WorldWideScience

Sample records for biology learning environment

  1. Dynamically analyzing cell interactions in biological environments using multiagent social learning framework.

    Science.gov (United States)

    Zhang, Chengwei; Li, Xiaohong; Li, Shuxin; Feng, Zhiyong

    2017-09-20

    Biological environment is uncertain and its dynamic is similar to the multiagent environment, thus the research results of the multiagent system area can provide valuable insights to the understanding of biology and are of great significance for the study of biology. Learning in a multiagent environment is highly dynamic since the environment is not stationary anymore and each agent's behavior changes adaptively in response to other coexisting learners, and vice versa. The dynamics becomes more unpredictable when we move from fixed-agent interaction environments to multiagent social learning framework. Analytical understanding of the underlying dynamics is important and challenging. In this work, we present a social learning framework with homogeneous learners (e.g., Policy Hill Climbing (PHC) learners), and model the behavior of players in the social learning framework as a hybrid dynamical system. By analyzing the dynamical system, we obtain some conditions about convergence or non-convergence. We experimentally verify the predictive power of our model using a number of representative games. Experimental results confirm the theoretical analysis. Under multiagent social learning framework, we modeled the behavior of agent in biologic environment, and theoretically analyzed the dynamics of the model. We present some sufficient conditions about convergence or non-convergence and prove them theoretically. It can be used to predict the convergence of the system.

  2. The Relationship between Grade 11 Palestinian Attitudes toward Biology and Their Perceptions of the Biology Learning Environment

    Science.gov (United States)

    Zeidan, Afif

    2010-01-01

    The aims of the study were to investigate (a) the relationship between the attitudes toward biology and perceptions of the biology learning environment among grade 11 students in Tulkarm District, Palestine and (b) the effect of gender and residence of these students on their attitudes toward biology and on their perceptions of the biology…

  3. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  4. Influence of Web-Aided Cooperative Learning Environment on Motivation and on Self-Efficacy Belief in Biology Teaching

    Science.gov (United States)

    Hevedanli, Murat

    2015-01-01

    The purpose of this study is to investigate the influence of the web-aided cooperative learning environment on biology preservice teachers' motivation and on their self-efficacy beliefs in biology teaching. The study was carried out with 30 biology preservice teachers attending a state university in Turkey. In the study, the pretest-posttest…

  5. Turkish students' perceptions of their biology learning environments: the effects of gender and grade level

    NARCIS (Netherlands)

    Telli, S.; Brok, den P.J.; Tekkaya, C.; Cakiroglu, J.

    2009-01-01

    This study investigates the effects of gender and grade level on Turkish secondary school students’ perceptions of their biology learning environment. A total of 1474 high school students completed the What is Happening in This Classroom (WIHIC) questionnaire. The WIHIC maps several important

  6. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments.

    Science.gov (United States)

    Cleveland, Lacy M; Olimpo, Jeffrey T; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected quantitative data to compare participants' conceptual understanding, attitudes, and motivation in the biological sciences across two contexts that employed different active-learning strategies and that were facilitated by unique instructors. Students participated in either graphic organizer/worksheet activities or clicker-based case studies. After controlling for demographic and presemester affective differences, we found that students in both active-learning environments displayed similar and significant learning gains. In terms of attitudinal and motivational data, significant differences were observed for two attitudinal measures. Specifically, those students who had participated in graphic organizer/worksheet activities demonstrated more expert-like attitudes related to their enjoyment of biology and ability to make real-world connections. However, all motivational and most attitudinal data were not significantly different between the students in the two learning environments. These data reinforce the notion that active learning is associated with conceptual change and suggests that more research is needed to examine the differential effects of varying active-learning strategies on students' attitudes and motivation in the domain. © 2017 L. M. Cleveland et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. The use of an active learning approach in a SCALE-UP learning space improves academic performance in undergraduate General Biology.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Stephens, Desmond; Johnson, Lewis; Edington, Maurice

    2018-01-01

    Active learning is a pedagogical approach that involves students engaging in collaborative learning, which enables them to take more responsibility for their learning and improve their critical thinking skills. While prior research examined student performance at majority universities, this study focuses on specifically Historically Black Colleges and Universities (HBCUs) for the first time. Here we present work that focuses on the impact of active learning interventions at Florida A&M University, where we measured the impact of active learning strategies coupled with a SCALE-UP (Student Centered Active Learning Environment with Upside-down Pedagogies) learning environment on student success in General Biology. In biology sections where active learning techniques were employed, students watched online videos and completed specific activities before class covering information previously presented in a traditional lecture format. In-class activities were then carefully planned to reinforce critical concepts and enhance critical thinking skills through active learning techniques such as the one-minute paper, think-pair-share, and the utilization of clickers. Students in the active learning and control groups covered the same topics, took the same summative examinations and completed identical homework sets. In addition, the same instructor taught all of the sections included in this study. Testing demonstrated that these interventions increased learning gains by as much as 16%, and students reported an increase in their positive perceptions of active learning and biology. Overall, our results suggest that active learning approaches coupled with the SCALE-UP environment may provide an added opportunity for student success when compared with the standard modes of instruction in General Biology.

  8. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  9. Problem-based learning through field investigation: Boosting questioning skill, biological literacy, and academic achievement

    Science.gov (United States)

    Suwono, Hadi; Wibowo, Agung

    2018-01-01

    Biology learning emphasizes problem-based learning as a learning strategy to develop students ability in identifying and solving problems in the surrounding environment. Problem identification skills are closely correlated with questioning skills. By holding this skill, students tend to deliver a procedural question instead of the descriptive one. Problem-based learning through field investigation is an instruction model which directly exposes the students to problems or phenomena that occur in the environment, and then the students design the field investigation activities to solve these problems. The purpose of this research was to describe the improvement of undergraduate biology students on questioning skills, biological literacy, and academic achievement through problem-based learning through field investigation (PBFI) compared with the lecture-based instruction (LBI). This research was a time series quasi-experimental design. The research was conducted on August - December 2015 and involved 26 undergraduate biology students at the State University of Malang on the Freshwater Ecology course. The data were collected during the learning with LBI and PBFI, in which questioning skills, biological literacy, and academic achievement were collected 3 times in each learning model. The data showed that the procedural correlative and causal types of questions are produced by the students to guide them in conducting investigations and problem-solving in PBFI. The biological literacy and academic achievement of the students at PBFI are significantly higher than those at LBI. The results show that PBFI increases the questioning skill, biological literacy, and the academic achievement of undergraduate biology students.

  10. Adolescent Learning in the Zoo: Embedding a Non-Formal Learning Environment to Teach Formal Aspects of Vertebrate Biology

    Science.gov (United States)

    Randler, Christoph; Kummer, Barbara; Wilhelm, Christian

    2012-06-01

    The aim of this study was to assess the outcome of a zoo visit in terms of learning and retention of knowledge concerning the adaptations and behavior of vertebrate species. Basis of the work was the concept of implementing zoo visits as an out-of-school setting for formal, curriculum based learning. Our theoretical framework centers on the self-determination theory, therefore, we used a group-based, hands-on learning environment. To address this questions, we used a treatment—control design (BACI) with different treatments and a control group. Pre-, post- and retention tests were applied. All treatments led to a substantial increase of learning and retention knowledge compared to the control group. Immediately after the zoo visit, the zoo-guide tour provided the highest scores, while after a delay of 6 weeks, the learner-centered environment combined with a teacher-guided summarizing scored best. We suggest incorporating the zoo as an out-of-school environment into formal school learning, and we propose different methods to improve learning in zoo settings.

  11. Anticipation of Personal Genomics Data Enhances Interest and Learning Environment in Genomics and Molecular Biology Undergraduate Courses.

    Science.gov (United States)

    Weber, K Scott; Jensen, Jamie L; Johnson, Steven M

    2015-01-01

    An important discussion at colleges is centered on determining more effective models for teaching undergraduates. As personalized genomics has become more common, we hypothesized it could be a valuable tool to make science education more hands on, personal, and engaging for college undergraduates. We hypothesized that providing students with personal genome testing kits would enhance the learning experience of students in two undergraduate courses at Brigham Young University: Advanced Molecular Biology and Genomics. These courses have an emphasis on personal genomics the last two weeks of the semester. Students taking these courses were given the option to receive personal genomics kits in 2014, whereas in 2015 they were not. Students sent their personal genomics samples in on their own and received the data after the course ended. We surveyed students in these courses before and after the two-week emphasis on personal genomics to collect data on whether anticipation of obtaining their own personal genomic data impacted undergraduate student learning. We also tested to see if specific personal genomic assignments improved the learning experience by analyzing the data from the undergraduate students who completed both the pre- and post-course surveys. Anticipation of personal genomic data significantly enhanced student interest and the learning environment based on the time students spent researching personal genomic material and their self-reported attitudes compared to those who did not anticipate getting their own data. Personal genomics homework assignments significantly enhanced the undergraduate student interest and learning based on the same criteria and a personal genomics quiz. We found that for the undergraduate students in both molecular biology and genomics courses, incorporation of personal genomic testing can be an effective educational tool in undergraduate science education.

  12. The Integration of Personal Learning Environments & Open Network Learning Environments

    Science.gov (United States)

    Tu, Chih-Hsiung; Sujo-Montes, Laura; Yen, Cherng-Jyh; Chan, Junn-Yih; Blocher, Michael

    2012-01-01

    Learning management systems traditionally provide structures to guide online learners to achieve their learning goals. Web 2.0 technology empowers learners to create, share, and organize their personal learning environments in open network environments; and allows learners to engage in social networking and collaborating activities. Advanced…

  13. The CLEM model: Path analysis of the mediating effects of attitudes and motivational beliefs on the relationship between perceived learning environment and course performance in an undergraduate nonmajor biology course

    Science.gov (United States)

    Partin, Matthew L.

    The problem addressed in this study stems from three crises currently faced by post-secondary science educators in the United States: relatively low scientific literacy among students entering college, the need for more students to pursue science related careers, and poor attitudes among students toward studying science. In this dissertation the following questions are addressed: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? This study also examines the effects of gender and ethnicity on motivation, attitudes, and course performance. The purpose of this study is to test a path model describing the mediating effects of motivation and attitudes on constructivist learning environments and course performance. The following study considers contemporary understanding of teaching and learning as well as motivation and attitudes to suggest a direction for future reform efforts and to guide post-secondary science education instructors and leaders in the design of constructivist learning environments for undergraduate nonmajor biology courses. This study concludes that, although the classroom learning environment has a small direct effect on course performance, there is a moderate total effect on self-efficacy and intrinsic goal orientation. The classroom learning environment also had a moderate indirect effect on attitudes toward biology. Furthermore, attitudes have a moderate direct effect on course performance and self-efficacy has a strong direct effect on both course performance and attitudes toward biology. Self-efficacy seems to be particularly important; however, each of these constructs is important in its own right and instructors in higher education should strive to enhance each of them among their students. If students are to learn using constructivist methods they need the proper motivation and positive attitudes to

  14. Trans-algorithmic nature of learning in biological systems.

    Science.gov (United States)

    Shimansky, Yury P

    2018-05-02

    Learning ability is a vitally important, distinctive property of biological systems, which provides dynamic stability in non-stationary environments. Although several different types of learning have been successfully modeled using a universal computer, in general, learning cannot be described by an algorithm. In other words, algorithmic approach to describing the functioning of biological systems is not sufficient for adequate grasping of what is life. Since biosystems are parts of the physical world, one might hope that adding some physical mechanisms and principles to the concept of algorithm could provide extra possibilities for describing learning in its full generality. However, a straightforward approach to that through the so-called physical hypercomputation so far has not been successful. Here an alternative approach is proposed. Biosystems are described as achieving enumeration of possible physical compositions though random incremental modifications inflicted on them by active operating resources (AORs) in the environment. Biosystems learn through algorithmic regulation of the intensity of the above modifications according to a specific optimality criterion. From the perspective of external observers, biosystems move in the space of different algorithms driven by random modifications imposed by the environmental AORs. A particular algorithm is only a snapshot of that motion, while the motion itself is essentially trans-algorithmic. In this conceptual framework, death of unfit members of a population, for example, is viewed as a trans-algorithmic modification made in the population as a biosystem by environmental AORs. Numerous examples of AOR utilization in biosystems of different complexity, from viruses to multicellular organisms, are provided.

  15. Positive feelings in learning and interest development in biology education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Dohn, Niels Bonderup

    2015-01-01

    for learning (e.g. Krapp, 2002). Here we turn the interplay and see learning as a facilitator for interest development. This interplay was studied in upper secondary biology education. Student’s conducted an exercise on modelling natural selection with LEGO® bricks (Christensen-Dalsgaard & Kanneworf, 2009...... support our initial hypothesis that learning can be a facilitator for interest development. This is an argument for focusing more on didactical approaches and learning environments if the goal is to have interested students. As stated by Dewey: “If we can discover a child’s urgent needs and powers...

  16. Pervasive Learning Environments

    DEFF Research Database (Denmark)

    Hundebøl, Jesper; Helms, Niels Henrik

    2006-01-01

    The potentials of pervasive communication in learning within industry and education are right now being explored through different R&D projects. This paper outlines the background for and the possible learning potentials in what we describe as pervasive learning environments (PLE). PLE?s differ...... from virtual learning environments (VLE) primarily because in PLE?s the learning content is very much related to the actual context in which the learner finds himself. Two local (Denmark) cases illustrate various aspects of pervasive learning. One is the eBag, a pervasive digital portfolio used...

  17. Metacognitive components in smart learning environment

    Science.gov (United States)

    Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.

    2018-03-01

    Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.

  18. Casual Games and Casual Learning About Human Biological Systems

    Science.gov (United States)

    Price, C. Aaron; Gean, Katherine; Christensen, Claire G.; Beheshti, Elham; Pernot, Bryn; Segovia, Gloria; Person, Halcyon; Beasley, Steven; Ward, Patricia

    2016-02-01

    Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human biological systems. Two hundred and forty-two children were given pretests at a Museum and posttests at home after playing either a treatment or control game. Also, 41 children were interviewed to explore deeper meanings behind the test results. Results show modest improvement in scientific attitudes, ability to identify human biological systems and in the children's ability to describe how those systems work together in real-world scenarios. Interviews reveal that children drew upon their prior school learning as they played the game. Also, on the surface they perceived the game as mainly entertainment but were easily able to discern learning outcomes when prompted. Implications for the design of casual games and how they can be used to enhance transfer of knowledge from the classroom to everyday life are discussed.

  19. Biological model of vision for an artificial system that learns to perceive its environment

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, M.R.; Nguyen, H.G.

    1989-06-01

    The objective is to design an artificial vision system for use in robotics applications. Because the desired performance is equivalent to that achieved by nature, the authors anticipate that the objective will be accomplished most efficiently through modeling aspects of the neuroanatomy and neurophysiology of the biological visual system. Information enters the biological visual system through the retina and is passed to the lateral geniculate and optic tectum. The lateral geniculate nucleus (LGN) also receives information from the cerebral cortex and the result of these two inflows is returned to the cortex. The optic tectum likewise receives the retinal information in a context of other converging signals and organizes motor responses. A computer algorithm is described which implements models of the biological visual mechanisms of the retina, thalamic lateral geniculate and perigeniculate nuclei, and primary visual cortex. Motion and pattern analyses are performed in parallel and interact in the cortex to construct perceptions. We hypothesize that motion reflexes serve as unconditioned pathways for the learning and recall of pattern information. The algorithm demonstrates this conditioning through a learning function approximating heterosynaptic facilitation.

  20. Pervasive Learning Environments

    DEFF Research Database (Denmark)

    Helms, Niels Henrik; Hundebøl, Jesper

    2006-01-01

    The potentials of pervasive communication in learning within industry and education are right know being explored through different R&D projects. This paper outlines the background for and the possible learning potentials in what we describe as pervasive learning environments (PLE). PLE's differ...... from virtual learning environments (VLE) primarily because in PLE's the learning content is very much related to the actual context in which the learner finds himself. Two local (Denmark) cases illustrate various aspects of pervasive learning. One is the eBag, a pervasive digital portfolio used...... in schools. The other is moreover related to work based learning in that it foresees a community of practitioners accessing, sharing and adding to knowledge and learning objects held within a pervasive business intelligence system. Limitations and needed developments of these and other systems are discussed...

  1. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-12-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  2. Pervasive Learning Environments

    DEFF Research Database (Denmark)

    Hundebøl, Jesper; Helms, Niels Henrik

    in schools. The other is moreover related to work based learning in that it foresees a community of practitioners accessing, sharing and adding to knowledge and learning objects held within a pervasive business intelligence system. Limitations and needed developments of these and other systems are discussed......Abstract: The potentials of pervasive communication in learning within industry and education are right know being explored through different R&D projects. This paper outlines the background for and the possible learning potentials in what we describe as pervasive learning environments (PLE). PLE......'s differ from virtual learning environments (VLE) primarily because in PLE's the learning content is very much related to the actual context in which the learner finds himself. Two local (Denmark) cases illustrate various aspects of pervasive learning. One is the eBag, a pervasive digital portfolio used...

  3. Enhancing Learning within the 3-D Virtual Learning Environment

    OpenAIRE

    Shirin Shafieiyoun; Akbar Moazen Safaei

    2013-01-01

    Today’s using of virtual learning environments becomes more remarkable in education. The potential of virtual learning environments has frequently been related to the expansion of sense of social presence which is obtained from students and educators. This study investigated the effectiveness of social presence within virtual learning environments and analysed the impact of social presence on increasing learning satisfaction within virtual learning environments. Second Life, as an example of ...

  4. Two bridges between biology and learning

    Directory of Open Access Journals (Sweden)

    Jorun Nyléhn

    2016-04-01

    Full Text Available Human biology, in terms of organization of our brains and our evolutionary past, constrains and enables learning. Two examples where neurobiology and evolution influences learning are given and discussed in relation to education: mirror neurons and adaptive memory. Mirror neurons serves imitation and understanding of other peoples intentions. Adaptive memory implies that our memory is an adaptation influenced by our evolutionary past, enabling us to solve problems in the present and in the future. Additionally, the aim is to contribute to bridges between natural and social sciences in an attempt to achieve an improved understanding of learning. The relevance of perspectives on learning founded in biology are discussed, and the article argues for including biological perspectives in discussions of education and learning processes.

  5. Designing Learning Resources in Synchronous Learning Environments

    DEFF Research Database (Denmark)

    Christiansen, Rene B

    2015-01-01

    Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design...... and create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings...

  6. Effective Learning Environments in Relation to Different Learning Theories

    OpenAIRE

    Guney, Ali; Al, Selda

    2012-01-01

    There are diverse learning theories which explain learning processes which are discussed within this paper, through cognitive structure of learning process. Learning environments are usually described in terms of pedagogical philosophy, curriculum design and social climate. There have been only just a few studies about how physical environment is related to learning process. Many researchers generally consider teaching and learning issues as if independent from physical environment, whereas p...

  7. Mapping Students’ Informal Learning Using Personal Learning Environment

    Directory of Open Access Journals (Sweden)

    Jelena Anđelković Labrović

    2014-07-01

    Full Text Available Personal learning environments are a widely spared ways of learning, especially for the informal learning process. The aim of this research is to identify the elements of studens’ personal learning environment and to identify the extent to which students use modern technology for learning as part of their non-formal learning. A mapping system was used for gathering data and an analysis of percentages and frequency counts was used for data analysis in the SPSS. The results show that students’ personal learning environment includes the following elements: Wikipedia, Google, YouTube and Facebook in 75% of all cases, and an interesting fact is that all of them belong to a group of Web 2.0 tools and applications.

  8. Conditions for Productive Learning in Network Learning Environments

    DEFF Research Database (Denmark)

    Ponti, M.; Dirckinck-Holmfeld, Lone; Lindström, B.

    2004-01-01

    are designed without a deep understanding of the pedagogical, communicative and collaborative conditions embedded in networked learning. Despite the existence of good theoretical views pointing to a social understanding of learning, rather than a traditional individualistic and information processing approach......The Kaleidoscope1 Jointly Executed Integrating Research Project (JEIRP) on Conditions for Productive Networked Learning Environments is developing and elaborating conceptual understandings of Computer Supported Collaborative Learning (CSCL) emphasizing the use of cross-cultural comparative......: Pedagogical design and the dialectics of the digital artefacts, the concept of collaboration, ethics/trust, identity and the role of scaffolding of networked learning environments.   The JEIRP is motivated by the fact that many networked learning environments in various European educational settings...

  9. Students’ Motivation for Learning in Virtual Learning Environments

    OpenAIRE

    Beluce, Andrea Carvalho; Oliveira, Katya Luciane de

    2015-01-01

    The specific characteristics of online education require of the student engagement and autonomy, factors which are related to motivation for learning. This study investigated students’ motivation in virtual learning environments (VLEs). For this, it used the Teaching and Learning Strategy and Motivation to Learn Scale in Virtual Learning Environments (TLSM-VLE). The scale presented 32 items and six dimensions, three of which aimed to measure the variables of autonomous motivation, controlled ...

  10. Exploring Collaborative Learning Effect in Blended Learning Environments

    Science.gov (United States)

    Sun, Z.; Liu, R.; Luo, L.; Wu, M.; Shi, C.

    2017-01-01

    The use of new technology encouraged exploration of the effectiveness and difference of collaborative learning in blended learning environments. This study investigated the social interactive network of students, level of knowledge building and perception level on usefulness in online and mobile collaborative learning environments in higher…

  11. The learning environment and learning styles: a guide for mentors.

    Science.gov (United States)

    Vinales, James Jude

    The learning environment provides crucial exposure for the pre-registration nursing student. It is during this time that the student nurse develops his or her repertoire of skills, knowledge, attitudes and behaviour in order to meet competencies and gain registration with the Nursing and Midwifery Council. The role of the mentor is vital within the learning environment for aspiring nurses. The learning environment is a fundamental platform for student learning, with mentors key to identifying what is conducive to learning. This article will consider the learning environment and learning styles, and how these two essential elements guide the mentor in making sure they are conducive to learning.

  12. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards Biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; den Brok, P.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  13. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; Brok, den P.J.; Fisher, D. L.; Khine, M. S.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  14. Deep learning: Using machine learning to study biological vision

    OpenAIRE

    Majaj, Najib; Pelli, Denis

    2017-01-01

    Today most vision-science presentations mention machine learning. Many neuroscientists use machine learning to decode neural responses. Many perception scientists try to understand recognition by living organisms. To them, machine learning offers a reference of attainable performance based on learned stimuli. This brief overview of the use of machine learning in biological vision touches on its strengths, weaknesses, milestones, controversies, and current directions.

  15. The Relationships between Epistemic Beliefs in Biology and Approaches to Learning Biology among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-01-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and…

  16. School and workplace as learning environments

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    In vocational education and training the school and the workplace are two different learning environments. But how should we conceive of a learning environment, and what characterizes the school and the workplace respectively as learning environments? And how can the two environ-ments be linked......? These questions are treated in this paper. School and workplace are assessed us-ing the same analytical approach. Thereby it is pointed out how different forms of learning are en-couraged in each of them and how different forms of knowledge are valued. On this basis sugges-tions are made about how to understand...

  17. Designing Creative Learning Environments

    Directory of Open Access Journals (Sweden)

    Thomas Cochrane

    2015-05-01

    Full Text Available Designing creative learning environments involves not only facilitating student creativity, but also modeling creative pedagogical practice. In this paper we explore the implementation of a framework for designing creative learning environments using mobile social media as a catalyst for redefining both lecturer pedagogical practice, as well as redesigning the curriculum around student generated m-portfolios.

  18. [The Biology of Learning].

    Science.gov (United States)

    Campo-Cabal, Gerardo

    2012-01-01

    The effort to relate mental and biological functioning has fluctuated between two doctrines: 1) an attempt to explain mental functioning as a collective property of the brain and 2) as one relatied to other mental processes associated with specific regions of the brain. The article reviews the main theories developed over the last 200 years: phrenology, the psuedo study of the brain, mass action, cellular connectionism and distributed processing among others. In addition, approaches have emerged in recent years that allows for an understanding of the biological determinants and individual differences in complex mental processes through what is called cognitive neuroscience. Knowing the definition of neuroscience, the learning of memory, the ways in which learning occurs, the principles of the neural basis of memory and learning and its effects on brain function, among other things, allows us the basic understanding of the processes of memory and learning and is an important requirement to address the best manner to commit to the of training future specialists in Psychiatry. Copyright © 2012 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  19. Learning Environment And Pupils Academic Performance ...

    African Journals Online (AJOL)

    Learning Environment And Pupils Academic Performance: Implications For Counselling. ... facilities as well as learning materials to make teaching and learning easy. In addition, teachers should provide conducive classroom environment to ...

  20. Creating a flexible learning environment.

    Science.gov (United States)

    Taylor, B A; Jones, S; Winters, P

    1990-01-01

    Lack of classroom space is a common problem for many hospital-based nurse educators. This article describes how nursing educators in one institution redesigned fixed classroom space into a flexible learning center that accommodates their various programs. Using the nursing process, the educators assessed their needs, planned the learning environment, implemented changes in the interior design, and evaluated the outcome of the project. The result was a learning environment conducive to teaching and learning.

  1. Group Modeling in Social Learning Environments

    Science.gov (United States)

    Stankov, Slavomir; Glavinic, Vlado; Krpan, Divna

    2012-01-01

    Students' collaboration while learning could provide better learning environments. Collaboration assumes social interactions which occur in student groups. Social theories emphasize positive influence of such interactions on learning. In order to create an appropriate learning environment that enables social interactions, it is important to…

  2. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    Science.gov (United States)

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  3. Supporting cognitive engagement in a learning-by-doing learning environment: Case studies of participant engagement and social configurations in Kitchen Science Investigators

    Science.gov (United States)

    Gardner, Christina M.

    Learning-by-doing learning environments support a wealth of physical engagement in activities. However, there is also a lot of variability in what participants learn in each enactment of these types of environments. Therefore, it is not always clear how participants are learning in these environments. In order to design technologies to support learning in these environments, we must have a greater understanding of how participants engage in learning activities, their goals for their engagement, and the types of help they need to cognitively engage in learning activities. To gain a greater understanding of participant engagement and factors and circumstances that promote and inhibit engagement, this dissertation explores and answers several questions: What are the types of interactions and experiences that promote and /or inhibit learning and engagement in learning-by-doing learning environments? What are the types of configurations that afford or inhibit these interactions and experiences in learning-by-doing learning environments? I explore answers to these questions through the context of two enactments of Kitchen Science Investigators (KSI), a learning-by-doing learning environment where middle-school aged children learn science through cooking from customizing recipes to their own taste and texture preferences. In small groups, they investigate effects of ingredients through the design of cooking and science experiments, through which they experience and learn about chemical, biological, and physical science phenomena and concepts (Clegg, Gardner, Williams, & Kolodner, 2006). The research reported in this dissertation sheds light on the different ways participant engagement promotes and/or inhibits cognitive engagement in by learning-by-doing learning environments through two case studies. It also provides detailed descriptions of the circumstances (social, material, and physical configurations) that promote and/or inhibit participant engagement in these

  4. Revisit of Machine Learning Supported Biological and Biomedical Studies.

    Science.gov (United States)

    Yu, Xiang-Tian; Wang, Lu; Zeng, Tao

    2018-01-01

    Generally, machine learning includes many in silico methods to transform the principles underlying natural phenomenon to human understanding information, which aim to save human labor, to assist human judge, and to create human knowledge. It should have wide application potential in biological and biomedical studies, especially in the era of big biological data. To look through the application of machine learning along with biological development, this review provides wide cases to introduce the selection of machine learning methods in different practice scenarios involved in the whole biological and biomedical study cycle and further discusses the machine learning strategies for analyzing omics data in some cutting-edge biological studies. Finally, the notes on new challenges for machine learning due to small-sample high-dimension are summarized from the key points of sample unbalance, white box, and causality.

  5. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  6. Student perceptions of their biology teacher's interpersonal teaching behaviors and student achievement and affective learning outcomes

    Science.gov (United States)

    Smith, Wade Clay, Jr.

    The primary goals of this dissertation were to determine the relationships between interpersonal teaching behaviors and student achievement and affective learning outcomes. The instrument used to collect student perceptions of teacher interpersonal teaching behaviors was the Questionnaire on Teacher Interactions (QTI). The instrument used to assess student affective learning outcomes was the Biology Student Affective Instrument (BSAI). The interpersonal teaching behavior data were collected using students as the observers. 111 students in an urban influenced, rural high school answered the QTI and BSAI in September 1997 and again in April 1998. At the same time students were pre and post tested using the Biology End of Course Examination (BECE). The QTI has been used primarily in European and Oceanic areas. The instrument was also primarily used in educational stratified environment. This was the first time the BSAI was used to assess student affective learning outcomes. The BECE is a Texas normed cognitive assessment test and it is used by Texas schools districts as the end of course examination in biology. The interpersonal teaching behaviors model was tested to ascertain if predictive power in the USA and in a non-stratified educational environment. Findings indicate that the QTI is an adequate predictor of student achievement in biology. The results were not congruent with the non-USA data and results, this indicates that the QTI is a society/culturally sensitive instrument and the instrument needs to be normed to a particular society/culture before it is used to affect teachers' and students' educational environments.

  7. Learning-style preferences of Latino/Hispanic community college students enrolled in an introductory biology course

    Science.gov (United States)

    Sarantopoulos, Helen D.

    Purpose. The purpose of this study was to identify, according to the Productivity Environment Preference Survey (PEPS) instrument, which learning-style domains (environmental, emotional, sociological, and physiological) were favored among Latino/Hispanic community college students enrolled in introductory biology classes in a large, urban community college. An additional purpose of this study was to determine whether statistically significant differences existed between the learning-style preferences and the demographic variables of age, gender, number of prior science courses, second language learner status, and earlier exposure to scientific information. Methodology. The study design was descriptive and ex post facto. The sample consisted of a total of 332 Latino/Hispanic students enrolled in General Biology 3. Major findings. The study revealed that Latino/Hispanic students enrolled in introductory biology at a large urban community college scored higher for the learning preference element of structure. Students twenty-five years and older scored higher for the learning preference elements of light, design, persistence, responsibility, and morning time (p learning-style preferences were found between second English language learners and those who learned English as their primary language (p tactile (p learning-style model and instruments and on recent learning-style research articles on ethnically diverse groups of adult learners; and (2) Instructors should plan their instruction to incorporate the learning-style preferences of their students.

  8. Judgments of Learning in Collaborative Learning Environments

    NARCIS (Netherlands)

    Helsdingen, Anne

    2010-01-01

    Helsdingen, A. S. (2010, March). Judgments of Learning in Collaborative Learning Environments. Poster presented at the 1st International Air Transport and Operations Symposium (ATOS 2010), Delft, The Netherlands: Delft University of Technology.

  9. Experiential Learning and Learning Environments: The Case of Active Listening Skills

    Science.gov (United States)

    Huerta-Wong, Juan Enrique; Schoech, Richard

    2010-01-01

    Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…

  10. Self-organized Learning Environments

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Mathiasen, Helle

    2007-01-01

    system actively. The two groups used the system in their own way to support their specific activities and ways of working. The paper concludes that self-organized learning environments can strengthen the development of students’ academic as well as social qualifications. Further, the paper identifies......The purpose of the paper is to discuss the potentials of using a conference system in support of a project based university course. We use the concept of a self-organized learning environment to describe the shape of the course. In the paper we argue that educational technology, such as conference...... systems, has a potential to support students’ development of self-organized learning environments and facilitate self-governed activities in higher education. The paper is based on an empirical study of two project groups’ use of a conference system. The study showed that the students used the conference...

  11. Blended Learning in Personalized Assistive Learning Environments

    Science.gov (United States)

    Marinagi, Catherine; Skourlas, Christos

    2013-01-01

    In this paper, the special needs/requirements of disabled students and cost-benefits for applying blended learning in Personalized Educational Learning Environments (PELE) in Higher Education are studied. The authors describe how blended learning can form an attractive and helpful framework for assisting Deaf and Hard-of-Hearing (D-HH) students to…

  12. Learning environment, learning styles and conceptual understanding

    Science.gov (United States)

    Ferrer, Lourdes M.

    1990-01-01

    In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.

  13. Environmental Learning Workshop: Lichen as Biological Indicator of Air Quality and Impact on Secondary Students' Performance

    Science.gov (United States)

    Samsudin, Mohd Wahid; Daik, Rusli; Abas, Azlan; Meerah, T. Subahan Mohd; Halim, Lilia

    2013-01-01

    In this study, the learning of science outside the classroom is believe to be an added value to science learning as well as it offers students to interact with the environment. This study presents data obtained from two days' workshop on Lichen as Biological Indicator for Air Quality. The aim of the workshop is for the students to gain an…

  14. Learning Networks Distributed Environment

    NARCIS (Netherlands)

    Martens, Harrie; Vogten, Hubert; Koper, Rob; Tattersall, Colin; Van Rosmalen, Peter; Sloep, Peter; Van Bruggen, Jan; Spoelstra, Howard

    2005-01-01

    Learning Networks Distributed Environment is a prototype of an architecture that allows the sharing and modification of learning materials through a number of transport protocols. The prototype implements a p2p protcol using JXTA.

  15. Learning Environment and Student Effort

    Science.gov (United States)

    Hopland, Arnt O.; Nyhus, Ole Henning

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between satisfaction with learning environment and student effort, both in class and with homework assignments. Design/methodology/approach: The authors use data from a nationwide and compulsory survey to analyze the relationship between learning environment and student effort. The…

  16. A Conceptual Framework for Organizing Active Learning Experiences in Biology Instruction

    Science.gov (United States)

    Gardner, Joel; Belland, Brian R.

    2012-01-01

    Introductory biology courses form a cornerstone of undergraduate instruction. However, the predominantly used lecture approach fails to produce higher-order biology learning. Research shows that active learning strategies can increase student learning, yet few biology instructors use all identified active learning strategies. In this paper, we…

  17. The Learning Impact of a 4-Dimensional Digital Construction Learning Environment

    OpenAIRE

    Chris Landorf; Stephen Ward

    2017-01-01

    This paper addresses a virtual environment approach to work integrated learning for students in construction-related disciplines. The virtual approach provides a safe and pedagogically rigorous environment where students can apply theoretical knowledge in a simulated real-world context. The paper describes the development of a 4-dimensional digital construction environment and associated learning activities funded by the Australian Office for Learning and Teaching. The environment was trialle...

  18. Students’ digital learning environments

    DEFF Research Database (Denmark)

    Caviglia, Francesco; Dalsgaard, Christian; Davidsen, Jacob

    2018-01-01

    The objective of the paper is to examine the nature of students’ digital learning environments to understand the interplay of institutional systems and tools that are managed by the students themselves. The paper is based on a study of 128 students’ digital learning environments. The objectives...... used tools in the students’ digital learning environments are Facebook, Google Drive, tools for taking notes, and institutional systems. Additionally, the study shows that the tools meet some very basic demands of the students in relation to collaboration, communication, and feedback. Finally...... of the study are 1) to provide an overview of tools for students’ study activities, 2) to identify the most used and most important tools for students and 3) to discover which activities the tools are used for. The empirical study reveals that the students have a varied use of digital media. Some of the most...

  19. Creating a supportive learning environment for students with learning difficulties

    OpenAIRE

    Grah, Jana

    2013-01-01

    Co-building of supporting learning environment for the learners with learning difficulties is one of the 21st century inclusive school’s elements. Since the physical presence of learners with learning difficulties in the classroom does not self-evidently lead to an effective co-operation and implementation of 21st century inclusive school, I have dedicated my doctor thesis to the establishment of supporting learning environment for the learners with learning difficulties in primary school wit...

  20. Personal Learning Environments for Language Learning

    Directory of Open Access Journals (Sweden)

    Panagiotis Panagiotidis

    2013-02-01

    Full Text Available The advent of web 2.0 and the developments it has introduced both in everyday practice and in education have generated discussion and reflection concerning the technologies which higher education should rely on in order to provide the appropriate e-learning services to future students. In this context, the Virtual Learning Environments (VLEs, which are widely used in universities around the world to provide online courses to every specific knowledge area and of course in foreign languages, have started to appear rather outdated. Extensive research is under progress, concerning the ways in which educational practice will follow the philosophy of web 2.0 by adopting the more learner-centred and collaborative approach of e-learning 2.0 applications, without abandoning the existing investment of the academic institutions in VLEs, which belong to the e-learning 1.0 generation, and, thus, serve a teacher- or coursecentred approach. Towards this direction, a notably promising solution seems to be the exploitation of web 2.0 tools in order to form Personal Learning Environments (PLEs. These are systems specifically designed or created by the combined use of various external applications or tools that can be used independently or act as a supplement to existing VLE platforms, creating a personalized learning environment. In a PLE, students have the opportunity to form their own personal way of working, using the tools they feel are most appropriate to achieve their purpose. Regarding the subject of foreign language, in particular, the creation of such personalized and adaptable learning environments that extend the traditional approach of a course seems to promise a more holistic response to students’ needs, who, functioning in the PLE, could combine learning with their daily practice, communicating and collaborating with others, thus increasing the possibilities of access to multiple sources, informal communication and practice and eventually

  1. Personal Learning Environments for Language Learning

    Directory of Open Access Journals (Sweden)

    Panagiotis Panagiotidis

    2012-12-01

    Full Text Available The advent of web 2.0 and the developments it has introduced both in everyday practice and in education have generated discussion and reflection concerning the technologies which higher education should rely on in order to provide the appropriate e-learning services to future students.In this context, the Virtual Learning Environments (VLEs, which are widely used in universities around the world to provide online courses to every specific knowledge area and of course in foreign languages, have started to appear rather outdated. Extensive research is under progress, concerning the ways in which educational practice will follow the philosophy of web 2.0 by adopting the more learner-centred and collaborative approach of e-learning 2.0 applications, without abandoning the existing investment of the academic institutions in VLEs, which belong to the e-learning 1.0 generation, and, thus, serve a teacher- or coursecentred approach.Towards this direction, a notably promising solution seems to be the exploitation of web 2.0 tools in order to form Personal Learning Environments (PLEs. These are systems specifically designed or created by the combined use of various external applications or tools that can be used independently or act as a supplement to existing VLE platforms, creating a personalized learning environment. In a PLE, students have the opportunity to form their own personal way of working, using the tools they feel are most appropriate to achieve their purpose.Regarding the subject of foreign language, in particular, the creation of such personalized and adaptable learning environments that extend the traditional approach of a course seems to promise a more holistic response to students’ needs, who, functioning in the PLE, could combine learning with their daily practice, communicating and collaborating with others, thus increasing the possibilities of access to multiple sources, informal communication and practice and eventually acquiring

  2. Profiling medical school learning environments in Malaysia: a validation study of the Johns Hopkins Learning Environment Scale

    Directory of Open Access Journals (Sweden)

    Sean Tackett

    2015-07-01

    Full Text Available Purpose: While a strong learning environment is critical to medical student education, the assessment of medical school learning environments has confounded researchers. Our goal was to assess the validity and utility of the Johns Hopkins Learning Environment Scale (JHLES for preclinical students at three Malaysian medical schools with distinct educational and institutional models. Two schools were new international partnerships, and the third was school leaver program established without international partnership. Methods: First- and second-year students responded anonymously to surveys at the end of the academic year. The surveys included the JHLES, a 28-item survey using five-point Likert scale response options, the Dundee Ready Educational Environment Measure (DREEM, the most widely used method to assess learning environments internationally, a personal growth scale, and single-item global learning environment assessment variables. Results: The overall response rate was 369/429 (86%. After adjusting for the medical school year, gender, and ethnicity of the respondents, the JHLES detected differences across institutions in four out of seven domains (57%, with each school having a unique domain profile. The DREEM detected differences in one out of five categories (20%. The JHLES was more strongly correlated than the DREEM to two thirds of the single-item variables and the personal growth scale. The JHLES showed high internal reliability for the total score (α=0.92 and the seven domains (α, 0.56-0.85. Conclusion: The JHLES detected variation between learning environment domains across three educational settings, thereby creating unique learning environment profiles. Interpretation of these profiles may allow schools to understand how they are currently supporting trainees and identify areas needing attention.

  3. The CLEM Model: Path Analysis of the Mediating Effects of Attitudes and Motivational Beliefs on the Relationship between Perceived Learning Environment and Course Performance in an Undergraduate Non-Major Biology Course

    Science.gov (United States)

    Partin, Matthew L.; Haney, Jodi J.

    2012-01-01

    In this study, the following questions were addressed in an undergraduate non-major biology course using a large lecture format: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? The purpose of this study was to…

  4. PENERAPAN BLENDED-PROBLEM BASED LEARNING DALAM PEMBELAJARAN BIOLOGI

    Directory of Open Access Journals (Sweden)

    Samuel Agus Triyanto

    2016-07-01

    Biologi abad 21 merupakan integrasi dan mengintegrasikan kembali sub disiplin ilmu biologi, serta integrasi biologi dengan disiplin ilmu lain untuk mengatasi permasalahan sosial. Penelitian ini bertujuan untuk mengetahui penerapan Blended-Problem Based Learning, aktivitas belajar, dan respon siswa dalam pembelajaran biologi. Penelitian ini merupakan penelitian survei dengan pendekatan deskriptif kualitatif. Data hasil penelitian menunjukkan bahwa aktivitas positif siswa dalam pembelajaran memuaskan, sedangkan respon siswa baik terhadap pembelajaran. Berdasarkan hasil penelitian, disimpulkan bahwa Blended-Problem Based Learning dapat diterapkan dan diterima sebagai model dalam pembelajaran.

