WorldWideScience

Sample records for biology laboratory experience

  1. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Directory of Open Access Journals (Sweden)

    Lampe Nathanael

    2016-01-01

    Full Text Available Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1 and tryptone (2.5±0.2 mg g-1 in order to guide media selection in future experiments.

  2. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  3. Professor Created On-line Biology Laboratory Course

    Science.gov (United States)

    Bowman, Arthur W.

    2010-01-01

    This paper will share the creation, implementation, and modification of an online college level general biology laboratory course offered for non-science majors as a part of a General Education Curriculum. The ability of professors to develop quality online laboratories will address a growing need in Higher Education as more institutions combine course sections and look for suitable alternative course delivery formats due to declining departmental budgets requiring reductions in staffing, equipment, and supplies. Also, there is an equal or greater need for more professors to develop the ability to create online laboratory experiences because many of the currently available online laboratory course packages from publishers do not always adequately parallel on-campus laboratory courses, or are not as aligned with the companion lecture sections. From a variety of scientific simulation and animation web sites, professors can easily identify material that closely fit the specific needs of their courses, instructional environment, and students that they serve. All too often, on-campus laboratory courses in the sciences provide what are termed confirmation experiences that do NOT allow students to experience science as would be carried out by scientists. Creatively developed online laboratory experiences can often provide the type of authentic investigative experiences that are not possible on-campus due to the time constraints of a typical two-hour, once-per-week-meeting laboratory course. In addition, online laboratory courses can address issues related to the need for students to more easily complete missing laboratory assignments, and to have opportunities to extend introductory exercises into more advanced undertakings where a greater sense of scientific discovery can be experienced. Professors are strongly encourages to begin creating online laboratory exercises for their courses, and to consider issues regarding assessment, copyrights, and Intellectual Property

  4. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  5. A Guided-Inquiry pH Laboratory Exercise for Introductory Biological Science Laboratories

    Science.gov (United States)

    Snodgrass, Meagan A.; Lux, Nicholas; Metz, Anneke M.

    2011-01-01

    There is a continuing need for engaging inquiry-based laboratory experiences for advanced high school and undergraduate biology courses. The authors describe a guided-inquiry exercise investigating the pH-dependence of lactase enzyme that uses an inexpensive, wide-range buffering system, lactase dietary supplement, over-the-counter glucose test…

  6. Laboratory of Biological Modeling

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Biological Modeling is defined by both its methodologies and its areas of application. We use mathematical modeling in many forms and apply it to a...

  7. Multiweek cell culture project for use in upper-level biology laboratories.

    Science.gov (United States)

    Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D

    2012-06-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.

  8. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  9. Multiweek Cell Culture Project for Use in Upper-Level Biology Laboratories

    Science.gov (United States)

    Marion, Rebecca E.; Gardner, Grant E.; Parks, Lisa D.

    2012-01-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF,…

  10. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students†

    OpenAIRE

    Beach, Dale L.; Alvarez, Consuelo J.

    2015-01-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniq...

  11. A Laboratory Experiment for Rapid Determination of the Stability of Vitamin C

    Science.gov (United States)

    Adem, Seid M.; Lueng, Sam H.; Elles, Lisa M. Sharpe; Shaver, Lee Alan

    2016-01-01

    Experiments in laboratory manuals intended for general, organic, and biological (GOB) chemistry laboratories include few opportunities for students to engage in instrumental methods of analysis. Many of these students seek careers in modern health-related fields where experience in spectroscopic techniques would be beneficial. A simple, rapid,…

  12. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  13. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  14. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  15. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (13th, Laramie, Wyoming, June 11-15, 1991). Volume 13.

    Science.gov (United States)

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 10 papers: "Testing Issues of Foraging and Flocking Behavior" (C. C.…

  16. Experience of an inter-laboratory exercise for the determination of Carbon-14 in biological samples

    International Nuclear Information System (INIS)

    Baburajan, A.; Rajaram, S.; D'Souza, Renita Shiny; Nayak, Rasmi; Karunakara, N.; Ravi, P.M.; Tripathi, R.M.

    2018-01-01

    Carbon-14 is one of the naturally occurring cosmogenic nuclide with long half life of 5730 y and beta energy, E max : 156 keV produced continuously in the outer atmosphere. It is also produced by the anthropogenic activities like nuclear weapon test, nuclear power plant etc. contributing to the atmospheric inventory. The 14 CO 2 gets incorporated with the plant species during photosynthesis and ultimately reaches to man through food chain. It is important to accurately quantify the level of 14 C in different biological matrices for the computation of radiation dose due to ingestion. There are different methods available for the determination of 14 C in biological samples. The oxidation of the dried sample is one of the methods used for liberating the 14 CO 2 and which in turn re-absorbed using Carbo Sorb and subjected to Liquid scintillation analyses with Permaflour scintillator solution. The paper deals with the quality assurance programme initiated by ESL, Tarapur along with ESL, Kalpakkam and CARER, Mangalore University and share the experience of the inter-laboratory comparison exercise

  17. Tested Studies for Laboratory Teaching. Proceedings of the Workshop/Conference of the Association for Biology Laboratory Education (ABLE) (15th, Toronto, Ontario, Canada, June 8-12, 1993). Volume 15.

    Science.gov (United States)

    Goldman, Corey A., Ed.

    The focus of the Association for Biology Laboratory Education (ABLE) is to improve the undergraduate biology laboratory experience by promoting the development and dissemination of interesting, innovative, and reliable laboratory exercises. This proceedings volume contains 18 papers: "Human DNA Fingerprinting by Polymerase Chain Reaction" (M. V.…

  18. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  19. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  20. [Experience of the development special medical technical laboratory for studies of effects caused by potent electromagnetic radiation in biologic objects].

    Science.gov (United States)

    Gorodetsky, B N; Kalyada, T V; Petrov, S V

    2015-01-01

    This article covers topics of creating special medical technical laboratory for medial and biologic studies concerning influence of potent high-frequency elecromagnetic radiation on various biologic objects. The authors gave example of such laboratory, described its construction features, purpose and main characteristics of the included devices.

  1. Inquiry-based Investigation in Biology Laboratories: Does Neem Provide Bioprotection against Bean Beetles?

    Science.gov (United States)

    Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.

    2013-01-01

    We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…

  2. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses

    Science.gov (United States)

    Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.

    2016-01-01

    Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498

  3. INNOVATIONS IN EQUIPMENT AND TECHNIQUES FOR THE BIOLOGY TEACHING LABORATORY.

    Science.gov (United States)

    BARTHELEMY, RICHARD E.; AND OTHERS

    LABORATORY TECHNIQUES AND EQUIPMENT APPROPRIATE FOR TEACHING BIOLOGICAL SCIENCE CURRICULUM STUDY BIOLOGY ARE EMPHASIZED. MAJOR CATEGORIES INCLUDE (1) LABORATORY FACILITIES, (2) EQUIPMENT AND TECHNIQUES FOR CULTURE OF MICRO-ORGANISMS, (3) LABORATORY ANIMALS AND THEIR HOUSING, (4) TECHNIQUES FOR STUDYING PLANT GROWTH, (5) TECHNIQUES FOR STUDYING…

  4. Guided-inquiry laboratory experiments to improve students' analytical thinking skills

    Science.gov (United States)

    Wahyuni, Tutik S.; Analita, Rizki N.

    2017-12-01

    This study aims to improve the experiment implementation quality and analytical thinking skills of undergraduate students through guided-inquiry laboratory experiments. This study was a classroom action research conducted in three cycles. The study has been carried out with 38 undergraduate students of the second semester of Biology Education Department of State Islamic Institute (SII) of Tulungagung, as a part of Chemistry for Biology course. The research instruments were lesson plans, learning observation sheets and undergraduate students' experimental procedure. Research data were analyzed using quantitative-descriptive method. The increasing of analytical thinking skills could be measured using gain score normalized and statistical paired t-test. The results showed that guided-inquiry laboratory experiments model was able to improve both the experiment implementation quality and the analytical thinking skills. N-gain score of the analytical thinking skills was increased, in spite of just 0.03 with low increase category, indicated by experimental reports. Some of undergraduate students have had the difficulties in detecting the relation of one part to another and to an overall structure. The findings suggested that giving feedback the procedural knowledge and experimental reports were important. Revising the experimental procedure that completed by some scaffolding questions were also needed.

  5. Investigating Coccolithophorid Biology in the Sedimentary Laboratory

    Science.gov (United States)

    McClelland, H. L. O.; Barbarin, N.; Beaufort, L.; Hermoso, M.; Rickaby, R. E. M.

    2014-12-01

    Coccolithophores are the ocean's dominant calcifying phytoplankton; they play an important, but poorly understood, role in long-term biogeochemical climatic feedbacks. Calcite producing marine organisms are likely to calcify less in a future world where higher carbon dioxide concentrations will lead to ocean acidification (OA), but coccolithophores may be the exception. In coccolithophores calcification occurs in an intracellular vesicle, where the site of calcite precipitation is buffered from the external environment and is subject to a uniquely high degree of biological control. Culture manipulation experiments mimicking the effects of OA in the laboratory have yielded empirical evidence for phenotypic plasticity, competition and evolutionary adaptation in asexual populations. However, the extent to which these results are representative of natural populations, and of the response over timescales of greater than a few hundred generations, is unclear. Here we describe a new sediment-based proxy for the PIC:POC (particulate inorganic to particulate organic carbon ratio) of coccolithophore biomass, which is equivalent to the fractional energy contribution to calcification at constant pH, and a biologically meaningful measure of the organism's tendency to calcify. Employing the geological record as a laboratory, we apply this proxy to sedimentary material from the southern Pacific Ocean to investigate the integrated response of real ancient coccolithophore populations to environmental change over many thousands of years. Our results provide a new perspective on phenotypic change in real populations of coccolithophorid algae over long timescales.

  6. 1. Introduction. 2. Laboratory experiments. 3. Field experiments. 4. Integrated field-laboratory experiments. 5. Panel recommendations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented

  7. Connecting biology and organic chemistry introductory laboratory courses through a collaborative research project.

    Science.gov (United States)

    Boltax, Ariana L; Armanious, Stephanie; Kosinski-Collins, Melissa S; Pontrello, Jason K

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an interdisciplinary, medically relevant, project intended to help students see connections between chemistry and biology. Second term organic chemistry laboratory students designed and synthesized potential polymer inhibitors or inducers of polyglutamine protein aggregation. The use of novel target compounds added the uncertainty of scientific research to the project. Biology laboratory students then tested the novel potential pharmaceuticals in Huntington's disease model assays, using in vitro polyglutamine peptide aggregation and in vivo lethality studies in Drosophila. Students read articles from the primary literature describing the system from both chemical and biological perspectives. Assessment revealed that students emerged from both courses with a deeper understanding of the interdisciplinary nature of biology and chemistry and a heightened interest in basic research. The design of this collaborative project for introductory biology and organic chemistry labs demonstrated how the local interests and expertise at a university can be drawn from to create an effective way to integrate these introductory courses. Rather than simply presenting a series of experiments to be replicated, we hope that our efforts will inspire other scientists to think about how some aspect of authentic work can be brought into their own courses, and we also welcome additional collaborations to extend the scope of the scientific exploration. © 2015 The International Union of Biochemistry and Molecular Biology.

  8. Progress Toward a Thermal-Hydrological-Mechanical-Chemical-Biological (THMCB) Experiment in the Homestake Mine Deep Underground Science and Engineering Laboratory

    Science.gov (United States)

    Sonnenthal, E. L.; Maher, K.; Elsworth, D.; Lowell, R. P.; Uzunlar, N.; Mailloux, B. J.; Conrad, M. E.; Olsen, N. J.; Jones, T. L.; Cruz, M. F.; Torchinsky, A.

    2011-12-01

    The purpose of performing a long-term hydrothermal experiment in a deep mine is to gain a scientific understanding of the coupled physical, chemical, and biological processes taking place in fractured rock under the influence of mechanical stress, thermal effects, and fluid flow. Only in a controlled experiment in a well-characterized rock mass, can a fractured rock be probed in 3-D through geophysical imaging, in situ measurements, geochemical/biological sampling, and numerical modeling. Our project is focused on the feasibility of a THMCB experiment in the Homestake Mine, South Dakota to study the long-term evolution (10+ years) of a perturbed heterogeneous rock mass. In addition to the experiment as a laboratory for studying crustal processes, it has direct application to Enhanced Geothermal Systems, carbon sequestration, and contaminant transport. Field activities have focused on fracture and feature mapping, flux measurements from flowing fractures, and collection of water and rock samples for geochemical, biological, and isotopic analyses. Fracture mapping and seepage measurements are being used to develop estimates of permeability and fluxes at different length scales and design the location and orientation of the heater array. Fluxes measured up to several liters/minute indicate localized regions of very high fracture permeability, likely in excess of 10-10 m2. Isotopic measurements indicate heterogeneity in the fracture network on the scale of tens of meters in addition to the large-scale geochemical heterogeneity observed in the mine. New methods for sampling and filtering water samples were developed and tested with the goal of performing radiocarbon analyses in DNA and phospholipid fatty acids. Analytical and numerical models of the thermal perturbation have been used to design the heater orientation and spacing. Reaction path and THC simulations were performed to assess geochemical and porosity/permeability changes as a function of the heat input

  9. A comparison of student reactions to biology instruction by interactive videodisc or conventional laboratory

    Science.gov (United States)

    Leonard, William H.

    This study was designed to learn if students perceived an interactive computer/videodisc learning system to represent a viable alternative to (or extension of) the conventional laboratory for learning biology skills and concepts normally taught under classroom laboratory conditions. Data were collected by questionnaire for introductory biology classes at a large midwestern university where students were randomly assigned to two interactive videodisc/computer lessons titled Respiration and Climate and Life or traditional laboratory investigation with the same titles and concepts. The interactive videodisc system consisted of a TRS-80 Model III microcomputer interfaced to a Pioneer laser-disc player and a color TV monitor. Students indicated an overall level satisfaction with this strategy very similar to that of conventional laboratory instruction. Students frequently remarked that videodisc instruction gave them more experimental and procedural options and more efficient use of instructional time than did the conventional laboratory mode. These two results are consistent with past CAI research. Students also had a strong perception that the images on the videodisc were not real and this factor was perceived as having both advantages and disadvantages. Students found the two approaches to be equivalent to conventional laboratory instruction in the areas of general interest, understanding of basic principles, help on examinations, and attitude toward science. The student-opinion data in this study do not suggest that interactive videodisc technology serve as a substitute to the wet laboratory experience, but that this medium may enrich the spectrum of educational experiences usually not possible in typical classroom settings.

  10. Final characterization report for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    Harris, R.A.

    1996-09-01

    This report provides a compilation of characterization data for the 108-F Biological Laboratory collected during the period of May 7, 1996 through August 29, 1996. The 108-F Biology Laboratory is located on the Hanford Site in Richland, Washington. The characterization activities were organized and implemented to evaluate the radiological status of the laboratory and to identify hazardous materials. This report reflects the current conditions and status of the laboratory. Information in this report is intended to be utilized to prepare an accurate cost estimate for building demolition, to aid in planning decontamination and demolition activities, and allow proper disposal of demolition debris

  11. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  12. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    Science.gov (United States)

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  13. Undergraduate Biology Lab Courses: Comparing the Impact of Traditionally Based "Cookbook" and Authentic Research-Based Courses on Student Lab Experiences

    Science.gov (United States)

    Brownell, Sara E.; Kloser, Matthew J.; Fukami, Tadishi; Shavelson, Rich

    2012-01-01

    Over the past decade, several reports have recommended a shift in undergraduate biology laboratory courses from traditionally structured, often described as "cookbook," to authentic research-based experiences. This study compares a cookbook-type laboratory course to a research-based undergraduate biology laboratory course at a Research 1…

  14. Fruit Flies Provide New Insights in Low-Radiation Background Biology at the INFN Underground Gran Sasso National Laboratory (LNGS).

    Science.gov (United States)

    Morciano, Patrizia; Cipressa, Francesca; Porrazzo, Antonella; Esposito, Giuseppe; Tabocchini, Maria Antonella; Cenci, Giovanni

    2018-06-04

    Deep underground laboratories (DULs) were originally created to host particle, astroparticle or nuclear physics experiments requiring a low-background environment with vastly reduced levels of cosmic-ray particle interference. More recently, the range of science projects requiring an underground experiment site has greatly expanded, thus leading to the recognition of DULs as truly multidisciplinary science sites that host important studies in several fields, including geology, geophysics, climate and environmental sciences, technology/instrumentation development and biology. So far, underground biology experiments are ongoing or planned in a few of the currently operating DULs. Among these DULs is the Gran Sasso National Laboratory (LNGS), where the majority of radiobiological data have been collected. Here we provide a summary of the current scenario of DULs around the world, as well as the specific features of the LNGS and a summary of the results we obtained so far, together with other findings collected in different underground laboratories. In particular, we focus on the recent results from our studies of Drosophila melanogaster, which provide the first evidence of the influence of the radiation environment on life span, fertility and response to genotoxic stress at the organism level. Given the increasing interest in this field and the establishment of new projects, it is possible that in the near future more DULs will serve as sites of radiobiology experiments, thus providing further relevant biological information at extremely low-dose-rate radiation. Underground experiments can be nicely complemented with above-ground studies at increasing dose rate. A systematic study performed in different exposure scenarios provides a potential opportunity to address important radiation protection questions, such as the dose/dose-rate relationship for cancer and non-cancer risk, the possible existence of dose/dose-rate threshold(s) for different biological systems and

  15. Inquiry-based laboratory investigations and student performance on standardized tests in biological science

    Science.gov (United States)

    Patke, Usha

    Achievement data from the 3rd International Mathematics and Sciences Study and Program for International Student Assessment in science have indicated that Black students from economically disadvantaged families underachieve at alarming rates in comparison to White and economically advantaged peer groups. The study site was a predominately Black, urban school district experiencing underachievement. The purpose of this correlational study was to examine the relationship between students' use of inquiry-based laboratory investigations and their performance on the Biology End of Course Test, as well as to examine the relationship while partialling out the effects of student gender. Constructivist theory formed the theoretical foundation of the study. Students' perceived levels of experience with inquiry-based laboratory investigations were measured using the Laboratory Program Variable Inventory (LPVI) survey. LPVI scores of 256 students were correlated with test scores and were examined by student gender. The Pearson correlation coefficient revealed a small direct correlation between students' experience in inquiry-based laboratory investigation classes and standardized test scores on the Biology EOCT. A partial correlational analysis indicated that the correlation remained after controlling for gender. This study may prompt a change from teacher-centered to student-centered pedagogy at the local site in order to increase academic achievement for all students. The results of this study may also influence administrators and policy makers to initiate local, state, or nationwide curricular development. A change in curriculum may promote social change as students become more competent, and more able, to succeed in life beyond secondary school.

  16. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Koepke, M. E.

    2005-01-01

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  17. Removal design report for the 108-F Biological Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m{sup 2} (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal.

  18. Removal design report for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    1997-09-01

    Most of the 100-F facilities were deactivated with the reactor and have since been demolished. Of the dozen or so reactor-related structures, only the 105-F Reactor Building and the 108-F Biology Laboratory remain standing today. The 108-F Biology Laboratory was intended to be used as a facility for the mixing and addition of chemicals used in the treatment of the reactor cooling water. Shortly after F Reactor began operation, it was determined that the facility was not needed for this purpose. In 1949, the building was converted for use as a biological laboratory. In 1962, the lab was expanded by adding a three-story annex to the original four-story structure. The resulting lab had a floor area of approximately 2,883 m 2 (main building and annex) that operated until 1973. The building contained 47 laboratories, a number of small offices, a conference room, administrative section, lunch and locker rooms, and a heavily shielded, high-energy exposure cell. The purpose of this removal design report is to establish the methods of decontamination and decommissioning and the supporting functions associated with facility removal and disposal

  19. Establishing a national biological laboratory safety and security monitoring program.

    Science.gov (United States)

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  20. Oversight of High-Containment Biological Laboratories: Issues for Congress

    Science.gov (United States)

    2009-05-04

    Laboratories: Issues for Congress Congressional Research Service 14 Industry and Non-Profit Laboratories Private sector companies and non-profit...resources for these endeavors. Whether public or private sector , high-containment laboratories are planned and designed to minimize the possibility of... equine encephalitis, and yellow fever. Some of the pathogens that cause these diseases have been considered as biological weapons.104 Expanding the number

  1. A Biology Laboratory Exercise Using Macromolecule Assays to Distinguish Four Types of Milk

    Directory of Open Access Journals (Sweden)

    Charlotte W. Pratt

    2011-03-01

    Full Text Available One of the drawbacks of cookbook-style laboratory exercises for General Biology courses is that students are not challenged to develop skills in scientific reasoning, such as formulating hypotheses and designing and carrying out experiments. Several traditional laboratory curricula include exercises involving semi-quantitative colorimetric assays to detect proteins (biuret test, reducing sugars (Benedict’s test, starch (Lugol’s test, and lipids (Sudan red test in a variety of easily prepared solutions (glucose, albumin, glycine, etc. and familiar food items (lemon juice, cornstarch, egg white, etc.. An extension of this lab exercise was developed to allow students to use their knowledge of the macromolecule assays to design an experiment to distinguish four types of “milk”: whole milk, skim milk, cream, and soy milk (rice milk or almond milk could also be included.

