; Michael D.Taylor

    2011-01-01

    Brain tumors are the leading cause of cancer death in children,with ependymoma being the third most common and posing a significant clinical burden.Its mechanism of pathogenesis,reliable prognostic indicators,and effective treatments other than surgical resection have all remained elusive.Until recently,cytogenetic techniques,and lack of cell lines and animal models.Ependymoma heterogeneity,which manifests as variations in tumor location,patient age,histological grade,and clinical behavior,together with the observation of a balanced genomic profile in up to 50% of cases,presents additional challenges in understanding the development and progression of this disease.Despite these difficulties,we have made significant headway in the past decade in identifying the genetic alterations and pathways involved in ependymoma tumorigenesis through collaborative efforts and the application of microarray-based genetic (copy number) and transcriptome profiling platforms.Genetic characterization of ependymoma unraveled distinct mRNA-defined subclasses and led to the identification of radial glial cells as its cell type of origin.This review summarizes our current knowledge in the molecular genetics of ependymoma and proposesfuture research directions necessary to further advance this field.

  10. Genetics and developmental biology

    International Nuclear Information System (INIS)

    Progress is reported on research activities in the fields of mutagenesis in Haemophilus influenzae and Escherichia coli; radioinduced chromosomal aberrations in mammalian germ cells; effects of uv radiation on xeroderma pigmentosum skin cells; mutations in Chinese hamster ovary cells; radioinduced hemoglobin variants in the mouse; analysis of mutants in yeast; Drosophila genetics; biochemical genetics of Neurospora; DNA polymerase activity in Xenopus laevis oocytes; uv-induced damage in Bacillus subtilis; and others

  11. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  12. BACTERIOPHAGE: BIOLOGY AND GENETICS

    Science.gov (United States)

    Bacteriophage are viruses that infect bacteria. Bacteriophage are very small and made up of a protein coat with an inner core containing their genetic material. They infect bacterium, by attaching to the bacterial cell and injecting their nucleic acids into the bacteria. The phages then use the bac...

  13. Molecular genetics made simple

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2012-07-01

    Full Text Available Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients.

  14. Bilingual teaching of molecular biology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Recently bilingual teaching in China's universities has been widely carried out and become a popular subject for study. In this paper, the reasons for bilingual teaching of molecular biology are pointed out, the textbook of molecular biology and teaching method in bilingual teaching classes are determined after investigation and the practice of bilingually teaching molecular biology use both English and Chinese in a class. The effect has proved good. The bilingual teaching methods, the problem of bilingual teaching, the importance of understanding its significance and the possibilities of improving such teaching of the subject are also discussed.

  15. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  16. Molecular biology of Mycoplasma

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Jensen, Lise T.; Boesen, Thomas;

    1997-01-01

    Mycoplasmas are the smallest free living microorganisms with the smallest genome. The G+C content is in general low (25-33%) and the coding capacity is about 600 proteins. Mycoplasma species are phylogenetically related, they use the genetic codon UGA for tryptophan, and show rapid evolution, wit...

  17. Informing a Learning Progression in Genetics: Which Should Be Taught First, Mendelian Inheritance or the Central Dogma of Molecular Biology?

    Science.gov (United States)

    Duncan, Ravit Golan; Castro-Faix, Moraima; Choi, Jinnie

    2016-01-01

    The Framework for Science Education and the Next Generation Science Standards in the USA emphasize learning progressions (LPs) that support conceptual coherence and the gradual building of knowledge over time. In the domain of genetics there are two independently developed alternative LPs. In essence, the difference between the two progressions…

  18. Molecular Biology of Medulloblastoma

    OpenAIRE

    J Gordon Millichap

    2007-01-01

    Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  19. Molecular biology of hearing [

    Directory of Open Access Journals (Sweden)

    Diensthuber, Marc

    2012-04-01

    Full Text Available [english] The inner ear is our most sensitive sensory organ and can be subdivided into three functional units: organ of Corti, stria vascularis and spiral ganglion. The appropriate stimulus for the organ of hearing is sound, which travels through the external auditory canal to the middle ear where it is transmitted to the inner ear. The inner ear houses the hair cells, the sensory cells of hearing. The inner hair cells are capable of mechanotransduction, the transformation of mechanical force into an electrical signal, which is the basic principle of hearing. The stria vascularis generates the endocochlear potential and maintains the ionic homeostasis of the endolymph. The dendrites of the spiral ganglion form synaptic contacts with the hair cells. The spiral ganglion is composed of neurons that transmit the electrical signals from the cochlea to the central nervous system. In recent years there has been significant progress in research on the molecular basis of hearing. An increasing number of genes and proteins related to hearing are being identified and characterized. The growing knowledge of these genes contributes not only to greater appreciation of the mechanism of hearing but also to a deeper understanding of the molecular basis of hereditary hearing loss. This basic research is a prerequisite for the development of molecular diagnostics and novel therapies for hearing loss.

  20. Molecular Genetics in Glaucoma

    OpenAIRE

    Liu, Yutao; Allingham, R. Rand

    2011-01-01

    Glaucoma is a family of diseases whose pathology is defined by the progressive loss of retinal ganglion cells. Clinically, glaucoma presents as a distinctive optic neuropathy with associated visual field loss. Primary open-angle glaucoma (POAG), chronic angle closure glaucoma (ACG), and exfoliation glaucoma (XFG) are the most prevalent forms of glaucoma globally and are the most common causes of glaucoma-related blindness worldwide. A host of genetic and environmental factors contribute to gl...

  1. [Knowledgebases in postgenomic molecular biology].

    Science.gov (United States)

    Lisitsa, A V; Shilov, B V; Evdokimov, P A; Gusev, S A

    2010-01-01

    Knowledgebases can become an effective tool essentially raising quality of information retrieval in molecular biology, promoting the development of new methods of education and forecasting of the biomedical R&D. Knowledge-based technologies should induce "paradigm shift" in the life science due to integrative focusing of research groups towards the challenges of postgenomic era. This paper debates concept of the knowledgebase, which exploits web usage mining to personalize the access of molecular biologist to the Internet resources. PMID:21328913

  2. Genetics of asthma: a molecular biologist perspective

    Directory of Open Access Journals (Sweden)

    Ghosh Balaram

    2009-05-01

    Full Text Available Abstract Asthma belongs to the category of classical allergic diseases which generally arise due to IgE mediated hypersensitivity to environmental triggers. Since its prevalence is very high in developed or urbanized societies it is also referred to as "disease of civilizations". Due to its increased prevalence among related individuals, it was understood quite long back that it is a genetic disorder. Well designed epidemiological studies reinforced these views. The advent of modern biological technology saw further refinements in our understanding of genetics of asthma and led to the realization that asthma is not a disorder with simple Mendelian mode of inheritance but a multifactorial disorder of the airways brought about by complex interaction between genetic and environmental factors. Current asthma research has witnessed evidences that are compelling researchers to redefine asthma altogether. Although no consensus exists among workers regarding its definition, it seems obvious that several pathologies, all affecting the airways, have been clubbed into one common category called asthma. Needless to say, genetic studies have led from the front in bringing about these transformations. Genomics, molecular biology, immunology and other interrelated disciplines have unearthed data that has changed the way we think about asthma now. In this review, we center our discussions on genetic basis of asthma; the molecular mechanisms involved in its pathogenesis. Taking cue from the existing data we would briefly ponder over the future directions that should improve our understanding of asthma pathogenesis.

  3. Department of Molecular Biology

    International Nuclear Information System (INIS)

    Full text. The majority of our studies are centered on (i) mechanisms of mutagenesis and DNA repair (including MFD) in Escherichia coli, M13, and lambda phages; (ii) inhibitory and miscoding properties of modified bases in DNA; (iii) synthesis and properties of pyrimidine nucleosides and nucleotide analogues with potential anti-tumor, anti-virus and anti-parasite activities, including their conformation and substrate/inhibitor properties in some enzyme systems of relevance to chemotherapy; (iv) molecular mechanisms of PUVA (psoralen + UVA) treatment in psoriasis photo-chemotherapy in particular its action on cell membrane; (v) specificity and methods for assays of N-alkyl-purine DNA glycosylase. The spectrum of mutagens tested includes: MMS, DMS, ultraviolet or halogen light and hydroxyl radicals. The enzymes and repair systems investigated include: DNA polymerases and the proofreading activity of DNA pol III, UvrABC-endonuclease, mismatch repair system, and methyl DNA glycosylases. Much attention is focussed on the role of UmuDC proteins in mutagenesis (dependent and independent on DNA replication) and DNA repair, and on the effect of the Tn10 transposon on the survival and mutation frequency of halogen light irradiated bacteria. A new class of nucleosides containing C(2)-hydroxymethyl-ribose (hamamelose) was synthesized, and it was found that uracil and 5-fluorouracil derivatives show a significant antitumor activity. It was found that 2CDA (2-deoxy-2-chloro-adenosine) an anti-lymphoid drug does not induce mutations, when incorporated into DNA, but significantly inhibits DNA replication. In studies with oxidized M13 DNA it was found that Fapy- (formamidopyrimidine)-residues in DNA selectively inhibits DNA synthesis, and the effect depends on the neighboring sequences and the DNA polymerase tested. Highly unstable derivatives of lecithin-psoralen adducts were characterized and their role in PUVA photochemotherapy is being studied. (author)

  4. Molecular Imaging in Genetic Medicine

    Science.gov (United States)

    Jacob, Ayden; Van Gestel, Frederick; Yaghoubi, Shahriar

    2016-01-01

    The field of biomedical imaging has made significant advances in recent times. This includes extremely high-resolution anatomic imaging and functional imaging of physiologic and pathologic processes as well as novel modalities in optical imaging to evaluate molecular features within the cellular environment. The latter has made it possible to image phenotypic markers of various genotypes that are implicated in human development, behavior, and disease. This article discusses the role of molecular imaging in genetic and precision medicine. 

  5. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank;

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches...

  6. Evolving Molecular Genetics of Glioblastoma

    Institute of Scientific and Technical Information of China (English)

    Qiu-Ju Li; Jin-Quan Cai; Cheng-Yin Liu

    2016-01-01

    Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease.Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords "molecular", "genetics", "GBM", "isocitrate dehydrogenase", "telomerase reverse transcriptase", "epidermal growth factor receptor", "PTPRZ1-MET", and "clinical treatment".Study Selection: Articles regarding the morphological pathology of GBM, the epidemiology of GBM, genetic alteration of GBM, and the development of treatment for GBM patients were identified, retrieved, and reviewed.Results: There is a large amount of data supporting the view that these recurrent genetic aberrations occur in a specific context of cellular origin, co-oncogenic hits and are present in distinct patient populations.Primary and secondary GBMs are distinct disease entities that affect different age groups of patients and develop through distinct genetic aberrations.These differences are important, especially because they may affect sensitivity to radio-and chemo-therapy and should thus be considered in the identification of targets for novel therapeutic approaches.Conclusion: This review highlights the molecular and genetic alterations of GBM, indicating that they are of potential value in the diagnosis and treatment for patients with GBM.

  7. Molecular genetics of colorectal cancer.

    Science.gov (United States)

    Bogaert, Julie; Prenen, Hans

    2014-01-01

    Approximately 90% of colorectal cancer cases are sporadic without family history or genetic predisposition, while in less than 10% a causative genetic event has been identified. Historically, colorectal cancer classification was only based on clinical and pathological features. Many efforts have been made to discover the genetic and molecular features of colorectal cancer, and there is more and more evidence that these features determine the prognosis and response to (targeted) treatment. Colorectal cancer is a heterogeneous disease, with three known major molecular groups. The most common is the chromosomal instable group, characterized by an accumulation of mutations in specific oncogenes and tumor suppressor genes. The second is the microsatellite instable group, caused by dysfunction of DNA mismatch repair genes leading to genetic hypermutability. The CpG Island Methylation phenotype is the third group, distinguished by hypermethylation. Colorectal cancer subtyping has also been addressed using genome-wide gene expression profiling in large patient cohorts and recently several molecular classification systems have been proposed. In this review we would like to provide an up-to-date overview of the genetic aspects of colorectal cancer. PMID:24714764

  8. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  9. Genetic and molecular changes in ovarian cancer

    Science.gov (United States)

    Hollis, Robert L; Gourley, Charlie

    2016-01-01

    Epithelial ovarian cancer represents the most lethal gynecological malignancy in the developed world, and can be divided into five main histological subtypes: high grade serous, endometrioid, clear cell, mucinous and low grade serous. These subtypes represent distinct disease entities, both clinically and at the molecular level. Molecular analysis has revealed significant genetic heterogeneity in ovarian cancer, particularly within the high grade serous subtype. As such, this subtype has been the focus of much research effort to date, revealing molecular subgroups at both the genomic and transcriptomic level that have clinical implications. However, stratification of ovarian cancer patients based on the underlying biology of their disease remains in its infancy. Here, we summarize the molecular changes that characterize the five main ovarian cancer subtypes, highlight potential opportunities for targeted therapeutic intervention and outline priorities for future research.

  10. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A; Muller, W.E.G.

    that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding...

  11. Molecular genetics at the Fort Collins Science Center

    Science.gov (United States)

    Oyler-McCance, S.J.; Stevens, P.D.

    2011-01-01

    The Fort Collins Science Center operates a molecular genetic and systematics research facility (FORT Molecular Ecology Laboratory) that uses molecular genetic tools to provide genetic information needed to inform natural resource management decisions. For many wildlife species, the data generated have become increasingly important in the development of their long-term management strategies, leading to a better understanding of species diversity, population dynamics and ecology, and future conservation and management needs. The Molecular Ecology Lab serves Federal research and resource management agencies by developing scientifically rigorous research programs using nuclear, mitochondrial and chloroplast DNA to help address many of today's conservation biology and natural resource management issues.

  12. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the hallmarks of lung cancer. Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  13. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  14. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  15. The molecular biology of ear development - “Twenty years are nothing”#

    OpenAIRE

    Giraldez, Fernando; FRITZSCH, BERND

    2007-01-01

    Views of classical biological problems changed dramatically with the rise of molecular biology as a common framework. It was indeed the new language of life sciences. Molecular biology increasingly moved us towards a unified view of developmental genetics as ideas and techniques were imported to vertebrates from other biological systems where genetics was in a more advanced state. The ultimate advance has been the ability to actually perform genetic manipulations in vertebrate organisms that ...

  16. Molecular genetic studies on obligate anaerobic bacteria

    International Nuclear Information System (INIS)

    Molecular genetic studies on obligate anaerobic bacteria have lagged behind similar studies in aerobes. However, the current interest in biotechnology, the involvement of anaerobes in disease and the emergence of antibioticresistant strains have focused attention on the genetics of anaerobes. This article reviews molecular genetic studies in Bacteroides spp., Clostridium spp. and methanogens. Certain genetic systems in some anaerobes differ from those in aerobes and illustrate the genetic diversity among bacteria

  17. Molecular biology of pancreatic cancer

    Institute of Scientific and Technical Information of China (English)

    Miroslav Zavoral; Petra Minarikova; Filip Zavada; Cyril Salek; Marek Minarik

    2011-01-01

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  18. The molecular biology of ilarviruses.

    Science.gov (United States)

    Pallas, Vicente; Aparicio, Frederic; Herranz, Mari C; Sanchez-Navarro, Jesus A; Scott, Simon W

    2013-01-01

    Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses. PMID:23809923

  19. Molecular biological research on Foraminifera

    Institute of Scientific and Technical Information of China (English)

    LI Baohua; Kemal Topac ERTAN; Christoph HEMLEBEN

    2005-01-01

    As one of the most important groups in micropaleontology, Foraminifera is traditionally described to have a membranous, agglutinated or carbonate shell according to its morphology, which resembles the marine granuloreticuloseans. However, recent molecular analyses on its ribosomal RNA gene have disclosed the existence of the naked, and also freshwater and terrestrial species.Foraminiferal SSU rDNA sequence suggests that this group is positioned at the base of the Eukaryotes phylogenetic trees, between Euglenoida and Diplomonadida. Existence of a large amount of genetic types in planktonic foraminifera suggests an underestimation of the biodiversity for the nearly 50 species in world oceans and their close relationship with the ocean environment, such as bio-geographic distribution and water currents. This provides a more reliable proxy for future paleoenvironmental study.

  20. Distribution and localization of microsatellites in the Perigord black truffle genome and identification of new molecular markers (2010) Fungal Genetics and Biology

    Energy Technology Data Exchange (ETDEWEB)

    Murat, Claude [INRA, Nancy, France; Riccioni, C [INRA, Nancy, France; Belfiori, B [INRA, Nancy, France; Cichocki, N [INRA, Nancy, France; Labbe, Jessy L [ORNL; Morin, Emmanuelle [INRA, Nancy, France; Tisserant, Emilie [INRA, Nancy, France; Paolocci, F [INRA, Nancy, France; Rubini, A [INRA, Nancy, France; Martin, Francis [INRA, Nancy, France

    2011-01-01

    The level of genetic diversity and genetic structure in the Perigord black truffle (Tuber melanosporum Vittad.) has been debated for several years, mainly due to the lack of appropriate genetic markers. Microsatellites or simple sequence repeats (SSRs) are important for the genome organisation, phenotypic diversity and are one of the most popular molecular markers. In this study, we surveyed the T. melanosporum genome (1) to characterise its SSR pattern; (2) to compare it with SSR patterns found in 48 other fungal and three oomycetes genomes and (3) to identify new polymorphic SSR markers for population genetics. The T. melanosporum genome is rich in SSRs with 22,425 SSRs with mono-nucleotides being the most frequent motifs. SSRs were found in all genomic regions although they are more frequent in non-coding regions (introns and intergenic regions). Sixty out of 135 PCR-amplified mono-, di-, tri-, tetra, penta, and hexanucleotides were polymorphic (44%) within black truffle populations and 27 were randomly selected and analysed on 139 T. melanosporum isolates from France, Italy and Spain. The number of alleles varied from 2 to 18 and the expected heterozygosity from 0.124 to 0.815. One hundred and thirty-two different multilocus genotypes out of the 139 T. melanosporum isolates were identified and the genotypic diversity was high (0.999). Polymorphic SSRs were found in UTR regulatory regions of fruiting bodies and ectomycorrhiza regulated genes, suggesting that they may play a role in phenotypic variation. In conclusion, SSRs developed in this study were highly polymorphic and our results showed that T. melanosporum is a species with an important genetic diversity, which is in agreement with its recently uncovered heterothallic mating system.

  1. From Molecular Biology to Biomedicine; De la Biologia Molecular a la Biomedicina

    Energy Technology Data Exchange (ETDEWEB)

    Salas, M.

    2009-07-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita S alas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  2. Predicting genetics achievement in nonmajors college biology

    Science.gov (United States)

    Mitchell, Angela; Lawson, Anton E.

    Students enrolled in a non-majors college biology course were pretested to determine their level of intellectual development, degree of field independence, mental capacity, amount of prior genetics knowledge, and amount of fluid intelligence. They were then taught a unit on Mendelian genetics. The only student variables found to not account for a significant amount of variance on a test of reading comprehension and/or a test of genetics achievement was amount of prior genetics knowledge. Developmental level was found to be the most consistent predictor of performance, suggesting that a lack of general hypothetico-deductive reasoning ability is a major factor limiting achievement among these students.

  3. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2012 - 31 January 2013

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Urbánková, Soňa; Vyskočilová, M.

    2013-01-01

    Roč. 13, č. 3 (2013), s. 546-549. ISSN 1755-098X Institutional support: RVO:68081766 Keywords : genetic database * microsatellite marker loci Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013

  4. Molecular genetic medicine. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, T. (ed.)

    1992-01-01

    Theodore Friedmann has put together an interesting spectrum of articles for volume 2 of Molecular Genetic Medicine. Perhaps related to his own interest in the X chromosome, three articles deal with X-chromosomal topics, while two deal with autosomal disorders and two treat viral disorders. The fragile-X syndrome is thoroughly covered by Brown and Jenkins with an article that is heavily weighted to clinical aspects and now out-of-date RFLP approaches. The timeliness of the volume is insured by the coverage (albeit brief) that they give to the cloning of FMR-1. Gartler et al. present a balanced review of X inactivation - the oft-surveyed subject was comprehensively covered in a manner that provided new perspectives. Lambert et al. provide an exhaustive review of natural and induced mutation of hypoxanthine phosphoribosyltransferase. For autosomal disorders, an excellent review of the molecular genetics of hemoglobin syntheses and their alterations in disease is provided by Berg and Schecter. The level of detail presented seemed just right to this reviewer. A concise review of recent advances in the study of Down syndrome and its animal model, trisomy 16 mice, is provided by Holtzman and Epstein. With regard to viral topics, Chisari thoughtfully reviews hepatitis B virus structure and function and the possible pathogenic mechanisms involved in its induction of hepatocellular carcinoma. Wong-Staal and Haseltine's up-to-date review of the increasingly complex regulatory genes of HIV is marred by a mix-up in figure legends - an exception to an otherwise well-proofread book. In summary, this is a good volume of its type and is recommended for those who might benefit from reading such review articles.

  5. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  6. Arterivirus molecular biology and pathogenesis.

    Science.gov (United States)

    Snijder, Eric J; Kikkert, Marjolein; Fang, Ying

    2013-10-01

    Arteriviruses are positive-stranded RNA viruses that infect mammals. They can cause persistent or asymptomatic infections, but also acute disease associated with a respiratory syndrome, abortion or lethal haemorrhagic fever. During the past two decades, porcine reproductive and respiratory syndrome virus (PRRSV) and, to a lesser extent, equine arteritis virus (EAV) have attracted attention as veterinary pathogens with significant economic impact. Particularly noteworthy were the 'porcine high fever disease' outbreaks in South-East Asia and the emergence of new virulent PRRSV strains in the USA. Recently, the family was expanded with several previously unknown arteriviruses isolated from different African monkey species. At the molecular level, arteriviruses share an intriguing but distant evolutionary relationship with coronaviruses and other members of the order Nidovirales. Nevertheless, several of their characteristics are unique, including virion composition and structure, and the conservation of only a subset of the replicase domains encountered in nidoviruses with larger genomes. During the past 15 years, the advent of reverse genetics systems for EAV and PRRSV has changed and accelerated the structure-function analysis of arterivirus RNA and protein sequences. These systems now also facilitate studies into host immune responses and arterivirus immune evasion and pathogenesis. In this review, we have summarized recent advances in the areas of arterivirus genome expression, RNA and protein functions, virion architecture, virus-host interactions, immunity, and pathogenesis. We have also briefly reviewed the impact of these advances on disease management, the engineering of novel candidate live vaccines and the diagnosis of arterivirus infection. PMID:23939974

  7. Molecular cytogenetic mapping as a tool to characterize genetic diversity and induced mutants in banana

    Czech Academy of Sciences Publication Activity Database

    Doležel, Jaroslav; Hřibová, Eva; Šimková, Hana; Doleželová, Marie

    2006, Pp.27-Pp.28. [First Research Co-ordination Meeting of FAO /IAEA Co-ordinated Research Project. Vienna (AT), 11.07.2006-15.07.2006] Keywords : banana * molecular cytogenetics * FISH Subject RIV: EB - Genetics ; Molecular Biology

  8. Molecular Biology of Esophageal Cancer

    Institute of Scientific and Technical Information of China (English)

    HuanXi; JanBrabender; RalfMetzger; PaulM.Schneider

    2004-01-01

    There have been many new developments in our understanding of esophageal carcinoma biology over the past several years. Information regarding both of the major forms of this disease, adenocarcinoma and squamous cell carcinoma, has accumulated in conjunction with data on precursor conditions such as Barrett's esophagus. Interesting and promising findings have included overexpression of proto-oncogenes,loss of heterozygosity at multiple chromosomal loci, tumor suppressor gene inactivation, epigenetic silencing by DNA methylation, and mutations and deletions involving the tumor suppressor gene p53. Important cancer pathways, the cyclin kinase inhibitor cascade and the DNA mismatch repair process, implicated in the genesis of multiple tumor types have also been inculpated in esophageal carcinogenesis. Alterations in the p16 and p15 cyclin kinase inhibitors including point mutations and homozygous deletions have been reported in primary esophageal tumors. Further developments in the field of molecular carcinogenesis of esophageal malignancies promise to yield improvements in prevention, early detection, prognostic categorization, and perhaps gene-based therapy of this deadly disease.

  9. (-)-Menthol biosynthesis and molecular genetics

    Science.gov (United States)

    Croteau, Rodney B.; Davis, Edward M.; Ringer, Kerry L.; Wildung, Mark R.

    2005-12-01

    (-)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint ( Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (-)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (-)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (-)-(4 S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation-conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (-)-(1 R, 3 R, 4 S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

  10. Workshop on molecular methods for genetic diagnosis. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Rinchik, E.M.

    1997-07-01

    The Sarah Lawrence College Human Genetics Program received Department of Energy funding to offer a continuing medical education workshop for genetic counselors in the New York metropolitan area. According to statistics from the National Society of Genetic Counselors, there are approximately 160 genetic counselors working in the tri-state area (New York, New Jersey, and Connecticut), and many of them had been working in the field for more than 10 years. Thus, there was a real need to offer these counselors an in-depth opportunity to learn the specifics of the major advances in molecular genetics, and, in particular, the new approaches to diagnostic testing for genetic disease. As a result of the DOE Award DE-FG02-95ER62048 ($20,583), in July 1995 we offered the {open_quotes}Workshop on Molecular Methods for Genetic Diagnosis{close_quotes} for 24 genetic counselors in the New York metropolitan area. The workshop included an initial review session on the basics of molecular biology, lectures and discussions on past and current topics in molecular genetics and diagnostic procedures, and, importantly, daily laboratory exercises. Each counselor gained not only background, but also firsthand experience, in the major techniques of biochemical and molecular methods for diagnosing genetic diseases as well as in mathematical and computational techniques involved in human genetics analyses. Our goal in offering this workshop was not to make genetic counselors experts in these laboratory diagnostic techniques, but to acquaint them, by hands-on experience, about some of the techniques currently in use. We also wanted to provide them a technical foundation upon which they can understand and appreciate new technical developments arising in the near future.

  11. RBE [relative biological effectiveness] of tritium beta radiation to gamma radiation and x-rays analyzed by both molecular and genetic methods

    International Nuclear Information System (INIS)

    The relative biological effectiveness (RBE) of tritium beta radiation to 60Co gamma radiation was determined using sex-linked recessive lethals (SLRL) induced in Drosophila melanogaster spermatozoa as the biological effect. The SLRL test, a measure of mutations induced in germ cells transmitted through successive generations, yields a linear dose-response curve in the range used in these experiments. From these ratios of the slopes of the 3H beta and the 60 Co gamma radiation linear dose response curves, an RBE of 2.7 is observed. When sources of error are considered, this observation suggests that the tritium beta particle is 2.7 ± 0.3 times more effective per unit of energy absorbed in inducing gene mutations transmitted to successive generation than 60Co gamma radiation. Ion tracks with a high density of ions (high LET) are more efficient than tracks with a low ion density (low LET) in inducing transmissible mutations, suggesting interaction among products of ionization. Molecular analysis of x-ray induced mutations shows that most mutations are deletions ranging from a few base pairs as determined from sequence data to multi locus deletions as determined from complementation tests and Southern blots. 14 refs., 1 fig

  12. Molecular biology of microbial ureases.

    Science.gov (United States)

    Mobley, H L; Island, M D; Hausinger, R P

    1995-09-01

    progress in our understanding of the molecular biology of microbial ureases is reviewed. PMID:7565414

  13. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology. PMID:26549858

  14. Molecular biology of lincomycin biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Spížek, Jaroslav; Tichý, Pavel; Janata, Jiří

    SissiHeraklion: Hellenic Society of Biological Sciences, 1999. s. 77. [International Symposium on the Biology of Actinomycetes /11./. 24.10.1999-28.10.1999, Sissi-Heraklion] Institutional research plan: CEZ:A53/98:Z5-020-9ii Subject RIV: EE - Microbiology, Virology

  15. Genetic and molecular alterations in meningiomas.

    Science.gov (United States)

    Alexiou, George A; Markoula, Sofia; Gogou, Pinelopi; Kyritsis, Athanasios P

    2011-05-01

    Meningiomas are the most common benign intracranial tumors in adults arising from the dura matter. The etiology of meningiomas is mostly unknown, although several risk factors have been described, such as ionizing radiation, head injury, hormones and genetic factors. According to WHO they are classified into 3 grades, grade I, grade II and grade III. Meningiomas express various hormonal and growth factor receptors, such as progesterone, estrogen, somatostatin, transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) receptors, which may be related to their biological behavior and response to treatment. Chromosomal abnormalities linked to meningiomas involve chromosomes 22, 1p, 9p, 10p, 11, 14q, 15, 17, and 18q. In addition, genes that may be involved in the formation of meningiomas include NF2, DAL-1, p14 (ARF), p53, MDM2, Rb, p16 and c-myc. It is likely that detailed molecular information will aid in establishing a molecular grading of these tumors and predict response to treatment and survival. PMID:21227570

  16. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  17. European Conference on Molecular Biology EMBO

    CERN Multimedia

    1967-01-01

    European Conference on Molecular Biology, which eventually led to the setting up of EMBO, was held at CERN in April. Olivier Reverdin is adressing the delegates. Bernard Gregory is on the left and Willy Spuhler in the centre.

  18. Biological communication via molecular surfaces

    OpenAIRE

    Clark, Tim; Byler, K; de Groot, M

    2006-01-01

    The use and characteristics of local properties designed to describe intermolecular interactions projected onto molecular surfaces and based on semiempirical molecular orbital theory are described. After a discussion of the local properties themselves and their relationship to intermolecular interactions and chemical reactivity, two applications are described. The first, surface-integral models for physical properties, involve integrating a functional of the local properties over the molecula...

  19. Graphical Modelling in Genetics and Systems Biology

    OpenAIRE

    Scutari, Marco

    2012-01-01

    Graphical modelling has a long history in statistics as a tool for the analysis of multivariate data, starting from Wright's path analysis and Gibbs' applications to statistical physics at the beginning of the last century. In its modern form, it was pioneered by Lauritzen and Wermuth and Pearl in the 1980s, and has since found applications in fields as diverse as bioinformatics, customer satisfaction surveys and weather forecasts. Genetics and systems biology are unique among these fields in...

  20. Molecular genetics of intellectual disability

    OpenAIRE

    Bessa, C.; Lopes, F.; Maciel, P.

    2012-01-01

    The goal of this chapter is to review the current knowledge of the genetic causes of intellectual disability, focusing on alterations at the chromosomal and single gene level, with particular mention to the new technological developments, including array technologies and next-generation sequencing, which allowed an enormous increase in yield from genetic studies. The cellular and physiological pathways that seem to be most affected in intellectual disability will also be addressed. Fina...

  1. Network-Based Models in Molecular Biology

    Science.gov (United States)

    Beyer, Andreas

    Biological systems are characterized by a large number of diverse interactions. Interaction maps have been used to abstract those interactions at all biological scales ranging from food webs at the ecosystem level down to protein interaction networks at the molecular scale.

  2. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology.......Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict...

  3. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. (Battelle, Columbus, OH (United States)); Chakravarty, L.; Tuovinen, O.H. (Ohio State Univ., Columbus, OH (United States))

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  4. Nonparametric Methods in Molecular Biology

    OpenAIRE

    Wittkowski, Knut M.; Song, Tingting

    2010-01-01

    In 2003, the completion of the Human Genome Project[1] together with advances in computational resources[2] were expected to launch an era where the genetic and genomic contributions to many common diseases would be found. In the years following, however, researchers became increasingly frustrated as most reported ‘findings’ could not be replicated in independent studies[3]. To improve the signal/noise ratio, it was suggested to increase the number of cases to be included to tens of thousands...

  5. Molecular ferroelectrics: where electronics meet biology

    OpenAIRE

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-01-01

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by overview on the fundamentals of ferroelectricity. Latest development in molecular ferroele...

  6. Synthetic Tools for Molecular Biology

    OpenAIRE

    Dervan, Peter B.

    1988-01-01

    Chemistry has made tremendous advances over the past four decades in the broad fields of synthesis and understanding chemical reactivity. In that same time span, a series of revolutionary events occurred in biology. First came the discovery of the double helical structure of DNA in the 1950s by Watson and Crick. This discovery allowed the elucidation of the mechanisms of DNA replication -- how DNA makes copies of itself -- and DNA transcription and translation -- the processes that allow the ...

  7. Application of Mitochondrial DNA Polymorphism to Meloidogyne Molecular Population Biology

    OpenAIRE

    Hyman, B. C.; Whipple, L.E.

    1996-01-01

    Recent advances in molecular biology have enabled the genotyping of individual nematodes, facilitating the analysis of genetic variability within and among plant-pathogenic nematode isolates. This review first describes representative examples of how RFLP, RAPD, AFLP, and DNA sequence analysis have been employed to describe populations of several phytonematodes, including the pinewood, burrowing, root-knot, and cyst nematodes. The second portion of this paper evaluates the utility of a size-v...

  8. Molecular Genetics of Mitochondrial Disorders

    Science.gov (United States)

    Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…

  9. Cellular and molecular biology group

    International Nuclear Information System (INIS)

    Model DNA polymers have been employed to measure physico-chemical effects of X-irradiation and the influence of known base sequences on the transcription by RNA polymerases. These experiments allow quantitative estimates of the fidelity of transcription in the presence of physical and chemical agents. Cells in culture provide the basic system for studying radiation effects on DNA synthesis, organization of DNA in the nucleus, effects of pollutants on genetic information transfer and gene expression, nucleic acid structure, proliferation capacity, histone phosphorylation, and chromatin structure and function. Mathematical models of the immune response have been formulated, and the biochemical properties of the cell surface have been characterized. The use of flow systems to provide rapid karyotype analysis has been established for relatively simple karyotypes, and a series of cell-cycle-dependent, temperature-sensitive mutant mammalian cell lines have been derived and appear useful for cycle progression and mutagenesis studies

  10. The molecular genetics of holoprosencephaly.

    Science.gov (United States)

    Roessler, Erich; Muenke, Maximilian

    2010-02-15

    Holoprosencephaly (HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic, and environmental information typical for studies of a complex disorder. However, even with the advances in our understanding of HPE in recent years, there are significant obstacles remaining to fully understand its heterogeneity and extensive variability in phenotype. General lessons learned from HPE will likely be applicable to other malformation syndromes. Here we outline the common, and rare, genetic and environmental influences on this conserved developmental program of forebrain development and illustrate the similarities and differences between these malformations in humans and those of animal models. PMID:20104595

  11. The molecular genetics of holoprosencephaly

    OpenAIRE

    Roessler, Erich; Muenke, Maximilian

    2010-01-01

    Holoprosencephaly (or HPE) has captivated the imagination of Man for millennia because its most extreme manifestation, the single-eyed cyclopic newborn infant, brings to mind the fantastical creature Cyclops from Greek mythology. Attempting to understand this common malformation of the forebrain in modern medical terms requires a systematic synthesis of genetic, cytogenetic and environmental information typical for studies of a complex disorder. However, even with the advances in our understa...

  12. Cystic fibrosis, molecular genetics for all life

    Directory of Open Access Journals (Sweden)

    Ausilia Elce

    2015-10-01

    Full Text Available Cystic fibrosis (CF is the most frequent lethal autosomal recessive disorder among Caucasians (incidence: 1:2,500 newborn. In the last two decades CF prognosis considerably improved and many patients well survive into their adulthood. Furthermore, milder CF with a late onset was described. CF is a challenge for laboratory of molecular genetics that greatly contributes to the natural history of the disease since fetal age. Carrier screening and prenatal diagnosis, also by non-invasive analysis of maternal blood fetal DNA, are now available, and many labs offer preimplantation diagnosis. The major criticism in prenatal medicine is the lack of an effective multidisciplinary counseling that helps the couples to plan their reasoned reproductive choice. Most countries offer newborn screening that significantly reduce CF morbidity but different protocols based on blood trypsin, molecular analysis and sweat chloride cause a variable efficiency of the screening programs. Again, laboratory is crucial for CF diagnosis in symptomatic patients: sweat chloride is the diagnostic golden standard, but different methodologies and the lack of quality control in most labs reduce its effectiveness. Molecular analysis contributes to confirm diagnosis in symptomatic subjects; furthermore, it helps to predict the disease outcome on the basis of the mutation (genotype-phenotype correlation and mutations in a myriad of genes, inherited independently by CF transmembrane conductance regulator (CFTR, which may modulate the clinical expression of the disease in each single patient (modifier genes. More recently, the search of the CFTR mutations gained a role in selecting CF patients that may benefit from biological therapy based on correctors and potentiators that are effective in patients bearing specific mutations (personalized therapy. All such applications of molecular diagnostics confirm the “uniqueness” of each CF patient, offering to laboratory medicine the

  13. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  14. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    International Nuclear Information System (INIS)

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  15. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  16. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Bielaga, B.A.; Kilbane, J.J.

    1990-04-01

    The overall objectives of this project is to use Molecular Genetics to develop strains of bacteria (esp. Rhodococcus) with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. 5 figs.

  17. Molecular biological enhancement of coal biodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Bielaga, B.A.

    1991-12-01

    The overall objective of this project was to use molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal, and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. (VC)

  18. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due to......-dependent information, hierarchical contexts and analog/digital communication, which I think molecular biologists could find of great inspiration. In particular I highlight ten “Batesonean ideas” that may prove to be of great relevance to the field of cellular signal transduction....

  19. Molecular Mechanism of Biological Proton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  20. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  1. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  2. Evolving Molecular Genetics of Glioblastoma

    OpenAIRE

    Qiu-Ju Li; Jin-Quan Cai; Cheng-Yin Liu

    2016-01-01

    Objective: To summary the recent advances in molecular research of glioblastoma (GBM) and current trends in personalized therapy of this disease. Data Sources: Data cited in this review were obtained mainly from PubMed in English up to 2015, with keywords “molecular”, “genetics”, “GBM”, “isocitrate dehydrogenase”, “telomerase reverse transcriptase”, “epidermal growth factor receptor”, “PTPRZ1-MET”, and “clinical treatment”. Study Selection: Articles regarding the morphological pathology of GB...

  3. Book review: Baculovirus Molecular Biology, Second Edition

    Science.gov (United States)

    The application of cell culture and molecular biology methodologies to the study of baculoviruses has resulted in an explosion of information on this group of insect pathogens. The quantity of the corresponding literature on baculoviruses has reached a level difficult for any one researcher to mast...

  4. Molecular Biology and Biotechnology of Bacteriophage

    Science.gov (United States)

    Onodera, Kazukiyo

    The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.

  5. Molecular biology of the Chlamydia pneumoniae surface

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Østergaard, Lars; Birkelund, Svend

    1997-01-01

    Chlamydia pneumoniaeis a fastidious microorganism with a characteristic biphasic lifecycle causing a variety of human respiratory tract infections. There is limited knowledge about the molecular biology of C. pneumoniae, and only a few genes have been sequenced. The structure of the chlamydial...

  6. Molecular biology of the honey bee

    DEFF Research Database (Denmark)

    Munk, Kathe

    While hoeneybees represent model organisms with complex social structures within populations, a comprehensive understanding of developmental regulation in relation to sexual development as well as cast determination still remains. Despite decades of research explanations on mechanistics underlyin...... functional molecular biological techniques to advance current interpretations of heneybee development...

  7. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-01-01

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters. PMID:27311441

  8. Genetics and biology of human ovarian teratomas. II. Molecular analysis of origin of nondisjunction and gene-centromere mapping of chromosome I markers.

    OpenAIRE

    Deka, R; Chakravarti, A; Surti, U; Hauselman, E; Reefer, J; Majumder, P P; Ferrell, R E

    1990-01-01

    Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a ge...

  9. New journal: Algorithms for Molecular Biology

    Directory of Open Access Journals (Sweden)

    Stadler Peter F

    2006-02-01

    Full Text Available Abstract This editorial announces Algorithms for Molecular Biology, a new online open access journal published by BioMed Central. By launching the first open access journal on algorithmic bioinformatics, we provide a forum for fast publication of high-quality research articles in this rapidly evolving field. Our journal will publish thoroughly peer-reviewed papers without length limitations covering all aspects of algorithmic data analysis in computatioal biology. Publications in Algorithms for Molecular Biology are easy to find, highly visible and tracked by organisations such as PubMed. An established online submission system makes a fast reviewing procedure possible and enables us to publish accepted papers without delay. All articles published in our journal are permanently archived by PubMed Central and other scientific archives. We are looking forward to receiving your contributions.

  10. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  11. A Genetic Algorithm on Multiple Sequences Alignment Problems in Biology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The study and comparison of sequences of characters from a finite alphabet is relevant to various areas of science, notably molecular biology. The measurement of sequence similarity involves the consideration of the possible sequence alignments in order to find an optimal one for which the "distance" between sequences is minimum. In biology informatics area, it is a more important and difficult problem due to the long length (100 at least) of sequence, this cause the compute complexity and large memory require. By associating a path in a lattice to each alignment, a geometric insight can be brought into the problem of finding an optimal alignment, this give an obvious encoding of each path. This problem can be solved by applying genetic algorithm, which is more efficient than dynamic programming and hidden Markov model using commomly now.

  12. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    Sakorafas, George H; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  13. Promoting Middle School Students' Understandings of Molecular Genetics

    Science.gov (United States)

    Duncan, Ravit Golan; Freidenreich, Hava Bresler; Chinn, Clark A.; Bausch, Andrew

    2011-03-01

    Genetics is the cornerstone of modern biology and understanding genetics is a critical aspect of scientific literacy. Research has shown, however, that many high school graduates lack fundamental understandings in genetics necessary to make informed decisions or to participate in public debates over emerging technologies in molecular genetics. Currently, much of genetics instruction occurs at the high school level. However, recent policy reports suggest that we may need to begin introducing aspects of core concepts in earlier grades and to successively develop students' understandings of these concepts in subsequent grades. Given the paucity of research about genetics learning at the middle school level, we know very little about what students in earlier grades are capable of reasoning about in this domain. In this paper, we discuss a research study aimed at fostering deeper understandings of molecular genetics at the middle school level. As part of the research we designed a two-week model-based inquiry unit implemented in two 7th grade classrooms ( N = 135). We describe our instructional design and report results based on analysis of pre/post assessments and written artifacts of the unit. Our findings suggest that middle school students can develop: (a) a view of genes as productive instructions for proteins, (b) an understanding of the role of proteins in mediating genetic effects, and (c) can use this knowledge to reason about a novel genetic phenomena. However, there were significant differences in the learning gains in both classrooms and we provide speculative explanations of what may have caused these differences.