  5. Interactive learning environments in augmented reality technology

    Directory of Open Access Journals (Sweden)

    Rafał Wojciechowski

    2010-01-01

    Full Text Available In this paper, the problem of creation of learning environments based on augmented reality (AR is considered. The concept of AR is presented as a tool for safe and cheap experimental learning. In AR learning environments students may acquire knowledge by personally carrying out experiments on virtual objects by manipulating real objects located in real environments. In the paper, a new approach to creation of interactive educational scenarios, called Augmented Reality Interactive Scenario Modeling (ARISM, is mentioned. In this approach, the process of building learning environments is divided into three stages, each of them performed by users with different technical and domain knowledge. The ARISM approach enables teachers who are not computer science experts to create AR learning environments adapted to the needs of their students.

  6. Constructivist learning theories and complex learning environments

    NARCIS (Netherlands)

    R-J. Simons; Dr. S. Bolhuis

    2004-01-01

    Learning theories broadly characterised as constructivist, agree on the importance to learning of the environment, but differ on what exactly it is that constitutes this importance. Accordingly, they also differ on the educational consequences to be drawn from the theoretical perspective. Cognitive

  7. Effective Learning Environments in Relation to Different Learning Theories

    NARCIS (Netherlands)

    Guney, A.; Al, S.

    2012-01-01

    There are diverse learning theories which explain learning processes which are discussed within this paper, through cognitive structure of learning process. Learning environments are usually described in terms of pedagogical philosophy, curriculum design and social climate. There have been only just

  8. Influences of Formal Learning, Personal Learning Orientation, and Supportive Learning Environment on Informal Learning

    Science.gov (United States)

    Choi, Woojae; Jacobs, Ronald L.

    2011-01-01

    While workplace learning includes formal and informal learning, the relationship between the two has been overlooked, because they have been viewed as separate entities. This study investigated the effects of formal learning, personal learning orientation, and supportive learning environment on informal learning among 203 middle managers in Korean…

  9. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  10. Collaborations in Open Learning Environments

    NARCIS (Netherlands)

    Spoelstra, Howard

    2015-01-01

    This thesis researches automated services for professionals aiming at starting collaborative learning projects in open learning environments, such as MOOCs. It investigates the theoretical backgrounds of team formation for collaborative learning. Based on the outcomes, a model is developed

  11. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  12. From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment

    Science.gov (United States)

    Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki

    2010-11-01

    This paper is concerned with highlighting young children’s ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs’ ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning environment. Conducting individual, semi-structured interviews with 35 preschoolers (age 4.5-5.5) of public kindergartens in the broader area of Patras, we attempted to trace their ideas about what germs are, where they may be found, whether they are good or bad and living or non-living and how they might look like in a drawing. Moreover, children were required to attribute a series of biological functions to dogs, chairs and germs, and finally to create a story with germs holding a key-role. The analysis of our qualitative data within the “NVivo” software showed that the informants make a strong association of germs with health and hygiene issues, locate germs mostly in our body and the external environment, are not familiar with the ‘good germs’-idea, and draw germs as ‘human-like’, ‘animal-like’ or ‘abstract’ entities. Moreover, they have significant difficulties not only in employing biological functions as criteria for classifying germs in the category of ‘living’, but also in just attributing such functions to germs using a warrant. Finally, the shift from our findings to a 3-part learning environment aiming at supporting preschoolers in refining their initial conceptualization of germs is thoroughly discussed in the paper.

  13. Personalized learning Ecologies in Problem and Project Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Ryberg, Thomas; Zander, Pär-Ola

    2012-01-01

    is in contrast to an artificial learning setting often found in traditional education. As many other higher education institutions, Aalborg University aims at providing learning environments that support the underlying pedagogical approach employed, and which can lead to different online and offline learning.......g. coordination, communication, negotiation, document sharing, calendars, meetings and version control. Furthermore, the pedagogical fabric of LMSs/VLEs have recently been called into question and critiqued by proponents of Personal Learning Environments (PLEs)(Ryberg, Buus, & Georgsen, 2011) . In sum....... making it important to understand and conceptualise students’ use of technology. Ecology is the study of relationship between organisms in an environment which is the set of circumstances surrounding that organism. Learning ecologies are the study of the relationship of a learner or a group of learners...

  14. Web-Based Learning Environment Based on Students’ Needs

    Science.gov (United States)

    Hamzah, N.; Ariffin, A.; Hamid, H.

    2017-08-01

    Traditional learning needs to be improved since it does not involve active learning among students. Therefore, in the twenty-first century, the development of internet technology in the learning environment has become the main needs of each student. One of the learning environments to meet the needs of the teaching and learning process is a web-based learning environment. This study aims to identify the characteristics of a web-based learning environment that supports students’ learning needs. The study involved 542 students from fifteen faculties in a public higher education institution in Malaysia. A quantitative method was used to collect the data via a questionnaire survey by randomly. The findings indicate that the characteristics of a web-based learning environment that support students’ needs in the process of learning are online discussion forum, lecture notes, assignments, portfolio, and chat. In conclusion, the students overwhelmingly agreed that online discussion forum is the highest requirement because the tool can provide a space for students and teachers to share knowledge and experiences related to teaching and learning.

  15. "Cancer Cell Biology:" A Student-Centered Instructional Module Exploring the Use of Multimedia to Enrich Interactive, Constructivist Learning of Science

    Science.gov (United States)

    Bockholt, Susanne M.; West, J. Paige; Bollenbacher, Walter E.

    2003-01-01

    Multimedia has the potential of providing bioscience education novel learning environments and pedagogy applications to foster student interest, involve students in the research process, advance critical thinking/problem-solving skills, and develop conceptual understanding of biological topics. "Cancer Cell Biology," an interactive, multimedia,…

  16. Using numeric simulation in an online e-learning environment to teach functional physiological contexts.

    Science.gov (United States)

    Christ, Andreas; Thews, Oliver

    2016-04-01

    Mathematical models are suitable to simulate complex biological processes by a set of non-linear differential equations. These simulation models can be used as an e-learning tool in medical education. However, in many cases these mathematical systems have to be treated numerically which is computationally intensive. The aim of the study was to develop a system for numerical simulation to be used in an online e-learning environment. In the software system the simulation is located on the server as a CGI application. The user (student) selects the boundary conditions for the simulation (e.g., properties of a simulated patient) on the browser. With these parameters the simulation on the server is started and the simulation result is re-transferred to the browser. With this system two examples of e-learning units were realized. The first one uses a multi-compartment model of the glucose-insulin control loop for the simulation of the plasma glucose level after a simulated meal or during diabetes (including treatment by subcutaneous insulin application). The second one simulates the ion transport leading to the resting and action potential in nerves. The student can vary parameters systematically to explore the biological behavior of the system. The described system is able to simulate complex biological processes and offers the possibility to use these models in an online e-learning environment. As far as the underlying principles can be described mathematically, this type of system can be applied to a broad spectrum of biomedical or natural scientific topics. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Students’ Motivation for Learning in Virtual Learning Environments

    Directory of Open Access Journals (Sweden)

    Andrea Carvalho Beluce

    2015-04-01

    Full Text Available The specific characteristics of online education require of the student engagement and autonomy, factors which are related to motivation for learning. This study investigated students’ motivation in virtual learning environments (VLEs. For this, it used the Teaching and Learning Strategy and Motivation to Learn Scale in Virtual Learning Environments (TLSM-VLE. The scale presented 32 items and six dimensions, three of which aimed to measure the variables of autonomous motivation, controlled motivation, and demotivation. The participants were 572 students from the Brazilian state of Paraná, enrolled on higher education courses on a continuous education course. The results revealed significant rates for autonomous motivational behavior. It is considered that the results obtained may provide contributions for the educators and psychologists who work with VLEs, leading to further studies of the area providing information referent to the issue investigated in this study.

  18. Relationship between learning environment characteristics and academic engagement

    NARCIS (Netherlands)

    Opdenakker, Marie-Christine; Minnaert, Alexander

    The relationship between learning environment characteristics and academic engagement of 777 Grade 6 children located in 41 learning environments was explored. Questionnaires were used to tap learning environment perceptions of children, their academic engagement, and their ethnic-cultural

  19. The Implementation of Research-based Learning on Biology Seminar Course in Biology Education Study Program of FKIP UMRAH

    Science.gov (United States)

    Amelia, T.

    2018-04-01

    Biology Seminar is a course in Biology Education Study Program of Faculty of Teacher Training and Education University of Maritim Raja Ali Haji (FKIP UMRAH) that requires students to have the ability to apply scientific attitudes, perform scientific writing and undertake scientific publications on a small scale. One of the learning strategies that can drive the achievement of learning outcomes in this course is Research-Based Learning. Research-Based Learning principles are considered in accordance with learning outcomes in Biology Seminar courses and generally in accordance with the purpose of higher education. On this basis, this article which is derived from a qualitative research aims at describing Research-based Learning on Biology Seminar course. Based on a case study research, it was known that Research-Based Learning on Biology Seminar courses is applied through: designing learning activities around contemporary research issues; teaching research methods, techniques and skills explicitly within program; drawing on personal research in designing and teaching courses; building small-scale research activities into undergraduate assignment; and infusing teaching with the values of researchers.

  20. School and workplace as learning environments in VET

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    as limitations for learning, and thus frame the opportunities for learning. The second, the socio-cultural learning environment is constituted by the social and cultural relations and communities in the workplace and in school. I distinguish between three different types of social relations in the workplace......The aim of this paper is to present an analytical model to study school and workplace as different learning environments and discuss some findings from the application of the model on a case study. First the paper tries to answer the question: what is a learning environment? In most other studies...... schools and workplaces are not only considered to be different learning environment, but are also analysed using different approaches. In this paper I will propose a common model to analyse and compare the two learning environments, drawing on sociology of work (Kern & Schumann 1984; Braverman 1976...

  1. Factors Influencing Learning Environments in an Integrated Experiential Program

    Science.gov (United States)

    Koci, Peter

    The research conducted for this dissertation examined the learning environment of a specific high school program that delivered the explicit curriculum through an integrated experiential manner, which utilized field and outdoor experiences. The program ran over one semester (five months) and it integrated the grade 10 British Columbian curriculum in five subjects. A mixed methods approach was employed to identify the students' perceptions and provide richer descriptions of their experiences related to their unique learning environment. Quantitative instruments were used to assess changes in students' perspectives of their learning environment, as well as other supporting factors including students' mindfulness, and behaviours towards the environment. Qualitative data collection included observations, open-ended questions, and impromptu interviews with the teacher. The qualitative data describe the factors and processes that influenced the learning environment and give a richer, deeper interpretation which complements the quantitative findings. The research results showed positive scores on all the quantitative measures conducted, and the qualitative data provided further insight into descriptions of learning environment constructs that the students perceived as most important. A major finding was that the group cohesion measure was perceived by students as the most important attribute of their preferred learning environment. A flow chart was developed to help the researcher conceptualize how the learning environment, learning process, and outcomes relate to one another in the studied program. This research attempts to explain through the consideration of this case study: how learning environments can influence behavioural change and how an interconnectedness among several factors in the learning process is influenced by the type of learning environment facilitated. Considerably more research is needed in this area to understand fully the complexity learning

  2. A SCALE-UP Mock-Up: Comparison of Student Learning Gains in High- and Low-Tech Active-Learning Environments.

    Science.gov (United States)

    Soneral, Paula A G; Wyse, Sara A

    2017-01-01

    Student-centered learning environments with upside-down pedagogies (SCALE-UP) are widely implemented at institutions across the country, and learning gains from these classrooms have been well documented. This study investigates the specific design feature(s) of the SCALE-UP classroom most conducive to teaching and learning. Using pilot survey data from instructors and students to prioritize the most salient SCALE-UP classroom features, we created a low-tech "Mock-up" version of this classroom and tested the impact of these features on student learning, attitudes, and satisfaction using a quasi--experimental setup. The same instructor taught two sections of an introductory biology course in the SCALE-UP and Mock-up rooms. Although students in both sections were equivalent in terms of gender, grade point average, incoming ACT, and drop/fail/withdraw rate, the Mock-up classroom enrolled significantly more freshmen. Controlling for class standing, multiple regression modeling revealed no significant differences in exam, in-class, preclass, and Introduction to Molecular and Cellular Biology Concept Inventory scores between the SCALE-UP and Mock-up classrooms. Thematic analysis of student comments highlighted that collaboration and whiteboards enhanced the learning experience, but technology was not important. Student satisfaction and attitudes were comparable. These results suggest that the benefits of a SCALE-UP experience can be achieved at lower cost without technology features. © 2017 P. A. G. Soneral and S. A. Wyse. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. The VREST learning environment.

    Science.gov (United States)

    Kunst, E E; Geelkerken, R H; Sanders, A J B

    2005-01-01

    The VREST learning environment is an integrated architecture to improve the education of health care professionals. It is a combination of a learning, content and assessment management system based on virtual reality. The generic architecture is now being build and tested around the Lichtenstein protocol for hernia inguinalis repair.

  4. How People Learn in an Asynchronous Online Learning Environment: The Relationships between Graduate Students' Learning Strategies and Learning Satisfaction

    Science.gov (United States)

    Choi, Beomkyu

    2016-01-01

    The purpose of this study was to examine the relationships between learners' learning strategies and learning satisfaction in an asynchronous online learning environment. In an attempt to shed some light on how people learn in an online learning environment, one hundred and sixteen graduate students who were taking online learning courses…

  5. Student-Teacher Interaction in Online Learning Environments

    Science.gov (United States)

    Wright, Robert D., Ed.

    2015-01-01

    As face-to-face interaction between student and instructor is not present in online learning environments, it is increasingly important to understand how to establish and maintain social presence in online learning. "Student-Teacher Interaction in Online Learning Environments" provides successful strategies and procedures for developing…

  6. A Well Designed School Environment Facilitates Brain Learning.

    Science.gov (United States)

    Chan, Tak Cheung; Petrie, Garth

    2000-01-01

    Examines how school design facilitates learning by complementing how the brain learns. How the brain learns is discussed and how an artistic environment, spaciousness in the learning areas, color and lighting, and optimal thermal and acoustical environments aid student learning. School design suggestions conclude the article. (GR)

  7. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  8. CLEW: A Cooperative Learning Environment for the Web.

    Science.gov (United States)

    Ribeiro, Marcelo Blois; Noya, Ricardo Choren; Fuks, Hugo

    This paper outlines CLEW (collaborative learning environment for the Web). The project combines MUD (Multi-User Dimension), workflow, VRML (Virtual Reality Modeling Language) and educational concepts like constructivism in a learning environment where students actively participate in the learning process. The MUD shapes the environment structure.…

  9. Learning Partnerships Between Undergraduate Biology Students and Younger Learners

    Directory of Open Access Journals (Sweden)

    Lee Abrahamsen

    2009-12-01

    Full Text Available In two upper-level elective biology courses and one beginning-level general biology course, college students participated in Learning Partnerships with middle or high school classes to study some aspect of biology. The goals were to enhance learning by providing resources to middle and high school students and teachers and by encouraging college students to consider teaching as a learning tool and a possible career goal. The college students designed lessons, activities, and laboratories that were done at the schools and at Bates College. Feedback and data suggest that the partnerships have helped teachers enrich their curricula, enhanced student learning, encouraged additional high school students to consider applying to college, and encouraged college students to consider teaching science.

  10. DynaLearn-An Intelligent Learning Environment for Learning Conceptual Knowledge

    NARCIS (Netherlands)

    Bredeweg, Bert; Liem, Jochem; Beek, Wouter; Linnebank, Floris; Gracia, Jorge; Lozano, Esther; Wißner, Michael; Bühling, René; Salles, Paulo; Noble, Richard; Zitek, Andreas; Borisova, Petya; Mioduser, David

    2013-01-01

    Articulating thought in computerbased media is a powerful means for humans to develop their understanding of phenomena. We have created DynaLearn, an intelligent learning environment that allows learners to acquire conceptual knowledge by constructing and simulating qualitative models of how systems

  11. Learning Environments Designed According to Learning Styles and Its Effects on Mathematics Achievement

    Science.gov (United States)

    Özerem, Aysen; Akkoyunlu, Buket

    2015-01-01

    Problem Statement: While designing a learning environment it is vital to think about learner characteristics (learning styles, approaches, motivation, interests… etc.) in order to promote effective learning. The learning environment and learning process should be designed not to enable students to learn in the same manner and at the same level,…

  12. The Learning of Biology: A Structural Basis for Future Research

    Science.gov (United States)

    Murray, Darrel L.

    1977-01-01

    This article reviews recent research studies and experiences relating the learning theories of Ausubel to biology instruction. Also some suggestions are made for future research on the learning of biology. (MR)

  13. Real-time modeling of primitive environments through wavelet sensors and Hebbian learning

    Science.gov (United States)

    Vaccaro, James M.; Yaworsky, Paul S.

    1999-06-01

    Modeling the world through sensory input necessarily provides a unique perspective for the observer. Given a limited perspective, objects and events cannot always be encoded precisely but must involve crude, quick approximations to deal with sensory information in a real- time manner. As an example, when avoiding an oncoming car, a pedestrian needs to identify the fact that a car is approaching before ascertaining the model or color of the vehicle. In our methodology, we use wavelet-based sensors with self-organized learning to encode basic sensory information in real-time. The wavelet-based sensors provide necessary transformations while a rank-based Hebbian learning scheme encodes a self-organized environment through translation, scale and orientation invariant sensors. Such a self-organized environment is made possible by combining wavelet sets which are orthonormal, log-scale with linear orientation and have automatically generated membership functions. In earlier work we used Gabor wavelet filters, rank-based Hebbian learning and an exponential modulation function to encode textural information from images. Many different types of modulation are possible, but based on biological findings the exponential modulation function provided a good approximation of first spike coding of `integrate and fire' neurons. These types of Hebbian encoding schemes (e.g., exponential modulation, etc.) are useful for quick response and learning, provide several advantages over contemporary neural network learning approaches, and have been found to quantize data nonlinearly. By combining wavelets with Hebbian learning we can provide a real-time front-end for modeling an intelligent process, such as the autonomous control of agents in a simulated environment.

  14. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  15. Learning Object Metadata in a Web-Based Learning Environment

    NARCIS (Netherlands)

    Avgeriou, Paris; Koutoumanos, Anastasios; Retalis, Symeon; Papaspyrou, Nikolaos

    2000-01-01

    The plethora and variance of learning resources embedded in modern web-based learning environments require a mechanism to enable their structured administration. This goal can be achieved by defining metadata on them and constructing a system that manages the metadata in the context of the learning

  16. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    Science.gov (United States)

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  17. Student Motivation in Constructivist Learning Environment

    Science.gov (United States)

    Cetin-Dindar, Ayla

    2016-01-01

    The purpose of this study was to investigate the relation between constructivist learning environment and students'motivation to learn science by testing whether students' self-efficacy in learning science, intrinsically and extrinsically motivated science learning increase and students' anxiety about science assessment decreases when more…

  18. The Predicaments of Language Learners in Traditional Learning Environments

    Science.gov (United States)

    Shafie, Latisha Asmaak; Mansor, Mahani

    2009-01-01

    Some public universities in developing countries have traditional language learning environments such as classrooms with only blackboards and furniture which do not provide conducive learning environments. These traditional environments are unable to cater for digital learners who need to learn with learning technologies. In order to create…

  19. A SCALE-UP Mock-Up: Comparison of Student Learning Gains in High- and Low-Tech Active-Learning Environments

    Science.gov (United States)

    Soneral, Paula A. G.; Wyse, Sara A.

    2017-01-01

    Student-centered learning environments with upside-down pedagogies (SCALE-UP) are widely implemented at institutions across the country, and learning gains from these classrooms have been well documented. This study investigates the specific design feature(s) of the SCALE-UP classroom most conducive to teaching and learning. Using pilot survey data from instructors and students to prioritize the most salient SCALE-UP classroom features, we created a low-tech “Mock-up” version of this classroom and tested the impact of these features on student learning, attitudes, and satisfaction using a quasi-­experimental setup. The same instructor taught two sections of an introductory biology course in the SCALE-UP and Mock-up rooms. Although students in both sections were equivalent in terms of gender, grade point average, incoming ACT, and drop/fail/withdraw rate, the Mock-up classroom enrolled significantly more freshmen. Controlling for class standing, multiple regression modeling revealed no significant differences in exam, in-class, preclass, and Introduction to Molecular and Cellular Biology Concept Inventory scores between the SCALE-UP and Mock-up classrooms. Thematic analysis of student comments highlighted that collaboration and whiteboards enhanced the learning experience, but technology was not important. Student satisfaction and attitudes were comparable. These results suggest that the benefits of a SCALE-UP experience can be achieved at lower cost without technology features. PMID:28213582

  20. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    Science.gov (United States)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female

  1. Smile: Student Modification in Learning Environments. Establishing Congruence between Actual and Preferred Classroom Learning Environment.

    Science.gov (United States)

    Yarrow, Allan; Millwater, Jan

    1995-01-01

    This study investigated whether classroom psychosocial environment, as perceived by student teachers, could be improved to their preferred level. Students completed the College and University Classroom Environment Inventory, discussed interventions, then completed it again. Significant deficiencies surfaced in the learning environment early in the…

  2. A collaborative learning environment for Management Education based on Experiential Learning

    DEFF Research Database (Denmark)

    Lidón, Iván; Rebollar, Rubén; Møller, Charles

    2011-01-01

    from a student learning perspective. This paper presents the design and the operating principles of a learning environment that has been formulated in a joint development by teachers and researchers of the universities of Zaragoza (Spain) and Aalborg (Denmark). In this paper we describe what...... the learning environment developed consists in, beginning by presenting the theoretical foundation considered for its design, to then describe it in detail and present it. Finally, we will discuss the implications of this environment for researching and teaching in this field, and gather the conclusions...

  3. Clinical Learning Environment at Shiraz Medical School

    Directory of Open Access Journals (Sweden)

    Sedigheh Ebrahimi

    2013-01-01

    Full Text Available Clinical learning occurs in the context of a dynamic environment. Learning environment found to be one of the most important factors in determining the success of an effective teaching program. To investigate, from the attending and resident's perspective, factors that may affect student leaning in the educational hospital setting at Shiraz University of Medical Sciences (SUMS. This study combined qualitative and quantitative methods to determine factors affecting effective learning in clinical setting. Residents evaluated the perceived effectiveness of the university hospital learning environment. Fifty two faculty members and 132 residents participated in this study. Key determinants that contribute to an effective clinical teaching were autonomy, supervision, social support, workload, role clarity, learning opportunity, work diversity and physical facilities. In a good clinical setting, residents should be appreciated and given appropriate opportunities to study in order to meet their objectives. They require a supportive environment to consolidate their knowledge, skills and judgment.

  4. Clinical learning environment at Shiraz Medical School.

    Science.gov (United States)

    Rezaee, Rita; Ebrahimi, Sedigheh

    2013-01-01

    Clinical learning occurs in the context of a dynamic environment. Learning environment found to be one of the most important factors in determining the success of an effective teaching program. To investigate, from the attending and resident's perspective, factors that may affect student leaning in the educational hospital setting at Shiraz University of Medical Sciences (SUMS). This study combined qualitative and quantitative methods to determine factors affecting effective learning in clinical setting. Residents evaluated the perceived effectiveness of the university hospital learning environment. Fifty two faculty members and 132 residents participated in this study. Key determinants that contribute to an effective clinical teaching were autonomy, supervision, social support, workload, role clarity, learning opportunity, work diversity and physical facilities. In a good clinical setting, residents should be appreciated and given appropriate opportunities to study in order to meet their objectives. They require a supportive environment to consolidate their knowledge, skills and judgment. © 2013 Tehran University of Medical Sciences. All rights reserved.

  5. Do Sophisticated Epistemic Beliefs Predict Meaningful Learning? Findings from a Structural Equation Model of Undergraduate Biology Learning

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-01-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely "multiple-source," "uncertainty," "development," and "justification." COLB is further…

  6. Mobile-based biology edutainment application for secondary schools

    Science.gov (United States)

    AL-Modwahi, Ashraf Abbas M.; Kaisara, Onalenna; Parkizkar, Behrang; Habibi Lashkari, Arash

    2013-03-01

    The high increase of mobile technology is leading to mobilized learning environment, thus making traditional learning to diminish slowly and become inactive and unproductive. Learners worldwide are being attracted to mobile environment more so that it promotes anytime, anywhere learning. Biology as a secondary school subject will be applicable for mobile learning for such a time and generation as this. This paper is therefore an attempt to mobile based biology edutainment system for the students who normally range from the ages of thirteen to sixteen.

  7. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.” PMID:23222836

  8. Peer learning and support of technology in an undergraduate biology course to enhance deep learning.

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students' outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from "knowledge transmitters" to "role model scientists."

  9. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  10. Learning styles: individualizing computer-based learning environments

    Directory of Open Access Journals (Sweden)

    Tim Musson

    1995-12-01

    Full Text Available While the need to adapt teaching to the needs of a student is generally acknowledged (see Corno and Snow, 1986, for a wide review of the literature, little is known about the impact of individual learner-differences on the quality of learning attained within computer-based learning environments (CBLEs. What evidence there is appears to support the notion that individual differences have implications for the degree of success or failure experienced by students (Ford and Ford, 1992 and by trainee end-users of software packages (Bostrom et al, 1990. The problem is to identify the way in which specific individual characteristics of a student interact with particular features of a CBLE, and how the interaction affects the quality of the resultant learning. Teaching in a CBLE is likely to require a subset of teaching strategies different from that subset appropriate to more traditional environments, and the use of a machine may elicit different behaviours from those normally arising in a classroom context.

  11. The sociability of computer-supported collaborative learning environments

    NARCIS (Netherlands)

    Kreijns, C.J.; Kirschner, P.A.; Jochems, W.M.G.

    2002-01-01

    There is much positive research on computer-supported collaborative learning (CSCL) environments in asynchronous distributed learning groups (DLGs). There is also research that shows that contemporary CSCL environments do not completely fulfil expectations on supporting interactive group learning,

  12. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    Science.gov (United States)

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  13. Context-aware Cloud Computing for Personal Learning Environment

    OpenAIRE

    Chen, Feng; Al-Bayatti, Ali Hilal; Siewe, Francois

    2016-01-01

    Virtual learning means to learn from social interactions in a virtual platform that enables people to study anywhere and at any time. Current Virtual Learning Environments (VLEs) are a range of integrated web based applications to support and enhance the education. Normally, VLEs are institution centric; are owned by the institutions and are designed to support formal learning, which do not support lifelong learning. These limitations led to the research of Personal Learning Environments (PLE...

  14. The effects of problem-based learning on the self-efficacy and attitudes of beginning biology majors

    Science.gov (United States)

    Rajab, Adel Mohammad

    The problem of low persistence of science majors has resulted in calls for changes in undergraduate instruction toward environments that foster positive self-efficacy among beginning science majors. Low science self-efficacy and poor attitudes toward science may contribute to high attrition rates of science majors. Classroom environments that foster positive self-efficacy development include pedagogies that promote authentic learning contexts and involve collaborative learning teams. Problem-based learning (PBL) is an instructional model that attempts to create both conditions and may provide every source of information needed for the development of self-efficacy (i.e., mastery experiences, vicarious experiences, verbal persuasion, and physiological states) as postulated by Albert Bandura. The degree to which these sources of self-efficacy are delivered to individuals within a PBL group may depend on how the group members interact and how students perceive the PBL process itself. This study examined the development of biology self-efficacy and attitudes among biology majors in a PBL setting and in a traditional lecture-based setting. Specifically, this project investigated changes in students' biology self-efficacy beliefs, mediating aspects of PBL in self-efficacy development, the relationship between PBL processes and group collective efficacy, the predictive nature of entering self-efficacy levels on attitudes toward PBL and mid-term grades, and changes in student attitudes toward biology. The study design was quasi-experimental and included quantitative pre- and post-surveys, qualitative interviews, and classroom observations. Findings revealed that students enrolled in a PBL class exhibited greater gains in biology self-efficacy and were likely to report more favorable attitudes toward biology compared to students enrolled in a traditional class. The aspects of PBL that most accounted for these findings were students' ownership of the learning process, their

  15. The Biological Basis of Learning and Individuality.

    Science.gov (United States)

    Kandel, Eric R.; Hawkins, Robert D.

    1992-01-01

    Describes the biological basis of learning and individuality. Presents an overview of recent discoveries that suggest learning engages a simple set of rules that modify the strength of connection between neurons in the brain. The changes are cited as playing an important role in making each individual unique. (MCO)

  16. Language Learning in Outdoor Environments: Perspectives of preschool staff

    Directory of Open Access Journals (Sweden)

    Martina Norling

    2015-03-01

    Full Text Available Language environment is highlighted as an important area in the early childhood education sector. The term language environment refers to language-promoting aspects of education, such as preschool staff’s use of verbal language in interacting with the children. There is a lack of research about language learning in outdoor environments; thus children’s language learning is mostly based on the indoor physical environment. The aim of this study is therefore to explore, analyse, and describe how preschool staff perceive language learning in outdoor environments. The data consists of focus-group interviews with 165 preschool staff members, conducted in three cities in Sweden. The study is meaningful, thus results contribute knowledge regarding preschool staffs’ understandings of language learning in outdoor environments and develop insights to help preschool staff stimulate children’s language learning in outdoor environments.

  17. Neuro-symbolic representation learning on biological knowledge graphs

    KAUST Repository

    Alshahrani, Mona

    2017-04-21

    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge.We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of SemanticWeb based knowledge bases in biology to use in machine learning and data analytics.https://github.com/bio-ontology-research-group/walking-rdf-and-owl.robert.hoehndorf@kaust.edu.sa.Supplementary data are available at Bioinformatics online.

  18. Theoretical Foundations of Learning Environments. Second Edition

    Science.gov (United States)

    Jonassen, David, Ed.; Land, Susan, Ed.

    2012-01-01

    "Theoretical Foundations of Learning Environments" provides students, faculty, and instructional designers with a clear, concise introduction to the major pedagogical and psychological theories and their implications for the design of new learning environments for schools, universities, or corporations. Leading experts describe the most…

  19. Toward Project-based Learning and Team Formation in Open Learning Environments

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Sloep, Peter

    2014-01-01

    Open Learning Environments, MOOCs, as well as Social Learning Networks, embody a new approach to learning. Although both emphasise interactive participation, somewhat surprisingly, they do not readily support bond creating and motivating collaborative learning opportunities. Providing project-based

  20. The Internet: A Learning Environment.

    Science.gov (United States)

    McGreal, Rory

    1997-01-01

    The Internet environment is suitable for many types of learning activities and teaching and learning styles. Every World Wide Web-based course should provide: home page; introduction; course overview; course requirements, vital information; roles and responsibilities; assignments; schedule; resources; sample tests; teacher biography; course…

  1. The Relationship among Self-Regulated Learning, Procrastination, and Learning Behaviors in Blended Learning Environment

    Science.gov (United States)

    Yamada, Masanori; Goda, Yoshiko; Matsuda, Takeshi; Kato, Hiroshi; Miyagawa, Hiroyuki

    2015-01-01

    This research aims to investigate the relationship among the awareness of self-regulated learning (SRL), procrastination, and learning behaviors in blended learning environment. One hundred seventy nine freshmen participated in this research, conducted in the blended learning style class using learning management system. Data collection was…

  2. Evaluating children's conservation biology learning at the zoo.

    Science.gov (United States)

    Jensen, Eric

    2014-08-01

    Millions of children visit zoos every year with parents or schools to encounter wildlife firsthand. Public conservation education is a requirement for membership in professional zoo associations. However, in recent years zoos have been criticized for failing to educate the public on conservation issues and related biological concepts, such as animal adaptation to habitats. I used matched pre- and postvisit mixed methods questionnaires to investigate the educational value of zoo visits for children aged 7-15 years. The questionnaires gathered qualitative data from these individuals, including zoo-related thoughts and an annotated drawing of a habitat. A content analysis of these qualitative data produced the quantitative data reported in this article. I evaluated the relative learning outcomes of educator-guided and unguided zoo visits at London Zoo, both in terms of learning about conservation biology (measured by annotated drawings) and changing attitudes toward wildlife conservation (measured using thought-listing data). Forty-one percent of educator-guided visits and 34% of unguided visits resulted in conservation biology-related learning. Negative changes in children's understanding of animals and their habitats were more prevalent in unguided zoo visits. Overall, my results show the potential educational value of visiting zoos for children. However, they also suggest that zoos' standard unguided interpretive materials are insufficient for achieving the best outcomes for visiting children. These results support a theoretical model of conservation biology learning that frames conservation educators as toolmakers who develop conceptual resources to enhance children's understanding of science. © 2014 Society for Conservation Biology.

  3. EDUCATION REFORMS TOWARDS 21ST CENTURY SKILLS: TRANSFORMING STUDENTS' LEARNING EXPERIENCES THROUGH EFFECTIVE LEARNING ENVIRONMENTS

    OpenAIRE

    Harriet Wambui Njui

    2018-01-01

    This paper reviews literature on learning environments with a view to making recommendations on how teachers could create effective and high-quality learning environments that provide learners with transformative learning experiences as they go through the process of education. An effective learning environment is critical because quality education, which is essential to real learning and human development, is influenced by factors both inside and outside the classroom. Learning institutions ...

  4. A Design Framework for Personal Learning Environments

    NARCIS (Netherlands)

    Rahimi, E.

    2015-01-01

    The purpose of our research was to develop a PLE (personal learning environment) design framework for workplace settings. By doing such, the research has answered this research question, how should a technology-based personal learning environment be designed, aiming at supporting learners to gain

  5. Biological Dialogues: How to Teach Your Students to Learn Fluency in Biology

    Science.gov (United States)

    May, S. Randolph; Cook, David L.; May, Marilyn K.

    2013-01-01

    Biology courses have thousands of words to learn in order to intelligently discuss the subject and take tests over the material. Biological fluency is an important goal for students, and practical methods based on constructivist pedagogies can be employed to promote it. We present a method in which pairs of students write dialogues from…

  6. A Study on Students’ Views On Blended Learning Environment

    Directory of Open Access Journals (Sweden)

    Meryem YILMAZ SOYLU

    2006-07-01

    Full Text Available In the 21st century, information and communication technologies (ICT have developed rapidly and influenced most of the fields and education as well. Then, ICT have offered a favorable environment for the development and use of various methods and tools. With the developments in technology, blended learning has gained considerable popularity in recent years. Together with the developments it brought along the description of particular forms of teaching with technology. Blended learning is defined simply as a learning environment that combines technology with face-to-face learning. In other words blended learning means using a variety of delivery methods to best meet the course objectives by combining face-to-face teaching in a traditional classroom with teaching online. This article examines students’ views on blended learning environment. The study was conducted on 64 students from Department of Computer Education and Instructional Technologies in 2005–2006 fall semester in Instructional Design and Authoring Languages in PC Environment at Hacettepe University. The results showed that the students enjoyed taking part in the blended learning environment. Students’ achievement levels and their frequency of participation to forum affected their views about blended learning environment. Face-to-face interaction in blended learning application had the highest score. This result demonstrated the importance of interaction and communication for the success of on-line learning.

  7. Study Circles in Online Learning Environment in the Spirit of Learning-Centered Approach

    Directory of Open Access Journals (Sweden)

    Simándi Szilvia

    2017-08-01

    Full Text Available Introduction: In the era of information society and knowledge economy, learning in non-formal environments gets a highlighted role: it can supplement, replace or raise the knowledge and skills gained in the school system to a higher level (Forray & Juhász, 2008, as the so-called “valid” knowledge significantly changes due to the acceleration of development. With the appearance of information technology means and their booming development, the possibilities of gaining information have widened and, according to the forecasts, the role of learning communities will grow. Purpose: Our starting point is that today, with the involvement of community sites (e.g. Google+, Facebook etc. there is a new possibility for inspiring learning communities: by utilizing the power of community and the possibilities of network-based learning (Ollé & Lévai, 2013. Methods: We intend to make a synthesis based on former research and literature focusing on the learning-centered approach, online learning environment, learning communities and study circles (Noesgaard & Ørngreen, 2015; Biggs & Tang, 2007; Kindström, 2010 Conclusions: The online learning environment can be well utilized for community learning. In the online learning environment, the process of learning is built on activity-oriented work for which active participation, and an intensive, initiative communication are necessary and cooperative and collaborative learning get an important role.

  8. The effects of different learning environments on students' motivation for learning and their achievement.

    Science.gov (United States)

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien

    2013-09-01

    Research in higher education on the effects of student-centred versus lecture-based learning environments generally does not take into account the psychological need support provided in these learning environments. From a self-determination theory perspective, need support is important to study because it has been associated with benefits such as autonomous motivation and achievement. The purpose of the study is to investigate the effects of different learning environments on students' motivation for learning and achievement, while taking into account the perceived need support. First-year student teachers (N= 1,098) studying a child development course completed questionnaires assessing motivation and perceived need support. In addition, a prior knowledge test and case-based assessment were administered. A quasi-experimental pre-test/post-test design was set up consisting of four learning environments: (1) lectures, (2) case-based learning (CBL), (3) alternation of lectures and CBL, and (4) gradual implementation with lectures making way for CBL. Autonomous motivation and achievement were higher in the gradually implemented CBL environment, compared to the CBL environment. Concerning achievement, two additional effects were found; students in the lecture-based learning environment scored higher than students in the CBL environment, and students in the gradually implemented CBL environment scored higher than students in the alternated learning environment. Additionally, perceived need support was positively related to autonomous motivation, and negatively to controlled motivation. The study shows the importance of gradually introducing students to CBL, in terms of their autonomous motivation and achievement. Moreover, the study emphasizes the importance of perceived need support for students' motivation. © 2012 The British Psychological Society.

  9. Personal Learning Environments: A Solution for Self-Directed Learners

    Science.gov (United States)

    Haworth, Ryan

    2016-01-01

    In this paper I discuss "personal learning environments" and their diverse benefits, uses, and implications for life-long learning. Personal Learning Environments (PLEs) are Web 2.0 and social media technologies that enable individual learners the ability to manage their own learning. Self-directed learning is explored as a foundation…

  10. Information literacy experiencies inside virtual learning environments

    Directory of Open Access Journals (Sweden)

    Patricia Hernández Salazar

    2016-03-01

    Full Text Available Objective. Suggest the use of virtual learning environments as an Information Literacy (IL alternative. Method. Analysis of the main elements of web sites. To achieve this purpose the article includes the relationship between IL and the learning virtual environment (by defining both phrases; phases to create virtual IL programs; processes to elaborate didactic media; the applications that may support this plan; and the description of eleven examples of learning virtual environments IL experiences from four countries (Mexico, United States of America, Spain and United Kingdom these examples fulfill the conditions expressed. Results. We obtained four comparative tables examining five elements of each experience: objectives; target community; institution; country; and platform used. Conclusions. Any IL proposal should have a clear definition; IL experiences have to follow a didactic systematic process; described experiences are based on IL definition; the experiences analyzed are similar; virtual learning environments can be used as alternatives of IL.

  11. Measuring the clinical learning environment in anaesthesia.

    Science.gov (United States)

    Smith, N A; Castanelli, D J

    2015-03-01

    The learning environment describes the way that trainees perceive the culture of their workplace. We audited the learning environment for trainees throughout Australia and New Zealand in the early stages of curriculum reform. A questionnaire was developed and sent electronically to a large random sample of Australian and New Zealand College of Anaesthetists trainees, with a 26% final response rate. This new instrument demonstrated good psychometric properties, with Cronbach's α ranging from 0.81 to 0.91 for each domain. The median score was equivalent to 78%, with the majority of trainees giving scores in the medium range. Introductory respondents scored their learning environment more highly than all other levels of respondents (P=0.001 for almost all comparisons). We present a simple questionnaire instrument that can be used to determine characteristics of the anaesthesia learning environment. The instrument can be used to help assess curricular change over time, alignment of the formal and informal curricula and strengths and weaknesses of individual departments.

  12. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  13. University Libraries and Digital Learning Environments

    OpenAIRE

    2011-01-01

    University libraries around the world have embraced the possibilities of the digital learning environment, facilitating its use and proactively seeking to develop the provision of electronic resources and services. The digital environment offers opportunities and challenges for librarians in all aspects of their work – in information literacy, virtual reference, institutional repositories, e-learning, managing digital resources and social media. The authors in this timely book are leading exp...

  14. Learning How to Design a Technology Supported Inquiry-Based Learning Environment

    Science.gov (United States)

    Hakverdi-Can, Meral; Sonmez, Duygu

    2012-01-01

    This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…

  15. Reading a Story: Different Degrees of Learning in Different Learning Environments

    Directory of Open Access Journals (Sweden)

    Anna Maria Giannini

    2017-10-01

    Full Text Available The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB; interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA; reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA. Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story’s moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.