  2. Virtual laboratory for radiation experiments

    International Nuclear Information System (INIS)

    Tiftikci, A.; Kocar, C.; Tombakoglu, M.

    2009-01-01

    Simulation of alpha, beta and gamma radiation detection and measurement experiments which are part of real nuclear physics laboratory courses was realized with Monte Carlo method and JAVA Programming Language. As being known, establishing this type of laboratories are very expensive. At the same time, highly radioactive sources used in some experiments carries risk for students and also for experimentalists. By taking into consideration of those problems, the aim of this study is to setup a virtual radiation laboratory with minimum cost and to speed up the training of radiation physics for students with no radiation risk. Software coded possesses the nature of radiation and radiation transport with the help of Monte Carlo method. In this software, experimental parameters can be changed manually by the user and experimental results can be followed synchronous in an MCA (Multi Channel Analyzer) or an SCA (Single Channel Analyzer). Results obtained in experiments can be analyzed by these MCA or SCA panels. Virtual radiation laboratory which is developed in this study with reliable results and unlimited experimentation capability seems as an useful educational material. Moreover, new type of experiments can be integrated to this software easily and as a result, virtual laboratory can be extended.

  3. Cell migration analysis: A low-cost laboratory experiment for cell and developmental biology courses using keratocytes from fish scales.

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R

    2017-11-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level do not often take into account the time dimension. In this article, we provide a laboratory exercise focused in cell migration, aiming to stimulate thinking in time and space dimensions through a simplification of more complex processes occurring in cell or developmental biology. The use of open-source tools for the analysis, as well as the whole package of raw results (available at http://github.com/danielprieto/keratocyte) make it suitable for its implementation in courses with very diverse budgets. Aiming to facilitate the student's transition from science-students to science-practitioners we propose an exercise of scientific thinking, and an evaluation method. This in turn is communicated here to facilitate the finding of common caveats and weaknesses in the process of producing simple scientific communications describing the results achieved. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(6):475-482, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. Biological and Physical Space Research Laboratory 2002 Science Review

    Science.gov (United States)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  5. A qualitative characterization of an introductory college nonmajors biology laboratory

    Science.gov (United States)

    Lee, Cherin Ann

    The nature of an undergraduate, nonmajors biology laboratory was investigated in this study. Student participants were enrolled in a general education biology laboratory course at the University of Northern Iowa. The researcher's purpose was to gain a characterization of the instructional format and laboratory activities experienced by students. Interpretation of student and instructor responses enabled an insider's view of the biology laboratory. The laboratory period was consistently described by both students and instructors as having three parts, Beginning, Middle, and End, with the End being of special importance for conceptual development. The instructional format of the three instructors differed within the three portions of the laboratory period, ranging from an inquiry-oriented, partial learning cycle to a fairly expository model labeled inform/verify/practice. There was striking similarity in intrasectional student and teacher descriptions of instructional format. Additionally, students experiencing the alternate instructor provided the same characterizations of instructional format as those provided by the instructor's usual students. There were no discernible patterns of instructional format based on sex or reasoning level. In addition to the central role of instructional format, three areas of importance emerged: the social aspects of learning, the collaborative and cooperative nature of laboratory work and learning, and the role of self-efficacy. Theory developed from and grounded in the data showed six factors important in the introductory college biology laboratory: collaborative and cooperative learning, student-student and teacher-student interactions, attitude and self-efficacy, learning process and learning style, effective instructional format, and science content. These factors were found to be similar to factors identified in the literature as important in K-12 science education. These factors were set in the context of schooling and learning

  6. Biological reduction of uranium-From the laboratory to the field

    International Nuclear Information System (INIS)

    Dullies, Frank; Lutze, Werner; Gong, Weiliang; Nuttall, H. Eric

    2010-01-01

    The chemical and biological processes underlying in situ bioremediation of uranium-contaminated groundwater have been studied in the laboratory and in the field. This article focuses on the long-term stability of uraninite (UO 2 ) in the underground. A large tailings pond, 'Daenkritz 1' in Germany, was selected for this investigation. A single-pass flow-through experiment was run in a 100-liter column: bioremediation for 1 year followed by infiltration of tap water (2.5 years) saturated with oxygen, sufficient to oxidize the precipitated uraninite in two months. Instead, only 1 wt.% uraninite was released over 2.4 years at concentrations typically less than 20 μg/L. Uraninite was protected against oxidation by the mineral mackinawite (FeS 0.9 ), a considerable amount of which had formed, together with uraninite. A confined field test was conducted adjacent to the tailings pond, which after bio-stimulation showed similarly encouraging results as in the laboratory. Taking Daenkritz 1 as an example we show that in situ bioremediation can be a viable option for long-term site remediation, if the process is designed based on sufficient laboratory and field data. The boundary conditions for the site in Germany are discussed.

  7. Implementation of a Project-Based Molecular Biology Laboratory Emphasizing Protein Structure-Function Relationships in a Large Introductory Biology Laboratory Course

    Science.gov (United States)

    Treacy, Daniel J.; Sankaran, Saumya M.; Gordon-Messer, Susannah; Saly, Danielle; Miller, Rebecca; Isaac, R. Stefan; Kosinski-Collins, Melissa S.

    2011-01-01

    In introductory laboratory courses, many universities are turning from traditional laboratories with predictable outcomes to inquiry-inspired, project-based laboratory curricula. In these labs, students are allowed to design at least some portion of their own experiment and interpret new, undiscovered data. We have redesigned the introductory…

  8. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    Science.gov (United States)

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  9. Cell Migration Analysis: A Low-Cost Laboratory Experiment for Cell and Developmental Biology Courses Using Keratocytes from Fish Scales

    Science.gov (United States)

    Prieto, Daniel; Aparicio, Gonzalo; Sotelo-Silveira, Jose R.

    2017-01-01

    Cell and developmental processes are complex, and profoundly dependent on spatial relationships that change over time. Innovative educational or teaching strategies are always needed to foster deep comprehension of these processes and their dynamic features. However, laboratory exercises in cell and developmental biology at the undergraduate level…

  10. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    Science.gov (United States)

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  11. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    Directory of Open Access Journals (Sweden)

    Grace A. Maldarelli

    2009-12-01

    Full Text Available Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergraduate and graduate lab courses and to assess the impact of these videos on student learning. Demonstrations of individual laboratory procedures were videotaped and then edited with iMovie. Narration for the videos was edited with Audacity. Undergraduate students were surveyed anonymously prior to and following screening to assess the impact of the videos on student lab performance by completion of two Participant Perception Indicator surveys. A total of 203 and 171 students completed the pre- and posttesting surveys, respectively. Statistical analyses were performed to compare student perceptions of knowledge of, confidence in, and experience with the lab techniques before and after viewing the videos. Eleven demonstrations were recorded. Chi-square analysis revealed a significant increase in the number of students reporting increased knowledge of, confidence in, and experience with the lab techniques after viewing the videos. Incorporation of instructional videos as prelaboratory exercises has the potential to standardize techniques and to promote successful experimental outcomes.

  12. Study about the behaviour of fishways in laboratory. Experiments 2009-2010

    International Nuclear Information System (INIS)

    Lara Dominguez, A.; Aramburu Godinez, E.; Berges Acedo, J. A.; Morcillo Alonso, F.; Castillo Blanco, M.

    2011-01-01

    The Hydraulic Laboratory of the Center for Hydro graphic Studies (CEDEX) is carrying out a study about the behaviour of some salmonid and cryprinid fish species in a vertical slot fishways built in the Laboratory, in order to know the relationship between hydraulic and biological parameters and to obtain valid design criteria. Its the first time in our country that fish are been monitored in a fishways using a RFD system, underwater and cenital cameras. First at all, the hydraulic of this typology has been characterised. An experiment protocol has been established to optimize the results. Regarding fish movements in the fishways, on the one hand we have found that fish always rest ascending the pass and, on the other, an influence of the flow on the percentage of fish that ascend the whole pass. Moreover, a tool analyze the efficiency of a fish way model according to biological criteria has been contrasted but it needs to be calibrated with biological variables obtained from native fish species. concerning fish fatigue and effort, studies about physiological parameters in plasma (hematocrit, glucose, cortisol and lactate) have implemented and the results point out the need to increase the studies with physiological parameters in muscle. (Author) 14 refs.

  13. Laboratory experiments to test relativistic gravity

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Caves, C.M.; Thorne, K.S.

    1977-01-01

    Advancing technology will soon make possible a new class of gravitation experiments: pure laboratory experiments with laboratory sources of non-Newtonian gravity and laboratory detectors. This paper proposes seven such experiments; and for each one it describes, briefly, the dominant sources of noise and the technology required. Three experiments would utilize a high-Q torque balance as the detector. They include (i) an ''Ampere-type'' experiment to measure the gravitational spin-spin coupling of two rotating bodies, (ii) a search for time changes of the gravitation constant, and (iii) a measurement of the gravity produced by magnetic stresses and energy. Three experiments would utilize a high-Q dielectric crystal as the detector. They include (i) a ''Faraday-type'' experiment to measure the ''electric-type'' gravity produced by a time-changing flux of ''magnetic-type'' gravity, (ii) a search for ''preferred-frame'' and ''preferred-orientation'' effects in gravitational coupling, and (iii) a measurement of the gravitational field produced by protons moving in a storage ring at nearly the speed of light. One experiment would use a high-Q toroidal microwave cavity as detector to search for the dragging of inertial frames by a rotating body

  14. Variability of Biological Degradation of Phenolic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 phenolic hydrocarbons (phenol, o-cresol, o-nitrophenol, p-nitrophenol, 2,6-dichlorophenol, 2,4-dichlorophenol, 4,6-o-dichlorocresol) and 1 aromatic hydrocarbon (nitrobenzene) was studied for 149 days in replicate laboratory batch microcosms with sediment...... and groundwater from 8 localities representing a 15 m × 30 m section of an aerobic aquifer. Three patterns of variation were found: (1) phenol, o-cresol and in most cases p-nitrophenol showed very fast degradation with no or only short lag phases and with very little variation among localities; (2) 2...

  15. A statistical analysis of student questions in a cell biology laboratory.

    Science.gov (United States)

    Keeling, Elena L; Polacek, Kelly M; Ingram, Ella L

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students asked about laboratory activities, 2) whether the types or quality of questions changed over time, and 3) whether the quality of questions or degree of improvement was related to academic performance. We found a majority of questions were about laboratory outcomes or seeking additional descriptive information about organisms or processes to be studied. Few questions earned the highest possible ranking, which required demonstration of extended thought, integration of information, and/or hypotheses and future experiments, although a majority of students asked such a question at least once. We found no correlation between types of student questions or improvement in questions and final grades. Only a small improvement in overall question quality was seen despite considerable practice at writing questions about science. Our results suggest that improving students' ability to generate higher-order questions may require specific pedagogical intervention.

  16. From Cookbook to Collaborative: Transforming a University Biology Laboratory Course

    Science.gov (United States)

    Herron, Sherry S.

    2009-01-01

    As described in "How People Learn," "Developing Biological Literacy," and by the Commission on Undergraduate Education in the Biological Sciences during the 1960s and early 1970s, laboratories should promote guided-inquiries or investigations, and not simply consist of cookbook or verification activities. However, the only word that could describe…

  17. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  18. Multidimensional Screening as a Pharmacology Laboratory Experience.

    Science.gov (United States)

    Malone, Marvin H.; And Others

    1979-01-01

    A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…

  19. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  20. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    Science.gov (United States)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  1. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    Science.gov (United States)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  2. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...... in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines...... and recommendations elaborated from the tests are included in the other companion papers of the Coastal Engineering Special Issue on DELOS....

  3. Synthesizing Novel Anthraquinone Natural Product-Like Compounds to Investigate Protein-Ligand Interactions in Both an in Vitro and in Vivo Assay: An Integrated Research-Based Third-Year Chemical Biology Laboratory Course

    Science.gov (United States)

    McKenzie, Nancy; McNulty, James; McLeod, David; McFadden, Meghan; Balachandran, Naresh

    2012-01-01

    A new undergraduate program in chemical biology was launched in 2008 to provide a unique learning experience for those students interested in this interdisciplinary science. An innovative undergraduate chemical biology laboratory course at the third-year level was developed as a key component of the curriculum. The laboratory course introduces…

  4. Recommendations for accreditation of laboratories in molecular biology of hematologic malignancies.

    Science.gov (United States)

    Flandrin-Gresta, Pascale; Cornillet, Pascale; Hayette, Sandrine; Gachard, Nathalie; Tondeur, Sylvie; Mauté, Carole; Cayuela, Jean-Michel

    2015-01-01

    Over recent years, the development of molecular biology techniques has improved the hematological diseases diagnostic and follow-up. Consequently, these techniques are largely used in the biological screening of these diseases; therefore the Hemato-oncology molecular diagnostics laboratories must be actively involved in the accreditation process according the ISO 15189 standard. The French group of molecular biologists (GBMHM) provides requirements for the implementation of quality assurance for the medical molecular laboratories. This guideline states the recommendations for the pre-analytical, analytical (methods validation procedures, quality controls, reagents), and post-analytical conditions. In addition, herein we state a strategy for the internal quality control management. These recommendations will be regularly updated.

  5. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    Science.gov (United States)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  6. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  7. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    Science.gov (United States)

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  8. Isolation and Characterization of Agrobacterium Strains from Soil: A Laboratory Capstone Experience

    Directory of Open Access Journals (Sweden)

    Kim R. Finer

    2016-12-01

    Full Text Available In this investigation, the students’ goal was to isolate and characterize Agrobacterium strains from soil. Following selection and enrichment on 1A-t medium, putative Agrobacterium isolates were characterized by Gram stain reaction and biochemical tests. Isolates were further evaluated using polymerase chain reaction (PCR with different primer sets designed to amplify specific regions of bacterial deoxyribonucleic acid (DNA. Primer sets included AGRH to identify isolates that were members of the Rhizobiaceae, BIOVAR1 primers to identify members of Agrobacterium biovar group I, and a third set, VIRG, to determine presence of virG (only present in pathogenic Agrobacterium strains. During the investigation, students applied previously learned techniques including serial dilution, use of selective/differential media, staining protocols, biochemical analysis, molecular analysis via PCR, and electrophoresis. Students also gained practical experience using photo documentation to record data for an eventual mock journal publication of the capstone laboratory experience. Pre- and post-evaluation of class content knowledge related to the techniques, protocols, and learning objectives of these laboratories revealed significant learning gains in the content areas of Agrobacterium–plant interactions (p ≤ 0.001 and molecular biology (p ≤ 0.01. The capstone journal assignment served as the assessment tool to evaluate mastery and application of laboratory technique, the ability to accurately collect and evaluate data, and critical thinking skills associated with experimental troubleshooting and extrapolation. Analysis of journal reports following the capstone experience showed significant improvement in assignment scores (p ≤ 0.0001 and attainment of capstone experience learning outcomes.

  9. [Non-conformities management in laboratory of medical biology: application to non-conformities of biological samples during 2009].

    Science.gov (United States)

    Annaix, Véronique; Rogowski, Julien; Joyau, Mireille; Jaouën, Edtih

    2011-01-01

    The non-conformity management is required for the ISO 15189 standard. The laboratory of medical biology has to carry out suitable acts and procedures to exploit different indicators through the framework of continuous improvement. We particularly study the indicator of biological samples nonconformities and we report 2009 results to the nurses' team managers to find solutions for quality of care to the patient.

  10. Leaf LIMS: A Flexible Laboratory Information Management System with a Synthetic Biology Focus.

    Science.gov (United States)

    Craig, Thomas; Holland, Richard; D'Amore, Rosalinda; Johnson, James R; McCue, Hannah V; West, Anthony; Zulkower, Valentin; Tekotte, Hille; Cai, Yizhi; Swan, Daniel; Davey, Robert P; Hertz-Fowler, Christiane; Hall, Anthony; Caddick, Mark

    2017-12-15

    This paper presents Leaf LIMS, a flexible laboratory information management system (LIMS) designed to address the complexity of synthetic biology workflows. At the project's inception there was a lack of a LIMS designed specifically to address synthetic biology processes, with most systems focused on either next generation sequencing or biobanks and clinical sample handling. Leaf LIMS implements integrated project, item, and laboratory stock tracking, offering complete sample and construct genealogy, materials and lot tracking, and modular assay data capture. Hence, it enables highly configurable task-based workflows and supports data capture from project inception to completion. As such, in addition to it supporting synthetic biology it is ideal for many laboratory environments with multiple projects and users. The system is deployed as a web application through Docker and is provided under a permissive MIT license. It is freely available for download at https://leaflims.github.io .

  11. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  12. Actin Immobilization on Chitin for Purifying Myosin II: A Laboratory Exercise That Integrates Concepts of Molecular Cell Biology and Protein Chemistry

    Science.gov (United States)

    de Souza, Marcelle Gomes; Grossi, Andre Luiz; Pereira, Elisangela Lima Bastos; da Cruz, Carolina Oliveira; Mendes, Fernanda Machado; Cameron, Luiz Claudio; Paiva, Carmen Lucia Antao

    2008-01-01

    This article presents our experience on teaching biochemical sciences through an innovative approach that integrates concepts of molecular cell biology and protein chemistry. This original laboratory exercise is based on the preparation of an affinity chromatography column containing F-actin molecules immobilized on chitin particles for purifying…

  13. Making Sparklers: An Introductory Laboratory Experiment

    Science.gov (United States)

    Keeney, Allen; Walters, Christina; Cornelius, Richard D.

    1995-07-01

    A laboratory experiment consisting of the preparation of sparklers has been developed as part of a project which organizes the general chemistry sequence according to subjects with which students are familiar. This laboratory makes use of oxidation/reduction chemistry to produce a product familiar to students. The result is a mixture rather than a compound, but the composition must be carefully measured to produce a sparkler that will stay lit and produce sparks. The dramatic reaction may be the most impressive and memorable experience that students encounter in the laboratory. Sparklers are formulated from iron, magnesium, and aluminum powders, plus potassium chlorate and barium nitrate held on thick iron wire by a starch paste. At elevated temperatures metal nitrates and chlorates decompose to produces gases, providing the necessary force to eject bits of powdered, burning metal into the air.

  14. Laboratory Experiments and their Applicability

    OpenAIRE

    Steinhaus, Thomas; Jahn, Wolfram

    2007-01-01

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These were conducted prior to and post the tests in Dalmarnock. Before the tests, ignition experiments were carried out in the laboratory to ensure flame spread from the wastepaper basket to the sofa. The later series of lab tests comprised of small scale cone calori...

  15. Radiation protection - Performance criteria for service laboratories performing biological dosimetry by cytogenetics

    International Nuclear Information System (INIS)

    2004-01-01

    This International Standard provides criteria for quality assurance and quality control, evaluation of the performance and the accreditation of biological dosimetry by cytogenetic service laboratories. This International Standard addresses: a) the confidentiality of personal information, for the customer and the service laboratory, b) the laboratory safety requirements, c) the calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels, d) the scoring procedure for unstable chromosome aberrations used for biological dosimetry, e) the criteria for converting a measured aberration frequency into an estimate of absorbed dose, f) the reporting of results, g) the quality assurance and quality control, h) informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations and a sample report

  16. [Hygiene and security management in medical biology laboratory].

    Science.gov (United States)

    Vinner, E; Odou, M F; Fovet, B; Ghnassia, J C

    2013-06-01

    Risk management in Medical Biology Laboratory (MBL) which includes hygiene and waste management, is an integrated process to the whole MBL organisation. It is composed of three stages: risks factors identification, grading and prioritization, and their evaluation in the system. From the legislation and NF EN ISO 15189 standard's requirements viewpoint, prevention and protection actions to implement are described, at premises level, but also at work station environment's one (human resources and equipments) towards biological, chemical, linked to gas, to ionizing or non ionizing radiations and fire riks, in order not to compromise patients safety, employees safety, and quality results. Then, although NF EN 15189 standard only enacts requirements in terms of prevention, curative actions after established blood or chemical exposure accident are defined.

  17. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  18. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  19. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    Science.gov (United States)

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  20. A Kinetic Experiment for the Biochemistry Laboratory.

    Science.gov (United States)

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  1. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    Science.gov (United States)

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  2. Experiences of Judeo-Christian Students in Undergraduate Biology

    Science.gov (United States)

    Barnes, M. Elizabeth; Truong, Jasmine M.; Brownell, Sara E.

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students’ experiences in biology classes influence their sense of belonging and retention. PMID:28232586

  3. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers†

    Science.gov (United States)

    Peteroy-Kelly, Marcy A.; Marcello, Matthew R.; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae. The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines. PMID:28904646

  4. Virtual Lab Demonstrations Improve Students’ Mastery of Basic Biology Laboratory Techniques

    OpenAIRE

    Maldarelli, Grace A.; Hartmann, Erica M.; Cummings, Patrick J.; Horner, Robert D.; Obom, Kristina. M.; Shingles, Richard; Pearlman, Rebecca S.