  14. Genetic and molecular biological studies of the products of nitrogen regulatory genes ntrB and ntrC of enteric bacteria

    International Nuclear Information System (INIS)

    EcoR1 restriction fragments of 4.1 kilobase pairs carrying wild type or mutant ntrB and ntrC genes of Salmonella typhimurium have been subcloned into a variety of plasmid vectors. In vivo and in vitro protein synthesis from the plasmids, as monitored by 35S-methionine labelling, has resulted in the identification of the ntrB and ntrC gene products as proteins with apparent molecular weights of 38 and 54 kilodaltons, respectively. Regulation of the gInA and ntrB promoters by purified ntrC product has been studied using a bacterial in vitro transcription/translation system. The reaction is programmed with templates carrying a fusion of the Salmonella gInA or ntrB structural gene and upstream promoter/regulatory sequences to lacZ. Use of such templates allows regulation to be monitored as changes in beta-galactosidase activity. Studies comparing regulation by a mutant form of the ntrC product, here called NtrC(Con), to regulation by the wild type protein, NtrC(wt), are discussed. Initial in vitro studies exploring activity of the ntrA product present in the S30's are described. Finally, the ntrA product is identified as a protein with an apparent molecular weight of 73 kilodaltons

  15. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict...... demands to anaerobic culture conditions. These differences may, at least partly, be responsible for the delay in availability of genetic research tools for methanogens. At present, however, the research within genetics of methanogens and their gene regulation and expression is in rapid progress. Two...... procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology....

  16. On the Biological and Genetic Diversity in Neospora caninum

    Directory of Open Access Journals (Sweden)

    John T. Ellis

    2010-03-01

    Full Text Available Neospora caninum is a parasite regarded a major cause of foetal loss in cattle. A key requirement to an understanding of the epidemiology and pathogenicity of N. caninum is knowledge of the biological characteristics of the species and the genetic diversity within it. Due to the broad intermediate host range of the species, worldwide geographical distribution and its capacity for sexual reproduction, significant biological and genetic differences might be expected to exist. N. caninum has now been isolated from a variety of different host species including dogs and cattle. Although isolates of this parasite show only minor differences in ultrastructure, considerable differences have been reported in pathogenicity using mainly mouse models. At the DNA level, marked levels of polymorphism between isolates were detected in mini- and microsatellites found in the genome of N. caninum. Knowledge of what drives the biological differences that have been observed between the various isolates at the molecular level is crucial in aiding our understanding of the epidemiology of this parasite and, in turn, the development of efficacious strategies, such as live vaccines, for controlling its impact. The purpose of this review is to document and discuss for the first time, the nature of the diversity found within the species Neospora caninum.

  17. Support of the IMA summer program molecular biology. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.

    1995-08-01

    The revolutionary progress in molecular biology within the last 30 years opens the way to full understanding of the molecular structures and mechanisms of living organisms. The mathematical sciences accompany and support much of the progress achieved by experiment and computation, as well as provide insight into geometric and topological properties of biomolecular structure and processes. The 4 week program at the IMA brought together biologists and mathematicians leading researchers, postdocs, and graduate students. It focused on genetic mapping and DNA sequencing, followed by biomolecular structure and dynamics. High-resolution linkage maps of genetic marker were discussed extensively in relation to the human genome project. The next level of DNA mapping is physical mapping, consisting of overlapping clones spanning the genome. These maps are extremely useful for genetic analysis. They provide the material for less redundant sequencing and for detailed searches for a gene among other things. This topic was also extensively studied by the participants. From there, the program moved to consider protein structure and dynamics; this is a broad field with a large array of interesting topics. It is of key importance in answering basic scientific questions about the nature of all living organisms, and has practical biomedical applications. The major subareas of structure prediction and classification, techniques and heuristics for the simulation of protein folding, and molecular dynamics provide a rich problem domain where mathematics can be helpful in analysis, modeling, and simulation. One of the important problems in molecular biology is the three-dimensional structure of proteins, DNA and RNA in the cell, and the relationship between structure and function. The program helped increased the understanding of the topology of cellular DNA, RNA and proteins and the various life-sustaining mechanisms used by the cell which modify this molecular topology.

  18. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  19. Molecular knots in biology and chemistry.

    Science.gov (United States)

    Lim, Nicole C H; Jackson, Sophie E

    2015-09-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. PMID:26291690

  20. Construction of experimental handbook for molecular biology and genetic engineering%分子生物学与基因工程实验教材建设初探

    Institute of Scientific and Technical Information of China (English)

    何华纲; 朱姗颖; 姜松; 董英

    2013-01-01

    分子生物学与基因工程实验课程对培养生物技术专业创新型人才具有重要意义.对分子生物学与基因工程实验教材建设进行了探索,提出“立足本科培养目标,强化入门指导”、“适应创新教学理念,强化科研启蒙”的建设思路,并将其应用于实验项目的选择、实验项目模块化设计、实验教材内容的编撰等方面.%Experimental courses for molecular biology and genetic engineering are important for cultivating innovative talents of biotechnology professional. In this paper, the strengthening guidance was proposed based on training objectives and strengthening scientific enlightenment to adapt to innovative teaching. According to the investigation, the construction of experimental handbook mainly involving choice, design and writing of experimental contents was discussed.

  1. Molecular Genetic Tools and Techniques for Marchantia polymorpha Research.

    Science.gov (United States)

    Ishizaki, Kimitsune; Nishihama, Ryuichi; Yamato, Katsuyuki T; Kohchi, Takayuki

    2016-02-01

    Liverworts occupy a basal position in the evolution of land plants, and are a key group to address a wide variety of questions in plant biology. Marchantia polymorpha is a common, easily cultivated, dioecious liverwort species, and is emerging as an experimental model organism. The haploid gametophytic generation dominates the diploid sporophytic generation in its life cycle. Genetically homogeneous lines in the gametophyte generation can be established easily and propagated through asexual reproduction, which aids genetic and biochemical experiments. Owing to its dioecy, male and female sexual organs are formed in separate individuals, which enables crossing in a fully controlled manner. Reproductive growth can be induced at the desired times under laboratory conditions, which helps genetic analysis. The developmental process from a single-celled spore to a multicellular body can be observed directly in detail. As a model organism, molecular techniques for M. polymorpha are well developed; for example, simple and efficient protocols of Agrobacterium-mediated transformation have been established. Based on them, various strategies for molecular genetics, such as introduction of reporter constructs, overexpression, gene silencing and targeted gene modification, are available. Herein, we describe the technologies and resources for reverse and forward genetics in M. polymorpha, which offer an excellent experimental platform to study the evolution and diversity of regulatory systems in land plants. PMID:26116421

  2. Molecular biology of the skin introduction: approaches and principles.

    Science.gov (United States)

    Slater, C; Goldsmith, L A

    1993-09-01

    This issue of Seminars in Dermatology describes our current understanding of the molecular nature of skin diseases. Some would say it is hubris to even contemplate this charge considering the rapid progress in molecular genetics. We implore the gods protecting the nucleotides to look kindly on our efforts. This introductory article discussed some general methodological considerations and techniques and provides a glossary of common terms used in molecular biology, useful for understanding this issue of Seminars in Dermatology. This article is aimed at neophytes to enhance their ability to enter the magical realm of the gene. The articles in this issue describe diseases with a defined defect at the DNA level or diseases in which there is a rapid closing in on the basic defect. PMID:8217556

  3. Bioenergetics molecular biology, biochemistry, and pathology

    CERN Document Server

    Ozawa, Takayuki

    1990-01-01

    The emergence of the Biochemical Sciences is underlined by the FAOB symposium in Seoul and highlighted by this Satellite meeting on the "New Bioenergetics. " Classical mitochondrial electron transfer and energy coupling is now complemented by the emerging molecular biology of the respiratory chain which is studied hand in hand with the recognition of mitochondrial disease as a major and emerging study in the basic and clinical medical sciences. Thus, this symposium has achieved an important balance of the fundamental and applied aspects of bioenergetics in the modern setting of molecular biology and mitochondrial disease. At the same time, the symposium takes note not only of the emerging excellence of Biochemical Studies in the Orient and indeed in Korea itself, but also retrospectively enjoys the history of electron transport and energy conservation as represented by the triumvirate ofYagi, King and Slater. Many thanks are due Drs. Kim and Ozawa for their elegant organization of this meeting and its juxtapo...

  4. Imaging cellular and molecular biological functions

    Energy Technology Data Exchange (ETDEWEB)

    Shorte, S.L. [Institut Pasteur, 75 - Paris (France). Plateforme d' Imagerie Dynamique PFID-Imagopole; Frischknecht, F. (eds.) [Heidelberg Univ. Medical School (Germany). Dept. of Parasitology

    2007-07-01

    'Imaging cellular and molecular biological function' provides a unique selection of essays by leading experts, aiming at scientist and student alike who are interested in all aspects of modern imaging, from its application and up-scaling to its development. Indeed the philosophy of this volume is to provide student, researcher, PI, professional or provost the means to enter this applications field with confidence, and to construct the means to answer their own specific questions. (orig.)

  5. 2004 Reversible Associations in Structure & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  6. Psychobiology and molecular genetics of resilience

    OpenAIRE

    Feder, Adriana; Nestler, Eric J.; Charney, Dennis S.

    2009-01-01

    Every individual experiences stressful life events. In some cases acute or chronic stress leads to depression and other psychiatric disorders, but most people are resilient to such effects. Recent research has begun to identify the environmental, genetic, epigenetic and neural mechanisms that underlie resilience, and has shown that resilience is mediated by adaptive changes in several neural circuits involving numerous neurotransmitter and molecular pathways. These changes shape the functioni...

  7. Biodiversity: molecular biological domains, symbiosis and kingdom origins

    Science.gov (United States)

    Margulis, L.

    1992-01-01

    The number of extant species of organisms is estimated to be from fewer than 3 to more than 30 x 10(6) (May, 1992). Molecular biology, comparative genetics and ultrastructural analyses provide new insights into evolutionary relationships between these species, including increasingly precise ideas of how species and higher taxa have evolved from common ancestors. Accumulation of random mutations and large macromolecular sequence change in all organisms since the Proterozoic Eon has been importantly supplemented by acquisition of inherited genomes ('symbiogenesis'). Karyotypic alterations (polyploidization and karyotypic fissioning) have been added to these other mechanisms of species origin in plants and animals during the Phanerozoic Eon. The new evolution concepts (coupled with current rapid rates of species extinction and ignorance of the extent of biodiversity) prompted this analysis of the field of systematic biology and its role in the reorganization of extant species into higher taxa. Two superkingdoms (= Domains: Prokaryotae and Eukaryotae) and five kingdoms (Monera = Procaryotae or Bacteria; Protoctista: algae, amoebae, ciliates, foraminifera, oomycetes, slime molds, etc.; Mychota: 'true' fungi; Plantae: one phylum (division) of bryophytes and nine phyla of tracheophytes; and Animalia) are recognized. Two subkingdoms comprise the monera: the great diverse lineages are Archaebacteria and Eubacteria. The criteria for classification using molecular, ultrastructural and genetic data for this scheme are mentioned. For the first time since the nineteenth century, logical, technical definitions for each group are given with their time of appearance as inferred from the fossil record in the primary scientific literature. This classification scheme, which most closely reflects the evolutionary history, molecular biology, genetics and ultrastructure of extant life, requires changes in social organization of biologists, many of whom as botanists and zoologists, still

  8. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    Institute of Scientific and Technical Information of China (English)

    REN Yi-jin

    2005-01-01

    Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA and protein synthesis and how these interactions are regulated. Since the introduction of molecular biology into modern science, numerous other fields have been enabled to go "molecular". Advanced molecular biological techniques showed us new avenue towards finding answers to the questions asked for decades. The first part of this article described the history of molecular biology.It started as a joined discipline of other areas of biology, i.e. genetics and biochemistry in the 1930s and 1940s, and enjoyed its classical period and became institutionalized in the 1950s and 1960s. Major molecular techniques manipulating proteins, DNA and RNA were introduced and their mechanisms were concisely illustrated. The current knowledge of molecular biology and their applications in orthodontic and oral and maxillofacial surgery, i.e. osteoclast differentiation and function, regulation of tooth movement, mechanotransduction/cell-signalling, bone fracture healing, oral cancer as well as craniofacial/dental anomalies and distraction osteogenesis were discussed. Although the problems of introducing molecular technologies are still substantial, it is anticipated that the future of medicine/dentistry will be "molecular": molecular prevention, molecular diagnosis and molecular therapy.

  9. Biological Signal Processing with a Genetic Toggle Switch

    Science.gov (United States)

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  10. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  11. Molecular epidemiology and the genetics of environmental cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shields, P.G.; Harris, C.C. (Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD (USA))

    1991-08-07

    Environmental, occupational, and recreational exposures to carcinogens contribute to cancer risk in humans. Cancer formation is a multistage process involving tumor initiation, promotion, conversion, and progression. Carcinogens can affect any of these stages through genetic and epigenetic mechanisms. The association of a suspected carcinogenic exposure and cancer risk can be studied in populations with classic epidemiologic techniques. However, these techniques are not applicable to the assessment of risk in individuals. Molecular epidemiology, in contrast, is a field that integrates molecular biology, in vitro and in vivo laboratory models, biochemistry, and epidemiology to infer individual cancer risk. Carcinogen-macromolecular adduct levels, and somatic cell mutations can be measured to determine the biologically effective dose of a carcinogen. Molecular epidemiology also explores host cancer susceptibilities, such as carcinogen metabolic activation, DNA repair, endogenous mutation rates, and inheritance of mutated tumor suppressor genes. Substantial interindividual variation for each of these biologic end points has been shown and, therefore, highlights the need for assessing cancer risk on an individual basis. Given the pace of the last decade, it is feasible that the next 10 years will allow molecular epidemiologists to develop a cancer-risk profile for an individual that includes assessment of a number of factors. This will help focus preventive strategies and strengthen quantitative risk assessments. 96 refs.

  12. Optical molecular imaging technology in genetically engineered mouse models

    International Nuclear Information System (INIS)

    Optical molecular imaging technology has been rapidly developed to non-invasively, quantitatively and dynamically monitor the in vivo biological processes in real time. It is widely used in various fields of biomedicine and life sciences with advantages like easy operation, real-time study, high sensitivity and low cost image equipment. In recent years, the generation of transgenic animal models in combination with optical molecular imaging reporter genes has greatly facilitated the development of the imaging technology and expanded its application. In this article, we review the research progress by optical molecular imaging in genetically engineered mice (GEM) for 1) investigating tumorigenesis, growth or metastasis, 2) monitoring cell cycle, cell proliferation, apoptosis or angiogenesis, 3) evaluating the inflammation process and 4) providing a modality for pharmaceutical development. (authors)

  13. Site-specific recombinases: molecular machines for the Genetic Revolution.

    Science.gov (United States)

    Olorunniji, Femi J; Rosser, Susan J; Stark, W Marshall

    2016-03-15

    The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications. PMID:26965385

  14. Management of insect pests: Nuclear and related molecular and genetic techniques

    International Nuclear Information System (INIS)

    The conference was organized in eight sessions: opening, genetic engineering and molecular biology, genetics, operational programmes, F1 sterility and insect behaviour, biocontrol, research and development on the tsetse fly, and quarantine. The 64 individual contributions have been indexed separately for INIS. Refs, figs and tabs

  15. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies. PMID:26482724

  16. Biological Moleculars: Have Most of Our Problems Already Been Solved?

    Science.gov (United States)

    Downey, James P.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Evolution has resulted in biological machinery that engineers have great reason to envy and at present can only poorly mimic. This is not just a curiosity as biological systems perform many functions that are desired industrial processes. Examples include photosynthesis, chemosynthesis, energy storage, low temperature chemical conversion, reproducible manufacture of chemical compounds, etc. The bases of biological machinery are the proteins and nucleic acids that comprise living organisms. Each molecule functions as a part of a biological machine. In many cases the molecule can be properly regarded as a stand alone machine of its own. Concepts and methods for harnessing the power of biological molecules exist but are often overlooked in the industrial world. Some are old and appear crude but are quite effective, e.g. the fermentation of grains and fruits. Currently, there is a revolution in progress regarding the harnessing biological processes. These include techniques such as genetic manipulation via polymerase chain reaction, forced evolution also known as evolution in a test tube, determination of molecular structure, and combinatorial chemistry. The following is a brief discussion on how these processes are performed and how they may relate to industrial and aerospace processes.

  17. Molecular Genetics of Beauveria bassiana Infection of Insects.

    Science.gov (United States)

    Ortiz-Urquiza, A; Keyhani, N O

    2016-01-01

    Research on the insect pathogenic filamentous fungus, Beauveria bassiana has witnessed significant growth in recent years from mainly physiological studies related to its insect biological control potential, to addressing fundamental questions regarding the underlying molecular mechanisms of fungal development and virulence. This has been in part due to a confluence of robust genetic tools and genomic resources for the fungus, and recognition of expanded ecological interactions with which the fungus engages. Beauveria bassiana is a broad host range insect pathogen that has the ability to form intimate symbiotic relationships with plants. Indeed, there is an increasing realization that the latter may be the predominant environmental interaction in which the fungus participates, and that insect parasitism may be an opportunist lifestyle evolved due to the carbon- and nitrogen-rich resources present in insect bodies. Here, we will review progress on the molecular genetics of B. bassiana, which has largely been directed toward identifying genetic pathways involved in stress response and virulence assumed to have practical applications in improving the insect control potential of the fungus. Important strides have also been made in understanding aspects of B. bassiana development. Finally, although increasingly apparent in a number of studies, there is a need for progressing beyond phenotypic mutant characterization to sufficiently investigate the molecular mechanisms underlying B. bassiana's unique and diverse lifestyles as saprophyte, insect pathogen, and plant mutualist. PMID:27131326

  18. Permanent genetic resources added to molecular ecology resources database 1 February 2013-31 March 2013

    Czech Academy of Sciences Publication Activity Database

    Arias, M. C.; Atteke, C.; Augusto, S. C.; Bailey, J.; Bazaga, P.; Beheregaray, L. B.; Benoit, L.; Blatrix, R.; Born, C.; Brito, R. M.; Chen, H.-K.; Covarrubias, S.; de Vega, C.; Djiéto-Lordon, C.; Dubois, M.-P.; Francisco, F. O.; García, C.; Concalves, P. H. P.; González, C.; Gutiérrez-Rodríguez, C.; Hammer, M. P.; Herrera, C. M.; Itoh, H.; Kamimura, S.; Karaoglu, H.; Kojima, S.; Li, S.-L.; Ling, H. J.; Matos Maravi, Pavel F.; McKey, D.; Mezui-M’Eko, J.; Ornelas, J. F.; Park, R. F.; Pozo, M. I.; Ramula, S.; Rigueiro, C.; Sandoval-Castillo, J.; Santiago, L. R.; Seino, M. M.; Song, C.-B.; Takeshima, H.; Vasemägi, A.; Wellings, C. R.; Yan, J.; Du, Y.-Z.; Zhang, C.-R.; Zhang, T.-Y.

    2013-01-01

    Roč. 13, č. 4 (2013), s. 760-762. ISSN 1755-098X Institutional support: RVO:60077344 Keywords : molecular ecology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.626, year: 2013 http://onlinelibrary.wiley.com/doi/10.1111/1755-0998.12121/pdf

  19. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  20. ADVANCES OF BASIC MOLECULAR BIOLOGY TECHNIQUES: POTENTIAL TO APPLY IN PLANT VIROID DETECTION IN SRI LANKA

    OpenAIRE

    Yapa M.A.M. Wijerathna

    2012-01-01

    Viroids are the smallest pathogens of plants. They are the cause of serious diseases on economic plants worldwide. Prevention and detection of the pathogens are the best method to reduce the economic loss from viroid infection. During last decade, genetics and molecular biology techniques have gained an increasing presence in plant pathology research. The purpose of this review is to highlight the most upgrade molecular biology techniques that have been used and studied recently. Most relevan...

  1. Workshop in computational molecular biology, April 15, 1991--April 14, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Tavare, S.

    1995-04-12

    Funds from this award were used to the Workshop in Computational Molecular Biology, `91 Symposium entitled Interface: Computing Science and Statistics, Seattle, Washington, April 21, 1991; the Workshop in Statistical Issues in Molecular Biology held at Stanford, California, August 8, 1993; and the Session on Population Genetics a part of the 56th Annual Meeting, Institute of Mathematical Statistics, San Francisco, California, August 9, 1993.

  2. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  3. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Julie Maupin- Furlow

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  4. Molecular recognition in chemical and biological systems.

    Science.gov (United States)

    Persch, Elke; Dumele, Oliver; Diederich, François

    2015-03-01

    Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water. PMID:25630692

  5. 2007 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Imke Schroeder

    2008-09-18

    The Archaea are a fascinating and diverse group of prokaryotic organisms with deep roots overlapping those of eukaryotes. The focus of this GRC conference, 'Archaea: Ecology Metabolism & Molecular Biology', expands on a number of emerging topics highlighting the evolution and composition of microbial communities and novel archaeal species, their impact on the environment, archaeal metabolism, and research that stems from sequence analysis of archaeal genomes. The strength of this conference lies in its ability to couple reputable areas with new scientific topics in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  6. Psychobiology and molecular genetics of resilience.

    Science.gov (United States)

    Feder, Adriana; Nestler, Eric J; Charney, Dennis S

    2009-06-01

    Every individual experiences stressful life events. In some cases acute or chronic stress leads to depression and other psychiatric disorders, but most people are resilient to such effects. Recent research has begun to identify the environmental, genetic, epigenetic and neural mechanisms that underlie resilience, and has shown that resilience is mediated by adaptive changes in several neural circuits involving numerous neurotransmitter and molecular pathways. These changes shape the functioning of the neural circuits that regulate reward, fear, emotion reactivity and social behaviour, which together are thought to mediate successful coping with stress. PMID:19455174

  7. Microchip-based Devices for Molecular Diagnosis of Genetic Diseases.

    Science.gov (United States)

    Cheng; Fortina; Surrey; Kricka; Wilding

    1996-09-01

    Microchips, constructed with a variety of microfabrication technologies (photolithography, micropatterning, microjet printing, light-directed chemical synthesis, laser stereochemical etching, and microcontact printing) are being applied to molecular biology. The new microchip-based analytical devices promise to solve the analytical problems faced by many molecular biologists (eg, contamination, low throughput, and high cost). They may revolutionize molecular biology and its application in clinical medicine, forensic science, and environmental monitoring. A typical biochemical analysis involves three main steps: (1) sample preparation, (2) biochemical reaction, and (3) detection (either separation or hybridization may be involved) accompanied by data acquisition and interpretation. The construction of a miniturized analyzer will therefore necessarily entail the miniaturization and integration of all three of these processes. The literature related to the miniaturization of these three processes indicates that the greatest emphasis so far is on the investigation and development of methods for the detection of nucleic acid, followed by the optimization of a biochemical reaction, such as the polymerase chain reaction. The first step involving sample preparation has received little attention. In this review the state of the art of, microchip-based, miniaturized analytical processes (eg, sample preparation, biochemical reaction, and detection of products) are outlined and the applications of microchip-based devices in the molecular diagnosis of genetic diseases are discussed. PMID:10462559

  8. Progress in the Study of Molecular Genetic Improvements of Poplar in China

    Institute of Scientific and Technical Information of China (English)

    Shan-Zhi Lin; Zhi-Yi Zhang; Qian Zhang; Yuan-Zhen Lin

    2006-01-01

    The poplar is one of the most economically important and intensively studied tree species owing to its wide application in the timber industry and as a model material for the study of woody plants. The natural resource of poplars in China is replete. Over the past 10 years, the application of molecular biological techniques to genetic improvements in poplar species has been widely studied in China. Recent advances in molecular genetic improvements of poplar, including cDNA library construction, gene cloning and identification, genetic engineering, gene expression, genetic linkage map construction, mapping of quantitative trait loci (QTL) and molecular-assisted selection, are reviewed in the present paper. In addition, the application of modern biotechnology to molecular improvements in the genetic traits of the poplar and some unsolved problems are discussed.

  9. Deciphering genetic diversity and inheritance of tomato fruit weight and composition through a systems biology approach

    OpenAIRE

    Pascual, Laura; Xu, Jiaxin; Biais, Benoit; Maucourt, Mickael; Ballias, Patricia; Bernillon, Stéphane; Deborde, Catherine; Jacob, Daniel; Desgroux, Aurore; Faurobert, Mireille; Bouchet, Jean-Paul; Gibon, Yves; Moing, Annick

    2013-01-01

    Integrative systems biology proposes new approaches to decipher the variation of phenotypic traits. In an effort to link the genetic variation and the physiological and molecular bases of fruit composition, the proteome (424 protein spots), metabolome (26 compounds), enzymatic profile (26 enzymes), and phenotypes of eight tomato accessions, covering the genetic diversity of the species, and four of their F1 hybrids, were characterized at two fruit developmental stages (cell expansion and oran...

  10. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  11. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    E. SANTOS; M. MATOS; P. SILVA; A. M. FIGUEIRAS; C. BENITO; O. PINTO-CARNIDE

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale cerealeusing RAPDs, ISSRs and sequence analysis of six exons ofScMATE1gene.Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDsand 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primersgenerated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further,69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of theScMATE1gene also demonstrated a high genetic variability that subsists inSecalegenus. One difference observed in exon 1 sequencesfromS. vaviloviiseems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs,ISSRs and exons ofScMATE1gene were similar.S. ancestrale ,S. kuprijanoviiandS. cerealewere grouped in the same clusterandS. segetalewas in another cluster.S. vaviloviishowed evidences of not being clearly an isolate species and having greatintraspecific difference

  12. 2012 PLANT MOLECULAR BIOLOGY GORDON RESEARCH CONFERENCE, JULY 15-20, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  13. Pragmatic turn in biology: From biological molecules to genetic content operators.

    Science.gov (United States)

    Witzany, Guenther

    2014-08-26

    Erwin Schrödinger's question "What is life?" received the answer for decades of "physics + chemistry". The concepts of Alain Turing and John von Neumann introduced a third term: "information". This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings "sequence space". Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract "sequence space" concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry. PMID:25225596

  14. Pragmatic turn in biology: From biological molecules to genetic content operators

    Institute of Scientific and Technical Information of China (English)

    Guenther; Witzany

    2014-01-01

    Erwin Schrdinger‘s question "What is life?" received the answer for decades of "physics + chemistry". The concepts of Alain Turing and John von Neumann introduced a third term: "information". This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings "sequence space". Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract "sequence space" concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry.

  15. Molecular Genetic Identification Of Some Flax Mutants

    International Nuclear Information System (INIS)

    Five flax genotypes (Linum usitatissimum L.) i.e., commercial cultivar Sakha 2, the mother variety Giza 4 and three mutant types induced by gamma rays, were screened for their salinity tolerance in field experiments (salinity concentration was 8600 and 8300 ppm for soil and irrigation water, respectively). Mutation 6 was the most salt tolerant as compared to the other four genotypes.RAPD technique was used to detect some molecular markers associated with salt tolerance in flax (Mut 6), RAPD-PCR results using 12 random primers exhibited 149 amplified fragments; 91.9% of them were polymorphic and twelve molecular markers (8.1%) for salt tolerant (mutant 6) were identified with molecular size ranged from 191 to 4159 bp and only eight primers successes to amplify these specific markers. Concerning the other mutants, Mut 15 and Mut 25 exhibited 4.3% and 16.2% specific markers, respectively. The induced mutants exhibited genetic similarity to the parent variety were about 51%, 58.3% and 61.1% for Mut 25, Mut 6 and Mut 15, respectively. These specific markers (SM) are used for identification of the induced mutations and it is important for new variety registration.

  16. Differentiation study between alfalfa mosaic virus and red clover mottle virus affecting broad bean by biological and molecular characterization

    Czech Academy of Sciences Publication Activity Database

    Mahmoud, S.Y.M.; Khaled, A.-S.G.A.; Petrzik, Karel

    2010-01-01

    Roč. 6, č. 4 (2010), s. 224-239. ISSN 1816-4900 Institutional research plan: CEZ:AV0Z50510513 Keywords : identification * phylogenetic relationship * nucleotide sequences Subject RIV: EB - Genetics ; Molecular Biology

  17. Synthetic biology: A foundation for multi-scale molecular biology

    OpenAIRE

    Bower, Adam G; McClintock, Maria K; Stephen S. Fong

    2010-01-01

    The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology “engineerable,” synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Bu...

  18. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  19. Genetic and biological markers in drug abuse and alcoholism

    Energy Technology Data Exchange (ETDEWEB)

    Braude, M.C.; Chao, H.M.

    1986-01-01

    This book contains 11 selections. Some of the titles are: Polymorphic Gene Marker Studies; Pharmacogenetic Approaches to the Prediction of Drug Response; Genetic Markers of Drug Abuse in Mouse Models; Genetics as a Tool for Identifying Biological Markers of Drug Abuse; and Studies of an Animal Model of Alcoholism.

  20. New approaches in mathematical biology: Information theory and molecular machines

    International Nuclear Information System (INIS)

    My research uses classical information theory to study genetic systems. Information theory was founded by Claude Shannon in the 1940's and has had an enormous impact on communications engineering and computer sciences. Shannon found a way to measure information. This measure can be used to precisely characterize the sequence conservation at nucleic-acid binding sites. The resulting methods, by completely replacing the use of ''consensus sequences'', provide better models for molecular biologists. An excess of conservation led us to do experimental work on bacteriophage T7 promoters and the F plasmid IncD repeats. The wonderful fidelity of telephone communications and compact disk (CD) music can be traced directly to Shannon's channel capacity theorem. When rederived for molecular biology, this theorem explains the surprising precision of many molecular events. Through connections with the Second Law of Thermodyanmics and Maxwell's Demon, this approach also has implications for the development of technology at the molecular level. Discussions of these topics are held on the internet news group bionet.info-theo. (author). (Abstract only)

  1. Investigações sobre o ensino de Genética e Biologia Molecular no Ensino Médio brasileiro: reflexões sobre as publicações científicas Research on the teaching of Genetics and Molecular Biology in Brazilian High School: reflections about scientific publications

    Directory of Open Access Journals (Sweden)

    José Romário de Melo

    2009-01-01

    Full Text Available Com o objetivo de analisar as publicações relacionadas ao ensino de Genética e Biologia Molecular no Ensino Médio brasileiro, foram consideradas reflexões sobre várias publicações científicas mediante revisão bibliográfica. Foram analisados trabalhos publicados entre 1999 a 2008. A Revista Genética na Escola se destacou quanto à quantidade de artigos publicados. As publicações puderam ser classificadas em diversas categorias, como: análise de livro didático (ALD, histórico (HIS, intrainterdisciplinaridade (IID, metodologia de ensino (MEE, propostas curriculares (PRC e outros (OUT. Embora compatíveis em quantidade, artigos das categorias ALD, HIS e PRC encontram-se publicados em pouquíssima quantidade. O número de artigos publicados nas categorias IID e MEE soma quase 73% das publicações encontradas, em relação às demais (as outras categorias juntas somam aproximadamente 27%. Este estudo possibilitou considerar que ainda é incipiente a pesquisa voltada ao ensino de Genética e Biologia Molecular, com relação ao Ensino Médio na escola básica brasileira.The objective of this work was to analyze the publications related to the teaching of Genetics and Molecular Biology in Brazilian High Schools. We analyzed studies published from 1999 to 2008. The Revista Genética na Escola presents the most published articles. The publications were classified into different categories, such as: textbook analysis (ALD, history (HIS, intra-interdisciplinarity (IID, teaching methodology (MEE, curriculum proposals (PRC and other (OUT. Equivalent numbers of articles in ALD, HIS and PRC categories are published in very low quantity, however the number of articles published in categories IID and MEE total almost 73% of the publications found in the others (all other categories together total about 27%. This study has considered that research dedicated to the teaching of Genetics and Molecular Biology is still in its early stages, related to

  2. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  3. Bottlenecks in molecular testing for rare genetic diseases.

    Science.gov (United States)

    Willems, Patrick J

    2008-06-01

    Despite the impressive progress in our understanding of the genetic causes of genetic diseases over the past decade, molecular diagnosis for rare genetic disorders is still in its infancy, being slow, expensive, unreliable, insufficient, and ill-organized in many countries. This leaves the gap between the hype of the current genomic research and the hope for a simple genetic diagnosis too large for patients and families affected with genetic disease. The bottlenecks in the molecular testing for rare genetic disorders are discussed below. PMID:18412107

  4. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  5. Molecular Models of Genetic and Organismic Structures

    CERN Document Server

    Baianu, I C

    2004-01-01

    In recent studies we showed that the earlier relational theories of organismic sets (Rashevsky,1967), Metabolic-Replication (M,R)-systems (Rosen,1958)and molecular sets (Bartholomay,1968) share a joint foundation that can be studied within a unified categorical framework of functional organismic structures (Baianu,1980. This is possible because all relational theories have a biomolecular basis, that is, complex structures such as genomes, cells,organs and biological organisms are mathematically represented in terms of biomolecular properties and entities,(that are often implicit in their representation axioms. The definition of organismic sets, for example, requires that certain essential quantities be determined from experiment: these are specified by special sets of values of general observables that are derived from physicochemical measurements(Baianu,1970; Baianu,1980; Baianu et al, 2004a.)Such observables are context-dependent and lead directly to natural transformations in categories and Topoi, that are...

  6. Synthetic biology: Tailor-made genetic codes

    Science.gov (United States)

    Jewett, Michael C.; Noireaux, Vincent

    2016-04-01

    Expanding the range of amino acids polymerizable by ribosomes could enable new functionalities to be added to polypeptides. Now, the genetic code has been reprogrammed using a reconstituted in vitro translation system to enable synthesis of unnatural peptides with unmatched flexibility.

  7. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    Directory of Open Access Journals (Sweden)

    George H Sakorafas

    2012-07-01

    Full Text Available Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years. Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Results Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active etc. Conclusion Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology

  8. Pulsed-Field Gel Electrophoresis (PFGE) Technique and its use in Molecular Biology

    OpenAIRE

    BASIM, Esin (HACIOĞLU)

    2001-01-01

    In recent years, the use of pulsed-field gel electrophoresis (PFGE) in the molecular biology area has been subject to much research. PFGE is a powerful tool for characterizing various strains at the DNA level, obtaining relevant information on genome size and constructing the physical and genetic map of the chromosome of bacteria that are poorly understood at the genetic level as well as in separating chromosomes in microorganisms, and in the long-range mapping of mammalian genes. PFGE also h...

  9. Child Development and Molecular Genetics: 14 Years Later

    Science.gov (United States)

    Plomin, Robert

    2013-01-01

    Fourteen years ago, the first article on molecular genetics was published in this journal: "Child Development, Molecular Genetics, and What to Do With Genes Once They Are Found" (R. Plomin & M. Rutter, 1998). The goal of the article was to outline what developmentalists can do with genes once they are found. These new directions for developmental…

  10. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-01-01

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer. PMID:21696623

  11. Review and application of group theory to molecular systems biology

    Directory of Open Access Journals (Sweden)

    Rietman Edward A

    2011-06-01

    Full Text Available Abstract In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  12. Biological Information Transfer Beyond the Genetic Code: The Sugar Code

    Science.gov (United States)

    Gabius, H.-J.

    In the era of genetic engineering, cloning, and genome sequencing the focus of research on the genetic code has received an even further accentuation in the public eye. In attempting, however, to understand intra- and intercellular recognition processes comprehensively, the two biochemical dimensions established by nucleic acids and proteins are not sufficient to satisfactorily explain all molecular events in, for example, cell adhesion or routing. The consideration of further code systems is essential to bridge this gap. A third biochemical alphabet forming code words with an information storage capacity second to no other substance class in rather small units (words, sentences) is established by monosaccharides (letters). As hardware oligosaccharides surpass peptides by more than seven orders of magnitude in the theoretical ability to build isomers, when the total of conceivable hexamers is calculated. In addition to the sequence complexity, the use of magnetic resonance spectroscopy and molecular modeling has been instrumental in discovering that even small glycans can often reside in not only one but several distinct low-energy conformations (keys). Intriguingly, conformers can display notably different capacities to fit snugly into the binding site of nonhomologous receptors (locks). This process, experimentally verified for two classes of lectins, is termed "differential conformer selection." It adds potential for shifts of the conformer equilibrium to modulate ligand properties dynamically and reversibly to the well-known changes in sequence (including anomeric positioning and linkage points) and in pattern of substitution, for example, by sulfation. In the intimate interplay with sugar receptors (lectins, enzymes, and antibodies) the message of coding units of the sugar code is deciphered. Their recognition will trigger postbinding signaling and the intended biological response. Knowledge about the driving forces for the molecular rendezvous, i

  13. Molecular and Biological Analysis of Potato virus M (PVM) Isolates from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Vaculík, Petr; Čeřovská, Noemi; Moravec, Tomáš; Dědič, P.

    2015-01-01

    Roč. 163, 11-12 (2015), s. 1031-1035. ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional support: RVO:61389030 Keywords : Czech Republic * phylogeny * Potato virus M Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.820, year: 2014

  14. Molecular genetic studies in flax (Linum usitatissimum L.)

    NARCIS (Netherlands)

    Vromans, J.

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of AF

  15. 2003 Archaea: Ecology, Metabolism and Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Richard F. Shand

    2004-09-21

    The Gordon Research Conference (GRC) on 2003 Archaea: Ecology, Metabolism and Molecular Biology was held at Proctor Academy, Andover, NH from August 3-8, 2003. The Conference was well-attended with 150 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, ''free time'' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field. I want to personally thank you for your support of this Conference. As you know, in the interest of promoting the presentation of unpublished and frontier-breaking research, Gordon Research Conferences does not permit publication of meeting proceedings. If you wish any further details, please feel free to contact me. Thank you, Dr. Richard F. Shand, 2003 Conference Chair.

  16. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  17. Fluctuation as a tool of biological molecular machines.

    Science.gov (United States)

    Yanagida, Toshio

    2008-01-01

    The mechanism for biological molecular machines is different from that of man-made ones. Recently single molecule measurements and other experiments have revealed unique operations where biological molecular machines exploit thermal fluctuation in response to small inputs of energy or signals to achieve their function. Understanding and applying this mechanism to engineering offers new artificial machine designs. PMID:18583025

  18. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  19. A possible molecular metric for biological evolvability

    Indian Academy of Sciences (India)

    Aditya Mittal; B Jayaram

    2012-07-01

    Proteins manifest themselves as phenotypic traits, retained or lost in living systems via evolutionary pressures. Simply put, survival is essentially the ability of a living system to synthesize a functional protein that allows for a response to environmental perturbations (adaptation). Loss of functional proteins leads to extinction. Currently there are no universally applicable quantitative metrics at the molecular level for either measuring ‘evolvability’ of life or for assessing the conditions under which a living system would go extinct and why. In this work, we show emergence of the first such metric by utilizing the recently discovered stoichiometric margin of life for all known naturally occurring (and functional) proteins. The constraint of having well-defined stoichiometries of the 20 amino acids in naturally occurring protein sequences requires utilization of the full scope of degeneracy in the genetic code, i.e. usage of all codons coding for an amino acid, by only 11 of the 20 amino acids. This shows that the non-availability of individual codons for these 11 amino acids would disturb the fine stoichiometric balance resulting in non-functional proteins and hence extinction. Remarkably, these amino acids are found in close proximity of any given amino acid in the backbones of thousands of known crystal structures of folded proteins. On the other hand, stoichiometry of the remaining 9 amino acids, found to be farther/distal from any given amino acid in backbones of folded proteins, is maintained independent of the number of codons available to synthesize them, thereby providing some robustness and hence survivability.

  20. The nucleic acid revolution continues – will forensic biology become forensic molecular biology?

    OpenAIRE

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emer...

  1. Molecular genetic strategies for species identification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper probes into the molecular genetic mechanism of the formation of species, subspecies and variety in evolving progression, and brings forward 5 criteria of an ideal strategy in species identification: stating the specific characteristics at species, subspecies and variety level without any interference of too high polymorphism at individual or population level; keys should be distributed as 0 or 1, e. g. yes or no; satisfying re-peatability and simple operation; high veracity and reliability; adaptability to widely various specimen. Respec-tively, this paper reviews two strategies focusing on detecting the fragment length polymorphism and base re-placement and lays out some detail methods under above strategies. It demonstrates that it is not possible to solve all species problems by pursuing identification with only a single gene or DNA fragment. Only based on thorough consideration of all strategies, a method or combined several methods could bring satisfying reliability. For advanced focuses, it requires not only development and optimization of methods under above strategies, but also new originality of creative strategies.

  2. Molecular genetic diversity of Punica granatum L. (pomegranate) as revealed by microsatellite DNA markers

    Science.gov (United States)

    Pomegranate (Punica granatum L.) is one of the oldest known edible fruits and more and more it arouse interest of scientific community given its numerous biological activities. However, information about its genetic resources and characterization using reliable molecular markers are still scarce. In...

  3. Molecular genetic studies in flax (Linum usitatissimum L.)

    OpenAIRE

    Vromans, J

    2006-01-01

    In this thesis five molecular genetic studies on flax ( Linum usitatissimum L.) are described, of which two chapters aim to characterize the genetic structure and the amount of genetic diversity in the primary and secondary gene pool of the crop species. Three chapters describe the development of AFLP markers, linkage map construction and QTL analysis of resistance and quality traits.Genetic diversity in the primary gene pool was studied by AFLP fingerprinting 110 varieties representing linse...

  4. Genomics and Genetics in the Biology of Adaptation to Exercise

    OpenAIRE

    Bouchard, Claude; Rankinen, Tuomo; Timmons, James A.