  16. Reading a Story: Different Degrees of Learning in Different Learning Environments.

    Science.gov (United States)

    Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura

    2017-01-01

    The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story's moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.

  17. The fluidities of digital learning environments and resources

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2012-01-01

    The research project “Educational cultures and serious games on a global market place” (2009-2011) dealt with the challenge of the digital learning environment and hence it’s educational development space always existing outside the present space and hence scope of activities. With a reference...... and establishments of the virtual universe called Mingoville.com, the research shows a need to include in researchers’ conceptualizations of digital learning environments and resources, their shifting materialities and platformations and hence emerging (often unpredictable) agencies and educational development...... spaces. Keywords: Fluidity, digital learning environment, digital learning resource, educational development space...

  18. Using Active Learning to Teach Concepts and Methods in Quantitative Biology.

    Science.gov (United States)

    Waldrop, Lindsay D; Adolph, Stephen C; Diniz Behn, Cecilia G; Braley, Emily; Drew, Joshua A; Full, Robert J; Gross, Louis J; Jungck, John A; Kohler, Brynja; Prairie, Jennifer C; Shtylla, Blerta; Miller, Laura A

    2015-11-01

    This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that active learning can improve students' outcomes in Science, Technology, Engineering and Math Education disciplines. We then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning and technology into their classrooms. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  19. Neuro-symbolic representation learning on biological knowledge graphs.

    Science.gov (United States)

    Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert

    2017-09-01

    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  20. E-Learning Systems, Environments and Approaches

    OpenAIRE

    Isaias, P.; Spector, J.M.; Ifenthaler, D.; Sampson, D.G.

    2015-01-01

    The volume consists of twenty-five chapters selected from among peer-reviewed papers presented at the CELDA (Cognition and Exploratory Learning in the Digital Age) 2013 Conference held in Fort Worth, Texas, USA, in October 2013 and also from world class scholars in e-learning systems, environments and approaches. The following sub-topics are included: Exploratory Learning Technologies (Part I), e-Learning social web design (Part II), Learner communities through e-Learning implementations (Par...

  1. Students’ Preferred Characteristics of Learning Environments in Vocational Secondary Education

    OpenAIRE

    Ingeborg Placklé; Karen D. Könings; Wolfgang Jacquet; Katrien Struyven; Arno Libotton; Jeroen J. G. van Merriënboer; Nadine Engels

    2014-01-01

    If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument – the Inventory Powerful Learning Environments in Vocational Education - to measure students’ preferences on characteristics of powerful learning environments in vocational education. W...

  2. Students Preferred Characteristics of Learning Environments in Vocational Secondary Education

    OpenAIRE

    Placklé, Ingeborg

    2014-01-01

    If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument - the Inventory Powerful Learning Environments in Vocational Education - to measure studentsâ preferences on characteristics of powerful learning environments in voca-tional education. ...

  3. Micro/nanofabricated environments for synthetic biology.

    Science.gov (United States)

    Collier, C Patrick; Simpson, Michael L

    2011-08-01

    A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial microfabricated and nanofabricated structures have helped elucidate the effects of nanoscale spatial confinement and segregation on biological behavior, particularly when integrated with microfluidics, through precise control in both space and time of diffusible signals and binding interactions. Examples of nanostructured interfaces for synthetic biology include the development of cell-like compartments for encapsulating biochemical reactions, nanostructured environments for fundamental studies of diffusion, molecular transport and biochemical reaction kinetics, and regulation of biomolecular interactions as functions of microfabricated and nanofabricated topological constraints. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. The clinical learning environment in nursing education: a concept analysis.

    Science.gov (United States)

    Flott, Elizabeth A; Linden, Lois

    2016-03-01

    The aim of this study was to report an analysis of the clinical learning environment concept. Nursing students are evaluated in clinical learning environments where skills and knowledge are applied to patient care. These environments affect achievement of learning outcomes, and have an impact on preparation for practice and student satisfaction with the nursing profession. Providing clarity of this concept for nursing education will assist in identifying antecedents, attributes and consequences affecting student transition to practice. The clinical learning environment was investigated using Walker and Avant's concept analysis method. A literature search was conducted using WorldCat, MEDLINE and CINAHL databases using the keywords clinical learning environment, clinical environment and clinical education. Articles reviewed were written in English and published in peer-reviewed journals between 1995-2014. All data were analysed for recurring themes and terms to determine possible antecedents, attributes and consequences of this concept. The clinical learning environment contains four attribute characteristics affecting student learning experiences. These include: (1) the physical space; (2) psychosocial and interaction factors; (3) the organizational culture and (4) teaching and learning components. These attributes often determine achievement of learning outcomes and student self-confidence. With better understanding of attributes comprising the clinical learning environment, nursing education programmes and healthcare agencies can collaborate to create meaningful clinical experiences and enhance student preparation for the professional nurse role. © 2015 John Wiley & Sons Ltd.

  5. Advanced Training Technologies and Learning Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  6. Perceived Satisfaction, Perceived Usefulness and Interactive Learning Environments as Predictors to Self-Regulation in e-Learning Environments

    Science.gov (United States)

    Liaw, Shu-Sheng; Huang, Hsiu-Mei

    2013-01-01

    The research purpose is to investigate learner self-regulation in e-learning environments. In order to better understand learner attitudes toward e-learning, 196 university students answer a questionnaire survey after use an e-learning system few months. The statistical results showed that perceived satisfaction, perceived usefulness, and…

  7. The Effects of Integrating Social Learning Environment with Online Learning

    Science.gov (United States)

    Raspopovic, Miroslava; Cvetanovic, Svetlana; Medan, Ivana; Ljubojevic, Danijela

    2017-01-01

    The aim of this paper is to present the learning and teaching styles using the Social Learning Environment (SLE), which was developed based on the computer supported collaborative learning approach. To avoid burdening learners with multiple platforms and tools, SLE was designed and developed in order to integrate existing systems, institutional…

  8. Incremental learning of concept drift in nonstationary environments.

    Science.gov (United States)

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE

  9. A SIMULTANEOUS MOBILE E-LEARNING ENVIRONMENT AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hasan KARAL

    2010-04-01

    Full Text Available The purpose of the present study was to design a mobile learning environment that enables the use of a teleconference application used in simultaneous e-learning with mobile devices and to evaluate this mobile learning environment based on students’ views. With the mobile learning environment developed in the study, the students are able to follow a teleconference application realized by using appropriate mobile devices. The study was carried out with 8 post-graduate students enrolled in Karadeniz Technical University (KTU, Department of Computer Education and Instructional Technologies (CEIT, Graduate School of Natural and Applied Science. The students utilized this teleconference application using mobile devices supporting internet access and Adobe Flash technology. Of the 8 students, 4 accessed the system using EDGE technology and 4 used wireless internet technology. At the end of the application, the audio and display were delayed by 4-5 seconds with EDGE technology, and were delayed by 7-8 seconds with wireless internet technology. Based on the students’ views, it was concluded that the environment had some deficiencies in terms of quality, especially in terms of the screen resolution. Despite this, the students reported that this environment could provide more flexibility in terms of space and time when compared to other simultaneous distance education applications. Although the environment enables interaction, in particular, the problem of resolution caused by screen size is a disadvantage for the system. When this mobile learning application is compared to conventional education environments, it was found that mobile learning does have a role in helping the students overcome the problems of participating in learning activities caused by time and space constraints.

  10. Discovering Learning Strategy to Increase Metacognitive Knowledge in Biology Learning in Secondary School

    Directory of Open Access Journals (Sweden)

    Y. Herlanti

    2017-04-01

    Full Text Available The study is aimed at finding an effective learning strategy that can increase metacognitive knowledge. Metacognitive knowledge is a standard that based on 2016-revised edition of 2013 curriculum needs to be achieved by every graduate in all level of education in Indonesia. The study is conducted in three different schools and engages 207 students, which then divided into six groups. The groups are students who study under mind mapping strategy, concept mapping, reciprocal teaching using summary notes, reciprocal teaching using mind mapping, problem-based learning, and investigation group. The results showed that those studying under problem-based learning strategy spent a significantly higher numbers in metacognitive knowledge in biology learning and followed by students who study under reciprocal teaching using mind mapping. According to the finding, it is expected that teachers of Biology will practice problem-based learning strategy in their classroom in order to increase the Metacognitive knowledge.

  11. Sociocultural Perspective of Science in Online Learning Environments. Communities of Practice in Online Learning Environments

    Science.gov (United States)

    Erdogan, Niyazi

    2016-01-01

    Present study reviews empirical research studies related to learning science in online learning environments as a community. Studies published between 1995 and 2015 were searched by using ERIC and EBSCOhost databases. As a result, fifteen studies were selected for review. Identified studies were analyzed with a qualitative content analysis method…

  12. Investigation of the Relationship between Learning Process and Learning Outcomes in E-Learning Environments

    Science.gov (United States)

    Yurdugül, Halil; Menzi Çetin, Nihal

    2015-01-01

    Problem Statement: Learners can access and participate in online learning environments regardless of time and geographical barriers. This brings up the umbrella concept of learner autonomy that contains self-directed learning, self-regulated learning and the studying process. Motivation and learning strategies are also part of this umbrella…

  13. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  14. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  15. Towards an intelligent environment for distance learning

    Directory of Open Access Journals (Sweden)

    Rafael Morales

    2009-12-01

    Full Text Available Mainstream distance learning nowadays is heavily influenced by traditional educational approaches that produceshomogenised learning scenarios for all learners through learning management systems. Any differentiation betweenlearners and personalisation of their learning scenarios is left to the teacher, who gets minimum support from the system inthis respect. This way, the truly digital native, the computer, is left out of the move, unable to better support the teachinglearning processes because it is not provided with the means to transform into knowledge all the information that it storesand manages. I believe learning management systems should care for supporting adaptation and personalisation of bothindividual learning and the formation of communities of learning. Open learner modelling and intelligent collaborativelearning environments are proposed as a means to care. The proposal is complemented with a general architecture for anintelligent environment for distance learning and an educational model based on the principles of self-management,creativity, significance and participation.

  16. Technically Speaking: Transforming Language Learning through Virtual Learning Environments (MOOs).

    Science.gov (United States)

    von der Emde, Silke; Schneider, Jeffrey; Kotter, Markus

    2001-01-01

    Draws on experiences from a 7-week exchange between students learning German at an American college and advanced students of English at a German university. Maps out the benefits to using a MOO (multiple user domains object-oriented) for language learning: a student-centered learning environment structured by such objectives as peer teaching,…

  17. INTUITEL and the Hypercube Model - Developing Adaptive Learning Environments

    Directory of Open Access Journals (Sweden)

    Kevin Fuchs

    2016-06-01

    Full Text Available In this paper we introduce an approach for the creation of adaptive learning environments that give human-like recommendations to a learner in the form of a virtual tutor. We use ontologies defining pedagogical, didactic and learner-specific data describing a learner's progress, learning history, capabilities and the learner's current state within the learning environment. Learning recommendations are based on a reasoning process on these ontologies and can be provided in real-time. The ontologies may describe learning content from any domain of knowledge. Furthermore, we describe an approach to store learning histories as spatio-temporal trajectories and to correlate them with influencing didactic factors. We show how such analysis of spatiotemporal data can be used for learning analytics to improve future adaptive learning environments.

  18. Engaging students in a community of learning: Renegotiating the learning environment.

    Science.gov (United States)

    Theobald, Karen A; Windsor, Carol A; Forster, Elizabeth M

    2018-03-01

    Promoting student engagement in a student led environment can be challenging. This article reports on the process of design, implementation and evaluation of a student led learning approach in a small group tutorial environment in a three year Bachelor of Nursing program at an Australian university. The research employed three phases of data collection. The first phase explored student perceptions of learning and engagement in tutorials. The results informed the development of a web based learning resource. Phase two centred on implementation of a community of learning approach where students were supported to lead tutorial learning with peers. The final phase constituted an evaluation of the new approach. Findings suggest that students have the capacity to lead and engage in a community of learning and to assume greater ownership and responsibility where scaffolding is provided. Nonetheless, an ongoing whole of course approach to pedagogical change would better support this form of teaching and learning innovation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    Science.gov (United States)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  20. Soft Systems Methodology for Personalized Learning Environment

    Science.gov (United States)

    Nair, Uday

    2015-01-01

    There are two sides to a coin when it comes to implementing technology at universities; on one side, there is the university using technologies via the virtual learning environment that seems to be outdated with the digital needs of the students, and on the other side, while implementing technology at the university learning environment the focus…

  1. Evaluation of a Learning Object Based Learning Environment in Different Dimensions

    Directory of Open Access Journals (Sweden)

    Ünal Çakıroğlu

    2009-11-01

    Full Text Available Learning Objects (LOs are web based learning resources presented by Learning Object Repositories (LOR. For recent years LOs have begun to take place on web and it is suggested that appropriate design of LOs can make positive impact on learning. In order to support learning, research studies recommends LOs should have been evaluated pedagogically and technologically, and the content design created by using LOs should have been designed through appropriate instructional models. Since the use of LOs have recently begun, an exact pedagogical model about efficient use of LOs has not been developed. In this study a LOR is designed in order to be used in mathematics education. The LOs in this LOR have been evaluated pedagogically and technologically by mathematics teachers and field experts. In order to evaluate the designed LO based environment, two different questionnaires have been used. These questionnaires are developed by using the related literature about web based learning environments evaluation criteria and also the items are discussed with the field experts for providing the validity. The reliability of the questionnaires is calculated cronbach alpha = 0.715 for the design properties evaluation survey and cronbach alpha =0.726 for pedagogic evaluation. Both of two questionnaires are five point Likert type. The first questionnaire has the items about “Learning Support of LOs, Competency of LOR, The importance of LOs in mathematics education, the usability of LOs by students”. “The activities on LOs are related to outcomes of subjects, there are activities for students have different learning styles. There are activities for wondering students.” are examples for items about learning support of LOs. “System helps for exploration of mathematical relations”, “I think teaching mathematics with this system will be enjoyable.” are example items for importance of LOs in mathematics education. In the competency of LOR title,

  2. Construction of a Digital Learning Environment Based on Cloud Computing

    Science.gov (United States)

    Ding, Jihong; Xiong, Caiping; Liu, Huazhong

    2015-01-01

    Constructing the digital learning environment for ubiquitous learning and asynchronous distributed learning has opened up immense amounts of concrete research. However, current digital learning environments do not fully fulfill the expectations on supporting interactive group learning, shared understanding and social construction of knowledge.…

  3. Can a multimedia tool help students' learning performance in complex biology subjects?

    Directory of Open Access Journals (Sweden)

    Pinar Koseoglu

    2015-11-01

    Full Text Available The aim of the present study was to determine the effects of multimedia-based biology teaching (Mbio and teacher-centered biology (TCbio instruction approaches on learners' biology achievements, as well as their views towards learning approaches. During the research process, an experimental design with two groups, TCbio (n = 22 and Mbio (n = 26, were used. The results of the study proved that the Mbio approach was more effective than the TCbio approach with regard to supporting meaningful learning, academic achievement, enjoyment and motivation. Moreover, the TCbio approach is ineffective in terms of time management, engaging attention, and the need for repetition of subjects. Additionally, the results were discussed in terms of teaching, learning, multimedia design as well as biology teaching/learning.

  4. Clinical learning environments: place, artefacts and rhythm.

    Science.gov (United States)

    Sheehan, Dale; Jowsey, Tanisha; Parwaiz, Mariam; Birch, Mark; Seaton, Philippa; Shaw, Susan; Duggan, Alison; Wilkinson, Tim

    2017-10-01

    Health care practitioners learn through experience in clinical environments in which supervision is a key component, but how that learning occurs outside the supervision relationship remains largely unknown. This study explores the environmental factors that inform and support workplace learning within a clinical environment. An observational study drawing on ethnographic methods was undertaken in a general medicine ward. Observers paid attention to interactions among staff members that involved potential teaching and learning moments that occurred and were visible in the course of routine work. General purpose thematic analysis of field notes was undertaken. A total of 376 observations were undertaken and documented. The findings suggest that place (location of interaction), rhythm (regularity of activities occurring in the ward) and artefacts (objects and equipment) were strong influences on the interactions and exchanges that occurred. Each of these themes had inherent tensions that could promote or inhibit engagement and therefore learning opportunities. Although many learning opportunities were available, not all were taken up or recognised by the participants. We describe and make explicit how the natural environment of a medical ward and flow of work through patient care contribute to the learning architecture, and how this creates or inhibits opportunities for learning. Awareness of learning opportunities was often tacit and not explicit for either supervisor or learner. We identify strategies through which tensions inherent within space, artefacts and the rhythms of work can be resolved and learning opportunities maximised. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  5. USING PCU-CAMEL, A WEB-BASED LEARNING ENVIRONMENT, IN EVALUATING TEACHING-LEARNING PROCESS

    Directory of Open Access Journals (Sweden)

    Arlinah Imam Rahardjo

    2008-01-01

    Full Text Available PCU-CAMEL (Petra Christian University-Computer Aided Mechanical Engineering Department Learning Environment has been developed to integrate the use of this web-based learning environment into the traditional, face-to-face setting of class activities. This integrated learning method is designed as an effort to enrich and improve the teaching-learning process at Petra Christian University. A study was conducted to introduce the use of PCU-CAMEL as a tool in evaluating teaching learning process. The study on this method of evaluation was conducted by using a case analysis on the integration of PCU-CAMEL to the traditional face-to-face meetings of LIS (Library Information System class at the Informatics Engineering Department of Petra Christian University. Students’ responses documented in some features of PCU-CAMEL were measured and analyzed to evaluate the effectiveness of this integrated system in developing intrinsic motivation of the LIS students of the first and second semester of 2004/2005 to learn. It is believed that intrinsic motivation can drive students to learn more. From the study conducted, it is concluded that besides its capability in developing intrinsic motivation, PCU-CAMEL as a web-based learning environment, can also serve as an effective tool for both students and instructors to evaluate the teaching-learning process. However, some weaknesses did exist in using this method of evaluating teaching-learning process. The free style and unstructured form of the documentation features of this web-based learning environment can lead to ineffective evaluation results

  6. Learning and coding in biological neural networks

    Science.gov (United States)

    Fiete, Ila Rani

    How can large groups of neurons that locally modify their activities learn to collectively perform a desired task? Do studies of learning in small networks tell us anything about learning in the fantastically large collection of neurons that make up a vertebrate brain? What factors do neurons optimize by encoding sensory inputs or motor commands in the way they do? In this thesis I present a collection of four theoretical works: each of the projects was motivated by specific constraints and complexities of biological neural networks, as revealed by experimental studies; together, they aim to partially address some of the central questions of neuroscience posed above. We first study the role of sparse neural activity, as seen in the coding of sequential commands in a premotor area responsible for birdsong. We show that the sparse coding of temporal sequences in the songbird brain can, in a network where the feedforward plastic weights must translate the sparse sequential code into a time-varying muscle code, facilitate learning by minimizing synaptic interference. Next, we propose a biologically plausible synaptic plasticity rule that can perform goal-directed learning in recurrent networks of voltage-based spiking neurons that interact through conductances. Learning is based on the correlation of noisy local activity with a global reward signal; we prove that this rule performs stochastic gradient ascent on the reward. Thus, if the reward signal quantifies network performance on some desired task, the plasticity rule provably drives goal-directed learning in the network. To assess the convergence properties of the learning rule, we compare it with a known example of learning in the brain. Song-learning in finches is a clear example of a learned behavior, with detailed available neurophysiological data. With our learning rule, we train an anatomically accurate model birdsong network that drives a sound source to mimic an actual zebrafinch song. Simulation and

  7. Evaluation of students' perception of their learning environment and approaches to learning

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2015-04-01

    This work presents the results of two case studies designed to assess the various approaches undergraduate and postgraduate students undertake for their education. The first study describes the results and evaluation of an undergraduate course in Water Engineering which aims to develop the fundamental background knowledge of students on introductory practical applications relevant to the practice of water and hydraulic engineering. The study assesses the effectiveness of the course design and learning environment from the perception of students using a questionnaire addressing several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning, and methods of communication and assessment. The second study investigates the effectiveness of supervisory arrangements based on the perceptions of engineering undergraduate and postgraduate students. Effective supervision requires leadership skills that are not taught in the University, yet there is rarely a chance to get feedback, evaluate this process and reflect. Even though the results are very encouraging there are significant lessons to learn in improving ones practice and develop an effective learning environment to student support and guidance. The findings from these studies suggest that students with high level of intrinsic motivation are deep learners and are also top performers in a student-centered learning environment. A supportive teaching environment with a plethora of resources and feedback made available over different platforms that address students need for direct communication and feedback has the potential to improve student satisfaction and their learning experience. Finally, incorporating a multitude of assessment methods is also important in promoting deep learning. These results have deep implications about student learning and can be used to further improve course design and delivery in the future.

  8. Learning Design Patterns for Hybrid Synchronous Video-Mediated Learning Environments

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2016-01-01

    This article describes an innovative learning environment where remote and face-to-face full-time general upper secondary adult students jointly participate in the same live classes at VUC Storstrøm, an adult learning centre in Denmark. The teachers developed new learning designs as a part of the...... activating and equal learning designs for the students. This article is written on the basis of a chapter in the PhD–thesis by the author....

  9. Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

    Science.gov (United States)

    Virtanen, Mari Aulikki; Haavisto, Elina; Liikanen, Eeva; Kääriäinen, Maria

    2018-01-01

    Ubiquitous learning and the use of ubiquitous learning environments heralds a new era in higher education. Ubiquitous learning environments enhance context-aware and seamless learning experiences available from any location at any time. They support smooth interaction between authentic and digital learning resources and provide personalized…

  10. Students’ Preferred Characteristics of Learning Environments in Vocational Secondary Education

    Directory of Open Access Journals (Sweden)

    Ingeborg Placklé

    2014-12-01

    Full Text Available If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument - the Inventory Powerful Learning Environments in Vocational Education - to measure students’ preferences on characteristics of powerful learning environments in vocational education. We investigated whether student preferences on the design of their learning environments are in line with what is described in the literature as beneficial for learning. Data of 544 students show that the preferences of students support most characteristics of PLEs in vocational education. Looking through the eyes of students, teachers have to challenge their students and encourage them to take their learning in their own hands. Adaptive learning support is needed. Remarkable, students do not prefer having reflective dialogues with teachers or peers.

  11. U-CrAc Flexible Interior Doctrine, Agile Learning Environments

    DEFF Research Database (Denmark)

    Poulsen, Søren Bolvig; Rosenstand, Claus Andreas Foss

    2012-01-01

    The research domain of this article is flexible learning environment for immediate use. The research question is: How can the learning environment support an agile learning process? The research contribution of this article is a flexible interior doctrine. The research method is action research...

  12. Biological effect of aerospace environment on alfalfa

    International Nuclear Information System (INIS)

    Zhang Yuexue; Liu Jielin; Han Weibo; Tang Fenglan; Hao Ruochao; Shang Chen; DuYouying; Li Jikai; Wang Changshan

    2009-01-01

    The biological effect of aerospace environment on two varieties of Medicago sativa L. was studied. In M 1 germination results showed that aerospace environment increased cell division and the number of micronucleus, changed germination rate, caused seedling aberrations. Cytogenetical and seedling aberration of Zhaodong showed more sensitivity than Longmu 803. Branches and fresh weight of Zhaodong had shown more serious damage than control and Longmu 803. (authors)

  13. [Learning about social determinants of health through chronicles, using a virtual learning environment].

    Science.gov (United States)

    Restrepo-Palacio, Sonia; Amaya-Guio, Jairo

    2016-01-01

    To describe the contributions of a pedagogical strategy based on the construction of chronicles, using a Virtual Learning Environment for training medical students from Universidad de La Sabana on social determinants of health. Descriptive study with a qualitative approach. Design and implementation of a Virtual Learning Environment based on the ADDIE instructional model. A Virtual Learning Environment was implemented with an instructional design based on the five phases of the ADDIE model, on the grounds of meaningful learning and social constructivism, and through the narration of chronicles or life stories as a pedagogical strategy. During the course, the structural determinants and intermediaries were addressed, and nine chronicles were produced by working groups made up of four or five students, who demonstrated meaningful learning from real life stories, presented a coherent sequence, and kept a thread; 82% of these students incorporated in their contents most of the social determinants of health, emphasizing on the concepts of equity or inequity, equality or inequality, justice or injustice and social cohesion. A Virtual Learning Environment, based on an appropriate instructional design, allows to facilitate learning of social determinants of health through a constructivist pedagogical approach by analyzing chronicles or life stories created by ninth-semester students of medicine from Universidad de La Sabana.

  14. Nursing students' perceptions of learning in practice environments: a review.

    Science.gov (United States)

    Henderson, Amanda; Cooke, Marie; Creedy, Debra K; Walker, Rachel

    2012-04-01

    Effective clinical learning requires integration of nursing students into ward activities, staff engagement to address individual student learning needs, and innovative teaching approaches. Assessing characteristics of practice environments can provide useful insights for development. This study identified predominant features of clinical learning environments from nursing students' perspectives across studies using the same measure in different countries over the last decade. Six studies, from three different countries, using the Clinical Leaning Environment Inventory (CLEI) were reviewed. Studies explored consistent trends about learning environment. Students rated sense of task accomplishment high. Affiliation also rated highly though was influenced by models of care. Feedback measuring whether students' individual needs and views were accommodated consistently rated lower. Across different countries students report similar perceptions about learning environments. Clinical learning environments are most effective in promoting safe practice and are inclusive of student learners, but not readily open to innovation and challenges to routine practices. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  15. Personal Learning Environment – a Conceptual Study

    Directory of Open Access Journals (Sweden)

    Herbert Mühlburger

    2010-01-01

    Full Text Available The influence of digital technologies as well as the World Wide Web on education rises dramatically. In former years Learning Management Systems (LMS were introduced on educational institutes to address the needs both their institutions and their lecturers. Nowadays a shift from an institution-centered approach to a learner-centered one becomes necessary to allow individuality through the learning process and to think about learning strategies in general. In this paper a first approach of a Personal Learning Environment (PLE is described. The technological concept is pointed out as well as a study about the graphical user-interface done at Graz University of Technology (TU Graz. It can be concluded that PLEs are the next generation environments, which help to improve the learning and teaching behavior

  16. Creating sustainable empowering learning environments through ...

    African Journals Online (AJOL)

    ... as these impede optimal learning especially among rural and immigrant communities in South Africa, Canada and the world over. The primary focus of all papers herein therefore is on the creation of sustainable empowering learning environments through engaged scholarship spearheaded by the university.

  17. Create a good learning environment and motivate active learning enthusiasm

    Science.gov (United States)

    Bi, Weihong; Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Liu, Qiang; Jin, Wa

    2017-08-01

    In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.

  18. Students’ digital learning environments

    DEFF Research Database (Denmark)

    Caviglia, Francesco; Dalsgaard, Christian; Davidsen, Jacob

    2018-01-01

    used tools in the students’ digital learning environments are Facebook, Google Drive, tools for taking notes, and institutional systems. Additionally, the study shows that the tools meet some very basic demands of the students in relation to collaboration, communication, and feedback. Finally...

  19. Invited Reaction: Influences of Formal Learning, Personal Learning Orientation, and Supportive Learning Environment on Informal Learning

    Science.gov (United States)

    Cseh, Maria; Manikoth, Nisha N.

    2011-01-01

    As the authors of the preceding article (Choi and Jacobs, 2011) have noted, the workplace learning literature shows evidence of the complementary and integrated nature of formal and informal learning in the development of employee competencies. The importance of supportive learning environments in the workplace and of employees' personal learning…

  20. Mobile Learning for Higher Education in Problem-Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn

    2011-01-01

    This paper describes the PhD project on Mobile Learning for Higher Education in Problem-Based Learning Environment which aims to understand how students gain benefit from using mobile devices in the aspect of project work collaboration. It demonstrates research questions, theoretical perspective...

  1. What students really learn: contrasting medical and nursing students' experiences of the clinical learning environment.

    Science.gov (United States)

    Liljedahl, Matilda; Boman, Lena Engqvist; Fält, Charlotte Porthén; Bolander Laksov, Klara

    2015-08-01

    This paper explores and contrasts undergraduate medical and nursing students' experiences of the clinical learning environment. Using a sociocultural perspective of learning and an interpretative approach, 15 in-depth interviews with medical and nursing students were analysed with content analysis. Students' experiences are described using a framework of 'before', 'during' and 'after' clinical placements. Three major themes emerged from the analysis, contrasting the medical and nursing students' experiences of the clinical learning environment: (1) expectations of the placement; (2) relationship with the supervisor; and (3) focus of learning. The findings offer an increased understanding of how medical and nursing students learn in the clinical setting; they also show that the clinical learning environment contributes to the socialisation process of students not only into their future profession, but also into their role as learners. Differences between the two professions should be taken into consideration when designing interprofessional learning activities. Also, the findings can be used as a tool for clinical supervisors in the reflection on how student learning in the clinical learning environment can be improved.

  2. Enhancing the Learning Environment by Learning all the Students' Names

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    the method to learn all the students' names enhances the learning environment substantially.  ReferencesCranton, Patricia (2001) Becoming an authentic teacher in higher education. Malabar, Florida: Krieger Pub. Co.Wiberg, Merete (2011): Personal email communication June 22, 2011.Woodhead, M. M. and Baddeley......Short abstract This paper describes how the teaching environment can be enhanced significantly by a simple method: learning the names of all the students. The method is time-efficient: In a course with 33 students I used 65 minutes in total. My own view of the effect was confirmed in a small study......: The students felt more valued, secure and respected. They also made an effort to learn each other's names. Long abstract In high school teachers know the students' names very soon - anything else is unthinkable (Wiberg, 2011). Not so in universities where knowing the names of all the students is the exception...

  3. Blended learning in paediatric emergency medicine: preliminary analysis of a virtual learning environment.

    Science.gov (United States)

    Spedding, Ruth; Jenner, Rachel; Potier, Katherine; Mackway-Jones, Kevin; Carley, Simon

    2013-04-01

    Paediatric emergency medicine (PEM) currently faces many competing educational challenges. Recent changes to the working patterns have made the delivery of effective teaching to trainees extremely difficult. We developed a virtual learning environment, on the basis of socioconstructivist principles, which allows learning to take place regardless of time or location. The aim was to evaluate the effectiveness of a blended e-learning approach for PEM training. We evaluated the experiences of ST3 trainees in PEM using a multimodal approach. We classified and analysed message board discussions over a 6-month period to look for evidence of practice change and learning. We conducted semistructured qualitative interviews with trainees approximately 5 months after they completed the course. Trainees embraced the virtual learning environment and had positive experiences of the blended approach to learning. Socioconstructivist learning did take place through the use of message boards on the virtual learning environment. Despite their initial unfamiliarity with the online learning system, the participants found it easy to access and use. The participants found the learning relevant and there was an overlap between shop floor learning and the online content. Clinical discussion was often led by trainees on the forums and these were described as enjoyable and informative. A blended approach to e-learning in basic PEM is effective and enjoyable to trainees.

  4. Do sophisticated epistemic beliefs predict meaningful learning? Findings from a structural equation model of undergraduate biology learning

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-10-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely 'multiple-source,' 'uncertainty,' 'development,' and 'justification.' COLB is further divided into 'constructivist' and 'reproductive' conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students' epistemic beliefs of 'uncertainty' and 'justification' in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and 'uncertainty' was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that 'uncertainty' predicted surface strategies through the mediation of 'reproductive' conceptions; and the relationship between 'justification' and deep strategies was mediated by 'constructivist' COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students' learning.

  5. A Preliminary Investigation of Self-Directed Learning Activities in a Non-Formal Blended Learning Environment

    Science.gov (United States)

    Schwier, Richard A.; Morrison, Dirk; Daniel, Ben K.

    2009-01-01

    This research considers how professional participants in a non-formal self-directed learning environment (NFSDL) made use of self-directed learning activities in a blended face-to-face and on line learning professional development course. The learning environment for the study was a professional development seminar on teaching in higher education…

  6. The new learning environment is personal

    NARCIS (Netherlands)

    De Vries, P.

    2013-01-01

    In a traditional sense the learning environment is qualified as the institutional setting for the teaching and learning to take place. This comprises the students, the teachers, management, the services and all the buildings, the classrooms, the equipment, the tools and laboratories that constitute

  7. Technology-supported environments for learning through cognitive conflict

    Directory of Open Access Journals (Sweden)

    Anne McDougall

    2002-12-01

    Full Text Available This paper examines ways in which the idea of cognitive conflict is used to facilitate learning, looking at the design and use of learning environments for this purpose. Drawing on previous work in science education and educational computing, three approaches to the design of learning environments utilizing cognitive conflict are introduced. These approaches are described as confrontational, guiding and explanatory, based on the level of the designer's concern with learners' pre-existing understanding, the extent of modification to the learner's conceptual structures intended by the designer, and the directness of steering the learner to the desired understanding. The examples used to illustrate the three approaches are taken from science education, specifically software for learning about Newtonian physics; it is contended however that the argument of the paper applies more broadly, to learning environments for many curriculum areas for school levels and in higher education.

  8. Adult learners in a novel environment use prestige-biased social learning.

    Science.gov (United States)

    Atkisson, Curtis; O'Brien, Michael J; Mesoudi, Alex

    2012-08-13

    Social learning (learning from others) is evolutionarily adaptive under a wide range of conditions and is a long-standing area of interest across the social and biological sciences. One social-learning mechanism derived from cultural evolutionary theory is prestige bias, which allows a learner in a novel environment to quickly and inexpensively gather information as to the potentially best teachers, thus maximizing his or her chances of acquiring adaptive behavior. Learners provide deference to high-status individuals in order to ingratiate themselves with, and gain extended exposure to, that individual. We examined prestige-biased social transmission in a laboratory experiment in which participants designed arrowheads and attempted to maximize hunting success, measured in caloric return. Our main findings are that (1) participants preferentially learned from prestigious models (defined as those models at whom others spent longer times looking), and (2) prestige information and success-related information were used to the same degree, even though the former was less useful in this experiment than the latter. We also found that (3) participants were most likely to use social learning over individual (asocial) learning when they were performing poorly, in line with previous experiments, and (4) prestige information was not used more often following environmental shifts, contrary to predictions.  These results support previous discussions of the key role that prestige-biased transmission plays in social learning.

  9. Mobile e-Learning for Next Generation Communication Environment

    Science.gov (United States)

    Wu, Tin-Yu; Chao, Han-Chieh

    2008-01-01

    This article develops an environment for mobile e-learning that includes an interactive course, virtual online labs, an interactive online test, and lab-exercise training platform on the fourth generation mobile communication system. The Next Generation Learning Environment (NeGL) promotes the term "knowledge economy." Inter-networking…

  10. Beyond the Biology: A Systematic Investigation of Noncontent Instructor Talk in an Introductory Biology Course.

    Science.gov (United States)

    Seidel, Shannon B; Reggi, Amanda L; Schinske, Jeffrey N; Burrus, Laura W; Tanner, Kimberly D

    2015-01-01

    Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create. © 2015 S. B. Seidel et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Social Networks as Learning Environments for Higher Education

    Directory of Open Access Journals (Sweden)

    J.A.Cortés

    2014-09-01

    Full Text Available Learning is considered as a social activity, a student does not learn only of the teacher and the textbook or only in the classroom, learn also from many other agents related to the media, peers and society in general. And since the explosion of the Internet, the information is within the reach of everyone, is there where the main area of opportunity in new technologies applied to education, as well as taking advantage of recent socialization trends that can be leveraged to improve not only informing of their daily practices, but rather as a tool that explore different branches of education research. One can foresee the future of higher education as a social learning environment, open and collaborative, where people construct knowledge in interaction with others, in a comprehensive manner. The mobility and ubiquity that provide mobile devices enable the connection from anywhere and at any time. In modern educational environments can be expected to facilitate mobile devices in the classroom expansion in digital environments, so that students and teachers can build the teaching-learning process collectively, this partial derivative results in the development of draft research approved by the CONADI in “Universidad Cooperativa de Colombia”, "Social Networks: A teaching strategy in learning environments in higher education."

  12. Designing Virtual Learning Environments

    DEFF Research Database (Denmark)

    Veirum, Niels Einar

    2003-01-01

    The main objective of this working paper is to present a conceptual model for media integrated communication in virtual learning environments. The model for media integrated communication is very simple and identifies the necessary building blocks for virtual place making in a synthesis of methods...

  13. Students’ perception of the learning environment in a distributed medical programme

    Directory of Open Access Journals (Sweden)

    Kiran Veerapen

    2010-09-01

    Full Text Available Background : The learning environment of a medical school has a significant impact on students’ achievements and learning outcomes. The importance of equitable learning environments across programme sites is implicit in distributed undergraduate medical programmes being developed and implemented. Purpose : To study the learning environment and its equity across two classes and three geographically separate sites of a distributed medical programme at the University of British Columbia Medical School that commenced in 2004. Method : The validated Dundee Ready Educational Environment Survey was sent to all students in their 2nd and 3rd year (classes graduating in 2009 and 2008 of the programme. The domains of the learning environment surveyed were: students’ perceptions of learning, students’ perceptions of teachers, students’ academic self-perceptions, students’ perceptions of the atmosphere, and students’ social self-perceptions. Mean scores, frequency distribution of responses, and inter- and intrasite differences were calculated. Results : The perception of the global learning environment at all sites was more positive than negative. It was characterised by a strongly positive perception of teachers. The work load and emphasis on factual learning were perceived negatively. Intersite differences within domains of the learning environment were more evident in the pioneer class (2008 of the programme. Intersite differences consistent across classes were largely related to on-site support for students. Conclusions : Shared strengths and weaknesses in the learning environment at UBC sites were evident in areas that were managed by the parent institution, such as the attributes of shared faculty and curriculum. A greater divergence in the perception of the learning environment was found in domains dependent on local arrangements and social factors that are less amenable to central regulation. This study underlines the need for ongoing

  14. Students' perception of the learning environment in a distributed medical programme.

    Science.gov (United States)

    Veerapen, Kiran; McAleer, Sean

    2010-09-24

    The learning environment of a medical school has a significant impact on students' achievements and learning outcomes. The importance of equitable learning environments across programme sites is implicit in distributed undergraduate medical programmes being developed and implemented. To study the learning environment and its equity across two classes and three geographically separate sites of a distributed medical programme at the University of British Columbia Medical School that commenced in 2004. The validated Dundee Ready Educational Environment Survey was sent to all students in their 2nd and 3rd year (classes graduating in 2009 and 2008) of the programme. The domains of the learning environment surveyed were: students' perceptions of learning, students' perceptions of teachers, students' academic self-perceptions, students' perceptions of the atmosphere, and students' social self-perceptions. Mean scores, frequency distribution of responses, and inter- and intrasite differences were calculated. The perception of the global learning environment at all sites was more positive than negative. It was characterised by a strongly positive perception of teachers. The work load and emphasis on factual learning were perceived negatively. Intersite differences within domains of the learning environment were more evident in the pioneer class (2008) of the programme. Intersite differences consistent across classes were largely related to on-site support for students. Shared strengths and weaknesses in the learning environment at UBC sites were evident in areas that were managed by the parent institution, such as the attributes of shared faculty and curriculum. A greater divergence in the perception of the learning environment was found in domains dependent on local arrangements and social factors that are less amenable to central regulation. This study underlines the need for ongoing comparative evaluation of the learning environment at the distributed sites and

  15. Effects of prior knowledge on learning from different compositions of representations in a mobile learning environment

    NARCIS (Netherlands)

    T.-C. Liu (Tzu-Chien); Y.-C. Lin (Yi-Chun); G.W.C. Paas (Fred)

    2014-01-01

    textabstractTwo experiments examined the effects of prior knowledge on learning from different compositions of multiple representations in a mobile learning environment on plant leaf morphology for primary school students. Experiment 1 compared the learning effects of a mobile learning environment

  16. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  17. An analysis of learning in an online biology course for teachers and teacher candidates: A mixed methods approach

    Science.gov (United States)

    Lebec, Michael Thomas

    Due to discipline specific shortages, web-based learning has been proposed as a convenient way to upgrade the content knowledge of instructors interested in learning to teach science. Despite quantitative evidence that web-based instruction is equivalent to traditional methods, questions remain regarding its use. The efficiency and practicality of this approach with teachers in particular has not been extensively studied. This investigation examines learning in an online biology course designed to help teachers prepare for science certification exams. Research questions concern flow teachers learn biology in the online environment and how this setting influences the learning process. Quantitative and qualitative methodologies are employed in an attempt to provide a more complete perspective than typical studies of online learning. Concept maps, tests, and online discussion transcripts are compared as measures of assimilated knowledge, while interviews reflect participants' views on the course. Findings indicate that participants experienced gains in declarative knowledge, but little improvement with respect to conditional knowledge. Qualitative examination of concept maps demonstrates gaps in participants' understandings of key course ideas. Engagement in the use of online resources varied according to participants' attitudes towards online learning. Subjects also reported a lack of motivation to fully engage in the course due to busy teaching schedules and the absence of accountability.