    2009-01-01

    Biology laboratory classes are designed to teach concepts and techniques through experiential learning. Students who have never performed a technique must be guided through the process, which is often difficult to standardize across multiple lab sections. Visual demonstration of laboratory procedures is a key element in teaching pedagogy. The main goals of the study were to create videos explaining and demonstrating a variety of lab techniques that would serve as teaching tools for undergradu...

  5. Biology of Dermacentor marginatus (Acari: Ixodidae under laboratory conditions

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Darvishi

    2014-02-01

    Full Text Available Objective: To investigate and survey the biology of Dermacentor marginatus (D. marginatus under laboratory conditions. Methods: In this investigation, D. marginatus adult ticks were collected from sheep in Semnan province. Then various developmental stages of D. marginatus including larvae, nymphs and adult males and females under laboratory condition were bred and their biology was scrutinized. Results: The requisite time to complete the life cycle of D. marginatus under controlled laboratory conditions for larvae (26 °C, 75% relative humidity and nymph (26 °C, 95% relative humidity moulting, was on average 92 d (range 75-104 d, including preoviposition and egg incubation (22.5 d, larvae incubation (20.5 d, nymphal stage (28 d along with male maturation (21 d. The index of conversion efficiency and the index of reproduction efficiency in females were 0.397 and 8.300, respectively. Conclusions: Although in this investigation, there was no meaningful correlation between preoviposition period and the weight of female ticks which were laid successfully. The significant linear relationship was fully observed between the weight of engorged female of D. marginatus and the number of eggs laid. The mean of preoviposition period from 5.4 d in autumn to 34.2 d in spring increased. The minimum weight of ticks with laying capacity was 69 mg and lighter ticks (21 mg either did not lay or if they did their eggs did not hatch.

  6. An Open-Ended Investigative Microbial Ecology Laboratory for Introductory Biology

    Science.gov (United States)

    Jones-Held, Susan; Paoletti, Robert; Glick, David; Held, Michael E.

    2010-01-01

    In this article we describe a multi-week investigative laboratory in microbial ecology/diversity and nitrogen cycling that we have used in our introductory biology course. This module encourages active student involvement in experimental design, using the scientific literature and quantitative analysis of large data sets. Students analyze soil…

  7. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    Science.gov (United States)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  8. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Zanuttigh, B.; van der Meer, J. W.

    2004-01-01

    The ducument describe 3D tests at scale 1:20 performed in the Laboratory at Department of Civil Engineering, Aalborg University.The wave obliquity was one of the main parameters, which were studied in the wave basin experiments. The experiments provide unique information about the influences...... of this parameter where almost no research has been done before....

  9. The ATLAS Experiment Laboratory - Overview

    International Nuclear Information System (INIS)

    Malecki, P.

    1999-01-01

    Full text: ATLAS Experiment Laboratory has been created by physicists and engineers preparing a research programme and detector for the LHC collider. This group is greatly supported by members of other Departments taking also part (often full time) in the ATLAS project. These are: J. Blocki, J. Godlewski, Z. Hajduk, P. Kapusta, B. Kisielewski, W. Ostrowicz, E. Richter-Was, and M. Turala. Our ATLAS Laboratory realizes its programme in very close collaboration with the Faculty of Physics and Nuclear Technology of the University of Mining and Metallurgy. ATLAS, A Toroidal LHC ApparatuS Collaboration groups about 1700 experimentalists from about 150 research institutes. This apparatus, a huge system of many detectors, which are technologically very advanced, is going to be ready by 2005. With the start of the 2 x 7 TeV LHC collider ATLAS and CMS (the sister experiment at LHC) will begin their fascinating research programme at beam energies and intensities which have never been exploited. (author)

  10. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  11. SensorDB: a virtual laboratory for the integration, visualization and analysis of varied biological sensor data.

    Science.gov (United States)

    Salehi, Ali; Jimenez-Berni, Jose; Deery, David M; Palmer, Doug; Holland, Edward; Rozas-Larraondo, Pablo; Chapman, Scott C; Georgakopoulos, Dimitrios; Furbank, Robert T

    2015-01-01

    To our knowledge, there is no software or database solution that supports large volumes of biological time series sensor data efficiently and enables data visualization and analysis in real time. Existing solutions for managing data typically use unstructured file systems or relational databases. These systems are not designed to provide instantaneous response to user queries. Furthermore, they do not support rapid data analysis and visualization to enable interactive experiments. In large scale experiments, this behaviour slows research discovery, discourages the widespread sharing and reuse of data that could otherwise inform critical decisions in a timely manner and encourage effective collaboration between groups. In this paper we present SensorDB, a web based virtual laboratory that can manage large volumes of biological time series sensor data while supporting rapid data queries and real-time user interaction. SensorDB is sensor agnostic and uses web-based, state-of-the-art cloud and storage technologies to efficiently gather, analyse and visualize data. Collaboration and data sharing between different agencies and groups is thereby facilitated. SensorDB is available online at http://sensordb.csiro.au.

  12. Statistical analysis of joint toxicity in biological growth experiments

    DEFF Research Database (Denmark)

    Spliid, Henrik; Tørslev, J.

    1994-01-01

    The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants are...... is applied on data from an experiment where inhibition of the growth of the bacteria Pseudomonas fluorescens caused by different mixtures of pentachlorophenol and aniline was studied.......The authors formulate a model for the analysis of designed biological growth experiments where a mixture of toxicants is applied to biological target organisms. The purpose of such experiments is to assess the toxicity of the mixture in comparison with the toxicity observed when the toxicants...

  13. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  14. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    Science.gov (United States)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  15. Fresh biological reference materials. Use in inter laboratory studies and as CRMs

    International Nuclear Information System (INIS)

    De Boer, J.

    1999-01-01

    Biological reference materials were prepared and packed in tins and glass jars to be used in inter laboratory studies on chlorobiphenyls and organochlorine pesticides, and trace metals, respectively. The materials were homogenised, sterilised and packed as wet tissue, which is unique for the purpose of inter laboratory studies and offers the advantage of studying the extraction and destruction steps of the analytical methods. In addition to their use in inter laboratory studies, some materials have been prepared or are being prepared as certified reference material for chlorobiphenyl analysis. (author)

  16. From gene to structure: Lactobacillus bulgaricus D-lactate dehydrogenase from yogurt as an integrated curriculum model for undergraduate molecular biology and biochemistry laboratory courses.

    Science.gov (United States)

    Lawton, Jeffrey A; Prescott, Noelle A; Lawton, Ping X

    2018-05-01

    We have developed an integrated, project-oriented curriculum for undergraduate molecular biology and biochemistry laboratory courses spanning two semesters that is organized around the ldhA gene from the yogurt-fermenting bacterium Lactobacillus bulgaricus, which encodes the enzyme d-lactate dehydrogenase. The molecular biology module, which consists of nine experiments carried out over eleven sessions, begins with the isolation of genomic DNA from L. bulgaricus in yogurt and guides students through the process of cloning the ldhA gene into a prokaryotic expression vector, followed by mRNA isolation and characterization of recombinant gene expression levels using RT-PCR. The biochemistry module, which consists of nine experiments carried out over eight sessions, begins with overexpression of the cloned ldhA gene and guides students through the process of affinity purification, biochemical characterization of the purified LdhA protein, and analysis of enzyme kinetics using various substrates and an inhibitor, concluding with a guided inquiry investigation of structure-function relationships in the three-dimensional structure of LdhA using molecular visualization software. Students conclude by writing a paper describing their work on the project, formatted as a manuscript to be submitted for publication in a scientific journal. Overall, this curriculum, with its emphasis on experiential learning, provides hands-on training with a variety of common laboratory techniques in molecular biology and biochemistry and builds experience with the process of scientific reasoning, along with reinforcement of essential transferrable skills such as critical thinking, information literacy, and written communication, all within the framework of an extended project having the look and feel of a research experience. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):270-278, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  17. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  18. Environmental regulation of plant gene expression: an RT-qPCR laboratory project for an upper-level undergraduate biochemistry or molecular biology course.

    Science.gov (United States)

    Eickelberg, Garrett J; Fisher, Alison J

    2013-01-01

    We present a novel laboratory project employing "real-time" RT-qPCR to measure the effect of environment on the expression of the FLOWERING LOCUS C gene, a key regulator of floral timing in Arabidopsis thaliana plants. The project requires four 3-hr laboratory sessions and is aimed at upper-level undergraduate students in biochemistry or molecular biology courses. The project provides students with hands-on experience with RT-qPCR, the current "gold standard" for gene expression analysis, including detailed data analysis using the common 2-ΔΔCT method. Moreover, it provides a convenient starting point for many inquiry-driven projects addressing diverse questions concerning ecological biochemistry, naturally occurring genetic variation, developmental biology, and the regulation of gene expression in nature. Copyright © 2013 Wiley Periodicals, Inc.

  19. Processing laboratory of radio sterilized biological tissues

    International Nuclear Information System (INIS)

    Aguirre H, Paulina; Zarate S, Herman; Silva R, Samy; Hitschfeld, Mario

    2005-01-01

    The nuclear development applications have also reached those areas related to health. The risk of getting contagious illnesses through applying biological tissues has been one of the paramount worries to be solved since infectious illnesses might be provoked by virus, fungis or bacterias coming from donors or whether they have been introduced by means of intermediate stages before the use of these tissues. Therefore it has been concluded that the tissue allografts must be sterilized. The sterilization of medical products has been one of the main applications of the ionizing radiations and that it is why the International Organization of Atomic Energy began in the 70s promoting works related to the biological tissue sterilization and pharmaceutical products. The development of different tissue preservation methods has made possible the creation of tissue banks in different countries, to deal with long-term preservation. In our country, a project was launched in 1998, 'Establishment of a Tissue Bank in Latino america', this project was supported by the OIEA through the project INT/ 6/ 049, and was the starting of the actual Processing Laboratory of Radioesterilized Biological Tissues (LPTR), leaded by the Chilean Nuclear Energy Commission (CCHEN). This first organization is part of a number of entities compounding the Tissue Bank in Chile, organizations such as the Transplantation Promotion Corporation hospitals and the LPTR. The working system is carried out by means of the interaction between the hospitals and the laboratory. The medical professionals perform the procuring of tissues in the hospitals, then send them to the LPTR where they are processed and sterilized with ionizing radiation. The cycle ends up with the tissues return released to the hospitals, where they are used, and then the result information is sent to the LPTR as a form of feedback. Up to now, human skin has been processed (64 donors), amniotic membranes (35 donors) and pig skin (175 portions

  20. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  1. Building Design Guidelines of Interior Architecture for Bio safety Levels of Biology Laboratories

    International Nuclear Information System (INIS)

    ElDib, A.A.

    2014-01-01

    This paper discusses the pivotal role of the Interior Architecture As one of the scientific disciplines minute to complete the Architectural Sciences, which relied upon the achievement and development of facilities containing scientific research laboratories, in terms of planning and design, particularly those containing biological laboratories using radioactive materials, adding to that, the application of the materials or raw materials commensurate with each discipline of laboratory and its work nature, and by the discussion the processing of design techniques and requirements of interior architecture dealing with Research Laboratory for electronic circuits an their applications with the making of its prototypes

  2. Engaging Students in Authentic Microbiology Research in an Introductory Biology Laboratory Course is Correlated with Gains in Student Understanding of the Nature of Authentic Research and Critical Thinking

    Directory of Open Access Journals (Sweden)

    Brittany J. Gasper

    2013-02-01

    Full Text Available Recent recommendations for biology education highlight the role of authentic research experiences early in undergraduate education as a means of increasing the number and quality of biology majors. These experiences will inform students on the nature of science, increase their confidence in doing science, as well as foster critical thinking skills, an area that has been lacking despite it being one of the desired outcomes at undergraduate institutions and with future employers. With these things in mind, we have developed an introductory biology laboratory course where students design and execute an authentic microbiology research project. Students in this course are assimilated into the community of researchers by engaging in scholarly activities such as participating in inquiry, reading scientific literature, and communicating findings in written and oral formats. After three iterations of a semester-long laboratory course, we found that students who took the course showed a significant increase in their understanding of the nature of authentic research and their level of critical thinking skills.

  3. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. Laboratory Experiences in an Introduction to Natural Science Course.

    Science.gov (United States)

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  5. A Dual Case Study: Students' Perceptions, Self-Efficacy and Understanding of the Nature of Science in Varied Introductory Biology Laboratories

    Science.gov (United States)

    Quigley, Dena Beth Boans

    Since World War II, science education has been at the forefront of curricular reforms. Although the philosophical approach to science education has changed numerous times, the importance of the laboratory has not waned. A laboratory is meant to allow students to encounter scientific concepts in a very real, hands-on way so that they are able to either recreate experiments that have given rise to scientific theories or to use science to understand a new idea. As the interactive portion of science courses, the laboratory should not only reinforce conceptual ideas, but help students to understand the process of science and interest them in learning more about science. However, most laboratories have fallen into a safe pattern having teachers and students follow a scientific recipe, removing the understanding of and interest in science for many participants. In this study, two non-traditional laboratories are evaluated and compared with a traditional laboratory in an effort to measure student satisfaction, self-efficacy, attitudes towards science, and finally their epistemology of the nature of science (NOS). Students in all populations were administered a survey at the beginning and the end of their spring 2016 laboratory, and the survey was a mixture of qualitative questions and quantitative instruments. Overall, students who participated in one of the non-traditional labs rated their satisfaction higher and used affirming supportive statements. They also had significant increases in self-efficacy from pre to post, while the students in the traditional laboratory had a significant decrease. The students in the traditional laboratory had significant changed in attitudes towards science, as did the students in one of the non-traditional laboratories. All students lacked a firm grasp of the tenets of NOS, although one laboratory that includes explicit discussions of NOS saw improvement in at least on tenet. Data for two non-major biology laboratory populations was

  6. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  7. A Statistical Analysis of Student Questions in a Cell Biology Laboratory

    Science.gov (United States)

    Keeling, Elena L.; Polacek, Kelly M.; Ingram, Ella L.

    2009-01-01

    Asking questions is an essential component of the practice of science, but question-asking skills are often underemphasized in science education. In this study, we examined questions written by students as they prepared for laboratory exercises in a senior-level cell biology class. Our goals were to discover 1) what types of questions students…

  8. High school and college biology: A multi-level model of the effects of high school biology courses on student academic performance in introductory college biology courses

    Science.gov (United States)

    Loehr, John Francis

    The issue of student preparation for college study in science has been an ongoing concern for both college-bound students and educators of various levels. This study uses a national sample of college students enrolled in introductory biology courses to address the relationship between high school biology preparation and subsequent introductory college biology performance. Multi-Level Modeling was used to investigate the relationship between students' high school science and mathematics experiences and college biology performance. This analysis controls for student demographic and educational background factors along with factors associated with the college or university attended. The results indicated that high school course-taking and science instructional experiences have the largest impact on student achievement in the first introductory college biology course. In particular, enrollment in courses, such as high school Calculus and Advanced Placement (AP) Biology, along with biology course content that focuses on developing a deep understanding of the topics is found to be positively associated with student achievement in introductory college biology. On the other hand, experiencing high numbers of laboratory activities, demonstrations, and independent projects along with higher levels of laboratory freedom are associated with negative achievement. These findings are relevant to high school biology teachers, college students, their parents, and educators looking beyond the goal of high school graduation.

  9. A Contribution to Real-Time Experiments in Remote Laboratories

    Directory of Open Access Journals (Sweden)

    Zoltán Janík

    2013-02-01

    Full Text Available The paper is focused on realization of hard real-time control of experiments in on-line laboratories. The presented solution utilizes already developed on-line laboratory portal that is based on open-source Scilab environment. The customized solution is based on Linux RTAI platform with RTAI-XML server, Comedi and jRTAILab with support of ScicosLab environment. It generates real-time executable code that is used to operate student experiments performed on Humusoft CE152 Magnetic Levitation plant.

  10. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  11. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology

    Science.gov (United States)

    Kowalski, Jennifer R.; Hoops, Geoffrey C.; Johnson, R. Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members’ research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students’ experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. PMID:27810870

  12. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  13. Design of laboratory radiotracer studies in marine radioecology

    International Nuclear Information System (INIS)

    Schulte, E.H.

    1997-01-01

    A condensed description of methods used in laboratory radiotracer studies in marine radioecology is presented showing also the difficulties which may be encountered in order to obtain realistic and comparable information on the general behaviour of radionuclides in marine organisms. Practical guidance on the choice of the biological material and how to setup laboratory experiments and to control properly important experimental conditions are given. Key parameters like concentration factors and biological half-lives are defined and the theoretical estimation and practical determination of input, uptake, accumulation and loss of radionuclides in marine biota are formulated by the aid of mathematical equations. Examples of uptake and loss curves obtained in the laboratory are shown. The importance of some environmental factors (temperature, food, growth) on uptake and loss of radionuclides are demonstrated. Comparison of experimental and field data of concentration factors is reported to show the difficulty in extrapolating from laboratory experiments to nature. (author)

  14. Development of sensorial experiments and their implementation into undergraduate laboratories

    Science.gov (United States)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  15. Using Yeast to Determine the Functional Consequences of Mutations in the Human p53 Tumor Suppressor Gene: An Introductory Course-Based Undergraduate Research Experience in Molecular and Cell Biology

    Science.gov (United States)

    Hekmat-Scafe, Daria S.; Brownell, Sara E.; Seawell, Patricia Chandler; Malladi, Shyamala; Imam, Jamie F. Conklin; Singla, Veena; Bradon, Nicole; Cyert, Martha S.; Stearns, Tim

    2017-01-01

    The opportunity to engage in scientific research is an important, but often neglected, component of undergraduate training in biology. We describe the curriculum for an innovative, course-based undergraduate research experience (CURE) appropriate for a large, introductory cell and molecular biology laboratory class that leverages students' high…

  16. Implementation of a Collaborative Series of Classroom-Based Undergraduate Research Experiences Spanning Chemical Biology, Biochemistry, and Neurobiology.

    Science.gov (United States)

    Kowalski, Jennifer R; Hoops, Geoffrey C; Johnson, R Jeremy

    2016-01-01

    Classroom undergraduate research experiences (CUREs) provide students access to the measurable benefits of undergraduate research experiences (UREs). Herein, we describe the implementation and assessment of a novel model for cohesive CUREs focused on central research themes involving faculty research collaboration across departments. Specifically, we implemented three collaborative CUREs spanning chemical biology, biochemistry, and neurobiology that incorporated faculty members' research interests and revolved around the central theme of visualizing biological processes like Mycobacterium tuberculosis enzyme activity and neural signaling using fluorescent molecules. Each CURE laboratory involved multiple experimental phases and culminated in novel, open-ended, and reiterative student-driven research projects. Course assessments showed CURE participation increased students' experimental design skills, attitudes and confidence about research, perceived understanding of the scientific process, and interest in science, technology, engineering, and mathematics disciplines. More than 75% of CURE students also engaged in independent scientific research projects, and faculty CURE contributors saw substantial increases in research productivity, including increased undergraduate student involvement and academic outputs. Our collaborative CUREs demonstrate the advantages of multicourse CUREs for achieving increased faculty research productivity and traditional CURE-associated student learning and attitude gains. Our collaborative CURE design represents a novel CURE model for ongoing laboratory reform that benefits both faculty and students. © 2016 J. R. Kowalski et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Biological aspects of Hylesia metapyrrha (Lepidoptera; Saturniidae; Hemileucinae, in laboratory

    Directory of Open Access Journals (Sweden)

    A. Specht

    Full Text Available The aim of this work was to study biological aspects and the life cycle of Hylesia Metapyrrha in a laboratory. Laboratorial breeding was made at 25 ± 1 °C, 70 ± 10% UR and 14 hours of photophase, feeding the larvae with guava leaves (Psidium guayava L. - Myrtaceae. Time was evaluated on the days of all the development stages; morphometry was evaluated in millimeters and the pupa’s mass in grams. The eggs were disposed in groups and covered by urticating abdominal hair. The incubation period lasted 52 days. The larvae, with gregarious habits, presented background black coloration, yellowish scoli and two orange longitudinal lines above and below the spiracles, during the development which lasted an average period of 74.59 days and went through seven instars. The pre-pupa and the pupa stages lasted on average 8.82 and 50.56 days, respectively; the female pupae presented a duration, weight and size which was significantly bigger. The adult stage lasted on average 5.50 days with periods of pre, post and oviposition of 2.30, 1.90 and 1.00 days, respectively. This study broadens the knowledge of the immature stages, biological, morphological and behavioral aspects, until then restricted to the morphology and to registers of the occurrence of the adult forms.