    2011-01-01

    This chapter is devoted to the role of genetic variation and gene-exercise interactions in the biology of adaptation to exercise. There is evidence from genetic epidemiology research that DNA sequence differences contribute to human variation in physical activity level, cardiorespiratory fitness in the untrained state, cardiovascular and metabolic response to acute exercise, and responsiveness to regular exercise. Methodological and technological advances have made it possible to undertake th...

  5. Osteosarcoma Genetics and Epigenetics: Emerging Biology and Candidate Therapies

    Science.gov (United States)

    Morrow, James J.; Khanna, Chand

    2016-01-01

    Osteosarcoma is the most common primary malignancy of bone, typically presenting in the first or second decade of life. Unfortunately, clinical outcomes for osteosarcoma patients have not substantially improved in over 30 years. This stagnation in therapeutic advances is perhaps explained by the genetic, epigenetic, and biological complexities of this rare tumor. In this review we provide a general background on the biology of osteosarcoma and the clinical status quo. We go on to enumerate the genetic and epigenetic defects identified in osteosarcoma. Finally, we discuss ongoing large-scale studies in the field and potential new therapies that are currently under investigation. PMID:26349415

  6. Interactive analysis of systems biology molecular expression data

    OpenAIRE

    Prabhakar Sunil; Salt David E; Kane Michael D; Stephenson Alan; Ouyang Qi; Zhang Mingwu; Burgner John; Buck Charles; Zhang Xiang

    2008-01-01

    Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferr...

  7. Molecular genetic diversity in populations of the stingless bee Plebeia remota: A case study

    Directory of Open Access Journals (Sweden)

    Flávio de Oliveira Francisco

    2013-01-01

    Full Text Available Genetic diversity is a major component of the biological diversity of an ecosystem. The survival of a population may be seriously threatened if its genetic diversity values are low. In this work, we measured the genetic diversity of the stingless bee Plebeia remota based on molecular data obtained by analyzing 15 microsatellite loci and sequencing two mitochondrial genes. Population structure and genetic diversity differed depending on the molecular marker analyzed: microsatellites showed low population structure and moderate to high genetic diversity, while mitochondrial DNA (mtDNA showed high population structure and low diversity in three populations. Queen philopatry and male dispersal behavior are discussed as the main reasons for these findings.

  8. Unconventional biological threats and the molecular biological response to biological threats.

    Science.gov (United States)

    Greenfield, Ronald A; Lutz, Brock D; Huycke, Mark M; Gilmore, Michael S

    2002-06-01

    This article concludes this symposium on potential agents of warfare and terrorism with discussion of 3 topics. First, influenza A virus is discussed as a potential biological weapon. Although it does not receive much attention in this role, the potential for mass casualties and public panic certainly exist if an epidemic of a virulent influenza A virus were initiated. Second, agroterrorism, terrorism directed at livestock or poultry or crops, is briefly discussed. Finally, the potential role of techniques of modern molecular biology to create new agents for bioterrorism or enhance the terrorist potential of available agents, and the known roles of these techniques in defense against biological warfare or terrorism are discussed. PMID:12074489

  9. Apocalypse... Now? Molecular epidemiology, predictive genetic tests, and social communication of genetic contents

    Directory of Open Access Journals (Sweden)

    Luis David Castiel

    1999-01-01

    Full Text Available The author analyzes the underlying theoretical aspects in the construction of the molecular watershed of epidemiology and the concept of genetic risk, focusing on issues raised by contemporary reality: new technologies, globalization, proliferation of communications strategies, and the dilution of identity matrices. He discusses problems pertaining to the establishment of such new interdisciplinary fields as molecular epidemiology and molecular genetics. Finally, he analyzes the repercussions of the social communication of genetic content, especially as related to predictive genetic tests and cloning of animals, based on triumphal, deterministic metaphors sustaining beliefs relating to the existence and supremacy of concepts such as 'purity', 'essence', and 'unification' of rational, integrated 'I's/egos'.

  10. Apocalypse...now? Molecular epidemiology, predictive genetic tests, and social communication of genetic contents.

    Science.gov (United States)

    Castiel, L D

    1999-01-01

    The author analyzes the underlying theoretical aspects in the construction of the molecular watershed of epidemiology and the concept of genetic risk, focusing on issues raised by contemporary reality: new technologies, globalization, proliferation of communications strategies, and the dilution of identity matrices. He discusses problems pertaining to the establishment of such new interdisciplinary fields as molecular epidemiology and molecular genetics. Finally, he analyzes the repercussions of the social communication of genetic content, especially as related to predictive genetic tests and cloning of animals, based on triumphal, deterministic metaphors sustaining beliefs relating to the existence and supremacy of concepts such as 'purity', 'essence', and 'unification' of rational, integrated 'I's/egos'. PMID:10089550

  11. Molecular biology techniques and applications for ocean sensing

    Directory of Open Access Journals (Sweden)

    J. P. Zehr

    2008-11-01

    Full Text Available The study of marine microorganisms using molecular biological techniques is now widespread in the ocean sciences. These techniques target nucleic acids which record the evolutionary history of microbes, and encode for processes which are active in the ocean today. Here we review some of the most commonly used molecular biological techniques. Molecular biological techniques permit study of the abundance, distribution, diversity, and physiology of microorganisms in situ. These techniques include the polymerase chain reaction (PCR and reverse-transcriptase PCR, quantitative PCR, whole assemblage "fingerprinting" approaches (based on nucleic acid sequence or length heterogeneity, oligonucleotide microarrays, and high-throughput shotgun sequencing of whole genomes and gene transcripts, which can be used to answer biological, ecological, evolutionary and biogeochemical questions in the ocean sciences. Moreover, molecular biological approaches may be deployed on ocean sensor platforms and hold promise for tracking of organisms or processes of interest in near-real time.

  12. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  13. ADVANCES OF BASIC MOLECULAR BIOLOGY TECHNIQUES: POTENTIAL TO APPLY IN PLANT VIROID DETECTION IN SRI LANKA

    Directory of Open Access Journals (Sweden)

    Yapa M.A.M. Wijerathna

    2012-12-01

    Full Text Available Viroids are the smallest pathogens of plants. They are the cause of serious diseases on economic plants worldwide. Prevention and detection of the pathogens are the best method to reduce the economic loss from viroid infection. During last decade, genetics and molecular biology techniques have gained an increasing presence in plant pathology research. The purpose of this review is to highlight the most upgrade molecular biology techniques that have been used and studied recently. Most relevant published reports and hand skilled techniques have presented here with emphasis on suitable Viroid detection technique should be used for Sri Lanka.

  14. Molecular genetics of type 2 diabetes

    OpenAIRE

    Luosheng, Li

    2002-01-01

    Type 2 diabetes is a common and chronic disease caused by interactions between genetic and environmental factors. The Goto-Kakizaki (GK) rat is a well-established genetic model of type 2 diabetes. Since several aspects of the pathophysiology of diabetes are shared between human and GK rats, we used this model to perform the first genome-wide scan for quantitative trait locus (QTL) of type 2 diabetes. A genetic linkage map with 530 microsatellite markers was constructed in ...

  15. Newcastle disease: Molecular-biological diagnosis in the Russian Federation

    International Nuclear Information System (INIS)

    Newcastle disease is registered in the Russian Federation and for last time it is seen an upward tendency of ND outbreaks in backyards poultry due to lack of specific prophylaxis. Reports on ND outbreaks from 2004 to 2007 submitted to OIE are shown. The use of molecular-biological methods can reveal ND virus in the lab. ARRIAH has acquired practical experience in the diagnosis of ND virus and holds data on ND viruses identified or isolated in the course of the current diagnostic and monitoring investigations of samples from wild and domestic birds. The developed set of molecular-biological methods allows ND virus to be reliably and rapidly detected in field samples. They are also able to characterize ND viruses with F-gene sequencing that can be used for the assessment of potential virulence, their phylogenetic belonging which will aid in making decisions of how to fight the disease, to trace a possible source of infection and further spread. The developed set of molecular-biological methods of ND diagnosis includes: - ND virus detection with RT-PCR and F-gene sequencing, determination of potential virulence based on F0-amino acid restriction site; - ND virus detection with RT-PCR and ND-gene sequencing; - ND virus detection with RT-PCR and vaccine strain La-Sota differentiation based on the Fgene; - Genotyping of ND viruses revealed in Russia Genetic characterization of ND viruses allows rapid and reliable determination of their group belonging and also helps make conclusions about presence or absence of any epizootic links among outbreaks, their possible source, spread routes, current and potential threat to poultry farms. A total of 657 field samples from wild and domestic birds were PCR tested in 2007. The samples covered 20 regions of Russia and the Ukraine. ND virus was found in 8 regions of Russia. 516 samples were from wild birds with 9 positive results and 141 samples were from domestic birds with 16 positive results. PCR and sequencing identified 17

  16. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  17. Endometrial cancer : from a molecular genetic perspective

    NARCIS (Netherlands)

    E. Smid-Koopman (Ellen)

    2002-01-01

    textabstractThe first observations indicative of a role of genetic factors in carcinogenesis were made as early as 1912, when Rous demonstrated that a filterable agent (i.e. virus) could induce cancer in chicken (Rous 1965). In 1914, Boveri postulated a "genetic" theory on carcinogenesis by hypothes

  18. Genética molecular: avanços e problemas Molecular genetics: advances and problems

    Directory of Open Access Journals (Sweden)

    Eloi S. Garcia

    1996-03-01

    Full Text Available Este artigo traz a discussão sobre genética molecular em saúde ao campo da saúde pública. Com a revolução produzida pela chegada da engenharia genética, é importante discutir alguns dos avanços e problemas desta tecnologia para a sociedade. Está na hora de se fazer uma avaliação clara e bem informada acerca do que já se conseguiu e do que ainda podemos conseguir através desta tecnologia. A sociedade precisa compreender as implicações éticas e práticas de uma tecnologia capaz de produzir drogas milagrosas, dagnósticos modernos e a cura de todas as doenças. Alguns pontos particularmente delicados pertinentes às questões sociais ligadas à biologia molecular e ao projeto genoma humano são discutidos.This article is an attempt to draw the discussion on molecular genetics in health into the public health domain. Now that the genetic engineering revolution has arrived, it is important to point out the advances and problems this technology poses for society. It is time for a clear, informed assessment of what we have already achieved and may soon achieve using this technology. Clearly, society needs to understand the ethical and practical implications of a technology which can produce miracle drugs and modern diagnoses and cure virtually every disease. Important points from sensitive social issues raised by molecular biology and the human genome project are discussed.

  19. Molecular techniques for detection of genetic variation in horticultural crops

    International Nuclear Information System (INIS)

    The application of molecular techniques in cultivar identification and classification of some horticultural fruit crops are briefly reviewed in this paper. Two distinct approaches have been utilized including electrophoresis of polymorphic isozymes and DNA Amplification Fingerprintings; DAFs. Such markers were successfully employed in distinguishing genetic variability and generated genetic relatedness dendrogram among closely related cultivars of Salacca species, and Lansium domesticum Correa. (author)

  20. Structural Biology and Molecular Applications Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  1. Cell and molecular biology. 8th Edition

    Energy Technology Data Exchange (ETDEWEB)

    De Robertis

    1987-01-01

    Extensively revised and reorganized, this edition can be considered a new book. The chapters on the cell membrane, cell interactions, cytoskeleton and cell motility, cell secretion, interphase nucleus, the genetic code and genetic engineering, transcription and processing of RNA, ribosomes and protein synthesis, gene regulation and differentiation are completely rewritten. More than half of the 504 illustrations are new. The discussions are concise and easy to read. Each chapter offers an introduction to the broad objectives of that chapter and concluding summary paragraphs which underscore the important points.

  2. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  3. Molecular biology of fuselloviruses and their satellites

    DEFF Research Database (Denmark)

    Contursi, Patrizia; Fusco, Salvatore; Cannio, Raffaele;

    2014-01-01

    Fuselloviruses, also known as Sulfolobus Spindle-shaped viruses (SSVs), are "lemon"- or "spindle"-shaped double-stranded DNA viruses. Among them, SSV1, SSV2 and the satellite viruses pSSVx and pSSVi have been investigated at the structural, genetic, transcriptomic, proteomic and biochemical level...

  4. Molecular genetics and clinical applications for RH

    OpenAIRE

    Flegel, Willy A.

    2011-01-01

    Rhesus is the clinically most important protein-based blood group system. It represents the largest number of antigens and the most complex genetics of the 30 known blood group systems. The RHD and RHCE genes are strongly homologous. Some genetic complexity is explained by their close chromosomal proximity and unusual orientation, with their tail ends facing each other. The antigens are expressed by the RhD and the RhCE proteins. Rhesus exemplifies the correlation of genotype and phenotype, f...

  5. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  6. 09091 Executive Summary -- Formal Methods in Molecular Biology

    OpenAIRE

    Breitling, Rainer; Gilbert, David Roger; Heiner, Monika; Priami, Corrado

    2009-01-01

    Formal logical models play an increasing role in the newly emerging field of Systems Biology. Compared to the classical, well-established approach of modeling biological processes using continuous and stochastic differential equations, formal logical models offer a number of important advantages. Many different formal modeling paradigms have been applied to molecular biology, each with its own community, formalisms and tools. In this seminar we brought together modelers from variou...

  7. Molecular biological enhancement of coal biodesulfurization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Litchfield, J.H.; Zupancic, T.J.; Kittle, J.D. Jr.; Baker, B.; Palmer, D.T.; Traunero, C.G.; Wyza, R.E.; Schweitzer, A.; Conkle, H.N. [Battelle, Columbus, OH (United States); Chakravarty, L.; Tuovinen, O.H. [Ohio State Univ., Columbus, OH (United States)

    1992-10-08

    Progress is reported in understanding Thiobacillus molecular biology, specifically in the area of vector development. At the initiation of this program, the basic elements needed for performing genetic engineering in T. ferrooxidans were either not yet developed. Improved techniques are described which will make it easier to construct and analyze the genetic structure and metabolism of recombinant T. ferrooxidans. The metabolism of the model organic sulfur compound dibenzothiophene (DBT) by certain heterotrophic bacteria was confirmed and characterized. Techniques were developed to analyze the metabolites of DBT, so that individual 4S pathway metabolites could be distinguished. These techniques are expected to be valuable when engineering organic sulfur metabolism in Thiobacillus. Strain isolation techniques were used to develop pure cultures of T. ferrooxidans seven of which were assessed as potential recombinant hosts. The mixotrophic strain T. coprinus was also characterized for potential use as an electroporation host. A family of related Thiobacillus plasmids was discovered in the seven strains of P. ferrooxidans mentioned above. One of these plasmids, pTFI91, was cloned into a pUC-based plasmid vector, allowing it to propagate in E. coli. A key portion of the cloned plasmid was sequenced. This segment, which is conserved in all of the related plasmids characterized, contains the vegetative origin of DNA replication, and fortuitously, a novel insertion sequence, designated IS3091. The sequence of the DNA origin revealed that these Thiobacillus plasmids represent a unique class of replicons not previously described. The potentially useful insertion sequence IS3091 was identified as a new member of a previously undefined family of insertion sequences which include the E. coli element IS30.

  8. Genetic determinism in the Finnish upper secondary school biology textbooks

    Directory of Open Access Journals (Sweden)

    Tuomas Aivelo

    2015-05-01

    Full Text Available Genetics is a fast-developing field and it has been argued that genetics education is lagging behind. Genetics education has, for example, been suspected of indoctrinating strong genetic determinism. As the updating of the national upper secondary school curricula is about to start, we decided to study how the current curriculum manifests in Finnish biology textbooks. We studied the main four textbooks for historical gene models and definitions of genes using content analysis. Hybrid models were pervasive in textbooks. The textbooks expressed sometimes even strong genetic determinism, which might be linked to the dominance of older historical models in the textbooks. We also found instances of determinism which we call ‘weak determinism’: genes were depicted as more important factor than environment in relation to the expressed properties. Subsequently, there were no modern gene models found. We suggest gene models should be presented explicitly to reduce misconceptions about genes. We argue that genetics education needs to take more into account than environmental effects and there needs to be more emphasis on the temporal and developmental aspect of genotype-phenotype link. Specifically in Finland this could be done by a more explicit formulation of the national curriculum.

  9. A new holistic genome viewer for molecular genetics.

    NARCIS (Netherlands)

    H.J.F.M.M. Eussen (Bert); M.J. Moorhouse (Michael); M. Lesnussa (Michael); M. Muetgeert (Maarten); T.A. Knoch (Tobias)

    2006-01-01

    textabstractGenomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of the

  10. A new holistic genome viewer for molecular genetics

    NARCIS (Netherlands)

    T.A. Knoch (Tobias); L.V. de Zeeuw (Luc)

    2006-01-01

    textabstractGenomes are tremendous co-evolutionary holistic systems for molecular storage, processing and fabrication of information. Their system-biological complexity remains, however, still largely mysterious, despite immense sequencing achievements and huge advances in the understanding of th

  11. The cellular and molecular biology of medulloblastoma

    NARCIS (Netherlands)

    Peringa, A; Fung, KM; Muragaki, Y; Trojanowski, JQ

    1995-01-01

    Medulloblastomas are prototypical of primitive neuroectodermal tumors which are some of the most frequent malignant brain tumors of childhood. The cell biology of medulloblastomas is still poorly understood, but recent studies of the expression of trophic factors and their receptors in medulloblasto

  12. MODEL ORGANISMS USED IN MOLECULAR BIOLOGY OR MEDICAL RESEARCH

    Directory of Open Access Journals (Sweden)

    Pandey Govind

    2011-11-01

    Full Text Available A model organism is a non-human species that is studied to understand specific biological phenomena with the expectation that investigations made in the organism model will provide insight into the workings of other organisms. The model organisms are widely used to explore potential causes and treatments for human as well as animal diseases when experiments on animals or humans would be unfeasible or considered less ethical. Studying model organisms may be informative, but care must be taken when generalizing from one organism to another. Often, model organisms are chosen on the basis that they are amenable to experimental manipulation. When researchers look for an organism to use in their studies, they look for several traits. Among these are size, generation time, accessibility, manipulation, genetics, conservation of mechanisms and potential economic benefit. As comparative molecular biology has become more common, some researchers have sought model organisms from a wider assortment of lineages on the tree of life. There are many model organisms, such as viruses (e.g., Phage lambda virus, Tobacco mosaic virus, etc., bacteria (e.g., Bacillus subtilis, Escherichia coli, Pseudomonas fluorescens, Vibrio fischeri, etc., algae (e.g., Chlamydomonas reinhardtii, Emiliania huxleyi, etc., molds (e.g., Aspergillus nidulans, Neurospora crassa, etc., yeasts (e.g., Saccharomyces cerevisiae, Ustilago maydis, etc., higher plants (e.g., Arabidopsis thaliana, Lemna gibba, Lotus japonicus, Nicotiana tabaccum, Oryza sativa, Physcomitrella patens, Zea mays, etc. and animals (e.g., Caenorhabditis elegans, guinea pig, hamster, mouse, rat, cat, chicken, dog, frog, Hydra, Drosophila melanogaster fruit fly, fish, etc..

  13. Genetics of obesity in adult adoptees and their biological siblings.

    OpenAIRE

    Sørensen, T. I.; Price, R A; Stunkard, A. J.; Schulsinger, F.

    1989-01-01

    An adoption study of genetic effects on obesity in adulthood was carried out in which adoptees separated from their natural parents very early in life were compared with their biological full and half siblings reared by their natural parents. The adoptees represented four groups who by sampling from a larger population were categorised as either thin, medium weight, overweight, or obese. Weight and height were obtained for 115 full siblings of 57 adoptees and for 850 half siblings of 341 adop...

  14. Genetic endothelial systems biology of sickle stroke risk

    OpenAIRE

    Chang Milbauer, Liming; Wei, Peng; Enenstein, Judy; Jiang, Aixiang; Hillery, Cheryl A.; Scott, J. Paul; Nelson, Stephen C.; Bodempudi, Vidya; Topper, James N.; Yang, Ruey-Bing; Hirsch, Betsy; Pan, Wei; Hebbel, Robert P.

    2008-01-01

    Genetic differences in endothelial biology could underlie development of phenotypic heterogeneity among persons afflicted with vascular diseases. We obtained blood outgrowth endothelial cells from 20 subjects with sickle cell anemia (age, 4-19 years) shown to be either at-risk (n = 11) or not-at-risk (n = 9) for ischemic stroke because of, respectively, having or not having occlusive disease at the circle of Willis. Gene expression profiling identified no significant single gene differences b...

  15. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  16. Genetic and molecular abnormalities in cholangiocarcinogenesis.

    Science.gov (United States)

    Hassid, Victor J; Orlando, Frank A; Awad, Ziad T; Tan, Dongfeng; Khoury, Thaer; Ahmed, Bestoun H; Alrawi, Sadir J

    2009-04-01

    Cholangiocarcinomas are biliary tree neoplasms of cholangiocyte origin. Several clinical risk factors are associated with cholangiocarcinogenesis. During the last decade, there has been an increasing interest in the causative molecular mechanisms of cholangiocarcinoma because of its poor prognosis and the lack of effective therapies. A better understanding of cholangiocarcinoma tumor initiation, promotion, and progression, as well as neurotransmitter, neuroendocrine, and endocrine growth effects, may elucidate molecular targets for diagnostic and therapeutic purposes. PMID:19414358

  17. Molecular characterization, biological forms and sporozoite rate of Anopheles stephensi in southern Iran

    Institute of Scientific and Technical Information of China (English)

    Ali Reza Chavshin; Mohammad Ali Oshaghi; Hasan Vatandoost; Ahmad Ali Hanafi-Bojd; Ahmad Raeisi; Fatemeh Nikpoor

    2014-01-01

    Objective: To identify the biological forms, sporozoite rate and molecular characterization of the Anopheles stephensi (An. stephensi) in Hormozgan and Sistan-Baluchistan provinces, the most important malarious areas in Iran. Methods: Wild live An. stephensi samples were collected from different malarious areas in southern Iran. The biological forms were identified based on number of egg-ridges. Molecular characterization of biological forms was verified by analysis of the mitochondrial cytochrome oxidase subunit I and II (mtDNA-COI/COII). The Plasmodium infection was examined in the wild female specimens by species-specific nested–PCR method. Results: Results showed that all three biological forms including mysorensis, intermediate and type are present in the study areas. Molecular investigations revealed no genetic variation between mtDNA COI/COII sequences of the biological forms and no Plasmodium parasites was detected in the collected mosquito samples. Conclusions:Presence of three biological forms with identical sequences showed that the known biological forms belong to a single taxon and the various vectorial capacities reported for these forms are more likely corresponded to other epidemiological factors than to the morphotype of the populations. Lack of malaria parasite infection in An. stephensi, the most important vector of malaria, may be partly due to the success and achievement of ongoing active malaria control program in the region.

  18. Assessing the molecular genetics of attention networks

    Directory of Open Access Journals (Sweden)

    Pfaff Donald W

    2002-10-01

    Full Text Available Abstract Background Current efforts to study the genetic underpinnings of higher brain functions have been lacking appropriate phenotypes to describe cognition. One of the problems is that many cognitive concepts for which there is a single word (e.g. attention have been shown to be related to several anatomical networks. Recently, we have developed an Attention Network Test (ANT that provides a separate measure for each of three anatomically defined attention networks. Results In this study we have measured the efficiency of neural networks related to aspects of attention using the ANT in a population of 200 adult subjects. We then examined genetic polymorphisms in four candidate genes (DRD4, DAT, COMT and MAOA that have been shown to contribute to the risk of developing various psychiatric disorders where attention is disrupted. We find modest associations of several polymorphisms with the efficiency of executive attention but not with overall performance measures such as reaction time. Conclusions These results suggest that genetic variation may underlie inter-subject variation in the efficiency of executive attention. This study also shows that genetic influences on executive attention may be specific to certain anatomical networks rather than affecting performance in a global or non-specific manner. Lastly, this study further validates the ANT as an endophenotypic assay suitable for assessing how genes influence certain anatomical networks that may be disrupted in various psychiatric disorders.

  19. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show

    Directory of Open Access Journals (Sweden)

    Md. Al Mamun

    2011-11-01

    Full Text Available From the conventional Bird’s eye, cancer initiation and metastasis are generally intended to be understood beneath the light of classical clonal genetic, epigenetic and cancer stem cell model. But inspite decades of investigation, molecular biology has shown hard success to give Eagle’s eye in unraveling the riddle of cancer. And it seems, tiring Tom runs in vague behind naughty Jerry.

  20. Rett syndrome molecular diagnosis and implications in genetic counseling

    Directory of Open Access Journals (Sweden)

    Noruzinia M

    2007-01-01

    Full Text Available Rett syndrome is a rare genetic X-linked dominant disorder. This syndrome is the most frequent cause of mental retardation in girls. In the classical form of the disease, the presenting signs and the course of development are characteristic. However clinical diagnosis can be very difficult when the expression is not in the classical form. Mutations in MeCP2 are responsible for 80% of cases. When MeCP2 mutation is found in an index case, genetic counseling is similar to that in other X-linked dominant genetic diseases. However, mutations in this gene can cause a spectrum of atypical forms. On the other hand, other genetic conditions like translocations, sex chromosome numerical anomalies, and mutations in other genes can complicate genetic counseling in this syndrome. We present the first case of molecular diagnosis of Rett syndrome in Iran and discuss the recent developments in its genetic counseling.

  1. Genetic variants in Alzheimer disease - molecular and brain network approaches.

    Science.gov (United States)

    Gaiteri, Chris; Mostafavi, Sara; Honey, Christopher J; De Jager, Philip L; Bennett, David A

    2016-07-01

    Genetic studies in late-onset Alzheimer disease (LOAD) are aimed at identifying core disease mechanisms and providing potential biomarkers and drug candidates to improve clinical care of AD. However, owing to the complexity of LOAD, including pathological heterogeneity and disease polygenicity, extraction of actionable guidance from LOAD genetics has been challenging. Past attempts to summarize the effects of LOAD-associated genetic variants have used pathway analysis and collections of small-scale experiments to hypothesize functional convergence across several variants. In this Review, we discuss how the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants. We then discuss emerging combinations of these omic data sets into multiscale models, which provide a more comprehensive representation of the effects of LOAD-associated genetic variants at multiple biophysical scales. Furthermore, we highlight the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models. PMID:27282653

  2. Molecular Genetics Techniques to Develop New Treatments for Brain Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Jacob; Fathallan-Shaykh, Hassan

    2006-09-22

    The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

  3. Quantitative Genetics in the Era of Molecular Genetics: Learning Abilities and Disabilities as an Example

    Science.gov (United States)

    Haworth, Claire M. A.; Plomin, Robert

    2010-01-01

    Objective: To consider recent findings from quantitative genetic research in the context of molecular genetic research, especially genome-wide association studies. We focus on findings that go beyond merely estimating heritability. We use learning abilities and disabilities as examples. Method: Recent twin research in the area of learning…

  4. Neuroblastoma: morphological pattern, molecular genetic features, and prognostic factors

    Directory of Open Access Journals (Sweden)

    A. M. Stroganova

    2016-01-01

    Full Text Available Neuroblastoma, the most common extracranial tumor of childhood, arises from the developing neurons of the sympathetic nervous system (neural cress stem cells and has various biological and clinical characteristics. The mean age at disease onset is 18 months. Neuroblastoma has a number of unique characteristics: a capacity for spontaneous regression in babies younger than 12 months even in the presence of distant metastases, for differentiation (maturation into ganglioneuroma in infants after the first year of life, and for swift aggressive development and rapid metastasis. There are 2 clinical classifications of neuroblastoma: the International neuroblastoma staging system that is based on surgical results and the International Neuroblastoma Risk Group Staging System. One of the fundamentally important problems for the clinical picture of neuroblastoma is difficulties making its prognosis. Along with clinical parameters (a patient’s age, tumor extent and site, some histological, molecular biochemical (ploidy and genetic (chromosomal aberrations, MYCN gene status, deletion of the locus 1p36 and 11q, the longer arm of chromosome 17, etc. characteristics of tumor cells are of considerable promise. MYCN gene amplification is observed in 20–30 % of primary neuroblastomas and it is one of the major indicators of disease aggressiveness, early chemotherapy resistance, and a poor prognosis. There are 2 types of MYCN gene amplification: extrachromosomal (double acentric chromosomes and intrachromosomal (homogenically painted regions. Examination of double acentric chromosomes revealed an interesting fact that it may be eliminated (removed from the nucleus through the formation of micronuclei. MYCN oncogene amplification is accompanied frequently by 1p36 locus deletion and longer 17q arm and less frequently by 11q23 deletion; these are poor prognostic factors for the disease. The paper considers in detail the specific, unique characteristics of the

  5. Molecular genetics of dyslexia: An overview

    OpenAIRE

    2013-01-01

    Dyslexia is a highly heritable learning disorder with a complex underlying genetic architecture. Over the past decade, researchers have pinpointed a number of candidate genes that may contribute to dyslexia susceptibility. Here, we provide an overview of the state of the art, describing how studies have moved from mapping potential risk loci, through identification of associated gene variants, to characterization of gene function in cellular and animal model systems. Work thus far has highlig...

  6. Molecular genetics and pathogenesis of Clostridium perfringens.

    OpenAIRE

    Rood, J I; Cole, S T

    1991-01-01

    Clostridium perfringens is the causative agent of a number of human diseases, such as gas gangrene and food poisoning, and many diseases of animals. Recently significant advances have been made in the development of C. perfringens genetics. Studies on bacteriocin plasmids and conjugative R plasmids have led to the cloning and analysis of many C. perfringens genes and the construction of shuttle plasmids. The relationship of antibiotic resistance genes to similar genes from other bacteria has ...

  7. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    Science.gov (United States)

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  8. Genetic and Molecular Abnormalities in Cholangiocarcinogenesis

    OpenAIRE

    Hassid, Victor J.; ORLANDO, FRANK A.; Ziad T Awad; Tan, Dongfeng; Khoury, Thaer; Ahmed, Bestoun H.; Alrawi, Sadir J.

    2009-01-01

    Cholangiocarcinomas are biliary tree neoplasms of cholangiocyte origin. Several clinical risk factors are associated with cholangiocarcinogenesis. During the last decade, there has been an increasing interest in the causative molecular mechanisms of cholangiocarcinoma because of its poor prognosis and the lack of effective therapies. A better understanding of cholangiocarcinoma tumor initiation, promotion, and progression, as well as neurotransmitter, neuroendocrine, and endocrine growth effe...

  9. [Research progress on molecular genetics of forest musk deer].

    Science.gov (United States)

    Jie, Hang; Zheng, Cheng-li; Wang, Jian-ming; Feng, Xiao-lan; Zeng, De-jun; Zhao, Gui-jun

    2015-11-01

    Forest musk deer is one of the large-scale farming musk deer animals with the largest population at the same time. The male musk deer can secrete valuable medicines, which has high medicinal and economic value. Due to the loss of habitat and indiscriminate hunting, the numbers of wild population specie and the distribution have been drastically reduced. Therefore, in-depth understanding of the molecular genetics progress of forest musk deer will pave a way for musk deer protection and breeding. In this review, the progress associated with the molecular marker, genetic classification, artificial breeding, musk secretion and disease in past decades were reviewed, in order to provide a theoretical basis for subsequent molecular genetic researches in forest musk deer. PMID:27097400

  10. Pseudomonas viridiflava, a multi host plant pathogen with significant genetic variation at the molecular level.

    Directory of Open Access Journals (Sweden)

    Panagiotis F Sarris

    Full Text Available The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan, as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB, and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.

  11. Community genetics in the time of next-generation molecular technologies

    OpenAIRE

    Gugerli, F; Brandl, R.; Castagneyrol, B; Franc, A.; Jactel, H.; Koelewijn, H. P.; Martin, F.; Peter, M.; Pritsch, K.; Schröder, H.; Smulders, M.J.M.; Kremer, A; Ziegenhagen, B.

    2013-01-01

    Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next-generation molecular techniques, used in parallel with field-based observ...

  12. Community genetics in the time of next-generation molecular technologies

    OpenAIRE

    Gugerli, Felix; Brandl, Roland; Castagneyrol, Bastien; Franc, Alain; Jactel, Hervé; Koelewijn, Hans-Peter; Martin, Francis; Peter, Martina; Pritsch, Karin; Schroder, Hilke; Smulders, Marinus J. M.; Kremer, Antoine; Ziegenhagen, Birgit

    2013-01-01

    Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next generation molecular techniques, used in parallel with field-based obs...

  13. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 April 2012 – 31 May 2012

    Czech Academy of Sciences Publication Activity Database

    Mendel, Jan; Papoušek, Ivo; Marešová, Eva; Vetešník, Lukáš; Halačka, Karel; Nowak, M.; Čížková, Dagmar

    2012-01-01

    Roč. 12, č. 5 (2012), s. 972-974. ISSN 1755-098X R&D Projects: GA ČR GP206/09/P608 Institutional support: RVO:68081766 Keywords : Romanogobio * gudgeon * microsatellites * hybrid Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.432, year: 2012 http:// tomato .biol.trinity.edu/manuscripts/12-5/mer-12-0021.pdf

  14. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  15. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  16. Primer on Molecular Genetics; DOE Human Genome Program

    Science.gov (United States)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  17. Primer on molecular genetics. DOE Human Genome Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report is taken from the April 1992 draft of the DOE Human Genome 1991--1992 Program Report, which is expected to be published in May 1992. The primer is intended to be an introduction to basic principles of molecular genetics pertaining to the genome project. The material contained herein is not final and may be incomplete. Techniques of genetic mapping and DNA sequencing are described.

  18. Biological Signal Processing with a Genetic Toggle Switch

    OpenAIRE

    Patrick Hillenbrand; Georg Fritz; Ulrich Gerland

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, ...

  19. Archaea: Evolution, Physiology, and Molecular Biology

    DEFF Research Database (Denmark)

    Introduced by Crafoord Prize winner Carl Woese, this volume combines reviews of the major developments in archaeal research over the past 10-15 years with more specialized articles dealing with important recent breakthroughs. Drawing on major themes presented at the June 2005 meeting held in Munich...... to honor the archaea pioneers Wolfram Zillig and Karl O. Stetter, the book provides a thorough survey of the field from its controversial beginnings to its ongoing expansion to include aspects of eukaryotic biology. The editors have assembled articles from the premier researchers in this rapidly...... burgeoning field, including an account by Carl Woese of his original discovery of the Archaea (until 1990 termed archaebacteria) and the initially mixed reactions of the scientific community. The review chapters and specialized articles address the emerging significance of the Archaea within a broader...

  20. Overview of selected molecular biological databases

    Energy Technology Data Exchange (ETDEWEB)

    Rayl, K.D.; Gaasterland, T.

    1994-11-01

    This paper presents an overview of the purpose, content, and design of a subset of the currently available biological databases, with an emphasis on protein databases. Databases included in this summary are 3D-ALI, Berlin RNA databank, Blocks, DSSP, EMBL Nucleotide Database, EMP, ENZYME, FSSP, GDB, GenBank, HSSP, LiMB, PDB, PIR, PKCDD, ProSite, and SWISS-PROT. The goal is to provide a starting point for researchers who wish to take advantage of the myriad available databases. Rather than providing a complete explanation of each database, we present its content and form by explaining the details of typical entries. Pointers to more complete ``user guides`` are included, along with general information on where to search for a new database.

  1. Genetic classification and molecular mechanisms of primary dystonia

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Huifang Shang; Zuming Luo

    2008-01-01

    BACKGROUND: Primary dystonia is a heterogeneous disease, with a complex genetic basis. In previous studies, primary dystonia was classified according to age of onset, involved regions, and other clinical characteristics. With the development of molecular genetics, new virulence genes and sites have been discovered. Therefore, there is a gradual understanding of the various forms of dystonia, based on new viewpoints. There are 15 subtypes of dystonia, based on the molecular level, i.e., DYT1 to DYT15. OBJECTIVE: To analyze the genetic development of dystonia in detail, and to further investigate molecular mechanisms of dystonia. RETRIEVAL STRATEGY: A computer-based online search was conducted in PubMed for English language publications containing the keywords "dystonia and genetic" from January 1980 to March 2007. There were 105 articles in total. Inclusion criteria: ① the contents of the articles should closely address genetic classification and molecular mechanisms of primary dystonia; ② the articles published in recent years or in high-impact journals took preference. Exclusion criteria: duplicated articles. LITERATURE EVALUATION: The selected articles were on genetic classification and molecular genetics mechanism of primary dystonia. Of those, 27 were basic or clinical studies. DATA SYNTHESIS: ① Dystonia is a heterogeneous disease, with a complex genetic basis. According to the classification of the Human Genome Organization, there are 15 dystonia subtypes, based on genetics, i.e., DYT1-DYT15,including primary dystonia, dystonia plus syndrome, degeneration plus dystonia, and paroxysmal dyskinesia plus dystonia. ② To date, the chromosomes of 13 subtypes have been localized; however, DYT2 and DYT4 remain unclear. Six subtypes have been located within virulence genes. Specifically, torsinA gene expression results in the DYT1 genotype; autosomal dominant GTP cyclohydrolase I gene expression and recessive tyrosine hydroxylase expression result in the DYT5

  2. Comparative molecular modelling of biologically active sterols

    Science.gov (United States)

    Baran, Mariusz; Mazerski, Jan

    2015-04-01

    Membrane sterols are targets for a clinically important antifungal agent - amphotericin B. The relatively specific antifungal action of the drug is based on a stronger interaction of amphotericin B with fungal ergosterol than with mammalian cholesterol. Conformational space occupied by six sterols has been defined using the molecular dynamics method to establish if the conformational features correspond to the preferential interaction of amphotericin B with ergosterol as compared with cholesterol. The compounds studied were chosen on the basis of structural features characteristic for cholesterol and ergosterol and on available experimental data on the ability to form complexes with the antibiotic. Statistical analysis of the data obtained has been performed. The results show similarity of the conformational spaces occupied by all the sterols tested. This suggests that the conformational differences of sterol molecules are not the major feature responsible for the differential sterol - drug affinity.

  3. Biological (molecular and cellular) markers of toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Shugart, L.R.; D' Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-12-15

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO{sup 6}-ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O{sup 6}-ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP.

  4. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO6-ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O6-ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  5. The molecular genetics of crop domestication.

    Science.gov (United States)

    Doebley, John F; Gaut, Brandon S; Smith, Bruce D

    2006-12-29

    Ten thousand years ago human societies around the globe began to transition from hunting and gathering to agriculture. By 4000 years ago, ancient peoples had completed the domestication of all major crop species upon which human survival is dependent, including rice, wheat, and maize. Recent research has begun to reveal the genes responsible for this agricultural revolution. The list of genes to date tentatively suggests that diverse plant developmental pathways were the targets of Neolithic "genetic tinkering," and we are now closer to understanding how plant development was redirected to meet the needs of a hungry world. PMID:17190597

  6. Advances in molecular genetic studies of primary dystonia

    Directory of Open Access Journals (Sweden)

    MA Ling-yan

    2013-07-01

    Full Text Available Dystonias are heterogeneous hyperkinetic movement disorders characterized by involuntary muscle contractions which result in twisting, repetitive movements and abnormal postures. In recent years, there was a great advance in molecular genetic studies of primary dystonia. This paper will review the clinical characteristics and molecular genetic studies of primary dystonia, including early-onset generalized torsion dystonia (DYT1, whispering dysphonia (DYT4, dopa-responsive dystonia (DYT5, mixed-type dystonia (DYT6, paroxysmal kinesigenic dyskinesia (DYT10, myoclonus-dystonia syndrome (DYT11, rapid-onset dystonia parkinsonism (DYT12, adult-onset cervical dystonia (DYT23, craniocervical dystonia (DYT24 and primary torsion dystonia (DYT25.

  7. Genetic Breeding and Diversity of the Genus Passiflora: Progress and Perspectives in Molecular and Genetic Studies

    Directory of Open Access Journals (Sweden)

    Carlos Bernard M. Cerqueira-Silva

    2014-08-01

    Full Text Available Despite the ecological and economic importance of passion fruit (Passiflora spp., molecular markers have only recently been utilized in genetic studies of this genus. In addition, both basic genetic researches related to population studies and pre-breeding programs of passion fruit remain scarce for most Passiflora species. Considering the number of Passiflora species and the increasing use of these species as a resource for ornamental, medicinal, and food purposes, the aims of this review are the following: (i to present the current condition of the passion fruit crop; (ii to quantify the applications and effects of using molecular markers in studies of Passiflora; (iii to present the contributions of genetic engineering for passion fruit culture; and (iv to discuss the progress and perspectives of this research. Thus, the present review aims to summarize and discuss the relationship between historical and current progress on the culture, breeding, and molecular genetics of passion fruit.

  8. The surgeon's role in molecular biology.

    Science.gov (United States)

    Rocco, Gaetano

    2012-09-01

    The biomolecular era is rapidly becoming shaped around the supreme interest in targeted therapy for patients with non-small cell lung cancer. Tissue analysis has become crucial in the definition of biomarkers and genomic signatures able to predict the response to treatment or even survival. Lung screening programs and minimally invasive thoracic surgery are jointly aimed at increasing the quantity and quality of specimens of non-small cell lung cancer caught at the earliest stages with the attendant, significant, effect on patient survival. In addition, biomolecular researchers are disclosing an ever-increasing cohort of patients with specific genetic mutations that make their cancer susceptible to individualized treatment. When needed for immunohistochemical characterization, investigators are ready to request "research biopsies" to consolidate tissue availability for clinical trials, translational research, and in biobanks. With unique and diverse tools in the surgical armamentarium, the thoracic surgeon plays a central role in this new multidisciplinary professional environment, actively participating in creating the foundations of the biomolecular era. PMID:22739075

  9. Molecular genetics and epigenetics of CACTA elements

    KAUST Repository

    Fedoroff, Nina V.