  18. Early results of experiments with responsive open learning environments

    OpenAIRE

    Friedrich, M.; Wolpers, M.; Shen, R.; Ullrich, C.; Klamma, R.; Renzel, D.; Richert, A.; Heiden, B. von der

    2011-01-01

    Responsive open learning environments (ROLEs) are the next generation of personal learning environments (PLEs). While PLEs rely on the simple aggregation of existing content and services mainly using Web 2.0 technologies, ROLEs are transforming lifelong learning by introducing a new infrastructure on a global scale while dealing with existing learning management systems, institutions, and technologies. The requirements engineering process in highly populated test-beds is as important as the t...

  19. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  20. Interactive learning environments to support independent learning: the impact of discernability of embedded support devices

    NARCIS (Netherlands)

    Martens, Rob; Valcke, Martin; Portier, Stanley

    2017-01-01

    In this article the effectivity of prototypes of interactive learning environments (ILE) is investigated. These computer-based environments are used for independent learning. In the learning materials, represented in the prototypes, a clear distinction is made between the basic content and embedded

  1. A Collaborative Model for Ubiquitous Learning Environments

    Science.gov (United States)

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon

    2016-01-01

    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  2. Learning Design for a Successful Blended E-learning Environment: Cultural Dimensions

    OpenAIRE

    Al-Huwail, N.; Gulf Univ. for Science & Technology; Al-Sharhan, S.; Gulf Univ. for Science & Technology; Al-Hunaiyyan, A.; Gulf Univ. for Science & Technology

    2007-01-01

    Blended e-learning is becoming an educational issue especially with the new development of e-learning technology and globalization. This paper presents a new framework for delivery environment in blended e-learning. In addition, new concepts related to the learning strategies and multimedia design in blended e-learning are introduced. The work focuses on the critical cultural factors that affect a blended elearning system. Since it is common that good systems may fail due to cultural issues, ...

  3. Students’ digital learning environments

    DEFF Research Database (Denmark)

    Caviglia, Francesco; Dalsgaard, Christian; Davidsen, Jacob

    2018-01-01

    of the study are 1) to provide an overview of tools for students’ study activities, 2) to identify the most used and most important tools for students and 3) to discover which activities the tools are used for. The empirical study reveals that the students have a varied use of digital media. Some of the most......, the study shows that most of the important tools are not related to the systems provided by the educational institutions. Based on the study, the paper concludes with a discussion of how institutional systems connect to the other tools in the students’ practices, and how we can qualify students’ digital......The objective of the paper is to examine the nature of students’ digital learning environments to understand the interplay of institutional systems and tools that are managed by the students themselves. The paper is based on a study of 128 students’ digital learning environments. The objectives...

  4. Practical Applications and Experiences in K-20 Blended Learning Environments

    Science.gov (United States)

    Kyei-Blankson, Lydia, Ed.; Ntuli, Esther, Ed.

    2014-01-01

    Learning environments continue to change considerably and is no longer confined to the face-to-face classroom setting. As learning options have evolved, educators must adopt a variety of pedagogical strategies and innovative technologies to enable learning. "Practical Applications and Experiences in K-20 Blended Learning Environments"…

  5. Distributed Scaffolding: Synergy in Technology-Enhanced Learning Environments

    Science.gov (United States)

    Ustunel, Hale H.; Tokel, Saniye Tugba

    2018-01-01

    When technology is employed challenges increase in learning environments. Kim et al. ("Sci Educ" 91(6):1010-1030, 2007) presented a pedagogical framework that provides a valid technology-enhanced learning environment. The purpose of the present design-based study was to investigate the micro context dimension of this framework and to…

  6. Digital Communication Applications in the Online Learning Environment

    Science.gov (United States)

    Lambeth, Krista Jill

    2011-01-01

    Scope and method of study. The purpose of this study was for the researcher to obtain a better understanding of the online learning environment, to explore the various ways online class instructors have incorporated digital communication applications to try and provide learner-centered online learning environments, and to examine students'…

  7. Biologically-inspired Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the `biologically-inspired' approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks. We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  8. Drawing-to-Learn: A Framework for Using Drawings to Promote Model-Based Reasoning in Biology

    Science.gov (United States)

    Quillin, Kim; Thomas, Stephen

    2015-01-01

    The drawing of visual representations is important for learners and scientists alike, such as the drawing of models to enable visual model-based reasoning. Yet few biology instructors recognize drawing as a teachable science process skill, as reflected by its absence in the Vision and Change report’s Modeling and Simulation core competency. Further, the diffuse research on drawing can be difficult to access, synthesize, and apply to classroom practice. We have created a framework of drawing-to-learn that defines drawing, categorizes the reasons for using drawing in the biology classroom, and outlines a number of interventions that can help instructors create an environment conducive to student drawing in general and visual model-based reasoning in particular. The suggested interventions are organized to address elements of affect, visual literacy, and visual model-based reasoning, with specific examples cited for each. Further, a Blooming tool for drawing exercises is provided, as are suggestions to help instructors address possible barriers to implementing and assessing drawing-to-learn in the classroom. Overall, the goal of the framework is to increase the visibility of drawing as a skill in biology and to promote the research and implementation of best practices. PMID:25713094

  9. Motivating Students to Learn Biology Vocabulary with Wikipedia

    Directory of Open Access Journals (Sweden)

    Boriana Marintcheva

    2012-02-01

    Full Text Available Timely learning of specialized science vocabulary is critical for building a solid knowledge base in any scientific discipline. To motivate students to dedicate time and effort mastering biology vocabulary, I have designed a vocabulary exercise utilizing the popular web encyclopedia Wikipedia. The exercise creates an opportunity for students to connect the challenge of vocabulary learning to a prior positive experience of self-guided learning using a content source they are familiar and comfortable with.

  10. Biota and biological principles of the aquatic environment

    International Nuclear Information System (INIS)

    Greeson, P.E.

    1982-01-01

    The first of several compilations of briefing papers on water quality prepared by the U.S. Geological Survey is presented. Each briefing paper is prepared in a simple, nontechnical, easy to understand manner. This U.S. Geological Survey Circular contains papers on selected biota and biological principles of the aquatic environment. Briefing papers are included on Why biology in water quality studies , Stream biology, Phytoplankton, Periphyton, Drift organisms in streams, Family Chironomidae (Diptera), Influences of water temperature on aquatic biota, and Stream channelization: Effects on stream fauna

  11. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  12. Student-Centred Learning Environments: An Investigation into Student Teachers' Instructional Preferences and Approaches to Learning

    Science.gov (United States)

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien; Parmentier, Emmeline; Vanderbruggen, Anne

    2016-01-01

    The use of student-centred learning environments in education has increased. This study investigated student teachers' instructional preferences for these learning environments and how these preferences are related to their approaches to learning. Participants were professional Bachelor students in teacher education. Instructional preferences and…

  13. Preparing Teachers for Emerging Blended Learning Environments

    Science.gov (United States)

    Oliver, Kevin M.; Stallings, Dallas T.

    2014-01-01

    Blended learning environments that merge learning strategies, resources, and modes have been implemented in higher education settings for nearly two decades, and research has identified many positive effects. More recently, K-12 traditional and charter schools have begun to experiment with blended learning, but to date, research on the effects of…

  14. Design and validation of general biology learning program based on scientific inquiry skills

    Science.gov (United States)

    Cahyani, R.; Mardiana, D.; Noviantoro, N.

    2018-03-01

    Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.

  15. Digital Learning Environments: New possibilities and opportunities

    Directory of Open Access Journals (Sweden)

    Otto Peters

    2000-06-01

    Full Text Available This paper deals with the general problem whether and, if so, how far the impact of the digitised learning environment on our traditional distance education will change the way in which teachers teach and learners learn. Are the dramatic innovations a menace to established ways of learning and teaching or are they the panacea to overcome some of the difficulties of our system of higher learning and to solve some of our educational problems caused by the big and far-reaching educational paradigm shift? This paper will not deal with technical or technological achievements in the field of information and communication which are, of course, revolutionary and to be acknowledged and admired. Rather, the digital learning environment will be analysed from a pedagogical point of view in order to find out what exactly are the didactic possibilities and opportunities and what are its foreseeable disadvantages.

  16. Learning in the e-environment: new media and learning for the future

    Directory of Open Access Journals (Sweden)

    Milan Matijević

    2015-03-01

    Full Text Available We live in times of rapid change in all areas of science, technology, communication and social life. Every day we are asked to what extent school prepares us for these changes and for life in a new, multimedia environment. Children and adolescents spend less time at school or in other settings of learning than they do outdoors or within other social communities (family, clubs, societies, religious institutions and the like. Experts must constantly inquire about what exactly influences learning and development in our rich media environment. The list of the most important life competences has significantly changed and expanded since the last century. Educational experts are attempting to predict changes in the content and methodology of learning at the beginning of the 21st century. Answers are sought to key questions such as: what should one learn; how should one learn; where should one learn; why should one learn; and how do these answers relate to the new learning environment? In his examination of the way children and young people learn and grow up, the author places special attention on the relationship between personal and non-personal communication (e.g. the internet, mobile phones and different types of e-learning. He deals with today's questions by looking back to some of the more prominent authors and studies of the past fifty years that tackled identical or similar questions (Alvin Toffler, Ivan Illich, George Orwell, and the members of the Club of Rome. The conclusion reached is that in today's world of rapid and continuous change, it is much more crucial than in the last century, both, to be able to learn, and to adapt to learning with the help of new media.

  17. Gendered learning environments in managerial work

    OpenAIRE

    Gustavsson, Maria; Fogelberg Eriksson, Anna

    2010-01-01

    The aim is to investigate female and male managers’ learning environments with particular focus on their opportunities for and barriers to learning and career development in the managerial work of a male-dominated industrial company. In the case study 42 managers, 15 women and 27 men in the company were interviewed. The findings demonstrate that the male managers were provided with significantly richer opportunities to participate in activities conducive to learning and career development tha...

  18. Education for Knowledge Society: Learning and Scientific Innovation Environment

    Directory of Open Access Journals (Sweden)

    Alexander O. Karpov

    2017-11-01

    Full Text Available Cognitive-active learning research-type environment is the fundamental component of the education system for the knowledge society. The purpose of the research is the development of conceptual bases and a constructional model of a cognitively active learning environment that stimulates the creation of new knowledge and its socio-economic application. Research methods include epistemic-didactic analysis of empirical material collected as a result of the study of research environments at schools and universities; conceptualization and theoretical modeling of the cognitively active surrounding, which provides an infrastructure of the research-type cognitive process. The empirical material summarized in this work was collected in the research-cognitive space of the “Step into the Future” program, which is one of the most powerful systems of research education in present-day Russia. The article presents key points of the author's concept of generative learning environments and a model of learning and scientific innovation environment implemented at Russian schools and universities.

  19. From Personal to Social: Learning Environments that Work

    Science.gov (United States)

    Camacho, Mar; Guilana, Sonia

    2011-01-01

    VLE (Virtual Learning Environments) are rapidly falling short to meet the demands of a networked society. Web 2.0 and social networks are proving to offer a more personalized, open environment for students to learn formally as they are already doing informally. With the irruption of social media into society, and therefore, education, many voices…

  20. Using Interactive Animations to Enhance Teaching, Learning, and Retention of Respiration Pathway Concepts in Face-to-Face and Online High School, Undergraduate, and Continuing Education Learning Environments

    Directory of Open Access Journals (Sweden)

    Sederick C. Rice

    2013-02-01

    Full Text Available One major tool set teachers/instructors can use is online interactive animations, which presents content in a way that helps pique students' interest and differentiates instructional content.  The Virtual Cell Animation Collections (VCAC, developed from the Molecular and Cellular Biology Learning Center, has developed a series of online interactive animations that provide teacher/instructors and students with immersive learning tools for studying and understanding respiration processes.  These virtual tools work as powerful instructional devices to help explain and reinforce concepts of metabolic pathways that would normally be taught traditionally using static textbook pages or by neumonic flashcards. High school, undergraduate, and continuing education students of today learn and retain knowledge differently than their predecessors.  Now teachers face new challenges and must engage and assess students, within a small window during classroom instruction, but also have the skills to provide useful content in distance learning environments.  Educators have to keep up with changing trends in education as a result of technological advances, higher student/teacher ratios, and the influence of social media on education. It is critical for teachers/instructors to be able to present content that not only keeps students interested but also helps bridge learning gaps. VCAC provides high school, undergraduate, and continuing education biology or life science teachers/instructors with classroom strategies and tools for introducing respiration content through free open source online resources. VCAC content supports the development of more inquiry-based classroom and distance-learning environments that can be facilitated by teachers/instructors, which helps improve retention of important respiration subject content and problem-based learning skills for students.

  1. Cooperative learning in industrial-sized biology classes.

    Science.gov (United States)

    Armstrong, Norris; Chang, Shu-Mei; Brickman, Marguerite

    2007-01-01

    This study examined the impact of cooperative learning activities on student achievement and attitudes in large-enrollment (>250) introductory biology classes. We found that students taught using a cooperative learning approach showed greater improvement in their knowledge of course material compared with students taught using a traditional lecture format. In addition, students viewed cooperative learning activities highly favorably. These findings suggest that encouraging students to work in small groups and improving feedback between the instructor and the students can help to improve student outcomes even in very large classes. These results should be viewed cautiously, however, until this experiment can be replicated with additional faculty. Strategies for potentially improving the impact of cooperative learning on student achievement in large courses are discussed.

  2. Beyond the Biology: A Systematic Investigation of Noncontent Instructor Talk in an Introductory Biology Course

    Science.gov (United States)

    Seidel, Shannon B.; Reggi, Amanda L.; Schinske, Jeffrey N.; Burrus, Laura W.; Tanner, Kimberly D.

    2015-01-01

    Instructors create classroom environments that have the potential to impact learning by affecting student motivation, resistance, and self-efficacy. However, despite the critical importance of the learning environment in increasing conceptual understanding, little research has investigated what instructors say and do to create learning environments in college biology classrooms. We systematically investigated the language used by instructors that does not directly relate to course content and defined the construct of Instructor Talk. Transcripts were generated from a semester-long, cotaught introductory biology course (n = 270 students). Transcripts were analyzed using a grounded theory approach to identify emergent categories of Instructor Talk. The five emergent categories from analysis of more than 600 quotes were, in order of prevalence, 1) Building the Instructor/Student Relationship, 2) Establishing Classroom Culture, 3) Explaining Pedagogical Choices, 4) Sharing Personal Experiences, and 5) Unmasking Science. Instances of Instructor Talk were present in every class session analyzed and ranged from six to 68 quotes per session. The Instructor Talk framework is a novel research variable that could yield insights into instructor effectiveness, origins of student resistance, and methods for overcoming stereotype threat. Additionally, it holds promise in professional development settings to assist instructors in reflecting on the learning environments they create. PMID:26582237

  3. Challenges and Opportunities for Learning Biology in Distance-Based Settings

    Science.gov (United States)

    Hallyburton, Chad L.; Lunsford, Eddie

    2013-01-01

    The history of learning biology through distance education is documented. A review of terminology and unique problems associated with biology instruction is presented. Using published research and their own teaching experience, the authors present recommendations and best practices for managing biology in distance-based formats. They offer ideas…

  4. Opportunities and obstacles for deep learning in biology and medicine

    Science.gov (United States)

    2018-01-01

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems—patient classification, fundamental biological processes and treatment of patients—and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. PMID:29618526

  5. Opportunities and obstacles for deep learning in biology and medicine.

    Science.gov (United States)

    Ching, Travers; Himmelstein, Daniel S; Beaulieu-Jones, Brett K; Kalinin, Alexandr A; Do, Brian T; Way, Gregory P; Ferrero, Enrico; Agapow, Paul-Michael; Zietz, Michael; Hoffman, Michael M; Xie, Wei; Rosen, Gail L; Lengerich, Benjamin J; Israeli, Johnny; Lanchantin, Jack; Woloszynek, Stephen; Carpenter, Anne E; Shrikumar, Avanti; Xu, Jinbo; Cofer, Evan M; Lavender, Christopher A; Turaga, Srinivas C; Alexandari, Amr M; Lu, Zhiyong; Harris, David J; DeCaprio, Dave; Qi, Yanjun; Kundaje, Anshul; Peng, Yifan; Wiley, Laura K; Segler, Marwin H S; Boca, Simina M; Swamidass, S Joshua; Huang, Austin; Gitter, Anthony; Greene, Casey S

    2018-04-01

    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network's prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine. © 2018 The Authors.

  6. Virtual Learning Environments and Learning Forms -experiments in ICT-based learning

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten

    2004-01-01

    This paper report the main results of a three year experiment in ICT-based distance learning. The results are based on a full scale experiment in the education, Master of Industrial Information Technology (MII) and is one of many projects deeply rooted in the project Virtual Learning Environments...... and Learning forms (ViLL). The experiment was to transfer a well functioning on-campus engineering program based on project organized collaborative learning to a technology supported distance education program. After three years the experiments indicate that adjustments are required in this transformation....... The main problem is that we do not find the same self regulatoring learning effect in the group work among the off-campus students as is the case for on-campus students. Based on feedback from evaluation questionnaires and discussions with the students didactic adjustments have been made. The revised...

  7. Ethnography in the Danish Veterinary Learning Environment

    Directory of Open Access Journals (Sweden)

    Camilla Kirketerp Nielsen

    2015-11-01

    Full Text Available The overall objective of this project is research-based development, implementation and evaluation of a game-based learning concept to be used in the veterinary education. Herd visits and animal contact are essential for the development of veterinary competences and skills during education. Yet veterinary students have little occasion to reach/attain a proper level of confidence in their own skills/abilities, as they have limited “training-facilities” (Kneebone & Baillie, 2008. One possible solution mightbe to provide a safe, virtual environment (game-based where students could practise interdisciplinary clinical skills in an easily-accessible, interactive setting. A playable demo using Classical Swine Fever in a pig herd as an example has been produced for this purpose. In order totailor the game concept to the specific veterinary learning environment and to ensure compliance with both learning objectives and the actual learning processes/procedures of the veterinary students, the project contains both a developmental aspect (game development and an exploration of the academic (scholastic and profession (practice oriented learning context. The initial phase of the project was a preliminary exploration of the actual learning context, providing an important starting point for the upcoming phase in which I will concentrate on research-based development, implementation and evaluation of a game-based virtual environment in this course context. In the academic (scholastic and profession (practice oriented learning context of a veterinary course in Herd Health Management (Pig module,ethnographic studies have been conducted by using multiple data collection methods; participant observation, spontaneous dialogues and interviews (Borgnakke, 1996; Hammersley & Atkinson, 2007. All courserelated activities in the different learning spaces (commercial pig herds, auditoriums, post-mortem examinations, independent group work were followed.This paper will

  8. Development and Assessment of Service Learning Projects in General Biology

    Science.gov (United States)

    Felzien, Lisa; Salem, Laura

    2008-01-01

    Service learning involves providing service to the community while requiring students to meet learning goals in a specific course. A service learning project was implemented in a general biology course at Rockhurst University to involve students in promoting scientific education in conjunction with community partner educators. Students were…

  9. A concept for biological valuation in the marine environment

    Directory of Open Access Journals (Sweden)

    Eric Willem Maria Stienen

    2007-03-01

    Full Text Available In order to develop management strategies for sustainable useand conservation in the marine environment, reliable and meaningful,but integrated ecological information is needed. Biological valuationmaps that compile and summarize all available biological andecological information for a study area, and that allocate anoverall biological value to subzones, can be used as baselinemaps for future spatial planning at sea. This paper providesa concept for marine biological valuation which is based on aliterature review of existing valuation criteria and the consensusreached by a discussion group of experts.

  10. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  11. High School Students' Epistemological Beliefs, Conceptions of Learning, and Self-Efficacy for Learning Biology: A Study of Their Structural Models

    Science.gov (United States)

    Sadi, Özlem; Dagyar, Miray

    2015-01-01

    The current work reveals the data of the study which examines the relationships among epistemological beliefs, conceptions of learning, and self-efficacy for biology learning with the help of the Structural Equation Modeling. Three questionnaires, the Epistemological Beliefs, the Conceptions of Learning Biology and the Self-efficacy for Learning…

  12. Hipatia: a hypermedia learning environment in mathematics

    Directory of Open Access Journals (Sweden)

    Marisol Cueli

    2016-01-01

    Full Text Available Literature revealed the benefits of different instruments for the development of mathematical competence, problem solving, self-regulated learning, affective-motivational aspects and intervention in students with specific difficulties in mathematics. However, no one tool combined all these variables. The aim of this study is to present and describe the design and development of a hypermedia tool, Hipatia. Hypermedia environments are, by definición, adaptive learning systems, which are usually a web-based application program that provide a personalized learning environment. This paper describes the principles on which Hipatia is based as well as a review of available technologies developed in different academic subjects. Hipatia was created to boost self-regulated learning, develop specific math skills, and promote effective problem solving. It was targeted toward fifth and sixth grade students with and without learning difficulties in mathematics. After the development of the tool, we concluded that it aligned well with the logic underlying the principles of self-regulated learning. Future research is needed to test the efficacy of Hipatia with an empirical methodology.

  13. Virtual language learning environments: the standardization of evaluation

    Directory of Open Access Journals (Sweden)

    Francesca Romero Forteza

    2014-03-01

    Full Text Available Nowadays there are many approaches aimed at helping learners acquire knowledge through the Internet. Virtual Learning Environments (VLE facilitate the acquisition and practice of skills, but some of these learning platforms are not evaluated or do not follow a standard that guarantees the quality of the tasks involved. In this paper, we set out a proposal for the standardization of the evaluation of VLEs available on the World Wide Web. Thus, the main objective of this study is to establish an evaluation template with which to test whether a VLE is appropriate for computer-assisted language learning (CALL. In the methodology section, a learning platform is analysed and tested to establish the characteristics learning platforms must have. Having established the design of the template for language learning environments, we concluded that a VLE must be versatile enough for application with different language learning and teaching approaches.

  14. A Semi-Open Learning Environment for Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Enrique Sucar

    2007-05-01

    Full Text Available We have developed a semi-open learning environment for mobile robotics, to learn through free exploration, but with specific performance criteria that guides the learning process. The environment includes virtual and remote robotics laboratories, and an intelligent virtual assistant the guides the students using the labs. A series of experiments in the virtual and remote labs are designed to gradually learn the basics of mobile robotics. Each experiment considers exploration and performance aspects, which are evaluated by the virtual assistant, giving feedback to the user. The virtual laboratory has been incorporated to a course in mobile robotics and used by a group of students. A preliminary evaluation shows that the intelligent tutor combined with the virtual laboratory can improve the learning process.

  15. Gendered Learning Environments in Managerial Work

    Science.gov (United States)

    Gustavsson, Maria; Eriksson, Anna Fogelberg

    2010-01-01

    The aim is to investigate female and male managers' learning environments with particular focus on their opportunities for and barriers to learning and career development in the managerial work of a male-dominated industrial company. In the case study 42 managers, 15 women and 27 men in the company were interviewed. The findings demonstrate that…

  16. Appreciation of learning environment and development of higher-order learning skills in a problem-based learning medical curriculum.

    Science.gov (United States)

    Mala-Maung; Abdullah, Azman; Abas, Zoraini W

    2011-12-01

    This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.

  17. Nigerian Physiotherapy Clinical Students' Perception of Their Learning Environment Measured by the Dundee Ready Education Environment Measure Inventory

    Science.gov (United States)

    Odole, Adesola C.; Oyewole, Olufemi O.; Ogunmola, Oluwasolape T.

    2014-01-01

    The identification of the learning environment and the understanding of how students learn will help teacher to facilitate learning and plan a curriculum to achieve the learning outcomes. The purpose of this study was to investigate undergraduate physiotherapy clinical students' perception of University of Ibadan's learning environment. Using the…

  18. Students' Conception of Learning Environment and Their Approach to Learning and Its Implication on Quality Education

    Science.gov (United States)

    Belaineh, Matheas Shemelis

    2017-01-01

    Quality of education in higher institutions can be affected by different factors. It partly rests on the learning environment created by teachers and the learning approach students are employing during their learning. The main purpose of this study is to examine the learning environment at Mizan Tepi University from students' perspective and their…

  19. Students' perceptions of learning environment in Guilan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mahdokht Taheri

    2013-05-01

    Full Text Available  Background and purpose: There is an increasing interest and concern regarding the role of learning environment in undergraduate medical education in recent years. Educational environment is one of the most important factors determining the success of an effective curriculum. The quality of educational environment has been identified to be crucial for effective learning.we compared the perceptions of Basic sciences students and clinical phase regarding the learning environment and also to identify the gender related differences in their perceptions.Method: In this study, the Dundee Ready Education Environment Measure (DREEM inventory was used. The total score for all subscales is 200. In this study, DREEM was administered to undergraduate medical students of basic sciences students (n=120, and clinical phase (n= 100 and the scores were compared using a nonparametric test.Results Between the two batches, basic sciences students were found to be more than satisfied with the learning environment at GUMS compared to the clinical phase. Gender wise, there was not much difference in the students' perceptions.Conclusion: This study revealed that both groups of students perceived learning environment relatively more Negative than Positive in GUMS. It is essential for faculty members to place more efforts on observing principals of instructional design and create an appropriate educational environment in order to provide a better learning for students.Keywords:LEARNING ENVIRONMENT,,MEDICAL SCHOOL

  20. Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.

    Science.gov (United States)

    Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin

    2017-01-01

    In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.

  1. Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment

    NARCIS (Netherlands)

    Pedaste, Margus; Kori, Külli; Maeots, Mario; de Jong, Anthonius J.M.; Riopel, Martin; Smyrnaiou, Zacharoula

    2016-01-01

    Inquiry learning is an effective approach in science education. Complex technology-enhanced learning environments are needed to apply inquiry worldwide to support knowledge gain and improvement of inquiry skills. In our study, we applied an ecology mission in the SCY-Lab learning environment and

  2. Personal Learning Environments for Supporting Out-of-Class Language Learning

    Science.gov (United States)

    Reinders, Hayo

    2014-01-01

    A Personal Learning Environment (PLE) it is a combination of tools (usually digital) and resources chosen by the learner to support different aspects of the learning process, from goal setting to materials selection to assessment. The importance of PLEs for teachers lies in their ability to help students develop autonomy and prepare them for…

  3. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  4. Personal Learning Environments in Black and White

    NARCIS (Netherlands)

    Kalz, Marco

    2010-01-01

    Kalz, M. (2010, 22 January). Personal Learning Environments in Black and White. Presentation provided during the workshop "Informal Learning and the use of social software in veterinary medicine" of the Noviceproject (http://www.noviceproject.eu), Utrecht, The Netherlands.

  5. Supporting Student Learning in Computer Science Education via the Adaptive Learning Environment ALMA

    Directory of Open Access Journals (Sweden)

    Alexandra Gasparinatou

    2015-10-01

    Full Text Available This study presents the ALMA environment (Adaptive Learning Models from texts and Activities. ALMA supports the processes of learning and assessment via: (1 texts differing in local and global cohesion for students with low, medium, and high background knowledge; (2 activities corresponding to different levels of comprehension which prompt the student to practically implement different text-reading strategies, with the recommended activity sequence adapted to the student’s learning style; (3 an overall framework for informing, guiding, and supporting students in performing the activities; and; (4 individualized support and guidance according to student specific characteristics. ALMA also, supports students in distance learning or in blended learning in which students are submitted to face-to-face learning supported by computer technology. The adaptive techniques provided via ALMA are: (a adaptive presentation and (b adaptive navigation. Digital learning material, in accordance with the text comprehension model described by Kintsch, was introduced into the ALMA environment. This material can be exploited in either distance or blended learning.

  6. Nursing students' satisfaction of the clinical learning environment: a research study.

    Science.gov (United States)

    Papastavrou, Evridiki; Dimitriadou, Maria; Tsangari, Haritini; Andreou, Christos

    2016-01-01

    The acquisition of quality clinical experience within a supportive and pedagogically adjusted clinical learning environment is a significant concern for educational institutions. The quality of clinical learning usually reflects the quality of the curriculum structure. The assessment of the clinical settings as learning environment is a significant concern within the contemporary nursing education. The nursing students' satisfaction is considered as an important factor of such assessment, contributing to any potential reforms in order to optimize the learning activities and achievements within clinical settings. The aim of the study was to investigate nursing students' satisfaction of the clinical settings as learning environments. A quantitative descriptive, correlational design was used. A sample of 463 undergraduate nursing students from the three universities in Cyprus were participated. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T). Nursing students were highly satisfied with the clinical learning environment and their satisfaction has been positively related to all clinical learning environment constructs namely the pedagogical atmosphere, the Ward Manager's leadership style, the premises of Nursing in the ward, the supervisory relationship (mentor) and the role of the Nurse Teacher (p relationship. The frequency of meetings among the students and the mentors increased the students' satisfaction with the clinical learning environment. It was also revealed that 1st year students were found to be more satisfied than the students in other years. The supervisory relationship was evaluated by the students as the most influential factor in their satisfaction with the clinical learning environment. Student's acceptance within the nursing team and a well-documented individual nursing care is also related with students' satisfaction. The pedagogical atmosphere is considered pivotal, with reference to

  7. Mobile Learning Environment System (MLES): The Case of Android-based Learning Application on Undergraduates' Learning

    OpenAIRE

    Hanafi, Hafizul Fahri; Samsudin, Khairulanuar

    2012-01-01

    Of late, mobile technology has introduced new, novel environment that can be capitalized to further enrich the teaching and learning process in classrooms. Taking cognizance of this promising setting, a study was undertaken to investigate the impact of such an environment enabled by android platform on the learning process among undergraduates of Sultan Idris Education University, Malaysia; in particular, this paper discusses critical aspects of the design and implementation of the android le...

  8. COOPERATIVE LEARNING ENVIRONMENT WITH THE WEB 2.0 TOOL E-PORTFOLIOS

    Directory of Open Access Journals (Sweden)

    Soh OR KAN

    2011-07-01

    Full Text Available In recent years, the development of information and communication technology (ICT in the world and Malaysia namely has created a significant impact on the methods of communicating information and knowledge to the learners and consequently, innovative teaching techniques have evolved to change the ways teachers teach and the ways students learn. This study main focuses are directed on developing a cooperative learning environment to promote an active learning environment of smart schools in Malaysia. Within this learning process, multimedia technology and Web 2.0 tools, namely, MyPortfolio were integrated to provide the students to learn on their own as well as to document their progress and experience within this cooperative learning environment. The core purpose of this study is to establish the impact on student learning, their perceptions and learning experiences of the cooperative learning environment using web 2.0 tools among the smart secondary schools students in Malaysia. Surveys were conducted to students to ascertain their reaction towards these learning environment activities. The results of this project were encouraging as the students managed to cope with each other to reach their common goal. The usage of blogs acts as an important tool to enhance team cooperation and to foster a learning community within the class.

  9. Personalised Peer-Supported Learning: The Peer-to-Peer Learning Environment (P2PLE)

    Science.gov (United States)

    Corneli, Joseph; Mikroyannidis, Alexander

    2011-01-01

    The Peer-to-Peer Learning Environment (P2PLE) is a proposed approach to helping learners co-construct their learning environment using recommendations about people, content, and tools. The work draws on current research on PLEs, and participant observation at the Peer-to-Peer University (P2PU). We are particularly interested in ways of eliciting…

  10. Personalized e-Learning Environments: Considering Students' Contexts

    Science.gov (United States)

    Eyharabide, Victoria; Gasparini, Isabela; Schiaffino, Silvia; Pimenta, Marcelo; Amandi, Analía

    Personalization in e-learning systems is vital since they are used by a wide variety of students with different characteristics. There are several approaches that aim at personalizing e-learning environments. However, they focus mainly on technological and/or networking aspects without caring of contextual aspects. They consider only a limited version of context while providing personalization. In our work, the objective is to improve e-learning environment personalization making use of a better understanding and modeling of the user’s educational and technological context using ontologies. We show an example of the use of our proposal in the AdaptWeb system, in which content and navigation recommendations are provided depending on the student’s context.

  11. Miscellany of Students' Satisfaction in an Asynchronous Learning Environment

    Science.gov (United States)

    Larbi-Siaw, Otu; Owusu-Agyeman, Yaw

    2017-01-01

    This study investigates the determinants of students' satisfaction in an asynchronous learning environment using seven key considerations: the e-learning environment, student-content interaction, student and student interaction, student-teacher interaction, group cohesion and timely participation, knowledge of Internet usage, and satisfaction. The…

  12. Virtual Learning Environments and Learning Forms -experiments in ICT-based learning

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten

    2004-01-01

    This paper report the main results of a three year experiment in ICT-based distance learning. The results are based on a full scale experiment in the education, Master of Industrial Information Technology (MII) and is one of many projects deeply rooted in the project Virtual Learning Environments...... didactic model has until now been a positive experience........ The main problem is that we do not find the same self regulatoring learning effect in the group work among the off-campus students as is the case for on-campus students. Based on feedback from evaluation questionnaires and discussions with the students didactic adjustments have been made. The revised...

  13. Creative and Playful Learning: Learning through Game Co-Creation and Games in a Playful Learning Environment

    Science.gov (United States)

    Kangas, Marjaana

    2010-01-01

    This paper reports on a pilot study in which children aged 7-12 (N = 68) had an opportunity to study in a novel formal and informal learning setting. The learning activities were extended from the classroom to the playful learning environment (PLE), an innovative playground enriched by technological tools. Curriculum-based learning was intertwined…

  14. Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity

    Science.gov (United States)

    Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido

    2017-01-01

    Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…

  15. Postgraduate trainees' perceptions of the learning environment in a ...

    African Journals Online (AJOL)

    Increased performance in both areas requires routine assessment of the learning environment to identify components that need attention. Objective. To evaluate the perception of junior doctors undergoing specialist training regarding the learning environment in a teaching hospital. Methods. This was a single-centre, ...

  16. ADILE: Architecture of a database-supported learning environment

    NARCIS (Netherlands)

    Hiddink, G.W.

    2001-01-01

    This article proposes an architecture for distributed learning environments that use databases to store learning material. As the layout of learning material can inhibit reuse, the ar-chitecture implements the notion of "separation of layout and structure" using XML technology. Also, the

  17. Learning from data for aquatic and geothenical environments

    NARCIS (Netherlands)

    Bhattacharya, B.

    2005-01-01

    The book presents machine learning as an approach to build models that learn from data, and that can be used to complement the existing modelling practice in aquatic and geotechnical environments. It provides concepts of learning from data, and identifies segmentation (clustering), classification,

  18. Burnout and the learning environment of anaesthetic trainees.

    Science.gov (United States)

    Castanelli, D J; Wickramaarachchi, S A; Wallis, S

    2017-11-01

    Burnout has a high prevalence among healthcare workers and is increasingly recognised as an environmental problem rather than reflecting a personal inability to cope with work stress. We distributed an electronic survey, which included the Maslach Burnout Inventory Health Services Survey and a previously validated learning environment instrument, to 281 Victorian anaesthetic trainees. The response rate was 50%. We found significantly raised rates of burnout in two of three subscales. Ninety-one respondents (67%) displayed evidence of burnout in at least one domain, with 67 (49%) reporting high emotional exhaustion and 57 (42%) reporting high depersonalisation. The clinical learning environment tool demonstrated a significant negative correlation with burnout (r=-0.56, P Burnout was significantly more common than when previously measured in Victoria in 2008 (62% versus 38%). Trainees rated examination preparation the most stressful aspect of the training program. There is a high prevalence of burnout among Victorian anaesthetic trainees. We have shown a significant correlation exists between the clinical learning environment measure and the presence of burnout. This correlation supports the development of interventions to improve the clinical learning environment, as a means to improve trainee wellbeing and address the high prevalence of burnout.

  19. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  20. The Effects of Different Learning Environments on Students' Motivation for Learning and Their Achievement

    Science.gov (United States)

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien

    2013-01-01

    Background: Research in higher education on the effects of student-centred versus lecture-based learning environments generally does not take into account the psychological need support provided in these learning environments. From a self-determination theory perspective, need support is important to study because it has been associated with…

  1. Theoretical framework on selected core issues on conditions for productive learning in networked learning environments

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone; Svendsen, Brian Møller; Ponti, Marisa

    The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments.......The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments....

  2. Active learning and student-centered pedagogy improve student attitudes and performance in introductory biology.

    Science.gov (United States)

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based learning into every lecture, and 3) adopting strategies to create a more student-centered learning environment. Assessment of our instructional design consisted of a student survey and comparison of final exam performance across 3 years-1 year before our course redesign was implemented (2006) and during two successive years of implementation (2007 and 2008). The course restructuring led to significant improvement of self-reported student engagement and satisfaction and increased academic performance. We discuss the successes and ongoing challenges of our course restructuring and consider issues relevant to institutional change.

  3. Communicating the Library as a Learning Environment

    Science.gov (United States)

    Nitecki, Danuta A.; Simpson, Katherine

    2016-01-01

    Lack of commonly used vocabulary for informal learning environments hinders precise communication concerning what is observed, assessed, and understood about the relationship between space and learning. This study empirically extends taxonomies of terms and phrases that describe such relationships through content analysis of descriptions of…

  4. The Effectiveness of Blended Learning Environments

    Science.gov (United States)

    Eryilmaz, Meltem

    2015-01-01

    The object of this experimental study is to measure the effectiveness of a blended learning environment which is laid out on the basis of features for face to face and online environments. The study was applied to 110 students who attend to Atilim University, Ankara, Turkey and take Introduction to Computers Course. During the application,…

  5. Living and learning in a rural environment: a nursing student perspective.

    Science.gov (United States)

    Pront, Leeanne; Kelton, Moira; Munt, Rebecca; Hutton, Alison

    2013-03-01

    This study investigates the influences on nursing student learning who live and learn in the same rural environment. A declining health workforce has been identified both globally and in Australia, the effects of which have become significantly apparent in the rural nursing sector. In support of rural educational programs the literature portrays rural clinical practice experiences as significant to student learning. However, there is little available research on what influences learning for the nursing student who studies in their own rural community. The aim of this study was to understand what influences student learning in the rural clinical environment. Through a multiple case study design five nursing students and two clinical preceptors from a rural clinical venue were interviewed. The interviews were transcribed and thematically analysed to identify factors that influenced student learning outcomes. The most significant influence on nursing student learning in the rural clinical environment was found to include the environment itself, the complex relationships unique to living and studying in a rural community along with the capacity to link theory to practice. The rural environment influences those in it, the demands placed on them, the relationships they form, the ability to promote learning and the time to teach and learn. Copyright © 2012. Published by Elsevier Ltd.

  6. Creating a Learning Environment for Engineering Education

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    Until recently discussions about improvement of educational quality have focussed on the teacher – it was as-sumed that by training the teacher you could increase the students’ learning outcome. Realising that other changes than better teaching were necessary to give the students more useful......? And the introduction of IT has highlighted the importance of the learning environment, but the focus has narrowly been on the physical environment. However, the mental frame-work is also very important. To assure educational quality it is necessary to take all these elements into account and consider the total...

  7. The Impact of Multitasking Learning Environments in the Middle Grades

    Science.gov (United States)

    Drinkwine, Timothy

    2013-01-01

    This research study considers the status of middle school students in the 21st century in terms of their tendency to multitask in their daily lives and the overall influence this multitasking has on teaching and learning environments. Student engagement in the learning environment and students' various learning styles are discussed as primary…

  8. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  9. promoting self directed learning in simulation based discovery learning environments through intelligent support.

    NARCIS (Netherlands)

    Veermans, K.H.; de Jong, Anthonius J.M.; van Joolingen, Wouter

    2000-01-01

    Providing learners with computer-generated feedback on their learning process in simulationbased discovery environments cannot be based on a detailed model of the learning process due to the “open” character of discovery learning. This paper describes a method for generating adaptive feedback for

  10. Design of Feedback in Interactive Multimedia Language Learning Environments

    Directory of Open Access Journals (Sweden)

    Vehbi Türel

    2012-01-01

    Full Text Available In interactive multimedia environments, different digital elements (i. e. video, audio, visuals, text, animations, graphics and glossary can be combined and delivered on the same digital computer screen (TDM 1997: 151, CCED 1987, Brett 1998: 81, Stenton 1998: 11, Mangiafico 1996: 46. This also enables effectively provision and presentation of feedback in pedagogically more efficient ways, which meets not only the requirement of different teaching and learning theories, but also the needs of language learners who vary in their learning-style preferences (Robinson 1991: 156, Peter 1994: 157f.. This study aims to bring out the pedagogical and design principles that might help us to more effectively design and customise feedback in interactive multimedia language learning environments. While so doing, some examples of thought out and customized computerised feedback from an interactive multimedia language learning environment, which were designed and created by the author of this study and were also used for language learning purposes, will be shown.