  18. "Mini-Array" Transcriptional Analysis of the "Listeria Monocytogenes" Lecithinase Operon as a Class Project: A Student Investigative Molecular Biology Laboratory Experience

    Science.gov (United States)

    Christensen, Douglas; Jovic, Marko

    2006-01-01

    This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne…

  19. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    Science.gov (United States)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  20. Diffusion Experiments in Opalinus Clay: Laboratory, Large-Scale Diffusion Experiments and Microscale Analysis by RBS.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso de los Rios, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2008-08-06

    The Opalinus Clay (OPA) formation in the Zurcher Weiland (Switzerland) is a potential host rock for a repository for high-level radioactive waste. Samples collected in the Mont Terri Underground Rock Laboratory (URL), where the OPA formation is located at a depth between -200 and -300 m below the surface, were used to study the radionuclide diffusion in clay materials. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), to understand the transport properties of the OPA and to enhance the methodologies used for in situ diffusion experiments. Through-Diffusion and In-Diffusion conventional laboratory diffusion experiments were carried out with HTO, 36{sup C}l-, I-, 22{sup N}a, 75{sup S}e, 85{sup S}r, 233{sup U}, 137{sup C}s, 60{sup C}o and 152{sup E}u. Large-scale diffusion experiments were performed with HTO, 36{sup C}l, and 85{sup S}r, and new experiments with 60{sup C}o, 137{sup C}s and 152{sup E}u are ongoing. Diffusion experiments with RBS technique were done with Sr, Re, U and Eu. (Author) 38 refs.

  1. A Laboratory Experiment on EM Backscatter from Farley-Buneman and Gradient Drift Waves

    DEFF Research Database (Denmark)

    Alport, M. J.; D'Angelo, N.; Pécseli, Hans

    1981-01-01

    Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent i...... ideas on EM scattering by equatorial and high-latitude ionospheric waves and irregularities.......Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent...

  2. Modelling of laboratory high-pressure infiltration experiments

    International Nuclear Information System (INIS)

    Smith, P.A.

    1992-02-01

    This report describes the modelling of break-through curves from a series of two-tracer dynamic infiltration experiments, which are intended to complement larger scale experiments at the Nagra Grimsel Test Site. The tracers are 82 Br, which is expected to be non-sorbing, and 24 Na, which is weakly sorbing. The 24 Na concentration is well below the natural Na concentration in the infiltration fluid, so that sorption on the rock is governed by isotopic exchange, exhibiting a linear isotherm. The rock specimens are sub-samples (cores) of granodiorite from the Grimsel Test Site, each containing a distinct shear zone. Best-fits to the break-through curves using single-porosity and dual-porosity transport models are compared and several physical parameters are extracted. It is shown that the dual-porosity model is required in order to reproduce the tailing part of the break-through curves for the non-sorbing tracer. The single-porosity model is sufficient to reproduce the break-through curves for the sorbing tracer within the estimated experimental errors. Extracted K d values are shown to agree well with a field rock-water interaction experiment and in situ migration experiments. Static, laboratory batch-sorption experiments give a larger K d , but this difference could be explained by the larger surface area available for sorption in the artificially crushed samples used in the laboratory and by a slightly different water chemistry. (author) 13 figs., tabs., 19 refs

  3. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    Science.gov (United States)

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  4. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  5. Interactive screen experiments-innovative virtual laboratories for distance learners

    International Nuclear Information System (INIS)

    Hatherly, P A; Jordan, S E; Cayless, A

    2009-01-01

    The desirability and value of laboratory work for physics students is a well-established principle and issues arise where students are inherently remote from their host institution, as is the case for the UK's Open University. In this paper, we present developments from the Physics Innovations Centre for Excellence in Teaching and Learning (piCETL) in the production and technology of the virtual laboratory resources, interactive screen experiments, and the benefits and drawbacks of such resources. We also explore the motivations behind current implementation of interactive screen experiments and examine evaluation strategies and outcomes through a series of case studies

  6. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    Science.gov (United States)

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  7. Underground laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, A., E-mail: Bettini@pd.infn.i [Padua University and INFN Section, Dipartimento di Fisca G. Galilei, Via Marzolo 8, 35131 Padova (Italy); Laboratorio Subterraneo de Canfranc, Plaza Ayuntamiento n1 2piso, Canfranc (Huesca) (Spain)

    2011-01-21

    Underground laboratories provide the low radioactive background environment necessary to frontier experiments in particle and nuclear astrophysics and other disciplines, geology and biology, that can profit of their unique characteristics. The cosmic silence allows to explore the highest energy scales that cannot be reached with accelerators by searching for extremely rare phenomena. I will briefly review the facilities that are operational or in an advanced status of approval around the world.

  8. Laboratory animal: biological reagent or living being?

    Science.gov (United States)

    Cardoso, C V P; Almeida, A E C C de

    2014-01-01

    The duties of humans toward non-human animals and their rights in society have been debated for a long time. However, a discussion on the terminology used for the identification of laboratory animals is usually not considered, although the employment of inadequate terminology may generate disastrous consequences for the animals before, during, and after the experiment. This study intends to defend the use of appropriate terminology, call attention to an unethical attitude of certain professionals when dealing with experimental animals, and also propose operational mechanisms, which allow for those distortions to be corrected.

  9. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  10. The Qweakp experiment at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Page, Shelley

    2008-01-01

    A major new experiment is being prepared at Jefferson Laboratory to measure the proton's weak charge via the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer. The Standard Model makes a firm prediction of the proton' weak charge, Q w p = 1 - 4 sin2thetaW, based on the running of the weak mixing angle sin2thetaW from the Z 0 pole down to low energies, corresponding to a 10sigma effect in our experiment. Our ultimate goal is to determine the proton' weak charge with 4% combined statistical and systematic errors, which in turn leads to a 0.3% measurement of sin2 thetaW. The experiment is currently under construction; installation in Hall C at Jefferson Lab followed by data taking is planned for 2009.

  11. Laser fusion experiments at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1975-01-01

    A short review is given of some of the important dates in the experimental fusion program at Livermore. A few of the parameters of the laser systems which are being used for these experiments are mentioned. Some information about specialized diagnostics which have been developed at the Livermore Laboratory for these experiments is described. The focusing arrangements for each of the systems are discussed. Experiments both on planar targets and on targets for laser fusion are described

  12. Connecting Biology and Organic Chemistry Introductory Laboratory Courses through a Collaborative Research Project

    Science.gov (United States)

    Boltax, Ariana L.; Armanious, Stephanie; Kosinski-Collins, Melissa S.; Pontrello, Jason K.

    2015-01-01

    Modern research often requires collaboration of experts in fields, such as math, chemistry, biology, physics, and computer science to develop unique solutions to common problems. Traditional introductory undergraduate laboratory curricula in the sciences often do not emphasize connections possible between the various disciplines. We designed an…

  13. Laboratory Experiments in Teaching Public Economics and Policy

    Directory of Open Access Journals (Sweden)

    Špačková Zuzana

    2015-05-01

    Full Text Available This paper deals with classroom experiments in economics, which have been derived from laboratory experiments. These experiments cover a broad range of topics, from strictly economic ones (like market games or auctions to those with overlaps to other domains such as public policy. The paper discusses different methodologies of research and classroom experiments, introduces the benefits of the latter and presents a concrete teaching experiment used in public economics courses at the Faculty of Economics and Administration of Masaryk University. Another link between economic experiments and public policy is outlined here as well, namely the importance of experimental results for public policy makers.

  14. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    Science.gov (United States)

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  15. Prepare, Do, Review: A skills-based approach for laboratory practical classes in biochemistry and molecular biology.

    Science.gov (United States)

    Arthur, Peter; Ludwig, Martha; Castelli, Joane; Kirkwood, Paul; Attwood, Paul

    2016-05-06

    A new laboratory practical system is described which is comprised of a number of laboratory practical modules, each based around a particular technique or set of techniques, related to the theory part of the course but not designed to be dependent on it. Each module comprises an online recorded pre-lab lecture, the laboratory practical itself and a post-lab session in which students make oral presentations on different aspects of the practical. Each part of the module is assessed with the aim of providing rapid feedback to staff and students. Each laboratory practical is the responsibility of a single staff member and through this "ownership," continual review and updating is promoted. Examples of changes made by staff to modules as a result of student feedback are detailed. A survey of students who had experienced both the old-style laboratory course and the new one provided evidence of increased satisfaction with the new program. The assessment of acquired shills in the new program showed that it was much more effective than the old course. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:276-287, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  16. OCCUPATIONAL ACCIDENTS WITH BIOLOGICAL MATERIALS IN CLINICAL ANALYSIS LABORATORY: CAUSES AND CONSEQUENCES

    Directory of Open Access Journals (Sweden)

    T. M. Azevedo

    2014-07-01

    Full Text Available Accidents involving biological material can cause diseases to the professional healthcare and also bring psychosocial effects. The aim of this study was to characterize the accidents occurring with biological material with professional of clinical laboratories of Sinop-MT. Data were collected by a questionnaire consisting of sociodemographic and health variables. 21 (87.5% of respondents stated that they never suffered any kind of accident. One of the injured workers reported that there was involvement in your emotional life. It is observed underreporting of occupational accidents by employees affected, making it difficult to increase research on the subject and actions about the problem.

  17. Bodily experiences in secondary school biology

    Science.gov (United States)

    Orlander, Auli Arvola; Wickman, Per-Olof

    2011-09-01

    This is a study of teaching about the human body. It is based on transcribed material from interviews with 15-year-old students and teachers about their experiences of sex education and from recordings of classroom interactions during a dissection. The analysis is focused on the relationship between what students are supposed to learn about the biological body and their expressed experiences and meaning making of bodies in the schoolwork. The results indicate that the negotiations associated with the encounters between the bodies of the classroom (student, teacher, and animal bodies) are important for what directions meaning making takes and what students are afforded to learn about bodies, biologically as well as in terms of values. We suggest that these negotiations should be taken into account at schools, be regarded as an important part of the learning processes in science education and in that way open up for new possibilities for students' meaning making.

  18. ANDES: An Underground Laboratory in South America

    Science.gov (United States)

    Dib, Claudio O.

    ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.

  19. Biological Risks and Laboratory-Acquired Infections: A Reality That Cannot be Ignored in Health Biotechnology

    Science.gov (United States)

    Coelho, Ana Cláudia; García Díez, Juan

    2015-01-01

    Advances and research in biotechnology have applications over a wide range of areas, such as microbiology, medicine, the food industry, agriculture, genetically modified organisms, and nanotechnology, among others. However, research with pathogenic agents, such as virus, parasites, fungi, rickettsia, bacterial microorganisms, or genetic modified organisms, has generated concern because of their potential biological risk – not only for people, but also for the environment due to their unpredictable behavior. In addition, concern for biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control. Biotechnology laboratories require biosafety measures designed to protect their staff, the population, and the environment, which may be exposed to hazardous organisms and materials. Laboratory staff training and education is essential, not only to acquire a good understanding about the direct handling of hazardous biological agents but also knowledge of the epidemiology, pathogenicity, and human susceptibility to the biological materials used in research. Biological risk can be reduced and controlled by the correct application of internationally recognized procedures such as proper microbiological techniques, proper containment apparatus, adequate facilities, protective barriers, and special training and education of laboratory workers. To avoid occupational infections, knowledge about standardized microbiological procedures and techniques and the use of containment devices, facilities, and protective barriers is necessary. Training and education about the epidemiology, pathogenicity, and biohazards of the microorganisms involved may prevent or decrease the risk. In this way, the scientific community may benefit from the lessons learned in the past to anticipate future problems. PMID:25973418

  20. Biological risks and laboratory-acquired infections. A reality that cannot be ignored in health biotechnology

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Coelho

    2015-04-01

    Full Text Available Advances and research in biotechnology have applications over a wide range of areas such as microbiology, medicine, the food industry, agriculture, genetically modified organisms and nanotechnology, among others. However, research with pathogenic agents such as virus, parasites, fungi, rickettsia, bacterial microorganisms or genetic modified organisms has generated concern because of their potential biological risk - not only for people, but also for the environment due to their unpredictable behavior. In addition, concern for biosafety is associated with the emergence of new diseases or re-emergence of diseases that were already under control. Biotechnology laboratories require biosafety measures designed to protect their staff, the population and the environment, which may be exposed to hazardous organisms and materials. Laboratory staff training and education is essential, not only to acquire a good understanding about the direct handling of hazardous biological agents but also knowledge of the epidemiology, pathogenicity and human susceptibility to the biological materials used in research. Biological risk can be reduced and controlled by the correct application of internationally recognized procedures such as proper microbiological techniques, proper containment apparatus, adequate facilities, protective barriers and special training and education of laboratory workers. To avoid occupational infections, knowledge about standardized microbiological procedures and techniques and the use of containment devices, facilities and protective barriers is necessary. Training and education about the epidemiology, pathogenicity and biohazards of the microorganisms involved may prevent or decrease the risk. In this way, the scientific community may benefit from the lessons learned in the past to anticipate future problems.

  1. Blueprints for green biotech: development and application of standards for plant synthetic biology.

    Science.gov (United States)

    Patron, Nicola J

    2016-06-15

    Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  3. Integration of a Faculty's Ongoing Research into an Undergraduate Laboratory Teaching Class in Developmental Biology

    Science.gov (United States)

    Nam, Sang-Chul

    2018-01-01

    Traditional developmental biology laboratory classes have utilized a number of different model organisms to allow students to be exposed to diverse biological phenomena in developing organisms. This traditional approach has mainly focused on the diverse morphological and anatomical descriptions of the developing organisms. However, modern…

  4. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  5. Determination of the Fatty Acid Content of Biological Membranes: A Highly Versatile GC-MS Experiment

    Science.gov (United States)

    Schultz, Emeric; Pugh, Michael Eugene

    2001-07-01

    The experiment involves the GC-MS of fatty acid methyl esters (FAMEs) obtained from bacterial membranes. It takes about 2 h, from cell harvest to injection. This experiment is done in a lab course for non-science majors and in biochemistry. For non-science majors the focus is on GC-MS as a technique for fingerprinting and on the underlying basis of that fingerprinting. In biochemistry the focus is on the composition of membranes and how this changes with temperature--specifically how the ratio of saturated to unsaturated fatty acids changes to maintain constant cell fluidity. Combined with a parallel DNA experiment, the two major types of intermolecular forces important for the structure and function of biomolecules are compared. How this versatile experiment could be adapted in other chemistry courses is presented. The experiment has obvious appeal to biology majors, can be used to develop several important chemistry concepts, involves teamwork, and employs an important instrument. It could be used in the laboratory portion of a course other than biochemistry to fulfill the new ACS biochemistry requirement.

  6. Virtual Laboratories in Science Education: Students' Motivation and Experiences in Two Tertiary Biology Courses

    Science.gov (United States)

    Dyrberg, Nadia Rahbek; Treusch, Alexander H.; Wiegand, Claudia

    2017-01-01

    Potential benefits of simulations and virtual laboratory exercises in natural sciences have been both theorised and studied recently. This study reports findings from a pilot study on student attitude, motivation and self-efficacy when using the virtual laboratory programme Labster. The programme allows interactive learning about the workflows and…

  7. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  8. Experience of maintaining laboratory educational website's sustainability.

    Science.gov (United States)

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  9. Infusing Outdoor Field Experiences into the Secondary Biology Curriculum.

    Science.gov (United States)

    Owens, Ginny

    1984-01-01

    To offer students biological field experiences, teachers should use their own basic skills, be enthusiastic motivators, participate in community programs/courses/workshops to acquire additional skills/knowledge for outdoor biological education, plan outdoor excursions with safety considerations in mind, and use available resources for classroom…

  10. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  11. Audio-Tutorial Versus Conventional Lecture-Laboratory Instruction in a University Animal Biology Course.

    Science.gov (United States)

    Rowsey, Robert E.

    The purpose of this study was to analyze two methods of instruction used in an animal biology course. One group of students, the experimental group, was taught using an audio-tutorial program, and another group, the control group, was taught using the conventional lecture-laboratory method. Pretest and posttest data were collected from achievement…

  12. Synthesis and Self-Assembly of the "Tennis Ball" Dimer and Subsequent Encapsulation of Methane. An Advanced Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Hof, Fraser; Palmer, Liam C.; Rebek, Julius, Jr.

    2001-11-01

    While important to the biological and materials sciences, noncovalent interactions, self-folding, and self-assembly often receive little discussion in the undergraduate chemistry curriculum. The synthesis and NMR characterization of a molecular "tennis ball" in an advanced undergraduate organic chemistry laboratory is a simple and effective way to introduce the relevance of these concepts. In appropriate solvents, the monomer dimerizes through a seam of eight hydrogen bonds with encapsulation of a guest molecule and symmetry reminiscent of a tennis ball. The entire experiment can be completed in three lab periods, however large-scale synthetic preparation of the starting monomer by a teaching assistant would reduce the laboratory to a single lab period for NMR studies.

  13. LABORATORY FLUME EXPERIMENT WITH A CODED STRUCTURED LIGHT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. Akca

    2012-07-01

    Full Text Available The topography of inland deltas is influenced chiefly by the water-sediment balance in distributary channels and local evaporation and seepage rates. In a previous study, a reduced complexity model has been applied to simulate the process of inland delta formation. Results have been compared with the Okavango Delta, Botswana and with a laboratory experiment. Both in the macro scale and the micro scale cases, high quality digital elevation models (DEM are essential. This work elaborates the laboratory experiment where an artificial inland delta is generated on laboratory scale and its topography is measured using a Breuckmann 3D scanner. The space-time evolution of the inland delta is monitored in the consecutive DEM layers. Regarding the 1.0m x 1.0m x 0.3m size of the working area, better than 100 micron precision is achieved which gives a relative precision of 1/10 000. The entire 3D modelling workflow is presented in terms of scanning, co-registration, surface generation, editing, and visualization steps. The co-registered high resolution topographic data allows us to analyse the stratigraphy patterns of the experiment and gain quantitative insight into the spatio-temporal evolution of the delta formation process.

  14. Comparing the Impact of Course-Based and Apprentice-Based Research Experiences in a Life Science Laboratory Curriculum†

    Science.gov (United States)

    Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.

    2015-01-01

    This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568

  15. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  16. Known structure, unknown function: An inquiry‐based undergraduate biochemistry laboratory course

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W.; Lee, Christopher T.; Dewald, Alison H.; Cline, Matthew A.; McAnany, Charles E.

    2015-01-01

    Abstract Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry‐ and research‐based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year‐long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three‐dimensional structure. The first half of the course is inquiry‐based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 43(4):245–262, 2015. PMID:26148241

  17. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.

    Science.gov (United States)

    Gray, Cynthia; Price, Carol W; Lee, Christopher T; Dewald, Alison H; Cline, Matthew A; McAnany, Charles E; Columbus, Linda; Mura, Cameron

    2015-01-01

    Undergraduate biochemistry laboratory courses often do not provide students with an authentic research experience, particularly when the express purpose of the laboratory is purely instructional. However, an instructional laboratory course that is inquiry- and research-based could simultaneously impart scientific knowledge and foster a student's research expertise and confidence. We have developed a year-long undergraduate biochemistry laboratory curriculum wherein students determine, via experiment and computation, the function of a protein of known three-dimensional structure. The first half of the course is inquiry-based and modular in design; students learn general biochemical techniques while gaining preparation for research experiments in the second semester. Having learned standard biochemical methods in the first semester, students independently pursue their own (original) research projects in the second semester. This new curriculum has yielded an improvement in student performance and confidence as assessed by various metrics. To disseminate teaching resources to students and instructors alike, a freely accessible Biochemistry Laboratory Education resource is available at http://biochemlab.org. © 2015 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology.

  18. Implementing the Science Assessment Standards: Developing and validating a set of laboratory assessment tasks in high school biology

    Science.gov (United States)

    Saha, Gouranga Chandra

    Very often a number of factors, especially time, space and money, deter many science educators from using inquiry-based, hands-on, laboratory practical tasks as alternative assessment instruments in science. A shortage of valid inquiry-based laboratory tasks for high school biology has been cited. Driven by this need, this study addressed the following three research questions: (1) How can laboratory-based performance tasks be designed and developed that are doable by students for whom they are designed/written? (2) Do student responses to the laboratory-based performance tasks validly represent at least some of the intended process skills that new biology learning goals want students to acquire? (3) Are the laboratory-based performance tasks psychometrically consistent as individual tasks and as a set? To answer these questions, three tasks were used from the six biology tasks initially designed and developed by an iterative process of trial testing. Analyses of data from 224 students showed that performance-based laboratory tasks that are doable by all students require careful and iterative process of development. Although the students demonstrated more skill in performing than planning and reasoning, their performances at the item level were very poor for some items. Possible reasons for the poor performances have been discussed and suggestions on how to remediate the deficiencies have been made. Empirical evidences for validity and reliability of the instrument have been presented both from the classical and the modern validity criteria point of view. Limitations of the study have been identified. Finally implications of the study and directions for further research have been discussed.