    2013-08-21

    The CACTA transposons, so named for a highly conserved motif at element ends, comprise one of the most abundant superfamilies of Class 2 (cut-and-paste) plant transposons. CACTA transposons characteristically include subterminal sequences of several hundred nucleotides containing closely spaced direct and inverted repeats of a short, conserved sequence of 14-15 bp. The Supressor-mutator (Spm) transposon, identified and subjected to detailed genetic analysis by Barbara McClintock, remains the paradigmatic element of the CACTA family. The Spm transposon encodes two proteins required for transposition, the transposase (TnpD) and a regulatory protein (TnpA) that binds to the subterminal repeats. Spm expression is subject to both genetic and epigenetic regulation. The Spm-encoded TnpA serves as an activator of the epigenetically inactivated, methylated Spm, stimulating both transient and heritable activation of the transposon. TnpA also serves as a negative regulator of the demethylated active element promoter and is required, in addition to the TnpD, for transposition. © Springer Science+Business Media, New York 2013.

  10. Molecular and genetic basis of depression

    Indian Academy of Sciences (India)

    Madhumita Roy; Madhu G. Tapadia; Shobhna Joshi; Biplob Koch

    2014-12-01

    Joyousness or sadness is normal reaction to state of life. If any of these lead to certain semi-permanent changes in daily life, then it is termed as mental disorder. Depression is one of the mental disorders with a state of low mood and aversion to activities that exerts a negative effect on a person’s thoughts and behaviour. Adolescent group is probably the world’s largest active group of people, who are getting prone to this state of mind leading to their diminished mental and physical abilities. Depression is closely linked to stress and thus a chronic stressful life can increase the risk of depression. Depression is a complex disease having both genetic and environmental components as contributing factors. In this study an attempt has been made to put forward the understanding of the known genes and their functional relationships with depression and stress with special reference to BDNF and 5-HTTLPR. Analysis of common genetic variants associated with depression, especially in the members of a family who had a previous history, might help in identifying the individuals at risk prior to the onset of depression.

  11. [Molecular biological predictors for kidney cancer].

    Science.gov (United States)

    Vtorushin, S V; Tarakanova, V O; Zavyalova, M V

    2016-01-01

    The paper considers the data available in the modern literature on studies of potential molecular predictors for renal cell carcinoma (RCC). Investigations of cell death markers, namely; Bcl-2 as an inhibitor of apoptosis, are of interest. Its high expression correlates with a more favorable prognosis. Inactivation of Berclin 1 that is an authophagy indicator in intact tissues gives rise to t high risk for tumorigenesis. At the same time, high Beclin 1 expression in the tissue of the tumor itself results in the lower efficiency of performed chemotherapy. Excess annexin A2 in the tumor promotes the growth and invasion of cancer cells. Patients with tumor over-expression of SAM68 protein involved in cell proliferation have a lower overall survival rate. The lifespan of patients without distinct metastases survive significantly longer in the overexpression of epithelial cell adhesion molecule (EpCAM). High PD-L1 protein expression on the cell membrane is considered to be a potential marker of effective immunotherapy for RCC. PMID:27077146

  12. Molecular circuits, biological switches, and nonlinear dose-response relationships.

    OpenAIRE

    Andersen, Melvin E.; Yang, Raymond S.H.; French, C. Tenley; Chubb, Laura S; Dennison, James E

    2002-01-01

    Signaling motifs (nuclear transcriptional receptors, kinase/phosphatase cascades, G-coupled protein receptors, etc.) have composite dose-response behaviors in relation to concentrations of protein receptors and endogenous signaling molecules. "Molecular circuits" include the biological components and their interactions that comprise the workings of these signaling motifs. Many of these molecular circuits have nonlinear dose-response behaviors for endogenous ligands and for exogenous toxicants...

  13. The molecular biology and diagnostics of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend

    1992-01-01

    The rapid development of biotechnological methods provides the potential of dissecting the molecular structure of microorganisms. In this review the molecular biology of chlamydia is described. The genus Chlamydia contains three species C. trachomatis, C. psittaci, and C. pneumonia which all are...... important human pathogens. Chlamydia is obligate intracellular bacteria with a unique biphasic life cycle. The extracellularly chlamydial elementary bodies (EB) are small, metabolic inactive, infectious particles with a tight outer cell membrane. After internalization into host cells the chlamydial...

  14. Genetic and biological diversity among isolates of Neospora caninum.

    Science.gov (United States)

    Schock, A; Innes, E A; Yamane, I; Latham, S M; Wastling, J M

    2001-07-01

    Neospora caninum is a protozoan parasite that causes bovine abortion. The epidemiology of N. caninum is poorly understood and little is known about the genetic diversity of the parasite, or whether individual isolates differ in virulence. Such diversity may, among other factors, underlie the range of pathologies seen in cattle. In this study we analysed biological and genetic variation in 6 isolates of N. caninum originating from canine and bovine hosts by measurement of growth rate in vitro, Western blotting and random amplification of polymorphic DNA (RAPD). This comparative analysis of intra-species diversity demonstrated that heterogeneity exists within the species. The relative growth rate in vitro, as assessed by 3[H]uracil uptake, showed significant variation between isolates. However, no significant differences were detected between the antigenic profiles of each isolate by Western blotting. RAPD-PCR was performed on DNA from the 6 Neospora isolates; 3 strains of Toxoplasma gondii, Sarcocystis sp. and Cryptosporidium parvum were also analysed. Twenty-six RAPD primers gave rise to 434 markers of which 222 were conserved between all the Neospora isolates and distinguished them from the other Apicomplexa. An additional 54 markers were unique for Neospora but were polymorphic within the species and able to differentiate between the individual isolates. The RAPD data were subjected to pair-wise similarity and cluster analysis and showed that the Neospora isolates clustered together as a group, with T. gondii as their nearest neighbour. N. caninum isolates showed no clustering with respect either to host or geographical origin. The genetic similarity between Neospora isolates from cattle and dogs suggests that these hosts may be epidemiologically related, although further analysis of bovine and canine field samples are required. The genetic and biological diversity observed in this study may have important implications for our understanding of the pathology and

  15. Molecular genetic study of human malignant gliomas

    International Nuclear Information System (INIS)

    Loss of heterozygosity for loci on chromosome 10 were found in four of 9 (44%) informative cases of malignant gliomas. Deletions on RB1 locus were seen in six of 11 (54%) informative glioblastomas. LOH on chromosome 17p was found in eight of 16 (50%) malignant gliomas, including 2 cases of anaplastic oligodendroglioma. On the basis of the data presented here, it is possible to associate certain molecular abnormalities with malignant gliomas, LOH on chromosome 10, RB1 gene, and 17p. (Author)

  16. Genetically engineered biological agents in therapy for systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Elena Aleksandrovna Aseeva

    2013-10-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype for chronic autoimmune disease. Its prevalence is 20 to 70 cases per 100,000 women and varies by race and ethnicity. Despite considerable progress in traditional therapy, many problems associated with the management of these patients need to be immediately solved: thus, 50-80% are found to have activity signs and/or frequent exacerbations and about 30% of the patients have to stop work; Class IV lupus nephritis increases the risk of terminalrenal failure. In the past 20 years great progress has been made in studying the pathogenesis of SLE: biological targets to affect drugs have been sought and fundamentally new therapeutic goals defined. Belimumab is the first genetically biological agent specially designed to treat SLE, which is rightly regarded as one of the most important achievements of rheumatology in the past 50 years.

  17. Genetically engineered biological agents in therapy for systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Elena Aleksandrovna Aseeva

    2013-01-01

    Full Text Available Systemic lupus erythematosus (SLE is a prototype for chronic autoimmune disease. Its prevalence is 20 to 70 cases per 100,000 women and varies by race and ethnicity. Despite considerable progress in traditional therapy, many problems associated with the management of these patients need to be immediately solved: thus, 50-80% are found to have activity signs and/or frequent exacerbations and about 30% of the patients have to stop work; Class IV lupus nephritis increases the risk of terminalrenal failure. In the past 20 years great progress has been made in studying the pathogenesis of SLE: biological targets to affect drugs have been sought and fundamentally new therapeutic goals defined. Belimumab is the first genetically biological agent specially designed to treat SLE, which is rightly regarded as one of the most important achievements of rheumatology in the past 50 years.

  18. The biology and potential for genetic research of transposable elements in filamentous fungi

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    2005-12-01

    Full Text Available Recently many transposable elements have been identified and characterized in filamentous fungi, especially in species of agricultural, biotechnological and medical interest. Similar to the elements found in other eukaryotes, fungal transposons can be classified as class I elements (retrotransposons that use RNA and reverse transcriptase and class II elements (DNA transposons that use DNA. The changes (transposition and recombination caused by transposons can supply wide-ranging genetic variation, especially for species that do not have a sexual phase. The application of transposable elements to gene isolation and population analysis is an important tool for molecular biology and studies of fungal evolution.

  19. DataGenno: building a new tool to bridge molecular and clinical genetics

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    2011-03-01

    Full Text Available Fabricio F Costa1,2, Luciano S Foly1, Marcelo P Coutinho11DataGenno Interactive Research Ltd., Itaperuna, Rio de Janeiro, Brazil; 2Cancer Biology and Epigenomics Program, Children's Memorial Research Center, Northwestern University's Feinberg School of Medicine, Chicago, IL, USAAbstract: Clinical genetics is one of the most challenging fields in medicine, with thousands of children born every year with congenital defects that have no satisfactory diagnosis. There are more than 6,000 known single-gene disorders that can cause birth defects or diseases in approximately 1 in every 200 births. Clinical and molecular information on genetic diseases and syndromes are widespread in the literature, and there are few databases combining this information. Therefore, it is very challenging for health care professionals and researchers to translate the latest advances in science and medicine into effective clinical interventions and new treatments. In order to overcome this obstacle and promote networking, we are building DataGenno, an online medical and scientific portal. DataGenno has been developed to be a source of information on genetic diseases and syndromes for the needs of all heath care professionals and researchers. Our database will be able to integrate both clinical and molecular aspects of genetic diseases in a fully interactive environment. DataGenno’s system already contains clinical and molecular information for 300 diseases, with approximately 6,000 signs and symptoms of these diseases in a database combined with a search engine. Our main goal is to cover all genetic diseases described to date, providing not only clinical information such as morphological and anatomical features but also the most comprehensive molecular genetics/genomics features and available testing information. We are also developing ways to connect DataGenno’s portal with Electronic Health Records in order to improve the efficiency of patient care. Additionally

  20. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    Directory of Open Access Journals (Sweden)

    Li Hai-Long

    2011-06-01

    Full Text Available Abstract Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  1. Molecular biology on the ICU. From understanding to treating sepsis.

    Science.gov (United States)

    Winning, J; Claus, R A; Huse, K; Bauer, M

    2006-05-01

    Mounting evidence suggests that beside well established factors, such as virulence of pathogens or site of infection, individual differences in disease manifestation are a result of the genetic predisposition of the patient on an Intensive Care Unit (ICU). Specific genetic factors might not only predict the risk to acquire severe infections but also to develop organ dysfunction or ultimately to die. Thus, the advent of molecular techniques allowing screening for a wide variety of genetic factors, such as single nucleotide polymorphisms in genes controlling expression of important mediator systems in patients as well as their purposeful targeting in animal models of sepsis, are revolutionizing understanding of pathophysiology in the critically ill. Molecular tools are about to challenge ''state-of-the-art'' diagnostic tests such as blood culture as they not only increase sensitivity but dramatically reduce time requirements to identify pathogens and their resistance patterns. Similarly, knowledge of genetic factors might in the near future help to identify ''patients at risk'', i.e. those with a high likelihood to develop organ dysfunction or to guide therapeutic interventions in particular regarding resource-consuming and/or expensive therapies (''theragnostics''). While therapeutic options in molecular intensive care medicine, such as stem cells in the treatment of organ failure or therapeutic gene transfer are possible along the road and might become an option in the future, recombinant DNA technology has already a well defined role in the production of recombinant human proteins from insulin to activated protein C. PMID:16675935

  2. Molecular genetics and pathogenesis of cardiomyopathy.

    Science.gov (United States)

    Kimura, Akinori

    2016-01-01

    Cardiomyopathy is defined as a disease of functional impairment in the cardiac muscle and its etiology includes both extrinsic and intrinsic factors. Cardiomyopathy caused by the intrinsic factors is called as primary cardiomyopathy of which two major clinical phenotypes are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Genetic approaches have revealed the disease genes for hereditary primary cardiomyopathy and functional studies have demonstrated that characteristic functional alterations induced by the disease-associated mutations are closely related to the clinical types, such that increased and decreased Ca(2+) sensitivities of muscle contraction are associated with HCM and DCM, respectively. In addition, recent studies have suggested that mutations in the Z-disc components found in HCM and DCM may result in increased and decreased stiffness of sarcomere, respectively. Moreover, functional analysis of mutations in the other components of cardiac muscle have suggested that the altered response to metabolic stresses is associated with cardiomyopathy, further indicating the heterogeneity in the etiology and pathogenesis of cardiomyopathy. PMID:26178429

  3. Recent molecular genetic studies and methodological issues in suicide research.

    Science.gov (United States)

    Tsai, Shih-Jen; Hong, Chen-Jee; Liou, Ying-Jay

    2011-06-01

    Suicide behavior (SB) spans a spectrum ranging from suicidal ideation to suicide attempts and completed suicide. Strong evidence suggests a genetic susceptibility to SB, including familial heritability and common occurrence in twins. This review addresses recent molecular genetic studies in SB that include case-control association, genome gene-expression microarray, and genome-wide association (GWA). This work also reviews epigenetics in SB and pharmacogenetic studies of antidepressant-induced suicide. SB fulfills criteria for a complex genetic phenotype in which environmental factors interact with multiple genes to influence susceptibility. So far, case-control association approaches are still the mainstream in SB genetic studies, although whole genome gene-expression microarray and GWA studies have begun to emerge in recent years. Genetic association studies have suggested several genes (e.g., serotonin transporter, tryptophan hydroxylase 2, and brain-derived neurotrophic factor) related to SB, but not all reports support these findings. The case-control approach while useful is limited by present knowledge of disease pathophysiology. Genome-wide studies of gene expression and genetic variation are not constrained by our limited knowledge. However, the explanatory power and path to clinical translation of risk estimates for common variants reported in genome-wide association studies remain unclear because of the presence of rare and structural genetic variation. As whole genome sequencing becomes increasingly widespread, available genomic information will no longer be the limiting factor in applying genetics to clinical medicine. These approaches provide exciting new avenues to identify new candidate genes for SB genetic studies. The other limitation of genetic association is the lack of a consistent definition of the SB phenotype among studies, an inconsistency that hampers the comparability of the studies and data pooling. In summary, SB involves multiple genes

  4. Gene Concepts in Higher Education Cell and Molecular Biology Textbooks

    Science.gov (United States)

    Albuquerque, Pitombo Maiana; de Almeida, Ana Maria Rocha; El-Hani, Nino Charbel

    2008-01-01

    Despite being a landmark of 20th century biology, the "classical molecular gene concept," according to which a gene is a stretch of DNA encoding a functional product, which may be a single polypeptide or RNA molecule, has been recently challenged by a series of findings (e.g., split genes, alternative splicing, overlapping and nested genes, mRNA…

  5. Assessing Practical Laboratory Skills in Undergraduate Molecular Biology Courses

    Science.gov (United States)

    Hunt, Lynne; Koenders, Annette; Gynnild, Vidar

    2012-01-01

    This study explored a new strategy of assessing laboratory skills in a molecular biology course to improve: student effort in preparation for and participation in laboratory work; valid evaluation of learning outcomes; and students' employment prospects through provision of evidence of their skills. Previously, assessment was based on written…

  6. A Streamlined Molecular Biology Module for Undergraduate Biochemistry Labs

    Science.gov (United States)

    Muth, Gregory W.; Chihade, Joseph W.

    2008-01-01

    Site-directed mutagenesis and other molecular biology techniques, including plasmid manipulation and restriction analysis, are commonly used tools in the biochemistry research laboratory. In redesigning our biochemistry lab curricula, we sought to integrate these techniques into a term-long, project-based course. In the module presented here,…

  7. A Biochemistry and Molecular Biology Course for Secondary School Teachers

    Science.gov (United States)

    Fernandez-Novell, J. M.; Cid, E.; Gomis, R.; Barbera, A.; Guinovart, J. J.

    2004-01-01

    This article describes a course for reinforcing the knowledge of biochemistry in secondary school science teachers. The Department of Biochemistry and Molecular Biology of the University of Barcelona designed a course to bring these teachers up to date with this discipline. In addition to updating their knowledge of biochemistry and molecular…

  8. T-cell acute lymphoblastic leukaemia : recent molecular biology findings

    NARCIS (Netherlands)

    Kraszewska, Monika D.; Dawidowska, Malgorzata; Szczepanski, Tomasz; Witt, Michal

    2012-01-01

    For many years, T-cell acute lymphoblastic leukaemia (T-ALL) has been considered and treated as a single malignancy, but divergent outcomes in T-ALL patients receiving uniform treatment protocols encouraged intensive research on the molecular biology of this disease. Recent findings in the field dem

  9. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  10. Intelligent DNA-based molecular diagnostics using linked genetic markers

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, D.K.; Perlin, M.W.; Hoffman, E.P.

    1994-12-31

    This paper describes a knowledge-based system for molecular diagnostics, and its application to fully automated diagnosis of X-linked genetic disorders. Molecular diagnostic information is used in clinical practice for determining genetic risks, such as carrier determination and prenatal diagnosis. Initially, blood samples are obtained from related individuals, and PCR amplification is performed. Linkage-based molecular diagnosis then entails three data analysis steps. First, for every individual, the alleles (i.e., DNA composition) are determined at specified chromosomal locations. Second, the flow of genetic material among the individuals is established. Third, the probability that a given individual is either a carrier of the disease or affected by the disease is determined. The current practice is to perform each of these three steps manually, which is costly, time consuming, labor-intensive, and error-prone. As such, the knowledge-intensive data analysis and interpretation supersede the actual experimentation effort as the major bottleneck in molecular diagnostics. By examining the human problem solving for the task, we have designed and implemented a prototype knowledge-based system capable of fully automating linkage-based molecular diagnostics in X-linked genetic disorders, including Duchenne Muscular Dystrophy (DMD). Our system uses knowledge-based interpretation of gel electrophoresis images to determine individual DNA marker labels, a constraint satisfaction search for consistent genetic flow among individuals, and a blackboard-style problem solver for risk assessment. We describe the system`s successful diagnosis of DMD carrier and affected individuals from raw clinical data.

  11. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology.

    Science.gov (United States)

    Creager, Angela N H

    2009-03-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformation over time, through metabolic pathways or life cycles. Scientists labeled phage with phosphorus-32 in order to trace the transfer of genetic material between parent and progeny in virus reproduction. Initial studies of this type did not resolve the mechanism of generational transfer but unexpectedly gave rise to a new style of molecular radiobiology based on the inactivation of phage by the radioactive decay of incorporated phosphorus-32. These 'suicide experiments', a preoccupation of phage researchers in the mid-1950s, reveal how molecular biologists interacted with the traditions and practices of radiation geneticists as well as those of biochemists as they were seeking to demarcate a new field. The routine use of radiolabels to visualize nucleic acids emerged as an enduring feature of molecular biological experimentation. PMID:19268872

  12. Biological, ecological and genetic aspects of Narrow leaved ash (Fraxinus angustifolia Vahl in the northeastern Italy

    Directory of Open Access Journals (Sweden)

    Belletti P

    2015-08-01

    Full Text Available Narrow leaved ash (Fraxinus angustifolia Vahl is an important forest tree belonging to peculiar and threatened ecosystems, where it forms mixed populations with other deciduous trees. Its range partly overlaps with that of European ash (Fraxinus excelsior and interspecific cross is possible. These habitats are of the utmost importance due to their high level of biodiversity, but highly threatened by human activities. Since climate change is expected to favor the diffusion of narrow leaved ash, a study was carried out with the aim of enhancing our knowledge of the biological, ecological and genetic aspects of this species. Twelve populations of narrow leaved ash from north-eastern Italy were sampled and their genetic variability was analyzed by means of six molecular markers (nuclear microsatellites, of which 4 gave consistent and repeatable results. Overall, 113 alleles were observed, of which 38 were present in only one population (private alleles. Consistent levels of genetic variability was found (mean number of alleles per locus = 7.08, effective number of alleles per locus = 4.37, expected heterozygosity = 0.613, though lower than those reported in the literature. Fixation index was very close to zero, indicating a good agreement with Hardy-Weinberg’s expectations. The genetic differentiation among populations was significant (both GST e FST as high as 0.102, although it was not possible to correlate the distribution of genetic variability with ecological or geographical factors. Genetic pools of F. excelsior and F. angustifolia were distinct, though several individuals showed intermediate genetic characteristics, especially in the population from Grotta di Farra where both species are present and many individuals showed intermediate morphological features. The presence of individuals possibly originated by interspecific cross should be taken into account in the case of seed collection. Our results may contribute to a rationale management

  13. Molecular genetic studies on irradiated wheat plants

    International Nuclear Information System (INIS)

    Composite genotype(octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress. Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite. From eight Egyptian wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively. They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield-related traits. Bulked segregating analysis developed some RAPD and SSR markers with different primers, which were considered as molecular for drought tolerance in wheat. Hal 2-like gene was introduced into Egyptian wheat cultivar G-164 via micro projectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal 2-like genes in the genomic background of the two transgenic plants

  14. Improving microalgae for biotechnology--From genetics to synthetic biology.

    Science.gov (United States)

    Hlavova, Monika; Turoczy, Zoltan; Bisova, Katerina

    2015-11-01

    Microalgae have traditionally been used in many biotechnological applications, where each new application required a different species or strain expressing the required properties; the challenge therefore is to isolate or develop, characterize and optimize species or strains that can express more than one specific property. In agriculture, breeding of natural variants has been successfully used for centuries to improve production traits in many existing plant and animal species. With the discovery of the concepts of classical genetics, these new ideas have been extensively used in selective breeding. However, many biotechnologically relevant algae do not possess the sexual characteristics required for traditional breeding/crossing, although they can be modified by chemical and physical mutagens. The resulting mutants are not considered as genetically modified organisms (GMOs) and their cultivation is therefore not limited by legislation. On the other hand, mutants prepared by random or specific insertion of foreign DNA are considered to be GMOs. This review will compare the effects of two genetic approaches on model algal species and will summarize their advantages in basic research. Furthermore, we will discuss the potential of mutagenesis to improve microalgae as a biotechnological resource, to accelerate the process from specific strain isolation to growth optimization, and discuss the production of new products. Finally, we will explore the potential of algae in synthetic biology. PMID:25656099

  15. Molecular Genetic Strategies in the Study of Corticohippocampal Circuits.

    Science.gov (United States)

    Angelakos, Christopher C; Abel, Ted

    2015-07-01

    The first reproductively viable genetically modified mice were created in 1982 by Richard Palmiter and Ralph Brinster (Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM. 1982. Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300: 611-615). In the subsequent 30 plus years, numerous ground-breaking technical advancements in genetic manipulation have paved the way for improved spatially and temporally targeted research. Molecular genetic studies have been especially useful for probing the molecules and circuits underlying how organisms learn and remember—one of the most interesting and intensively investigated questions in neuroscience research. Here, we discuss selected genetic tools, focusing on corticohippocampal circuits and their implications for understanding learning and memory. PMID:26134320

  16. A knowledge base for teaching biology situated in the context of genetic testing

    NARCIS (Netherlands)

    van der Zande, P.A.M.; Waarlo, A.J.; Brekelmans, M.; Akkerman, S.F.; Vermunt, J. D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testin

  17. Expertise for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Akkerman, Sanne F.; Brekelmans, Mieke; Waarlo, Arend Jan; Vermunt, Jan D.

    2012-01-01

    Contemporary genomics research will impact the daily practice of biology teachers who want to teach up-to-date genetics in secondary education. This article reports on a research project aimed at enhancing biology teachers' expertise for teaching genetics situated in the context of genetic testing. The increasing body of scientific knowledge…

  18. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-01-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge…

  19. Molecular biology of testicular germ cell tumors: unique features awaiting clinical application.

    Science.gov (United States)

    Boublikova, Ludmila; Buchler, Tomas; Stary, Jan; Abrahamova, Jitka; Trka, Jan

    2014-03-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men characterized by distinct biologic features and clinical behavior. Both genetic predispositions and environmental factors probably play a substantial role in their etiology. TGTCs arise from a malignant transformation of primordial germ cells in a process that starts prenatally, is often associated with a certain degree of gonadal dysgenesis, and involves the acquirement of several specific aberrations, including activation of SCF-CKIT, amplification of 12p with up-regulation of stem cell genes, and subsequent genetic and epigenetic alterations. Their embryonic and germ origin determines the unique sensitivity of TGCTs to platinum-based chemotherapy. Contrary to the vast majority of other malignancies, no molecular prognostic/predictive factors nor targeted therapy is available for patients with these tumors. This review summarizes the principal molecular characteristics of TGCTs that could represent a potential basis for development of novel diagnostic and treatment approaches. PMID:24182421

  20. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  1. Corn Storage Protein - A Molecular Genetic Model

    Energy Technology Data Exchange (ETDEWEB)

    Messing, Joachim [Rutgers, The State University of New Jersey

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  2. Towards mosquito sterile insect technique programmes: Exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes

    Czech Academy of Sciences Publication Activity Database

    Gilles, J. R. L.; Schetelig, M. F.; Scolari, F.; Marec, František; Capurro, M.L.; Franz, G.; Bourtzis, K.

    132S, č. 1 (2014), S178-S187. ISSN 0001-706X R&D Projects: GA ČR GA523/09/2106 Grant ostatní: Deutsche Forschungsgemeinschalft(DE) SCHE 1833/1 Institutional support: RVO:60077344 Keywords : female elimination * vector control * genetic sex ing strains (GSS) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.270, year: 2014 http://www.sciencedirect.com/science/article/pii/S0001706X13002209?via=ihub

  3. Optimal Information Retrieval Model for Molecular Biology Information

    OpenAIRE

    Paulsen, Jon Rune

    2007-01-01

    Search engines for biological information are not a new technology. Since the 1960s computers have emerged as an important tool for biologists. Online Mendelian Inheritance in Man (OMIM) is a comprehensive catalogue containing approximately 14 000 records with information about human genes and genetic disorders. An approach called Latent Semantic Indexing (LSI) was introduced in 1990 that is based on Singular Value Decomposition (SVD). This approach improved the information retrieval and red...

  4. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era

    Directory of Open Access Journals (Sweden)

    Costain G

    2012-02-01

    Full Text Available Gregory Costain1,2, Anne S Bassett1–41Clinical Genetics Research Program, Centre for Addiction and Mental Health, 2Institute of Medical Science, University of Toronto, 3Division of Cardiology, Department of Medicine and Department of Psychiatry, University Health Network, 4Department of Psychiatry, University of Toronto, Toronto, Ontario, CanadaAbstract: Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.Keywords: schizophrenia, genetics, 22q11 deletion syndrome, copy number variation, genetic counseling, genetic predisposition to disease

  5. [Progress in the molecular genetic mechanism of gonadoblastoma].

    Science.gov (United States)

    Lili, Yu; Wanru, Dong; Minghui, Chen; Xiangyang, Kong

    2015-11-01

    Gonadoblastoma (GB), a rare in situ germ cell tumor derived from sex cord and germ cells, is closely associated with gonadal dysgenesis. About 80% of GB individuals exhibit 46, XY female phenotype while the others are 45, XY and 46, XX with disorders of sex development. Moreover, 35% of GB can eventually develop into malignant tumors, such as seminoma and dysgerminoma tumors. The molecular genetic mechanism of GB remains to be fully uncovered due to phenotypic and genetic heterogeneity. Increasing studies show that the formation of GB is closely related to genes regulating sexual differentiation and determination (e.g., SRY, WT1, SOX9, Foxl2, TSPY, etc), and is affected by the interaction of genetic and epigenetic regulation. Here we describe the clinical and pathological features, diagnosis and treatment of GB, and also summarize the molecular genetic and epigenetic mechanisms underlying the gonadal abnormalities that lead to GB. We analyze and construct the common gene regulatory networks related to the development of GB, and describe some obstacles and deficiencies in current studies to provide innovative perspectives on further studying the pathological and molecular mechanisms of GB. PMID:26582524

  6. Recent advances in molecular biology of gastric carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    萧树东; 冉志华

    2003-01-01

    Gastric cancer is a major health care problem and the second most common fatal cancer worldwide. In the last decade, better insight has been gained into the molecular basis underlying the neoplasitc transformation of stomach. The dramatic variation in the incidence of gastric cancer in different geographical areas and from one generation to the next have led to the hypothesis that the incidence of gastric cancer is determined largely by environmental rather than genetic factors.

  7. Integration of molecular genetic technology with quantitative genetic technology for maximizing the speed of genetic improvement

    Institute of Scientific and Technical Information of China (English)

    Jack; C.M.; DEKKERS

    2005-01-01

    To date,most genetic progress for quantita-tive traits in livestock has been made by selec-tion on phenotype or on estimates of breedingvalues(BBV)derived from phenotype,withoutknowledge of the number of genes that affect thetrait or the effects of each gene.In this quantita-tive genetic approach to genetic improvement,the genetic architecture of traits of interest hasessentially been treated as a‘black box’.De-spite this,the substantial rates of genetic im-provement that have been and continue to be a-chie...

  8. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-01-01

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients. PMID:26345916

  9. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  10. StrateGene: object-oriented programming in molecular biology.

    Science.gov (United States)

    Carhart, R E; Cash, H D; Moore, J F

    1988-03-01

    This paper describes some of the ways that object-oriented programming methodologies have been used to represent and manipulate biological information in a working application. When running on a Xerox 1100 series computer, StrateGene functions as a genetic engineering workstation for the management of information about cloning experiments. It represents biological molecules, enzymes, fragments, and methods as classes, subclasses, and members in a hierarchy of objects. These objects may have various attributes, which themselves can be defined and classified. The attributes and their values can be passed from the classes of objects down to the subclasses and members. The user can modify the objects and their attributes while using them. New knowledge and changes to the system can be incorporated relatively easily. The operations on the biological objects are associated with the objects themselves. This makes it easier to invoke them correctly and allows generic operations to be customized for the particular object. PMID:3164229

  11. INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS FOR MOLECULAR BIOLOGY (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Debra Goldberg; Matthew Hibbs; Lukas Kall; Ravikumar Komandurglayavilli; Shaun Mahony; Voichita Marinescu; Itay Mayrose; Vladimir Minin; Yossef Neeman; Guy Nimrod; Marian Novotny; Stephen Opiyo; Elon Portugaly; Tali Sadka; Noboru Sakabe; Indra Sarkar; Marc Schaub; Paul Shafer; Olena Shmygelska; Gregory Singer; Yun Song; Bhattacharya Soumyaroop; Michael Stadler; Pooja Strope; Rong Su; Yuval Tabach; Hongseok Tae; Todd Taylor; Michael Terribilini; Asha Thomas; Nam Tran; Tsai-Tien Tseng; Akshay Vashist; Parthiban Vijaya; Kai Wang; Ting Wang; Lai Wei; Yong Woo; Chunlei Wu; Yoshihiro Yamanishi; Changhui Yan; Jack Yang; Mary Yang; Ping Ye; Miao Zhang

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on “intelligent systems” and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  12. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  13. NACE: A web-based tool for prediction of intercompartmental efficiency of human molecular genetic networks.

    Science.gov (United States)

    Popik, Olga V; Ivanisenko, Timofey V; Saik, Olga V; Petrovskiy, Evgeny D; Lavrik, Inna N; Ivanisenko, Vladimir A

    2016-06-15

    Molecular genetic processes generally involve proteins from distinct intracellular localisations. Reactions that follow the same process are distributed among various compartments within the cell. In this regard, the reaction rate and the efficiency of biological processes can depend on the subcellular localisation of proteins. Previously, the authors proposed a method of evaluating the efficiency of biological processes based on the analysis of the distribution of protein subcellular localisation (Popik et al., 2014). Here, NACE is presented, which is an open access web-oriented program that implements this method and allows the user to evaluate the intercompartmental efficiency of human molecular genetic networks. The method has been extended by a new feature that provides the evaluation of the tissue-specific efficiency of networks for more than 2800 anatomical structures. Such assessments are important in cases when molecular genetic pathways in different tissues proceed with the participation of various proteins with a number of intracellular localisations. For example, an analysis of KEGG pathways, conducted using the developed program, showed that the efficiencies of many KEGG pathways are tissue-specific. Analysis of efficiencies of regulatory pathways in the liver, linking proteins of the hepatitis C virus with human proteins involved in the KEGG apoptosis pathway, showed that intercompartmental efficiency might play an important role in host-pathogen interactions. Thus, the developed tool can be useful in the study of the effectiveness of functioning of various molecular genetic networks, including metabolic, regulatory, host-pathogen interactions and others taking into account tissue-specific gene expression. The tool is available via the following link: http://www-bionet.sscc.ru/nace/. PMID:27109913

  14. [Research progress on molecular genetics of male homosexuality].

    Science.gov (United States)

    Tu, Dan; Xu, Ruiwei; Zhao, Guanglu; Wang, Binbin; Feng, Tiejian

    2016-08-01

    Sexual orientation is influenced by both environmental factors and biological factors. Family and twin studies have shown that genetic factors play an important role in the formation of male homosexuality. Genome-wide scan also revealed candidate chromosomal regions which may be associated with male homosexuality, but so far no clearly related genes have been found. This article reviews the progress of relevant studies and candidate genes which are related to male homosexuality. PMID:27455023

  15. Status of molecular genetic studies in the medfly, Ceratitis capitata, in relation to genetic sexing

    International Nuclear Information System (INIS)

    A review of the current status of the molecular genetics of the Mediterranean fruit fly (medfly), Ceratitis capitata, with particular emphasis on the development of genetic sexing systems is presented. Rapid developments in the work on the molecular genetics of Drosophila melanogaster are beginning to play a prominent role in the expansion of genetic sexing to include molecular approaches. For example, the increasing availability of cloned genes from Drosophila has permitted the homologous sequences from the medfly genome to be identified. If homologous genes are identified, they can be rapidly mapped on the polytene chromosomes by in situ hybridization. Germ line transformation is now routine in Drosophila and many attempts have been made to transform the medfly using the same system, to date without success. A P-element excision assay in Anastrepha suspensa has indicated that in this species also, P-element transformation is unlikely to be successful. Target genes to be potentially used in transformation fall into two classes, sex killing and sex transformation, and progress in and possibilities for both are discussed. Recent data on sex regulation in Drosophila offer new approaches for sex killing systems. Finally, since the genome of the medfly is sparsely mapped, it is suggested that a search should be made for restriction fragment length polymorphisms. These could be rapidly assigned to chromosome position using in situ hybridization and mapped using conventional genetic analysis. (author). 58 refs, 1 fig., 1 tab

  16. The molecular biological characteristics of childhood thyroid carcinoma

    International Nuclear Information System (INIS)

    We have used molecular biology to study mutation and expression of key oncogenes in childhood thyroid carcinomas from Belarus and Ukraine. All cases were histologically verified by two or more pathologists including at least one from the CIS and one from the EU. We chose to study six genes which have been shown to be involved in thyroid carcinogenesis in adults: ret. Ha, Ki and N ras genes, p53 and the TSH receptor. Expression of the ret oncogene, which has been shown to be activated by translocation in a proportion of papillary carcinomas has been studied by two independent methods. The first, used by the Cambridge group uses RT-PCR to identify the expression of the tyrosine kinase domain of the gene; as the gene is normally silent in follicular cells, this approach allows demonstration of activation of ret, but does not identify the particular translocation involved. The second approach, used by the Naples group, also uses RT-PCR, but amplifies across the breakpoint of each of the three translocations already identified to provide information on the proportion of tumors which express the individual translocations of this gene. Mutations in the TSH receptor, a key modulator of thyroid follicular growth have been sought by the Brussels group using SSCP and direct sequencing. The Munich group have analyzed the samples for presence of mutation in p53, which is believed to play a role in genetic instability which is a features of carcinomas derived from may different tissues. Mutations in the common sites of the ras oncogenes have been studied by the Cambridge group. Analysis of 26 papillary carcinomas so far studied has shown that mutations in the TSH receptor and in p53 do not play a significant role in the genesis of the tumours studied. The proportion of tumours showing ret expression does not differ significantly from that found in a control non exposed population from the UK. However, the pathological study shows that nearly all the increased number of thyroid

  17. Molecular barriers to processes of genetic reprogramming and cell transformation.

    Science.gov (United States)

    Chestkov, I V; Khomyakova, E A; Vasilieva, E A; Lagarkova, M A; Kiselev, S L

    2014-12-01

    Genetic reprogramming by ectopic expression of transcription factor genes induces the pluripotent state in somatic cells. This technology provides an opportunity to establish pluripotent stem cells for each person, as well as to get better understanding of epigenetic mechanisms controlling cell state. Interestingly, some of the molecular processes that accompany somatic cell reprogramming in vitro are also characteristic for tumor manifestation. Thus, similar "molecular barriers" that control the stability of epigenetic state exist for both processes of pluripotency induction and malignant transformation. The reprogramming of tumor cells is interesting in two aspects: first, it will determine the contribution of epigenetic changes in carcinogenesis; second, it gives an approach to evaluate tumor stem cells that are supposed to form the entire cell mass of the tumor. This review discusses the key stages of genetic reprogramming, the similarity and difference between the reprogramming process and malignant transformation. PMID:25716723

  18. Evolutionary biology and genetic techniques for insect control.

    Science.gov (United States)

    Leftwich, Philip T; Bolton, Michael; Chapman, Tracey

    2016-01-01

    The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios - specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios. PMID:27087849

  19. Genetics of Psoriasis and Pharmacogenetics of Biological Drugs

    Directory of Open Access Journals (Sweden)

    Rocío Prieto-Pérez

    2013-01-01

    Full Text Available Psoriasis is a chronic inflammatory disease of the skin. The causes of psoriasis are unknown, although family and twin studies have shown genetic factors to play a key role in its development. The many genes associated with psoriasis and the immune response include TNFα, IL23, and IL12. Advances in knowledge of the pathogenesis of psoriasis have enabled the development of new drugs that target cytokines (e.g., etanercept, adalimumab, and infliximab, which target TNFα, and ustekinumab, which targets the p40 subunit of IL23 and IL12. These drugs have improved the safety and efficacy of treatment in comparison with previous therapies. However, not all patients respond equally to treatment, possibly owing to interindividual genetic variability. In this review, we describe the genes associated with psoriasis and the immune response, the biological drugs used to treat chronic severe plaque psoriasis, new drugs in phase II and III trials, and current knowledge on the implications of pharmacogenomics in predicting response to these treatments.

  20. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application. PMID:26677427

  1. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  2. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  3. Human fertility, molecular genetics, and natural selection in modern societies.

    Directory of Open Access Journals (Sweden)

    Felix C Tropf

    Full Text Available Research on genetic influences on human fertility outcomes such as number of children ever born (NEB or the age at first childbirth (AFB has been solely based on twin and family-designs that suffer from problematic assumptions and practical limitations. The current study exploits recent advances in the field of molecular genetics by applying the genomic-relationship-matrix based restricted maximum likelihood (GREML methods to quantify for the first time the extent to which common genetic variants influence the NEB and the AFB of women. Using data from the UK and the Netherlands (N = 6,758, results show significant additive genetic effects on both traits explaining 10% (SE = 5 of the variance in the NEB and 15% (SE = 4 in the AFB. We further find a significant negative genetic correlation between AFB and NEB in the pooled sample of -0.62 (SE = 0.27, p-value = 0.02. This finding implies that individuals with genetic predispositions for an earlier AFB had a reproductive advantage and that natural selection operated not only in historical, but also in contemporary populations. The observed postponement in the AFB across the past century in Europe contrasts with these findings, suggesting an evolutionary override by environmental effects and underscoring that evolutionary predictions in modern human societies are not straight forward. It emphasizes the necessity for an integrative research design from the fields of genetics and social sciences in order to understand and predict fertility outcomes. Finally, our results suggest that we may be able to find genetic variants associated with human fertility when conducting GWAS-meta analyses with sufficient sample size.

  4. Applications of Case-Based Reasoning in Molecular Biology

    OpenAIRE

    Jurisica, Igor; Glasgow, Janice

    2004-01-01

    Case-based reasoning (CBR) is a computational reasoning paradigm that involves the storage and retrieval of past experiences to solve novel problems. It is an approach that is particularly relevant in scientific domains, where there is a wealth of data but often a lack of theories or general principles. This article describes several CBR systems that have been developed to carry out planning, analysis, and prediction in the domain of molecular biology.

  5. Towards an Upper-Level Ontology for Molecular Biology

    OpenAIRE

    Schulz, Stefan; Beisswanger, Elena; Wermter, Joachim; Hahn, Udo

    2006-01-01

    There is a growing need for the general-purpose description of the basic ontological entities in the life sciences domain. Up until now, upper-level models are mainly purpose-driven, such as the GENIA ontology, originally devised as a vocabulary for corpus annotation. As an alternative, we here present BioTop, a description-logic-based top-level ontology for molecular biology, as an ontologically more conscious re-design of the GENIA ontology.

  6. Molecular biological factors in the diagnosis of cervical intraepithelial neoplasias

    Directory of Open Access Journals (Sweden)

    Yu. N. Ponomareva

    2014-08-01

    Full Text Available The authors have made a complex analysis of the molecular biological factors associated with cervical intraepithelial neoplasia. They have revealed that infection by oncogenic human papillomavirus types is associated with suppressed apoptosis and enhanced cellular proliferative activity, which can be effectively used in the diagnosis and prediction of cervical neoplasias to optimize management tac- tics and to improve the results of treatment.