  11. Virtual learning environment for interactive engagement with advanced quantum mechanics

    Directory of Open Access Journals (Sweden)

    Mads Kock Pedersen

    2016-04-01

    Full Text Available A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  12. The Influence of Virtual Learning Environments in Students' Performance

    Science.gov (United States)

    Alves, Paulo; Miranda, Luísa; Morais, Carlos

    2017-01-01

    This paper focuses mainly on the relation between the use of a virtual learning environment (VLE) and students' performance. Therefore, virtual learning environments are characterised and a study is presented emphasising the frequency of access to a VLE and its relation with the students' performance from a public higher education institution…

  13. Drawing-to-learn: a framework for using drawings to promote model-based reasoning in biology.

    Science.gov (United States)

    Quillin, Kim; Thomas, Stephen

    2015-03-02

    The drawing of visual representations is important for learners and scientists alike, such as the drawing of models to enable visual model-based reasoning. Yet few biology instructors recognize drawing as a teachable science process skill, as reflected by its absence in the Vision and Change report's Modeling and Simulation core competency. Further, the diffuse research on drawing can be difficult to access, synthesize, and apply to classroom practice. We have created a framework of drawing-to-learn that defines drawing, categorizes the reasons for using drawing in the biology classroom, and outlines a number of interventions that can help instructors create an environment conducive to student drawing in general and visual model-based reasoning in particular. The suggested interventions are organized to address elements of affect, visual literacy, and visual model-based reasoning, with specific examples cited for each. Further, a Blooming tool for drawing exercises is provided, as are suggestions to help instructors address possible barriers to implementing and assessing drawing-to-learn in the classroom. Overall, the goal of the framework is to increase the visibility of drawing as a skill in biology and to promote the research and implementation of best practices. © 2015 K. Quillin and S. Thomas. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. Creating a Total Quality Environment (TQE) for Learning

    Science.gov (United States)

    Freed, Jann E.

    2005-01-01

    This article describes a model for creating a total quality environment (TQE) for learning in which everyone is considered a learner. The model consists of 11 interrelated characteristics derived from the literature in the areas of continuous improvement, leadership, learning, learning organizations, and spirituality. The characteristics in the…

  15. PENGARUH STRATEGI PEMBELAJARAN BIOLOGY ENVIRONMENT TECHNOLOGY SOCIETY (BETS) TERHADAP KEMAMPUAN BERPIKIR KRITIS DAN HASIL BELAJAR BIOLOGI KELAS X KOTA MALANG

    OpenAIRE

    Eka Arum Sasi Mahardika; Hadi Suwono; Sri Endah Indriwati

    2016-01-01

    This study aims to determine the effect BETS learning to critical thinking skills and learning outcomes biology class X Senior High School in Malang. This research was conducted at SMAN 7 Malang from February-May 2016. Critical thinking skills and cognitive learning outcomes measured by a written test, whereas affective and psikomor measured by observations during the learning activities. Result critical thinking skills and cognitive learning outcomes were analyzed using statistical test with...

  16. Education for Knowledge Society: Learning and Scientific Innovation Environment

    OpenAIRE

    Alexander O. Karpov

    2017-01-01

    Cognitive-active learning research-type environment is the fundamental component of the education system for the knowledge society. The purpose of the research is the development of conceptual bases and a constructional model of a cognitively active learning environment that stimulates the creation of new knowledge and its socio-economic application. Research methods include epistemic-didactic analysis of empirical material collected as a result of the study of research environments at school...

  17. Peer Evaluation in CMC Learning Environment and Writing Skill

    Directory of Open Access Journals (Sweden)

    Morteza Mellati

    2014-09-01

    Full Text Available Peer evaluation and technology-based instruction as the various domains of language teaching perspectives might affect language development. Group work in a technology-based environment might be more successful when learners are involved in developing the assessment process particularly peer assessment. This study investigated the effectiveness of peer evaluation in technology-based language environment and its effects on English writing ability. To reach this goal, 70 Iranian learners were participated in English language writing context. They were divided into two groups, one group assigned to CMC (Computer-Mediated Communication language learning context and the other assigned to a traditional learning environment. Both groups were encouraged to evaluate their classmates’ writing tasks. In addition, interviews were conducted with two learners. Comparing these two groups provides comprehensive guidelines for teachers as well as curriculum designers to set adjusted writing language environment for more effective and creative language teaching and learning. E-collaboration classroom tasks have high intrinsic motivation as well as significant effects on learners’ outcomes. Cooperative tasks specifically in technology-based environment lead learners to group working and consequently group learning. Computer-Mediated Communication is meaningful, especially in contexts in which teachers stimulate group work activities.

  18. Reconfiguring Course Design in Virtual Learning Environments

    DEFF Research Database (Denmark)

    Mullins, Michael; Zupancic, Tadeja

    2007-01-01

    for architectural students offers some innovative insights into experientially oriented educational interfaces. A comparative analysis of VIPA courses and project results are presented in the paper. Special attention in the discussion is devoted to the improvements of e-learning solutions in architecture......Although many administrators and educators are familiar with e-learning programs, learning management systems and portals, fewer may have experience with virtual distributed learning environments and their academic relevance. The blended learning experience of the VIPA e-learning project....... The criterion of the relation between the actual applicability of selected e-learning solutions and elements of collaborative educational interfaces with VR are taken into account. A system of e-learning applicability levels in program and course development and implementation of architectural tectonics...

  19. The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom, and the Relationship between Them

    Science.gov (United States)

    Alzahrani, Ibraheem; Woollard, John

    2013-01-01

    This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified by giving an example of the learning environment. Due to wiki characteristics, Wiki technology is one of the most famous learning environments that can show the…

  20. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  1. Mining Learning Social Networks for Cooperative Learning with Appropriate Learning Partners in a Problem-Based Learning Environment

    Science.gov (United States)

    Chen, Chih-Ming; Chang, Chia-Cheng

    2014-01-01

    Many studies have identified web-based cooperative learning as an increasingly popular educational paradigm with potential to increase learner satisfaction and interactions. However, peer-to-peer interaction often suffers barriers owing to a failure to explore useful social interaction information in web-based cooperative learning environments.…

  2. Neuro-symbolic representation learning on biological knowledge graphs

    KAUST Repository

    AlShahrani, Mona; Khan, Mohammed Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Nú ria; Hoehndorf, Robert

    2017-01-01

    Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph

  3. Non-formal Learning through Ludic Engagement within Interactive Environments

    DEFF Research Database (Denmark)

    Petersson, Eva

    Adaptive responsive environments that encourage interaction for children with severe disabilities offer a distinct potential for play and learning in rehabilitation. Physical training and therapy for these children is often enduring, tedious, and boring through repetition – and this is often...... the case for both the child and the facilitator/therapist. Despite this, little is yet known about how the utilization of empowering technology influences the users’ communication and learning. The aim of this thesis is twofold: to contribute to the understanding of the role of action and interaction...... in the learning involved when people with different abilities are using interactive environments, and to make a contribution to the research field by concluding at tentative generalizations on design for non-formal learning in interactive environments.      The thesis consists of seven studies which analyze...

  4. Maintaining collaborative, democratic and dialogue-based learning processes in virtual and game-based learning environments

    DEFF Research Database (Denmark)

    Gyldendahl Jensen, Camilla; Sorensen, Elsebeth Korsgaard

    2017-01-01

    The incorporation and use of virtual learning platforms, including computer games, in the education sector, challenge these years the complexity of the learning environment regarding maintaining collaborative, democratic and dialogue-based learning processes that support a high degree of reflection....... When virtual learning platforms are used in an educational context, a fundamental paradox appears as the student needs an active and practice-oriented participation identity to learn while at the same time needing to learn to acquire a participation identity. This identity is raised and trained...... by being a continuous part of a community that recalls the scenarios of reality. It is therefore crucial that the learning environment reflects the reality of which the students' professionalism is unfolded. Learning is, therefore, something more and not just the acquisition of knowledge and past actions...

  5. THE BLENDED LEARNING ENVIRONMENT ON THE FOREIGN LANGUAGE LEARNING PROCESS: A Balance for Motivation and Achievement

    Directory of Open Access Journals (Sweden)

    Bahar ISIGUZEL

    2014-07-01

    Full Text Available The purpose of this study is to determine the effects on motivation and success within the application of blended learning environments in the foreign language class. The research sample is formed by third grade students studying in the tourism and hotel management programs of the faculty for tourism and the faculty of economics and administrative sciences at the Nevsehir Hacı Bektas Veli University (Turkey in fall semester of the 2012-2013 academic year. The research group consists of 62 students and there of 35 students belong to the experimental group and the other 27 persons belong to the control group. While the experimental group was subject to 14 hours online and 6 hours traditional face to face learning, the control group was subject to only 6 hours traditional face to face learning. The research has been completed after a 10 week application. The data on the research have been collected with German course achievement tests via the German Language Learning Motivation Scale. The results reveal that the experimental group of students attending the German classes in blended learning environments has more success and higher motivation compared to the control group attending German language classes in the traditional learning environment. Even if the learners achieve certain success and motivation findings in the classroom and face to face environments performed along with teaching-learning activities mainly in control of the instructor, the success and motivation effect of the blended learning environment could not be achieved.

  6. Understanding and Predicting Student Self-Regulated Learning Strategies in Game-Based Learning Environments

    Science.gov (United States)

    Sabourin, Jennifer L.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.

    2013-01-01

    Self-regulated learning behaviors such as goal setting and monitoring have been found to be crucial to students' success in computer-based learning environments. Consequently, understanding students' self-regulated learning behavior has been the subject of increasing attention. Unfortunately, monitoring these behaviors in real-time has…

  7. Mapping Students Use of Technologies in Problem Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Khalid, Md. Saifuddin; Ryberg, Thomas

    2011-01-01

    This paper aims to understand how students use technology to enhance their learning in problem-based learning environments. The research methodology is based on both qualitative and quantitative studies. The results are based on students’ interviews, a survey and students’ reflections in course......-related blog posts; they show that students have positive perceptions toward using technologies in problem-based learning environments....

  8. STUDENTS’ PERCEPTION ABOUT CLINICAL LEARNING ENVIRONMENT IN THE PRIMARY, SECONDARY AND TERTIARY MEDICAL FACILITIES

    OpenAIRE

    Dewi, Dian Puspita; Rahayu, Gandes Retno; Kristina, Tri Nur

    2018-01-01

    Background: Learning environment is an important factor in learning process and can affect students' competence and work-readiness. Learning environment is not only about physical facilities but also social and psychological condition. The complexity of clinical learning environments pose challenges and problems that may affect students learning process so it is necessary to monitoring and evaluating students learning environments. This study aims to assess students' perception of their learn...

  9. Engaging Students' Learning Through a Blended Environment

    Directory of Open Access Journals (Sweden)

    Andrew Stuart

    2013-05-01

    Full Text Available Within the furniture manufacturing industry a high proportion of occupational accidents are as a result of non-compliance to machining regulations and incorrect work practices. Safety training plays an important role in reducing accidents and promoting a safety culture within this sector. This article details an action research study undertaken during the first year of a new Degree in Timber Product Technology, which set out to evaluate the impact a blended learning environment and reusable learning objects (RLOs could have on promoting safe work practices and a safety culture amongst students. A constructivist approach was taken and the module design was underpinned by Kolb’s model of experiential learning, placing more responsibility on the learners for their own learning and encouraging them to reflect upon their experiences. The findings of this study suggest that students with prior industry machining experience required a change in their attitude to machining which was achieved within the practical labs, while students with no machining experiences were intimidated by the learning environment in the practical labs but whose learning experience was enhanced through the use of RLOs and other eLearning resources. In order to reduce occupational accidents in the furniture manufacturing industry the promotion of continuing professional development (CPD training courses is required in order to change workers’ behaviour to machine safety and encourage lifelong learning so as to promote a safety culture within the furniture manufacturing industry.

  10. Biology learning evaluation model in Senior High Schools

    Directory of Open Access Journals (Sweden)

    Sri Utari

    2017-06-01

    Full Text Available The study was to develop a Biology learning evaluation model in senior high schools that referred to the research and development model by Borg & Gall and the logic model. The evaluation model included the components of input, activities, output and outcomes. The developing procedures involved a preliminary study in the form of observation and theoretical review regarding the Biology learning evaluation in senior high schools. The product development was carried out by designing an evaluation model, designing an instrument, performing instrument experiment and performing implementation. The instrument experiment involved teachers and Students from Grade XII in senior high schools located in the City of Yogyakarta. For the data gathering technique and instrument, the researchers implemented observation sheet, questionnaire and test. The questionnaire was applied in order to attain information regarding teacher performance, learning performance, classroom atmosphere and scientific attitude; on the other hand, test was applied in order to attain information regarding Biology concept mastery. Then, for the analysis of instrument construct, the researchers performed confirmatory factor analysis by means of Lisrel 0.80 software and the results of this analysis showed that the evaluation instrument valid and reliable. The construct validity was between 0.43-0.79 while the reliability of measurement model was between 0.88-0.94. Last but not the least, the model feasibility test showed that the theoretical model had been supported by the empirical data.

  11. Big Data X-Learning Resources Integration and Processing in Cloud Environments

    Directory of Open Access Journals (Sweden)

    Kong Xiangsheng

    2014-09-01

    Full Text Available The cloud computing platform has good flexibility characteristics, more and more learning systems are migrated to the cloud platform. Firstly, this paper describes different types of educational environments and the data they provide. Then, it proposes a kind of heterogeneous learning resources mining, integration and processing architecture. In order to integrate and process the different types of learning resources in different educational environments, this paper specifically proposes a novel solution and massive storage integration algorithm and conversion algorithm to the heterogeneous learning resources storage and management cloud environments.

  12. Extended Immersive Learning Environment: A Hybrid Remote/Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Lírio Shaeffer

    2010-09-01

    Full Text Available This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.

  13. Nursing students' assessment of the learning environment in different clinical settings.

    Science.gov (United States)

    Bisholt, Birgitta; Ohlsson, Ulla; Engström, Agneta Kullén; Johansson, Annelie Sundler; Gustafsson, Margareta

    2014-05-01

    Nursing students perform their clinical practice in different types of clinical settings. The clinical learning environment is important for students to be able to achieve desired learning outcomes. Knowledge is lacking about the learning environment in different clinical settings. The aim was to compare the learning environment in different clinical settings from the perspective of the nursing students. A cross-sectional study with comparative design was conducted. Data was collected from 185 nursing students at three universities by means of a questionnaire involving the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) evaluation scale. An open-ended question was added in order to ascertain reasons for dissatisfaction with the clinical placement. The nursing students' satisfaction with the placement did not differ between clinical settings. However, those with clinical placement in hospital departments agreed more strongly that sufficient meaningful learning situations occurred and that learning situations were multi-dimensional. Some students reported that the character of the clinical setting made it difficult to achieve the learning objectives. In the planning of the clinical placement, attention must be paid to whether the setting offers the student a meaningful learning situation where the appropriate learning outcome may be achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Pupils' Views on an ICT-Based Learning Environment in Health Learning

    Science.gov (United States)

    Räihä, Teija; Tossavainen, Kerttu; Enkenberg, Jorma; Turunen, Hannele

    2014-01-01

    This paper presents a study that examined pupils' views on an ICT-based learning environment in health learning. The study was a part of the wider European Network of Health Promoting Schools programme (ENHPS; since 2008, Schools for Health in Europe, SHE) in Finland, and particularly its sub-project, From Puijo to the World with Health Lunch,…

  15. Linkages between motivation, self-efficacy, self-regulated learning and preferences for traditional learning environments or those with an online component

    Directory of Open Access Journals (Sweden)

    Daniel Auld

    2010-10-01

    Full Text Available This study assessed 96 law school students’ preferences for online, hybrid, or traditional learning environments, and their reasons for these preferences, learning strategies, and motivational orientations. A discriminant analysis revealed that non-traditional learning environment familiarity, self-efficacy, and employment status were the strongest predictors of preferences for non-traditional learning environments. Preferences for traditional environments were attributed to students’ familiarity and ability to engage in and foster personal interaction. Preferences for hybrid and online environments were attributed to opportunities for enhanced learning given the convenience and flexible manner in which students with time and familial constraints could access these environments.

  16. Teaching strategies in web technologies for virtual learning environments

    Directory of Open Access Journals (Sweden)

    Ilber Dario Saza-Garzón

    2016-12-01

    Full Text Available The virtual learning environments (AVAs have been a subject of discussion and questions mainly on finding the best teaching practices, which tools you can use them and how to achieve optimum utilization have better results in virtual education, for Therefore in this paper some elements about the characteristics, history, teaching, studies have virtual environments and web applications as tools to support teaching and learning, are set for a virtual tutor note the when planning, designing, creating and implementing online courses. Thus the reader will find concepts, explanations and different evolutionary processes that wins ICT and how are you have been involved in the educational context, spotting potential applications from mediation of teaching, plus some suggestions of how to carry out exposed use thereof in virtual learning environments to strengthen the different processes of teaching and learning.

  17. Resident burnout: evaluating the role of the learning environment.

    Science.gov (United States)

    van Vendeloo, Stefan N; Godderis, Lode; Brand, Paul L P; Verheyen, Kees C P M; Rowell, Suria A; Hoekstra, Harm

    2018-03-27

    Although burnout is viewed as a syndrome rooted in the working environment and organizational culture, the role of the learning environment in the development of resident burnout remains unclear. We aimed to evaluate the association between burnout and the learning environment in a cohort of Belgian residents. We conducted a cross-sectional online survey among residents in a large university hospital in Belgium. We used the Dutch version of the Maslach Burnout Inventory (UBOS-C) to assess burnout and the Dutch Residency Educational Climate Test (D-RECT) to assess the learning environment. A total of 236 residents (29 specialties) completed the survey (response rate 34.6%), of which 98 (41.5%) met standard criteria for burnout. After multivariate regression analysis adjusting for hours worked per week, quality of life and satisfaction with work-life balance, we found an inverse association between D-RECT scores and the risk of burnout (adjusted odds ratio; 0.47 for each point increase in D-RECT score; 95% CI, 0.23 - 0.95; p = 0.01). Resident burnout is highly prevalent in our cohort of Belgian residents. Our results suggest that the learning environment plays an important role in reducing the risk of burnout among residents.

  18. Managing the Collaborative Learning Environment.

    Science.gov (United States)

    Wagner, June G.

    2002-01-01

    The feature story in this issue, "Managing the Collaborative Learning Environment," focuses on the growing emphasis on teamwork in the workplace. It discusses how the concept of empowering employees in the workplace is evolving and the benefits--faster decision making, lower costs and absenteeism, higher productivity and quality, and…

  19. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  20. TELMA: Technology-enhanced learning environment for minimally invasive surgery.

    Science.gov (United States)

    Sánchez-González, Patricia; Burgos, Daniel; Oropesa, Ignacio; Romero, Vicente; Albacete, Antonio; Sánchez-Peralta, Luisa F; Noguera, José F; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-06-01

    Cognitive skills training for minimally invasive surgery has traditionally relied upon diverse tools, such as seminars or lectures. Web technologies for e-learning have been adopted to provide ubiquitous training and serve as structured repositories for the vast amount of laparoscopic video sources available. However, these technologies fail to offer such features as formative and summative evaluation, guided learning, or collaborative interaction between users. The "TELMA" environment is presented as a new technology-enhanced learning platform that increases the user's experience using a four-pillared architecture: (1) an authoring tool for the creation of didactic contents; (2) a learning content and knowledge management system that incorporates a modular and scalable system to capture, catalogue, search, and retrieve multimedia content; (3) an evaluation module that provides learning feedback to users; and (4) a professional network for collaborative learning between users. Face validation of the environment and the authoring tool are presented. Face validation of TELMA reveals the positive perception of surgeons regarding the implementation of TELMA and their willingness to use it as a cognitive skills training tool. Preliminary validation data also reflect the importance of providing an easy-to-use, functional authoring tool to create didactic content. The TELMA environment is currently installed and used at the Jesús Usón Minimally Invasive Surgery Centre and several other Spanish hospitals. Face validation results ascertain the acceptance and usefulness of this new minimally invasive surgery training environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Playing SNES in the Retro Learning Environment

    OpenAIRE

    Bhonker, Nadav; Rozenberg, Shai; Hubara, Itay

    2016-01-01

    Mastering a video game requires skill, tactics and strategy. While these attributes may be acquired naturally by human players, teaching them to a computer program is a far more challenging task. In recent years, extensive research was carried out in the field of reinforcement learning and numerous algorithms were introduced, aiming to learn how to perform human tasks such as playing video games. As a result, the Arcade Learning Environment (ALE) (Bellemare et al., 2013) has become a commonly...

  2. Students’ goal orientations and learning strategies in a powerful learning environment : a case study

    NARCIS (Netherlands)

    Koopman, M.; Bakx, A.W.E.A.; Beijaard, D.

    2014-01-01

    In Dutch secondary education, experiments with powerful social constructivist learning environments are conducted that aim to appeal to students’ intrinsic goal orientations, use of deep cognitive learning strategies, and self-direction of meta-cognitive learning strategies. The aim of this study is

  3. Pre-registration nursing student's quality of practice learning: Clinical learning environment inventory (actual) questionnaire.

    Science.gov (United States)

    Shivers, Eleanor; Hasson, Felicity; Slater, Paul

    2017-08-01

    Clinical learning is a vital component of nurse education and assessing student's experiences can provide useful insights for development. Whilst most research in this area has focused on the acute setting little attention has been given to all pre-registration nurses' experience across the clinical placements arenas. To examine of pre-registration nursing students (first, second and third year) assessment of their actual experiences of their most recent clinical learning clinical learning experience. A cross sectional survey involving a descriptive online anonymous questionnaire based on the clinical learning environment inventory tool. One higher education institution in the United Kingdom. Nursing students (n=147) enrolled in an undergraduate nursing degree. This questionnaire included demographic questions and the Clinical Learning Environment Inventory (CLEI) a 42 item tool measuring student's satisfaction with clinical placement. SPPS version 22 was employed to analyse data with descriptive and inferential statistics. Overall students were satisfied with their clinical learning experience across all placement areas. This was linked to the 6 constructs of the clinical learning environment inventory; personalization, innovation, individualization, task orientation, involvement, satisfaction. Significant differences in student experience were noted between age groups and student year but there was no difference noted between placement type, age and gender. Nursing students had a positive perception of their clinical learning experience, although there remains room for improvement. Enabling a greater understanding of students' perspective on the quality of clinical education is important for nursing education and future research. Copyright © 2017. Published by Elsevier Ltd.

  4. Implementing an Active Learning Environment to Influence Students' Motivation in Biochemistry

    Science.gov (United States)

    Cicuto, Camila Aparecida Tolentino; Torres, Bayardo Baptista

    2016-01-01

    The Biochemistry: Biomolecules Structure and Metabolism course's goal is to promote meaningful learning through an active learning environment. Thus, study periods (SP) and discussion groups (DG) are used as a substitute for lecture classes. The goal of this study was to evaluate how this learning environment influences students' motivation (n =…

  5. Seamless Learning Environments in Higher Education with Mobile Devices and Examples

    Science.gov (United States)

    Marín, Victoria I.; Jääskelä, Päivikki; Häkkinen, Päivi; Juntunen, Merja; Rasku-Puttonen, Helena; Vesisenaho, Mikko

    2016-01-01

    The use of seamless learning environments that have the potential to support lifelong learning anytime and anywhere has become a reality. In this sense, many educational institutions have started to consider introducing seamless learning environments into their programs. The aim of this study is to analyze how various educational university…

  6. ADAPTATION OF THE STUDENTS' MOTIVATION TOWARDS SCIENCE LEARNING QUESTIONNAIRE TO MEASURE GREEK STUDENTS’ MOTIVATION TOWARDS BIOLOGY LEARNING

    OpenAIRE

    Andressa, Helen; Mavrikaki, Evangelia; Dermitzaki, Irini

    2015-01-01

    The purpose of this study was to investigate students’ motivation towards biology learning and to determine the factors that are related to it: students’ gender and their parents’ occupation (relevant with biology or not) were investigated. The sample of the study consisted of 360 Greek high school students of the 10th grade (178 boys and 182 girls). The data were collected through Students’ Motivation Toward Science Learning (SMTSL) questionnaire. It was found that it was a valid and reliabl...

  7. Learning Styles of the Students of Biology Department and Prospective Biology Teachers in Turkey and Their Relationship with Some Demographic Variables

    Science.gov (United States)

    Günes, M. Handan

    2018-01-01

    This study has been carried out with the aim of researching dominant learning styles of the students studying at the biology departments of the faculty of science or the faculty of arts and sciences as well as the dominant learning styles of the prospective biology teachers studying at the faculty of education of universities in Turkey, by taking…

  8. Flexible Learning Environments: Leveraging the Affordances of Flexible Delivery and Flexible Learning

    Science.gov (United States)

    Hill, Janette R.

    2006-01-01

    The purpose of this article is to explore the key features of "flexible learning environments" (FLEs). Key principles associated with FLEs are explained. Underlying tenets and support mechanisms necessary for the implementation of FLEs are described. Similarities and differences in traditional learning and FLEs are explored. Finally, strategies…

  9. Students’ learning activities while studying biological process diagrams

    NARCIS (Netherlands)

    Kragten, M.; Admiraal, W.; Rijlaarsdam, G.

    2015-01-01

    Process diagrams describe how a system functions (e.g. photosynthesis) and are an important type of representation in Biology education. In the present study, we examined students’ learning activities while studying process diagrams, related to their resulting comprehension of these diagrams. Each

  10. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  11. Theoretical Foundations for Enhancing Social Connectedness in Online Learning Environments

    Science.gov (United States)

    Slagter van Tryon, Patricia J.; Bishop, M. J.

    2009-01-01

    Group social structure provides a comfortable and predictable context for interaction in learning environments. Students in face-to-face learning environments process social information about others in order to assess traits, predict behaviors, and determine qualifications for assuming particular responsibilities within a group. In online learning…

  12. Learning activities in a political context - development of the working environment

    DEFF Research Database (Denmark)

    Ledskov, Annette

    2002-01-01

    are identified – ‘the politically actors’ and ‘the translator’. When facilitating learning activities in the management of work environment it is necessary to be aware of this political nature of the actions .In understanding learning in the management of work environment it is beneficial to look at the concept......This paper addresses a learning approach as a method for developing new strategies for managing work environment. On the basis of interviews in two companies an analysis of how actors involved in the management of work environment act concerning their task and role is conducted. Two roles...

  13. Effects of Collaborative Learning Styles on Performance of Students in a Ubiquitous Collaborative Mobile Learning Environment

    Science.gov (United States)

    Fakomogbon, Michael Ayodele; Bolaji, Hameed Olalekan

    2017-01-01

    Collaborative learning is an approach employed by instructors to facilitate learning and improve learner's performance. Mobile learning can accommodate a variety of learning approaches. This study, therefore, investigated the effects of collaborative learning styles on performance of students in a mobile learning environment. The specific purposes…

  14. Language cannot be reduced to biology: perspectives from neuro-developmental disorders affecting language learning.

    Science.gov (United States)

    Vasanta, D

    2005-02-01

    The study of language knowledge guided by a purely biological perspective prioritizes the study of syntax. The essential process of syntax is recursion--the ability to generate an infinite array of expressions from a limited set of elements. Researchers working within the biological perspective argue that this ability is possible only because of an innately specified genetic makeup that is specific to human beings. Such a view of language knowledge may be fully justified in discussions on biolinguistics, and in evolutionary biology. However, it is grossly inadequate in understanding language-learning problems, particularly those experienced by children with neurodevelopmental disorders such as developmental dyslexia, Williams syndrome, specific language impairment and autism spectrum disorders. Specifically, syntax-centered definitions of language knowledge completely ignore certain crucial aspects of language learning and use, namely, that language is embedded in a social context; that the role of envrironmental triggering as a learning mechanism is grossly underestimated; that a considerable extent of visuo-spatial information accompanies speech in day-to-day communication; that the developmental process itself lies at the heart of knowledge acquisition; and that there is a tremendous variation in the orthographic systems associated with different languages. All these (socio-cultural) factors can influence the rate and quality of spoken and written language acquisition resulting in much variation in phenotypes associated with disorders known to have a genetic component. Delineation of such phenotypic variability requires inputs from varied disciplines such as neurobiology, neuropsychology, linguistics and communication disorders. In this paper, I discuss published research that questions cognitive modularity and emphasises the role of the environment for understanding linguistic capabilities of children with neuro-developmental disorders. The discussion pertains

  15. Convivência e aprendizagem em ambientes virtuais: uma reflexão a partir da biologia do conhecer Coexistence and learning in virtual environments: a reflection from the biology of cognition's point of view

    Directory of Open Access Journals (Sweden)

    Eliana Maria do Sacramento Soares

    2011-12-01

    Full Text Available Pensar a dimensão complexa e sistêmica do processo educativo é um dos desafios da contemporaneidade. Para tanto, partimos do pressuposto de que ambientes virtuais de aprendizagem podem se constituir em domínios de ações que levem à autorregulação e a transformações estruturais. Para verificar essa pressuposição, este artigo apresenta resultados de um estudo empírico que busca compreender, a partir da Biologia do Conhecer, como um ambiente virtual pode se constituir num domínio de convivência capaz de propiciar a aprendizagem. Os resultados indicam possibilidades de gestão e de intervenção pedagógica nos ambientes de aprendizagem, que possibilitem a emergência de fluxos de interações que contribuam para que se estabeleça a convivência, nos moldes estudados.Thinking the complex and systemic dimension of the educative process is one of the nowadays' challenges. To this end, we start from the assumption that virtual learning environments can be constituded in action domains that lead to selfregulation and structural transformations. To verify this assumption, this paper presents results of an empirical study that seeks to understand, from the Biology of cognition, how a virtual environment can constitute a coexistence domain, able to propitiate learning. The results suggest possibilities of management and pedagogical intervention in the learning environments that make possible the emergence of interaction flows and contribute to establishing the coexistence, along the lines studied.

  16. Learning Abilities and Disabilities: Generalist Genes, Specialist Environments.

    Science.gov (United States)

    Kovas, Yulia; Plomin, Robert

    2007-10-01

    Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these "generalist genes." What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects.

  17. A Working Model for Intercultural Learning and Engagement in Collaborative Online Language Learning Environments

    Science.gov (United States)

    Lawrence, Geoff

    2013-01-01

    Given the emerging focus on the intercultural dimension in language teaching and learning, language educators have been exploring the use of information and communications technology ICT-mediated language learning environments to link learners in intercultural language learning communities around the globe. Despite the potential promise of…

  18. Stimulating Collaboration and Discussion in Online Learning Environments.

    Science.gov (United States)

    Clark, Jim

    2001-01-01

    Discussion of the advantages of online learning environments (OLEs) for distance education focuses on the importance of collaboration and discussion to make the students feel more central to the learning process. Presents methods to stimulate collaboration and discussion in OLEs. (Author/LRW)

  19. Conscious knowledge of learning: accessing learning strategies in a final year high school biology class

    Science.gov (United States)

    Conner, Lindsey; Gunstone, Richard

    2004-12-01

    This paper reports on a qualitative case study investigation of the knowledge and use of learning strategies by 16 students in a final year high school biology class to expand their conscious knowledge of learning. Students were provided with opportunities to engage in purposeful inquiry into the biological, social and ethical aspects of cancer. A constructivist approach was implemented to access prior content and procedural knowledge in various ways. Students were encouraged to develop evaluation of their learning skills independently through activities that promoted metacognition. Those students who planned and monitored their work produced essays of higher quality. The value and difficulties of promoting metacognitive approaches in this context are discussed, as well as the idea that metacognitive processes are difficult to research, because they have to be conscious in order to be identified by the learner, thereby making them accessible to the researcher.

  20. Evaluation of Hybrid and Distance Education Learning Environments in Spain

    Science.gov (United States)

    Ferrer-Cascales, Rosario; Walker, Scott L.; Reig-Ferrer, Abilio; Fernandez-Pascual, Maria Dolores; Albaladejo-Blazquez, Natalia

    2011-01-01

    This article describes the adaptation and validation of the "Distance Education Learning Environments Survey" (DELES) for use in investigating the qualities found in distance and hybrid education psycho-social learning environments in Spain. As Europe moves toward post-secondary student mobility, equanimity in access to higher education,…

  1. Learning Tools for Knowledge Nomads: Using Personal Digital Assistants (PDAs) in Web-based Learning Environments.

    Science.gov (United States)

    Loh, Christian Sebastian

    2001-01-01

    Examines how mobile computers, or personal digital assistants (PDAs), can be used in a Web-based learning environment. Topics include wireless networks on college campuses; online learning; Web-based learning technologies; synchronous and asynchronous communication via the Web; content resources; Web connections; and collaborative learning. (LRW)

  2. Studying the mechanisms of language learning by varying the learning environment and the learner.

    Science.gov (United States)

    Goldin-Meadow, Susan

    Language learning is a resilient process, and many linguistic properties can be developed under a wide range of learning environments and learners. The first goal of this review is to describe properties of language that can be developed without exposure to a language model - the resilient properties of language - and to explore conditions under which more fragile properties emerge. But even if a linguistic property is resilient, the developmental course that the property follows is likely to vary as a function of learning environment and learner, that is, there are likely to be individual differences in the learning trajectories children follow. The second goal is to consider how the resilient properties are brought to bear on language learning when a child is exposed to a language model. The review ends by considering the implications of both sets of findings for mechanisms, focusing on the role that the body and linguistic input play in language learning.

  3. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    Science.gov (United States)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  4. Nursing students' perceptions of hospital learning environments--an Australian perspective.

    Science.gov (United States)

    Chan, Dominic S

    2004-01-01

    Clinical education is a vital component in the curricula of pre-registration nursing courses and provides student nurses with the opportunity to combine cognitive, psychomotor, and affective skills. Various studies have suggested that not all practice settings are able to provide nursing students with a positive learning environment. In order to maximize nursing students' clinical learning outcomes, there is a need to examine the clinical learning environment. The purpose of this study was to assess pre-registration nursing students' perceptions of hospital learning environments during clinical field placement. Quantitative and qualitative methodology was used. One hundred and eight students provided quantitative data through completion of the survey instrument, the Clinical Learning Environment Inventory (Actual and Preferred forms). Each form is a 5-point Likert-type questionnaire, made up of 35 items consisted of 5 scales with 7 items per scale. Qualitative data, obtained through semi-structured interview of 21 students from the same cohort, were used to explain and support the quantitative findings. There were significant differences between students' actual and preferred perceptions of the clinical learning environments. Generally students preferred a more positive and favourable clinical environment than they perceived as being actually present. Since participants consisted of nursing students from just one university nursing school in South Australia, the findings may not be representative of all nursing students in general with respect to their clinical placement. However, the value of this study lies in the resulting implication for nursing education and future research. A better understanding of what constitutes quality clinical education from the students' perspective would be valuable in providing better educational experiences.

  5. Veterinary students' perceptions of their learning environment as measured by the Dundee Ready Education Environment Measure.

    Science.gov (United States)

    Pelzer, Jacquelyn M; Hodgson, Jennifer L; Werre, Stephen R

    2014-03-24

    The Dundee Ready Education Environment Measure (DREEM) has been widely used to evaluate the learning environment within health sciences education, however, this tool has not been applied in veterinary medical education. The aim of this study was to evaluate the reliability and validity of the DREEM tool in a veterinary medical program and to determine veterinary students' perceptions of their learning environment. The DREEM is a survey tool which quantitatively measures students' perceptions of their learning environment. The survey consists of 50 items, each scored 0-4 on a Likert Scale. The 50 items are subsequently analysed within five subscales related to students' perceptions of learning, faculty (teachers), academic atmosphere, and self-perceptions (academic and social). An overall score is obtained by summing the mean score for each subscale, with an overall possible score of 200. All students in the program were asked to complete the DREEM. Means and standard deviations were calculated for the 50 items, the five subscale scores and the overall score. Cronbach's alpha was determined for the five subscales and overall score to evaluate reliability. Confirmatory factor analysis was used to evaluate construct validity. 224 responses (53%) were received. The Cronbach's alpha for the overall score was 0.93 and for the five subscales were; perceptions of learning 0.85, perceptions of faculty 0.79, perceptions of atmosphere 0.81, academic self-perceptions 0.68, and social self-perceptions 0.72. Construct validity was determined to be acceptable (p education programs. Four individual items of concern were identified by students. In this setting the DREEM was a reliable and valid tool to measure veterinary students' perceptions of their learning environment. The four items identified as concerning originated from four of the five subscales, but all related to workload. Negative perceptions regarding workload is a common concern of students in health education

  6. Nursing Students' Clinical Learning Environment in Norwegian Nursing Homes: Lack of Innovative Teaching and Learning Strategies

    OpenAIRE

    Berntsen, Karin; Bjørk, Ida Torunn; Brynildsen, Grethe

    2017-01-01

    Background: Nursing students hesitate to choose aged care as a career, and the aged care sectors are on an edge regarding nursing positions. Clinical learning environments may influence nursing students’ career choices. Few studies have explored learning environments in nursing homes, although students increasingly have placements there. Objectives: The aim was to produce information for developing nursing students’ learning opportunities in nursing homes. Design: A cross-sectional survey des...

  7. The Videoconferencing Learning Environment: Technology, Interaction and Learning Intersect

    Science.gov (United States)

    Saw, K. G.; Majid, Omar; Ghani, N. Abdul; Atan, H.; Idrus, R. M.; Rahman, Z. A.; Tan, K. E.

    2008-01-01

    This paper is a study on the interaction patterns of distance learners enrolled in the Mathematics and Physics programmes of Universiti Sains Malaysia in the videoconferencing learning environment (VCLE). Interaction patterns are analysed in six randomly chosen videoconferencing sessions within one academic year. The findings show there are more…

  8. Peer Learning in Social Media Enhanced Learning Environment

    Directory of Open Access Journals (Sweden)

    Anne-Maritta Tervakari

    2012-09-01

    Full Text Available TUT Circle, a dedicated social media service for students at Tampere University of Technology (TUT, was used as a learning environment for the purpose of enhancing students‘ collaboration, communication and networking skills required in business and working life and for promoting peer learning in small groups. Unfortunately, active conversation was limited. The students intensively read content created by other students, but they did not actively present their opinions, arguments or comments. Another reason for the lack of real conversation was procrastination. The students seemed to need more encouragement to comment on or question the ideas of others, more support to promote intergroup interaction and more assistance with time management.

  9. Formative assessment in an online learning environment to support flexible on-the-job learning in complex professional domains

    NARCIS (Netherlands)

    Tamara van Gog; Desirée Joosten-ten Brinke; F. J. Prins; Dominique Sluijsmans

    2010-01-01

    This article describes a blueprint for an online learning environment that is based on prominent instructional design and assessment theories for supporting learning in complex domains. The core of this environment consists of formative assessment tasks (i.e., assessment for learning) that center on

  10. Designing a Secure Exam Management System (SEMS) for M-Learning Environments

    Science.gov (United States)

    Kaiiali, Mustafa; Ozkaya, Armagan; Altun, Halis; Haddad, Hatem; Alier, Marc

    2016-01-01

    M-learning has enhanced the e-learning by making the learning process learner-centered. However, enforcing exam security in open environments where each student has his/her own mobile/tablet device connected to a Wi-Fi network through which it is further connected to the Internet can be one of the most challenging tasks. In such environments,…

  11. Differentiated Learning Environment--A Classroom for Quadratic Equation, Function and Graphs

    Science.gov (United States)

    Dinç, Emre

    2017-01-01

    This paper will cover the design of a learning environment as a classroom regarding the Quadratic Equations, Functions and Graphs. The goal of the learning environment offered in the paper is to design a classroom where students will enjoy the process, use their skills they already have during the learning process, control and plan their learning…

  12. Knowledge Sharing Practice in a Play-Like Learning Environment

    DEFF Research Database (Denmark)

    Benjaminsen, Nana

    2007-01-01

    The topic of this paper is play-like learning as it occurs when technology based learning environments is invited into the classroom. Observations of 5th grade classes playing with Lego Robolab, is used to illustrate that different ways of learning becomes visible when digital technology...

  13. Extending human potential in a technical learning environment

    Science.gov (United States)

    Fielden, Kay A.

    This thesis is a report of a participatory inquiry process looking at enhancing the learning process in a technical academic field in high education by utilising tools and techniques which go beyond the rational/logical, intellectual domain in a functional, objective world. By empathising with, nurturing and sustaining the whole person, and taking account of past patterning as well as future visions including technological advances to augment human awareness, the scene is set for depth learning. Depth learning in a tertiary environment can only happen as a result of the dynamic that exists between the dominant, logical/rational, intellectual paradigm and the experiential extension of the boundaries surrounding this domain. Any experiences which suppress the full, holistic expression of our being alienate us from the fullness of the expression and hence from depth learning. Depth learning is indicated by intrinsic motivation, which is more likely to occur in a trusting and supporting environment. The research took place within a systemic intellectual framework, where emergence is the prime characteristic used to evaluate results.