  19. The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field.

    Science.gov (United States)

    Adams, Bryn L

    2016-12-16

    Escherichia coli (E. coli) has played a pivotal role in the development of genetics and molecular biology as scientific fields. It is therefore not surprising that synthetic biology (SB) was built upon E. coli and continues to dominate the field. However, scientific capabilities have advanced from simple gene mutations to the insertion of rationally designed, complex synthetic circuits and creation of entirely synthetic genomes. The point is rapidly approaching where E. coli is no longer an adequate host for the increasingly sophisticated genetic designs of SB. It is time to develop the next generation of SB chassis; robust organisms that can provide the advanced physiology novel synthetic circuits will require to move SB from the laboratory into fieldable technologies. This can be accomplished by developing chassis-specific genetic toolkits that are as extensive as those for E. coli. However, the holy grail of SB would be the development of a universal toolkit that can be ported into any chassis. This viewpoint article underscores the need for new bacterial chassis, as well as discusses some of the important considerations in their selection. It also highlights a few examples of robust, tractable bacterial species that can meet the demands of tomorrow's state-of-the-art in SB. Significant advances have been made in the first 15 years since this field has emerged. However, the advances over the next 15 years will occur not in laboratory organisms, but in fieldable species where the potential of SB can be fully realized in game changing technology.

  20. OpenLabs Security Laboratory - The Online Security Experiment Platform

    OpenAIRE

    Johan Zackrisson; Charlie Svahnberg

    2008-01-01

    For experiments to be reproducible, it is important to have a known and controlled environment. This requires isolation from the surroundings. For security experiments, e.g. with hostile software, this is even more important as the experiment can affect the environment in adverse ways. In a normal campus laboratory, isolation can be achieved by network separation. For an online environment, where remote control is essential, separation and isolation are still needed, and therefore the securit...

  1. Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study

    Directory of Open Access Journals (Sweden)

    E. Toprak

    2013-01-01

    Full Text Available In this paper bioaerosol measurements conducted with the Waveband Integrated Bioaerosol Sensor mark 4 (WIBS-4 are presented. The measurements comprise aerosol chamber characterization experiments and a one-year ambient measurement period at a semi-rural site in South Western Germany. This study aims to investigate the sensitivity of WIBS-4 to biological and non-biological aerosols and detection of biological particles in the ambient aerosol. Several types of biological and non-biological aerosol samples, including fungal spores, bacteria, mineral dust, ammonium sulphate, combustion soot, and fluorescent polystyrene spheres, were analyzed by WIBS-4 in the laboratory. The results confirm the sensitivity of the ultraviolet light-induced fluorescence (UV-LIF method to biological fluorophores and show the good discrimination capabilities of the two excitation wavelengths/detection wavebands method applied in WIBS-4. However, a weak cross-sensitivity to non-biological fluorescent interferers remains and is discussed in this paper.

    All the laboratory studies have been undertaken in order to prepare WIBS-4 for ambient aerosol measurements. According to the one-year ambient aerosol study, number concentration of fluorescent biological aerosol particles (FBAP show strong seasonal and diurnal variability. The highest number concentration of FBAP was measured during the summer term and decreased towards the winter period when colder and drier conditions prevail. Diurnal FBAP concentrations start to increase after sunset and reach maximum values during the late night and early morning hours. On the other hand, the total aerosol number concentration was almost always higher during daytime than during nighttime and a sharp decrease after sunset was observed. There was no correlation observed between the FBAP concentration and the meteorological parameters temperature, precipitation, wind direction and wind speed. However, a clear correlation was

  2. Vertebrate Osmoregulation: A Student Laboratory Exercise Using Teleost Fish

    Science.gov (United States)

    Boily P.; Rees, B. B.; Williamson, L. A. C.

    2007-01-01

    Here, we describe a laboratory experiment as part of an upper-level vertebrate physiology course for biology majors to investigate the physiological response of vertebrates to osmoregulatory challenges. The experiment involves measuring plasma osmolality and Na[superscript +] -K[superscript +] -ATPase activity in gill tissue of teleost fish…

  3. An analysis of laboratory activities found in "Applications In Biology/Chemistry: A Contextual Approach to Laboratory Science"

    Science.gov (United States)

    Haskins, Sandra Sue

    The purpose of this study was to quantitatively determine whether the material found in ABC promotes scientific inquiry through the inclusion of science process skills, and to quantitatively determine the type (experimental, comparative, or descriptive) and character (wet-lab, paper and pencil, model, or computer) of laboratory activities. The research design allowed for an examination of the frequency and type of science process skills required of students in 79 laboratory activities sampled from all 12 units utilizing a modified 33-item laboratory analysis inventory (LAI) (Germane et al, 1996). Interrater reliability for the science process skills was completed on 19 of the laboratory activities with a mean score of 86.1%. Interrater reliability for the type and character of the laboratory, on the same 19 laboratory activities, was completed with mean scores of 79.0% and 96.5%, respectively. It was found that all laboratory activities provide a prelaboratory activity. In addition, the science process skill category of student performance is required most often of students with the skill of learning techniques or manipulating apparatus occurring 99% of the time. The science process skill category observed the least was student planning and design, occurring only 3% of the time. Students were rarely given the opportunity to practice science process skills such as developing and testing hypotheses through experiments they have designed. Chi-square tests, applied at the .05 level of significance, revealed that there was a significant difference in the type of laboratory activities; comparative laboratory activities appeared more often (59%). In addition the character of laboratory activities, "wet-lab" activities appeared more often (90%) than any of the others.

  4. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  5. Einstein-Podolsky-Rosen-Bohm laboratory experiments : Data analysis and simulation

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jin, F.; DAriano, M; Fei, SM; Haven, E; Hiesmayr, B; Jaeger, G; Khrennikov, A; Larsson, JA

    2012-01-01

    Data produced by laboratory Einstein-Podolsky-Rosen-Bohm (EPRB) experiments is tested against the hypothesis that the statistics of this data is given by quantum theory of this thought experiment. Statistical evidence is presented that the experimental data, while violating Bell inequalities, does

  6. The Role of Laboratory Experiments in the Validation of Field Data

    DEFF Research Database (Denmark)

    Mouneyrac, Catherine; Lagarde, Fabienne; Chatel, Amelie

    2017-01-01

    The ubiquitous presence and persistency of microplastics (MPs) in aquatic environments are of particular concern, since they constitute a potential threat to marine organisms and ecosystems. However, evaluating this threat and the impacts of MP on aquatic organisms is challenging. MPs form a very...... and to what degree these complexities are addressed in the current literature, to: (1) evaluate how well laboratory studies, investigated so far, represent environmentally relevant processes and scenarios and (2) suggest directions for future research The Role of Laboratory Experiments in the Validation...... of Field Data | Request PDF. Available from: https://www.researchgate.net/publication/310360438_The_Role_of_Laboratory_Experiments_in_the_Validation_of_Field_Data [accessed Jan 15 2018]....

  7. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    Science.gov (United States)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  8. Method to Increase Undergraduate Laboratory Student Confidence in Performing Independent Research?

    OpenAIRE

    Kempton, Colton E.; Weber, K. Scott; Johnson, Steven M.

    2017-01-01

    The goal of an undergraduate laboratory course should be not only to introduce the students to biology methodologies and techniques, but also to teach them independent analytical thinking skills and proper experiment design.  This is especially true for advanced biology laboratory courses that undergraduate students typically take as a junior or senior in college.  Many courses achieve the goal of teaching techniques, but fail to approach the larger goal of teaching critical thinking, experim...

  9. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    Science.gov (United States)

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  10. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    Science.gov (United States)

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  11. Genome annotation in a community college cell biology lab.

    Science.gov (United States)

    Beagley, C Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning skills. Additionally, the project strengthens student understanding of the scientific method and contributes to student learning gains in curricular objectives centered around basic molecular biology, specifically, the Central Dogma. Importantly, inclusion of this project in the laboratory course provides students with a positive learning environment and allows for the use of cooperative learning strategies to increase overall student success. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  12. Morphogenesis and pattern formation in biological systems experiments and models

    CERN Document Server

    Noji, Sumihare; Ueno, Naoto; Maini, Philip

    2003-01-01

    A central goal of current biology is to decode the mechanisms that underlie the processes of morphogenesis and pattern formation. Concerned with the analysis of those phenomena, this book covers a broad range of research fields, including developmental biology, molecular biology, plant morphogenesis, ecology, epidemiology, medicine, paleontology, evolutionary biology, mathematical biology, and computational biology. In Morphogenesis and Pattern Formation in Biological Systems: Experiments and Models, experimental and theoretical aspects of biology are integrated for the construction and investigation of models of complex processes. This collection of articles on the latest advances by leading researchers not only brings together work from a wide spectrum of disciplines, but also provides a stepping-stone to the creation of new areas of discovery.

  13. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  14. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  15. Women's Experiences in the Engineering Laboratory in Japan

    Science.gov (United States)

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  16. Armor breakup and reformation in a degradational laboratory experiment

    OpenAIRE

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-01-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1mm sand fraction and two gravel fractions (6 and 10mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport condit...

  17. Gamification of the Laboratory Experience to Encourage Student Engagement

    Directory of Open Access Journals (Sweden)

    Kevin Drace

    2013-08-01

    Full Text Available The American Society for Microbiology (ASM Task Force on Curriculum Guidelines for Undergraduate Microbiology Students published recommendations for introductory microbiology courses that suggest teaching specific skill sets in the laboratory beyond just fundamental knowledge and concepts of microbiology (6; however, students can sometimes view a skills-based laboratory experience as a task list of unrelated assignments to complete for a grade. Therefore, providing explicit connections throughout the lecture and laboratory exercises is critical for a truly integrated learning experience. Several pedagogical techniques can provide a coherent framework throughout a course. For example, case-based studies can connect lecture with laboratory skills and increase student engagement by applying newly developed knowledge and skills to tackle real-world simulations (2, 3. One reason that case-based studies succeed is that they can provide intrinsic motivations and an alternate purpose for students to engage with the material. A more recent trend in pedagogy involves using game design elements to increase student engagement and motivation. Gamification is the application of game design (accruing points or badges, reaching significant levels of accomplishment, or other reward elements in a non-game context to motivate or influence participation (1, 5. A natural extension of both of these methods is to gamify a case-based approach where a fictional scenario is presented for students to role-play as scientists using their developed skills to solve a complex problem. The typical microbiology laboratory, as described by the ASM Task Force, can easily incorporate game design elements without extensive modification of the exercises themselves. Instead, gamification involves structuring the lab in a way that gives the course a coherent and unified purpose. This ultimately allows the student to see how the principles and concepts of lecture and laboratory connect

  18. [RESAOLAB: West African network of laboratories to enhance the quality of clinical biology].

    Science.gov (United States)

    Delorme, L; Machuron, J L; Sow, I; Diagne, R; Sakandé, J; Nikiéma, A; Bougoudogo, F; Keita, A; Longuet, C

    2015-02-01

    The Fondation Mérieux, in partnership with the Ministries of Health of Burkina Faso, Mali and Senegal, implemented for four years a project to reinforce the laboratory sector in the three participating countries: the RESAOLAB project (West African Network of Biomedical Analysis Laboratories).The objective of RESAOLAB project, in partnership with the WHO Office for West Africa and the West African Health Organization, was to strengthen the systems of biomedical laboratories to improve diagnostic services, access, monitoring and management of infectious diseases. Following the successful results achieved under the RESAOLAB project and due to the demand of the neighbour countries ministries, the RESAOLAB project is now extended to four other countries of the West African region: Benin, Guinea-Conakry, Niger and Togo. The RESAOLAB project has become the RESAOLAB programme, its purpose is to strengthen the quality of the medical biology services thanks to a regional and transversal approach.

  19. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  20. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory.

    Science.gov (United States)

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M; da Silva, Alan Wilter; Pilicheva, Katya; Troshin, Peter; van Niekerk, Johannes; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S; Stuart, David I; Henrick, Kim; Esnouf, Robert M

    2011-04-01

    The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  1. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories

    DEFF Research Database (Denmark)

    Koenen, K.; Uttenthal, Åse; Meindl-Böhmer, A.

    2007-01-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning....... It is essential that these plans are established during ‘peace-time’ and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance...

  2. MDI Biological Laboratory Arsenic Summit: Approaches to Limiting Human Exposure to Arsenic

    OpenAIRE

    Stanton, Bruce A.

    2015-01-01

    This report is the outcome of the meeting: “Environmental and Human Health Consequences of Arsenic”, held at the MDI Biological Laboratory in Salisbury Cove, Maine, August 13–15, 2014. Human exposure to arsenic represents a significant health problem worldwide that requires immediate attention according to the World Health Organization (WHO). One billion people are exposed to arsenic in food and more than 200 million people ingest arsenic via drinking water at concentrations greater than inte...

  3. Accreditation experience of radioisotope metrology laboratory of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Iglicki, A. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: iglicki@cae.cnea.gov.ar; Mila, M.I. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: mila@cae.cnea.gov.ar; Furnari, J.C. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Cerutti, G. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Carballido, M. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Guillen, V. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Araya, X. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Bianchini, R. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)

    2006-10-15

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the ({alpha}/{beta})-{gamma} coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  4. Accreditation experience of radioisotope metrology laboratory of Argentina

    International Nuclear Information System (INIS)

    Iglicki, A.; Mila, M.I.; Furnari, J.C.; Arenillas, P.; Cerutti, G.; Carballido, M.; Guillen, V.; Araya, X.; Bianchini, R.

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (α/β)-γ coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved

  5. Using an Online Remote Laboratory for Electrical Experiments in Upper Secondary Education

    Directory of Open Access Journals (Sweden)

    Lars Håkansson

    2012-03-01

    Full Text Available The use of remote laboratories in courses at university level has been reported in literature numerous times since the mid 90’s. In this article focus is on activities carried out by teachers and students, at the Upper Secondary School Level, using the remote laboratory VISIR (Virtual Instrument Systems in Reality. The Upper Secondary School, Katedralskolan in Lund, Sweden, cooperate with Blekinge Institute of Technology, Sweden, in a project that concerns the introduction of remote laboratory environment suitable for Upper Secondary School science courses. A remote laboratory in electronics has been introduced and is used as a complement to the traditional workbench in the hands-on laboratory. Significant results from the project are; 1 the great interest shown by the students for the remote experiments, 2 the students appreciation for the fact that it was not simulations but actual real experiments, 3 the remote laboratory is easy to implement for use by both teachers and students and 4 it can be used simultaneously by many students.

  6. European Molecular Biology Laboratory

    CERN Multimedia

    1973-01-01

    On 10 May an Agreement was signed at CERN setting up a new European Laboratory. It will be concerned with research in molecularbiology and will be located at Heidelberg in the Federal Republic of Germany.

  7. Experience of maintaining laboratory educational website′s sustainability

    Directory of Open Access Journals (Sweden)

    Izak B Dimenstein

    2016-01-01

    Full Text Available Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post′s material, can improve the website′s visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  8. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    Science.gov (United States)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  9. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    International Nuclear Information System (INIS)

    Morris, Chris; Pajon, Anne; Griffiths, Susanne L.; Daniel, Ed; Savitsky, Marc; Lin, Bill; Diprose, Jonathan M.; Wilter da Silva, Alan; Pilicheva, Katya; Troshin, Peter; Niekerk, Johannes van; Isaacs, Neil; Naismith, James; Nave, Colin; Blake, Richard; Wilson, Keith S.; Stuart, David I.; Henrick, Kim; Esnouf, Robert M.

    2011-01-01

    The Protein Information Management System (PiMS) is described together with a discussion of how its features make it well suited to laboratories of all sizes. The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service

  10. The Protein Information Management System (PiMS): a generic tool for any structural biology research laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Chris [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Pajon, Anne [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Griffiths, Susanne L. [University of York, Heslington, York YO10 5DD (United Kingdom); Daniel, Ed [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Savitsky, Marc [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Lin, Bill [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Diprose, Jonathan M. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Wilter da Silva, Alan [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Pilicheva, Katya [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Troshin, Peter [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Niekerk, Johannes van [University of Dundee, Dundee DD1 5EH, Scotland (United Kingdom); Isaacs, Neil [University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Naismith, James [University of St Andrews, St Andrews, Fife KY16 9ST, Scotland (United Kingdom); Nave, Colin; Blake, Richard [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Wilson, Keith S. [University of York, Heslington, York YO10 5DD (United Kingdom); Stuart, David I. [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Henrick, Kim [Wellcome Trust Genome Campus, Hinxton CB10 1SD (United Kingdom); Esnouf, Robert M., E-mail: robert@strubi.ox.ac.uk [University of Oxford, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2011-04-01

    The Protein Information Management System (PiMS) is described together with a discussion of how its features make it well suited to laboratories of all sizes. The techniques used in protein production and structural biology have been developing rapidly, but techniques for recording the laboratory information produced have not kept pace. One approach is the development of laboratory information-management systems (LIMS), which typically use a relational database schema to model and store results from a laboratory workflow. The underlying philosophy and implementation of the Protein Information Management System (PiMS), a LIMS development specifically targeted at the flexible and unpredictable workflows of protein-production research laboratories of all scales, is described. PiMS is a web-based Java application that uses either Postgres or Oracle as the underlying relational database-management system. PiMS is available under a free licence to all academic laboratories either for local installation or for use as a managed service.

  11. Operational plans for life science payloads - From experiment selection through postflight reporting

    Science.gov (United States)

    Mccollum, G. W.; Nelson, W. G.; Wells, G. W.

    1976-01-01

    Key features of operational plans developed in a study of the Space Shuttle era life science payloads program are presented. The data describes the overall acquisition, staging, and integration of payload elements, as well as program implementation methods and mission support requirements. Five configurations were selected as representative payloads: (a) carry-on laboratories - medical emphasis experiments, (b) mini-laboratories - medical/biology experiments, (c) seven-day dedicated laboratories - medical/biology experiments, (d) 30-day dedicated laboratories - Regenerative Life Support Evaluation (RLSE) with selected life science experiments, and (e) Biomedical Experiments Scientific Satellite (BESS) - extended duration primate (Type I) and small vertebrate (Type II) missions. The recommended operational methods described in the paper are compared to the fundamental data which has been developed in the life science Spacelab Mission Simulation (SMS) test series. Areas assessed include crew training, experiment development and integration, testing, data-dissemination, organization interfaces, and principal investigator working relationships.

  12. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Science.gov (United States)

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  13. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    Science.gov (United States)

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  14. Differentiating Biochemistry Course Laboratories Based on Student Experience

    Science.gov (United States)

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  15. Biological in situ treatment of soil contaminated with petroleum - Laboratory scale simulations

    International Nuclear Information System (INIS)

    Palvall, B.

    1997-06-01

    Laboratory scale simulations of biological in situ treatment of soil contaminated with petroleum compounds have been made in order to get a practical concept in the general case. The work was divided into seven distinct parts. Characterisation, leaching tests and introductory microbiological investigations were followed by experiments in suspended phases and in situ simulations of solid phase reactors. For the suspensions, ratios L/S 3/1 and shaking for a couple of hours were enough to detach organic compounds in colloid or dissolved form. When testing for a time of one month anaerobic environment and cold temperatures of 4 centigrade as well gave acceptable reductions of the actual pollution levels. The range of variation in the soil tests performed showed that at least triple samples are needed to get satisfactory statistical reliability. It was shown that adequate experimental controls demand very high concentrations of e.g. sodium azide when dealing with soil samples. For triple samples in suspended phase without inoculation the weight ratios of oxygen consumption/biological degradation of aliphatic compounds were 2.41 to 2.96. For the complex overall reduction no exact rate constants could be found. The reduction of hydrocarbons were in the interval 27 to 95 % in suspension tests. Solid phase simulations with maximum water saturation showed the highest degree of reduction of hydrocarbons when using dissolved peroxide of hydrogen as electron acceptor while the effect of an active sludge reactor in series was little - reductions of aliphatic compounds were between 21 and 33 % and of aromatic compounds between 32 and 65 %. The influence of different contents of water was greater than adding inoculum or shaking the soil at different intervals in the unsaturated cylinders. The starting level of hydrocarbons was 2400 mg/kg dry weight soil and the end analyses were made after 100 days. The reduction was between 32 and 80 %. 82 refs

  16. Method to Increase Undergraduate Laboratory Student Confidence in Performing Independent Research

    Directory of Open Access Journals (Sweden)

    Colton E. Kempton

    2017-05-01

    Full Text Available The goal of an undergraduate laboratory course should be not only to introduce the students to biology methodologies and techniques, but also to teach them independent analytical thinking skills and proper experiment design.  This is especially true for advanced biology laboratory courses that undergraduate students typically take as a junior or senior in college.  Many courses achieve the goal of teaching techniques, but fail to approach the larger goal of teaching critical thinking, experimental design, and student independence.  Here we describe a study examining the application of the scaffolding instructional philosophy in which students are taught molecular techniques with decreasing guidance to force the development of analytical thinking skills and prepare undergraduate students for independent laboratory research. This method was applied to our advanced molecular biology laboratory class and resulted in an increase of confidence among the undergraduate students in their abilities to perform independent research.

  17. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  18. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    Science.gov (United States)

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  19. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  20. A Size Exclusion Chromatography Laboratory with Unknowns for Introductory Students

    Science.gov (United States)

    McIntee, Edward J.; Graham, Kate J.; Colosky, Edward C.; Jakubowski, Henry V.