  7. Towards an upper level ontology for molecular biology.

    Science.gov (United States)

    Schulz, Stefan; Beisswanger, Elena; Wermter, Joachim; Hahn, Udo

    2006-01-01

    There is a growing need for the general-purpose description of the basic conceptual entities in the life sciences. Up until now, upper level models have mainly been purpose-driven, such as the GENIA ontology, originally devised as a vocabulary for corpus annotation. As an alternative,we here present BioTop, a description-logic-based top level ontology for molecular biology, which we consider as an ontologically conscious redesign of the GENIA ontology. PMID:17238430

  8. Molecular Genetic Tools and Techniques in Fission Yeast.

    Science.gov (United States)

    Murray, Johanne M; Watson, Adam T; Carr, Antony M

    2016-01-01

    The molecular genetic tools used in fission yeast have generally been adapted from methods and approaches developed for use in the budding yeast, Saccharomyces cerevisiae Initially, the molecular genetics of Schizosaccharomyces pombe was developed to aid gene identification, but it is now applied extensively to the analysis of gene function and the manipulation of noncoding sequences that affect chromosome dynamics. Much current research using fission yeast thus relies on the basic processes of introducing DNA into the organism and the extraction of DNA for subsequent analysis. Targeted integration into specific genomic loci is often used to create site-specific mutants or changes to noncoding regulatory elements for subsequent phenotypic analysis. It is also regularly used to introduce additional sequences that generate tagged proteins or to create strains in which the levels of wild-type protein can be manipulated through transcriptional regulation and/or protein degradation. Here, we draw together a collection of core molecular genetic techniques that underpin much of modern research using S. pombe We summarize the most useful methods that are routinely used and provide guidance, learned from experience, for the successful application of these methods. PMID:27140925

  9. Molecular biology in studies of oceanic primary production

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, J.; Falkowski, P.G. [Brookhaven National Lab., Upton, NY (United States); Geider, R. [Delaware Univ., Lewes, DE (United States). Coll. of Marine Studies

    1992-07-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies.

  10. Molecular biology in studies of oceanic primary production

    Energy Technology Data Exchange (ETDEWEB)

    LaRoche, J.; Falkowski, P.G. (Brookhaven National Lab., Upton, NY (United States)); Geider, R. (Delaware Univ., Lewes, DE (United States). Coll. of Marine Studies)

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies.

  11. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  12. Classical and Molecular Genetic Research on General Cognitive Ability.

    Science.gov (United States)

    McGue, Matt; Gottesman, Irving I

    2015-01-01

    Arguably, no psychological variable has received more attention from behavioral geneticists than what has been called "general cognitive ability" (as well as "general intelligence" or "g"), and for good reason. GCA has a rich correlational network, implying that it may play an important role in multiple domains of functioning. GCA is highly correlated with various indicators of educational attainment, yet its predictive utility is not limited to academic achievement. It is also correlated with work performance, navigating the complexities of everyday life, the absence of various social pathologies (such as criminal convictions), and even health and mortality. Although the causal basis for these associations is not always known, it is nonetheless the case that research on GCA has the potential to provide insights into the origins of a wide range of important social outcomes. In this essay, our discussion of why GCA is considered a fundamentally important dimension of behavior on which humans differ is followed by a look at behavioral genetics research on CGA. We summarize behavioral genetics research that has sought to identify and quantify the total contributions of genetic and environmental factors to individual differences in GCA as well as molecular genetic research that has sought to identify genetic variants that underlie inherited effects. PMID:26413945

  13. Molecular biology of Philadelphia-negative myeloproliferative neoplasms

    Directory of Open Access Journals (Sweden)

    Paulo Vidal Campregher

    2012-01-01

    Full Text Available Myeloproliferative neoplasms are clonal diseases of hematopoietic stem cells characterized by myeloid hyperplasia and increased risk of developing acute myeloid leukemia. Myeloproliferative neoplasms are caused, as any other malignancy, by genetic defects that culminate in the neoplastic phenotype. In the past six years, since the identification of JAK2V617F, we have experienced a substantial increase in our knowledge about the genetic mechanisms involved in the genesis of myeloproliferative neoplasms. Mutations described in several genes have revealed a considerable degree of molecular homogeneity between different subtypes of myeloproliferative neoplasms. At the same time, the molecular differences between each subtype have become clearer. While mutations in several genes, such as JAK2, myeloproliferative leukemia (MPL and LNK have been validated in functional assays or animal models as causative mutations, the roles of other recurring mutations in the development of disease, such as TET2 and ASXL1 remain to be elucidated. In this review we will examine the most prevalent recurring gene mutations found in myeloproliferative neoplasms and their molecular consequences.

  14. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  15. Cell and molecular biology for diagnostic and therapeutic technology

    Science.gov (United States)

    Tan, M. I.

    2016-03-01

    Our body contains 100 trillion cells. However, each cell has certain function and structure. For maintaining their integrity, cells will be collaborating with each other and with extracellular matrix surround them to form a tissue. These interactions effect internally on many networks or pathway such as signalling pathway, metabolic pathway and transport network in the cell. These networks interact with each other to maintain cell survival, cell structure and function and moreover the tissue as well as the organ which the cells built. Therefore, as part of a tissue, genetic and epigenetic abnormality of a cell can also alter these networks, and moreover disturb the function of the tissue itself. Hence, condition of genetic and epigenetic of the cell may affect other conditions in omics level such as transcriptomic, proteomic, metabolomics characteristics which can be differentiated by a particular unique molecular profile from each level, which can be used for diagnostic as well as for targeted therapy.

  16. Biological and molecular characterizations of Toxoplasma gondii strains

    Science.gov (United States)

    Cole, R.A.; Lindsay, D.S.; Howe, D.K.; Roderick, Constance L.; Dubey, J.P.; Thomas, N.J.; Baeten, L.A.

    2000-01-01

    Toxoplasma gondii was isolated from brain or heart tissue from 15 southern sea otters (Enhydra lutris nereis) in cell cultures. These strains were used to infect mice that developed antibodies to T. gondii as detected in the modified direct agglutination test and had T. gondii tissue cysts in their brains at necropsy. Mouse brains containing tissue cysts from 4 of the strains were fed to 4 cats. Two of the cats excreted T. gondii oocysts in their feces that were infectious for mice. Molecular analyses of 13 strains indicated that they were all type II strains, but that they were genetically distinct from one another.

  17. Molecular genetics of experimental hypertension and the metabolic syndrome: from gene pathways to new therapies

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kurtz, T. W.

    2007-01-01

    Roč. 49, č. 5 (2007), s. 941-952. ISSN 0194-911X R&D Projects: GA MZd(CZ) NR8545; GA ČR(CZ) GA301/04/0390; GA ČR(CZ) GA301/06/0028 Grant ostatní: The Howard Hughes Institute(US) HHMI55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : SHR * CD36 * metabolic syndrome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.194, year: 2007

  18. Molecular Genetics of Aging in the Postgenomic Era: A Focus on Sirtuins

    International Nuclear Information System (INIS)

    The way to study genetics has notably progressed in the last decades. Their origins date back to the study of hereditary features, followed by the discovery of genes and chromosomes up to the knowledge of DNA structure. This last event leads the development of recombinant DNA technology and the massive and automated sequencing, which allowed later to determine the anatomy of genomes. All of these discoveries have pushed the evolution of biomedicine towards the genomic and postgenomic eras, in which the use of reverse genetics prevails over the basic or direct one. Furthermore, it emerges the molecular genetics, the functional genomics and the diverse omic technologies that together pretend to understand in an integrative way the function of all of the genome components and its products. biogerontology, discipline that studies the biological mechanisms of aging, is one of the fields that has developed notoriously in the last 15 years and reflects the scientific advances of the postgenomic era. Currently, there have been identified several gerontogenes and molecular pathways that modify and regulate age-related processes and diseases. Among these genes are the sirtuins, an evolutionarily preserved family of genes, which codify for proteins with NAD+ dependent deacetylase activity and that play an important role on aging. Here we review different reverse genetics approaches that have been used in order to identify some of the functions of these genes in mammals.

  19. Molecular genetics: Step by step implementation in maize breeding

    Directory of Open Access Journals (Sweden)

    Konstantinov Kosana

    2007-01-01

    Full Text Available Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to present partly results on the investigation of the possibilities to apply ionizing radiations (fast neutrons, γ -rays and chemical mutagens (EI, iPMS, EMS, ENU to get maize and wheat mutants with increased amount and improved protein quality. Besides this approach in mutation breeding, results on the very early investigation of biochemical background of opaque -2 mutation including use of coupled cell - free RNA and protein synthesis containing components from both wild and opaque - 2 maize genotypes (chromatin, RNA polymerase, microsomall fraction, protein bodies will be presented. Partial results on opaque - 2 gene incorporation in different genetic background are reviewed. Part of report is dealing with different classes of molecular markers (proteins, RFLP, AFLP, RAPD, and SSR application in maize genome polymorphism investigation. Besides application of different molecular markers classes in the investigation of heterosis phenomena they are useful in biochemical pathway of important traits control determination as well. .

  20. Predicting Phenotypes from Genetic Crosses: A Mathematical Concept to Help Struggling Biology Students

    Science.gov (United States)

    Baurhoo, Neerusha; Darwish, Shireef

    2012-01-01

    Predicting phenotypic outcomes from genetic crosses is often very difficult for biology students, especially those with learning disabilities. With our mathematical concept, struggling students in inclusive biology classrooms are now better equipped to solve genetic problems and predict phenotypes, because of improved understanding of dominance…

  1. The Effects of Meiosis/Genetics Integration and Instructional Sequence on College Biology Student Achievement in Genetics.

    Science.gov (United States)

    Browning, Mark

    The purpose of the research was to manipulate two aspects of genetics instruction in order to measure their effects on college, introductory biology students' achievement in genetics. One instructional sequence that was used dealt first with monohybrid autosomal inheritance patterns, then sex-linkage. The alternate sequence was the reverse.…

  2. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    Science.gov (United States)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  3. Towards molecular computers that operate in a biological environment

    Science.gov (United States)

    Kahan, Maya; Gil, Binyamin; Adar, Rivka; Shapiro, Ehud

    2008-07-01

    important consequences when performed in a proper context. We envision that molecular computers that operate in a biological environment can be the basis of “smart drugs”, which are potent drugs that activate only if certain environmental conditions hold. These conditions could include abnormalities in the molecular composition of the biological environment that are indicative of a particular disease. Here we review the research direction that set this vision and attempts to realize it.

  4. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    International Nuclear Information System (INIS)

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  5. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  6. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  7. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  8. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  9. A Knowledge Base for Teaching Biology Situated in the Context of Genetic Testing

    Science.gov (United States)

    van der Zande, Paul; Waarlo, Arend Jan; Brekelmans, Mieke; Akkerman, Sanne F.; Vermunt, Jan D.

    2011-10-01

    Recent developments in the field of genomics will impact the daily practice of biology teachers who teach genetics in secondary education. This study reports on the first results of a research project aimed at enhancing biology teacher knowledge for teaching genetics in the context of genetic testing. The increasing body of scientific knowledge concerning genetic testing and the related consequences for decision-making indicate the societal relevance of such a situated learning approach. What content knowledge do biology teachers need for teaching genetics in the personal health context of genetic testing? This study describes the required content knowledge by exploring the educational practice and clinical genetic practices. Nine experienced teachers and 12 respondents representing the clinical genetic practices (clients, medical professionals, and medical ethicists) were interviewed about the biological concepts and ethical, legal, and social aspects (ELSA) of testing they considered relevant to empowering students as future health care clients. The ELSA suggested by the respondents were complemented by suggestions found in the literature on genetic counselling. The findings revealed that the required teacher knowledge consists of multiple layers that are embedded in specific genetic test situations: on the one hand, the knowledge of concepts represented by the curricular framework and some additional concepts (e.g. multifactorial and polygenic disorder) and, on the other hand, more knowledge of ELSA and generic characteristics of genetic test practice (uncertainty, complexity, probability, and morality). Suggestions regarding how to translate these characteristics, concepts, and ELSA into context-based genetics education are discussed.

  10. Biological Insights From 108 Schizophrenia-Associated Genetic Loci

    Science.gov (United States)

    Ripke, Stephan; Neale, Benjamin M; Corvin, Aiden; Walters, James TR; Farh, Kai-How; Holmans, Peter A; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A; Huang, Hailiang; Pers, Tune H; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A; Begemann, Martin; Belliveau, Richard A; Bene, Judit; Bergen, Sarah E; Bevilacqua, Elizabeth; Bigdeli, Tim B; Black, Donald W; Bruggeman, Richard; Buccola, Nancy G; Buckner, Randy L; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M; Carr, Vaughan J; Carrera, Noa; Catts, Stanley V; Chambert, Kimberley D; Chan, Raymond CK; Chan, Ronald YL; Chen, Eric YH; Cheng, Wei; Cheung, Eric FC; Chong, Siow Ann; Cloninger, C Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J; Curtis, David; Davidson, Michael; Davis, Kenneth L; Degenhardt, Franziska; Del Favero, Jurgen; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H; Farrell, Martilias S; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B; Friedl, Marion; Friedman, Joseph I; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M; Henskens, Frans A; Herms, Stefan; Hirschhorn, Joel N; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V; Hougaard, David M; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kahn, René S; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C; Kennedy, James L; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kähler, Anna K; Laurent, Claudine; Lee, Jimmy; Lee, S Hong; Legge, Sophie E; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M; Lubinski, Jan; Lönnqvist, Jouko; Macek, Milan; Magnusson, Patrik KE; Maher, Brion S; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W; McDonald, Colm; McIntosh, Andrew M; Meier, Sandra; Meijer, Carin J; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I; Metspalu, Andres; Michie, Patricia T; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W; Mors, Ole; Murphy, Kieran C; Murray, Robin M; Myin-Germeys, Inez; Müller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A; Nestadt, Gerald; Nicodemus, Kristin K; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O’Callaghan, Eadbhard; O’Dushlaine, Colm; O’Neill, F Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J; Powell, John; Price, Alkes; Pulver, Ann E; Purcell, Shaun M; Quested, Digby; Rasmussen, Henrik B; Reichenberg, Abraham; Reimers, Mark A; Richards, Alexander L; Roffman, Joshua L; Roussos, Panos; Ruderfer, Douglas M; Salomaa, Veikko; Sanders, Alan R; Schall, Ulrich; Schubert, Christian R; Schulze, Thomas G; Schwab, Sibylle G; Scolnick, Edward M; Scott, Rodney J; Seidman, Larry J; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M; Sim, Kang; Slominsky, Petr; Smoller, Jordan W; So, Hon-Cheong; Spencer, Chris C A; Stahl, Eli A; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E; Strengman, Eric; Strohmaier, Jana; Stroup, T Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M; Szatkiewicz, Jin P; Söderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T; Weiser, Mark; Wildenauer, Dieter B; Williams, Nigel M; Williams, Stephanie; Witt, Stephanie H; Wolen, Aaron R; Wong, Emily HM; Wormley, Brandon K; Xi, Hualin Simon; Zai, Clement C; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R; Stefansson, Kari; Visscher, Peter M; Adolfsson, Rolf; Andreassen, Ole A; Blackwood, Douglas HR; Bramon, Elvira; Buxbaum, Joseph D; Børglum, Anders D; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V; Gill, Michael; Gurling, Hugh; Hultman, Christina M; Iwata, Nakao; Jablensky, Assen V; Jönsson, Erik G; Kendler, Kenneth S; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F; Li, Qingqin S; Liu, Jianjun; Malhotra, Anil K; McCarroll, Steven A; McQuillin, Andrew; Moran, Jennifer L; Mortensen, Preben B; Mowry, Bryan J; Nöthen, Markus M; Ophoff, Roel A; Owen, Michael J; Palotie, Aarno; Pato, Carlos N; Petryshen, Tracey L; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P; Rujescu, Dan; Sham, Pak C; Sklar, Pamela; St Clair, David; Weinberger, Daniel R; Wendland, Jens R; Werge, Thomas; Daly, Mark J; Sullivan, Patrick F; O’Donovan, Michael C

    2014-01-01

    Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Associations were enriched among genes expressed in brain providing biological plausibility for the findings. Many findings have the potential to provide entirely novel insights into aetiology, but associations at DRD2 and multiple genes involved in glutamatergic neurotransmission highlight molecules of known and potential therapeutic relevance to schizophrenia, and are consistent with leading pathophysiological hypotheses. Independent of genes expressed in brain, associations were enriched among genes expressed in tissues that play important roles in immunity, providing support for the hypothesized link between the immune system and schizophrenia. PMID:25056061

  11. The genetic and molecular basis of congenital cataract

    Directory of Open Access Journals (Sweden)

    Alessandro Santana

    2011-04-01

    Full Text Available Congenital cataracts are one of the most treatable causes of visual impairment and blindness during infancy, with an estimated prevalence of 1 to 6 cases per 10,000 live births. Approximately fifty percent of all congenital cataract cases may have a genetic cause. All three types of Mendelian inheritance have been reported for cataract; however, autosomal dominant transmission seems to be the most frequent. The transparency and high refractive index of the lens are achieved by the precise architecture of the fiber cells and the homeostasis of the lens proteins in terms of their concentration, stability, and supramolecular organization. Research on hereditary congenital cataract led to the identification of several classes of candidate genes that encode proteins such crystallins, lens specific connexins, aquaporine, cytoskeletal structural proteins, and developmental regulators. The purpose of this study was to review the literature on the recent advances made in understanding the molecular genetic basis of congenital cataracts.

  12. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  13. Diagnosis of Whipple's disease using molecular biology techniques.

    Science.gov (United States)

    Cosme, Ángel; Ojeda, Evelia; Muñagorri, Ana I; Gaminde, Eduardo; Bujanda, Luis; Larzabal, Mikel; Gil, Inés

    2011-04-01

    The diagnosis of Whipple's disease (WD) is based on the existence of clinical signs and symptoms compatible with the disease and in the presence of PAS-positive diastase-resistant granules in the macrophages of the small intestine. If there is suspicion of the disease but no histological findings or only isolated extraintestinal manifestations, species-specific PCR using different sequences of the T. whippleii genome from different tissue types and biological fluids is recommended.This study reports two cases: the first patient had diarrhea and the disease was suspected after an endoscopic examination of the ileum, while the second patient had multi-systemic manifestations,particularly abdominal, thoracic, and peripheral lymphadenopathies. In both cases, the diagnosis was confirmed using molecular biology techniques to samples from the small intestine or from a retroperineal lymph node, respectively. PMID:21526877

  14. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  15. Adult renal cystic disease: a genetic, biological, and developmental primer.

    Science.gov (United States)

    Katabathina, Venkata S; Kota, Gopi; Dasyam, Anil K; Shanbhogue, Alampady K P; Prasad, Srinivasa R

    2010-10-01

    Renal cystic diseases in adults are a heterogeneous group of disorders characterized by the presence of multiple cysts in the kidneys. These diseases may be categorized as hereditary, acquired, or developmental on the basis of their pathogenesis. Hereditary conditions include autosomal dominant polycystic kidney disease, medullary cystic kidney disease, von Hippel-Lindau disease, and tuberous sclerosis. Acquired conditions include cystic kidney disease, which develops in patients with end-stage renal disease. Developmental cystic diseases of the adult kidney include localized renal cystic disease, multicystic dysplastic kidney, and medullary sponge kidney. In recent years, many molecular and cellular mechanisms involved in the pathogenesis of renal cystic diseases have been identified. Hereditary renal cystic diseases are characterized by genetic mutations that lead to defects in the structure and function of the primary cilia of renal tubular epithelial cells, abnormal proliferation of tubular epithelium, and increased fluid secretion, all of which ultimately result in the development of renal cysts. A better understanding of these pathophysiologic mechanisms is now providing the basis for the development of more targeted therapeutic drugs for some of these disorders. Cross-sectional imaging provides useful information for diagnosis, surveillance, prognostication, and evaluation of treatment response in renal cystic diseases. PMID:21071372

  16. Overview of significant challenges in molecular biology amenable to computational methods.

    Science.gov (United States)

    Glaeser, R M

    1994-01-01

    Many challenging but significant opportunities exist for the development of theoretical approaches in modern Cell and Molecular Biology. The creation of data bases which contain extremely large amounts of information has proven to be an unexpectedly important facto-tin gaining acceptance and respectability for theoretical work that builds on nothing more than what is in the data base itself, such as theoretical work involving the analysis of known protein structures, or the development of more powerful homology searches. Other opportunities, not yet accepted by a broad community, involve work on complex networks (metabolic, genetic, immunologic and neural networks) and work on the "physics of how things work." The DOE National Laboratory System represents the ideal institution that would be well suited to the role of being an "incubator" for the creation of a theoretical and computational discipline within modern biology. PMID:7755540

  17. International Symposium on Insect Physiology, Biochemistry and Molecular Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ We are building on the success of the Sixth Chinese Insect Physiology, Biochemistry and Molecular Biology Symposium, Beijing, held in 2005. The 2005 symposium saw many Chinese and international authorities share their expertise in a broad range of insect science, including analyses of insect genomes and proteomes, functional gene expression and regulation during development, insect immunity, insect neurobiology, insect-host interactions and insect chemical communication. The coming symposium, which will be held in Shandong University,Jinan, Shandong province, September 19-22, 2007, will offer material along similar lines.

  18. A guide on instrument of biochemistry and molecular biology

    International Nuclear Information System (INIS)

    This book is about instrument on biochemistry and molecular biology, which consists of six chapters. It deals with introduction of advanced bio-instrument, common utilization and maintain, explanation of each instrument like capillary electrophoresis, interactive laser cytometer, personal computer and software, an electron microscope and DNA/RNS synthesis instrument, large equipment and special system like information system and network, analysis system for genome and large spectro graph, outside donation, examples for common utilization and appendix on data like application form for use.

  19. Biologically relevant molecular transducer with increased computing power and iterative abilities.

    Science.gov (United States)

    Ratner, Tamar; Piran, Ron; Jonoska, Natasha; Keinan, Ehud

    2013-05-23

    As computing devices, which process data and interconvert information, transducers can encode new information and use their output for subsequent computing, offering high computational power that may be equivalent to a universal Turing machine. We report on an experimental DNA-based molecular transducer that computes iteratively and produces biologically relevant outputs. As a proof of concept, the transducer accomplished division of numbers by 3. The iterative power was demonstrated by a recursive application on an obtained output. This device reads plasmids as input and processes the information according to a predetermined algorithm, which is represented by molecular software. The device writes new information on the plasmid using hardware that comprises DNA-manipulating enzymes. The computation produces dual output: a quotient, represented by newly encoded DNA, and a remainder, represented by E. coli phenotypes. This device algorithmically manipulates genetic codes. PMID:23706637

  20. Molecular and genetic aspects of odontogenic tumors: a review

    Directory of Open Access Journals (Sweden)

    Kavita Garg

    2015-06-01

    Full Text Available Odontogenic tumors contain a heterogeneous collection of lesions that are categorized from hamartomas to benign and malignant neoplasms of inconstant aggressiveness. Odontogenic tumors are usually extraordinary with assessed frequency of short of 0.5 cases/100,000 population for every year. The lesions such as odontogenic tumors are inferred from the components of the tooth-structuring contraption. They are discovered solely inside the maxillary and mandibular bones. This audit speaks to experiences and cooperation of the molecular and genetic variations connected to the development and movement of odontogenic tumors which incorporate oncogenes, tumor-silencer genes, APC gene, retinoblastoma genes, DNA repair genes, onco-viruses, development components, telomerase, cell cycle controllers, apoptosis-related elements, and regulators/controllers of tooth development. The reasonable and better understanding of the molecular components may prompt new ideas for their detection and administrating a better prognosis of odontogenic tumors.

  1. Testicular germ cell tumors: Molecular genetic and clinicomorphological aspects

    Directory of Open Access Journals (Sweden)

    M. V. Nemtsova

    2015-03-01

    Full Text Available Testicular tumors are the most common form of solid cancer in young men. According to the 2004 WHO classification, testicular germ cell tumors (TGCT may present with different histological types. Embryonic cells of varying grade may be a source of TGCT and the occurrence of this type of tumors is directly related to the formation of a pool of male sex cells and gametogenesis. The paper gives information on mo- lecular stages for the process of formation of male sex cells in health, as well as ways of their impairments leading to TGCT. An investigation of the profiles of gene expression and the spectrum of molecular damages revealed genes responsible for a predisposition to the sporadic and hereditary forms of TGCT. The paper presents the current molecular genetic and clinicomorphological characteristics of TGCT. 

  2. How phenotypic plasticity made its way into molecular biology

    Indian Academy of Sciences (India)

    Michel Morange

    2009-10-01

    Phenotypic plasticity has been fashionable in recent years. It has never been absent from the studies of evolutionary biologists, although the availability of stable animal models has limited its role. Although opposed by the reductionist and deterministic approach of molecular biology, phenotypic plasticity has nevertheless recently made its way into this discipline, in particular through the limits of the molecular description. Its resurrection has been triggered by a small group of theoreticians, the rise of epigenetic descriptions and the publicized discovery of stem cell plasticity. The notion of phenotypic plasticity remains vague. History shows that too strong a belief in plasticity can be an obstacle to the development of biology. Two important questions are still pending: the link between the different forms of plasticity present at different levels of organization, and the relation, if any, between the modular organization of organisms and phenotypic plasticity. Future research will help to discriminate between possible and actual mechanisms of phenotypic plasticity, and to give phenotypic plasticity its real place in the living world.

  3. On the shoulders of giants: Molecular Biology in Public Health

    Directory of Open Access Journals (Sweden)

    Carmine Melino

    2005-03-01

    Full Text Available

    We accepted with great pleasure the invitation by professor Walter Ricciardi,our friend and colleague, to write an editorial in order to introduce this special issue dedicated to Molecular Biology in Hygiene. We are delighted for two connected reasons.

    First, Carmine,as a former professor of Hygiene,has passed his concepts of Hygiene on to his family and, despite significant difficulties, keeps working on the problems of preventive medicine in the work environment and in geriatrics. Second, Gerry, raised in an environment of hygienists, has dedicated all his professional efforts to Molecular Biology. As these two distinct experiences have constantly mixed within our family over time, we appreciate the promiscuous intermingling of these two disciplines in this thematic issue.

    The result is a useful common effort aiming at understanding the problems of diseases in the work environment and in the human environment in general.

    These problems have a profound social meaning, for which it is necessary to create an essential collaboration with scientific research.

    This is the only way to benefit human society.

  4. Plant genetic and molecular responses to water deficit

    Directory of Open Access Journals (Sweden)

    Silvio Salvi

    2011-02-01

    Full Text Available Plant productivity is severely affected by unfavourable environmental conditions (biotic and abiotic stresses. Among others, water deficit is the plant stress condition which mostly limits the quality and the quantity of plant products. Tolerance to water deficit is a polygenic trait strictly dependent on the coordinated expression of a large set of genes coding for proteins directly involved in stress-induced protection/repair mechanisms (dehydrins, chaperonins, enzymes for the synthesis of osmoprotectants and detoxifying compounds, and others as well as genes involved in transducing the stress signal and regulating gene expression (transcription factors, kinases, phosphatases. Recently, research activities in the field evolved from the study of single genes directly involved in cellular stress tolerance (functional genes to the identification and characterization of key regulatory genes involved in stress perception and transduction and able to rapidly and efficiently activate the complex gene network involved in the response to stress. The complexity of the events occurring in response to stress have been recently approached by genomics tools; in fact the analysis of transcriptome, proteome and metabolome of a plant tissue/cell in response to stress already allowed to have a global view of the cellular and molecular events occurring in response to water deficit, by the identification of genes activated and co-regulated by the stress conditions and the characterization of new signalling pathways. Moreover the recent application of forward and reverse genetic approaches, trough mutant collection development, screening and characterization, is giving a tremendous impulse to the identification of gene functions with key role in stress tolerance. The integration of data obtained by high-throughput genomic approaches, by means of powerful informatic tools, is allowing nowadays to rapidly identify of major genes/QTLs involved in stress tolerance

  5. Awareness of Societal Issues Among High School Biology Teachers Teaching Genetics

    Science.gov (United States)

    Lazarowitz, Reuven; Bloch, Ilit

    2005-12-01

    The purpose of this study was to investigate how aware high school biology teachers are of societal issues (values, moral, ethic, and legal issues) while teaching genetics, genetics engineering, molecular genetics, human heredity, and evolution. The study includes a short historical review of World War II atrocities during the Holocaust when scientists from all the above-mentioned disciplines had been involved in trying to support and develop the eugenics theories. It investigates pre- and postwar theories of the eugenics movement in the United States which were implemented successfully in Germany and a literature survey of the studies of societal issues related to these subjects. The sample consisted of 30 male and female biology teachers. Enclosed are teachers' answers in favor or against including debates about societal issues in their classrooms while teaching the disciplines mentioned above. Teachers' answers were analyzed in relation to three variables: years of teaching experience, gender, and religion faith. Data were collected from questionnaires and personal interviews and analyzed according to qualitative and quantitative methods. The results show that amongst the teachers there is a medium to low level of awareness of societal issues, while mainly emphasizing scientific subjects in preparation of matriculation examinations. The majority of the teachers do not include societal issues in their teaching, but if students raise these issues, teachers claimed to address them. No differences in teachers' opinions to societal issues were found in relation to gender or religious faith. Teachers with more years of teaching experience tend to teach with a more Science, Technology, and Society (STS) approach than novice teachers. The results are discussed in relation to teachers' professional development and teaching strategies are suggested to be used in their classrooms based on a STS approach, which includes the societal issues as a main goal.

  6. Genetic, molecular, and morphological analysis of compound leaf development.

    Science.gov (United States)

    Goliber, T; Kessler, S; Chen, J J; Bharathan, G; Sinha, N

    1999-01-01

    Leaves, the plant organs responsible for capturing and converting most of the 170 billion metric tons of carbon fixed globally each year, can be broadly grouped into two morphological categories: simple and compound. Although simple-leaved species such as corn and Arabidopsis have traditionally been favored model systems for studying leaf development, recent years have seen an increase in genetic and molecular studies of compound leaf development. Two compound-leaved species in particular have emerged as model systems: tomato and pea. A variety of mutations which alter leaf morphology in these species have been described, and analyses of these mutations have allowed the construction of testable models of leaf development. Also, the knotted-like homeobox (KNOX) genes, which were originally discovered as regulators of meristem function, now appear to have a role in compound leaf development. In addition to the recent genetic and molecular analyses of tomato and pea, insight into the nature of compound leaf development may be gained through the study of (a) heteroblasty and heterophylly, phenomena in which a range of leaf forms can be produced by a single shoot, and (b) the evolutionary origins of compound leaves. PMID:9891889

  7. Molecular genetic analysis of Dongzhou-period ancient human of Helingeer in Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The mtDNA hypervariable region I (HVR-I) of 10 ancient individuals from Dongzhou-period ancient human populations in Helingeer county of Inner Mongolia were amplified and sequenced to investigate the genetic structure. The relationships between the ancient population and related extant populations, as well as its possible origin at the molecular level, were also studied. Moreover, phylogenetic analysis and multi-dimensional scaling analysis were also performed based on the mtDNA data of the ancient population in Helingeer and the related Eurasian population. The results showed that the ancient population in Helingeer were closer to the northern Asian populations than to the other compared populations in matrilineal lineage. Combining the research results of archaeology and anthropology as well as molecular biology, we inferred that they were nomads who migrated from Mongolia plateau and cis-Baikal region to Helingeer in Inner Mongolia, China.

  8. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Objectives. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-based case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel art and Falconer methods were used to analyze the segregation ratio and heritability. Polymerase chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significartly, OR is 3.905 ( 95 % CI = 1.079 ~ 14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blood relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LOH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome aberrations were observed. Conclusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  9. AN EPIDEMIOLOGY AND MOLECULAR GENETIC STUDY ON BREAST CANCER SUSCEPTIBILITY

    Institute of Scientific and Technical Information of China (English)

    贾卫华; 王继先; 李本孝; 李征

    2000-01-01

    Obieaites. To investigate the genetic susceptibility for breast cancer of Chinese, a hospital-besed case-control study, pedigree survey and molecular genetic study were conducted. Methods. Logistic regression model and stratification methods were used in the risk factors analysis. Li-Mantel-Gart and Falconer methods were used to analyze the segregation ratio and heritability. Polymemse chain reaction (PCR) and polyacrylamide gel electrophoresis were used to detect AI, G-banding technique was used to detect the chromosome aberration of peripheral blood lymphocyte. Results. Family history of breast cancer is related to enhanced breast cancer risk significantly, OR is 3.905(95% CI = 1.079—14.13), and it widely interacts with other risk factors. Accumulative incidence of breast cancer in first degree relatives is 9.99%, which is larger than that in second, third degree and non-blnod relatives. Segregation ratio is 0.021, heritability among first degree relatives is 35.6 ± 5.8%. Frequencies of LDH at BRCA1 and BRCA2 loci in sporadic breast cancer are 6.12% and 5.77% respectively. In the sibs, both of them show LOH at D13S173 locus, and high frequencies of chromosome abermtions were observed.Condusions. Genetic susceptibility contributes to breast cancer occurrence of Chinese, and its racial variation may be one of the important reasons for the large difference of incidence between western and eastern countries.

  10. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  11. The Impact of Collective Molecular Dynamics on Physiological and Biological Functionalities of Artificial and Biological Membranes

    Science.gov (United States)

    Rheinstadter, Maikel

    2008-03-01

    We use neutron, X-ray and light scattering techniques to determine dynamical and structural properties of artificial and biological membranes. The combination of various techniques enlarges the window to length scales from the nearest-neighbor distances of lipid molecules to more than 10-6m, covering time scales from about 0.1 ps to 1 s. The main research objective is to quantify collective molecular fluctuations in these systems and to establish relationships to physiological and biological functions of the bilayers, such as transmembrane transport. The motivation for this project is twofold: 1) By understanding fundamental properties of bilayers at the microscopic and mesoscopic level, we aim to tailor membranes with specific properties such as permeability and elasticity. 2) By relating dynamical fluctuations to physiological and biological functions, we can gain a deeper understanding of the bilayers on a molecular scale that may help optimizing the transmembrane transport of certain drugs. We show how bilayer permeability, elasticity and inter protein excitations can be determined from the experiments. M.C. Rheinstädter et al., Phys. Rev. Lett. 93, 108107 (2004); Phys. Rev. Lett. 97, 048103 (2006); Phys. Rev. E 75, 011907 (2007);J. Vac. Soc. Technol. A 24, 1191 (2006).

  12. Biotechnology of microbial xylanases: enzymology, molecular biology, and application.

    Science.gov (United States)

    Subramaniyan, S; Prema, P

    2002-01-01

    Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems. PMID:11958335

  13. The physiology and molecular biology of sponge tissues.

    Science.gov (United States)

    Leys, Sally P; Hill, April

    2012-01-01

    Sponges have become the focus of studies on molecular evolution and the evolution of animal body plans due to their ancient branching point in the metazoan lineage. Whereas our former understanding of sponge function was largely based on a morphological perspective, the recent availability of the first full genome of a sponge (Amphimedon queenslandica), and of the transcriptomes of other sponges, provides a new way of understanding sponges by their molecular components. This wealth of genetic information not only confirms some long-held ideas about sponge form and function but also poses new puzzles. For example, the Amphimedon sponge genome tells us that sponges possess a repertoire of genes involved in control of cell proliferation and in regulation of development. In vitro expression studies with genes involved in stem cell maintenance confirm that archaeocytes are the main stem cell population and are able to differentiate into many cell types in the sponge including pinacocytes and choanocytes. Therefore, the diverse roles of archaeocytes imply differential gene expression within a single cell ontogenetically, and gene expression is likely also different in different species; but what triggers cells to enter one pathway and not another and how each archaeocyte cell type can be identified based on this gene knowledge are new challenges. Whereas molecular data provide a powerful new tool for interpreting sponge form and function, because sponges are suspension feeders, their body plan and physiology are very much dependent on their physical environment, and in particular on flow. Therefore, in order to integrate new knowledge of molecular data into a better understanding the sponge body plan, it is important to use an organismal approach. In this chapter, we give an account of sponge body organization as it relates to the physiology of the sponge in light of new molecular data. We focus, in particular, on the structure of sponge tissues and review descriptive as

  14. Cytogenetics and molecular genetics of carcinomas arising from thyroid epithelial follicular cells.

    Science.gov (United States)

    Pierotti, M A; Bongarzone, I; Borello, M G; Greco, A; Pilotti, S; Sozzi, G

    1996-05-01

    Cytogenetic and molecular analyses of thyroid tumors have indicated that these neoplasms represent a good model for analyzing human epithelial cell multistep carcinogenesis. They comprise, in fact, a broad spectrum of lesions with different phenotypes and variable biological and clinical behavior. Molecular analysis has detected specific genetic alterations in the different types of thyroid tumors. In particular, the well-differentiated carcinomas of the papillary type are characterized by activation of the receptor tyrosine kinases (RTKs), RET and NTRK1 proto-oncogenes. Cytogenetic analysis of these tumors has contributed to defining the chromosomal mechanisms leading to RTK oncogenic activation. In the majority of cases, intrachromosomal inversions of chromosome 10 and chromosome 1 led to the formation of RET-derived and NTRK1-derived oncogenes, respectively. Interestingly, molecular analysis of these oncogenes revealed their nature of chimeric fusion proteins all sharing the tyrosine kinase (TK) domains of the respective proto-oncogenes. Moreover, the sequencing of the oncogenic rearrangements led to the identification of a breakpoint cluster region in both RTK proto-oncogenes. Exposure to ionizing radiation is associated with papillary carcinomas and RET activation has been suggested to be related to this event. Conversely, RAS point mutations are frequently observed in tumors with follicular histology and have been associated with metastatic dissemination. Iodide-deficient areas seem to provide a higher frequency of RAS positive follicular carcinomas. Finally, a high prevalence of TPS3 point mutations has been detected only in undifferentiated or anaplastic carcinomas and found to correlate inversely with 8CL2 expression. All of these findings are contributing to the definition of genetic and environmental factors relevant for the pathogenesis of thyroid tumors. Moreover, the characterization of specific genetic lesions could provide significant molecular

  15. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives.

    Science.gov (United States)

    Longhi, Sara; Giongo, Lara; Buti, Matteo; Surbanovski, Nada; Viola, Roberto; Velasco, Riccardo; Ward, Judson A; Sargent, Daniel J

    2014-01-01

    The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species. PMID:26504527

  16. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. PMID:24259334

  17. The microtubule-associated molecular pathways may be genetically disrupted in patients with Bipolar Disorder. Insights from the molecular cascades.

    Science.gov (United States)

    Drago, Antonio; Crisafulli, Concetta; Sidoti, Antonina; Calabrò, Marco; Serretti, Alessandro

    2016-01-15

    Bipolar Disorder is a severe disease characterized by pathological mood swings from major depressive episodes to manic ones and vice versa. The biological underpinnings of Bipolar Disorder have yet to be defined. As a consequence, pharmacological treatments are suboptimal. In the present paper we test the hypothesis that the molecular pathways involved with the direct targets of lithium, hold significantly more genetic variations associated with BD. A molecular pathway approach finds its rationale in the polygenic nature of the disease. The pathways were tested in a sample of ∼ 7,000 patients and controls. Data are available from the public NIMH database. The definition of the pathways was conducted according to the National Cancer Institute (http://pid.nci.nih.gov/). As a result, 3 out of the 18 tested pathways related to lithium action resisted the permutation analysis and were found to be associated with BD. These pathways were related to Reelin, Integrins and Aurora. A pool of genes selected from the ones linked with the above pathways was further investigated in order to identify the fine molecular mechanics shared by our significant pathways and also their link with lithium mechanism of action. The data obtained point out to a possible involvement of microtubule-related mechanics. PMID:26551401

  18. From lesions to viral clones: biological and molecular diversity amongst autochthonous Brazilian vaccinia virus.

    Science.gov (United States)

    Oliveira, Graziele; Assis, Felipe; Almeida, Gabriel; Albarnaz, Jonas; Lima, Maurício; Andrade, Ana Cláudia; Calixto, Rafael; Oliveira, Cairo; Diomedes Neto, José; Trindade, Giliane; Ferreira, Paulo César; Kroon, Erna Geessien; Abrahão, Jônatas

    2015-03-01

    Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment. PMID:25785515

  19. Molecular Markers to Characterize Genetic Variability in Brazilian Cochliomyia hominivorax

    International Nuclear Information System (INIS)

    The screwworm fly Cochliomyia hominivorax is one of the most important agents of traumatic myiasis throughout neotropical regions. In Brazil this pest is devastating, causing great profit losses for cattle breeders (around U$ 180 million annually). In South America there are no preventive methods to control natural populations of screwworm fly. The basic knowledge of the genetic variability and evolution within a species is necessary information to understand the structure and evolution of populations. In the case of screwworm populations we are, in our laboratory, conducting analyses with different types of molecular markers in the mitochondrial and nuclear genomes using RFLP, PCR and sequencing procedures and protein electrophoresis to characterize the genetic polymorphism and population structure of screwworms in Brazil. Based on the fragment patterns for the five marker enzymes, 15 mtDNA composite haplotypes were detected among the individuals of the seven populations of screwworm analysed. The average of nucleotide diversity was 0.92%. The nucleotide divergence estimates between pairs of haplotypes ranged from 0.3% to 2.7%. The analysis of the geographical distribution among the observed haplotypes suggests that the sampled populations probably belong to a single evolutionary lineage interconnected by reduced gene flow. The RAPD-PCR technique was used to detect genetic polymorphism and to select genetic markers to discriminate seven populations, including one from northern Argentina. In general, results of both mitochondrial, RAPD analysis and allozymes are concordant in suggesting divergence among screwworm populations. The Esterase system was the most polymorphic (with ten alleles) and was polymorphic in all the studied populations. The genetic differentiation, Fst value, was Fst=0.214. The estimated rate of gene flow from the total sample of screwworm was low Nm=0.92. Our data show a great amount of genetic variability as revealed by isozymes. In addition

  20. Implementation and Assessment of a Molecular Biology and Bioinformatics Undergraduate Degree Program

    Science.gov (United States)

    Pham, Daphne Q. -D.; Higgs, David C.; Statham, Anne; Schleiter, Mary Kay

    2008-01-01

    The Department of Biological Sciences at the University of Wisconsin-Parkside has developed and implemented an innovative, multidisciplinary undergraduate curriculum in Molecular Biology and Bioinformatics (MBB). The objective of the MBB program is to give students a hands-on facility with molecular biology theories and laboratory techniques, an…

  1. Tagging and Purifying Proteins to Teach Molecular Biology and Advanced Biochemistry

    Science.gov (United States)

    Roecklein-Canfield, Jennifer A.; Lopilato, Jane

    2004-01-01

    Two distinct courses, "Molecular Biology" taught by the Biology Department and "Advanced Biochemistry" taught by the Chemistry Department, complement each other and, when taught in a coordinated and integrated way, can enhance student learning and understanding of complex material. "Molecular Biology" is a comprehensive lecture-based course with a…

  2. Avian Metapneumovirus Molecular Biology and Development of Genetically Engineered Vaccines

    Science.gov (United States)

    Avian metapneumovirus (aMPV) is an economically important pathogen of turkeys with a worldwide distribution. aMPV is a member of the genus Metapneumovirus within the subfamily Pneumovirinae of the family Paramyxoviridae. The genome of aMPV is a non-segmented, single-stranded, negative-sense RNA of 1...