  14. E-Learning Environments in Academy: Technology, Pedagogy and Thinking Dispositions

    Science.gov (United States)

    Bouhnik, Dan; Carmi, Golan

    2012-01-01

    Around two decades have passed since higher education institutions began incorporating the internet as an alternative studying environment, together with frontal class teaching and learning. This kind of environment still poses meaningful challenges for students and teachers that take an active part in E-learning courses. Today it is quite clear…

  15. Does social environment influence learning ability in a family-living lizard?

    Science.gov (United States)

    Riley, Julia L; Noble, Daniel W A; Byrne, Richard W; Whiting, Martin J

    2017-05-01

    Early developmental environment can have profound effects on individual physiology, behaviour, and learning. In birds and mammals, social isolation during development is known to negatively affect learning ability; yet in other taxa, like reptiles, the effect of social isolation during development on learning ability is unknown. We investigated how social environment affects learning ability in the family-living tree skink (Egernia striolata). We hypothesized that early social environment shapes cognitive development in skinks and predicted that skinks raised in social isolation would have reduced learning ability compared to skinks raised socially. Offspring were separated at birth into two rearing treatments: (1) raised alone or (2) in a pair. After 1 year, we quantified spatial learning ability of skinks in these rearing treatments (N = 14 solitary, 14 social). We found no effect of rearing treatment on learning ability. The number of skinks to successfully learn the task, the number of trials taken to learn the task, the latency to perform the task, and the number of errors in each trial did not differ between isolated and socially reared skinks. Our results were unexpected, yet the facultative nature of this species' social system may result in a reduced effect of social isolation on behaviour when compared to species with obligate sociality. Overall, our findings do not provide evidence that social environment affects development of spatial learning ability in this family-living lizard.

  16. The learning environment and resident burnout: a national study.

    Science.gov (United States)

    van Vendeloo, Stefan N; Prins, David J; Verheyen, Cees C P M; Prins, Jelle T; van den Heijkant, Fleur; van der Heijden, Frank M M A; Brand, Paul L P

    2018-04-01

    Concerns exist about the negative impact of burnout on the professional and personal lives of residents. It is suggested that the origins of burnout among residents are rooted in the learning environment. We aimed to evaluate the association between the learning environment and burnout in a national sample of Dutch residents. We conducted a cross-sectional online survey among all Dutch residents in September 2015. We measured the learning environment using the three domain scores on content, organization, and atmosphere from the Scan of Postgraduate Educational Environment Domains (SPEED) and burnout using the Dutch version of the Maslach Burnout Inventory (UBOS-C). Of 1,231 responding residents (33 specialties), 185 (15.0%) met criteria for burnout. After adjusting for demographic (age, gender and marital status) and work-related factors (year of training, type of teaching hospital and type of specialty), we found a consistent inverse association between SPEED scores and the risk of burnout (aOR 0.54, 95% CI 0.46 to 0.62, p burnout among residents. This suggests that the learning environment is of key importance in preventing resident burnout.

  17. How Nurses Experience Their Work as a Learning Environment

    OpenAIRE

    Skår, Randi

    2010-01-01

    This article explores and illuminates the meaning of nurses’ experiences with their work as a learning environment. A qualitative hermeneutic approach guided the research process and the analysis and interpretation of the transcribed interview-texts of eleven graduate nurses. Three core themes emerged from these informants’ descriptions of their work as a learning environment: ‘participation in the work community’, ‘to engage in interpersonal relations’ and ‘accessing important...

  18. Learning under uncertainty in smart home environments.

    Science.gov (United States)

    Zhang, Shuai; McClean, Sally; Scotney, Bryan; Nugent, Chris

    2008-01-01

    Technologies and services for the home environment can provide levels of independence for elderly people to support 'ageing in place'. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.

  19. The Usability Analysis of An E-Learning Environment

    Directory of Open Access Journals (Sweden)

    Fulya TORUN

    2015-10-01

    Full Text Available In this research, an E-learning environment is developed for the teacher candidates taking the course on Scientific Research Methods. The course contents were adapted to one of the constructivist approach models referred to as 5E, and an expert opinion was received for the compliance of this model. An usability analysis was also performed to determine the usability of the e-learning environment. The participants of the research comprised 42 teacher candidates. The mixed method was used in the research. 3 different data collection tools were used in order to measure the three basic concepts of usability analyses, which are the dimensions of effectiveness, efficiency and satisfaction. Two of the data collection tools were the scales developed by different researchers and were applied with the approval received from the researchers involved. On the other hand, the usability test as another data tool was prepared by the researchers who conducted this study for the purpose of determining the participants’ success in handling the twelve tasks assigned to them with respect to the use of elearning environment, the seconds they spent on that environment and the number of clicks they performed. Considering the results of the analyses performed within the data obtained, the usability of the developed e-learning environment proved to be at a higher rate.

  20. Model-Based Learning Environment Based on The Concept IPS School-Based Management

    Directory of Open Access Journals (Sweden)

    Hamid Darmadi

    2017-03-01

    Full Text Available The results showed: (1 learning model IPS-oriented environment can grow and not you love the cultural values of the area as a basis for the development of national culture, (2 community participation, and the role of government in implementing learning model of IPS-based environment provides a positive impact for the improvement of management school resources, (3 learning model IPS-based environment effectively creating a way of life together peacefully, increase the intensity of togetherness and mutual respect (4 learning model IPS-based environment can improve student learning outcomes, (5 there are differences in the expression of attitudes and results learning among students who are located in the area of conflict with students who are outside the area of conflict (6 analysis of the scale of attitudes among school students da SMA result rewards high school students to the values of unity and nation, respect for diversity and peaceful coexistence, It is recommended that the Department of Education authority as an institution of Trustees and the development of social and cultural values in the province can apply IPS learning model based environments.

  1. Students' use of social software in self-organized learning environment

    DEFF Research Database (Denmark)

    Mathiasen, Helle; Dalsgaard, Christian

    2006-01-01

    The paper will argue that new possibilities of digital media, especially social software, have a potential regarding development of self-organized learning environments and facilitating self-governed activities. Based on a sociological perspective, the paper will clarify the concepts of informal...... and formal learning used in this paper. It is argued that formal and informal conditions of learning can supplement each other within an educational setting. A formal setting of project work forms the basis of informal, selfgoverned activities of students. The paper will argue that social software tools can...... support students' self-governed activities and their development of self-organized learning environments....

  2. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  3. An Interactive Learning Environment for Information and Communication Theory

    Science.gov (United States)

    Hamada, Mohamed; Hassan, Mohammed

    2017-01-01

    Interactive learning tools are emerging as effective educational materials in the area of computer science and engineering. It is a research domain that is rapidly expanding because of its positive impacts on motivating and improving students' performance during the learning process. This paper introduces an interactive learning environment for…

  4. Creating adaptive environment for e-learning courses

    Directory of Open Access Journals (Sweden)

    Bozidar Radenkovic

    2009-06-01

    Full Text Available In this paper we provide an approach to creating adaptive environment for e-learning courses. In the context of e-education, successful adaptation has to be performed upon learners’ characteristics. Currently, modeling and discovering users’ needs, goals, knowledge preferences and motivations is one of the most challenging tasks in e-learning systems that deal with large volumes of information. Primary goal of the research is to perform personalizing of distance education system, according to students’ learning styles. Main steps and requirements in applying business intelligence techniques in process of personalization are identified. In addition, we propose generic model and architecture of an adaptive e-learning system by describing the structure of an adaptive course and exemplify correlations among e-learning course content and different learning styles. Moreover, research that dealt with application of data mining technique in a real e-learning system was carried out. We performed adaptation of our e-learning courses using the results from the research.

  5. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  6. The Effect of Using Cooperative Learning Method on Tenth Grade Students' Learning Achievement and Attitude towards Biology

    Science.gov (United States)

    Rabgay, Tshewang

    2018-01-01

    The study investigated the effect of using cooperative learning method on tenth grade students' learning achievement in biology and their attitude towards the subject in a Higher Secondary School in Bhutan. The study used a mixed method approach. The quantitative component included an experimental design where cooperative learning was the…

  7. Estimating Students’ Satisfaction with Web Based Learning System in Blended Learning Environment

    Directory of Open Access Journals (Sweden)

    Sanja Bauk

    2014-01-01

    Full Text Available Blended learning became the most popular educational model that universities apply for teaching and learning. This model combines online and face-to-face learning environments, in order to enhance learning with implementation of new web technologies and tools in learning process. In this paper principles of DeLone and Mclean success model for information system are applied to Kano two-dimensional model, for categorizing quality attributes related to satisfaction of students with web based learning system used in blended learning model. Survey results are obtained among the students at “Mediterranean” University in Montenegro. The (dysfunctional dimensions of Kano model, including Kano basic matrix for assessment of the degree of students’ satisfaction level, have been considered in some more detail through corresponding numerical, graphical, and statistical analysis.

  8. Analysis of students’ generated questions in laboratory learning environments

    Directory of Open Access Journals (Sweden)

    Juan Antonio Llorens-Molina

    2012-03-01

    Full Text Available In order to attain a reliable laboratory work assessment, we argue taking the Learning Environment as a core concept and a research paradigm that considers the factors affecting the laboratory as a particularly complex educational context. With regard to Laboratory Learning Environments (LLEs, a well known approach is the SLEI (Science Laboratory Environment Inventory. The aim of this research is to design and apply an alternative and qualitative assessment tool to characterize Laboratory Learning Environments in an introductory course of organic chemistry. An alternative and qualitative assessment tool would be useful for providing feed-back for experimental learning improvement; serving as a complementary triangulation tool in educational research on LLEs; and generating meaningful categories in order to design quantitative research instruments. Toward this end, spontaneous questions by students have been chosen as a reliable source of information. To process these questions, a methodology based on the Grounded Theory has been developed to provide a framework for characterizing LLEs. This methodology has been applied in two case studies. The conclusions lead us to argue for using more holistic assessment tools in both everyday practice and research. Likewise, a greater attention should be paid to metacognition to achieve suitable self-perception concerning students’ previous knowledge and manipulative skills.

  9. Family, Learning Environments, Learning Approaches, and Student Outcomes in a Malaysian Private University

    Science.gov (United States)

    Kek, Megan A. Yih Chyn; Darmawan, I. Gusti Ngurah; Chen, Yu Sui

    2007-01-01

    This article presents the quantitative findings from a mixed methods study of students and faculty at a private medical university in Malaysia. In particular, the relationships among students' individual characteristics, general self-efficacy, family context, university and classroom learning environments, curriculum, approaches to learning, and…

  10. A review of research on common biological agents and their impact on environment

    International Nuclear Information System (INIS)

    Mashiatullah, A.; Qureshi, R.M.

    2009-01-01

    Biological agents are unique class of microorganisms which can be used to produce the disease in large populations of humans, animals and plants. If used for hostile purposes, any disease-causing microorganism could be considered a weapon. The use of biological agents is not a new concept and history is replete with examples of biological weapon use. Before the twenty century, biological warfare took on three main forms by deliberate poisoning of food and water with infectious material, use of microorganisms or toxins in some form of weapon system, and use of biologically inoculated fabrics. Four kinds of biological warfare agents are bacteria, viruses, rickettsiae, fungi. These are distinguished by being living organisms, that reproduce within their host victims, who then become contagious with a deadly multiplier effect, bacteria, viruses, or fungi or toxin found in nature can be used to kill or injure people. Biological agents may be used for an isolated assassination, as well as to cause incapacitation or death to thousands. These biological agents represent a dangerous military threat because they are alive, and are therefore unpredictable and uncontrollable once released. The act of bioterrorism can range from a simple hoax to the actual use of biological weapons. Biological agents have the potential to make an environment more dangerous over time. If the environment is contaminated, a long-term threat to the population could be created. This paper discusses common biological agents, their mode of action in living organisms and possible impact on the environment. (author)

  11. Biologically-inspired On-chip Learning in Pulsed Neural Networks

    DEFF Research Database (Denmark)

    Lehmann, Torsten; Woodburn, Robin

    1999-01-01

    Self-learning chips to implement many popular ANN (artificial neural network) algorithms are very difficult to design. We explain why this is so and say what lessons previous work teaches us in the design of self-learning systems. We offer a contribution to the "biologically-inspired" approach......, explaining what we mean by this term and providing an example of a robust, self-learning design that can solve simple classical-conditioning tasks, We give details of the design of individual circuits to perform component functions, which can then be combined into a network to solve the task. We argue...

  12. Optimising the Blended Learning Environment: The Arab Open University Experience

    Science.gov (United States)

    Hamdi, Tahrir; Abu Qudais, Mohammed

    2018-01-01

    This paper will offer some insights into possible ways to optimise the blended learning environment based on experience with this modality of teaching at Arab Open University/Jordan branch and also by reflecting upon the results of several meta-analytical studies, which have shown blended learning environments to be more effective than their face…

  13. Anatomy education environment measurement inventory: A valid tool to measure the anatomy learning environment.

    Science.gov (United States)

    Hadie, Siti Nurma Hanim; Hassan, Asma'; Ismail, Zul Izhar Mohd; Asari, Mohd Asnizam; Khan, Aaijaz Ahmed; Kasim, Fazlina; Yusof, Nurul Aiman Mohd; Manan Sulong, Husnaida Abdul; Tg Muda, Tg Fatimah Murniwati; Arifin, Wan Nor; Yusoff, Muhamad Saiful Bahri

    2017-09-01

    Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment, valuable information can be obtained to facilitate improvements in teaching and learning. Hence, it is important to use a valid inventory that specifically measures attributes of the anatomy education environment. In this study, a new 11-factor, 132-items Anatomy Education Environment Measurement Inventory (AEEMI) was developed using Delphi technique and was validated in a Malaysian public medical school. The inventory was found to have satisfactory content evidence (scale-level content validity index [total] = 0.646); good response process evidence (scale-level face validity index [total] = 0.867); and acceptable to high internal consistency, with the Raykov composite reliability estimates of the six factors are in the range of 0.604-0.876. The best fit model of the AEEMI is achieved with six domains and 25 items (X 2  = 415.67, P education environment in Malaysia. A concerted collaboration should be initiated toward developing a valid universal tool that, using the methods outlined in this study, measures the anatomy education environment across different institutions and countries. Anat Sci Educ 10: 423-432. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  14. Educational Game Design. Bridging the gab between computer based learning and experimental learning environments

    DEFF Research Database (Denmark)

    Andersen, Kristine

    2007-01-01

    Considering the rapidly growing amount of digital educational materials only few of them bridge the gab between experimental learning environments and computer based learning environments (Gardner, 1991). Observations from two cases in primary school and lower secondary school in the subject...... with a prototype of a MOO storyline. The aim of the MOO storyline is to challenge the potential of dialogue, user involvement, and learning responsibility and to use the children?s natural curiosity and motivation for game playing, especially when digital games involves other children. The paper proposes a model......, based on the narrative approach for experimental learning subjects, relying on ideas from Csikszentmihalyis notion of flow (Csikszentmihalyi, 1991), storyline-pedagogy (Meldgaard, 1994) and ideas from Howard Gardner (Gardner, 1991). The model forms the basis for educational games to be used in home...

  15. Gender and Diversity in a Problem and Project Based Learning Environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    Problem and Project Based Learning (PBL) has been well used as an educational philosophy and methodology in the construction of student centered and contextualized learning environment. PBL is also regarded as an effective method in producing engineering graduates who can not only meet the needs...... on the learning experiences of engineering students in the PBL environment in Denmark. This book also attempts to question the issue of diversity in engineering education via the exploration of whether or in which ways the PBL environment is friendly to diverse groups of learners such as women....

  16. Implementation of Collaborative Learning in Higher Education Environment

    OpenAIRE

    Soetam Rizky Wicaksono

    2013-01-01

    The need of improvement in learning process, especially in higher education environment, has already begun a dilemma for many lecturers. Many experts has already agreed that one of the success factor in learning process improvement is creating collaboration among students. This pre-eliminary action research tried to implement collaborative learning from small groups using simple task and escalating into large group with more complicated collaborative framework. Although there is no quantific...

  17. Personal Learning Environments, Social Media, and Self-Regulated Learning: A Natural Formula for Connecting Formal and Informal Learning

    Science.gov (United States)

    Dabbagh, Nada; Kitsantas, Anastasia

    2012-01-01

    A Personal Learning Environment or PLE is a potentially promising pedagogical approach for both integrating formal and informal learning using social media and supporting student self-regulated learning in higher education contexts. The purpose of this paper is to (a) review research that support this claim, (b) conceptualize the connection…

  18. Learning style and concept acquisition of community college students in introductory biology

    Science.gov (United States)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous

  19. Realization of Flight Control System in Virtual Reality Environment with Biological Signals

    OpenAIRE

    ALTIN, Cemil; ER, Orhan

    2018-01-01

    In this study, anunmanned aerial vehicle was flown on a virtual reality gaming platform with thehelp of commands processed by signal processing methods of biological signals. In thedeveloped application, Matlab signal processing environment and Unity 3Denvironment which is a virtual reality software platform are integrated witheach other and made to work. The biological signals obtained from the EEG ve EMGsensors are processed in Matlab environment and then converted to commands andtransferre...

  20. Exploring Children's Requirements for Game-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Marja Kankaanranta

    2008-08-01

    Full Text Available End users' expertise in the development of new applications is acknowledged in user-centered and participatory design. Similarly, children's experience of what they find enjoyable and how they learn is a valuable source of inspiration for the design of products intended for them. In this paper, we explore experiences obtained from collaboration with elementary school children in the design of learning environments, based on three projects and three requirements gathering techniques. We also discuss how the children experienced the participation. The children's contribution yielded useful, both expected and unanticipated, outcomes in regard to the user interface and contents of the learning environments under development. Moreover, we present issues related to design collaboration with children, especially in terms of the children's feeling of ownership over the final outcome.

  1. Offering a Framework for Value Co-Creation in Virtual Academic Learning Environments

    Science.gov (United States)

    Ranjbarfard, Mina; Heidari Sureshjani, Mahboobeh

    2018-01-01

    Purpose: This research aims to convert the traditional teacher-student models, in which teachers determine the learning resources, into a flexible structure and an active learning environment so that students can participate in the educational processes and value co-creation in virtual academic learning environments (VALEs).…

  2. Applications of Deep Learning and Reinforcement Learning to Biological Data.

    Science.gov (United States)

    Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano

    2018-06-01

    Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

  3. Facilitative and obstructive factors in the clinical learning environment: Experiences of pupil enrolled nurses.

    Science.gov (United States)

    Lekalakala-Mokgele, Eucebious; Caka, Ernestine M

    2015-03-31

    The clinical learning environment is a complex social entity that influences student learning outcomes in the clinical setting. Students can experience the clinical learning environment as being both facilitative and obstructive to their learning. The clinical environment may be a source of stress, creating feelings of fear and anxiety which in turn affect the students' responses to learning. Equally, the environment can enhance learning if experienced positively. This study described pupil enrolled nurses' experiences of facilitative and obstructive factors in military and public health clinical learning settings. Using a qualitative, contextual, exploratory descriptive design, three focus group interviews were conducted until data saturation was reached amongst pupil enrolled nurses in a military School of Nursing. Data analysed provided evidence that acceptance by clinical staff and affordance of self-directed learning facilitated learning. Students felt safe to practise when they were supported by the clinical staff. They felt a sense of belonging when the staff showed an interest in and welcomed them. Learning was obstructed when students were met with condescending comments. Wearing of a military uniform in the public hospital and horizontal violence obstructed learning in the clinical learning environment. Students cannot have effective clinical preparation if the environment is not conducive to and supportive of clinical learning, The study shows that military nursing students experience unique challenges as they are trained in two professions that are hierarchical in nature. The students experienced both facilitating and obstructing factors to their learning during their clinical practice. Clinical staff should be made aware of factors which can impact on students' learning. Policies need to be developed for supporting students in the clinical learning environment.

  4. Quality of Learning Facilities and Learning Environment: Challenges for Teaching and Learning in Kenya's Public Universities

    Science.gov (United States)

    Ndirangu, Mwangi; Udoto, Maurice O.

    2011-01-01

    Purpose: The purpose of this article is to report findings on the perceptions of quality of educational facilities in Kenyan public universities, and the implications for teaching/learning, and the learning environment. Design/methodology/approach: The study adopted an exploratory descriptive design. A total of 332 and 107 undergraduate students…

  5. Teachers' experiences of teaching in a blended learning environment.

    Science.gov (United States)

    Jokinen, Pirkko; Mikkonen, Irma

    2013-11-01

    This paper considers teachers' experiences of teaching undergraduate nursing students in a blended learning environment. The basic idea of the study programme was to support students to reflect on theory and practice, and provide with access to expert and professional knowledge in real-life problem-solving and decision making. Learning was organised to support learning in and about work: students worked full-time and this provided excellent opportunities for learning both in practice, online and face-to-face sessions. The aim of the study was to describe teachers' experiences of planning and implementing teaching and learning in a blended-learning-based adult nursing programme. The research method was qualitative, and the data were collected by three focus group interviews, each with four to six participants. The data were analysed using qualitative content analysis. The results show that the blended learning environment constructed by the combination of face-to-face learning and learning in practice with technology-mediated learning creates challenges that must be taken into consideration when planning and implementing blended teaching and learning. However, it provides good opportunities to enhance students' learning in and about work. This is because such programmes support student motivation through the presence of "real-life" and their relevance to the students' own places of work. Nevertheless, teachers require knowledge of different pedagogical approaches; they need professional development support in redesigning teaching and learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Characteristics of the Web-Based Learning Environment in Distance Education: Students' Perceptions of Their Learning Needs

    Science.gov (United States)

    Atan, Hanafi; Rahman, Zuraidah; Idrus, Rozhan M.

    2004-01-01

    A study was conducted regarding students' perceptions on the characteristics of the learning requirements in a web-based learning environment. Various aspects of on-line learning were studied including the general web-based support system for the students, the learning materials, instructional strategies of the learning materials and the learning…

  7. Problem-Based Educational Game Becomes Student-Centered Learning Environment

    Science.gov (United States)

    Rodkroh, Pornpimon; Suwannatthachote, Praweenya; Kaemkate, Wannee

    2013-01-01

    Problem-based educational games are able to provide a fun and motivating environment for teaching and learning of certain subjects. However, most educational game models do not address the learning elements of problem-based educational games. This study aims to synthesize and to propose the important elements to facilitate the learning process and…

  8. The learning environment and medical student burnout: a multicentre study.

    Science.gov (United States)

    Dyrbye, Liselotte N; Thomas, Matthew R; Harper, William; Massie, F Stanford; Power, David V; Eacker, Anne; Szydlo, Daniel W; Novotny, Paul J; Sloan, Jeff A; Shanafelt, Tait D

    2009-03-01

    Little is known about specific personal and professional factors influencing student distress. The authors conducted a comprehensive assessment of how learning environment, clinical rotation factors, workload, demographics and personal life events relate to student burnout. All medical students (n = 3080) at five medical schools were surveyed in the spring of 2006 using a validated instrument to assess burnout. Students were also asked about the aforementioned factors. A total of 1701 medical students (response rate 55%) completed the survey. Learning climate factors were associated with student burnout on univariate analysis (odds ratio [OR] 1.36-2.07; all P burnout (ORs 1.69 and 1.48, respectively; both P student burnout. Students who experienced a positive personal life event had a lower frequency of burnout (OR 0.70; P burnout than students who did not experience a negative personal life event. On multivariate analysis personal characteristics, learning environment and personal life events were all independently related to student burnout. Although a complex array of personal and professional factors influence student well-being, student satisfaction with specific characteristics of the learning environment appears to be a critical factor. Studies determining how to create a learning environment that cultivates student well-being are needed.

  9. Co-Evolution of Social Learning and Evolutionary Preparedness in Dangerous Environments.

    Science.gov (United States)

    Lindström, Björn; Selbing, Ida; Olsson, Andreas

    2016-01-01

    Danger is a fundamental aspect of the lives of most animals. Adaptive behavior therefore requires avoiding actions, objects, and environments associated with danger. Previous research has shown that humans and non-human animals can avoid such dangers through two types of behavioral adaptions, (i) genetic preparedness to avoid certain stimuli or actions, and (ii) social learning. These adaptive mechanisms reduce the fitness costs associated with danger but still allow flexible behavior. Despite the empirical prevalence and importance of both these mechanisms, it is unclear when they evolve and how they interact. We used evolutionary agent-based simulations, incorporating empirically based learning mechanisms, to clarify if preparedness and social learning typically both evolve in dangerous environments, and if these mechanisms generally interact synergistically or antagonistically. Our simulations showed that preparedness and social learning often co-evolve because they provide complimentary benefits: genetic preparedness reduced foraging efficiency, but resulted in a higher rate of survival in dangerous environments, while social learning generally came to dominate the population, especially when the environment was stochastic. However, even in this case, genetic preparedness reliably evolved. Broadly, our results indicate that the relationship between preparedness and social learning is important as it can result in trade-offs between behavioral flexibility and safety, which can lead to seemingly suboptimal behavior if the evolutionary environment of the organism is not taken into account.

  10. Can a Multimedia Tool Help Students' Learning Performance in Complex Biology Subjects?

    Science.gov (United States)

    Koseoglu, Pinar; Efendioglu, Akin

    2015-01-01

    The aim of the present study was to determine the effects of multimedia-based biology teaching (Mbio) and teacher-centered biology (TCbio) instruction approaches on learners' biology achievements, as well as their views towards learning approaches. During the research process, an experimental design with two groups, TCbio (n = 22) and Mbio (n =…

  11. Emerging Online Learning Environments and Student Learning: An Analysis of Faculty Perceptions

    Directory of Open Access Journals (Sweden)

    Gary Brown

    2004-01-01

    Full Text Available New educational technologies and online learning environments (OLEs are infiltrating today’s college classes and campuses. While research has examined many aspects of this permeation, one research gap exists. How do faculty perceive the learning experience in courses that use OLEs compared to courses that do not? One important factor that may influence faculty perceptions are their reasons for teaching with OLEs. This paper seeks to understand how faculty perceive OLEs as a function of their reasons for teaching with this educational technology. This paper also investigates whether faculty evaluations of OLEs differ based on gender and by years teaching. The results of the analysis reveal several noteworthy patterns. First, it appears that favorable opinions about the learning experiences in online learning environments are not because faculty are motivated to learn about new technologies per se, but because they want to update their vitas and teaching skills. Second, the results suggest that it may be harder to convince older and more experienced faculty to use new technologies compared to younger and less experienced faculty. These results apply to both male and female faculty and provide practical implications for universities and support services on how to recruit and then support faculty who implement educational technologies.

  12. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    OpenAIRE

    Enrique Palou; Lourdes Gazca; Juan Antonio Díaz García; José Andrés Rojas Lobato; Luis Geraldo Guerrero Ojeda; José Francisco Tamborero Arnal; María Teresa Jiménez Munguía; Aurelio López-Malo; Juan Manuel Garibay

    2012-01-01

    A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been devel...

  13. Constant Change: The Ever-Evolving Personal Learning Environment

    Science.gov (United States)

    Torres Kompen, Ricardo; Monguet, Josep Ma.; Brigos, Miguel

    2015-01-01

    There are several definitions for the term "personal learning environment" (PLE); in this article, PLE refers to a group of web technologies, with various degrees of integration and interaction, that helps users and learners manage the flow of information that relates to the learning process, the creation of knowledge, and the…

  14. Procrastination, Participation, and Performance in Online Learning Environments

    Science.gov (United States)

    Michinov, Nicolas; Brunot, Sophie; Le Bohec, Olivier; Juhel, Jacques; Delaval, Marine

    2011-01-01

    The present study focuses on a specific learner characteristic in the management of time--procrastination--, and its role in an online learning environment. More specifically, it was expected that procrastination would influence the successfulness of online learning and that this could be explained by the level of participation of learners in…

  15. Using Wikis as a Support and Assessment Tool in Collaborative Digital Game-Based Learning Environments

    Science.gov (United States)

    Samur, Yavuz

    2011-01-01

    In computer-supported collaborative learning (CSCL) environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances…

  16. Review of Opinions of Math Teachers Concerning the Learning Environment That They Design

    Science.gov (United States)

    Aydin, Bünyamin; Yavuz, Ayse

    2016-01-01

    Design of appropriate learning environment has a significant importance in creation of aims of the math teaching. In the design of learning environments, teachers play a significant role. The aim of this study is determination of opinions of the math teachers concerning the learning environment that they design. In accordance with this aim, an…

  17. Students' perspectives on e-learning and the use of a virtual learning environment in dance education

    NARCIS (Netherlands)

    Leijen, Ä.|info:eu-repo/dai/nl/304838446; Admiraal, W.|info:eu-repo/dai/nl/120226340; Wildschut, L.; Simons, P.R.J.|info:eu-repo/dai/nl/068032994

    2008-01-01

    The aim of the study was to find out how dance students experienced learning in an international distance education program delivered in an e-learning format using a virtual learning environment platform. In order to organize the students’ experiences with the various learning assignments, we

  18. An Ontology to Support the Classification of Learning Material in an Organizational Learning Environment: An Evaluation

    Science.gov (United States)

    Valaski, Joselaine; Reinehr, Sheila; Malucelli, Andreia

    2017-01-01

    Purpose: The purpose of this research was to evaluate whether ontology integrated in an organizational learning environment may support the automatic learning material classification in a specific knowledge area. Design/methodology/approach: An ontology for recommending learning material was integrated in the organizational learning environment…

  19. The ultraviolet environment of Mars: biological implications past, present, and future.

    Science.gov (United States)

    Cockell, C S; Catling, D C; Davis, W L; Snook, K; Kepner, R L; Lee, P; McKay, C P

    2000-08-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  20. The ultraviolet environment of Mars: biological implications past, present, and future

    Science.gov (United States)

    Cockell, C. S.; Catling, D. C.; Davis, W. L.; Snook, K.; Kepner, R. L.; Lee, P.; McKay, C. P.

    2000-01-01

    A radiative transfer model is used to quantitatively investigate aspects of the martian ultraviolet radiation environment, past and present. Biological action spectra for DNA inactivation and chloroplast (photosystem) inhibition are used to estimate biologically effective irradiances for the martian surface under cloudless skies. Over time Mars has probably experienced an increasingly inhospitable photobiological environment, with present instantaneous DNA weighted irradiances 3.5-fold higher than they may have been on early Mars. This is in contrast to the surface of Earth, which experienced an ozone amelioration of the photobiological environment during the Proterozoic and now has DNA weighted irradiances almost three orders of magnitude lower than early Earth. Although the present-day martian UV flux is similar to that of early Earth and thus may not be a critical limitation to life in the evolutionary context, it is a constraint to an unadapted biota and will rapidly kill spacecraft-borne microbes not covered by a martian dust layer. Microbial strategies for protection against UV radiation are considered in the light of martian photobiological calculations, past and present. Data are also presented for the effects of hypothetical planetary atmospheric manipulations on the martian UV radiation environment with estimates of the biological consequences of such manipulations.

  1. The use of deep and surface learning strategies among students learning English as a foreign language in an Internet environment.

    Science.gov (United States)

    Aharony, Noa

    2006-12-01

    The learning context is learning English in an Internet environment. The examination of this learning process was based on the Biggs and Moore's teaching-learning model (Biggs & Moore, 1993). The research aims to explore the use of the deep and surface strategies in an Internet environment among EFL students who come from different socio-economic backgrounds. The results of the research may add an additional level to the understanding of students' functioning in the Internet environment. One hundred fourty-eight Israeli junior and high school students participated in this research. The methodology was based on special computer software: Screen Cam, which recorded the students' learning process. In addition, expert judges completed a questionnaire which examined and categorized the students' learning strategies. The research findings show a clear preference of participants from all socio-economic backgrounds towards the surface learning strategy. The findings also showed that students from the medium to high socio-economic background used both learning strategies more frequently than low socio-economic students. The results reflect the habits that students acquire during their adjustment process throughout their education careers. A brief encounter with the Internet learning environment apparently cannot change norms or habits, which were acquired in the non-Internet learning environment.

  2. Students’ Views about the Problem Based Collaborative Learning Environment Supported By Dynamic Web Technologies

    Directory of Open Access Journals (Sweden)

    Erhan ÜNAL

    2017-04-01

    Full Text Available The purpose of this study is to design a problem based collaborative learning environment supported by dynamic web technologies and examine students’ views about this learning environment. The study was designed as a qualitative research. 36 students who took Object Oriented Programming I-II course from a public university at the department of computer programming participated in the study. During the research process, the Object Oriented Programming I-II course was designed with incorporating different dynamic web technologies (Edmodo, Google Services, and Mind42 and Nelson (1999’s collaborative problem solving method. At the end of the course, there were focus group interviews in regards to the students’ views on a learning environment supported by dynamic web technologies and collaborative problem solving method. At the end of the focus group interviews, 4 themes were obtained from the students’ views, including positive aspects of the learning environment, difficulties faced in the learning environment, advantages of the learning environment, and skills gained as a result of the project. The results suggest that problem based collaborative learning methods and dynamic web technologies can be used in learning environments in community colleges.

  3. Personal Learning Environments (PLEs) in a Distance Learning Course on Mathematics Applied to Business

    Science.gov (United States)

    Bidarra, Jose; Araujo, Joao

    2013-01-01

    This paper argues that the dominant form of distance learning that is common in most e-learning systems rests on a set of learning devices and environments that may be outdated from the student's perspective, namely because it is not supportive of learner empowerment and does not facilitate the efforts of self-directed learners. For this study we…

  4. Does academic performance or personal growth share a stronger association with learning environment perception?

    Science.gov (United States)

    Tackett, Sean; Wright, Scott M.; Shochet, Robert S.

    2016-01-01

    Objectives This study was conducted to characterize the relative strength of associations of learning environment perception with academic performance and with personal growth. Methods In 2012-2014 second and third year students at Johns Hopkins University School of Medicine completed a learning environment survey and personal growth scale. Hierarchical linear regression analysis was employed to determine if the proportion of variance in learning environment scores accounted for by personal growth was significantly larger than the proportion accounted for by academic performance (course/clerkship grades). Results The proportion of variance in learning environment scores accounted for by personal growth was larger than the proportion accounted for by academic performance in year 2 [R2Δ of 0.09, F(1,175) = 14.99,  p environment scores shared a small amount of variance with academic performance in years 2 and 3.  The amount of variance between learning environment scores and personal growth was small in year 2 and large in year 3. Conclusions Since supportive learning environments are essential for medical education, future work must determine if enhancing personal growth prior to and during the clerkship year will increase learning environment perception. PMID:27570912

  5. Students' Preferred Characteristics of Learning Environments in Vocational Secondary Education

    Science.gov (United States)

    Placklé, Ingeborg; Könings, Karen D.; Jacquet, Wolfgang; Struyven, Katrien; Libotton, Arno; van Merriënboer, Jeroen J. G.; Engels, Nadine

    2014-01-01

    If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument--the Inventory Powerful Learning…

  6. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    Science.gov (United States)

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  7. Enhancing the strategic management of practice learning through the introduction of the role of Learning Environment Manager.

    Science.gov (United States)

    Congdon, Graham; Baker, Tracey; Cheesman, Amanda

    2013-03-01

    This paper describes a process evaluation project designed to enhance the strategic management of practice learning within a large Hospital in the North of England. The aim of the project was to introduce the role of the Learning Environment Manager with dedicated responsibility for practice learning of undergraduate student nurses within the Hospital's 49 practice-settings. Whilst aspects of this role were already evident in several of these settings, the project sought to locate and standardise responsibilities related to the organisation and management of learning and teaching in practice explicitly within the existing staffing structure of each practice-setting. Focus group interviews were used to explore significant aspects of the project with key stakeholder groups comprising Learning Environment Managers, the Hospital Clinical Educator, Hospital Department Managers, Ward Managers, Mentors, University Link Lecturers and undergraduate Student Nurses. Interview data were analysed using thematic content analysis. The findings of the project suggest that the Learning Environment Manager role affords providers of practice learning with a robust approach to establish organisation-wide benchmarks that standardise the strategic management of practice learning in collaboration with partner Universities. The role incorporated many operational activities previously undertaken by the Hospital Clinical Educator, thus enabling the Hospital Clinical Educator to make a more strategic contribution to the on-going quality monitoring and enhancement of practice learning across the Hospital. The Learning Environment Manager role was found to provide mentors with high levels of support which in turn helped to promote consistent, positive and holistic practice learning experiences for undergraduate student nurses across the Hospital. Importantly, the role offers a potent catalyst for nurses in practice to regain responsibility for practice learning and re-establish the value of

  8. Evaluation Of Webquest In Biology:Teachers’ Perception

    OpenAIRE

    OSMAN, Kamisah

    2014-01-01

    Teaching and learning based on web or web-based learning is a concept which integrates information and technology in education. Teachers and instructors have to assist their learners to learn to function in this information environment. However, teacher trainers and instructors have limited experience in the integration of ICT by using web in their teaching, mainly for Biology subject. The Indonesian Ministry of Education has started to implement ICT in the process of learning and teaching. H...

  9. Facilitative and obstructive factors in the clinical learning environment: Experiences of pupil enrolled nurses

    Directory of Open Access Journals (Sweden)

    Eucebious Lekalakala-Mokgele

    2015-03-01

    Full Text Available Background: The clinical learning environment is a complex social entity that influences student learning outcomes in the clinical setting. Students can experience the clinical learning environment as being both facilitative and obstructive to their learning. The clinical environment may be a source of stress, creating feelings of fear and anxiety which in turn affect the students’ responses to learning. Equally, the environment can enhance learning if experienced positively. Objectives: This study described pupil enrolled nurses’ experiences of facilitative and obstructive factors in military and public health clinical learning settings. Method: Using a qualitative, contextual, exploratory descriptive design, three focus group interviews were conducted until data saturation was reached amongst pupil enrolled nurses in a military School of Nursing. Results: Data analysed provided evidence that acceptance by clinical staff and affordance of self-directed learning facilitated learning. Students felt safe to practise when they were supported by the clinical staff. They felt a sense of belonging when the staff showed an interest in and welcomed them. Learning was obstructed when students were met with condescending comments. Wearing of a military uniform in the public hospital and horizontal violence obstructed learning in the clinical learning environment. Conclusion: Students cannot have effective clinical preparation if the environment is not conducive to and supportive of clinical learning, The study shows that military nursing students experience unique challenges as they are trained in two professions that are hierarchical in nature. The students experienced both facilitating and obstructing factors to their learning during their clinical practice. Clinical staff should be made aware of factors which can impact on students’ learning. Policies need to be developed for supporting students in the clinical learning

  10. Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments

    NARCIS (Netherlands)

    Börner, Dirk

    2010-01-01

    Börner, D. (2009). Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments. Presented at the Doctoral Consortium of the Fourth European Conference on Technology Enhanced Learning (EC-TEL 2009). September, 29-October, 2, 2009, Nice, France.

  11. The learning environment of paediatric interns in South Africa.

    Science.gov (United States)

    Naidoo, Kimesh L; Van Wyk, Jacqueline M; Adhikari, Miriam

    2017-11-29

    South African (SA) paediatric interns (recently qualified medical graduates) work in a high disease burdened and resource deficient environment for two years, prior to independent practice. Perceptions of this learning environment (LE) influences their approaches to training as well as the outcomes of this period of development. Obstacles to creating a supportive LE and supervisor interaction affects the quality of this training. Measuring perceptions of the LE with validated instruments can help inform improvements in learning during this crucial period of medical education. The aims of this study was to determine the psychometric qualities of the Postgraduate Hospital Educational Environment Measure (PHEEM) amongst paediatric interns across four hospital complexes in South Africa and to measure the LE as perceived by both interns and their supervisors. Construct validity was tested using factor analysis and internal consistency was measured with Cronbach's alpha. A total of 209 interns and 60 supervisors (69% intern response rate) responded to the questionnaire. The PHEEM was found to be very reliable with an overall Cronbach's alpha of 0.943 and 0.874 for intern and supervisors respectively. Factor analysis using a 3-factor solution accounted for 42% of the variance with the teaching subscale having the best fit compared with the other sub-scales of the original tool. Most interns perceived the learning environment as being more positive than negative however, their perceptions differed significantly from that of their supervisors. Poor infrastructural support from institutions, excessive workloads and inadequate supervision were factors preventing optimal training of paediatric interns. The SA version of the PHEEM tool used was found to be a reliable and valid instrument for use in interns amongst high disease burdened contexts. Various obstacles to creating an ideal learning environment for paediatric interns were identified to be in need of urgent review. Key

  12. DEVELOPMENT OF TEACHER COMP ETENCES IN CREATING POWERFUL LEARNING ENVIRONMENTS IN VOCATIONAL SECONDARY EDUCATION

    Directory of Open Access Journals (Sweden)

    Inge PLACKLÉ

    2010-01-01

    Full Text Available Background: At the end of Vocational Secondary Education students should be able to solve authentic problems individually and in group. Powerful learning environments could enforce these learning processes. Research question: “Which critical desirable design principles can we define to create a powerful learning environment in Secondary Vocational Education ? Method: We combine different perspectives of teachers, students and researchers to build a shared model of learning environments, which will be perceived as more powerful by all stakeholders. Based on literature we selected design principles followed by organizing focus groups with teacher educators and teachers to further adapt these principles. Preliminary results: We determined eight design pr inciples: Authenticity learning environment, differentiation, adapted evaluation, self-directed learning, problem solving, teamwork, shared responsibility design learning environment and (labour identity develop ment. Each principle has been further clarified in indicators. This study is part of a larger research project in developing teacher competences in creating powe rful learning enviro nments in Vocational Secondary Education.