    2015-01-01

    Size exclusion chromatography is an important technique in the separation of biological and polymeric samples by molecular weight. While a number of laboratory experiments have been published that use this technique for the purification of large molecules, this is the first report of an experiment that focuses on purifying an unknown small…

  1. UV-Vis Spectrophotometric Analysis and Quantification of Glyphosate for an Interdisciplinary Undergraduate Laboratory

    Science.gov (United States)

    Felton, Daniel E.; Ederer, Martina; Steffens, Timothy; Hartzell, Patricia L.; Waynant, Kristopher V.

    2018-01-01

    Glyphosate (N-(phosphonomethyl)glycine) is the most widely used herbicide on earth. A simple assay to quantify glyphosate concentrations in environmental samples was developed as part of an interdisciplinary effort linking introductory laboratory courses in chemistry, biology, and microbiology. In this 3 h laboratory experiment, students used…

  2. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  3. A Global Remote Laboratory Experimentation Network and the Experiment Service Provider Business Model and Plans

    Directory of Open Access Journals (Sweden)

    Tor Ivar Eikaas

    2003-07-01

    Full Text Available This paper presents results from the IST KAII Trial project ReLAX - Remote LAboratory eXperimentation trial (IST 1999-20827, and contributes with a framework for a global remote laboratory experimentation network supported by a new business model. The paper presents this new Experiment Service Provider business model that aims at bringing physical experimentation back into the learning arena, where remotely operable laboratory experiments used in advanced education and training schemes are made available to a global education and training market in industry and academia. The business model is based on an approach where individual experiment owners offer remote access to their high-quality laboratory facilities to users around the world. The usage can be for research, education, on-the-job training etc. The access to these facilities is offered via an independent operating company - the Experiment Service Provider. The Experiment Service Provider offers eCommerce services like booking, access control, invoicing, dispute resolution, quality control, customer evaluation services and a unified Lab Portal.

  4. How (not) to design procurement mechanisms: A laboratory experiment

    NARCIS (Netherlands)

    Onderstal, S.; van de Meerendonk, A.

    2008-01-01

    In this paper, we examine the relative performance of three commonly used procurement mechanisms: price-only auctions, scoring auctions, and benchmarking. We do so both in theory and in a laboratory experiment. We find that the auctions yield the same level of welfare, and welfare dominate

  5. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    Background: Chorionic villous sampling is a first trimester invasive diagnosis procedure that was introduced in Nigeria <2 decades ago. Objective: The objective of the following study is to review experience with chorionic villous sampling in relation to clinical and laboratory procedures, including general characteristics of ...

  6. The laboratory of the mind thought experiments in the natural sciences

    CERN Document Server

    Brown, James Robert

    1993-01-01

    Thought experiments are performed in the laboratory of the mind. Beyond this metaphor it is difficult to say just what these remarkable devices for investigating nature are or how they work. Though most scientists and philosophers would admit their great importance, there has been very little serious study of them. This volume is the first book-length investigation of thought experiments. Starting with Galileo's argument on falling bodies, Brown describes numerous examples of the most influential thought experiments from the history of science. Following this introduction to the subject, some substantial and provocative claims are made, the principle being that some thought experiments should be understood in the same way that platonists understand mathematical activity: as an intellectual grasp of an independently existing abstract realm. With its clarity of style and structure, The Laboratory of the Mind will find readers among all philosophers of science as well as scientists who have puzzled over how thou...

  7. Modelling heterogeneous ice nucleation on mineral dust and soot with parameterizations based on laboratory experiments

    Science.gov (United States)

    Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.

    2016-12-01

    Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.

  8. [Analytical quality in biological monitoring of workers exposed to chemicals: experience of the Prevention and Safety at the Workplace Service in Modena].

    Science.gov (United States)

    Alpaca, R I Paredes; Migliore, A; Di Rico, R; Canali, Claudia; Rota, Cristina; Trenti, T; Cariani, Elisabetta

    2010-01-01

    The quality of laboratory data is one of the main factors in guaranteeing efficacy of biological monitoring. To analyze the quality of laboratory data used for biological monitoring of exposed workers. A survey involving 18 companies employing 945 workers in the area of Modena, Italy, was carried out in 2008. Most of the 9 private laboratories receiving biological samples did not perform directly part or all of the laboratory assessments requested, but this was not indicated in the final report. Major problems were observed in the application of internal quality control, and only one laboratory participated in external quality assessment for blood lead measurements. Our results raise major concerns on the traceability and reliability of laboratory assessments performed for biomonitoring of exposed workers. Systematic evaluation of the quality of analytical data would be highly recommendable.

  9. Bio Engineering Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry and biology laboratoriesThe Bio Engineering Laboratory (BeL) is theonly full spectrum biotechnology capability within the Department...

  10. [Psychoactive substances in biological samples--toxicological laboratory data].

    Science.gov (United States)

    Gomółka, Ewa; Wilimowska, Jolanta; Piekoszewski, Wojciech; Groszek, Barbara

    2004-01-01

    The subject of the research was the analysis of frequency and type of psychoactive substances used, basing on the determinations the blood and/or urine samples, performed in the toxicological laboratory of the Department of Clinical and Industrial Toxicology Jagiellonian University in Kraków in the period from December 2001 to November 2003. From 17,649 performed determinations--45.5% were positive. 50% of the positive determinations were psychoactive substances. The most often psychoactive substance determined was ethyl alcohol (52.86%), next benzodiazepines (17.41%), amphetamines (10.54%), opiates (8.05%), THC (6.87%), barbiturates (3.74%), and occasionally atropine and cocaine. There was observed a variety of mixed, simultaneously taking psychoactive substances, especially ethyl alcohol, opiates, amphetamine derivatives and cannabinoids. The analysis of the occurrence of psychoactive substances in biological samples from patients treated in different hospital departments, others hospitals and ordered by private persons also was performed. In the last two years 369 private patients ordered psychoactive substances determinations and 78 of them were positive.

  11. Experiment using laboratory scale extruder. Fluid behavior in twin-screw extruder

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Miura, Akihiko

    1999-09-01

    All evidences and chemical data suggest non-chemical heating mechanism raised the filling temperature of the bituminized product. But they indicate the filling temperature was higher than before at the incident. We estimated the physical heat mechanism in the extruder. It is well known that the viscous-heating occurs in mixing process in extruders. In order to confirm the behavior of the torque and temperature, some experiment using laboratory scale extruder were performed. The result of the experiment using laboratory scale extruder showed that the phenomena of salt enrichment and salt accumulation were observed and they raised mixture temperature at the decreased feed rate. These phenomena depend on the feed rate. It is considered that they have large contribution to heat transportation and operational torque due to the friction between screw and mixture. In this report, all experiment result are explained. (author)

  12. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    Science.gov (United States)

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  13. Sampling and Analysis Instruction for the Demolition of the Masonry Block for the 108-F Biological Laboratory

    International Nuclear Information System (INIS)

    Byrnes, M. E.

    1999-01-01

    This sampling and analysis instruction (SAI) has been prepared to clearly define the sampling and analysis activities to be performed in support of the demolition and disposition (or disposal) of the 108-F Biological Laboratory masonry block walls

  14. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  15. FEBEX II Project THG Laboratory Experiments

    International Nuclear Information System (INIS)

    Missana, T.

    2004-01-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  16. FEBEX II Project THG Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.

    2004-07-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  17. Fusion virtual laboratory: The experiments' collaboration platform in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, H., E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kojima, M.; Takahashi, C.; Ohsuna, M.; Imazu, S.; Nonomura, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hasegawa, M. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8560 (Japan); Yoshikawa, M. [PRC, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2012-12-15

    'Fusion virtual laboratory (FVL)' is the experiments' collaboration platform covering multiple fusion projects in Japan. Major Japanese fusion laboratories and universities are mutually connected through the dedicated virtual private network, named SNET, on SINET4. It has 3 different categories; (i) LHD remote participation, (ii) bilateral experiments' collaboration, and (iii) remote use of supercomputer. By extending the LABCOM data system developed at LHD, FVL supports (i) and (ii) so that it can deal with not only LHD data but also the data of two remote experiments: QUEST at Kyushu University and GAMMA10 at University of Tsukuba. FVL has applied the latest 'cloud' technology for both data acquisition and storage architecture. It can provide us high availability and performance scalability of the whole system. With a well optimized TCP data transferring method, the unified data access platform for both experimental data and numerical computation results could become realistic on FVL. The FVL project will continue demonstrating the ITER-era international collaboration schemes and the necessary technology.

  18. Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.

  19. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions.

    Science.gov (United States)

    Araújo, Maisa da-Silva; Gil, Luiz Herman S; e-Silva, Alexandre de-Almeida

    2012-08-02

    The incidence of malaria in the Amazon is seasonal and mosquito vectorial capacity parameters, including abundance and longevity, depend on quantitative and qualitative aspects of the larval diet. Anopheles darlingi is a major malaria vector in the Amazon, representing >95% of total Anopheles population present in the Porto Velho region. Despite its importance in the transmission of the Plasmodium parasite, knowledge of the larval biology and ecology is limited. Studies regarding aspects of adult population ecology are more common than studies on larval ecology. However, in order develop effective control strategies and laboratory breeding conditions for this species, more data on the factors affecting vector biology is needed. The aim of the present study is to assess the effects of larval food quantity on the vectorial capacity of An. darling under laboratory conditions. Anopheles darlingi was maintained at 28°C, 80% humidity and exposed to a daily photoperiod of 12 h. Larvae were divided into three experimental groups that were fed either a low, medium, or high food supply (based on the food amounts consumed by other species of culicids). Each experiment was replicated for six times. A cohort of adults were also exposed to each type of diet and assessed for several biological characteristics (e.g. longevity, bite frequency and survivorship), which were used to estimate the vectorial capacity of each experimental group. The group supplied with higher food amounts observed a reduction in development time while larval survival increased. In addition to enhanced longevity, increasing larval food quantity was positively correlated with increasing frequency of bites, longer blood meal duration and wing length, resulting in greater vectorial capacity. However, females had greater longevity than males despite having smaller wings. Overall, several larval and adult biological traits were significantly affected by larval food availability. Greater larval food supply

  20. Integrating Biology into the General Chemistry Laboratory: Fluorometric Analysis of Chlorophyll "a"

    Science.gov (United States)

    Wesolowski, Meredith C.

    2014-01-01

    A laboratory experiment that introduces fluorometry of chlorophyll "a" at the general chemistry level is described. The use of thin-layer chromatography to isolate chlorophyll "a" from spirulina and leaf matter enables quantification of small amounts of chlorophyll "a" via fluorometry. Student results were reasonably…

  1. Laboratory Safety in the Biology Lab.

    Science.gov (United States)

    Ritch, Donna; Rank, Jane

    2001-01-01

    Reports on a research project to determine if students possess and comprehend basic safety knowledge. Shows a significant increase in the amount of safety knowledge gained when students are exposed to various topics in laboratory safety and are held accountable for learning the information as required in a laboratory safety course. (Author/MM)

  2. Transformation of fault slip modes in laboratory experiments

    Science.gov (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  3. [Establishment of Quality Control System of Nucleic Acid Detection for Ebola Virus in Sierra Leone-China Friendship Biological Safety Laboratory].

    Science.gov (United States)

    Wang, Qin; Zhang, Yong; Nie, Kai; Wang, Huanyu; Du, Haijun; Song, Jingdong; Xiao, Kang; Lei, Wenwen; Guo, Jianqiang; Wei, Hejiang; Cai, Kun; Wang, Yanhai; Wu, Jiang; Gerald, Bangura; Kamara, Idrissa Laybohr; Liang, Mifang; Wu, Guizhen; Dong, Xiaoping

    2016-03-01

    The quality control process throughout the Ebola virus nucleic acid detection in Sierra Leone-China Friendship Biological Safety Laboratory (SLE-CHN Biosafety Lab) was described in detail, in order to comprehensively display the scientific, rigorous, accurate and efficient practice in detection of Ebola virus of first batch detection team in SLE-CHN Biosafety Lab. Firstly, the key points of laboratory quality control system was described, including the managements and organizing, quality control documents and information management, instrument, reagents and supplies, assessment, facilities design and space allocation, laboratory maintenance and biosecurity. Secondly, the application of quality control methods in the whole process of the Ebola virus detection, including before the test, during the test and after the test, was analyzed. The excellent and professional laboratory staffs, the implementation of humanized management are the cornerstone of the success; High-level biological safety protection is the premise for effective quality control and completion of Ebola virus detection tasks. And professional logistics is prerequisite for launching the laboratory diagnosis of Ebola virus. The establishment and running of SLE-CHN Biosafety Lab has landmark significance for the friendship between Sierra Leone and China, and the lab becomes the most important base for Ebola virus laboratory testing in Sierra Leone.

  4. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    Science.gov (United States)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  5. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    International Nuclear Information System (INIS)

    Bossart, P.; Bernier, F.; Birkholzer, J.

    2017-01-01

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  6. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); Bernier, F. [Federal Agency for Nuclear Control FANC, Brussels (Belgium); Birkholzer, J. [Lawrence Berkeley National Laboratory, Berkeley (United States); and others

    2017-04-15

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  7. Virtual geotechnical laboratory experiments using a simulator

    Science.gov (United States)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  8. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  9. A Western blot-based investigation of the yeast secretory pathway designed for an intermediate-level undergraduate cell biology laboratory.

    Science.gov (United States)

    Hood-Degrenier, Jennifer K

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in two distinct steps of protein secretion were differentiated using a genetic reporter designed specifically to identify defects in the first step of the pathway, the insertion of proteins into the endoplasmic reticulum (Vallen, 2002). We have developed two versions of a Western blotting assay that serves as a second way of distinguishing the two secretory mutants, which we pair with the genetic assay in a 3-wk laboratory module. A quiz administered before and after students participated in the lab activities revealed significant postlab gains in their understanding of the secretory pathway and experimental techniques used to study it. A second survey administered at the end of the lab module assessed student perceptions of the efficacy of the lab activities; the results of this survey indicated that the experiments were successful in meeting a set of educational goals defined by the instructor.

  10. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    Science.gov (United States)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  11. Influence of biological and ecological factors on the radio-sensitivity of laboratory animals

    International Nuclear Information System (INIS)

    Guenet, J.L.; Legeay, G.

    1968-01-01

    The biological and ecological factors liable to induce a change in the radio-sensitivity of a species are undoubtedly responsible for the large fluctuations observed during radio-biological experiments. It is easy to limit or to suppress the effects of some of them (genetic or nutritional factors). Since the research worker cannot control the others it is necessary to take them into account. In this report the authors analyse the action of two factors chosen as examples: - the first concerns biological rhythms; - the second attempts to define the role of health conditions. Other factors will be dealt with in a later report. (authors) [fr

  12. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    International Nuclear Information System (INIS)

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface

  13. 3D mapping of turbulence: a laboratory experiment

    Science.gov (United States)

    Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel

    2000-07-01

    In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.

  14. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  15. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  16. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    Science.gov (United States)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  17. Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    CERN Document Server

    Lesko, Kevin T; Alonso, Jose; Bauer, Paul; Chan, Yuen-Dat; Chinowsky, William; Dangermond, Steve; Detwiler, Jason A; De Vries, Syd; DiGennaro, Richard; Exter, Elizabeth; Fernandez, Felix B; Freer, Elizabeth L; Gilchriese, Murdock G D; Goldschmidt, Azriel; Grammann, Ben; Griffing, William; Harlan, Bill; Haxton, Wick C; Headley, Michael; Heise, Jaret; Hladysz, Zbigniew; Jacobs, Dianna; Johnson, Michael; Kadel, Richard; Kaufman, Robert; King, Greg; Lanou, Robert; Lemut, Alberto; Ligeti, Zoltan; Marks, Steve; Martin, Ryan D; Matthesen, John; Matthew, Brendan; Matthews, Warren; McConnell, Randall; McElroy, William; Meyer, Deborah; Norris, Margaret; Plate, David; Robinson, Kem E; Roggenthen, William; Salve, Rohit; Sayler, Ben; Scheetz, John; Tarpinian, Jim; Taylor, David; Vardiman, David; Wheeler, Ron; Willhite, Joshua; Yeck, James

    2011-01-01

    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multi...

  18. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    Science.gov (United States)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  19. Biological aspects of chemoradiotherapy

    International Nuclear Information System (INIS)

    Bourhis, J.; Mornex, F.

    1998-01-01

    Radio-chemotherapy combinations, especially their concomitant associations, are widely used in the treatment of cancer. The development of these associations has been so far related more to clinical research than to laboratory experiments. The biological basis of the use of these agents relies on their complementarity which concerns the cellular and molecular mechanisms involved in lethality (hypoxia, sensitivity throughout the cycle, DNA repair, apoptosis), spatial and temporal cooperation, etc. Laboratory experiments can determine favorable conditions for additivity, or supra-additivity, but also for infra-additive interactions as well as real antagonism which should be avoided in the clinic. It is however often difficult to transfer this information into the clinic since the conditions which allow additivity or supra-additivity are generally very narrow, and unlikely to be realised in the patient. General clinical conditions are more compatible with infra-additive interactions. (author)

  20. Comparison of Learner Involvement in Biology Laboratory ...

    African Journals Online (AJOL)

    Performance in the biology practical paper has been poor at Kenya national examinations in the past five years (1998-2002). This may imply a lack of emphasis on the teaching of biology through the process-based approach. This study investigated the level of learner involvement in biology practical investigations in ...

  1. Manipulatives-Based Laboratory for Majors Biology – a Hands-On Approach to Understanding Respiration and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Sarah M. Boomer

    2011-09-01

    Full Text Available The first course in our year-long introductory series for Biology majors encompasses four learning units: biological molecules and cells, metabolism, genetics, and evolution. Of these, the metabolism unit, which includes respiration and photosynthesis, has shown the lowest student exam scores, least interest, and lowest laboratory ratings. Consequently, we hypothesized that modeling metabolic processes in the laboratory would improve student content learning during this course unit. Specifically, we developed manipulatives-based laboratory exercises that combined paper cutouts, movable blocks, and large diagrams of the cell. In particular, our novel use of connecting LEGO blocks allowed students to move model electrons and phosphates between molecules and within defined spaces of the cell. We assessed student learning using both formal (content indicators and attitude surveys and informal (the identification of misconceptions or discussions with students approaches. On the metabolism unit content exam, student performance improved by 46% over pretest scores and by the end of the course, the majority of students rated metabolism as their most-improved (43% and favorite (33% subject as compared with other unit topics. The majority of students rated manipulatives-based labs as very helpful, as compared to non-manipulatives-based labs. In this report, we will demonstrate that students made learning gains across all content areas, but most notably in the unit that covered respiration and photosynthesis.

  2. Book Review "Advances on remote laboratories and e-learning experiences"

    Directory of Open Access Journals (Sweden)

    Jesús A. del Alamo

    2007-08-01

    Full Text Available Book Review "Advances on remote laboratories and e-learning experiences", book editors: Luís Gomes and Javier García-Zubía, University of Deusto, Spain. Reviewed by Jesús A. del Alamo, Massachusetts Institute of Technology, M.I.T.

  3. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    Science.gov (United States)

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  4. Using an international p53 mutation database as a foundation for an online laboratory in an upper level undergraduate biology class.

    Science.gov (United States)

    Melloy, Patricia G

    2015-01-01

    A two-part laboratory exercise was developed to enhance classroom instruction on the significance of p53 mutations in cancer development. Students were asked to mine key information from an international database of p53 genetic changes related to cancer, the IARC TP53 database. Using this database, students designed several data mining activities to look at the changes in the p53 gene from a number of perspectives, including potential cancer-causing agents leading to particular changes and the prevalence of certain p53 variations in certain cancers. In addition, students gained a global perspective on cancer prevalence in different parts of the world. Students learned how to use the database in the first part of the exercise, and then used that knowledge to search particular cancers and cancer-causing agents of their choosing in the second part of the exercise. Students also connected the information gathered from the p53 exercise to a previous laboratory exercise looking at risk factors for cancer development. The goal of the experience was to increase student knowledge of the link between p53 genetic variation and cancer. Students also were able to walk a similar path through the website as a cancer researcher using the database to enhance bench work-based experiments with complementary large-scale database p53 variation information. © 2014 The International Union of Biochemistry and Molecular Biology.

  5. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Hisanori; Nagayama, Tetsuya; Horigome, Kazushi; Ishibashi, Atsushi; Kitao, Takahiko; Surugaya, Naoki

    2014-01-01

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  6. Swedish-German actinide migration experiment at ÄSPÖ hard rock laboratory

    Science.gov (United States)

    Kienzler, B.; Vejmelka, P.; Römer, J.; Fanghänel, E.; Jansson, M.; Eriksen, T. E.; Wikberg, P.

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Äspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was ≤40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed.