  3. Molecular biological study on genetic stability of the genome

    International Nuclear Information System (INIS)

    A population cytogenetic study has been performed in 1022 healthy subjects and 547 cancer patients to determine baseline frequencies of autosomal rate fragile sites. Out of 17 rare autosomal fragile sites defined in HBM9 (1985), the following six were detected: fra(2)(q11), fra(10)(q25), fra(11)(q13), fra(11)(q23), fra(16)(q22) and fra(17)(q12). Other three new fragile sites were also detected: fra(8)(q24.1), fra(11)(q15.1) and fra(16)(p12.1). They were all distamycin A-inducible and located at the junctions of G/R-bands. The incidence of these autosomal fragile sites was 5% in both healthy subjects and cancer patients. Distamycin A-induced fragile sites may play a role in the etiology of leukemia, myeloproliferative disorders, and gynecological tumors. The present study also examined the mechanism of fragile X expression associated with fragile X syndrome in thymidine-prototrophic and auxotrophic human-mouse somatic cell hybrids. In these hybrid cells, both low and high thymidylate stresses were found to be effective in inducing fragile X expression, even in a hybrid clone that retained a fragile X chromosome as the only human chromosome. An addition of deoxycytidine completely abolished the effect of high thymidylate stress achieved by excess amounts of thymidine. It is concluded that the expression is an intrinsic property of the fragile X mutation resulting from chromosomal change in a special class of replicons with polypurine/polypyrimidine DNA sequence. (Namekawa, K)

  4. Exploiting Molecular Biology by Time-Resolved Fluorescence Imaging

    Science.gov (United States)

    Müller, Francis; Fattinger, Christof

    Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal fluorophore. With fluorescence lifetimes in the microsecond range and fluorescence quantum yield of 0.4 some water soluble complexes of Ruthenium like modified Ru(sulfobathophenanthroline) complexes fulfill these properties. They are outstanding fluorescent labels for ultrasensitive assays as illustrated in two examples, in drug discovery and in point of care testing.We discuss the fundamentals and the state-of-the-art of the most sensitive time-gated fluorescence assays. We reflect on how the imaging devices currently employed for readout of these assays might evolve in the future. Many contemporary biological investigations rely on highly sensitive in vitro assays for the analysis of specific molecules in biological specimens, and the main part of these assays depends on high-sensitivity fluorescence detection techniques for the final readout. The analyzed molecules and molecular interactions in the specimen need to be detected in the presence of other highly abundant biomolecules, while the analyzed molecules themselves are only present at nano-, pico-, or even femtomolar concentration.A short scientific rationale of fluorescence is presented. It emphasizes the use of fluorescent labels for sensitive assays in life sciences and specifies the main properties of an ideal

  5. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats.

    Science.gov (United States)

    Jones, Gareth; Teeling, Emma C; Rossiter, Stephen J

    2013-01-01

    Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a "birth-and death" evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015

  6. From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats

    Directory of Open Access Journals (Sweden)

    Gareth eJones

    2013-05-01

    Full Text Available Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions (e.g. olfactory receptor genes and genes identified from mutations associated with sensory deficits (e.g. blindness and deafness. For example, the FoxP2 gene, underpinning vocal behaviour and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive olfactory receptor repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a ‘birth-and death’ evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to

  7. Traffic phenomena in biology: from molecular motors to organisms

    CERN Document Server

    Chowdhury, D; Nishinari, K; Chowdhury, Debashish; Schadschneider, Andreas; Nishinari, Katsuhiro

    2007-01-01

    Traffic-like collective movements are observed at almost all levels of biological systems. Molecular motor proteins like, for example, kinesin and dynein, which are the vehicles of almost all intra-cellular transport in eukayotic cells, sometimes encounter traffic jam that manifests as a disease of the organism. Similarly, traffic jam of collagenase MMP-1, which moves on the collagen fibrils of the extracellular matrix of vertebrates, has also been observed in recent experiments. Traffic-like movements of social insects like ants and termites on trails are, perhaps, more familiar in our everyday life. Experimental, theoretical and computational investigations in the last few years have led to a deeper understanding of the generic or common physical principles involved in these phenomena. In particular, some of the methods of non-equilibrium statistical mechanics, pioneered almost a hundred years ago by Einstein, Langevin and others, turned out to be powerful theoretical tools for quantitative analysis of mode...

  8. [Prognosis factors of cholangiocarcinoma: contribution of recent molecular biology tools].

    Science.gov (United States)

    Malouf, G; Dreyer, C; Guedj, N; Paradis, V; Degos, F; Belghiti, J; Le Tourneau, C; Faivre, S; Raymond, E

    2009-04-01

    Cholangiocarcinoma represents the second most common primary hepatobiliary cancer. Although few patients are candidates for surgery, surgical resection represents the only potential curative option. The prognosis for patients remains poor, despite advances in the understanding of mechanisms involved in carcinogenesis. This review aims to assess clinicopathological factors and biological markers for the ability to predict prognosis. Clinicopathologic factors most often cited are tumor size, lymph node involvement, resecability and surgical margins involvement. Molecular biomarkers have been examined and a number of these, including mdm2, p27, matrix metalloproteinases and vitamin D receptor appear to have prognostic utility. The advent of 'omic'-based profiling offers the potential to assess many different biomarkers at the same time. This 'protein/gene signature' could open the way for developing valid and reproducible predictors of survival based on protein or gene profiles. PMID:19357015

  9. Molecular biology in medicine: laboratory diagnosis of tuberculosis.

    Science.gov (United States)

    Ling, M L

    1996-01-01

    Clinical mycobacteriology has benefited much from the application of molecular biology techniques. Early detection and identification of Mycobacterium tuberculosis are achieved by the combined use of the BACTEC system and deoxyribonucleic acid (DNA) probes. High-performance liquid chromatography is the other alternative used in some laboratories. Polymerase chain reaction is still a research tool because of its many problems and limitations. Other promising techniques for rapid diagnosis of Mycobacterium tuberculosis, for example, the serological diagnosis by enzyme-linked immunosorbent assay (ELISA), the Gen-Probe Amplified Mycobacterium tuberculosis Direct Test, DNA hybridization, the Mycobacteria Growth Indicator Tubes System and the strand displacement amplification system are currently under evaluation. The discovery of drug resistant genes such as katG and apoB has important implications for the development of new tests for the rapid detection of resistance to anti-tuberculous drugs. PMID:8779555

  10. Molecular and biological aspects of the bovine immunodeficiency virus.

    Science.gov (United States)

    Corredor, Andrea G; St-Louis, Marie-Claude; Archambault, Denis

    2010-01-01

    The bovine immunodeficiency virus (BIV) was isolated in 1969 from a cow, R-29, with a wasting syndrome suggesting bovine leucosis. The virus, first designated bovine visna-like virus, remained unstudied until HIV was discovered in 1983. Then, it was demonstrated in 1987 that the bovine R-29 isolate was a lentivirus with striking similarity to the human immunodeficiency virus (HIV). Moreover, BIV has the most complex genomic structure among all identified lentiviruses shown by several regulatory/accessory genes encoding proteins, some of which are involved in the regulation of virus gene expression. This manuscript aims to review biological and molecular aspects of BIV, with emphasis on regulatory/accessory viral genes/proteins which are involved in virus expression. PMID:20210777

  11. Opiate addiction and cocaine addiction: underlying molecular neurobiology and genetics

    Science.gov (United States)

    Kreek, Mary Jeanne; Levran, Orna; Reed, Brian; Schlussman, Stefan D.; Zhou, Yan; Butelman, Eduardo R.

    2012-01-01

    Addictive diseases, including addiction to heroin, prescription opioids, or cocaine, pose massive personal and public health costs. Addictions are chronic relapsing diseases of the brain caused by drug-induced direct effects and persisting neuroadaptations at the epigenetic, mRNA, neuropeptide, neurotransmitter, or protein levels. These neuroadaptations, which can be specific to drug type, and their resultant behaviors are modified by various internal and external environmental factors, including stress responsivity, addict mindset, and social setting. Specific gene variants, including variants encoding pharmacological target proteins or genes mediating neuroadaptations, also modify vulnerability at particular stages of addiction. Greater understanding of these interacting factors through laboratory-based and translational studies have the potential to optimize early interventions for the therapy of chronic addictive diseases and to reduce the burden of relapse. Here, we review the molecular neurobiology and genetics of opiate addiction, including heroin and prescription opioids, and cocaine addiction. PMID:23023708

  12. Molecular and genetic basis of X-linked immunodeficiency disorders

    Energy Technology Data Exchange (ETDEWEB)

    Puck, J.M. (National Center for Human Genome Research, Bethesda, MD (United States))

    1994-03-01

    Within a short time interval the specific gene defects causing three X-linked human immunodeficiencies, agammaglobulinemia (XLA), hyper-IgM syndrome (HIGM), and severe combined immunodeficiency (XSCID), have been identified. These represent the first human disease phenotypes associated with each of three gene families already recognized to be important in lymphocyte development and signaling: XLA is caused by mutations of a B cell-specific intracellular tyrosine kinase; HIGM, by mutations in the TNF-related CD40 ligand, through which T cells deliver helper signals by direct contact with B cell CD40; and XSCID, by mutations in the [gamma] chain of the lymphocyte receptor for IL-2. Each patient mutation analyzed to date has been unique, representing both a challenge for genetic diagnosis and management and an important resource for dissecting molecular domains and understanding the physiologic function of the gene products.

  13. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  14. From playfulness and self-centredness via grand expectations to normalisation: a psychoanalytical rereading of the history of molecular genetics.

    Science.gov (United States)

    Zwart, H A E

    2013-11-01

    In this paper, I will reread the history of molecular genetics from a psychoanalytical angle, analysing it as a case history. Building on the developmental theories of Freud and his followers, I will distinguish four stages, namely: (1) oedipal childhood, notably the epoch of model building (1943-1953); (2) the latency period, with a focus on the development of basic skills (1953-1989); (3) adolescence, exemplified by the Human Genome Project, with its fierce conflicts, great expectations and grandiose claims (1989-2003) and (4) adulthood (2003-present) during which revolutionary research areas such as molecular biology and genomics have achieved a certain level of normalcy--have evolved into a normal science. I will indicate how a psychoanalytical assessment conducted in this manner may help us to interpret and address some of the key normative issues that have been raised with regard to molecular genetics over the years, such as 'relevance', 'responsible innovation' and 'promise management'. PMID:23595614

  15. Molecular Sociology: Further Insights from Biological and Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Ahed Jumah Mahmoud Al-Khatib

    2015-11-01

    Full Text Available The present study expanded our previous study in which features of molecular sociology were mentioned. In this study, we added the microbial dimensions in which it is thought that religiosity may be impacted by microbes that manipulate brains to create better conditions for their existence. This hypothesis is called “biomeme hypothesis”. We talked about other environmental impacts on human behaviors through three studies in which exposure to lead caused violent behaviors ending with arresting in prisons. By conclusion, the present study has expanded our horizon about interferences on various levels including biological and environmental impacts with our behaviors. Although we are convinced that behavior is a very diverse and complex phenomenon and cannot be understood within certain frame as either biologically or environmentally, but further new insights are possible to participate in better understanding of human behaviors. Many behaviors have their roots in religion, and we showed how religious rituals may be affected by some microbes that make to form a microenvironment within the host for microbial benefits.

  16. Low angle neutron data acquisition system for molecular biology

    International Nuclear Information System (INIS)

    The low angle spectrometer system utilizing a 2-dimensional position sensitive counter was designed to accommodate a variety of experiments in molecular biology requiring good low angle resolution. Biological structures requiring low angle analysis techniques fall into two groups: non-ordered systems (proteins or protein complexes in solution) and ordered systems with large spacings like muscle, collagen, and membranes. For structural investigations into such systems, data are ideally needed to a low scattering angle of 0.20 at 4.5 A or a minimum Q of 0.005 A-1 (Q = theta . 2π/lambda). Depending on the type of structure, data often extend to the high angle region, say 300. Apart from the low angle requirements, the spectrometer has to have good resolution to resolve diffraction peaks from samples with crystal spacings up to 1000 A or even larger. While it is desirable to build a spectrometer to such scattering conditions, given reactor conditions might not permit this and compromises have to be made between flux, resolution and lowest angle. The low angle spectrometer described here was designed to be used at the HFBR neutron beam pipe working at approximately 4.2 A or at the H4 satellite station working at 2.4 A

  17. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  18. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    G. Roopa Lavanya; Jyoti Srivastava; Shirish A. Ranade

    2008-04-01

    RAPD profiles were used to identify the extent of diversity among 54 accessions of mung bean that included both improved and local land races. Out of the 40 primers screened, seven primers generated 174 amplification products with an average of 24.85 bands per primer. The RAPD profiles were analysed for Jaccard’s similarity coefficients that was found to be in the range from 0 to 0.48, indicating the presence of wide range of genetic diversity at molecular level. Cluster analysis was carried out based on distances (1-similarity coefficient) using neighbour-joining method in Free Tree package. The dendrogram resolved all the accessions into two major clusters, I (with 11 accessions) and II (with 43 accessions). However, the cluster was further divided into four subclusters (II A with six, II B with nine, II C with 15 and II D with 13 accessions). The distribution of the accessions in different clusters and subclusters appeares to be related to their performance in field conditions for 10 morphological traits that were scored. This study indicated that the RAPD profiles provide an easy and simple technique for preliminary genetic diversity assessment of mung bean accessions that may reflect morphological trait differences among them.

  19. Forward genetics in Tribolium castaneum: opening new avenues of research in arthropod biology

    OpenAIRE

    Peel, Andrew D

    2009-01-01

    A recent paper in BMC Biology reports the first large-scale insertional mutagenesis screen in a non-drosophilid insect, the red flour beetle Tribolium castaneum. This screen marks the beginning of a non-biased, 'forward genetics' approach to the study of genetic mechanisms operating in Tribolium. See research article http://biomedcentral.com/1741-7007/7/73

  20. Design and testing of a synthetic biology framework for genetic engineering of Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Ravasi Pablo

    2012-11-01

    Full Text Available Abstract Background Synthetic biology approaches can make a significant contribution to the advance of metabolic engineering by reducing the development time of recombinant organisms. However, most of synthetic biology tools have been developed for Escherichia coli. Here we provide a platform for rapid engineering of C. glutamicum, a microorganism of great industrial interest. This bacteria, used for decades for the fermentative production of amino acids, has recently been developed as a host for the production of several economically important compounds including metabolites and recombinant proteins because of its higher capacity of secretion compared to traditional bacterial hosts like E. coli. Thus, the development of modern molecular platforms may significantly contribute to establish C. glutamicum as a robust and versatile microbial factory. Results A plasmid based platform named pTGR was created where all the genetic components are flanked by unique restriction sites to both facilitate the evaluation of regulatory sequences and the assembly of constructs for the expression of multiple genes. The approach was validated by using reporter genes to test promoters, ribosome binding sites, and for the assembly of dual gene operons and gene clusters containing two transcriptional units. Combinatorial assembly of promoter (tac, cspB and sod and RBS (lacZ, cspB and sod elements with different strengths conferred clear differential gene expression of two reporter genes, eGFP and mCherry, thus allowing transcriptional “fine-tuning”of multiple genes. In addition, the platform allowed the rapid assembly of operons and genes clusters for co-expression of heterologous genes, a feature that may assist metabolic pathway engineering. Conclusions We anticipate that the pTGR platform will contribute to explore the potential of novel parts to regulate gene expression, and to facilitate the assembly of genetic circuits for metabolic engineering of C

  1. Does Biology Justify Ideology? The Politics of Genetic Attribution

    OpenAIRE

    Suhay , Elizabeth; Jayaratne, Toby Epstein

    2012-01-01

    Conventional wisdom suggests that political conservatives are more likely than liberals to endorse genetic explanations for many human characteristics and behaviors. Whether and to what extent this is true has received surprisingly limited systematic attention. We examine evidence from a large U.S. public opinion survey that measured the extent to which respondents believed genetic explanations account for a variety of differences among individuals as well as groups in society. We find that c...

  2. Biologic and Genetics Aspects of Chagas Disease at Endemic Areas

    OpenAIRE

    Marilanda Ferreira Bellini; Rosana Silistino-Souza; Marileila Varella-Garcia; Maria Tercília Vilela Azeredo-Oliveira; Ana Elizabete Silva

    2012-01-01

    The etiologic agent of Chagas Disease is the Trypanosoma cruzi, transmitted through blood-sucking insect vectors of the Triatominae subfamily, representing one of the most serious public health concerns in Latin America. There are geographic variations in the prevalence of clinical forms and morbidity of Chagas disease, likely due to genetic variation of the T. cruzi and the host genetic and environmental features. Increasing evidence has supported that inflammatory cytokines and chemokines a...

  3. Feature Selection and Molecular Classification of Cancer Using Genetic Programming

    Directory of Open Access Journals (Sweden)

    Jianjun Yu

    2007-04-01

    Full Text Available Despite important advances in microarray-based molecular classification of tumors, its application in clinical settings remains formidable. This is in part due to the limitation of current analysis programs in discovering robust biomarkers and developing classifiers with a practical set of genes. Genetic programming (GP is a type of machine learning technique that uses evolutionary algorithm to simulate natural selection as well as population dynamics, hence leading to simple and comprehensible classifiers. Here we applied GP to cancer expression profiling data to select feature genes and build molecular classifiers by mathematical integration of these genes. Analysis of thousands of GP classifiers generated for a prostate cancer data set revealed repetitive use of a set of highly discriminative feature genes, many of which are known to be disease associated. GP classifiers often comprise five or less genes and successfully predict cancer types and subtypes. More importantly, GP classifiers generated in one study are able to predict samples from an independent study, which may have used different microarray platforms. In addition, GP yielded classification accuracy better than or similar to conventional classification methods. Furthermore, the mathematical expression of GP classifiers provides insights into relationships between classifier genes. Taken together, our results demonstrate that GP may be valuable for generating effective classifiers containing a practical set of genes for diagnostic/ prognostic cancer classification.

  4. Insights into the molecular genetics of Kabuki syndrome

    Directory of Open Access Journals (Sweden)

    Adam MP

    2015-02-01

    Full Text Available Margaret P Adam Department of Pediatrics, Division of Genetic Medicine, University of Washington School of Medicine, Seattle, WA, USA Abstract: Kabuki syndrome (KS is a well-recognized multiple congenital anomaly/intellectual disability syndrome characterized by distinctive facial features, congenital heart defects, skeletal anomalies, persistent fingertip pads, postnatal growth retardation, and cognitive impairment to varying degrees. To date, mutations or deletions in two genes (KMT2D and KDM6A have been identified to cause the majority of cases of KS. Both genes are involved in histone modification and epigenetic regulation of gene expression in early embryogenesis. In this report, we review the clinical features and management of patients with KS, explore the proposed protein interactions and the molecular pathway that may lead to features of KS, and discuss how knowledge of the molecular mechanisms has the potential to inform further disease gene discovery and targeted treatment of the condition. Keywords: Kabuki syndrome, Kabuki make-up syndrome, KMT2D, KDM6A, histone modification

  5. Exploring Contemporary Issues in Genetics & Society: Karyotyping, Biological Sex, & Gender

    Science.gov (United States)

    Brown, Julie C.

    2013-01-01

    In this two-part activity, high school biology students examine human karyotyping, sex-chromosome-linked disorders, and the relationship between biological sex and gender. Through interactive simulations and a structured discussion lab, students create a human karyotype and diagnose chromosomal disorders in hypothetical patients, as well as…

  6. Bacterial exchange via nanotubes: Lessons learned from the history of molecular biology

    Directory of Open Access Journals (Sweden)

    ThomasAFicht

    2011-09-01

    Full Text Available DNA transfer between bacteria has a long and storied history. Starting shortly after the discovery by Avery, MacLeod and McCarty that DNA was the genetic material, the exchange of DNA between bacteria confirmed that DNA transfer could stably change the phenotypic behavior of organisms. Continued efforts along these lines led to the discovery of conjugation systems, bacteriophage transduction, bacterial genome mapping, and to some represents the birth of molecular biology. Recent findings by Dubey and Ben-Yehuda expand on these early results by suggesting that exchange between bacteria may occur continuously under certain growth conditions via nanotubes. These nanotubes have a structure similar to cell membranes and are sensitive to mild detergent treatment. Transfer of protein and plasmid DNA was demonstrated directly between neighboring and distant bacteria of the same and different genera. Transfer of RNA cannot be ruled out and the transfer of chromosomal DNA was not addressed. This work may reveal an important mechanism behind the spread of antibiotic resistance, however, much work remains to be done in order to confirm or refute the role of this mechanism in the dangerous spread of antibiotic resistance within the prokaryotic biosphere. The work of early molecular biology pioneers can be used as inspiration, if not as a direct template to guide future experimental confirmation.

  7. [Molecular genetics and determination of time since death - short communication].

    Science.gov (United States)

    Šaňková, Markéta; Račanská, Michaela

    2016-01-01

    Estimation of time since death, i.e. the post-mortem interval (PMI), is one of the most problematic issues in forensic practice. Accurate determination of the PMI still remains very complicated task even for an experienced forensic pathologist.Physical changes including algor, livor and rigor mortis can be observed already during the first hours after death of an individual. Unfortunately, the estimation of PMI on the basis of these changes is often burdened with a certain degree of inaccuracy, which is caused by the temperature of surrounding environment, constitution of the body, cause of the death, location of the body, drug abuse etc.Accurate PMI estimation requires assessment of such parameters, which change constantly from the moment of death, but independently on ambient factors. According to current research in the field of molecular biology, it appears that a post-mortem degradation of nucleic acids (both DNA and RNA) will correspond to this definition. PMID:27526264

  8. Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    International Nuclear Information System (INIS)

    Cyclin E, a key mediator of transition during the G1/S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

  9. My Dog's Cheeks: A PBL Project on Collagen for Cell Biology and Genetics Courses

    Science.gov (United States)

    Casla, Alberto Vicario; Zubiaga, Isabel Smith

    2010-01-01

    Students often have an oversimplified view of biological facts, which may hinder subsequent understanding when conceptual complexity gives rise to cognitive conflicts. To avoid this situation here, we present a PBL approach for the analysis of Ehlers-Danlos syndrome (EDS), which integrates a variety of topics in cell biology, genetics, and…

  10. Molecular source of biomarkers by genetic engineering techniques

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mutant lacking ORF469 fragment in Synechocystis sp. PCC 6803 (cyanobacterium) was created by means of DNA recombination. In its genome, ORF469, the key DNA fragment controlling the light-independent pathway of chlorophyll biosynthesis was deleted and replaced by erythromycin resistance cassette. The operation resulted in the fact that the content of chlorophyll in mutant cells was fully controlled by illumination and two kinds of cells were harvested, one is high chlorophyll with concentration of 9.427 m g.mg-1 and the other is low chlorophyll with concentration of 0.695 m g.mg-1. They were subjected to thermal simulation respectively at 300℃ for 100 h. The alkanes biomarkers from pyrolysates were analyzed by GC-MS and main difference between high and low chlorophyll cells was found at their contents of isoprenoid hydrocarbons. Pr/nC17 and Ph/nC18 from pyrolysate of low chlorophyll cells were 0.192 and 0.216 respectively, which were about 1/3 and 1/7 of that from high chlorophyll cells. The results provide direct evidence that isoprenoid hydrocarbons such as phytane(Ph) and pristane (Pr) could be derived from chlorophyll. The lipids in algal cells would be the most important contributors to hydrocarbon production in their thermal degradation. The results also indicated that the combination of molecular biology and organic geochemistry would provide a new path to investigate the molecular sources of biomarkers.

  11. Molecular genetics and livestock selection: Approaches, opportunities and risks

    International Nuclear Information System (INIS)

    Full text: There are over 1,200 million cattle worldwide that provide a source of food, motive power and clothing. Cattle were first domesticated about 12,000 years ago with both the archaeological and molecular evidence suggesting that this occurred in the Near East and that domesticated cattle then spread to Africa and Europe. Traditionally breeding was carried out at a local level, often using a limited number of shared bulls. The selection of individuals with particular characteristics suited to local environments, needs and preferences led to the emergence of distinct breeds with characteristic phenotypes. In 1993 there were 783 cattle breeds worldwide, although the definition of a breed is often vague. With the introduction of artificial insemination (AI) in the more developed countries during 1950s particular bulls with desirable characteristics were more widely used in preference to local bulls. The use of AI, coupled with improvements in management in Europe and North America, allowed rapid progress to be made in the improvement of simple production traits. Breed improvement has been further enhanced by the development of statistical methods to maximize genetic gain achieved by selection on traits that can be readily measured. Consequently, where the economic environment supports high input agriculture, there has been a dramatic increase in milk yield and meat produced from the improved stock. The unfortunate consequence of intensive selection in these areas has been the reduction of genetic diversity, both within the selected breeds, as the superior individuals within these breeds have been used as breeding stock, and also through the replacement of traditional breeds. While the use of improved breeds in areas advantaged by good environmental conditions and a favourable economic climate has allowed the increase in production, all-be-it with the penalty of lost diversity and damage to the environment occasioned by intensive farming practices, in less

  12. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  13. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-01-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and [gamma]-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by [gamma]-rays, [alpha]-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than [gamma]-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate [gamma]-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  14. Radiation mutagenesis from molecular and genetic points of view

    Energy Technology Data Exchange (ETDEWEB)

    Chen, D.J.C.; Park, M.S.; Okinaka, R.T.; Jaberaboansari, A.

    1993-02-01

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and {gamma}-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by {gamma}-rays, {alpha}-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than {gamma}-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate {gamma}-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed.

  15. Radiation mutagenesis from molecular and genetic points of view

    International Nuclear Information System (INIS)

    An important biological effect of ionizing radiation on living organisms is mutation induction. Mutation is also a primary event in the etiology of cancer. The chain events, from induction of DNA damage by ionizing radiation to processing of these damages by the cellular repair/replication machinery, that lead to mutation are not well understood. The development of quantitative methods for measuring mutation-induction, such as the HPRT system, in cultured mammalian cells has provided an estimate of the mutagenic effects of x- and γ-rays as wen as of high LET radiation in both rodent and human cells. A major conclusion from these mutagenesis data is that high LET radiation induces mutations more efficiently than g-rays. Molecular analysis of mutations induced by sparsely ionizing radiation have detected major structural alterations at the gene level. Our molecular results based on analysis of human HPRT deficient mutants induced by γ-rays, α-particles and high energy charged particles indicate that higher LET radiation induce more total and large deletion mutations than γ-rays. Utilizing molecular techniques including polymerase chain reaction (PCR), Single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE) and Direct DNA sequencing, mutational spectra induced by ionizing radiation have been compared in different cell systems. Attempts have also been made to determine the mutagenic potential and the nature of mutation induced by low dose rate γ-rays. Defective repair, in the form of either a diminished capability for repair or inaccurate repair, can lead to increased risk of heritable mutations from radiation exposure. Therefore, the effects of DNA repair deficiency on the mutation induction in mammalian cells is reviewed

  16. Molecular self-assembly for biological investigations and nanoscale lithography

    Science.gov (United States)

    Cheunkar, Sarawut

    Small, diffusible molecules when recognized by their binding partners, such as proteins and antibodies, trigger enzymatic activity, cell communication, and immune response. Progress in analytical methods enabling detection, characterization, and visualization of biological dynamics at the molecular level will advance our exploration of complex biological systems. In this dissertation, analytical platforms were fabricated to capture membrane-associated receptors, which are essential proteins in cell signaling pathways. The neurotransmitter serotonin and its biological precursor were immobilized on gold substrates coated with self-assembled monolayers (SAMs) of oligo(ethylene glycol)alkanethiols and their reactive derivatives. The SAM-coated substrates present the biologically selective affinity of immobilized molecules to target native membrane-associated receptors. These substrates were also tested for biospecificity using antibodies. In addition, small-molecule-functionalized platforms, expressing neurotransmitter pharmacophores, were employed to examine kinetic interactions between G-protein-coupled receptors and their associated neurotransmitters. The binding interactions were monitored using a quartz crystal microbalance equipped with liquid-flow injection. The interaction kinetics of G-protein-coupled serotonin 1A receptor and 5-hydroxytyptophan-functionalized surfaces were studied in a real-time, label-free environment. Key binding parameters, such as equilibrium dissociation constants, binding rate constants, and dissociative half-life, were extracted. These parameters are critical for understanding and comparing biomolecular interactions in modern biomedical research. By integrating self-assembly, surface functionalization, and nanofabrication, small-molecule microarrays were created for high-throughput screening. A hybrid soft-lithography, called microcontact insertion printing, was used to pattern small molecules at the dilute scales necessary for highly

  17. Community genetics in the time of next-generation molecular technologies.

    Science.gov (United States)

    Gugerli, Felix; Brandl, Roland; Castagneyrol, Bastien; Franc, Alain; Jactel, Hervé; Koelewijn, Hans-Peter; Martin, Francis; Peter, Martina; Pritsch, Karin; Schröder, Hilke; Smulders, Marinus J M; Kremer, Antoine; Ziegenhagen, Birgit

    2013-06-01

    Understanding the interactions of co-occurring species within and across trophic levels provides key information needed for understanding the ecological and evolutionary processes that underlie biological diversity. As genetics has only recently been integrated into the study of community-level interactions, the time is right for a critical evaluation of potential new, gene-based approaches to studying communities. Next-generation molecular techniques, used in parallel with field-based observations and manipulative experiments across spatio-temporal gradients, are key to expanding our understanding of community-level processes. Here, we introduce a variety of '-omics' tools, with recent studies of plant-insect herbivores and of ectomycorrhizal systems providing detailed examples of how next-generation approaches can revolutionize our understanding of interspecific interactions. We suggest ways that novel technologies may convert community genetics from a field that relies on correlative inference to one that reveals causal mechanisms of genetic co-variation and adaptations within communities. PMID:24433571

  18. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  19. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, David S.

    2008-07-15

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  20. The society for craniofacial genetics and developmental biology 38th annual meeting.

    Science.gov (United States)

    Taneyhill, Lisa A; Hoover-Fong, Julie; Lozanoff, Scott; Marcucio, Ralph; Richtsmeier, Joan T; Trainor, Paul A

    2016-07-01

    The mission of the Society for Craniofacial Genetics and Developmental Biology (SCGDB) is to promote education, research, and communication about normal and abnormal development of the tissues and organs of the head. The SCGDB welcomes as members undergraduate students, graduate students, post doctoral researchers, clinicians, orthodontists, scientists, and academicians who share an interest in craniofacial biology. Each year our members come together to share their novel findings, build upon, and challenge current knowledge of craniofacial biology. © 2016 Wiley Periodicals, Inc. PMID:27102868

  1. Molecular biology-based diagnosis and therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Mainly described are author's investigations of the title subject through clinical and basic diagnosis/therapeutic approach. Based on their consideration of carcinogenesis and pathological features of pancreatic cancer (PC), analysis of expression of cancer-related genes in clinically available samples like pancreatic juice and cells biopsied can result in attaining their purposes. Desmoplasia, a pathological feature of PC, possibly induces resistance to therapy and one of strategies is probably its suppression. Targeting stem cells of the mesenchyma as well as those of PC is also a strategy in future. Authors' studies have revealed that quantitation of hTERT (coding teromerase) mRNA levels in PC cells micro-dissected from cytological specimens is an accurate molecular biological diagnostic method applicable clinically. Other cancer-related genes are also useful for the diagnosis and mucin (MUC) family genes are shown to be typical ones for differentiating the precancerous PC, PC and chronic pancreatisis. Efficacy of standard gemcitabine chemotherapy can be individualized with molecular markers concerned to metabolism of the drug like dCK. Radiotherapy/radio-chemotherapy are not so satisfactory for PC treatment now. Authors have found elevated MMP-2 expression and HGF/c-Met signal activation in irradiated PC cells, which can increase the invasive capability; and stimulation of phosphorylation and activation of c-Met/MARK in co-culture of irradiated PC cells with messenchymal cells from PC, which possibly leads to progression of malignancy of PC through their interaction, of which suppression, therefore, can be a new approach to increase the efficacy of radiotherapy. Authors are making effort to introducing adenovirus therapy in clinic; exempli gratia (e.g.), the virus carrying wild type p53, a cancer-suppressive gene, induces apoptosis of PC cells often having its mutated gene. (T.T.)

  2. Improved Student Linkage of Mendelian and Molecular Genetic Concepts through a Yeast-Based Laboratory Module

    Science.gov (United States)

    Wolyniak, Michael J.

    2013-01-01

    A study of modern genetics requires students to successfully unite the principles of Mendelian genetics with the functions of DNA. Traditional means of teaching genetics are often successful in teaching Mendelian and molecular ideas but not in allowing students to see how the two subjects relate. The laboratory module presented here attempts to…

  3. Appendix II. Molecular Analysis

    Science.gov (United States)

    The study of crop evolution, origins, and conservation entails the assessment of genetic variability with and between populations and species at different genetic, evolutionary, and taxonomic hierarchical levels. Molecular biology has greatly increased the amount of data and computational intensity...

  4. Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders

    OpenAIRE

    Xu, M. K.; Gaysina, D; Barnett, J H; Scoriels, L; van de Lagemaat, L. N.; Wong, A.; M. Richards; Croudace, T.J.; Jones, P. B.

    2015-01-01

    Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from...

  5. Molecular variability of FLT3/ITD mutants and their impact on the differentiation program of 32D cells: Implications for the biological properties of AML blasts

    Czech Academy of Sciences Publication Activity Database

    Peková, S.; Ivánek, Robert; Dvořák, Michal; Rueggeberg, S.; Leicht, S.; Li, X.; Franz, T.; Kozak, T.; Vrba, J.; Koza, V.; Karas, M.; Schwarz, J.; Cetkovský, P.; Průcha, M.

    2009-01-01

    Roč. 33, č. 10 (2009), s. 1409-1416. ISSN 0145-2126 R&D Projects: GA ČR GA204/06/1728 Institutional research plan: CEZ:AV0Z50520514 Keywords : FLT3/ITD * microarrays * proteomics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.358, year: 2009

  6. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors

    Czech Academy of Sciences Publication Activity Database

    Baltus, C.B.; Jorda, Radek; Marot, Ch.; Berka, K.; Bazgier, Václav; Kryštof, Vladimír; Prie, G.; Viaud-Massuard, M.C.

    2016-01-01

    Roč. 108, JAN 27 (2016), s. 701-719. ISSN 0223-5234 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Cyclin-dependent kinase 2 * Kinase inhibitors * Anti-tumor agent Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.447, year: 2014

  7. Biological insights from 108 schizophrenia-associated genetic loci

    NARCIS (Netherlands)

    Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James T. R.; Farh, Kai-How; Holmans, Peter A.; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William; Cahn, Wiepke; Cai, Guiqing; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberly D.; Chan, Raymond C. K.; Chen, Ronald Y. L.; Chen, Eric Y. H.; Cheng, Wei; Cheung, Eric F. C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; Del Favero, Jurgen; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Durmishi, Naser; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedl, Marion; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Giegling, Ina; Giusti-Rodriguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Golimbet, Vera; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julia, Antonio; Kahn, Rene S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Kahler, Anna K.; Laurent, Claudine; Keong, Jimmy Lee Chee; Lee, S. Hong; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Loughland, Carmel M.; Lubinski, Jan; Lonnqvist, Jouko; Macek, Milan; Magnusson, Patrik K. E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattheisen, Manuel; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; McIntosh, Andrew M.; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Mueller-Myhsok, Bertram; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; O'Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; Van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Pejovic-Milovancevic, Milica; Perkins, Diana O.; Pietilainen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Sigurdsson, Engilbert; Silagadze, Teimuraz; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; Smoller, Jordan W.; So, Hon-Cheong; Spencer, Chris C. A.; Stahl, Eli A.; Stefansson, Hreinn; Steinberg, Stacy; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Soderman, Erik; Thirumalai, Srinivas; Toncheva, Draga; Tosato, Sarah; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wong, Emily H. M.; Wormley, Brandon K.; Xi, Hualin Simon; Zai, Clement C.; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R.; Stefansson, Kari; Visscher, Peter M.; Adolfsson, Rolf; Andreassen, Ole A.; Blackwood, Douglas H. R.; Bramon, Elvira; Buxbaum, Joseph D.; Borglum, Anders D.; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tonu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jonsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F.; Li, Qingqin S.; Liu, Jianjun; Malhotra, Anil K.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mortensen, Preben B.; Mowry, Bryan J.; Noethen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sham, Pak C.; Sklar, Pamela; St Clair, David; Weinberger, Daniel R.; Wendland, Jens R.; Werge, Thomas; Daly, Mark J.; Sullivan, Patrick F.; O'Donovan, Michael C.

    2014-01-01

    Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and

  8. Improving microalgae for biotechnology - From genetics to synthetic biology

    Czech Academy of Sciences Publication Activity Database

    Hlavová, Monika; Turóczy, Zoltán; Bišová, Kateřina

    2015-01-01

    Roč. 33, č. 6 (2015), s. 1194-1203. ISSN 0734-9750 R&D Projects: GA MŠk EE2.3.30.0059; GA MŠk ED2.1.00/03.0110 Institutional support: RVO:61388971 Keywords : Microalgae * Genetics * Mutagenesis Subject RIV: EE - Microbiology, Virology Impact factor: 9.015, year: 2014

  9. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  10. USE OF MOLECULAR GENETIC ENGINEERING IN THE STUDY OF ANIMAL PARASITES AND THEIR VECTORS

    Directory of Open Access Journals (Sweden)

    Philip T. LoVerde

    2012-09-01

    Full Text Available Molecular genetics coupled with advances in immunology and parasite culture has become a powerful tool to study animal parasites and their vectors. Recombinant DNA techniques allow one to identify individual genes of DNA probes, amplify the nucleic acid of interest, and use this material to study: the role of the gene product in the biology of the organism; the evolution of parasites and their hosts; heterogeneity between species and within species; taxonomy and develop refined taxonomic tools; the immunology and biochemistry of host-parasite interactions; identification of specific cells or tissues that produce gene products; cytogenetics and localization of genes on chromosome in the study of animal parasites and their vectors will be presented.

  11. Genetic diversity of clones of acerola assessed by ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Eveline Nogueira Lima

    2015-07-01

    Full Text Available The Indian cherry (Malpighia emarginata is a tropical fruit originated from American continent. In Brazilian orchards, there was high variability among cultivated genotypes. On the order hand, high variability allows the identification of superior genotypes for cropping industry. This study aimed to evaluate the genetic variability among 56 genotypes using ISSR (Inter Simple Sequence Repeats primers. Leaf samples were collected in Pacajus-CE and taken to the laboratory of Molecular Biology postharvest, in Fortaleza. Altogether, 20 primers were used which yielded 148 polymorphic bands (79.57%, enabling the differentiation within the population study. As a result, this information may be used in future studies on breeding programs, such as choosing best combinations for parental crossings.

  12. Personalized Genetic Testing as a Tool for Integrating Ethics Instruction into Biology Courses

    Directory of Open Access Journals (Sweden)

    Tenny R. Zhang

    2014-09-01

    Full Text Available Personalized genetic testing (PGT has been used by some educational institutions as a pedagogical tool for teaching human genetics. While work has been done that examines the potential for PGT to improve students’ interest and understanding of the science involved in genetic testing, there has been less dialogue about how this method might be useful for integrating ethical and societal issues surrounding genetic testing into classroom discussions. Citing the importance of integrating ethics into the biology classroom, we argue that PGT can be an effective educational tool for integrating ethics and science education, and discuss relevant ethical considerations for instructors using this approach. 

  13. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    OpenAIRE

    MARSIT, CARMEN J.; E. Andres Houseman; Nelson, Heather H; Karl T Kelsey

    2008-01-01

    Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC), but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, ...

  14. The Molecular Biology of Feline Immunodeficiency Virus (FIV

    Directory of Open Access Journals (Sweden)

    Andrew M. L. Lever

    2011-11-01

    Full Text Available Feline immunodeficiency virus (FIV is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been a significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.

  15. Diagnosis of Mycobacterium tuberculosis using molecular biology technology

    Institute of Scientific and Technical Information of China (English)

    Juan Garberi; Jorge Labrador; Federico Garberi; Juan Ezequiel Garberi; Julian Peneipil; Miguel Garberi; Luis Scigliano; Alcides Troncoso

    2011-01-01

    Objective:To present an integrated molecular biology dedicated system for tuberculosis diagnosis.Methods:One hundred and five sputum specimens from patients strongly suspected by clinical parameters of tuberculosis were studied by Ziehl-Neelsen staining, by cultivation on solid medium and by a balanced heminested fluorometricPCR system (OrangeG3TB) that could preserve worker safety and produce a rather pure material free of potential inhibitors. DNA amplification was performed in a low cost tuberculosis termocycler-fluorometer. Produced double stranded DNA was flurometrically detected. The whole reaction was conducted in one single tube which would not be opened after adding the processed sample in order to minimize the risk of cross contamination with amplicons.Results: The assay was able to detect30 bacillus per sample mL with99.8% interassay variation coefficient.PCR was positive in23 (21.9%) tested samples (21 of them were smear negative). In our study it showed a preliminary sensitivity of 94.5% for sputum and an overall specificity of98.7%.Conclusions:Total run time of the test is4 h with2.5 real working time. AllPCR positive samples are also positive by microbiological culture and clinical criteria. Results show that it could be a very useful tool to increase detection efficiency of tuberculosis disease in low bacilus load samples. Furthermore, its low cost and friendly using make it feasible to run in poor regions.