  13. Learning Genetics through an Authentic Research Simulation in Bioinformatics

    Science.gov (United States)

    Gelbart, Hadas; Yarden, Anat

    2006-01-01

    Following the rationale that learning is an active process of knowledge construction as well as enculturation into a community of experts, we developed a novel web-based learning environment in bioinformatics for high-school biology majors in Israel. The learning environment enables the learners to actively participate in a guided inquiry process…

  14. The Colorado Learning Attitudes about Science Survey (CLASS) for Use in Biology

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K.; Birol, Gülnur; Smith, Michelle K.

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology. PMID:21885823

  15. The Colorado Learning Attitudes about Science Survey (CLASS) for use in Biology.

    Science.gov (United States)

    Semsar, Katharine; Knight, Jennifer K; Birol, Gülnur; Smith, Michelle K

    2011-01-01

    This paper describes a newly adapted instrument for measuring novice-to-expert-like perceptions about biology: the Colorado Learning Attitudes about Science Survey for Biology (CLASS-Bio). Consisting of 31 Likert-scale statements, CLASS-Bio probes a range of perceptions that vary between experts and novices, including enjoyment of the discipline, propensity to make connections to the real world, recognition of conceptual connections underlying knowledge, and problem-solving strategies. CLASS-Bio has been tested for response validity with both undergraduate students and experts (biology PhDs), allowing student responses to be directly compared with a consensus expert response. Use of CLASS-Bio to date suggests that introductory biology courses have the same challenges as introductory physics and chemistry courses: namely, students shift toward more novice-like perceptions following instruction. However, students in upper-division biology courses do not show the same novice-like shifts. CLASS-Bio can also be paired with other assessments to: 1) examine how student perceptions impact learning and conceptual understanding of biology, and 2) assess and evaluate how pedagogical techniques help students develop both expertise in problem solving and an expert-like appreciation of the nature of biology.

  16. Intellectual Property and Copyright Issues in Online Learning Environments.

    Science.gov (United States)

    Szanto, Edit

    2001-01-01

    Provides an overview of intellectual property and copyright issues as they relate to online learning environments. Includes a historical perspective; laws and regulations; liability; Web-related issues; higher education; distance learning; compliance strategies; and policy recommendations. (Author/LRW)

  17. Level of Intrinsic Motivation of Distance Education Students in e-Learning Environments

    Science.gov (United States)

    Firat, Mehmet; Kilinç, Hakan; Yüzer, Tevfik Volkan

    2018-01-01

    According to researches, motivation that initiates and sustains behaviour is one of the most significant components of learning in any environment. Accordingly, level of intrinsic motivation triggers and sustains the interest of the open and distance education students when it comes to learning on their own in e-learning environments. Despite a…

  18. Foreign language learning in immersive virtual environments

    Science.gov (United States)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  19. Local Learning Strategies for Wake Identification

    Science.gov (United States)

    Colvert, Brendan; Alsalman, Mohamad; Kanso, Eva

    2017-11-01

    Swimming agents, biological and engineered alike, must navigate the underwater environment to survive. Tasks such as autonomous navigation, foraging, mating, and predation require the ability to extract critical cues from the hydrodynamic environment. A substantial body of evidence supports the hypothesis that biological systems leverage local sensing modalities, including flow sensing, to gain knowledge of their global surroundings. The nonlinear nature and high degree of complexity of fluid dynamics makes the development of algorithms for implementing localized sensing in bioinspired engineering systems essentially intractable for many systems of practical interest. In this work, we use techniques from machine learning for training a bioinspired swimmer to learn from its environment. We demonstrate the efficacy of this strategy by learning how to sense global characteristics of the wakes of other swimmers measured only from local sensory information. We conclude by commenting on the advantages and limitations of this data-driven, machine learning approach and its potential impact on broader applications in underwater sensing and navigation.

  20. Active Learning Outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology

    OpenAIRE

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students? engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge prob...

  1. Designing learning environments to promote student learning: ergonomics in all but name.

    Science.gov (United States)

    Smith, Thomas J

    2013-01-01

    This report introduces evidence for the conclusion that a common theme underlies almost all proposed solutions for improving the performance of K-12 students, namely their reliance on the design of educational system environments, features and operations. Two categories of design factors impacting such performance are addressed: (1) 9 factors reliably shown to have a strong influence - namely environmental design of classroom and building facilities, longer exposure to learning, cooperative learning designs, early childhood education, teaching quality, nutritional adequacy, participation in physical activity, good physical fitness, and school-community integration; and (2) 11 factors with an equivocal, varied or weak influence - classroom technology, online learning environments, smaller class size, school choice, school funding, school size, school start times, teacher training level, amount of homework, student self-confidence and informal learning. It is concluded that: (1) student learning outcomes, and more broadly the edifice of education itself, are largely defined in terms of an extensive system of design factors and conditions; (2) the time is long overdue for the educational system to acknowledge the central role of E/HF design as the major influence on student performance and learning; and (3) K-12 educators and administrators should emphasize allocation of resources to design factors reliably shown to have a strongly positive impact on student performance, but should treat expenditure on factors with equivocal, varied or weak influence on such performance with more caution and/or skepticism.

  2. Exploring Non-Traditional Learning Methods in Virtual and Real-World Environments

    Science.gov (United States)

    Lukman, Rebeka; Krajnc, Majda

    2012-01-01

    This paper identifies the commonalities and differences within non-traditional learning methods regarding virtual and real-world environments. The non-traditional learning methods in real-world have been introduced within the following courses: Process Balances, Process Calculation, and Process Synthesis, and within the virtual environment through…

  3. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  4. Towards Entrepreneurial Learning Competencies: The Perspective of Built Environment Students

    Science.gov (United States)

    Ernest, Kissi; Matthew, Somiah K.; Samuel, Ansah K.

    2015-01-01

    This paper sought to discuss entrepreneurial learning competencies by determining the outcome of entrepreneurial learning on the views of built environment students in the university setting. In this study, three relevant competencies were identified for entrepreneurial learning through literature, namely: entrepreneurial attitude, entrepreneurial…

  5. Using Facebook as an informal learning environment.

    Science.gov (United States)

    Cain, Jeff; Policastri, Anne

    2011-12-15

    To create, implement, and assess the effectiveness of an optional Facebook activity intended to expose students to contemporary business issues not covered in the core content of a pharmacy management and leadership course and to perspectives of experts and thought leaders external to their university. An informal learning strategy was used to create a Facebook group page and guest experts were identified and invited to submit posts pertaining to business-related topics. Students were given instructions for joining the Facebook group but informed that participation was optional. A mixed-methods approach using a student questionnaire, results on examination questions, and a student focus group was used to assess this activity. The informal design with no posting guidelines and no participation requirement was well received by students, who appreciated the unique learning environment and exposure to external experts. Facebook provides an informal learning environment for presenting contemporary topics and the thoughts of guest experts not affiliated with a college or school, thereby exposing students to relevant "real world" issues.

  6. THE ENVIRONMENT AS A CRUCIAL LEARNING FACTOR AT PRE-SCHOOL

    Directory of Open Access Journals (Sweden)

    Snježana Močinić

    2016-01-01

    Full Text Available In this essay, the author hypothesizes that physical environment is an essential factor for developing an educational project. The environment is considered a sort of "third educator", playing a decisive role in determining the quality of learning. Classrooms, laboratory, the corridor, the structure of the building itself and the context in which the building is placed; the colours of the walls, the quality of natural and artificial light in the building, the furniture and materials for learning are variables which determine the environment where a child lives, learns, experiences, begins relationships with other people. The educator is very important in the process of a child's development. By means of direct and indirect action, he/she can create an attractive space in the building, more accessible for the processes of functional learning. The empirical research, described in the present survey, underlines the importance of pre-schools as an important place for meeting, interaction, listening and reciprocity leading toward an improvement in the relationship between the child and the school environment. In particular, this empirical research will show the diversity of the places and materials teachers made available to children.

  7. Constructivist Learning Environment During Virtual and Real Laboratory Activities

    Directory of Open Access Journals (Sweden)

    Ari Widodo

    2017-04-01

    Full Text Available Laboratory activities and constructivism are two notions that have been playing significant roles in science education. Despite common beliefs about the importance of laboratory activities, reviews reported inconsistent results about the effectiveness of laboratory activities. Since laboratory activities can be expensive and take more time, there is an effort to introduce virtual laboratory activities. This study aims at exploring the learning environment created by a virtual laboratory and a real laboratory. A quasi experimental study was conducted at two grade ten classes at a state high school in Bandung, Indonesia. Data were collected using a questionnaire called Constructivist Learning Environment Survey (CLES before and after the laboratory activities. The results show that both types of laboratories can create constructivist learning environments. Each type of laboratory activity, however, may be stronger in improving certain aspects compared to the other. While a virtual laboratory is stronger in improving critical voice and personal relevance, real laboratory activities promote aspects of personal relevance, uncertainty and student negotiation. This study suggests that instead of setting one type of laboratory against the other, lessons and follow up studies should focus on how to combine both types of laboratories to support better learning.

  8. Learning Environment as Correlates of Chemistry Students ...

    African Journals Online (AJOL)

    gold

    2012-07-26

    Jul 26, 2012 ... The study aimed at assessing how 13 learning environment variables taken ... chemistry education programmes for optimum achievement of students in ... The contribution of chemistry and chemists to social, industrial and.

  9. Casual Games and Casual Learning about Human Biological Systems

    Science.gov (United States)

    Price, C. Aaron; Gean, Katherine; Christensen, Claire G.; Beheshti, Elham; Pernot, Bryn; Segovia, Gloria; Person, Halcyon; Beasley, Steven; Ward, Patricia

    2016-01-01

    Casual games are everywhere. People play them throughout life to pass the time, to engage in social interactions, and to learn. However, their simplicity and use in distraction-heavy environments can attenuate their potential for learning. This experimental study explored the effects playing an online, casual game has on awareness of human…

  10. Investigating Learners' Attitudes toward Virtual Reality Learning Environments: Based on a Constructivist Approach

    Science.gov (United States)

    Huang, Hsiu-Mei; Rauch, Ulrich; Liaw, Shu-Sheng

    2010-01-01

    The use of animation and multimedia for learning is now further extended by the provision of entire Virtual Reality Learning Environments (VRLE). This highlights a shift in Web-based learning from a conventional multimedia to a more immersive, interactive, intuitive and exciting VR learning environment. VRLEs simulate the real world through the…

  11. Learning Environment Facilitating Educational Achievements of Teenagers

    OpenAIRE

    Šūmane, Ilze

    2012-01-01

    ABSTRACT. The doctoral thesis of Ilze Šūmane in pedagogy science, school pedagogy sub-discipline ”Learning environment facilitating educational achievements of teenagers” was worked out in the Department of Pedagogy, Faculty of Pedagogy, Psychology and Arts, University of Latvia, under the supervision of Dr.paed., professor Rudīte Andersone from2001 till 2011. The topicality of the research determined by the necessity to improve quality learning and education. During an effective study ...

  12. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  13. The Influence of Social Media on Collaborative Learning in a Cohort Environment

    Directory of Open Access Journals (Sweden)

    Natasha James-Waldon

    2016-06-01

    Full Text Available This paper provides an overview of the impact that social media has on the development of collaborative learning within a cohort environment in a doctoral program. The researchers surveyed doctoral students in an education program to determine how social media use has influenced the doctoral students. The study looked at the following areas: a the ability of social media use to develop a collaborative learning environment, b access to social media content which supports learning, and c whether social media use has contributed to the enhancement of the doctoral students’ academic achievement and learning progress. As social media use and on-line learning become more prevalent in education, it is important to continue to understand the impact that social media has on improving students’ ability to achieve their academic goals. This study provides insight on how doctoral students used social media and how social media use has influenced academic development in their cohort environment. In addition, this paper provides a discerning view into the role social media plays when developing a collaborative learning environment in a cohort.

  14. Effect of Cognitive Style on Learning and Retrieval of Navigational Environments

    Directory of Open Access Journals (Sweden)

    Maddalena Boccia

    2017-07-01

    Full Text Available Field independence (FI has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called “cognitive maps,” and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT for assessing their Cognitive Style (CS and to the Perspective Taking/Spatial Orientation Test (PTSOT and the Santa Barbara Sense of Direction Scale (SBSOD for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL, to recognize landmarks of this path among distracters (landmark recognition, LR, to order them (landmark ordering, LO and to draw the learned path on a map (map drawing, MD. Retrieval tasks were performed both immediately after learning (immediate-retrieval and the day after (24 h-retrieval. Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals, results on LR (in 24-retrieval and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI

  15. Participatory design in the project of virtual learning environment of histology

    OpenAIRE

    Santa-Rosa, José Guilherme da Silva

    2012-01-01

    This present article describes a research on the development, under the approach of participatory design, a virtual teaching-learning of Histology in which students and teachers participated actively in all stages of development of the educational environment. We postulates that the development of virtual learning environment of Histology, through the Participatory Design approach, contributes to greater acceptance and use by students and that the adoption of virtual environment for teaching ...

  16. Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2010-01-01

    Börner, D., & Specht, M. (2009). Awareness for Contextualized Digital Contents in Ubiquitous Learning Environments. Proceedings of the Doctoral Consortium of the Fourth European Conference on Technology Enhanced Learning (EC-TEL 2009). September, 29-October, 2, 2009, Nice, France. [unpublished

  17. A review on machine learning principles for multi-view biological data integration.

    Science.gov (United States)

    Li, Yifeng; Wu, Fang-Xiang; Ngom, Alioune

    2018-03-01

    Driven by high-throughput sequencing techniques, modern genomic and clinical studies are in a strong need of integrative machine learning models for better use of vast volumes of heterogeneous information in the deep understanding of biological systems and the development of predictive models. How data from multiple sources (called multi-view data) are incorporated in a learning system is a key step for successful analysis. In this article, we provide a comprehensive review on omics and clinical data integration techniques, from a machine learning perspective, for various analyses such as prediction, clustering, dimension reduction and association. We shall show that Bayesian models are able to use prior information and model measurements with various distributions; tree-based methods can either build a tree with all features or collectively make a final decision based on trees learned from each view; kernel methods fuse the similarity matrices learned from individual views together for a final similarity matrix or learning model; network-based fusion methods are capable of inferring direct and indirect associations in a heterogeneous network; matrix factorization models have potential to learn interactions among features from different views; and a range of deep neural networks can be integrated in multi-modal learning for capturing the complex mechanism of biological systems.

  18. Developing the master learner: applying learning theory to the learner, the teacher, and the learning environment.

    Science.gov (United States)

    Schumacher, Daniel J; Englander, Robert; Carraccio, Carol

    2013-11-01

    As a result of the paradigm shift to a competency-based framework, both self-directed lifelong learning and learner-centeredness have become essential tenets of medical education. In the competency-based framework, learners drive their own educational process, and both learners and teachers share the responsibility for the path and content of learning. This learner-centered emphasis requires each physician to develop and maintain lifelong learning skills, which the authors propose culminate in becoming a "master leaner." To better understand the development of these skills and the attainment of that goal, the authors explore how learning theories inform the development of master learners and how to translate these theories into practical strategies for the learner, the teacher, and the learning environment so as to optimize this development.The authors begin by exploring self-determination theory, which lays the groundwork for understanding the motivation to learn. They next consider the theories of cognitive load and situated cognition, which inform the optimal context and environment for learning. Building from this foundation, the authors consider key educational theories that affect learners' abilities to serve as primary drivers of their learning, including self-directed learning (SDL); the self-assessment skills necessary for SDL; factors affecting self-assessment (self-concept, self-efficacy, illusory superiority, gap filling); and ways to mitigate the inaccuracies of self-assessment (reflection, self-monitoring, external information seeking, and self-directed assessment seeking).For each theory, they suggest practical action steps for the learner, the teacher, and the learning environment in an effort to provide a road map for developing master learners.

  19. Medical students' perceptions of their learning environment during a mandatory research project.

    Science.gov (United States)

    Möller, Riitta; Ponzer, Sari; Shoshan, Maria

    2017-10-20

    To explore medical students´ perceptions of their learning environment during a mandatory 20-week scientific research project. This cross-sectional study was conducted between 2011 and 2013. A total of 651 medical students were asked to fill in the Clinical Learning Environment, Supervision, and Nurse Teacher (CLES+T) questionnaire, and 439 (mean age 26 years, range 21-40, 60% females) returned the questionnaire, which corresponds to a response rate of 67%. The Mann-Whitney U test or the Kruskal-Wallis test were used to compare the research environments. The item My workplace can be regarded as a good learning environment correlated strongly with the item There were sufficient meaningful learning situations (r= 0.71, psatisfaction with supervision correlated strongly with the items interaction (r=0.78, p work in close collaboration.

  20. Language Learning in Virtual Reality Environments: Past, Present, and Future

    Science.gov (United States)

    Lin, Tsun-Ju; Lan, Yu-Ju

    2015-01-01

    This study investigated the research trends in language learning in a virtual reality environment by conducting a content analysis of findings published in the literature from 2004 to 2013 in four top ranked computer-assisted language learning journals: "Language Learning & Technology," "CALICO Journal," "Computer…

  1. Hybrid E-Textbooks as Comprehensive Interactive Learning Environments

    Science.gov (United States)

    Ghaem Sigarchian, Hajar; Logghe, Sara; Verborgh, Ruben; de Neve, Wesley; Salliau, Frank; Mannens, Erik; Van de Walle, Rik; Schuurman, Dimitri

    2018-01-01

    An e-TextBook can serve as an interactive learning environment (ILE), facilitating more effective teaching and learning processes. In this paper, we propose the novel concept of an EPUB 3-based Hybrid e-TextBook, which allows for interaction between the digital and the physical world. In that regard, we first investigated the gap between the…

  2. The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project

    Science.gov (United States)

    Beichner, Robert J.

    2011-04-01

    How do you keep a classroom of 100 undergraduates actively learning? Can students practice communication and teamwork skills in a large class? How do you boost the performance of underrepresented groups? The Student-Centered Active Learning Environment for Undergraduate Programs (SCALE-UP) Project has addressed these concerns. Because of their inclusion in a leading introductory physics textbook, project materials are used by more than 1/3 of all science, math, and engineering majors nationwide. The room design and pedagogy have been adopted at more than 100 leading institutions across the country. Physics, chemistry, math, astronomy, biology, engineering, earth sciences, and even literature classes are currently being taught this way. Educational research indicates that students should collaborate on interesting tasks and be deeply involved with the material they are studying. We promote active learning in a redesigned classroom for 100 students or more. (Of course, smaller classes can also benefit.) Class time is spent primarily on "tangibles" and "ponderables"--hands-on activities, simulations, and interesting questions. Nine students sit in three teams at round tables. Instructors circulate and engage in Socratic dialogues. The setting looks like a banquet hall, with lively interactions nearly all the time. Hundreds of hours of classroom video and audio recordings, transcripts of numerous interviews and focus groups, data from conceptual learning assessments (using widely-recognized instruments in a pretest/posttest protocol), and collected portfolios of student work are part of our rigorous assessment effort. Our findings (based on data from over 16,000 students collected over five years as well as replications at adopting sites) can be summarized as the following: 1) Female failure rate is 1/5 of previous levels, even though more is demanded of students. 2) Minority failure rate is 1/4 that seen in traditionally taught courses. 3) At-risk students are more

  3. Biological sex influences learning strategy preference and muscarinic receptor binding in specific brain regions of prepubertal rats.

    Science.gov (United States)

    Grissom, Elin M; Hawley, Wayne R; Hodges, Kelly S; Fawcett-Patel, Jessica M; Dohanich, Gary P

    2013-04-01

    According to the theory of multiple memory systems, specific brain regions interact to determine how the locations of goals are learned when rodents navigate a spatial environment. A number of factors influence the type of strategy used by rodents to remember the location of a given goal in space, including the biological sex of the learner. We recently found that prior to puberty male rats preferred a striatum-dependent stimulus-response strategy over a hippocampus-dependent place strategy when solving a dual-solution task, while age-matched females showed no strategy preference. Because the cholinergic system has been implicated in learning strategy and is known to be sexually dimorphic prior to puberty, we explored the relationship between learning strategy and muscarinic receptor binding in specific brain regions of prepubertal males and female rats. We confirmed our previous finding that at 28 days of age a significantly higher proportion of prepubertal males preferred a stimulus-response learning strategy than a place strategy to solve a dual-solution visible platform water maze task. Equal proportions of prepubertal females preferred stimulus-response or place strategies. Profiles of muscarinic receptor binding as assessed by autoradiography varied according to strategy preference. Regardless of biological sex, prepubertal rats that preferred stimulus-response strategy exhibited lower ratios of muscarinic receptor binding in the hippocampus relative to the dorsolateral striatum compared to rats that preferred place strategy. Importantly, much of the variance in this ratio was related to differences in the ventral hippocampus to a greater extent than the dorsal hippocampus. The ratios of muscarinic receptors in the hippocampus relative to the basolateral amygdala also were lower in rats that preferred stimulus-response strategy over place strategy. Results confirm that learning strategy preference varies with biological sex in prepubertal rats with males

  4. Academic integrity in the online learning environment for health sciences students.

    Science.gov (United States)

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (pacademic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All

  5. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  6. Impact of e-AV Biology Website for Learning about Renewable Energy

    Science.gov (United States)

    Nugraini, Siti Hadiati; Choo, Koo Ah; Hin, Hew Soon; Hoon, Teoh Sian

    2013-01-01

    This paper considers the design and development of a Website for Biology in senior high schools in Indonesia. The teaching media, namely e-AV Biology, was developed with the main features of video lessons and other features in supporting the students' learning process. Some video lessons describe the production process of Biofuel or Renewable…

  7. Simulation based virtual learning environment in medical genetics counseling

    DEFF Research Database (Denmark)

    Makransky, Guido; Bonde, Mads T.; Wulff, Julie S. G.

    2016-01-01

    BACKGROUND: Simulation based learning environments are designed to improve the quality of medical education by allowing students to interact with patients, diagnostic laboratory procedures, and patient data in a virtual environment. However, few studies have evaluated whether simulation based...... the perceived relevance of medical educational activities. The results suggest that simulations can help future generations of doctors transfer new understanding of disease mechanisms gained in virtual laboratory settings into everyday clinical practice....... learning environments increase students' knowledge, intrinsic motivation, and self-efficacy, and help them generalize from laboratory analyses to clinical practice and health decision-making. METHODS: An entire class of 300 University of Copenhagen first-year undergraduate students, most with a major...

  8. Associative visual learning by tethered bees in a controlled visual environment.

    Science.gov (United States)

    Buatois, Alexis; Pichot, Cécile; Schultheiss, Patrick; Sandoz, Jean-Christophe; Lazzari, Claudio R; Chittka, Lars; Avarguès-Weber, Aurore; Giurfa, Martin

    2017-10-10

    Free-flying honeybees exhibit remarkable cognitive capacities but the neural underpinnings of these capacities cannot be studied in flying insects. Conversely, immobilized bees are accessible to neurobiological investigation but display poor visual learning. To overcome this limitation, we aimed at establishing a controlled visual environment in which tethered bees walking on a spherical treadmill learn to discriminate visual stimuli video projected in front of them. Freely flying bees trained to walk into a miniature Y-maze displaying these stimuli in a dark environment learned the visual discrimination efficiently when one of them (CS+) was paired with sucrose and the other with quinine solution (CS-). Adapting this discrimination to the treadmill paradigm with a tethered, walking bee was successful as bees exhibited robust discrimination and preferred the CS+ to the CS- after training. As learning was better in the maze, movement freedom, active vision and behavioral context might be important for visual learning. The nature of the punishment associated with the CS- also affects learning as quinine and distilled water enhanced the proportion of learners. Thus, visual learning is amenable to a controlled environment in which tethered bees learn visual stimuli, a result that is important for future neurobiological studies in virtual reality.

  9. A Problem-Solving Environment for Biological Network Informatics: Bio-Spice

    Science.gov (United States)

    2007-06-01

    user an environment to access software tools. The Dashboard is built upon the NetBeans Integrated Development Environment (IDE), an open source Java...based integration platform was demonstrated. During the subsequent six month development cycle, the first version of the NetBeans based Bio-SPICE...frameworks (OAA, NetBeans , and Systems Biology Workbench (SBW)[15]), it becomes possible for Bio-SPICE tools to truly interoperate. This interoperation

  10. A care improvement program acting as a powerful learning environment to support nursing students learning facilitation competencies.

    Science.gov (United States)

    Jukema, Jan S; Harps-Timmerman, Annelies; Stoopendaal, Annemiek; Smits, Carolien H M

    2015-11-01

    Change management is an important area of training in undergraduate nursing education. Successful change management in healthcare aimed at improving practices requires facilitation skills that support teams in attaining the desired change. Developing facilitation skills in nursing students requires formal educational support. A Dutch Regional Care Improvement Program based on a nationwide format of change management in healthcare was designed to act as a Powerful Learning Environment for nursing students developing competencies in facilitating change. This article has two aims: to provide comprehensive insight into the program components and to describe students' learning experiences in developing their facilitation skills. This Dutch Regional Care Improvement Program considers three aspects of a Powerful Learning Environment: self-regulated learning; problem-based learning; and complex, realistic and challenging learning tasks. These three aspects were operationalised in five distinct areas of facilitation: increasing awareness of the need for change; leadership and project management; relationship building and communication; importance of the local context; and ongoing monitoring and evaluation. Over a period of 18 months, 42 nursing students, supported by trained lecturer-coaches, took part in nine improvement teams in our Regional Care Improvement Program, executing activities in all five areas of facilitation. Based on the students' experiences, we propose refinements to various components of this program, aimed at strengthenin the learning environment. There is a need for further detailed empirical research to study the impact this kind of learning environment has on students developing facilitation competencies in healthcare improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. The Effects of Student Engagement, Student Satisfaction, and Perceived Learning in Online Learning Environments

    Science.gov (United States)

    Gray, Julie A.; DiLoreto, Melanie

    2016-01-01

    Studies have shown that course organization and structure, student engagement, learner interaction, and instructor presence have accounted for considerable variance in student satisfaction and perceived learning in online learning environments through a range of pathways, although no research to date has tested the mediational relationship…

  12. Evolution of learning in fluctuating environments: when selection favors both social and exploratory individual learning.

    Science.gov (United States)

    Borenstein, Elhanan; Feldman, Marcus W; Aoki, Kenichi

    2008-03-01

    Cumulative cultural change requires organisms that are capable of both exploratory individual learning and faithful social learning. In our model, an organism's phenotype is initially determined innately (by its genotypic value) or by social learning (copying a phenotype from the parental generation), and then may or may not be modified by individual learning (exploration around the initial phenotype). The environment alternates periodically between two states, each defined as a certain range of phenotypes that can survive. These states may overlap, in which case the same phenotype can survive in both states, or they may not. We find that a joint social and exploratory individual learning strategy-the strategy that supports cumulative culture-is likely to spread when the environmental states do not overlap. In particular, when the environmental states are contiguous and mutation is allowed among the genotypic values, this strategy will spread in either moderately or highly stable environments, depending on the exact nature of the individual learning applied. On the other hand, natural selection often favors a social learning strategy without exploration when the environmental states overlap. We find only partial support for the "consensus" view, which holds that individual learning, social learning, and innate determination of behavior will evolve at short, intermediate, and long environmental periodicities, respectively.

  13. Educational Ethnography in Blended Learning Environments

    Science.gov (United States)

    Antoniadou, Victoria; Dooly, Melinda

    2017-01-01

    This chapter aims to answer some of the questions that emerge when carrying out educational ethnography in a blended learning environment. The authors first outline how Virtual Ethnography (VE) has been developed and applied by other researchers. Then, to better illustrate the approach, they describe a doctoral research project that implemented…

  14. USING WIKIS AS A SUPPORT AND ASSESSMENT TOOL IN COLLABORATIVE DIGITAL GAME-BASED LEARNING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Yavuz SAMUR

    2011-04-01

    Full Text Available In computer-supported collaborative learning (CSCL environments, there are many researches done on collaborative learning activities; however, in game-based learning environments, more research and literature on collaborative learning activities are required. Actually, both game-based learning environments and wikis enable us to use new chances for learning, especially in collaborative learning activities. Therefore, in this paper, related literature on wikis and how game & instructional designers can leverage from wikis in game-based learning settings for enhancing students’ collaborative learning activities are examined. Based on the reviewed literature, two main suggestions are given in this paper with their underlying reasons. First, using wikis as a support tool for enhancing collaboration in digital game-based learning (DGBL environments, and second using wikis as an assessment tool in DGBL are suggested.

  15. Technological learning in energy-environment-economy modelling: A survey

    International Nuclear Information System (INIS)

    Kahouli-Brahmi, Sondes

    2008-01-01

    This paper aims at providing an overview and a critical analysis of the technological learning concept and its incorporation in energy-environment-economy models. A special emphasis is put on surveying and discussing, through the so-called learning curve, both studies estimating learning rates in the energy field and studies incorporating endogenous technological learning in bottom-up and top-down models. The survey of learning rate estimations gives special attention to interpreting and explaining the sources of variability of estimated rates, which is shown to be mainly inherent in R and D expenditures, the problem of omitted variable bias, the endogeneity relationship and the role of spillovers. Large-scale models survey show that, despite some methodological and computational complexity related to the non-linearity and the non-convexity associated with the learning curve incorporation, results of the numerous modelling experiments give several new insights with regard to the analysis of the prospects of specific technological options and their cost decrease potential (bottom-up models), and with regard to the analysis of strategic considerations, especially inherent in the innovation and energy diffusion process, in particular the energy sector's endogenous responses to environment policy instruments (top-down models)

  16. Open Integrated Personal Learning Environment: Towards a New Conception of the ICT-Based Learning Processes

    Science.gov (United States)

    Conde, Miguel Ángel; García-Peñalvo, Francisco José; Casany, Marià José; Alier Forment, Marc

    Learning processes are changing related to technological and sociological evolution, taking this in to account, a new learning strategy must be considered. Specifically what is needed is to give an effective step towards the eLearning 2.0 environments consolidation. This must imply the fusion of the advantages of the traditional LMS (Learning Management System) - more formative program control and planning oriented - with the social learning and the flexibility of the web 2.0 educative applications.

  17. Automation and Control Learning Environment with Mixed Reality Remote Experiments Architecture

    Directory of Open Access Journals (Sweden)

    Frederico M. Schaf

    2007-05-01

    Full Text Available This work aims to the use of remotely web-based experiments to improve the learning process of automation and control systems theory courses. An architecture combining virtual learning environments, remote experiments, students guide and experiments analysis is proposed based on a wide state of art study. The validation of the architecture uses state of art technologies and new simple developed programs to implement the case studies presented. All implementations presented use an internet accessible virtual learning environment providing educational resources, guides and learning material to create a distance learning course associated with the remote mixed reality experiment. This work is part of the RExNet consortium, supported by the European Alfa project.

  18. Evaluation of hybrid and distance education learning environments in Spain

    OpenAIRE

    Ferrer-Cascales, Rosario; Walker, Scott L.; Reig-Ferrer, Abilio; Fernández-Pascual, M. Dolores; Albaladejo-Blázquez, Natalia

    2011-01-01

    This article describes the adaptation and validation of the Distance Education Learning Environments Survey (DELES) for use in investigating the qualities found in distance and hybrid education psycho-social learning environments in Spain. As Europe moves toward post-secondary student mobility, equanimity in access to higher education, and more standardised degree programs across the European Higher Education Area (EHEA) the need for a high quality method for continually assessing the excelle...

  19. Learning in Virtual Forest: A Forest Ecosystem in the Web-Based Learning Environment

    Science.gov (United States)

    Jussila, Terttu; Virtanen, Viivi

    2014-01-01

    Virtual Forest is a web-based, open-access learning environment about forests designed for primary-school pupils between the ages of 10 and 13 years. It is pedagogically designed to develop an understanding of ecology, to enhance conceptual development and to give a holistic view of forest ecosystems. Various learning tools, such as concept maps,…

  20. Perception of and satisfaction with the clinical learning environment among nursing students.

    Science.gov (United States)

    D'Souza, Melba Sheila; Karkada, Subrahmanya Nairy; Parahoo, Kader; Venkatesaperumal, Ramesh

    2015-06-01

    Clinical nursing education provides baccalaureate nursing students an opportunity to combine cognitive, psychomotor, and affective skills in the Middle East. The aim of the paper is to assess the satisfaction with and effectiveness of the clinical learning environment among nursing students in Oman. A cross-sectional descriptive design was used. A convenience sample consisting of 310 undergraduate nursing students was selected in a public school of nursing in Oman. Ethical approval was obtained from the Research and Ethics Committee, College of Nursing in 2011. A standardized, structured, validated and reliable Clinical Learning Environment Supervision Teacher Evaluation instrument was used. Informed consent was obtained from all the students. Data was analyzed with ANOVA and structural equation modeling. Satisfaction with the clinical learning environment (CLE) sub-dimensions was highly significant and had a positive relationship with the total clinical learning environment. In the path model 35% of its total variance of satisfaction with CLE is accounted by leadership style, clinical nurse commitment (variance=28%), and patient relationships (R(2)=27%). Higher age, GPA and completion of a number of clinical courses were significant in the satisfaction with the CLE among these students. Nurse educators can improvise clinical learning placements focusing on leadership style, premises of learning and nursing care, nurse teacher, and supervision while integrating student, teacher and environmental factors. Hence the clinical learning environment is integral to students' learning and valuable in providing educational experiences. The CLE model provides information to nurse educators regarding best clinical practices for improving the CLE for BSN students. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An Analysis of University Students' Attitudes towards Personalized Learning Environments

    Science.gov (United States)

    Sahin, Muhittin; Kisla, Tarik

    2016-01-01

    The aim of this research is to analyze university students' attitudes towards personalized learning environments with respect to the independent variables of gender, age, university, year of study, knowledge about the environment, participation in the environment and being willing to participate in the environment. The correlative survey model is…

  2. Designing an Interactive Multimedia Environment for Learning and Aiding Troubleshooting

    National Research Council Canada - National Science Library

    Kolodner, Janet

    1997-01-01

    .... However troubleshooting is a complex process both to learn and perform. This report examines the prospects for designing an interactive learning environment that helps users acquire and engage in effective troubleshooting...

  3. A PKI Approach for Deploying Modern Secure Distributed E-Learning and M-Learning Environments

    Science.gov (United States)

    Kambourakis, Georgios; Kontoni, Denise-Penelope N.; Rouskas, Angelos; Gritzalis, Stefanos

    2007-01-01

    While public key cryptography is continuously evolving and its installed base is growing significantly, recent research works examine its potential use in e-learning or m-learning environments. Public key infrastructure (PKI) and attribute certificates (ACs) can provide the appropriate framework to effectively support authentication and…

  4. Unified Deep Learning Architecture for Modeling Biology Sequence.

    Science.gov (United States)

    Wu, Hongjie; Cao, Chengyuan; Xia, Xiaoyan; Lu, Qiang

    2017-10-09

    Prediction of the spatial structure or function of biological macromolecules based on their sequence remains an important challenge in bioinformatics. When modeling biological sequences using traditional sequencing models, characteristics, such as long-range interactions between basic units, the complicated and variable output of labeled structures, and the variable length of biological sequences, usually lead to different solutions on a case-by-case basis. This study proposed the use of bidirectional recurrent neural networks based on long short-term memory or a gated recurrent unit to capture long-range interactions by designing the optional reshape operator to adapt to the diversity of the output labels and implementing a training algorithm to support the training of sequence models capable of processing variable-length sequences. Additionally, the merge and pooling operators enhanced the ability to capture short-range interactions between basic units of biological sequences. The proposed deep-learning model and its training algorithm might be capable of solving currently known biological sequence-modeling problems through the use of a unified framework. We validated our model on one of the most difficult biological sequence-modeling problems currently known, with our results indicating the ability of the model to obtain predictions of protein residue interactions that exceeded the accuracy of current popular approaches by 10% based on multiple benchmarks.

  5. Clinical learning environment and supervision: experiences of Norwegian nursing students - a questionnaire survey.

    Science.gov (United States)

    Skaalvik, Mari Wolff; Normann, Hans Ketil; Henriksen, Nils

    2011-08-01

    To measure nursing students' experiences and satisfaction with their clinical learning environments. The primary interest was to compare the results between students with respect to clinical practice in nursing homes and hospital wards. Clinical learning environments are important for the learning processes of nursing students and for preferences for future workplaces. Working with older people is the least preferred area of practice among nursing students in Norway. A cross-sectional design. A validated questionnaire was distributed to all nursing students from five non-randomly selected university colleges in Norway. A total of 511 nursing students completed a Norwegian version of the questionnaire, Clinical Learning Environment, Supervision and Nurse Teacher (CLES+T) evaluation scale in 2009. Data including descriptive statistics were analysed using the Statistical Program for the Social Sciences. Factor structure was analysed by principal component analysis. Differences across sub-groups were tested with chi-square tests and Mann-Whitney U test for categorical variables and t-tests for continuous variables. Ordinal logistic regression analysis of perceptions of the ward as a good learning environment was performed with supervisory relationships and institutional contexts as independent variables, controlling for age, sex and study year. The participating nursing students with clinical placements in nursing homes assessed their clinical learning environment significantly more negatively than those with hospital placements on nearby all sub-dimensions. The evidence found in this study indicates that measures should be taken to strengthen nursing homes as learning environments for nursing students. To recruit more graduated nurses to work in nursing homes, actions to improve the learning environment are needed. © 2011 Blackwell Publishing Ltd.

  6. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  7. The Challenges of Nursing Students in the Clinical Learning Environment: A Qualitative Study.

    Science.gov (United States)

    Jamshidi, Nahid; Molazem, Zahra; Sharif, Farkhondeh; Torabizadeh, Camellia; Najafi Kalyani, Majid

    2016-01-01

    Background/Aim. Clinical learning is a main part of nursing education. Students' exposure to clinical learning environment is one of the most important factors affecting the teaching-learning process in clinical settings. Identifying challenges of nursing students in the clinical learning environment could improve training and enhance the quality of its planning and promotion of the students. We aimed to explore Iranian nursing students' challenges in the clinical learning environment. Materials and Methods. This is a qualitative study using the content analysis approach. The participants consisted of seventeen nursing students and three nursing instructors. The participants were selected through purposive sampling method and attended semistructured interviews and focus groups. Results. Three themes emerged after data analysis, including ineffective communications, inadequate readiness, and emotional reactions. Conclusion. Nursing students in Iran are faced with many challenges in the clinical learning environment. All challenges identified in this study affected the students' learning in clinical setting. Therefore, we recommend that the instructors prepare students with a specific focus on their communication and psychological needs.

  8. Students' Personal Networks in Virtual and Personal Learning Environments: A Case Study in Higher Education Using Learning Analytics Approach

    Science.gov (United States)

    Casquero, Oskar; Ovelar, Ramón; Romo, Jesús; Benito, Manuel; Alberdi, Mikel

    2016-01-01

    The main objective of this paper is to analyse the effect of the affordances of a virtual learning environment and a personal learning environment (PLE) in the configuration of the students' personal networks in a higher education context. The results are discussed in light of the adaptation of the students to the learning network made up by two…

  9. Local wisdom of Ngata Toro community in utilizing forest resources as a learning source of biology

    Science.gov (United States)

    Yuliana, Sriyati, Siti; Sanjaya, Yayan

    2017-08-01

    Indonesian society is a pluralistic society with different cultures and local potencies that exist in each region. Some of local community still adherethe tradition from generation to generation in managing natural resources wisely. The application of the values of local wisdom is necessary to teach back to student to be more respect the culture and local potentials in the region. There are many ways developing student character by exploring local wisdom and implementing them as a learning resources. This study aims at revealing the values of local wisdom Ngata Toro indigenous people of Central Sulawesi Province in managing forest as a source of learning biology. This research was conducted by in-depth interviews, participant non-observation, documentation studies, and field notes. The data were analyzed with triangulation techniques by using a qualitative interaction analysis that is data collection, data reduction, and data display. Ngata Toro local community manage forest by dividing the forest into several zones, those arewana ngkiki, wana, pangale, pahawa pongko, oma, and balingkea accompanied by rules in the management of result-based forest conservation and sustainable utilization. By identifying the purpose of zonation and regulation of the forest, such values as the value of environmental conservation, balance value, sustainable value, and the value of mutual cooperation. These values are implemented as a biological learning resource which derived from the competences standard of analyze the utilization and conservation of the environment.

  10. Practice education learning environments: the mismatch between perceived and preferred expectations of undergraduate health science students.