  7. Science laboratory behavior strategies of students relative to performance in and attitude to laboratory work

    Science.gov (United States)

    Okebukola, Peter Akinsola

    The relationship between science laboratory behavior strategies of students and performance in and attitude to laboratory work was investigated in an observational study of 160 laboratory sessions involving 600 class five (eleventh grade) biology students. Zero-order correlations between the behavior strategies and outcome measures reveal a set of low to strong relationships. Transmitting information, listening and nonlesson related behaviors exhibited low correlations with practical skills and the attitude measure. The correlations between manipulating apparatus and observation with practical skills measures were found to be strong. Multiple correlation analysis revealed that the behaviors of students in the laboratories observed accounted for a large percentage of the variance in the scores on manipulative skills and a low percentage on interpretation of data, responsibility, initiative, and work habits. One significant canonical correlation emerged. The loadings on this canonical variate indicate that the practical skills measures, i.e., planning and design, manipulative skills and conduct of experiments, observation and recording of data, and attitude to laboratory work made primary contributions to the canonical relationship. Suggestions as to how students can be encouraged to go beyond cookbook-like laboratories and develop a more favorable attitude to laboratory work are made.

  8. openBEB: open biological experiment browser for correlative measurements.

    Science.gov (United States)

    Ramakrishnan, Chandrasekhar; Bieri, Andrej; Sauter, Nora; Roizard, Sophie; Ringler, Philippe; Müller, Shirley A; Goldie, Kenneth N; Enimanev, Kaloyan; Stahlberg, Henning; Rinn, Bernd; Braun, Thomas

    2014-03-26

    New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the "house keeping" abilities of the core program. We report the use of openBEB to combine live cell microscopy, microfluidic control and visual

  9. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  10. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  11. Impact of Cooperative Learning Approaches on Students’ Academic Achievement and Laboratory Proficiency in Biology Subject in Selected Rural Schools, Ethiopia

    Directory of Open Access Journals (Sweden)

    Eyayu Molla

    2018-01-01

    Full Text Available The main objective of this study was to evaluate the impact of cooperative learning methods on students’ academic achievement and laboratory proficiency in biology subject. Quasi-experimental control group interrupted time series design was employed. Data pertaining to these variables were collected from 369 students and 18 biology teachers in three schools. A series of biological tests and semistructured questionnaire were used to collect data. Multivariate analysis (two-way ANOVA was used to analyze the test scores exposed by teaching methods, and semistructured questionnaire was administered to comprehend factors that hamper the successive execution of CL. Hence, multivariate analysis revealed that there was no significant (P>0.05 difference in the pretest score of the learner academic performance; however, there were significant differences (P<0.01 in the posttest results by teaching methods, but not by schools. Correspondingly, there were significant differences in the pretest P<0.05 and posttest (P<0.01 results of the students’ laboratory proficiency by teaching methods. The results exemplify that there was significant learning gain obtained via CLAD followed by cooperative discussion group (CDG. The result from the questionnaire survey showed that the number of students, lack of laboratory equipment, and so on hamper consecutive execution of CL.

  12. Bringing the excitement and motivation of research to students; Using inquiry and research-based learning in a year-long biochemistry laboratory : Part II-research-based laboratory-a semester-long research approach using malate dehydrogenase as a research model.

    Science.gov (United States)

    Knutson, Kristopher; Smith, Jennifer; Nichols, Paul; Wallert, Mark A; Provost, Joseph J

    2010-09-01

    Research-based learning in a teaching environment is an effective way to help bring the excitement and experience of independent bench research to a large number of students. The program described here is the second of a two-semester biochemistry laboratory series. Here, students are empowered to design, execute and analyze their own experiments for the entire semester. This style of laboratory replaces a variety of shorter labs in favor of an in depth research-based learning experience. The concept is to allow students to function in independent research groups. The research projects are focused on a series of wild-type and mutant clones of malate dehydrogenase. A common research theme for the laboratory helps instructors administer the course and is key to delivering a research opportunity to a large number of students. The outcome of this research-based learning laboratory results in students who are much more confident and skilled in critical areas in biochemistry and molecular biology. Students with research experience have significantly higher confidence and motivation than those students without a previous research experience. We have also found that all students performed better in advanced courses and in the workplace. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.

  13. Bridging Physics and Biology Using Resistance and Axons

    Science.gov (United States)

    Dyer, Joshua M.

    2014-11-01

    When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.

  14. Structural biology at York Structural Biology Laboratory; laboratory information management systems for structural genomics

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan

    2005-01-01

    Roč. 12, č. 1 (2005), s. 3 ISSN 1211-5894. [Meeting of Structural Biologists /4./. 10.03.2005-12.03.2005, Nové Hrady] R&D Projects: GA MŠk(CZ) 1K05008 Keywords : structural biology * LIMS * structural genomics Subject RIV: CD - Macromolecular Chemistry

  15. Eight year experience in open ended instrumentation laboratory

    Science.gov (United States)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  16. The safeguards on-site laboratory at Sellafield. Five years operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Duinslaeger, L.; Belle, P. van; Mayer, K.; Casteleyn, K.; Abousahl, S.; Daures, P.; Eberle, H.; Enright, T.; Guiot, A.; Hild, M.; Horta Domenech, J.; Lajarge, P.; Laurent, P.; Le Terrier, A.; Lynch, B.; Marucci, M.; Millet, S.; Ottmar, H.; Richir, P.; Street, S.; Vallet, P.; Zuleger, E. [European Commission, Karlsruhe (Germany). Inst. for Transuranium Elements

    2004-06-01

    The start of operation of the large reprocessing facilities led Euratom Safeguards to a new approach for verification analysis of samples taken at the facility: the installation of on-site laboratories. The availability of analytical capabilities for independent verification measurements at the site of these facilities offers obvious advantages in view of timeliness of results. The 'On-Site Laboratory' (OSL) at the BNFL Sellafield site was the first ever and entered into operation in 1999. For almost five years, the Institute for Transuranium Elements (ITU) has been operating the laboratory under routine conditions. During this period, more than one thousand safeguards samples were analysed. The experience gained in the management, logistics and operation of the OSL allow a critical review based on a significant period in time. This includes also aspects of training of staff, maintenance of equipment, flow of information, and improvements in the efficiency. The analytical issues are of key importance: based on the operational experience, the measurement methods were adapted (changing boundary conditions), the distribution of samples according to material type changed (start up of MOS fabrication plant), and the cutback in resources triggered a further streamlining of the analytical efforts. (orig.)

  17. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  18. Lecture Meets Laboratory - Experimental Experiences for Large Audiences: Concept and Implementation

    Directory of Open Access Journals (Sweden)

    Katrin Temmen

    2014-10-01

    Full Text Available Lecture courses are an integral part of academia with a long tradition. The efficiency of such courses can be notably increased by active participation of students in the learning process. This article will elaborate on a re-structuring of an engineering lecture attended by more than 400 students; during the course, laboratory experiments are integrated directly into the lecture, allowing students to gain their own practical experience.

  19. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  20. Lessons learned about spaceflight and cell biology experiments

    Science.gov (United States)

    Hughes-Fulford, Millie

    2004-01-01

    Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.

  1. Laboratory experiments in innovation research: A methodological overview and a review of the current literature

    OpenAIRE

    Brüggemann, Julia; Bizer, Kilian

    2016-01-01

    Innovation research has developed a broad set of methodological approaches in recent decades. In this paper, we propose laboratory experiments as a fruitful methodological addition to the existing methods in innovation research. Therefore, we provide an overview of the existing methods, discuss the advantages and limitations of laboratory experiments, and review experimental studies dealing with different fields of innovation policy, namely intellectual property rights, financi...

  2. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  3. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    Science.gov (United States)

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  4. Chemometric and biological validation of a capillary electrophoresis metabolomic experiment of Schistosoma mansoni infection in mice.

    Science.gov (United States)

    Garcia-Perez, Isabel; Angulo, Santiago; Utzinger, Jürg; Holmes, Elaine; Legido-Quigley, Cristina; Barbas, Coral

    2010-07-01

    Metabonomic and metabolomic studies are increasingly utilized for biomarker identification in different fields, including biology of infection. The confluence of improved analytical platforms and the availability of powerful multivariate analysis software have rendered the multiparameter profiles generated by these omics platforms a user-friendly alternative to the established analysis methods where the quality and practice of a procedure is well defined. However, unlike traditional assays, validation methods for these new multivariate profiling tools have yet to be established. We propose a validation for models obtained by CE fingerprinting of urine from mice infected with the blood fluke Schistosoma mansoni. We have analysed urine samples from two sets of mice infected in an inter-laboratory experiment where different infection methods and animal husbandry procedures were employed in order to establish the core biological response to a S. mansoni infection. CE data were analysed using principal component analysis. Validation of the scores consisted of permutation scrambling (100 repetitions) and a manual validation method, using a third of the samples (not included in the model) as a test or prediction set. The validation yielded 100% specificity and 100% sensitivity, demonstrating the robustness of these models with respect to deciphering metabolic perturbations in the mouse due to a S. mansoni infection. A total of 20 metabolites across the two experiments were identified that significantly discriminated between S. mansoni-infected and noninfected control samples. Only one of these metabolites, allantoin, was identified as manifesting different behaviour in the two experiments. This study shows the reproducibility of CE-based metabolic profiling methods for disease characterization and screening and highlights the importance of much needed validation strategies in the emerging field of metabolomics.

  5. A counterpoint between computer simulations and biological experiments to train new members of a laboratory of physiological sciences.

    Science.gov (United States)

    Ozu, Marcelo; Dorr, Ricardo A; Gutiérrez, Facundo; Politi, M Teresa; Toriano, Roxana

    2012-12-01

    When new members join a working group dedicated to scientific research, several changes occur in the group's dynamics. From a teaching point of view, a subsequent challenge is to develop innovative strategies to train new staff members in creative thinking, which is the most complex and abstract skill in the cognitive domain according to Bloom's revised taxonomy. In this sense, current technological and digital advances offer new possibilities in the field of education. Computer simulation and biological experiments can be used together as a combined tool for teaching and learning sometimes complex physiological and biophysical concepts. Moreover, creativity can be thought of as a social process that relies on interactions among staff members. In this regard, the acquisition of cognitive abilities coexists with the attainment of other skills from psychomotor and affective domains. Such dynamism in teaching and learning stimulates teamwork and encourages the integration of members of the working group. A practical example, based on the teaching of biophysical subjects such as osmosis, solute transport, and membrane permeability, which are crucial in understanding the physiological concept of homeostasis, is presented.

  6. The Climate Experiences of Students in Introductory Biology

    Directory of Open Access Journals (Sweden)

    Ramón S. Barthelemy

    2015-08-01

    Full Text Available Understanding course climate is important for improving students’ experiences and increasing the likelihood of their persistence in STEM fields. This study presents climate survey results from 523 students taking introductory biology at the University of Michigan. Principal component analysis revealed that a student’s climate experience is comprised of five main elements: comfort, school avoidance, relationship to course, academic stress, and discomfort. Of these climate factors, comfort, school avoidance, and relationship to course were significant predictors of course satisfaction, and academic stress was a significant predictor of persistence. The results indicated the importance of a positive climate that is facilitated by the instructor in order to promote a positive student experience. Climate may be an important metric for institutions to track across time and course.

  7. Dicentric chromosome aberration analysis using giemsa and centromere specific fluorescence in-situ hybridization for biological dosimetry: An inter- and intra-laboratory comparison in Indian laboratories

    International Nuclear Information System (INIS)

    Bhavani, M.; Tamizh Selvan, G.; Kaur, Harpreet; Adhikari, J.S.; Vijayalakshmi, J.; Venkatachalam, P.; Chaudhury, N.K.

    2014-01-01

    To facilitate efficient handling of large samples, an attempt towards networking of laboratories in India for biological dosimetry was carried out. Human peripheral blood samples were exposed to 60 Co γ-radiation for ten different doses (0–5 Gy) at a dose rate of 0.7 and 2 Gy/min. The chromosomal aberrations (CA) were scored in Giemsa-stained and fluorescence in-situ hybridization with centromere-specific probes. No significant difference (p>0.05) was observed in the CA yield for given doses except 4 and 5 Gy, between the laboratories, among the scorers and also staining methods adapted suggest the reliability and validates the inter-lab comparisons exercise for triage applications. - Highlights: • This is the first report from India on Networking for Biological Dosimetry preparedness using dicentric chromosomal (DC) aberration assay. • There is no significant difference in the in vitro dose response curve (Slope, Intercept, Curvature) constructed among the two labs. • No significant variation in the scoring of DC aberrations between the scorers irrespective of labs. • The DC results obtained by the labs from the Giemsa stained metaphase preparations were confirmed with centromere specific-FISH for further reliability and validity

  8. Sampling Participants' Experience in Laboratory Experiments: Complementary challenges for more complete data collection

    Directory of Open Access Journals (Sweden)

    Alan eMcAuliffe

    2016-05-01

    Full Text Available Speelman and McGann's (2013 examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average's reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person's experiences, the meaning of their actions, at the time that the behaviour of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioural data, but the relationship between experience and behaviour remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. Wide approaches tend to incorporate naturalistic behaviour settings, but sacrifice accuracy and reliability in behavioural measurement. Narrow approaches maintain controlled measurement of behaviour, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt's Descriptive Experience Sampling, and adapts it for the controlled setting of the laboratory. This Controlled Descriptive Experience Sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another.

  9. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  10. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  11. Study about the behaviour of fishways in laboratory. Experiments 2009-2010; Investigacion sobre el comportamiento de escalas de peces en laboratorio. Campana de ensayos 2009-2010

    Energy Technology Data Exchange (ETDEWEB)

    Lara Dominguez, A.; Aramburu Godinez, E.; Berges Acedo, J. A.; Morcillo Alonso, F.; Castillo Blanco, M.

    2011-07-01

    The Hydraulic Laboratory of the Center for Hydro graphic Studies (CEDEX) is carrying out a study about the behaviour of some salmonid and cyprinid fish species in a vertical slot fishways built in the Laboratory, in order to know the relationship between hydraulic and biological parameters and to obtain valid design criteria. Its the first time in our country that fish are been monitored in a fishways using a RFD system, underwater and cenital cameras. First at all, the hydraulic of this typology has been characterised. An experiment protocol has been established to optimize the results. Regarding fish movements in the fishways, on the one hand we have found that fish always rest ascending the pass and, on the other, an influence of the flow on the percentage of fish that ascend the whole pass. Moreover, a tool analyze the efficiency of a fish way model according to biological criteria has been contrasted but it needs to be calibrated with biological variables obtained from native fish species. concerning fish fatigue and effort, studies about physiological parameters in plasma (hematocrit, glucose, cortisol and lactate) have implemented and the results point out the need to increase the studies with physiological parameters in muscle. (Author) 14 refs.

  12. Origin and status of the Gran Sasso INFN Laboratory

    Science.gov (United States)

    Votano, Lucia

    2014-11-01

    The Gran Sasso National Laboratory of INFN (LNGS) is the largest underground laboratory for astroparticle physics in the world. Located in Italy between the cities of L'Aquila and Teramo, 120 km far from Rome, is a research infrastructure mainly dedicated to astroparticle and neutrino physics. It offers the most advanced underground facility in terms of dimensions, complexity and completeness of its infrastructures. LNGS is one of the four national laboratories run by the Istituto Nazionale di Fisica Nucleare (INFN). The scientific program at LNGS is mainly focused on astroparticle, particle and nuclear physics. The laboratory presently hosts many experiments as well as R&D activities, including world-leading research in the fields of solar neutrinos, accelerator neutrinos (CNGS neutrino beam from CERN to Gran Sasso), dark matter (DM), neutrinoless double beta decay (2β0ν) and nuclear cross-section of astrophysical interest. Associate sciences like earth physics, biology and fundamental physics complement the activities. The laboratory is operated as an international science facility and hosts experiments whose scientific merit is assessed by an international advisory Scientific Committee. A review of the main experiments carried out at LNGS will be given, together with the most recent and relevant scientific results achieved.

  13. A 13-week research-based biochemistry laboratory curriculum.

    Science.gov (United States)

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Science.gov (United States)

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  15. Biological and Medical Experiments on the Space Shuttle, 1981 - 1985

    Science.gov (United States)

    Halstead, Thora W. (Editor); Dufour, Patricia A. (Editor)

    1986-01-01

    This volume is the first in a planned series of reports intended to provide a comprehensive record of all the biological and medical experiments and samples flown on the Space Shuttle. Experiments described have been conducted over a five-year period, beginning with the first plant studies conducted on STS-2 in November 1981, and extending through STS 61-C, the last mission to fly before the tragic Challenger accident of January 1986. Experiments were sponsored within NASA not only by the Life Sciences Division of the Office of Space Science and Applications, but also by the Shuttle Student Involvement Program (SSIP) and the Get Away Special (GAS) Program. Independent medical studies were conducted as well on the Shuttle crew under the auspices of the Space Biomedical Research Institute at Johnson Space Center. In addition, cooperative agreements between NASA and foreign government agencies led to a number of independent experiments and also paved the way for the joint US/ESA Spacelab 1 mission and the German (DFVLR) Spacelab D-1. Experiments included: (1) medically oriented studies of the crew aimed at identifying, preventing, or treating health problems due to space travel; (2) projects to study morphological, physiological, or behavioral effects of microgravity on animals and plants; (3) studies of the effects of microgravity on cells and tissues; and (4) radiation experiments monitoring the spacecraft environment with chemical or biological dosimeters or testing radiation effects on simple organisms and seeds.

  16. Hands-on-Entropy, Energy Balance with Biological Relevance

    Science.gov (United States)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory

  17. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  18. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments

    Science.gov (United States)

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.

    1993-01-01

    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the

  19. Certification of biological reference materials: participation of the Neutron Activation Laboratory (LAN-IPEN/CNEN-SP)

    International Nuclear Information System (INIS)

    Ticianelli, Regina B.; Figueiredo, Ana Maria G.

    2007-01-01

    Analytical laboratories have as one of their important goals to demonstrate their competence allowing international acceptance and comparison of analytical data. The IPEN Neutron Activation Laboratory (LAN-IPEN) has implemented its Quality Assurance Program which comprises, among other activities, the participation in intercomparison runs. As a part of this Quality Assurance Program, LAN-IPEN has participated in interlaboratorial trials to analyze two biological candidate reference materials: INCT-CF-3 Corn Flour and INCT-SBF-4 Soya Bean Flour from the Institute of Nuclear Chemistry And Technology (Warszawa, Poland). The elements Br, Ca, Co, Cs, Fe, K, Na, Rb and Zn were analyzed in the candidate reference materials by instrumental neutron activation analysis (INAA). The performance of the laboratory was statistically evaluated in relation to the consensus values for these materials using the Z-Score test. This laboratory evaluation method has been accepted as a standard by ISO/IUPAC. In the present study, adequate Z-Score values (|Z|<2) were observed for all of the analyzed elements, confirming the accuracy of the nuclear methodology employed. The contribution of LAN-IPEN in the certification of the reference materials analyzed was very important, since the results provided were used in the statistical evaluation of the certified value. (author)

  20. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    Science.gov (United States)

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  1. Biological false-positive venereal disease research laboratory test in cerebrospinal fluid in the diagnosis of neurosyphilis - a case-control study.

    Science.gov (United States)

    Zheng, S; Lin, R J; Chan, Y H; Ngan, C C L

    2018-03-01

    There is no clear consensus on the diagnosis of neurosyphilis. The Venereal Disease Research Laboratory (VDRL) test from cerebrospinal fluid (CSF) has traditionally been considered the gold standard for diagnosing neurosyphilis but is widely known to be insensitive. In this study, we compared the clinical and laboratory characteristics of true-positive VDRL-CSF cases with biological false-positive VDRL-CSF cases. We retrospectively identified cases of true and false-positive VDRL-CSF across a 3-year period received by the Immunology and Serology Laboratory, Singapore General Hospital. A biological false-positive VDRL-CSF is defined as a reactive VDRL-CSF with a non-reactive Treponema pallidum particle agglutination (TPPA)-CSF and/or negative Line Immuno Assay (LIA)-CSF IgG. A true-positive VDRL-CSF is a reactive VDRL-CSF with a concordant reactive TPPA-CSF and/or positive LIA-CSF IgG. During the study period, a total of 1254 specimens underwent VDRL-CSF examination. Amongst these, 60 specimens from 53 patients tested positive for VDRL-CSF. Of the 53 patients, 42 (79.2%) were true-positive cases and 11 (20.8%) were false-positive cases. In our setting, a positive non-treponemal serology has 97.6% sensitivity, 100% specificity, 100% positive predictive value and 91.7% negative predictive value for a true-positive VDRL-CSF based on our laboratory definition. HIV seropositivity was an independent predictor of a true-positive VDRL-CSF. Biological false-positive VDRL-CSF is common in a setting where patients are tested without first establishing a serological diagnosis of syphilis. Serological testing should be performed prior to CSF evaluation for neurosyphilis. © 2017 European Academy of Dermatology and Venereology.

  2. The Laboratory of the Mind Thought Experiments in the Natural Sciences

    CERN Document Server

    Brown, James Robert

    2010-01-01

    Newton's bucket, Einstein's elevator, Schrödinger's cat - these are some of the best-known examples of thought experiments in the natural sciences. But what function do these experiments perform? Are they really experiments at all? Can they help us gain a greater understanding of the natural world?  How is it possible that we can learn new things just by thinking?   In this revised and updated new edition of his classic text The Laboratory of the Mind, James Robert Brown continues to defend apriorism in the physical world. This edition features two new chapters, one on "counter

  3. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  4. Virtual Laboratories in Chemistry, Biochemistry, & Molecular Biology

    DEFF Research Database (Denmark)

    May, Michael; Achiam, Marianne

    2013-01-01

    Report (state-of-the-art review) from a research and development project on virtual laboratories supported by Markedmodningsfonden (tidl. "Fornyelsesfonden")(2012-2014). http://markedsmodningsfonden.dk/projekt/0/34/495.......Report (state-of-the-art review) from a research and development project on virtual laboratories supported by Markedmodningsfonden (tidl. "Fornyelsesfonden")(2012-2014). http://markedsmodningsfonden.dk/projekt/0/34/495....