  16. Recent molecular biology methods for foulbrood and nosemosis diagnosis.

    Science.gov (United States)

    Rivière, M P; Ribière, M; Chauzat, M P

    2013-12-01

    Honey-bee colony losses are an increasing problem in Western countries. There are many different causes, including infections due to various pathogens. Molecular biology techniques have been developed to reliably detect and identify honey-bee pathogens. The most sensitive, specific and reliable is the quantitative real-time polymerase chain reaction (qPCR) methodology. This review of the literature describes various studies where qPCR was used to detect, identify and quantify four major honey-bee pathogens: the bacteria Paenibacillus larvae and Melissococcus plutonius (the causative agents of American foulbrood and European foulbrood, respectively) and the microsporidia Nosema apis and N. ceranae (the causative agents of nosemosis). The application of qPCR to honey-bee pathogens is very recent, and techniques are expected to improve rapidly, leading to potential new prospects for diagnosis and control. Thus, qPCR techniques could shortly become a powerful tool for investigating pathogenic infections and increasing our understanding of colony losses. PMID:24761740

  17. Do biological molecular machines act as Maxwell's demons?

    CERN Document Server

    Kurzynski, Michal

    2014-01-01

    In the intention of its creator, Maxwell's demon was thought to be an intelligent being able to perform work at the expense of the entropy reduction of a closed operating system. The perplexing notion of the demon's intelligence was formalized in terms of the memory and information processing by Szilard and followers. A non-informational formulation of the problem was proposed by Smoluchowski and popularized by Feynman as the ratchet and pawl machine. A. F. Huxley and followers adopted this way of thinking to propose numerous ratchet mechanisms of the protein molecular machines action, but no entropy reduction takes place for these models. More general models of protein dynamics have been proposed with a number of intramolecular states organized in a network of stochastic transitions. Here, a computer realization of such a network is investigated, displaying, like networks of the systems biology, a transition from the fractal organization on a small length-scale to the small-world organization on the large le...

  18. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    Directory of Open Access Journals (Sweden)

    I. Hrytsyniak

    2014-03-01

    Full Text Available Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action and the limits of the main methods of using molecular genetic markers is an actual problem. In particular, such a description will make it possible to plan more effectively the experiment and to obtain the desired results with high reliability. Findings. The main types of variable parts of DNA that can be used as molecular genetic markers in determining the level of stock hybridization, conducting genetic inventory of population and solving other problems in modern fish-farming are described in this paper. Also, the article provides an overview of principal modern methods that can be used to identify molecular genetic markers. Originality. This work is a generalization of modern ideas about the mechanisms of experiments with molecular genetic markers in fish-farming. Information is provided in the form of consistent presentation of the principles and purpose of each method, as well as significant advances during their practical application. Practical value. The proposed review of classic and modern literature data on molecular genetic markers can be used for planning, modernization and correction of research activity in modern fish-farming.

  19. Update in Molecular Biology for Teachers from Public Schools: a Knowledge Exchange Experience.

    Directory of Open Access Journals (Sweden)

    C.R. Córdula

    2009-05-01

    Full Text Available One  of the goals of the graduate Program in Molecular Biology from UNIFESP (PrMB -UNIFESP is to contribute for continuing education of biology teachers from public high schools. A close relation between university and public schools is an important channel for dissemination of scientific knowledge. Thus, a 40h Molecular Biology updating course was offered to 20 high school teachers. The objective was to discuss genomic and proteomic advances and their application. The course was organized by graduate students  from PrMB -UNIFESP. Three groups ofstudents were formed, two being responsible for theorical and practical classes and one for global logistic including searching for financial support. The themes presented to the teachers were flow of genetic information,  recombinant DNA, gene cloning, transgenic plants and animals, mutation, super bacteria and stem cell. The teachers also had hands-on classes including DNA extraction, PCR, gene cloning and SDS-PAGE. The teachers received an assignment to go back to their s chools and do some activity with their students that would be related to the themes discussed. The students produced videos, discussions, posters, theater, experimental models and pratical classes related to the course themes. After 3 months the teachers r eturned to show their students’ work.  We conclude that information was transmitted to the teachers, updating them, and to high school students, that learned science in a entertaining way. Also, the graduate students had an experience on how to organize a c ourse including all its responsibilities.

  20. Saul R. Korey Lecture. Molecular genetics of Tay-Sachs and related disorders: a personal account.

    Science.gov (United States)

    Suzuki, K

    1994-07-01

    The history of human genetic lysosomal disorders began in 1881 with the description of what is now known as Tay-Sachs disease. In the early 1960s, when I entered the field while I was a neurology resident, the first phase of studies of lysosomal disorders was being replaced with the second analytical biochemistry phase. Saul Korey, the first Chairman of the Department of Neurology, Albert Einstein College of Medicine, initiated the first integrated approach with a team consisting of clinical neurologists, neuropathologists, electron microscopists, cell biologists, organic chemists, and enzymologists. Despite his tragic death in 1963 in his mid-forties, the field flourished along the line of his vision through the third enzymology phase to the fourth and current molecular biology phase. The concept of Tay-Sachs disease as the only ganglioside storage disease has expanded to two forms of gangliosidoses, GM1- and GM2-gangliosidoses, and the latter into three distinct genetic disorders. Tay-Sachs disease, Sandhoff disease and the GM2 activator protein deficiency. More recently, all three genes coding for the three proteins each responsible for distinct genetic forms of GM2-gangliosidosis--beta-hexosaminidase alpha and beta subunits and the GM2 activator protein--have been cloned and many disease-causing mutations have been identified. We have reached the halfway point in our quest for eventual understanding of the pathogenesis and effective treatment of these disorders, starting from the clinical phenotype through biochemistry to the gene. With this new knowledge on the gene level, we should be tracing the route back to enzymology, biology and pathogenetic mechanism of these disorders in the years to come.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8021707

  1. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies

  2. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, C.N. [Harvard Medical School (United States). Joint Center for Radiation Therapy

    1999-07-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies.

  3. Just Working with the Cellular Machine: A High School Game for Teaching Molecular Biology

    Science.gov (United States)

    Cardoso, Fernanda Serpa; Dumpel, Renata; Gomes da Silva, Luisa B.; Rodrigues, Carlos R.; Santos, Dilvani O.; Cabral, Lucio Mendes; Castro, Helena C.

    2008-01-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several…

  4. A Curriculum Skills Matrix for Development and Assessment of Undergraduate Biochemistry and Molecular Biology Laboratory Programs

    Science.gov (United States)

    Caldwell, Benjamin; Rohlman, Christopher; Benore-Parsons, Marilee

    2004-01-01

    We have designed a skills matrix to be used for developing and assessing undergraduate biochemistry and molecular biology laboratory curricula. We prepared the skills matrix for the Project Kaleidoscope Summer Institute workshop in Snowbird, Utah (July 2001) to help current and developing undergraduate biochemistry and molecular biology program…

  5. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we c

  6. Non-invasive genetic methods in conservation genetics: advantages and disadvantages

    Czech Academy of Sciences Publication Activity Database

    Bryja, Josef

    Antalya : European Science Foundation, 2007. s. 15. [Conservation genetics: updating concepts and methods. 22.01.2007-23.01.2007, Antalya] Institutional research plan: CEZ:AV0Z60930519 Keywords : conservation genetics Subject RIV: EB - Genetics ; Molecular Biology

  7. Molecular genetic analysis of tumor suppressor genes in ovarian cancer

    International Nuclear Information System (INIS)

    To examine the loci of putative tumor suppressor genes in ovarian cancers, we performed the molecular genetic analysis with fresh human ovarian cancers and observed the following data. Frequent allelic losses were observed on chromosomes 4p(42%), 6p(50%), 7p(43%), 8q(31%), 12p(38%), 12q(33%), 16p(33%), 16q(37%), and 19p(34%) in addition to the previously reported 6q, 11p, and 17p in ovarian caroinomas. we have used an additional probe, TCP10 to narrow down the deleted region on chromosome 6q. TCP10 was reported to be mapped to 6q 25-27. Allelic loss was found to be 40% in epithelial ovarian caroinomas. This finding suggests that chromosome 6q 24-27 is one of putative region haboring the tumor suppressor gene of epithelial ovarian cancer (particularly serous type). To examine the association between FAL(Fractional Allelic Loss) and histopathological features, the FAL value on each phenotypically different tumor was calculated as the ratio of the number of allelic losses versus the number of cases informative in each chromosomal arm. The average FALs for each phenotypically different tumor were: serous cystoadenocarcinomas. FAL=0.31 : mucinous 0.12 : and clear cell carcinoma. FAL=0.20. (Author)

  8. "Genetics of the Scandinavian brown bear (Ursus arctos): implication for biology and conservation"

    OpenAIRE

    Bellemain, Eva

    2004-01-01

    This thesis deals with the application of molecular tools, combined with field data, in wildlife management, in conservation and in understanding species' biology and behavior. We used the brown bear (Ursus arctos) as a model species and the Scandinavian bear population as a case study. The first part of this thesis is a methodological part, in which we developed or reviewed technical aspects in molecular biology and parentage analysis; the second part is devoted to the application of molecul...

  9. Evolutionary biology and genetic techniques for insect control

    OpenAIRE

    Leftwich, Philip; Bolton, Michael; Chapman, Tracey

    2016-01-01

    Abstract The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutil...

  10. Biological Insights From 108 Schizophrenia-Associated Genetic Loci

    OpenAIRE

    Ripke, Stephan; Neale, Benjamin M.; Corvin, Aiden; Walters, James TR; Farh, Kai-How; Holmans, Peter A; Lee, Phil; Bulik-Sullivan, Brendan; Collier, David A; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline

    2014-01-01

    Summary Schizophrenia is a highly heritable disorder. Genetic risk is conferred by a large number of alleles, including common alleles of small effect that might be detected by genome-wide association studies. Here, we report a multi-stage schizophrenia genome-wide association study of up to 36,989 cases and 113,075 controls. We identify 128 independent associations spanning 108 conservatively defined loci that meet genome-wide significance, 83 of which have not been previously reported. Asso...

  11. Age-Related Macular Degeneration: Genetics and Biology.

    Science.gov (United States)

    Kumaramanickavel, Govindasamy

    2016-01-01

    Age-related macular degeneration (AMD), widely prevalent across the globe, is a major stakeholder among adult visual morbidity and blindness, not only in the Western world but also in Asia. Several risk factors have been identified, including critical genetic factors, which were never imagined 2 decades ago. The etiopathogenesis is emerging to demonstrate that immune and complement-related inflammation pathway members chronically exposed to environmental insults could justifiably influence disease morbidity and treatment outcomes. Approximately half a dozen physiological and biochemical cascades are disrupted in the AMD disease genesis, eventually leading to the distortion and disruption of the subretinal space, subretinal pigment epithelium, and Bruch membrane, thus setting off chaos and disorder for signs and symptoms to manifest. Approximately 3 dozen genetic factors have so far been identified, including the recent ones, through powerful genomic technologies and large robust sample sizes. The noteworthy genetic variants (common and rare) are complement factor H, complement factor H-related genes 1 to 5, C3, C9, ARMS2/HTRA1, vascular endothelial growth factor A, vascular endothelial growth factor receptor 2/KDR, and rare variants (show causal link) such as TIMP3, fibrillin, COL4A3, MMP19, and MMP9. Despite the enormous amount of scientific information generated over the years, diagnostic genetic or biomarker tests are still not available for clinicians to understand the natural course of the disease and its management in a patient. However, further research in the field should reduce this gap not only by aiding the clinician but also through the possibilities of clinical intervention with complement pathway-related inhibitors entering preclinical and clinical trials in the near future. PMID:27488064

  12. Genetics and biology of vitamin D receptor polymorphisms

    NARCIS (Netherlands)

    A.G. Uitterlinden (André); Y. Fang (Yue); J.B.J. van Meurs (Joyce); H.A.P. Pols (Huib); J.P.T.M. van Leeuwen (Hans)

    2004-01-01

    textabstractThe vitamin D endocrine system is involved in a wide variety of biological processes including bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation. Variations in this endocrine system have, thus, been linked to several common disea

  13. [The plague reviewed by way of molecular biology].

    Science.gov (United States)

    Carniel, E

    1999-12-01

    The aetiology of plague was first discovered during the third pandemic of the disease occurring in Hong Kong in 1894. After Alexandre Yersin had identified the causal agent (Y. Pestis), Paul-Louis Simond proved the flea's role as vector. These discoveries were of prime importance for the subsequent development of efficient means for fighting plague as well as for preventive and curative treatments and vaccines. Vaccination brought about a sharp decrease in plague mortality and morbidity. However, the disease has never been eradicated. It is still prevalent in various Asian, African and American countries and is among the re-emerging diseases at the present time. The genetic basis of transmission mechanisms and pathogenicity of the bacillus are only beginning to be understood. We now know that the attenuation of the EV76 strain used by Girard and Robic as an anti-plague vaccine in Madagascar is due to the spontaneous excision of a large chromosomal DNA fragment of 102 kb, a part of which contains a group of genes implicated in the pathogenicity and appropriately called high pathogenicity island. These mechanisms of flea bacillus transmission are also beginning to be known. Two bacterial loci participating in the blocking of the ectoparasite's proventriculus have been identified. One is situated next to the high pathogenicity island on the unstable 102 kb chromosomal fragment, the other--on the large 95 kb plasmid specific to Y. pestis. The molecular basis of the bacillus' acquisition of multi-resistance to antibiotics have likewise recently been characterised. However, although Y. pestis is one of the most pathogenic micro-organisms of the bacterial world, the mechanisms responsible for this high level of pathogenecity have still not been identified. This is well worth noting, since a certain number of genes acting as pathogenicity factors in other species are present but altered in Y. pestis. Plague still withholds many secrets. PMID:11000953

  14. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates †

    OpenAIRE

    Jeremiah Foster Ault; Betsey Marie Renfro; Andrea Kirsten White

    2011-01-01

    Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigi...

  15. Molecular Genetic Variation in a Clonal Plant Population of Leymus chinensis (Trin.) Tzvel.

    Institute of Scientific and Technical Information of China (English)

    Yu-Sheng WANG; Li-Ming ZHAO; Hua WANG; Jie WANG; Da-Ming HUANG; Rui-Min HONG; Xiao-Hua TENG; Nakamura MIKI

    2005-01-01

    Randomly amplified polymorphic DNA (RAPD) analysis was used to investigate the genetic variation among populations, between populations, and within populations, relationships between genetic distance and geographic distance, and the molecular variation and population size. The effects of geographic and genetic distances, as well as of genetic differentiation and population size, on genetic variations of Leymus chinensis (Trin.) Tzvel. are discussed. The present study showed that there was significant RAPD variation between the Baicheng region population and the Daqing region population, with a molecular variance of 6.35% (P < 0.04), and for differentiation among area populations of the Daqing region, with a molecular variance of 8.78% (P < 0.002). A 21.06% RAPD variation among all 16 populations among two regions was found (P < 0.001), as well as 72.59% variation within populations (P < 0.001). Molecular variation within populations was significantly different among 16 populations.

  16. Abstracts of the 30. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    Several aspects concerning biochemistry and molecular biology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  17. Abstracts of the 29. annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    Several aspects concerning biochemistry and molecular biology of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay and nuclear magnetic resonance are the most applied techniques

  18. On the advent and necessity of molecular biology in the clinical management of lung cancer.

    Science.gov (United States)

    Rahbek Sørensen, H; Olsson, L

    1986-12-01

    The very rapidly expanding knowledge and technologies of molecular biology are reviewed with special reference to problems in the clinical management of lung cancer. Genetic events, tumor-associated antigens, production of murine and human monoclonal antibodies, culture of cell lines, intratumoral phenotypic diversity and squamous-lung-cancer-associated antigens are discussed and related to possible therapeutical approaches. A monoclonal antibody with high specificity for squamous cell lung cancer reacted positively in blood samples and tissue extracts in about 80%. Its use as a marker during follow-up after surgical treatment is demonstrated by examples. It is concluded that there will be limiting factors in the therapeutic use of monoclonal antibodies, such as intratumoral phenotypic diversity. Genetic analysis might be a method for selecting a high risk group of individuals in whom exposure to carcinogenic factors, such as cigarette smoking, would be fatal. Murine monoclonal antibodies can be used in vitro for screening, for histological examination and for prognostic studies. Human monoclonal antibodies should be used for in vivo purposes as well as for the screening of primary tumor and metastases for the therapy. To achieve usable results, the monoclonal antibodies should be raised against the cell membranes that, in particular, are expressed on the stem cells of the neoplastic cell population. PMID:2433792

  19. Estimation of genetic relationship in rice using molecular markers

    International Nuclear Information System (INIS)

    correlation of the marker estimates to fij indicate their validity as measures of genetic relatedness, while their immunity to assumptions of the pedigree method and their appropriateness to classification imply their superiority. If data from molecular markers are to be useful for varietal identification and protection, they have to be translated to some meaningful measurement, especially when the number of both marker variants and genotypes under comparison are increased. A measure to directly quantify the degree of similarity, thus, becomes important and indispensable. This study has demonstrated that marker based estimates of coefficient of coancestry can address this need in rice

  20. New insight into the molecular mechanisms of the biological effects of DNA minor groove binders.

    Directory of Open Access Journals (Sweden)

    Xinbo Zhang

    Full Text Available BACKGROUND: Bisbenzimides, or Hoechst 33258 (H258, and its derivative Hoechst 33342 (H342 are archetypal molecules for designing minor groove binders, and widely used as tools for staining DNA and analyzing side population cells. They are supravital DNA minor groove binders with AT selectivity. H342 and H258 share similar biological effects based on the similarity of their chemical structures, but also have their unique biological effects. For example, H342, but not H258, is a potent apoptotic inducer and both H342 and H258 can induce transgene overexpression in in vitro studies. However, the molecular mechanisms by which Hoechst dyes induce apoptosis and enhance transgene overexpression are unclear. METHODOLOGY/PRINCIPAL FINDINGS: To determine the molecular mechanisms underlying different biological effects between H342 and H258, microarray technique coupled with bioinformatics analyses and multiple other techniques has been utilized to detect differential global gene expression profiles, Hoechst dye-specific gene expression signatures, and changes in cell morphology and levels of apoptosis-associated proteins in malignant mesothelioma cells. H342-induced apoptosis occurs in a dose-dependent fashion and is associated with morphological changes, caspase-3 activation, cytochrome c mitochondrial translocation, and cleavage of apoptosis-associated proteins. The antagonistic effect of H258 on H342-induced apoptosis indicates a pharmacokinetic basis for the two dyes' different biological effects. Differential global gene expression profiles induced by H258 and H342 are accompanied by unique gene expression signatures determined by DNA microarray and bioinformatics software, indicating a genetic basis for their different biological effects. CONCLUSIONS/SIGNIFICANCE: A unique gene expression signature associated with H342-induced apoptosis provides a new avenue to predict and classify the therapeutic class of minor groove binders in the drug

  1. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Science.gov (United States)

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  2. Is all fair in biological warfare? The controversy over genetically engineered biological weapons.

    Science.gov (United States)

    Appel, J M

    2009-07-01

    Advances in genetics may soon make possible the development of ethnic bioweapons that target specific ethnic or racial groups based upon genetic markers. While occasional published reports of such research generate public outrage, little has been written about the ethical distinction (if any) between the development of such weapons and ethnically neutral bioweapons. The purpose of this paper is to launch a debate on the subject of ethnic bioweapons before they become a scientific reality. PMID:19567692

  3. Hamartomatous polyps - a clinical and molecular genetic study.

    Science.gov (United States)

    Jelsig, Anne Marie

    2016-08-01

    Hamartomatous polyps (HPs) in the gastrointestinal (GI) tract are rare compared to other types of GI polyps, yet they are the most common type of polyp in children. The symptoms are usually rectal bleeding, abdominal pain, obstipation, anaemia, and/or small bowel obstruction. The polyps are typically removed concurrently with endoscopy when located in the colon, rectum, or stomach, whereas polyps in the small bowel are removed during push-enteroscopy, device-assisted enteroscopy, or by surgery. HPs can be classified as juvenile polyps or Peutz-Jeghers polyps based on their histopathological appearance. Patients with one or a few juvenile polyps are usually not offered clinical follow-up as the polyp(s) are considered not to harbour any malignant potential. Nevertheless, it is important to note that juvenile polyps and HPs are also found in patients with hereditary hamartomatous polyposis syndromes (HPS). Patients with HPS have an increased risk of cancer, recurrences of polyps, and extraintestinal complications. The syndromes are important to diagnose, as patients should be offered surveillance from childhood or early adolescence. The syndromes include juvenile polyposis syndrome, Peutz-Jeghers syndrome, and the PTEN hamartoma tumour syndrome. Currently, the HPS diagnoses are based on clinical criteria and are often assisted with genetic testing as candidate genes have been described for each syndrome. This thesis is based on six scientific papers. The overall aim of the studies was to expand the knowledge on clinical course and molecular genetics in patients with HPs and HPS, and to investigate research participants' attitude towards the results of extensive genetic testing.   Paper I: In the first paper we investigated the occurrence, anatomic distribution, and other demographics of juvenile polyps in the colon and rectum in Denmark in 1995-2014. Based on the Danish Pathology Data Bank we found that 1772 patients had 2108 JPs examined in the period, and we

  4. Molecular toolbox for the identification of unknown genetically modified organisms.

    Science.gov (United States)

    Ruttink, Tom; Demeyer, Rolinde; Van Gulck, Elke; Van Droogenbroeck, Bart; Querci, Maddalena; Taverniers, Isabel; De Loose, Marc

    2010-03-01

    Competent laboratories monitor genetically modified organisms (GMOs) and products derived thereof in the food and feed chain in the framework of labeling and traceability legislation. In addition, screening is performed to detect the unauthorized presence of GMOs including asynchronously authorized GMOs or GMOs that are not officially registered for commercialization (unknown GMOs). Currently, unauthorized or unknown events are detected by screening blind samples for commonly used transgenic elements, such as p35S or t-nos. If (1) positive detection of such screening elements shows the presence of transgenic material and (2) all known GMOs are tested by event-specific methods but are not detected, then the presence of an unknown GMO is inferred. However, such evidence is indirect because it is based on negative observations and inconclusive because the procedure does not identify the causative event per se. In addition, detection of unknown events is hampered in products that also contain known authorized events. Here, we outline alternative approaches for analytical detection and GMO identification and develop new methods to complement the existing routine screening procedure. We developed a fluorescent anchor-polymerase chain reaction (PCR) method for the identification of the sequences flanking the p35S and t-nos screening elements. Thus, anchor-PCR fingerprinting allows the detection of unique discriminative signals per event. In addition, we established a collection of in silico calculated fingerprints of known events to support interpretation of experimentally generated anchor-PCR GM fingerprints of blind samples. Here, we first describe the molecular characterization of a novel GMO, which expresses recombinant human intrinsic factor in Arabidopsis thaliana. Next, we purposefully treated the novel GMO as a blind sample to simulate how the new methods lead to the molecular identification of a novel unknown event without prior knowledge of its transgene

  5. Genetic control and heredity of harvest index and biological yield in bread wheat (Triticum aestivum L.)

    OpenAIRE

    Golparvar Ahmad Reza

    2014-01-01

    Assessment of genetic control, mode of inheritance, general and specific combining abilities and effect of drought stress on genetic parameters of harvest index and biological yield traits in bread wheat were achieved by using Diallel mating design. Parents (eight cultivars) along with F1 progenies (28 crosses) were sown in a randomized complete blocks design with three replications under stress condition in Karadj Agricultural Research Center. The data wer...

  6. Head and neck paragangliomas: clinical and molecular genetic classification.

    Science.gov (United States)

    Offergeld, Christian; Brase, Christoph; Yaremchuk, Svetlana; Mader, Irina; Rischke, Hans Christian; Gläsker, Sven; Schmid, Kurt W; Wiech, Thorsten; Preuss, Simon F; Suárez, Carlos; Kopeć, Tomasz; Patocs, Attila; Wohllk, Nelson; Malekpour, Mahdi; Boedeker, Carsten C; Neumann, Hartmut P H

    2012-01-01

    Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I-III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5), and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies. PMID:22584701

  7. Head and neck paragangliomas: clinical and molecular genetic classification

    Directory of Open Access Journals (Sweden)

    Christian Offergeld

    2012-01-01

    Full Text Available Head and neck paragangliomas are tumors arising from specialized neural crest cells. Prominent locations are the carotid body along with the vagal, jugular, and tympanic glomus. Head and neck paragangliomas are slowly growing tumors, with some carotid body tumors being reported to exist for many years as a painless lateral mass on the neck. Symptoms depend on the specific locations. In contrast to paraganglial tumors of the adrenals, abdomen and thorax, head and neck paragangliomas seldom release catecholamines and are hence rarely vasoactive. Petrous bone, jugular, and tympanic head and neck paragangliomas may cause hearing loss. The internationally accepted clinical classifications for carotid body tumors are based on the Shamblin Class I-III stages, which correspond to postoperative permanent side effects. For petrous-bone paragangliomas in the head and neck, the Fisch classification is used. Regarding the molecular genetics, head and neck paragangliomas have been associated with nine susceptibility genes: NF1, RET, VHL, SDHA, SDHB, SDHC, SDHD, SDHAF2 (SDH5, and TMEM127. Hereditary HNPs are mostly caused by mutations of the SDHD gene, but SDHB and SDHC mutations are not uncommon in such patients. Head and neck paragangliomas are rarely associated with mutations of VHL, RET, or NF1. The research on SDHA, SDHAF2 and TMEM127 is ongoing. Multiple head and neck paragangliomas are common in patients with SDHD mutations, while malignant head and neck paraganglioma is mostly seen in patients with SDHB mutations. The treatment of choice is surgical resection. Good postoperative results can be expected in carotid body tumors of Shamblin Class I and II, whereas operations on other carotid body tumors and other head and neck paragangliomas frequently result in deficits of the cranial nerves adjacent to the tumors. Slow growth and the tendency of hereditary head and neck paragangliomas to be multifocal may justify less aggressive treatment strategies.

  8. The collective biology of the gene: Towards genetic dynamics engineering

    International Nuclear Information System (INIS)

    Chromatin dynamics is studied in terms of coupled vibrations (phonon pairing); this is shown to lead to a collective variable Δ, interpreted as a gene inhibition factor, which behaves as a biological switch turned off, not only by enzymatic action or metabolic energy, but also by means of an external probe:irradiation. We discuss the inactivation of the X chromosome and puffing. The relevance of being able to modulate Δ is emphasized, since it is equivalent to controlling chromatin dynamics without interfering with chromatin structure, unlike in the usual recombinant DNA techniques. (author)

  9. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms.

    Directory of Open Access Journals (Sweden)

    Ole A Andreassen

    Full Text Available Epidemiological studies suggest a relationship between blood lipids and immune-mediated diseases, but the nature of these associations is not well understood. We used genome-wide association studies (GWAS to investigate shared single nucleotide polymorphisms (SNPs between blood lipids and immune-mediated diseases. We analyzed data from GWAS (n~200,000 individuals, applying new False Discovery Rate (FDR methods, to investigate genetic overlap between blood lipid levels [triglycerides (TG, low density lipoproteins (LDL, high density lipoproteins (HDL] and a selection of archetypal immune-mediated diseases (Crohn's disease, ulcerative colitis, rheumatoid arthritis, type 1 diabetes, celiac disease, psoriasis and sarcoidosis. We found significant polygenic pleiotropy between the blood lipids and all the investigated immune-mediated diseases. We discovered several shared risk loci between the immune-mediated diseases and TG (n = 88, LDL (n = 87 and HDL (n = 52. Three-way analyses differentiated the pattern of pleiotropy among the immune-mediated diseases. The new pleiotropic loci increased the number of functional gene network nodes representing blood lipid loci by 40%. Pathway analyses implicated several novel shared mechanisms for immune pathogenesis and lipid biology, including glycosphingolipid synthesis (e.g. FUT2 and intestinal host-microbe interactions (e.g. ATG16L1. We demonstrate a shared genetic basis for blood lipids and immune-mediated diseases independent of environmental factors. Our findings provide novel mechanistic insights into dyslipidemia and immune-mediated diseases and may have implications for therapeutic trials involving lipid-lowering and anti-inflammatory agents.

  10. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Hebert Alberto; Sala, Evis; Hricak, Hedvig [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Grimm, Jan [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Program in Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York (United States); Donati, Olivio F. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. (orig.)

  11. Metabolism of triacylglycerols in Rhodococcus species: insights from physiology and molecular genetics

    Directory of Open Access Journals (Sweden)

    Martín A. Hernández

    2013-02-01

    Full Text Available Rhodococcus bacteria possess the ability to accumulate variable amounts of triacylglycerols (TAG during growth on diverse carbon sources. The evolution seems to have selected these microorganisms as specialists in the accumulation of TAG among bacteria, since their biochemistry is efficiently designed for the biosynthesis and mobilization of these lipids. Detailed research of rhodococcal TAG metabolism started only a few years ago; thus, the fundamental understanding of this process and its regulation remains to be clarified. However, some interesting advances in the basic knowledge on TAG metabolism in rhodococci have been made. Most studies have focused on the physiology of TAG biosynthesis and mobilization in rhodococci. Only recently, some advances in molecular biology and genetics on TAG metabolism occurred as a result of the increasing available genomic information and the development of new genetic tools for rhodococci. These studies have been focused principally on some enzymes of TAG biosynthesis, such as the wax esters/diacylglycerolacyltransferases (WS/DGAT and TAG granule-associated proteins. In this context, the most relevant achievements of basic research in the field have been summarized in this review article.

  12. Molecular and genetic aspects of controlling the soilborne necrotrophic pathogens Rhizoctonia and Pythium.

    Science.gov (United States)

    Okubara, Patricia A; Dickman, Martin B; Blechl, Ann E

    2014-11-01

    The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions. PMID:25438786

  13. Molecular eco-systems biology: towards an understanding of community function

    OpenAIRE

    Raes, J.; Bork, P.

    2008-01-01

    Systems-biology approaches, which are driven by genome sequencing and high-throughput functional genomics data, are revolutionizing single-cell-organism biology. With the advent of various high-throughput techniques that aim to characterize complete microbial ecosystems (metagenomics, meta-transcriptomics and meta-metabolomics), we propose that the time is ripe to consider molecular systems biology at the ecosystem level (eco-systems biology). Here, we discuss the necessary data types that ar...

  14. Biological Races in Humans

    OpenAIRE

    Templeton, Alan R.

    2013-01-01

    Races may exist in humans in a cultural sense, but biological concepts of race are needed to access their reality in a non-species-specific manner and to see if cultural categories correspond to biological categories within humans. Modern biological concepts of race can be implemented objectively with molecular genetic data through hypothesis-testing. Genetic data sets are used to see if biological races exist in humans and in our closest evolutionary relative, the chimpanzee. Using the two m...

  15. Molecular population genetics of Dioscorea tokore, a wild yam species

    International Nuclear Information System (INIS)

    High levels of genetic diversity have been found in natural populations of the wild yam species Dioscorea tokoro. Genetic diversity was measured by investigating: (1) the allozyme allele frequenzies; (2) the nucleotide difference in haplotypes of the Pgi locus; and (3) microsatellite variation. Most of the genetic diversity was found to reside within each population and the diversity caused by population differentiation appeared to be small. The implications of the results for yam genetic conservation are discussed. (author). 21 refs, 1 fig., 3 tabs

  16. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Castro Dias Cuyabano, Beatriz;

    2016-01-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited...... power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from...... among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case–control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and...

  17. Enzymology and molecular biology of glucocorticoid metabolism in humans.

    Science.gov (United States)

    Blum, Andreas; Maser, Edmund

    2003-01-01

    Glucocorticoids (GCs) are a vital class of steroid hormones that are secreted by the adrenal cortex and that are regulated by ACTH largely under the control of the hypothalamic-pituitary-adrenal axis. GCs mediate profound and diverse physiological effects in vertebrates, ranging from development, metabolism, neurobiology, anti-inflammation and programmed cell death to many other fuctions. Multiple factors "downstream" of GC secretion, such as glucocorticoid receptor (GR) number and the abundance of plasma binding proteins have originally been considered as modulators of GC action. However, in the last decade the role of tissue-specific GC activating and inactivating enzymes have been identified as additional determinants in GC signalling pathways. On the cellular level, they function as important pre-receptor regulators by acting as "molecular switches" for receptor-active and receptor-inactive GC hormones. According to their biologic activity to catalyze the interconversion of C11-hydroxyl and C11-oxo GCs these enzymes have been named 11beta-hydroxysteroid dehydrogenase (11beta-HSD; EC 1.1.1.146). Two isoforms of 11beta-HSD have been cloned and characterized so far. 11beta-HSD type 1 is found in a wide range of tissues, acts predominantly as a reductase in intact cells and tissues by regenerating active cortisol from cortisone, and has been described to regulate GC access to the GR. 11beta-HSD type 2 is found mainly in mineralocorticoid target tissues such as kidney and colon, acts only as a dehydrogenase by producing inactive cortisone, and has been found to protect the mineralocorticoid receptor from high levels of receptor-active cortisol. Recently, 11beta-HSD 1 has become highly topical due to the finding that 11beta-HSD 1 plays a pivotal role in the pathogenesis of central obesity and the appearance of the metabolic syndrome. This review provides an overview on the components involved in GC signalling of 11beta-HSD type 1 as an important pre-receptor control

  18. The genetics and biology of KRAS in lung cancer

    Institute of Scientific and Technical Information of China (English)

    Peter M.K.Westcott; Minh D.To

    2013-01-01

    Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types.Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful,and cancers driven by mutant KRAS remain among the most refractory to available treatments.Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer.Mutant Kras-driven mouse models of cancer,together with cellular and molecular studies,have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis.However,a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved.

  19. Sequencing cDNAs: An Introduction to DNA Sequence Analysis in the Undergraduate Molecular Genetics Course.

    Science.gov (United States)

    Galewsky, Samuel

    2000-01-01

    Introduces a series of molecular genetics laboratories where students pick a single colony from a Drosophila melanogester embryo cDNA library and purify the plasmid, then analyze the insert through restriction digests and gel electrophoresis. (Author/YDS)

  20. A molecular-genetic approach to studying source-sink interactions in Arabidopsis thalian. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, S. I.

    2000-06-01

    This is a final report describing the results of the research funded by the DOE Energy Biosciences Program grant entitled ''A Molecular-Genetic Approach to Studying Source-Sink Interactions in Arabidiopsis thaliana''.

  1. Biology of hyaluronan: Insights from genetic disorders of hyaluronan metabolism

    Institute of Scientific and Technical Information of China (English)

    Barbara; Triggs-Raine; Marvin; R; Natowicz

    2015-01-01

    Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency(Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.

  2. LMNA cardiomyopathy: cell biology and genetics meet clinical medicine

    Directory of Open Access Journals (Sweden)

    Jonathan T. Lu

    2011-09-01

    Full Text Available Mutations in the LMNA gene, which encodes A-type nuclear lamins (intermediate filament proteins expressed in most differentiated somatic cells, cause a diverse range of diseases, called laminopathies, that selectively affect different tissues and organ systems. The most prevalent laminopathy is cardiomyopathy with or without different types of skeletal muscular dystrophy. LMNA cardiomyopathy has an aggressive clinical course with higher rates of deadly arrhythmias and heart failure than most other heart diseases. As awareness among physicians increases, and advances in DNA sequencing methods make the genetic diagnosis of LMNA cardiomyopathy more common, cardiologists are being faced with difficult questions regarding patient management. These questions concern the optimal use of intracardiac cardioverter defibrillators to prevent sudden death from arrhythmias, and medical interventions to prevent heart damage and ameliorate heart failure symptoms. Data from a mouse model of LMNA cardiomyopathy suggest that inhibitors of mitogen-activated protein kinase (MAPK signaling pathways are beneficial in preventing and treating cardiac dysfunction; this basic research discovery needs to be translated to human patients.

  3. Molecular biology of Philadelphia-negative myeloproliferative neoplasms

    OpenAIRE

    Paulo Vidal Campregher; Fábio Pires de Souza Santos; Guilherme Fleury Perini; Nelson Hamerschlak

    2012-01-01

    Myeloproliferative neoplasms are clonal diseases of hematopoietic stem cells characterized by myeloid hyperplasia and increased risk of developing acute myeloid leukemia. Myeloproliferative neoplasms are caused, as any other malignancy, by genetic defects that culminate in the neoplastic phenotype. In the past six years, since the identification of JAK2V617F, we have experienced a substantial increase in our knowledge about the genetic mechanisms involved in the genesis of myeloproliferative ...

  4. MOLECULAR GENETIC MARKERS AND METHODS OF THEIR IDENTIFICATION IN MODERN FISH-FARMING

    OpenAIRE

    I. Hrytsyniak; O. Zaloilo; I. Zaloilo; N. Borysenko

    2014-01-01

    Purpose. The application of molecular genetic markers has been widely used in modern experimental fish-farming in recent years. This methodology is currently presented by a differentiated approach with individual mechanisms and clearly defined possibilities. Numerous publications in the scientific literature that are dedicated to molecular genetic markers for the most part offer purely practical data. Thus, the synthesis and analysis of existing information on the general principles of action...

  5. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Heven Sze

    2008-06-22

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular [Ca2+] during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  6. Regulating Intracellular Calcium in Plants: From Molecular Genetics to Physiology

    International Nuclear Information System (INIS)

    To grow, develop, adapt, and reproduce, plants have evolved mechanisms to regulate the uptake, translocation and sorting of calcium ions into different cells and subcellular compartments. Yet how plants accomplish this remarkable feat is still poorly understood. The spatial and temporal changes in intracellular (Ca2+) during growth and during responses to hormonal and environmental stimuli indicate that Ca2+ influx and efflux transporters are diverse and tightly regulated in plants. The specific goals were to determine the biological roles of multiple Ca pumps (ECAs) in the model plant Arabidopsis thaliana. We had pioneered the use of K616 yeast strain to functionally express plant Ca pumps, and demonstrated two distinct types of Ca pumps in plants (Sze et al., 2000. Annu Rev Plant Biol. 51,433). ACA2 represented one type that was auto-inhibited by the N-terminal region and stimulated by calmodulin. ECA1 represented another type that was not sensitive to calmodulin and phylogenetically distinct from ACAs. The goal to determine the biological roles of multiple ECA-type Ca pumps in Arabidopsis has been accomplished. Although we demonstrated ECA1 was a Ca pump by functional expression in yeast, the in vivo roles of ECAs was unclear. A few highlights are described. ECA1 and/or ECA4 are Ca/Mn pumps localized to the ER and are highly expressed in all cell types. Using homozygous T-DNA insertional mutants of eca1, we demonstrated that the ER-bound ECA1 supports growth and confers tolerance of plants growing on medium low in Ca or containing toxic levels of Mn. This is the first genetic study to determine the in vivo function of a Ca pump in plants. A phylogenetically distinct ECA3 is also a Ca/Mn pump that is localized to endosome, such as post-Golgi compartments. Although it is expressed at lower levels than ECA1, eca3 mutants are impaired in Ca-dependent root growth and in pollen tube elongation. Increased secretion of wall proteins in mutants suggests that Ca and Mn

  7. Molecular Biology of Learning: Modulation of Transmitter Release.

    Science.gov (United States)

    Kandel, Eric R.; Schwartz, James H.

    1982-01-01

    Describes how a behavioral system in Aplysia (marine snail) can be used to examine mechanisms of several forms of learning at different levels of analysis: behavioral, cell-physiological, ultrastructural, and molecular. Focusing on short-term sensitization, suggests how molecular mechanisms can be extended to explain long-term memory and classical…

  8. Teaching biology through statistics: application of statistical methods in genetics and zoology courses.

    Science.gov (United States)

    Colon-Berlingeri, Migdalisel; Burrowes, Patricia A

    2011-01-01

    Incorporation of mathematics into biology curricula is critical to underscore for undergraduate students the relevance of mathematics to most fields of biology and the usefulness of developing quantitative process skills demanded in modern biology. At our institution, we have made significant changes to better integrate mathematics into the undergraduate biology curriculum. The curricular revision included changes in the suggested course sequence, addition of statistics and precalculus as prerequisites to core science courses, and incorporating interdisciplinary (math-biology) learning activities in genetics and zoology courses. In this article, we describe the activities developed for these two courses and the assessment tools used to measure the learning that took place with respect to biology and statistics. We distinguished the effectiveness of these learning opportunities in helping students improve their understanding of the math and statistical concepts addressed and, more importantly, their ability to apply them to solve a biological problem. We also identified areas that need emphasis in both biology and mathematics courses. In light of our observations, we recommend best practices that biology and mathematics academic departments can implement to train undergraduates for the demands of modern biology. PMID:21885822

  9. [Progression of tumors: etiologic, morphologic and molecular-biological aspects].

    Science.gov (United States)

    Turosov, V S

    1992-01-01

    Two aspects can be distinguished in multistage carcinogenesis: etiological one (every stage is induced by a specific for this stage agent) and morphobiological aspect (every stage is characterized by specific morphological, genetic and other properties). The schema of the multistage carcinogenesis is presented in which morphological stages (diffuse and focal hyperplasia, benign tumours, dysplasia, carcinoma in situ, various phases of malignant tumour progression) are placed against genetic alterations. L. Foulds concept of tumour progression is discussed with special emphasis on precancerous stages, possibilities of cancer development de novo, and independent progression of different tumour characters. The following types of carcinogenesis are listed on the basis of interrelationship between etiological and genetic factors: 1) carcinogenesis induced by genotoxic agents; a) one agent is acting at high dose and for a long time thus ensuring the activation of protooncogenes and all stages of tumour progression (initiation, promotion, various phases of malignant tumour); b) those acting during a very short time, however sufficient for developing the genetic program working automatically without further exposure to known carcinogens (irradiation in case of the atomic bomb explosion or effect of short-living alkylating agents): in this case there is no stage of promotion; 2) carcinogenesis by non-genotoxic carcinogens (their mode of action is still unclear, the only human example is carcinogenesis by hormones); 3) development of tumours in frane of the two (or three) stage carcinogenesis when every stage is provoked by its own etiological factor, no human examples are known as yet; 4) development of tumours due to the genetic mechanism making the organism highly susceptible to the minimal doses of carcinogens as is the case with skin cancer by ultraviolet light in patients with xeroderma pigmentosum, the genetic damage in itself has nothing to do with tumour formation; 5

  10. Improving Synthetic Biology Communication: Recommended Practices for Visual Depiction and Digital Submission of Genetic Designs.