    Science.gov (United States)

    Brown, Ted; Williams, Brett; McKenna, Lisa; Palermo, Claire; McCall, Louise; Roller, Louis; Hewitt, Lesley; Molloy, Liz; Baird, Marilyn; Aldabah, Ligal

    2011-11-01

    Practical hands-on learning opportunities are viewed as a vital component of the education of health science students, but there is a critical shortage of fieldwork placement experiences. It is therefore important that these clinical learning environments are well suited to students' perceptions and expectations. To investigate how undergraduate students enrolled in health-related education programs view their clinical learning environments and specifically to compare students' perception of their 'actual' clinical learning environment to that of their 'preferred/ideal' clinical learning environment. The Clinical Learning Environment Inventory (CLEI) was used to collect data from 548 undergraduate students (55% response rate) enrolled in all year levels of paramedics, midwifery, radiography and medical imaging, occupational therapy, pharmacy, nutrition and dietetics, physiotherapy and social work at Monash University via convenience sampling. Students were asked to rate their perception of the clinical learning environment at the completion of their placements using the CLEI. Satisfaction of the students enrolled in the health-related disciplines was closely linked with the five constructs measured by the CLEI: Personalization, Student Involvement, Task Orientation, Innovation, and Individualization. Significant differences were found between the student's perception of their 'actual' clinical learning environment and their 'ideal' clinical learning environment. The study highlights the importance of a supportive clinical learning environment that places emphasis on effective two-way communication. A thorough understanding of students' perceptions of their clinical learning environments is essential. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Mobile Based User-Centered Learning Environment for Adult Absolute Illiterates

    Directory of Open Access Journals (Sweden)

    Inayat ur-Rehman

    2016-01-01

    Full Text Available Education plays a vital role in the success of any community. Countries with increased literacy rate have improved their status on the world map. In recent years, the use of e-learning methodologies has been significant. However, majority of the previous methodologies are focused on the formal education or toddlers. The technoliteracy solutions for children are not suitable for adults and those designed specifically for adults are text dominant and require the users of these applications to be functional literate. Moreover, users’ interest (sense of belonging is not taken into consideration in existing solutions. To address the aforementioned issues, a user study is conducted to collect users’ interests. Another highlight of our study is that we develop our system as a mobile device application to facilitate our target user group. Based on the collected interests, a 3D virtual learning environment is designed and developed for adult illiterate learners. To evaluate the effectiveness of the proposed environment, an experimental study is carried out with users. The results show that the proposed learning environment significantly improves adults learning.

  12. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    Science.gov (United States)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  13. Homeostatic Agent for General Environment

    Science.gov (United States)

    Yoshida, Naoto

    2018-03-01

    One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.

  14. The effects of biological sex and gonadal hormones on learning strategy in adult rats.

    Science.gov (United States)

    Hawley, Wayne R; Grissom, Elin M; Barratt, Harriet E; Conrad, Taylor S; Dohanich, Gary P

    2012-02-28

    When learning to navigate toward a goal in a spatial environment, rodents employ distinct learning strategies that are governed by specific regions of the brain. In the early stages of learning, adult male rats prefer a hippocampus-dependent place strategy over a striatum-dependent response strategy. Alternatively, female rats exhibit a preference for a place strategy only when circulating levels of estradiol are elevated. Notably, male rodents typically perform better than females on a variety of spatial learning tasks, which are mediated by the hippocampus. However, limited research has been done to determine if the previously reported male spatial advantage corresponds with a greater reliance on a place strategy, and, if the male preference for a place strategy is impacted by removal of testicular hormones. A dual-solution water T-maze task, which can be solved by adopting either a place or a response strategy, was employed to determine the effects of biological sex and hormonal status on learning strategy. In the first experiment, male rats made more correct arm choices than female rats during training and exhibited a bias for a place strategy on a probe trial. The results of the second experiment indicated that testicular hormones modulated arm choice accuracy during training, but not the preference for a place strategy. Together, these findings suggest that the previously reported male spatial advantage is associated with a greater reliance on a place strategy, and that only performance during the training phase of a dual-solution learning task is impacted by removal of testicular hormones. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Game-Based Learning in an OpenSim-Supported Virtual Environment on Perceived Motivational Quality of Learning

    Science.gov (United States)

    Kim, Heesung; Ke, Fengfeng; Paek, Insu

    2017-01-01

    This experimental study was intended to examine whether game-based learning (GBL) that encompasses four particular game characteristics (challenges, a storyline, immediate rewards and the integration of game-play with learning content) in an OpenSimulator-supported virtual reality learning environment can improve perceived motivational quality of…

  16. Evaluation of Several Learning Environment Variables at Secondary Institutions

    Directory of Open Access Journals (Sweden)

    Murat Tuncer

    2012-06-01

    Full Text Available Health is an issue whose importance needs to be focused in the learning environment and learning activities in education. The level of teaching and learning is known to effect health of learners. Learning environments are teeming with many variables. Ambient temperature, noise, humidity and illumination are a few of them. If these variables are outside the specified limits for ambient levels this may need to a loss of learning and adversely affect the health of learners. This research was conducted to evaluate this aspect at institutions of secondary education in Turkey. The literature discusses the findings of various measurements that were taken with a variety of devices such as the Environment Meter-DT 8820, GMI PN 66094 and AARONIA AG SPECTRAN at randomly selected schools and classes. The temperature and carbon dioxide values in the classrooms were outside the defined limits according to research findings. In addition, many classrooms had noise levels above limits which could impair human health and some color selections in classrooms were made incorrectly. When the results of the findings are analyzed, we find the learner’s metabolism is negatively affected; attention loss and serious health problems may be experienced in the long run. It is highly recommended that laws and regulations regarding school construction and settlement be enacted and that precise limits be defined in those laws. In addition, it is thought establishing electromechanical systems to measure indoor and outdoor air quality in classrooms would bring benefits

  17. Surface coating affects behavior of metallic nanoparticles in a biological environment

    Directory of Open Access Journals (Sweden)

    Darija Domazet Jurašin

    2016-02-01

    Full Text Available Silver (AgNPs and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW, biological cell culture medium without addition of protein (BM, and BM supplemented with common serum protein (BMP. The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl and blood plasma (BlPl, revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  18. Effects of congruence between preferred and perceived learning environments in nursing education in Taiwan: a cross-sectional study.

    Science.gov (United States)

    Yeh, Ting-Kuang; Huang, Hsiu-Mei; Chan, Wing P; Chang, Chun-Yen

    2016-05-20

    To investigate the effects of congruence between preferred and perceived learning environments on learning outcomes of nursing students. A nursing course at a university in central Taiwan. 124 Taiwanese nursing students enrolled in a 13-week problem-based Fundamental Nursing curriculum. Students' preferred learning environment, perceptions about the learning environment and learning outcomes (knowledge, self-efficacy and attitudes) were assessed. On the basis of test scores measuring their preferred and perceived learning environments, students were assigned to one of two groups: a 'preferred environment aligned with perceived learning environment' group and a 'preferred environment discordant with perceived learning environment' group. Learning outcomes were analysed by group. Most participants preferred learning in a classroom environment that combined problem-based and lecture-based instruction. However, a mismatch of problem-based instruction with students' perceptions occurred. Learning outcomes were significantly better when students' perceptions of their instructional activities were congruent with their preferred learning environment. As problem-based learning becomes a focus of educational reform in nursing, teachers need to be aware of students' preferences and perceptions of the learning environment. Teachers may also need to improve the match between an individual student's perception and a teacher's intention in the learning environment, and between the student's preferred and actual perceptions of the learning environment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  19. Baccalaureate nursing students' perceptions of learning and supervision in the clinical environment.

    Science.gov (United States)

    Dimitriadou, Maria; Papastavrou, Evridiki; Efstathiou, Georgios; Theodorou, Mamas

    2015-06-01

    This study is an exploration of nursing students' experiences within the clinical learning environment (CLE) and supervision provided in hospital settings. A total of 357 second-year nurse students from all universities in Cyprus participated in the study. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher instrument. The dimension "supervisory relationship (mentor)", as well as the frequency of individualized supervision meetings, were found to be important variables in the students' clinical learning. However, no statistically-significant connection was established between successful mentor relationship and team supervision. The majority of students valued their mentor's supervision more highly than a nurse teacher's supervision toward the fulfillment of learning outcomes. The dimensions "premises of nursing care" and "premises of learning" were highly correlated, indicating that a key component of a quality clinical learning environment is the quality of care delivered. The results suggest the need to modify educational strategies that foster desirable learning for students in response to workplace demands. © 2014 Wiley Publishing Asia Pty Ltd.

  20. A mixed-methods exploration of an environment for learning computer programming

    Directory of Open Access Journals (Sweden)

    Richard Mather

    2015-08-01

    Full Text Available A mixed-methods approach is evaluated for exploring collaborative behaviour, acceptance and progress surrounding an interactive technology for learning computer programming. A review of literature reveals a compelling case for using mixed-methods approaches when evaluating technology-enhanced-learning environments. Here, ethnographic approaches used for the requirements engineering of computing systems are combined with questionnaire-based feedback and skill tests. These are applied to the ‘Ceebot’ animated 3D learning environment. Video analysis with workplace observation allowed detailed inspection of problem solving and tacit behaviours. Questionnaires and knowledge tests provided broad sample coverage with insights into subject understanding and overall response to the learning environment. Although relatively low scores in programming tests seemingly contradicted the perception that Ceebot had enhanced understanding of programming, this perception was nevertheless found to be correlated with greater test performance. Video analysis corroborated findings that the learning environment and Ceebot animations were engaging and encouraged constructive collaborative behaviours. Ethnographic observations clearly captured Ceebot's value in providing visual cues for problem-solving discussions and for progress through sharing discoveries. Notably, performance in tests was most highly correlated with greater programming practice (p≤0.01. It was apparent that although students had appropriated technology for collaborative working and benefitted from visual and tacit cues provided by Ceebot, they had not necessarily deeply learned the lessons intended. The key value of the ‘mixed-methods’ approach was that ethnographic observations captured the authenticity of learning behaviours, and thereby strengthened confidence in the interpretation of questionnaire and test findings.

  1. LEARNING TECHNOLOGIES FOR STUDENTS IN THE CLOUD ORIENTED LEARNING ENVIRONMENT OF COMPREHENSIVE EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Svitlana G. Lytvynova

    2015-06-01

    Full Text Available The paper analyzes the «flipped» learning and «Web Quest» technologies. The features of the «flipped» learning technology are generalized, as well as compared with traditional learning, clarified the benefits of the technology for teachers and students, described the features of the technology used by teacher and students, developed a teacher’s and student’s flow chart for preparation to the lesson, generalized control and motivation components for activating learning activities of students, found out that a component of cloud oriented learning environment (COLE – Lync (Skype Pro can be used to develop video clips and support «flipped» learning technology. The author defines the concept of «Web Quest» technology, generalizes the «Web Quest» structure components. In the article the functions, features of this technology, the types of problems that can be solved with the help of this technology, as well as «Web Quest» classification are presented. It has been found out that the cloud oriented learning environment gives all the possibilities for «Web Quest» technology implementation in teaching of different subjects of all branches of science. With the help of «flipped» technology training and «Web Quest» a number of important problems of education can be solved – providing the continuous communication intensive training beyond general educational establishment and activation of learning activities of students.

  2. Can a Hypermedia Cooperative e-Learning Environment Stimulate Constructive Collaboration?

    Science.gov (United States)

    Pragnell, Mary Victoria; Roselli, Teresa; Rossano, Veronica

    2006-01-01

    The growing use of the Internet in learning environments has led to new models being created addressing specific learning domains, as well as more general educational goals. In particular, in recent years considerable attention has been paid to collaborative learning supported by technology, because this mode can enhance peer interaction and group…

  3. Development and Validation of the Blended Learning Environment Instrument (BLEI) in Higher Education

    Science.gov (United States)

    Aljahni, Areej; Al-Begain, Khalid; Skinner, Heather

    2014-01-01

    Part of ongoing research into the efficacy of blended learning in higher education within the Kingdom of Saudi Arabia (KSA). The need for, and development of, a Blended Learning Environment Instrument (BLEI) are explained. This new instrument assesses student perceptions across five core aspects of blended learning environments: Infrastructure,…

  4. Improving resident well-being and clinical learning environment through academic initiatives.

    Science.gov (United States)

    Lee, Nathaniel; Appelbaum, Nital; Amendola, Michael; Dodson, Kelley; Kaplan, Brian

    2017-07-01

    Organizational effects on job satisfaction, burnout, work-life balance, and perceived support have not been studied in the context of the clinical learning environment. We evaluated the relationship between academic resources and resident well-being, the clinical learning environment, and in-service examination performance of surgical residents. Residents of general surgery and surgical specialty programs were recruited from March 2016 through June 2016 across the Southeast, Mid-Atlantic, and Northeast regions. Program directors were asked to allow distribution of a paper survey or to forward an electronic survey link onto residents. Five dichotomous questions were asked regarding access to academic resources. Validated measures were obtained assessing resident well-being and perceived clinical learning environment. Data were analyzed through t-tests and chi-squared test of independence. We received 276 respondents across 50 programs. Residents perceiving adequate support to succeed had less burnout (P = 0.008), better resilience (P = 0.009), better job satisfaction (P workplace climate (P < 0.001), better organizational support (P < 0.001), and were more likely to have high performance on the in-service examination (P = 0.001). Specific resources including educational stipends, review questions, in-service board prep, and support for poor performers correlated with improved well-being and perceived clinical learning environment. Provision of academic resources has implications beyond in-service examination performance, correlating with improved resident well-being and perceptions of the clinical learning environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Designing a Virtual-Reality-Based, Gamelike Math Learning Environment

    Science.gov (United States)

    Xu, Xinhao; Ke, Fengfeng

    2016-01-01

    This exploratory study examined the design issues related to a virtual-reality-based, gamelike learning environment (VRGLE) developed via OpenSimulator, an open-source virtual reality server. The researchers collected qualitative data to examine the VRGLE's usability, playability, and content integration for math learning. They found it important…

  6. Biologically Predisposed Learning and Selective Associations in Amygdalar Neurons

    Science.gov (United States)

    Chung, Ain; Barot, Sabiha K.; Kim, Jeansok J.; Bernstein, Ilene L.

    2011-01-01

    Modern views on learning and memory accept the notion of biological constraints--that the formation of association is not uniform across all stimuli. Yet cellular evidence of the encoding of selective associations is lacking. Here, conditioned stimuli (CSs) and unconditioned stimuli (USs) commonly employed in two basic associative learning…

  7. Evaluation of machine learning algorithms for classification of primary biological aerosol using a new UV-LIF spectrometer

    Science.gov (United States)

    Ruske, Simon; Topping, David O.; Foot, Virginia E.; Kaye, Paul H.; Stanley, Warren R.; Crawford, Ian; Morse, Andrew P.; Gallagher, Martin W.

    2017-03-01

    Characterisation of bioaerosols has important implications within environment and public health sectors. Recent developments in ultraviolet light-induced fluorescence (UV-LIF) detectors such as the Wideband Integrated Bioaerosol Spectrometer (WIBS) and the newly introduced Multiparameter Bioaerosol Spectrometer (MBS) have allowed for the real-time collection of fluorescence, size and morphology measurements for the purpose of discriminating between bacteria, fungal spores and pollen.This new generation of instruments has enabled ever larger data sets to be compiled with the aim of studying more complex environments. In real world data sets, particularly those from an urban environment, the population may be dominated by non-biological fluorescent interferents, bringing into question the accuracy of measurements of quantities such as concentrations. It is therefore imperative that we validate the performance of different algorithms which can be used for the task of classification.For unsupervised learning we tested hierarchical agglomerative clustering with various different linkages. For supervised learning, 11 methods were tested, including decision trees, ensemble methods (random forests, gradient boosting and AdaBoost), two implementations for support vector machines (libsvm and liblinear) and Gaussian methods (Gaussian naïve Bayesian, quadratic and linear discriminant analysis, the k-nearest neighbours algorithm and artificial neural networks).The methods were applied to two different data sets produced using the new MBS, which provides multichannel UV-LIF fluorescence signatures for single airborne biological particles. The first data set contained mixed PSLs and the second contained a variety of laboratory-generated aerosol.Clustering in general performs slightly worse than the supervised learning methods, correctly classifying, at best, only 67. 6 and 91. 1 % for the two data sets respectively. For supervised learning the gradient boosting algorithm was

  8. Virtual learning object and environment: a concept analysis.

    Science.gov (United States)

    Salvador, Pétala Tuani Candido de Oliveira; Bezerril, Manacés Dos Santos; Mariz, Camila Maria Santos; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira

    2017-01-01

    To analyze the concept of virtual learning object and environment according to Rodgers' evolutionary perspective. Descriptive study with a mixed approach, based on the stages proposed by Rodgers in his concept analysis method. Data collection occurred in August 2015 with the search of dissertations and theses in the Bank of Theses of the Coordination for the Improvement of Higher Education Personnel. Quantitative data were analyzed based on simple descriptive statistics and the concepts through lexicographic analysis with support of the IRAMUTEQ software. The sample was made up of 161 studies. The concept of "virtual learning environment" was presented in 99 (61.5%) studies, whereas the concept of "virtual learning object" was presented in only 15 (9.3%) studies. A virtual learning environment includes several and different types of virtual learning objects in a common pedagogical context. Analisar o conceito de objeto e de ambiente virtual de aprendizagem na perspectiva evolucionária de Rodgers. Estudo descritivo, de abordagem mista, realizado a partir das etapas propostas por Rodgers em seu modelo de análise conceitual. A coleta de dados ocorreu em agosto de 2015 com a busca de dissertações e teses no Banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Os dados quantitativos foram analisados a partir de estatística descritiva simples e os conceitos pela análise lexicográfica com suporte do IRAMUTEQ. A amostra é constituída de 161 estudos. O conceito de "ambiente virtual de aprendizagem" foi apresentado em 99 (61,5%) estudos, enquanto o de "objeto virtual de aprendizagem" em apenas 15 (9,3%). Concluiu-se que um ambiente virtual de aprendizagem reúne vários e diferentes tipos de objetos virtuais de aprendizagem em um contexto pedagógico comum.

  9. Automatic, Global and Dynamic Student Modeling in a Ubiquitous Learning Environment

    Directory of Open Access Journals (Sweden)

    Sabine Graf

    2009-03-01

    Full Text Available Ubiquitous learning allows students to learn at any time and any place. Adaptivity plays an important role in ubiquitous learning, aiming at providing students with adaptive and personalized learning material, activities, and information at the right place and the right time. However, for providing rich adaptivity, the student model needs to be able to gather a variety of information about the students. In this paper, an automatic, global, and dynamic student modeling approach is introduced, which aims at identifying and frequently updating information about students’ progress, learning styles, interests and knowledge level, problem solving abilities, preferences for using the system, social connectivity, and current location. This information is gathered in an automatic way, using students’ behavior and actions in different learning situations provided by different components/services of the ubiquitous learning environment. By providing a comprehensive student model, students can be supported by rich adaptivity in every component/service of the learning environment. Furthermore, the information in the student model can help in giving teachers a better understanding about the students’ learning process.

  10. Students' Preferred Characteristics of Learning Environments in Vocational Secondary Education

    Science.gov (United States)

    Placklé, Ingeborg; Könings, Karen D.; Jacquet, Wolfgang; Struyven, Katrien; Libotton, Arno; van Merriënboer, Jeroen J. G.; Engels, Nadine

    2014-01-01

    If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument - the Inventory Powerful Learning…

  11. Design A Situated Learning Environment Using Mixed Reality Technology - A Case Study

    OpenAIRE

    Rasimah Che Mohd Yusoff; Halimah Badioze Zaman; Azlina Ahmad

    2010-01-01

    Mixed Reality (MR) is one of the newest technologies explored in education. It promises the potential to promote teaching and learning and making learners- experience more "engaging". However, there still lack of research on designing a virtual learning environment using MR technology. In this paper, we describe the Mixed Reality technology, the characteristics of situated learning as instructional design for virtual environment using mixed reality technology. We also exp...

  12. Learner Self-Regulation and Web 2.0 Tools Management in Personal Learning Environment

    Science.gov (United States)

    Yen, Cherng-Jyh; Tu, Chih-Hsiung; Sujo-Montes, Laura E.; Armfield, Shadow W. J.; Chan, Junn-Yih

    2013-01-01

    Web 2.0 technology integration requires a higher level of self-regulated learning skills to create a Personal Learning Environment (PLE). This study examined each of the four aspects of learner self-regulation in online learning (i.e., environment structuring, goal setting, time management, & task strategies) as the predictor for level of…

  13. Category Learning Research in the Interactive Online Environment Second Life

    Science.gov (United States)

    Andrews, Jan; Livingston, Ken; Sturm, Joshua; Bliss, Daniel; Hawthorne, Daniel

    2011-01-01

    The interactive online environment Second Life allows users to create novel three-dimensional stimuli that can be manipulated in a meaningful yet controlled environment. These features suggest Second Life's utility as a powerful tool for investigating how people learn concepts for unfamiliar objects. The first of two studies was designed to establish that cognitive processes elicited in this virtual world are comparable to those tapped in conventional settings by attempting to replicate the established finding that category learning systematically influences perceived similarity . From the perspective of an avatar, participants navigated a course of unfamiliar three-dimensional stimuli and were trained to classify them into two labeled categories based on two visual features. Participants then gave similarity ratings for pairs of stimuli and their responses were compared to those of control participants who did not learn the categories. Results indicated significant compression, whereby objects classified together were judged to be more similar by learning than control participants, thus supporting the validity of using Second Life as a laboratory for studying human cognition. A second study used Second Life to test the novel hypothesis that effects of learning on perceived similarity do not depend on the presence of verbal labels for categories. We presented the same stimuli but participants classified them by selecting between two complex visual patterns designed to be extremely difficult to label. While learning was more challenging in this condition , those who did learn without labels showed a compression effect identical to that found in the first study using verbal labels. Together these studies establish that at least some forms of human learning in Second Life parallel learning in the actual world and thus open the door to future studies that will make greater use of the enriched variety of objects and interactions possible in simulated environments

  14. ENERGY-NET (Energy, Environment and Society Learning Network): Best Practices to Enhance Informal Geoscience Learning

    Science.gov (United States)

    Rossi, R.; Elliott, E. M.; Bain, D.; Crowley, K. J.; Steiner, M. A.; Divers, M. T.; Hopkins, K. G.; Giarratani, L.; Gilmore, M. E.

    2014-12-01

    While energy links all living and non-living systems, the integration of energy, the environment, and society is often not clearly represented in 9 - 12 classrooms and informal learning venues. However, objective public learning that integrates these components is essential for improving public environmental literacy. ENERGY-NET (Energy, Environment and Society Learning Network) is a National Science Foundation funded initiative that uses an Earth Systems Science framework to guide experimental learning for high school students and to improve public learning opportunities regarding the energy-environment-society nexus in a Museum setting. One of the primary objectives of the ENERGY-NET project is to develop a rich set of experimental learning activities that are presented as exhibits at the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania (USA). Here we detail the evolution of the ENERGY-NET exhibit building process and the subsequent evolution of exhibit content over the past three years. While preliminary plans included the development of five "exploration stations" (i.e., traveling activity carts) per calendar year, the opportunity arose to create a single, larger topical exhibit per semester, which was assumed to have a greater impact on museum visitors. Evaluative assessments conducted to date reveal important practices to be incorporated into ongoing exhibit development: 1) Undergraduate mentors and teen exhibit developers should receive additional content training to allow richer exhibit materials. 2) The development process should be distributed over as long a time period as possible and emphasize iteration. This project can serve as a model for other collaborations between geoscience departments and museums. In particular, these practices may streamline development of public presentations and increase the effectiveness of experimental learning activities.

  15. Features of an effective operative dentistry learning environment: students' perceptions and relationship with performance.

    Science.gov (United States)

    Suksudaj, N; Lekkas, D; Kaidonis, J; Townsend, G C; Winning, T A

    2015-02-01

    Students' perceptions of their learning environment influence the quality of outcomes they achieve. Learning dental operative techniques in a simulated clinic environment is characterised by reciprocal interactions between skills training, staff- and student-related factors. However, few studies have examined how students perceive their operative learning environments and whether there is a relationship between their perceptions and subsequent performance. Therefore, this study aimed to clarify which learning activities and interactions students perceived as supporting their operative skills learning and to examine relationships with their outcomes. Longitudinal data about examples of operative laboratory sessions that were perceived as effective or ineffective for learning were collected twice a semester, using written critical incidents and interviews. Emergent themes from these data were identified using thematic analysis. Associations between perceptions of learning effectiveness and performance were analysed using chi-square tests. Students indicated that an effective learning environment involved interactions with tutors and peers. This included tutors arranging group discussions to clarify processes and outcomes, providing demonstrations and constructive feedback. Feedback focused on mistakes, and not improvement, was reported as being ineffective for learning. However, there was no significant association between students' perceptions of the effectiveness of their learning experiences and subsequent performance. It was clear that learning in an operative technique setting involved various factors related not only to social interactions and observational aspects of learning but also to cognitive, motivational and affective processes. Consistent with studies that have demonstrated complex interactions between students, their learning environment and outcomes, other factors need investigation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Creative Learning Environments in Education--A Systematic Literature Review

    Science.gov (United States)

    Davies, Dan; Jindal-Snape, Divya; Collier, Chris; Digby, Rebecca; Hay, Penny; Howe, Alan

    2013-01-01

    This paper reports on a systematic review of 210 pieces of educational research, policy and professional literature relating to creative environments for learning in schools, commissioned by Learning and Teaching Scotland (LTS). Despite the volume of academic literature in this field, the team of six reviewers found comparatively few empirical…

  17. A Computer Environment for Beginners' Learning of Sorting Algorithms: Design and Pilot Evaluation

    Science.gov (United States)

    Kordaki, M.; Miatidis, M.; Kapsampelis, G.

    2008-01-01

    This paper presents the design, features and pilot evaluation study of a web-based environment--the SORTING environment--for the learning of sorting algorithms by secondary level education students. The design of this environment is based on modeling methodology, taking into account modern constructivist and social theories of learning while at…

  18. FUNDAMENTALIZATION OF ICT LEARNING IN MODERN HIGH TECH ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    M. P. Shyshkina

    2013-03-01

    Full Text Available The article outlines the features of the process of fundamentalization of ICT learning, educational background to ensure it in high school. The concept of fundamental knowledge and its role in training of a specialist is described. The problems of access to qualitative education, particularly to electronic learning resources in modern high-tech environment are revealed. The role of computer mathematics as a tool of ICT learning fundamentalization is emphasized.

  19. Defining a Set of Architectural Requirements for Service-Oriented Mobile Learning Environments

    Science.gov (United States)

    Filho, Nemésio Freitas Duarte; Barbosa, Ellen Francine

    2014-01-01

    Even providing several benefits and facilities with regard to teaching and learning, mobile learning environments present problems and challenges that must be investigated, especially with respect to the definition and standardization of architectural aspects. Most of these environments are still built in isolation, with particular structures and…

  20. Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment

    Science.gov (United States)

    Rick, Jochen; Lamberty, K. K.

    2005-01-01

    This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…

  1. Bringing the Real World in: Reflection on Building a Virtual Learning Environment

    Science.gov (United States)

    Mundkur, Anuradha; Ellickson, Cara

    2012-01-01

    We reflect on translating participatory and experiential learning methodologies into an online teaching environment through a Virtual Learning Environment (VLE) that simulates the "real-world" contexts of international development in order to develop an applied critical understanding of gender analysis and gender mainstreaming. Rather than being…

  2. Impact of Individual Perception of Organizational Culture on the Learning Transfer Environment

    Science.gov (United States)

    Chatterjee, Aindrila; Pereira, Arun; Bates, Reid

    2018-01-01

    This research is an empirical study of the relationship between organization culture, as perceived by employees, and the work-environment-related learning transfer factors in organizations, which we call learning transfer environment (LTE). To measure perceptions of organization culture, we use the Organizational Culture Assessment Instrument and…

  3. PREFERENCES ON INTERNET BASED LEARNING ENVIRONMENTS IN STUDENT-CENTERED EDUCATION

    Directory of Open Access Journals (Sweden)

    Zuhal CUBUKCU

    2008-10-01

    Full Text Available Nowadays, educational systems are being questionned to find effective solutions to problems that are being encountered, and discussions are centered around the ways of restructuring systems so as to overcome difficulties. As the consequences of the traditional teaching approach, we can indicate that the taught material is not long-lasting but easily forgotten, that students do not sufficiently acquire the knowledge and skills that are aimed at developing, and that students lack transferring their knowledge to real life. In our current situation, individuals prefer to use educational resources where and when they want, based on their individual skills and abilities. Throughout the world, because the internet infrastructure has developed quite rapidly, it has been offered as an alternative way for a rich learning and teaching environment. This study aims at determining teacher candidates’ preferences regarding internet-based learning environments in student-centered education by involving the teacher candidates enrolled at Osmangazi University, Faculty of Education, Primary School Teaching, Mathematics Teaching and Computer and Educational Technologies Education programmes. This study is a descriptive study. The data collection scale consists of the “Constructivist Internet-based Education of Science Scale (CILES-S”. The sample group of teacher candidates in the study showed differences with respect to their preferences regarding internet-based learning in student-centered education. The candidates scored higher in the internet-based learning environments of Cognitive Development and Critical Judgement. The lowest average scores of the sample group were observed in the internet-based learning environment of Episthemologic awareness.

  4. Quality of the Home Learning Environment during Preschool Age--Domains and Contextual Conditions

    Science.gov (United States)

    Kluczniok, Katharina; Lehrl, Simone; Kuger, Susanne; Rossbach, Hans-Guenther

    2013-01-01

    The quality of the home learning environment has been proven to be of major importance for child development, but little is known about the role of domain specificity in promoting early childhood learning at home and its dependence on family background. This article presents a framework of the home learning environment in early childhood that…

  5. Introduction to the Symposium "Leading Students and Faculty to Quantitative Biology through Active Learning".

    Science.gov (United States)

    Waldrop, Lindsay D; Miller, Laura A

    2015-11-01

    The broad aim of this symposium and set of associated papers is to motivate the use of inquiry-based, active-learning teaching techniques in undergraduate quantitative biology courses. Practical information, resources, and ready-to-use classroom exercises relevant to physicists, mathematicians, biologists, and engineers are presented. These resources can be used to address the lack of preparation of college students in STEM fields entering the workforce by providing experience working on interdisciplinary and multidisciplinary problems in mathematical biology in a group setting. Such approaches can also indirectly help attract and retain under-represented students who benefit the most from "non-traditional" learning styles and strategies, including inquiry-based, collaborative, and active learning. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  6. Using Scaffolding to Improve Student Learning in Legal Environment Courses

    Science.gov (United States)

    May, Diane

    2014-01-01

    Students taking the initial legal environment course in a business school generally have little background in the law. Most of these students are learning new terms and are exposed to the workings of the legal system and statutes and cases for the first time. Some students have characterized learning the law as like "learning a new…

  7. A formative evaluation of a high school blended learning biology course

    Science.gov (United States)

    Nellman, Stephen William

    As growing student populations continue to tax the resources of public high schools, administrators are constantly looking for ways to address the needs of all students. One option for increasing the number of students in a classroom without sacrificing quality of instruction is to use "blended learning". Blended learning is defined by Marsh et al. (2003, p.2) as a situation where "face-to-face and distance education delivery methods and resources are merged". In such a course, students receive the benefits of classroom-based instruction, while also benefiting from several aspects of distance learning. This is especially true for science courses that rely heavily on both hands-on labs and various multimedia. The purpose of this study was a formative evaluation of a high school blended learning biology course, focusing on a genetics unit. The research question addressed by the study was "Will participants increase their domain knowledge and problem-solving skills after instruction in a high school level blended distance learning biology course? Also investigated was if higher levels of self-regulation skills were correlated to higher levels of content-understanding and problem-solving. The study was composed of a pilot study and a main study. Participants were students in an urban Southern California public high school biology course. Classroom instruction was from a single instructor, and online content was managed using the "Moodle" course management system. Participants were assessed for their gains in genetics content-understanding, genetics problem-solving skills (Punnett squares), and self-regulation. Additionally, participant reactions to the blended instruction model were surveyed. Results indicated that significant increases (pself-regulation skills were not shown to be significantly correlated to increased content-understanding, or problem-solving skills. Participants reacted positively to the blended model, suggesting that it be used more often in their

  8. Change Of Learning Environment Using Game Production ­Theory, Methods And Practice

    DEFF Research Database (Denmark)

    Reng, Lars; Kofoed, Lise; Schoenau-Fog, Henrik

    2018-01-01

    will focus on cases in which development of games did change the learning environments into production units where students or employees were producing games as part of the learning process. The cases indicate that the motivation as well as the learning curve became very high. The pedagogical theories......Game Based Learning has proven to have many possibilities for supporting better learning outcomes, when using educational or commercial games in the classroom. However, there is also a great potential in using game development as a motivator in other kinds of learning scenarios. This study...... and methods are based on Problem Based Learning (PBL), but are developed further by combining PBL with a production-oriented/design based approach. We illustrate the potential of using game production as a learning environment with investigation of three game productions. We can conclude that using game...

  9. University Students' Attitudes towards Cell Phone Learning Environment

    Directory of Open Access Journals (Sweden)

    Wafa' N. Muhanna

    2009-10-01

    Full Text Available This study aims at investigating Jordanian university undergraduate and graduate students' attitudes towards the learning environment where cell phones are used as learning tools in classroom. To achieve this goal, the researchers distributed two questionnaires among two groups of two different levels of randomly chosen university students at the Faculty of Educational Sciences at Al-al-Bayt University. The first one addresses 30 undergraduate students, 12 male and 18 female. The other addresses 20 graduates, 7 male and 13 female. The study comprised two independent variables, level and gender, as covariates. The findings indicate that undergraduates are more favorable to cell phone environment than graduate students. The study also reveals that cell phone has more influence on male students than on female students.

  10. Students' Opinions on Facebook Supported Blended Learning Environment

    Science.gov (United States)

    Erdem, Mukaddes; Kibar, Pinar Nuhoglu

    2014-01-01

    The first purpose of this study was to determine students' opinions on blended learning and its implementation. The other purpose was to explore the students' opinions on Facebook integration into blended learning environment. The participants of this study were 40 undergraduate students in their fourth semester of the program.…

  11. The Strategic Role of Digital Libraries: Issues in E-Learning Environments.

    Science.gov (United States)

    Wang, Mei-Yu

    2003-01-01

    Describes research aimed at providing educational organizations with practical strategies for implementing electronic learning (e-learning), based on focus group discussions at an elementary school in Taiwan. Considers the strategic role of digital libraries in electronic learning environments, library collections, digital technology, human…

  12. The Effects of Instructor Control of Online Learning Environments on Satisfaction and Perceived Learning

    Science.gov (United States)

    Costley, Jamie; Lange, Christopher

    2016-01-01

    Instructional design is important as it helps set the discourse, context, and content of learning in an online environment. Specific instructional design decisions do not only play a part in the discourse of the learners, but they can affect the learners' levels of satisfaction and perceived learning as well. Numerous studies have shown the value…

  13. Working Memory Capacity and Mobile Multimedia Learning Environments: Individual Differences in Learning While Mobile

    Science.gov (United States)

    Doolittle, Peter E.; Mariano, Gina J.

    2008-01-01

    The present study examined the effects of individual differences in working memory capacity (WMC) on learning from an historical inquiry multimedia tutorial in stationary versus mobile learning environments using a portable digital media player (i.e., iPod). Students with low (n = 44) and high (n = 40) working memory capacity, as measured by the…

  14. Educational environment and approaches to learning of undergraduate nursing students in an Indonesian school of nursing.

    Science.gov (United States)

    Rochmawati, Erna; Rahayu, Gandes Retno; Kumara, Amitya

    2014-11-01

    The aims of this study were to assess students' perceptions of their educational environment and approaches to learning, and determine if perceptions of learning environment associates with approaches to learning. A survey was conducted to collect data from a regional private university in Indonesia. A total of 232 nursing students completed two questionnaires that measured their perceptions of educational environment and approaches to learning. The measurement was based on Dundee Ready Education Environment Measurement (DREEM) and Approaches and Study Skills Inventory for Students (ASSIST). Five learning environments dimensions and three learning approaches dimensions from two measures were measured. The overall score of DREEM was 131.03/200 (SD 17.04), it was in the range considered to be favourable. The overall score is different significantly between years of study (p value = 0.01). This study indicated that the majority of undergraduate nursing students' adopt strategic approach (n = 139. 59.9%). The finding showed that perceived educational environment significantly associated with approaches to learning. This study implicated the need to maintain conducive learning environment. There is also a need to improve the management of learning activities that reflect the use of student-centered learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Quality assurance of the clinical learning environment in Austria: Construct validity of the Clinical Learning Environment, Supervision and Nurse Teacher Scale (CLES+T scale).

    Science.gov (United States)

    Mueller, Gerhard; Mylonas, Demetrius; Schumacher, Petra

    2018-04-21

    Within nursing education, the clinical learning environment is of a high importance in regards to the development of competencies and abilities. The organization, atmosphere, and supervision in the clinical learning environment are only a few factors that influence this development. In Austria there is currently no valid instrument available for the evaluation of influencing factors. The aim of the study was to test the construct validity with principal component analysis as well as the internal consistency of the German Clinical Learning Environment, Supervision and Teacher Scale (CLES+T scale) in Austria. The present validation study has a descriptive-quantitative cross-sectional design. The sample consisted of 385 nursing students from thirteen training institutions in Austria. The data collection was carried out online between March and April 2016. Starting with a polychoric correlation matrix, a parallel analysis with principal component extraction and promax rotation was carried out due to the ordinal data. The exploratory ordinal factor analysis supported a four-component solution and explained 73% of the total variance. The internal consistency of all 25 items reached a Cronbach's α of 0.95 and the four components ranged between 0.83 and 0.95. The German version of the CLES+T scale seems to be a useful instrument for identifying potential areas of improvement in clinical practice in order to derive specific quality measures for the practical learning environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. In Search of Attributes That Support Self-Regulation in Blended Learning Environments

    Science.gov (United States)

    Van Laer, Stijn; Elen, Jan

    2017-01-01

    Blended forms of learning have become increasingly popular. Learning activities within these environments are supported by a large variety of online and face-to-face interventions. However, it remains unclear whether these blended environments are successful, and if they are, what makes them successful. Studies suggest that blended learning…

  17. Physical Learning Environment and its Suitability to the Objectives of Technology Education

    Science.gov (United States)

    Soobik, Mart

    2013-01-01

    The present article focuses on Technology Education teachers' opinions on the physical learning environment of Technology Education. The study compares and analyses the changes in the physical learning environment of Technology Education. Two questionnaire surveys (Study I and Study II) were carried out among teachers of Technology Education in…

  18. Epistemological Predictors of "Self Efficacy on Learning Biology" and "Test Anxiety Related to Evaluation of Learning on Biology" for Pre-Service Elementary Teachers

    Science.gov (United States)

    Koksal, Mustafa Serdar

    2011-01-01

    The degree to which pre-service teachers learn biology is related to both motivational factors of self-regulation and factors regarding epistemological beliefs. At the same time, self-regulation and epistemological beliefs are also associated with one another. Based on this relationship, the purpose of this study was to investigate the…

  19. Novel Study Guides for Biochemistry Meaningful Learning in Biology: a Design-Based Research

    Directory of Open Access Journals (Sweden)

    Costa, C ; Galembeck, E. Costa, C ; Galembeck, E.

    2017-07-01

    Full Text Available One of the difficulties for biochemistry learning is the persistence of traditional teaching methods, based on transmission and memorization of abstract and detailed information, usually in a decontextualized way. Such scenario results in surface learning and content reproduction. In order to address these problems, three interventions in a discipline (Metabolism for Biology majors were applied, in the form of innovative teaching tools (study guides. OBJECTIVES: The main goal is to evaluate the impact of these interventions on interest, motivation, and learning of the metabolic pathways. MATERIALS AND METHODS: We describe the development, application, and evaluation of two study guides – one created from a problem used as a contextual connection for glycogen metabolism study and another embedding an integrative view based on glutamate metabolism. Both materials were guided by broad themes like evolution, metabolic adaptation, and comparative biochemistry. The development of the study guides combined submicroscopic (molecular and macroscopic (body, environment levels, aiming to motivate reading and discussion. A design-based research with cycles of application and assessment was carried out, by means of classroom observation, grade analysis in written exams, and students’ interviews. RESULTS AND DISCUSSION: In general, based on in-class student feedback to professors and to the researcher in the interviews, the study guides arouse curiosity and fostered peer discussion. Final average grades indicate a good global performance in all proposed activities. Whole data from study guides’ application in classroom evidenced their impact on interest, motivation, and learning. The strategy of developing problem or integrative situation linking molecular (micro and contextual (macro levels were helpful to foster critical thinking and to value topics of scientific literacy. CONCLUSIONS: Analysis and interpretation of the results point to benefits for

  20. BOOK REVIEW STUDENT-TEACHER INTERACTION IN ONLINE LEARNING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Harun SERPIL

    2017-04-01

    Full Text Available As online learning environments do not lend themselves to face-to-face interaction between teachers and students, it is essential to understand how to ensure healthy social presence in online learning. This book provides a useful selection of both commonly used and recently developed theories by discussing current research and giving examples of social presence in latest Online Learning Environments (OLEs. The book examines how the appropriate use of technological tools can relate instructors, peers, and course content. The reports on successful implementations are reinforced with research involving pre-service teachers. Both experienced and inexperienced educators will benefit by being informed about the effective use of many valuable tools exemplified here. The last six chapters present an array of new models that support social presence, and demonstrate how traditional paradigms can be used to create online social presence.