    Science.gov (United States)

    Hillson, Nathan J; Plahar, Hector A; Beal, Jacob; Prithviraj, Ranjini

    2016-06-17

    Research is communicated more effectively and reproducibly when articles depict genetic designs consistently and fully disclose the complete sequences of all reported constructs. ACS Synthetic Biology is now providing authors with updated guidance and piloting a new tool and publication workflow that facilitate compliance with these recommended practices and standards for visual representation and data exchange. PMID:27267452

  11. Rheumatoid arthritis therapy with genetically engineered biological agents in the Republic of Karelia

    Directory of Open Access Journals (Sweden)

    Irina Mikhailovna Marusenko

    2013-01-01

    Full Text Available The paper considers whether a current treatment option for rheumatoid arthritis with genetically engineered biological agents that selectively block the activity of individual proinflammatory mediators and cell surface antigens involved in autoimmune inflammation may be performed in Karelia, which can achieve control of the disease, retard its progression, and improve prognosis.

  12. Rheumatoid arthritis therapy with genetically engineered biological agents in the Republic of Karelia

    Directory of Open Access Journals (Sweden)

    Irina Mikhailovna Marusenko

    2013-12-01

    Full Text Available The paper considers whether a current treatment option for rheumatoid arthritis with genetically engineered biological agents that selectively block the activity of individual proinflammatory mediators and cell surface antigens involved in autoimmune inflammation may be performed in Karelia, which can achieve control of the disease, retard its progression, and improve prognosis.

  13. Rheumatoid arthritis therapy with genetically engineered biological agents in the Republic of Karelia

    OpenAIRE

    Irina Mikhailovna Marusenko

    2013-01-01

    The paper considers whether a current treatment option for rheumatoid arthritis with genetically engineered biological agents that selectively block the activity of individual proinflammatory mediators and cell surface antigens involved in autoimmune inflammation may be performed in Karelia, which can achieve control of the disease, retard its progression, and improve prognosis.

  14. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology

    Science.gov (United States)

    Chromosomes and chromosome pairing are pivotal to all biological sciences. The study of chromosomes helps unravel several aspects of an organism. Although the foundation of genetics occurred with the formulation of the laws of heredity in 1865, long before the discovery of chromosomes, their subsequ...

  15. Clusters of Concepts in Molecular Genetics: A Study of Swedish Upper Secondary Science Students' Understanding

    Science.gov (United States)

    Gericke, Niklas; Wahlberg, Sara

    2013-01-01

    To understand genetics, students need to be able to explain and draw connections between a large number of concepts. The purpose of the study reported herein was to explore the way upper secondary science students reason about concepts in molecular genetics in order to understand protein synthesis. Data were collected by group interviews. Concept…

  16. Major Results and Research Challenges in Cotton Molecular Genetics at CIRAD(France)

    Institute of Scientific and Technical Information of China (English)

    LACAPE; Jean-marc; CLAVERIE; M; DESSAUW; D; GIBAND; M; VIOT; C

    2008-01-01

    CIRAD(Montpellier,France) develops research activities centered on tropical and sub-tropical agricultural systems.Among others crops,cotton is the focus of a series of research programs in different disciplines from economics to breeding.Major areas in genetics and breeding relate to(1) genetic diversity,(2) cultivar development through classical and molecular breeding,and(3) applied

  17. Major Results and Research Challenges in Cotton Molecular Genetics at CIRAD (France)

    Institute of Scientific and Technical Information of China (English)

    LACAPE Jean-marc; CLAVERIE M; DESSAUW D; GIBAND M; VIOT C

    2008-01-01

    @@ CIRAD (Montpellier,France) develops research activities centered on tropical and sub-tropical agricultural systems.Among others crops,cotton is the focus of a series of research programs in different disciplines from economics to breeding.Major areas in genetics and breeding relate to (1) genetic diversity,(2) eultivar development through classical and molecular breeding,and (3) applied genomics.An important but under-exploited reservoir of genetic diversity exists within the genus Gossypium.

  18. Clinical, biological and genetic analysis of anorchia in 26 boys.

    Directory of Open Access Journals (Sweden)

    Raja Brauner

    Full Text Available BACKGROUND: Anorchia is defined as the absence of testes in a 46,XY individual with a male phenotype. The cause is unknown. METHODS: We evaluated the clinical and biological presentation, and family histories of 26 boys with anorchia, and sequenced their SRY, NR5A1, INSL3, MAMLD1 genes and the T222P variant for LGR8. RESULTS: No patient had any associated congenital anomaly. At birth, testes were palpable bilaterally or unilaterally in 13 cases and not in 7; one patient presented with bilateral testicular torsion immediately after birth. The basal plasma concentrations of anti-Müllerian hormone (AMH, n = 15, inhibin B (n = 7 and testosterone (n = 19 were very low or undetectable in all the patients evaluated, as were the increases in testosterone after human chorionic gonadotropin (hCG, n = 12. The basal plasma concentrations of follicle stimulating hormone (FSH were increased in 20/25, as was that of luteinising hormone in 10/22 cases. Family members of 7/26 cases had histories of primary ovarian failure in the mother (n = 2, or sister 46,XX, together with fetal malformations of the only boy with microphallus and secondary foot edema (n = 1, secondary infertility in the father (n = 2, or cryptorchidism in first cousins (n = 2. The sequences of all the genes studied were normal. CONCLUSION: Undetectable plasma concentrations of AMH and inhibin B and an elevated plasma FSH, together with 46,XY complement are sufficient for diagnosis of anorchia. The hCG test is unnecessary. NR5A1 and other genes implicated in gonadal development and testicle descent were not mutated, which suggests that other genes involved in these developments contribute to the phenotypes.

  19. Objectives, criteria and methods for using molecular genetic data in priority setting for conservation of animal genetic resources.

    Science.gov (United States)

    Boettcher, P J; Tixier-Boichard, M; Toro, M A; Simianer, H; Eding, H; Gandini, G; Joost, S; Garcia, D; Colli, L; Ajmone-Marsan, P

    2010-05-01

    The genetic diversity of the world's livestock populations is decreasing, both within and across breeds. A wide variety of factors has contributed to the loss, replacement or genetic dilution of many local breeds. Genetic variability within the more common commercial breeds has been greatly decreased by selectively intense breeding programmes. Conservation of livestock genetic variability is thus important, especially when considering possible future changes in production environments. The world has more than 7500 livestock breeds and conservation of all of them is not feasible. Therefore, prioritization is needed. The objective of this article is to review the state of the art in approaches for prioritization of breeds for conservation, particularly those approaches that consider molecular genetic information, and to identify any shortcomings that may restrict their application. The Weitzman method was among the first and most well-known approaches for utilization of molecular genetic information in conservation prioritization. This approach balances diversity and extinction probability to yield an objective measure of conservation potential. However, this approach was designed for decision making across species and measures diversity as distinctiveness. For livestock, prioritization will most commonly be performed among breeds within species, so alternatives that measure diversity as co-ancestry (i.e. also within-breed variability) have been proposed. Although these methods are technically sound, their application has generally been limited to research studies; most existing conservation programmes have effectively primarily based decisions on extinction risk. The development of user-friendly software incorporating these approaches may increase their rate of utilization. PMID:20500756

  20. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  1. STUDIES OF RELATIONSHIPS BETWEEN MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY BY PATTERN RECOGNITION METHODS

    Science.gov (United States)

    The attempt to rationalize the connections between the molecular structures of organic compounds and their biological activities comprises the field of structure-activity relations (SAR) studies. Correlations between structure and activity are important for the understanding and ...

  2. New genetic loci link adipose and insulin biology to body fat distribution

    NARCIS (Netherlands)

    D. Shungin (Dmitry); T.W. Winkler (Thomas W.); D.C. Croteau-Chonka (Damien); T. Ferreira (Teresa); A. Locke (Adam); R. Mägi (Reedik); R.J. Strawbridge (Rona); T.H. Pers (Tune); K. Fischer (Krista); A.E. Justice (Anne); T. Workalemahu (Tsegaselassie); J.M.W. Wu (Joseph M. W.); M.L. Buchkovich (Martin); N.L. Heard-Costa (Nancy); T.S. Roman (Tamara S.); A. Drong (Alexander); C. Song (Ci); S. Gustafsson (Stefan); F.R. Day (Felix); T. Esko (Tõnu); M. Fall (Magnus); Z. Kutalik (Zolta'n); J. Luan; J.C. Randall (Joshua); A. Scherag (Andre); S. Vedantam (Sailaja); A.R. Wood (Andrew); J. Chen (Jin); R.S.N. Fehrmann (Rudolf); J. Karjalainen (Juha); B. Kahali (Bratati); C.-T. Liu (Ching-Ti); E.M. Schmidt (Ellen); D. Absher (Devin); N. Amin (Najaf); D. Anderson (David); M. Beekman (Marian); J.L. Bragg-Gresham (Jennifer L.); S. Buyske (Steven); A. Demirkan (Ayşe); G.B. Ehret (Georg); M.F. Feitosa (Mary Furlan); A. Goel (Anuj); A.U. Jackson (Anne); T. Johnson (Toby); M.E. Kleber (Marcus); K. Kristiansson; M. Mangino (Massimo); I.M. Leach (Irene Mateo); M.C. Medina-Gomez (Carolina); C. Palmer (Cameron); D. Pasko (Dorota); S. Pechlivanis (Sonali); M.J. Peters (Marjolein); I. Prokopenko (Inga); A. Stanca'kova' (Alena); Y.J. Sung (Yun Ju); T. Tanaka (Toshiko); A. Teumer (Alexander); J.V. van Vliet-Ostaptchouk (Jana); L. Yengo (Loic); W. Zhang (Weihua); E. Albrecht (Eva); J. Ärnlöv (Johan); G.M. Arscott (Gillian M.); S. Bandinelli (Stefania); A. Barrett (Angela); C. Bellis (Claire); A.J. Bennett (Amanda); C. Berne (Christian); M. Blüher (Matthias); S. Böhringer (Stefan); F. Bonnet (Fabrice); Y. Böttcher (Yvonne); M. Bruinenberg (M.); D.B. Carba (Delia B.); I.H. Caspersen (Ida H.); R. Clarke (Robert); E.W. Daw (E. Warwick); J. Deelen (Joris); E. Deelman (Ewa); G. Delgado; A.S.F. Doney (Alex); N. Eklund (Niina); M.R. Erdos (Michael); K. Estrada Gil (Karol); E. Eury (Elodie); N. Friedrich (Nele); M. Garcia (Melissa); V. Giedraitis (Vilmantas); B. Gigante (Bruna); A. Go (Attie); A. Golay (Alain); H. Grallert (Harald); T.B. Grammer (Tanja); J. Gräsler (Jürgen); J. Grewal (Jagvir); C.J. Groves (Christopher); T. Haller (Toomas); G. Hallmans (Göran); C.A. Hartman (Catharina); M. Hassinen (Maija); C. Hayward (Caroline); K. Heikkilä (Kauko); K.H. Herzig; Q. Helmer (Quinta); H.L. Hillege (Hans); O.L. Holmen (Oddgeir); S.C. Hunt (Steven); A. Isaacs (Aaron); T. Ittermann (Till); A.L. James (Alan); I. Johansson (Inger); T. Juliusdottir (Thorhildur); I.-P. Kalafati (Ioanna-Panagiota); L. Kinnunen (Leena); W. Koenig (Wolfgang); I.K. Kooner (Ishminder K.); W. Kratzer (Wolfgang); C. Lamina (Claudia); K. Leander (Karin); N.R. Lee (Nanette R.); P. Lichtner (Peter); L. Lind (Lars); J. Lindström (Jaana); S. Lobbens (Stéphane); M. Lorentzon (Mattias); F. MacH (François); P.K. Magnusson (Patrik); A. Mahajan (Anubha); W.L. McArdle (Wendy); C. Menni (Cristina); S. Merger (Sigrun); E. Mihailov (Evelin); L. Milani (Lili); R. Mills (Rebecca); A. Moayyeri (Alireza); K.L. Monda (Keri); S.P. Mooijaart (Simon); T.W. Mühleisen (Thomas); A. Mulas (Antonella); G. Müller (Gabriele); M. Müller-Nurasyid (Martina); R. Nagaraja (Ramaiah); M.A. Nalls (Michael); N. Narisu (Narisu); N. Glorioso (Nicola); I.M. Nolte (Ilja M.); M. Olden (Matthias); N.W. Rayner (Nigel William); F. Renström (Frida); J.S. Ried (Janina); N.R. Robertson (Neil R.); L.M. Rose (Lynda); S. Sanna (Serena); H. Scharnagl (Hubert); S. Scholtens (Salome); B. Sennblad (Bengt); T. Seufferlein (Thomas); C.M. Sitlani (Colleen); G.D. Smith; K. Stirrups (Kathy); H.M. Stringham (Heather); J. Sundstrom (Johan); M. Swertz (Morris); A.J. Swift (Amy); A.C. Syvanen; B. Tayo (Bamidele); B. Thorand (Barbara); G. Thorleifsson (Gudmar); A. Tomaschitz (Andreas); C. Troffa (Chiara); F.V.A. van Oort (Floor); N. Verweij (Niek); J.M. Vonk (Judith); L. Waite (Lindsay); R. Wennauer (Roman); T. Wilsgaard (Tom); M.K. Wojczynski (Mary ); A. Wong (Andrew); Q. Zhang (Qunyuan); J.H. Zhao; E.P. Brennan (Eoin P.); M. Choi (Murim); P. Eriksson (Per); L. Folkersen (Lasse); A. Franco-Cereceda (Anders); A.G. Gharavi (Ali G.); A.K. Hedman (Asa); M.F. Hivert; J. Huang (Jinyan); S. Kanoni (Stavroula); F. Karpe (Fredrik); S. Keildson (Sarah); K. Kiryluk (Krzysztof); L. Liang (Liming); R.P. Lifton (Richard); B. Ma (Baoshan); A.J. McKnight (Amy J.); R. McPherson (Ruth); A. Metspalu (Andres); J.L. Min (Josine L.); M.F. Moffatt (Miriam); G.W. Montgomery (Grant); J. Murabito (Joanne); G. Nicholson (Ggeorge); A.S. Dimas (Antigone); C. Olsson (Christian); J.R.B. Perry (John); E. Reinmaa (Eva); R.M. Salem (Rany); N. Sandholm (Niina); E.E. Schadt (Eric); R.A. Scott (Robert A.); L. Stolk (Lisette); E.E. Vallejo (Edgar E.); H.J. Westra (Harm-Jan); K.T. Zondervan (Krina); P. Amouyel (Philippe); D. Arveiler (Dominique); S.J.L. Bakker (Stephan); J.P. Beilby (John); R.N. Bergman (Richard); J. Blangero (John); M.J. Brown (Morris); M. Burnier (Michel); H. Campbell (Harry); A. Chakravarti (Aravinda); P.S. Chines (Peter); S. Claudi-Boehm (Simone); F.S. Collins (Francis); D.C. Crawford (Dana); J. Danesh (John); U. de Faire (Ulf); E.J.C. de Geus (Eco); M. Dörr (Marcus); R. Erbel (Raimund); K. Hagen (Knut); M. Farrall (Martin); E. Ferrannini (Ele); J. Ferrieres (Jean); N.G. Forouhi (Nita); T. Forrester (Terrence); O.H. Franco (Oscar); R.T. Gansevoort (Ron); C. Gieger (Christian); V. Gudnason (Vilmundur); C.A. Haiman (Christopher); T.B. Harris (Tamara); A.T. Hattersley (Andrew); M. Heliovaara (Markku); A.A. Hicks (Andrew); A. Hingorani (Aroon); W. Hoffmann (Wolfgang); A. Hofman (Albert); G. Homuth (Georg); S.E. Humphries (Steve); E. Hypponen (Elina); T. Illig (Thomas); M.-R. Jarvelin (Marjo-Riitta); B. Johansen (Berit); P. Jousilahti (Pekka); A. Jula (Antti); J. Kaprio (Jaakko); F. Kee (F.); S. Keinanen-Kiukaanniemi (Sirkka); J.S. Kooner (Jaspal S.); C. Kooperberg (Charles); P. Kovacs (Peter); A. Kraja (Aldi); M. Kumari (Meena); K. Kuulasmaa (Kari); J. Kuusisto (Johanna); T.A. Lakka (Timo); C. Langenberg (Claudia); L. Le Marchand (Loic); T. Lehtimäki (Terho); V. Lyssenko (Valeriya); S. Männistö (Satu); A. Marette (Andre'); T.C. Matise (Tara C.); C.A. McKenzie (Colin A.); B. McKnight (Barbara); A.W. Musk (Arthur); S. Möhlenkamp (Stefan); A.D. Morris (Andrew); M. Nelis (Mari); C. Ohlsson (Claes); A.J. Oldehinkel (Albertine); K.K. Ong (Ken K.); C. Palmer (Cameron); B.W.J.H. Penninx (Brenda); A. Peters (Annette); P.P. Pramstaller (Peter Paul); O. Raitakari (Olli); T. Rankinen (Tuomo); D.C. Rao (Dabeeru C.); T.K. Rice (Treva K.); P.M. Ridker (Paul); M.D. Ritchie (Marylyn D.); I. Rudan (Igor); V. Salomaa (Veikko); N.J. Samani (Nilesh); J. Saramies (Jouko); M.A. Sarzynski (Mark A.); P.E.H. Schwarz (Peter E. H.); A.R. Shuldiner (Alan); J.A. Staessen (Jan); V. Steinthorsdottir (Valgerdur); R.P. Stolk (Ronald); K. Strauch (Konstantin); A. Tönjes (Anke); A. Tremblay (Angelo); E. Tremoli (Elena); M.-C. Vohl (Marie-Claude); U. Völker (Uwe); P. Vollenweider (Peter); J.F. Wilson (James F); J.C.M. Witteman (Jacqueline); L.S. Adair (Linda); M. Bochud (Murielle); B.O. Boehm (Bernhard); S.R. Bornstein (Stefan R.); C. Bouchard (Claude); S. Cauchi (Ste'phane); M. Caulfield (Mark); J.C. Chambers (John C.); D.I. Chasman (Daniel); R.S. Cooper (Richard S.); G.V. Dedoussis (George); L. Ferrucci (Luigi); P. Froguel (Philippe); H.J. Grabe (Hans Jörgen); A. Hamsten (Anders); J. Hui (Jennie); K. Hveem (Kristian); K.-H. Jöckel (Karl-Heinz); M. Kivimaki (Mika); D. Kuh (Diana); M. Laakso (Markku); Y. Liu (Yongmei); W. März (Winfried); P. Munroe (Patricia); I. Njølstad (Inger); B.A. Oostra (Ben); C.N.A. Palmer (Colin); N.L. Pedersen (Nancy L.); M. Perola (Markus); L. Perusse (Louis); U. Peters (Ulrike); C. Power (Christopher); T. Quertermous (Thomas); R. Rauramaa (Rainer); F. Rivadeneira Ramirez (Fernando); T. Saaristo (Timo); D. Saleheen; J. Sinisalo (Juha); P.E. Slagboom (Eline); H. Snieder (Harold); T.D. Spector (Timothy); U. Thorsteinsdottir (Unnur); M. Stumvoll (Michael); J. Tuomilehto (Jaakko); A.G. Uitterlinden (André); M. Uusitupa (Matti); P. van der Harst (Pim); G. Veronesi (Giovanni); M. Walker (Mark); N.J. Wareham (Nick); H. Watkins (Hugh); H.E. Wichmann (Heinz Erich); G.R. Abecasis (Gonçalo); T.L. Assimes (Themistocles); S.I. Berndt (Sonja); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); L. Franke (Lude); T.M. Frayling (Timothy); L. Groop (Leif); D. Hunter (David); R.C. Kaplan (Robert); J.R. O´Connell; L. Qi (Lu); D. Schlessinger (David); D.P. Strachan (David); J-A. Zwart (John-Anker); C.M. van Duijn (Cock); C.J. Willer (Cristen); P.M. Visscher (Peter); J. Yang (Joanna); J.N. Hirschhorn (Joel N.); M.C. Zillikens (Carola); M.I. McCarthy (Mark); E.K. Speliotes (Elizabeth); K.E. North (Kari); C.S. Fox (Caroline S.); I. Barroso (Inês); P.W. Franks (Paul); E. Ingelsson (Erik); I.M. Heid (Iris); R.J.F. Loos (Ruth); L.A. Cupples (Adrienne); A.P. Morris (Andrew); C.M. Lindgren (Cecilia); K.L. Mohlke (Karen)

    2015-01-01

    textabstractBody fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct geno

  3. New genetic loci link adipose and insulin biology to body fat distribution

    NARCIS (Netherlands)

    Shungin, Dmitry; Winkler, Thomas W.; Croteau-Chonka, Damien C.; Ferreira, Teresa; Lockes, Adam E.; Maegi, Reedik; Strawbridge, Rona J.; Pers, Tune H.; Fischer, Krista; Justice, Anne E.; Workalemahu, Tsegaselassie; Wu, Joseph M. W.; Buchkovich, Martin L.; Heard-Costa, Nancy L.; Roman, Tamara S.; Drong, Alexander W.; Song, Ci; Gustafsson, Stefan; Day, Felix R.; Esko, Tonu; Fall, Tove; Kutalik, Zoltan; Luan, Jian'an; Randall, Joshua C.; Scherag, Andre; Vedantam, Sailaja; Wood, Andrew R.; Chen, Jin; Fehrmann, Rudolf; Karjalainen, Juha; Kahali, Bratati; Liu, Ching-Ti; Schmidt, Ellen M.; Absher, Devin; Amin, Najaf; Anderson, Denise; Beekman, Marian; Bragg-Gresham, Jennifer L.; Buyske, Steven; Demirkan, Ayse; Ehret, Georg B.; Feitosa, Mary F.; Goel, Anuj; Jackson, Anne U.; Johnson, Toby; Kleber, Marcus E.; Kristiansson, Kati; Mangino, Massimo; Leach, Irene Mateo; Medina-Gomez, Carolina; Palmer, Cameron D.; Pasko, Dorota; Pechlivaniss, Sonali; Peters, Marjolein J.; Prokopenko, Inga; Stancakova, Alena; Sung, Yun Ju; Tanakam, Toshiko; Teumer, Alexander; Van Vliet-Ostaptchouk, Jana V.; Yengo, Loic; Zhang, Weihua; Albrecht, Eva; Arnlov, Johan; Arscott, Gillian M.; Bandinelli, Stefania; Barrett, Amy; Bellis, Claire; Bennett, Amanda J.; Berne, Christian; Blueher, Matthias; Buhringer, Stefan; Bonnet, Fabrice; Boettcher, Yvonne; Bruinenberg, Marcel; Carba, Delia B.; Caspersen, Ida H.; Clarke, Robert; Daw, E. Warwick; Deelen, Joris; Deelman, Ewa; Delgado, Graciela; Doney, Alex S. F.; Eklund, Niina; Erdos, Michael R.; Estrada, Karol; Eury, Elodie; Friedrichs, Nele; Garcia, Melissa E.; Giedraitis, Vilmantas; Gigante, Bruna; Go, Alan S.; Golay, Alain; Grallert, Harald; Grammer, Tanja B.; Graessler, Juergen; Grewal, Jagvir; Groves, Christopher J.; Haller, Toomas; Hallmans, Goran; Hartman, Catharina A.; Hassinen, Maija; Hayward, Caroline; Heikkila, Kauko; Herzig, Karl-Heinz; Helmer, Quinta; Hillege, Hans L.; Holmen, Oddgeir; Hunt, Steven C.; Isaacs, Aaron; Ittermann, Till; James, Alan L.; Johansson, Ingegerd; Juliusdottir, Thorhildur; Kalafati, Ioanna-Panagiota; Kinnunen, Leena; Koenig, Wolfgang; Kooner, Ishminder K.; Kratzer, Wolfgang; Lamina, Claudia; Leander, Karin; Lee, Nanette R.; Lichtner, Peter; Lind, Lars; Lindstrom, Jaana; Lobbens, Stephane; Lorentzon, Mattias; Mach, Francois; Magnusson, Patrik K. E.; Mahajan, Anubha; McArdle, Wendy L.; Menni, Cristina; Merger, Sigrun; Mihailov, Evelin; Milani, Lili; Mills, Rebecca; Moayyeri, Alireza; Monda, Ken L.; Mooijaart, Simon P.; Muehleisen, Thomas W.; Mulas, Antonella; Mueller, Gabriele; Mueller-Nurasyid, Martina; Nagaraja, Ramaiah; Nalls, Michael A.; Narisu, Narisu; Glorioso, Nicola; Nolte, Ilja M.; Olden, Matthias; Rayner, Nigel W.; Renstrom, Frida; Ried, Janina S.; Robertson, Neil R.; Rose, Lynda M.; Sanna, Serena; Scharnagl, Hubert; Scholtens, Salome; Sennblad, Bengt; Seufferlein, Thomas; Sitlani, Colleen M.; Smith, Albert Vernon; Stirrups, Kathleen; Stringham, Heather M.; Sundstrom, Johan; Swertz, Morris A.; Swift, Amy J.; Syvanen, Ann-Christine; Tayo, Bamidele O.; Thorand, Barbara; Thorleifsson, Gudmar; Tomaschitz, Andreas; Troffa, Chiara; van Oort, Floor V. A.; Verweij, Niek; Vonk, Judith M.; Waite, Lindsay L.; Wennauer, Roman; Wilsgaard, Tom; Wojczynski, Mary K.; Wong, Andrew; Zhang, Qunyuan; Zhao, Jing Hua; Brennan, Eoin P.; Choi, Murim; Eriksson, Per; Folkersen, Lasse; Franco-Cereceda, Anders; Gharavi, Ali G.; Hedman, Asa K.; Hivert, Marie-France; Huang, Jinyan; Kanoni, Stavroula; Karpe, Fredrik; Keildson, Sarah; Kiryluk, Krzysztof; Liang, Liming; Lifton, Richard P.; Ma, Baoshan; McKnight, Amy J.; McPherson, Ruth; Metspalu, Andres; Min, Josine L.; Moffatt, Miriam F.; Montgomery, Grant W.; Murabito, Joanne M.; Nicholson, George; Nyholt, Dale R.; Olsson, Christian; Perry, John R. B.; Reinmaa, Eva; Salem, Rany M.; Sandholm, Niina; Schadt, Eric E.; Scott, Robert A.; Stolk, Lisette; Vallejo, Edgar E.; Westra, Harm-Jan; Zondervan, Krina T.; Amouyel, Philippe; Arveiler, Dominique; Bakker, Stephan J. L.; Beilby, John; Bergman, Richard N.; Blangero, John; Brown, Morris J.; Burnier, Michel; Campbell, Harry; Chakravarti, Aravinda; Chiness, Peter S.; Claudi-Boehmi, Simone; Collins, Francis S.; Crawford, Dana C.; Danesh, John; de Faire, Ulf; de Geusl, Eco J. C.; Doerr, Marcus; Erbel, Raimund; Eriksson, Johan G.; Farrall, Martin; Ferrannini, Ele; Ferrieres, Jean; Forouhi, Nita G.; Forrester, Terrence; Franco, Oscar H.; Gansevoort, Ron T.; Gieger, Christian; Gudnason, Vilmundur; Haiman, Christopher A.; Harris, Tamara B.; Hattersley, Andrew T.; Heliovaara, Markku; Hicks, Andrew A.; Hingorani, Aroon D.; Hoffmann, Wolfgang; Hofman, Albert; Homuth, Georg; Humphries, Steve E.; Hyppoenen, Elina; Illig, Thomas; Jarvelin, Marjo-Riitta; Johansen, Berit; Jousilahti, Pekka; Jula, Antti M.; Kaprio, Jaakko; Kee, Frank; Keinanen-Kiukaanniemi, Sirkka M.; Kooner, Jaspal S.; Kooperberg, Charles; Kovacs, Peter; Kraja, Aldi T.; Kumari, Meena; Kuulasmaa, Kari; Kuusisto, Johanna; Lakka, Timo A.; Langenberg, Claudia; Le Marchand, Loic; Lehtimaki, Terho; Lyssenko, Valeriya; Mannisto, Satu; Marette, Andre; Matise, Tara C.; McKenzie, Colin A.; McKnight, Barbara; Musk, Arthur W.; Mohlenkamp, Stefan; Morris, Andrew D.; Nelis, Mari; Ohlsson, Claes; Oldehinkel, Albertine J.; Ong, Ken K.; Palmer, Lyle J.; Penninx, Brenda W.; Peters, Annette; Pramstaller, Peter P.; Raitakari, Olli T.; Rankinen, Tuomo; Rao, D. C.; Rice, Treva K.; Ridker, Paul M.; Ritchie, Marylyn D.; Rudan, Igor; Salomaa, Veikko; Samani, Nilesh J.; Saramies, Jouko; Sarzynski, Mark A.; Schwarz, Peter E. H.; Shuldiner, Alan R.; Staessen, Jan A.; Steinthorsdottir, Valgerdur; Stolk, Ronald P.; Strauch, Konstantin; Toenjes, Anke; Tremblay, Angelo; Tremoli, Elena; Vohl, Marie-Claude; Voelker, Uwe; Vollenweider, Peter; Wilson, James F.; Witteman, Jacqueline C.; Adair, Linda S.; Bochud, Murielle; Boehm, Bernhard O.; Bornstein, Stefan R.; Bouchard, Claude; Cauchi, Stephane; Caulfield, Mark J.; Chambers, John C.; Chasman, Daniel I.; Cooper, Richard S.; Dedoussis, George; Ferrucci, Luigi; Froguel, Philippe; Grabe, Hans-Joergen; Hamsten, Anders; Hui, Jennie; Hveem, Kristian; Joeckel, Karl-Heinz; Kivimaki, Mika; Kuh, Diana; Laakso, Markku; Liu, Yongmei; Maerz, Winfried; Munroe, Patricia B.; Njolstad, Inger; Oostra, Ben A.; Palmer, Colin N. A.; Pedersen, Nancy L.; Perola, Markus; Perusse, Louis; Peters, Ulrike; Power, Chris; Quertermous, Thomas; Rauramaa, Rainer; Rivadeneira, Fernando; Saaristo, Timo E.; Saleheen, Danish; Sinisalo, Juha; Slagboom, P. Eline; Snieder, Harold; Spector, Tim D.; Thorsteinsdottir, Unnur R.; Stumvoll, Michael; Tuomilehto, Jaakko; Uitterlinden, Andre G.; Uusitupa, Math; van der Harst, Pim; Veronesi, Giovanni; Walker, Mark; Wareham, Nicholas J.; Watkins, Hugh; Wichmann, H-Erich; Abecasis, Goncalo R.; Assimes, Themistocles L.; Berndt, Sonja I.; Boehnkes, Michael; Borecki, Ingrid B.; Deloukas, Panos; Franke, Lude; Frayling, Timothy M.; Groop, Leif C.; Hunter, David J.; Kaplan, Robert C.; O'Connell, Jeffrey R.; Qi, Lu; Schlessinger, David; Strachan, David P.; Stefansson, Kari; van Dujin, Cornelia M.; Willer, Cristen J.; Visscher, Peter M.; Yang, Jian; Hirschhorn, Joel N.; Zillikens, M. Carola; McCarthy, Mark I.; Speliotes, Elizabeth K.; North, Kari E.; Fox, Caroline S.; Barroso, Ines; Franks, Paul W.; Ingelsson, Erik; Heid, Iris M.; Loos, Ruth J. F.; Cupples, L. Adrienne; Morris, Andrew P.; Lindgren, Cecilia M.; Mohlke, Karen L.

    2015-01-01

    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide asso

  4. Mechanistic modeling confronts the complexity of molecular cell biology

    OpenAIRE

    Phair, Robert D.

    2014-01-01

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist–electrical engineer–systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a fu...

  5. 2012 CELLULAR & MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 17 - 22, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Judith Berman

    2012-06-22

    The Gordon Research Conference on CELLULAR & MOLECULAR FUNGAL BIOLOGY was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  6. Introduction on molecular biological techniques for Vibrio cholerae%霍乱弧菌分子生物学检测技术介绍

    Institute of Scientific and Technical Information of China (English)

    熊长辉

    2012-01-01

    随着医学分子生物学的迅速发展,大量的分子生物学技术被用于霍乱弧菌的研究,为霍乱弧菌快速检测及分型提供了重要依据,也进一步从分子水平阐明了霍乱弧菌的变异和不同菌株之间的遗传关系,以及霍乱疫情的溯源、菌株类型和流行性质.%Molecular biological techniques provide an important basis for the rapid detection of Vibrio cholerae with the rapid development of Medical Molecular Biology, increasing number of molecular biology techniques were used to detect Vibrio cholerae variation and genetic relationships between different strains, the origin, strain type and nature of the epidemic cholera.

  7. Phosphorus-32 in the Phage Group: radioisotopes as historical tracers of molecular biology

    OpenAIRE

    Creager, Angela N. H.

    2009-01-01

    The recent historiography of molecular biology features key technologies, instruments and materials, which offer a different view of the field and its turning points than preceding intellectual and institutional histories. Radioisotopes, in this vein, became essential tools in postwar life science research, including molecular biology, and are here analyzed through their use in experiments on bacteriophage. Isotopes were especially well suited for studying the dynamics of chemical transformat...

  8. Molecular genetics: Step by step implementation in maize breeding

    OpenAIRE

    Konstantinov Kosana; Mladenović-Drinić Snežana

    2007-01-01

    Efficiency in plant breeding is determined primarily by the ability to screen for genetic polymorphism, productivity and yield stability early in program. Dependent on the knowledge about the biochemical bases of the trait and nature of its genetic control, trait could be modified either through mutagenesis of genes controlling it or through the transfer of already existing mutant genes, controlling desired trait to different plant genotypes by classic crossing. Objective of this report is to...

  9. Familial Renal Cancer: Molecular Genetics and Surgical Management

    OpenAIRE

    Barrisford, Glen W.; Singer, Eric A; Rosner, Inger L.; Marston Linehan, W.; Gennady Bratslavsky

    2011-01-01

    Familial renal cancer (FRC) is a heterogeneous disorder comprised of a variety of subtypes. Each subtype is known to have unique histologic features, genetic alterations, and response to therapy. Through the study of families affected by hereditary forms of kidney cancer, insights into the genetic basis of this disease have been identified. This has resulted in the elucidation of a number of kidney cancer gene pathways. Study of these pathways has led to the development of novel targeted mole...

  10. COMPARISON OF DIFFERENT MOLECULAR METHODS IN SCREENING GENETICALLY MODIFIED LENTIL

    OpenAIRE

    Çelikkol Akçay, Ufuk; Kalemtaş, Gülsüm; Yücel, Meral; Öktem, Hüseyin Avni

    2010-01-01

    Currently transgenic plants are grown in more than 20 countries with maize, soybean, canola and cotton being the most predominant crops. Inexperience in the outcomes of the technology and growing public concern necessitates proper detection and regulation of genetically modified organisms (GMOs) from farmland to market. Due to their high specifity and sensitivity, polymerase chain reaction (PCR) based systems are currently the method of choice in detection of genetic modifications. This study...

  11. Genetic Confirmation of Mungbean (Vigna radiata) and Mashbean (Vigna mungo) Interspecific Recombinants using Molecular Markers

    OpenAIRE

    Abbas, Ghulam; Hameed, Amjad; Rizwan, Muhammad; Ahsan, Muhammad; Asghar, Muhammad J.; Iqbal, Nayyer

    2015-01-01

    Molecular confirmation of interspecific recombinants is essential to overcome the issues like self-pollination, environmental influence, and inadequacy of morphological characteristics during interspecific hybridization. The present study was conducted for genetic confirmation of mungbean (female) and mashbean (male) interspecific crosses using molecular markers. Initially, polymorphic random amplified polymorphic DNA (RAPD), universal rice primers (URP), and simple sequence repeats (SSR) mar...

  12. A Biochemistry and Molecular Biology Experiment and Evaluation System for Biotechnology Specialty Students: An Effective Evaluation System to Improve the Biochemistry and Molecular Biology Experiment Teaching

    Science.gov (United States)

    Li, Suxia; Wu, Haizhen; Zhao, Jian; Ou, Ling; Zhang, Yuanxing

    2010-01-01

    In an effort to achieve high success in knowledge and technique acquisition as a whole, a biochemistry and molecular biology experiment was established for high-grade biotechnology specialty students after they had studied essential theory and received proper technique training. The experiment was based on cloning and expression of alkaline…

  13. Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related hereditary haemochromatosis

    Directory of Open Access Journals (Sweden)

    Barton David E

    2006-11-01

    Full Text Available Abstract Background Hereditary haemochromatosis (HH is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D. Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing. Methods A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment. Results Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines. Conclusion An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing.

  14. Molecular Biologic Approach to the Diagnosis of Pancreatic Carcinoma Using Specimens Obtained by EUS-Guided Fine Needle Aspiration

    Directory of Open Access Journals (Sweden)

    Kiyohito Kato

    2012-01-01

    Full Text Available We review the utility of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA, a rapid, safe, cost-effective, and accurate diagnostic modality for evaluating pancreatic tumors. EUS-FNA is currently used for the diagnosis and staging of pancreatic tumors. The sensitivity of EUS-FNA for pancreatic malignancy ranges from 75% to 94%, and its specificity approaches 100% in most studies. However, EUS-FNA has some limitations in the diagnosis of well-differentiated or early-stage cancers. Recent evidence suggests that molecular biological analysis using specimens obtained by EUS-FNA improves diagnostic sensitivity and specificity, especially in borderline cytological cases. It was also reported that additional information regarding patient response to chemotherapy, surgical resectability, time to metastasis, and overall survival was acquired from the genetic analysis of specimens obtained by EUS-FNA. Other studies have revealed that the analysis of KRAS, MUC, p53, p16, S100P, SMAD4, and microRNAs is helpful in making the diagnosis of pancreatic carcinoma. In this paper, we describe the present state of genetic diagnostic techniques for use with EUS-FNA samples in pancreatic diseases. We also discuss the role of molecular biological analyses for the diagnosis of pancreatic carcinoma.

  15. From Gene to Protein: A 3-Week Intensive Course in Molecular Biology for Physical Scientists

    Science.gov (United States)

    Nadeau, Jay L.

    2009-01-01

    This article describes a 3-week intensive molecular biology methods course based upon fluorescent proteins, which is successfully taught at the McGill University to advanced undergraduates and graduates in physics, chemical engineering, biomedical engineering, and medicine. No previous knowledge of biological terminology or methods is expected, so…

  16. Size Matters: Molecular Weight Specificity of Hyaluronan Effects in Cell Biology

    OpenAIRE

    Jaime M. Cyphert; Trempus, Carol S.; Stavros Garantziotis

    2015-01-01

    Hyaluronan signaling properties are unique among other biologically active molecules, that they are apparently not influenced by postsynthetic molecular modification, but by hyaluronan fragment size. This review summarizes the current knowledge about the generation of hyaluronan fragments of different size and size-dependent differences in hyaluronan signaling as well as their downstream biological effects.

  17. The system of molecular-genetic triggers as self--organizing computing system

    Directory of Open Access Journals (Sweden)

    A. Profir

    2001-05-01

    Full Text Available In this paper is shown, that the system of molecular-genetic triggers can solve the SAT problem. The molecular-genetic trigger represents the self-organizing structure and has attractors. The signal from one attractor is transmitted to other attractor, from the first level to the second level of the system. Molecular-genetic triggers work separately. The system of molecular-genetic triggers represents an example of parallel computing system. Suppose, that the system can receive two types of signals. In the first case, the system switches with the help of signals of a molecular nature (concentration of activators x1, x>sub>2, x3, x4. In the second case, the signals of wave nature of a resonant frequency can be utilized. It is possible to show, that the molecular--genetic system, can recognize images encoded by 2-dimensional vectors. Thus, the cells can be considered as parallel self-organizing system producing, receiving and transmitting the information.

  18. Molecular diagnosis of some common genetic diseases in Russia and the former USSR: present and future.

    OpenAIRE

    V.S. Baranov

    1993-01-01

    The current state of molecular diagnosis of some common genetic diseases, including cystic fibrosis, Duchenne muscular dystrophy, haemophilia A and B, phenylketonuria, and thalassaemia, in Russia and elsewhere in the former USSR is reviewed. Data on carrier detection and prenatal diagnosis are presented and some objective problems and obstacles hampering efficient molecular diagnosis in Russia are discussed. The necessity for molecular diagnosis of some other inherited diseases (for example, ...

  19. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt

    Science.gov (United States)

    Mahmoud, Amer F.

    2016-01-01

    Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt. PMID:27147934

  20. Genetic Variation and Biological Control of Fusarium graminearum Isolated from Wheat in Assiut-Egypt.

    Science.gov (United States)

    Mahmoud, Amer F

    2016-04-01

    Fusarium graminearum Schwabe causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and other cereal crops. Twelve isolates of F. graminearum were collected from naturally infected spikes of wheat from Assiut Egypt. These isolates were compared using SRAP. The results indicated distinct genetic groups exist within F. graminearum, and demonstrated that these groups have different biological properties, especially with respect to their pathogenicity on wheat. There were biologically significant differences between the groups; with group (B) isolates being more aggressive towards wheat than groups (A) and (C). Furthermore, Trichoderma harzianum (Rifai) and Bacillus subtilis (Ehrenberg) which isolated from wheat kernels were screened for antagonistic activity against F. graminearum. They significantly reduced the growth of F. graminearum colonies in culture. In order to gain insight into biological control effect in situ, highly antagonistic isolates of T. harzianum and B. subtilis were selected, based on their in vitro effectiveness, for greenhouse test. It was revealed that T. harzianum and B. subtilis significantly reduced FHB severity. The obtained results indicated that T. harzianum and B. subtilis are very effective biocontrol agents that offer potential benefit in FHB and should be harnessed for further biocontrol applications. The accurate analysis of genetic variation and studies of population structures have significant implications for understanding the genetic traits and disease control programs in wheat. This is the first known report of the distribution and genetic variation of F. graminearum on wheat spikes in Assiut Egypt. PMID:27147934