  5. A laboratory exposure system to study the effects of aging on super-micron aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Santarpia, Joshua; Sanchez, Andres L.; Lucero, Gabriel Anthony; Servantes, Brandon Lee; Hubbard, Joshua Allen

    2014-02-01

    A laboratory system was constructed that allows the super-micron particles to be aged for long periods of time under conditions that can simulate a range of natural environments and conditions, including relative humidity, oxidizing chemicals, organics and simulated solar radiation. Two proof-of-concept experiments using a non-biological simulant for biological particles and a biological simulant demonstrate the utility of these types of aging experiments. Green Visolite®, which is often used as a tracer material for model validation experiments, does not degrade with exposure to simulated solar radiation, the actual biological material does. This would indicate that Visolite® should be a good tracer compound for mapping the extent of a biological release using fluorescence as an indicator, but that it should not be used to simulate the decay of a biological particle when exposed to sunlight. The decay in the fluorescence measured for B. thurengiensis is similar to what has been previously observed in outdoor environments.

  6. Illuminating cell signaling: Using Vibrio harveyi in an introductory biology laboratory.

    Science.gov (United States)

    Hrizo, Stacy L; Kaufmann, Nancy

    2009-05-01

    Cell signaling is an essential cellular process that is performed by all living organisms. Bacteria communicate with each other using a chemical language in a signaling pathway that allows bacteria to evaluate the size of their population, determine when they have reached a critical mass (quorum sensing), and then change their behavior in unison to carry out processes that require many cells acting together to be effective. Here, we describe a laboratory exercise in which the students observe the induction of bioluminescence or light production as an output of the quorum sensing pathway in Vibrio harveyi. Using both wildtype and mutant bacterial strains they explore the induction of community behavior via cell-cell communication by determining whether there is a correlation between the density of the bacterial population and the production of light by the bacterial culture. Using data from a cross-feeding assay the students make predictions about the identity of their strains and directly test these predictions using conditioned media from various liquid cultures. This two part exercise is designed for an introductory biology course to begin familiarizing students with collecting data, making predictions based upon the data and directly testing their hypotheses using a model organism with a cell signaling pathway that has a simple visual output: light production. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  7. Techniques in cancer research: a laboratory manual

    International Nuclear Information System (INIS)

    Deo, M.G.; Seshadri, R.; Mulherkar, R.; Mukhopadhyaya, R.

    1995-01-01

    Cancer Research Institute (CRI) works on all facets of cancer using the latest biomedical tools. For this purpose, it has established modern laboratories in different branches of cancer biology such as cell and molecular biology, biochemistry, immunology, chemical and viral oncogenesis, genetics of cancer including genetic engineering, tissue culture, cancer chemotherapy, neurooncology and comparative oncology. This manual describes the protocols used in these laboratories. There is also a chapter on handling and care of laboratory animals, an essential component of any modern cancer biology laboratory. It is hoped that the manual will be useful to biomedical laboratories, specially those interested in cancer research. refs., tabs., figs

  8. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    Science.gov (United States)

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  9. Spherical wave particle velocities in geologic materials from laboratory experiments

    International Nuclear Information System (INIS)

    Cizek, J.C.; Florence, A.L.

    1983-01-01

    Particle velocity records that describe spherical waves in rock simulants, tuffs, salt, and granite have been obtained in laboratory experiments. The records aid the modeling of constitutive equations for continuum mechanics codes used in DNA containment research. The technique has also been applied to investigate containment-related problems involving material poperties, failure criteria, scaling, decoupling, and residual strain field relaxation. 22 figures

  10. Designing Polymerase Chain Reaction (PCR) Primer Multiplexes in the Forensic Laboratory

    Science.gov (United States)

    Elkins, Kelly M.

    2011-01-01

    The polymerase chain reaction (PCR) is a common experiment in upper-level undergraduate biochemistry, molecular biology, and forensic laboratory courses as reagents and thermocyclers have become more affordable for institutions. Typically, instructors design PCR primers to amplify the region of interest and the students prepare their samples for…

  11. Cross-disciplinary thermoregulation and sweat analysis laboratory experiences for undergraduate Chemistry and Exercise Science students.

    Science.gov (United States)

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A

    2011-06-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two distinct disciplines [chemistry (CHEM) and exercise physiology (EPHE)] combined to study exercise thermoregulation and sweat analysis. Twenty-eight senior BSc Kinesiology (EPHE) students and 42 senior BSc CHEM students participated as part of their mutually exclusive, respective courses. The effectiveness of this laboratory environment was evaluated qualitatively using written comments collected from all students as well as from formal focus groups conducted after the CD laboratory with a representative cohort from each class (n = 16 CHEM students and 9 EPHE students). An open coding strategy was used to analyze the data from written feedback and focus group transcripts. Coding topics were generated and used to develop five themes found to be consistent for both groups of students. These themes reflected the common student perceptions that the CD experience was valuable and that students enjoyed being able to apply academic concepts to practical situations as well as the opportunity to interact with students from another discipline of study. However, students also reported some challenges throughout this experience that stemmed from the combination of laboratory groups from different disciplines with limited modification to the design of the original, pre-CD, learning environments. The results indicate that this laboratory created an effective learning opportunity that fostered student interest and enthusiasm for learning. The findings also provide information that could inform subsequent design and implementation of similar CD experiences to enhance engagement of all students and improve instructor efficacy.

  12. Shell Games. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experiences supported by multimedia instruction. This document presents an overview on the biology of…

  13. Biological dosimetry after criticality accidents. Intercomparison exercise in the Silene Reactor - France

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Vallerga, Maria B.; Taja, Maria R.

    2004-01-01

    The Institute of Radiation Protection and Nuclear Safety Institute (IRSN) organized an international biological dosimetry intercomparison, at the SILENE experimental reactor (Valduc, France), simulating different criticality scenarios: bare source 4 Gy, lead shield source 1 and 2 Gy and gamma pure 60 Co source 2 Gy. Fifteen laboratories were involved in this exercise, including the Argentine Biological Dosimetry Laboratory. The purposes of the intercomparison were: 1) To compare the unstable chromosome aberration (UCA) frequency observed by the different laboratories; and 2) To compare the dose estimation for gamma rays and neutrons. The objects of the present work were: I) To compare the mean frequency of UCA observed by the Argentine laboratory with the mean frequency observed by the participant laboratories as a whole. II) To compare the dose estimates performed by the Argentine lab with those estimated by the other laboratories involved in the second stage of the intercomparison. Overall, the mean frequencies of UCA and the correspondent 95% confidence limits obtained by the Argentine lab were consistent with the results obtained by the laboratories as a whole. For the gamma pure scenario, smaller variations were observed among laboratories in terms of dose (CV=18,2%) than in terms of frequency (CV=30,1%). For the mixed field scenarios, only four laboratories, including the Argentine lab, estimated gamma and neutron components of the total dose and just two (Argentine lab and lab 12) were in agreement with the given physical doses. The 1 Gy experiment presented lesser variations both in terms of frequency and dose than the other two scenarios. For the 4 and 2 Gy experiments, variations in neutron dose were more significant than variations in gamma dose, related to the magnitude of the dose. The results suggest that intercomparison exercises jointly with the accreditation of biological dosimetry by cytogenetic service laboratories, in compliance with ISO

  14. Predicting bioremediation of hydrocarbons: Laboratory to field scale

    International Nuclear Information System (INIS)

    Diplock, E.E.; Mardlin, D.P.; Killham, K.S.; Paton, G.I.

    2009-01-01

    There are strong drivers to increasingly adopt bioremediation as an effective technique for risk reduction of hydrocarbon impacted soils. Researchers often rely solely on chemical data to assess bioremediation efficiently, without making use of the numerous biological techniques for assessing microbial performance. Where used, laboratory experiments must be effectively extrapolated to the field scale. The aim of this research was to test laboratory derived data and move to the field scale. In this research, the remediation of over thirty hydrocarbon sites was studied in the laboratory using a range of analytical techniques. At elevated concentrations, the rate of degradation was best described by respiration and the total hydrocarbon concentration in soil. The number of bacterial degraders and heterotrophs as well as quantification of the bioavailable fraction allowed an estimation of how bioremediation would progress. The response of microbial biosensors proved a useful predictor of bioremediation in the absence of other microbial data. Field-scale trials on average took three times as long to reach the same endpoint as the laboratory trial. It is essential that practitioners justify the nature and frequency of sampling when managing remediation projects and estimations can be made using laboratory derived data. The value of bioremediation will be realised when those that practice the technology can offer transparent lines of evidence to explain their decisions. - Detailed biological, chemical and physical characterisation reduces uncertainty in predicting bioremediation.

  15. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  16. "Sickle Cell Anemia: Tracking down a Mutation": An Interactive Learning Laboratory That Communicates Basic Principles of Genetics and Cellular Biology

    Science.gov (United States)

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J. Michael

    2016-01-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients…

  17. Stratospheric controlled perturbation experiment (SCoPEx): overview, status, and results from related laboratory experiments

    Science.gov (United States)

    Keith, D.; Dykema, J. A.; Keutsch, F. N.

    2017-12-01

    Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.

  18. Practical development of laboratory of biologics technology of the Palladin Institute of Biochemistry of NAS of Ukraine for the period 1991-2010

    Directory of Open Access Journals (Sweden)

    G. G. Lugovska

    2015-10-01

    Full Text Available The paper presents the results of inventive activity of the Laboratory of Biologics Technology of the Palladin Institute of Biochemistry, NAS of Ukraine, under the leadership of Z.M.Datsenko, Cand.Sc. (Biol., during 1991-2010. The laboratory researchers have developed new technologies for production of medicines of lipid-protein nature, which are based on endogenous complexes of biologically active substances included in the composition of biomembranes of different origin. The researchers have created new technologies for drug PANTOCRINE (for injections and oral administration from antlers of deers and horns of farm animals that have significantly higher biological activity compared with the commercial drug. They have also created new biologically active drugs from antlers with a specific action: HIPPOCAMP, reducing blood pressure in various forms of hypertension, and PANTERON – biological regulator of synthesis of steroid hormones. Further the researchers have developed technologies for obtaining biologically active complexes of various specific action from marine organisms (calamari, clams mussels, shellfish: CALMOFIL and MOLUFIL, therapeutic agents for replacement therapy of surfactant system of the lungs; FILOMEK, the agent for prophylaxis and treatment of a human reproductive system disorders; MOLUSTERON, the glicolipopeptide complex, three individual physiologically active compositions being differentially obtained from the latter: lipopeptide composition – for treatment of hypertension, nucleopeptide one – for treatment of hormonal disorders, and phospholipid – for treatment of lung diseases under the surfactant shortage.

  19. A DNA Fingerprinting Simulation Laboratory for Biology Students: Hands-on Experimentation To Solve a Mock Forensic Problem.

    Science.gov (United States)

    Palladino, Michael A.; Cosentino, Emily

    2001-01-01

    Presents an alternative approach to DNA fingerprinting. Demonstrates how undergraduate students can be involved in many aspects of this type of experiment and how DNA fingerprinting experiments can be incorporated into the laboratory curriculum of courses for majors and nonmajors. (NB)

  20. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    Science.gov (United States)

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  1. AutoLabDB: a substantial open source database schema to support a high-throughput automated laboratory.

    Science.gov (United States)

    Sparkes, Andrew; Clare, Amanda

    2012-05-15

    Modern automated laboratories need substantial data management solutions to both store and make accessible the details of the experiments they perform. To be useful, a modern Laboratory Information Management System (LIMS) should be flexible and easily extensible to support evolving laboratory requirements, and should be based on the solid foundations of a robust, well-designed database. We have developed such a database schema to support an automated laboratory that performs experiments in systems biology and high-throughput screening. We describe the design of the database schema (AutoLabDB), detailing the main features and describing why we believe it will be relevant to LIMS manufacturers or custom builders. This database has been developed to support two large automated Robot Scientist systems over the last 5 years, where it has been used as the basis of an LIMS that helps to manage both the laboratory and all the experiment data produced.

  2. Marine biology, intertidal ecology, and a new place for biology.

    Science.gov (United States)

    Benson, Keith R

    2015-01-01

    At the present time, there is considerable interest for the physical setting of science, that is, its actual 'place' of practice. Among historians of biology, place has been considered to be a crucial component for the study of ecology. Other historians have noted the 'built' environments (laboratories) for the study of biology along the seashore, even referring to these places in terms more applicable to vacation sites. In this paper, I examine the place of intertidal ecology investigations, both in terms of the physical space and the built space. Part of the examination will investigate the aesthetic aspect of the Pacific Coast, part will evaluate the unique character of the intertidal zone, and part will consider the construction of natural laboratories and built laboratories as characteristic places for biology.

  3. Biological effects of high-strength electric fields on small laboratory animals. Interim report, March 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Anderson, L.E.; Kaune, W.T.

    1979-12-01

    Progress is described on a project assessing the biological effects of 60-Hz electric fields on small laboratory animals (rats and mice). The report includes sections on hematology and seram chemistry, immunology, pathology, metabolism, bone growth, endocrinology, cardiovascular function, neurophysiology, growth and development, and animal behavior. (ACR)

  4. Microscale Organic Laboratory II: The Benefits Derived from Conversion to the Program and Representative Experiments.

    Science.gov (United States)

    Mayo, Dana W.; And Others

    1985-01-01

    Smaller amounts of materials are used in organic chemistry experiments as a means of improving air quality in the laboratory. Outlines benefits from this approach and describes two representative experiments in detail. These experiments are the Cannizzaro reaction and preparation of an aromatic nitrile. (JN)

  5. Designing easy DNA extraction: Teaching creativity through laboratory practice.

    Science.gov (United States)

    Susantini, Endang; Lisdiana, Lisa; Isnawati; Tanzih Al Haq, Aushia; Trimulyono, Guntur

    2017-05-01

    Subject material concerning Deoxyribose Nucleic Acid (DNA) structure in the format of creativity-driven laboratory practice offers meaningful learning experience to the students. Therefore, a laboratory practice in which utilizes simple procedures and easy-safe-affordable household materials should be promoted to students to develop their creativity. This study aimed to examine whether designing and conducting DNA extraction with household materials could foster students' creative thinking. We also described how this laboratory practice affected students' knowledge and views. A total of 47 students participated in this study. These students were grouped and asked to utilize available household materials and modify procedures using hands-on worksheet. Result showed that this approach encouraged creative thinking as well as improved subject-related knowledge. Students also demonstrated positive views about content knowledge, social skills, and creative thinking skills. This study implies that extracting DNA with household materials is able to develop content knowledge, social skills, and creative thinking of the students. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(3):216-225, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  6. Qualitative reasoning for biological network inference from systematic perturbation experiments.

    Science.gov (United States)

    Badaloni, Silvana; Di Camillo, Barbara; Sambo, Francesco

    2012-01-01

    The systematic perturbation of the components of a biological system has been proven among the most informative experimental setups for the identification of causal relations between the components. In this paper, we present Systematic Perturbation-Qualitative Reasoning (SPQR), a novel Qualitative Reasoning approach to automate the interpretation of the results of systematic perturbation experiments. Our method is based on a qualitative abstraction of the experimental data: for each perturbation experiment, measured values of the observed variables are modeled as lower, equal or higher than the measurements in the wild type condition, when no perturbation is applied. The algorithm exploits a set of IF-THEN rules to infer causal relations between the variables, analyzing the patterns of propagation of the perturbation signals through the biological network, and is specifically designed to minimize the rate of false positives among the inferred relations. Tested on both simulated and real perturbation data, SPQR indeed exhibits a significantly higher precision than the state of the art.

  7. Scintillating Optical Fiber Imagers for biology

    International Nuclear Information System (INIS)

    Mastrippolito, R.

    1990-01-01

    S.O.F.I (Scintillating Optical Fiber Imager) is a detector developed to replace the autoradiographic films used in molecular biology for the location of radiolabelled ( 32 P) DNA molecules in blotting experiments. It analyses samples on a 25 x 25 cm 2 square area still 25 times faster than autoradiographic films, with a 1.75 and 3 mm resolution for two orthogonal directions. This device performs numerised images with a dynamic upper than 100 which allows the direct quantitation of the analysed samples. First, this thesis describes the S.O.F.I. development (Scintillating Optical Fibers, coding of these fibers and specific electronic for the treatment of the Multi-Anode Photo-Multiplier signals) and experiments made in collaboration with molecular biology laboratories. In a second place, we prove the feasibility of an automatic DNA sequencer issued from S.O.F.I [fr

  8. Laboratory Astrophysics Experiments to Study Star Formation

    Science.gov (United States)

    Young, Rachel

    As a thesis project, I devised and implemented a scaled accretion shock experiment on the OMEGA laser (Laboratory for Laser Energetics). This effort marked the first foray into the growing field of laser-created magnetized flowing plasmas for the Center for Laser Experimental Astrophysical Research (CLEAR) here at the University of Michigan. Accretion shocks form when streams of accreting material fall to the surface of a young, growing star along magnetic field lines and, due to their supersonic flow, create shocks. As I was concerned with what was happening immediately on the surface of the star where the shock forms, I scaled the system by launching a plasma jet (the "accreting flow") and driving it into a solid surface (the "stellar surface") in the presence of an imposed magnetic field parallel to the jet flow (locally analogous to the dipole field of the star). Early work for this thesis project was dedicated to building a magnetized flowing plasma platform at CLEAR. I investigated a method for launching collimated plasma jets and studied them using Thomson scattering, a method which measures parameters such as temperature and density by scattering a probe beam off the experimental plasma. Although the data were corrupted with probe heating effects, I overcame this problem by finding the mass density of the jets and using it to determine they were isothermal rarefactions with a temperature of 6 eV. Scaling an astrophysical phenomenon to the laboratory requires tailoring the parameters of the experiment to preserve its physics, rather than creating an experiment that merely superficially resembles it. I ensured this by distilling the driving physical processes of the astrophysical system--accretion shocks--into a list of dimensionless number constraints and mapping these into plasma parameter space. Due to this project being the first magnetized flowing plasma effort at CLEAR, it suffered the growing pains typical of a young research program. Of my two primary

  9. A Survey on the Gastrointestinal Parasites of Rabbit and Guinea Pig in a Laboratory Animal House

    OpenAIRE

    Motamedi, G.,; Moharami, M.,; Paykari, H.,; Eslampanah, M.,; Omraninava, A.

    2014-01-01

    There is documented evidence that infection in laboratory animals can often influence the outcome of experiments. All infections, apparent or inapparent, are likely to increase biological variability. As a research project concerning the diversity and distribution of parasites of rabbit and guinea pig in a conventional laboratory animal house, about 87 rabbits (from 700 ) and 105 guinea pigs (from 1500 ) were selected randomly from a Research, Production & Breeding of Laboratory Animals Depar...

  10. Cell physiology at the Mount Desert Island Biological Laboratory: a brief look back and forward

    Science.gov (United States)

    2011-01-01

    The Mount Desert Island Biological Laboratory (MDIBL) has played important roles in the development of modern physiological concepts and tools, particularly in the fields of kidney and epithelial cell physiology. Over the last decade, MDIBL has undergone remarkable growth and evolution. This article will briefly review MDIBL's past and outline its future directions. It is hoped that this overview will renew and stimulate interest in MDIBL and, in particular, will encourage an even wider community of physiologists to participate in its ongoing growth and development. PMID:21068363

  11. CANDU steam generator life management: laboratory data and plant experience

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.H.; Subash, N.; Wright, M.D.

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  12. Pre-test simulations of laboratory-scale heater experiments in tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Ho, Clifford K.

    1995-09-01

    Laboratory-scale heater experiments are Proposed to observe thermohydrologic Processes in tuffaceous rock using existing equipment and x-ray imaging techniques. The purpose of the experiments is to gain understanding of the near-field behavior and thermodynamic environment surrounding a heat source. As a prelude to these experiments, numerical simulations are performed to determine design-related parameters such as optimal heating power and heating duration. In addition, the simulations aid in identifying and understanding thermal processes and mechanisms that may occur under a variety of experimental conditions. Results of the simulations show that convection may play an important role in the heat transfer and thermodynamic environment of the heater if the Rayleigh-Darcy number exceeds a critical value (= 10 for the laboratory experiments) depending on the type of backfill material within the annulus (or drift)

  13. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  14. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  15. Calibration Laboratory for Medical Physics towards ISO/ IEC 17025 accreditation: Experience and challenges

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Abdul Aziz Ramli; Muhammad Jamal Isa; Sharul Azlan Azizan

    2011-01-01

    Medical Physics Calibration Laboratory is laboratory where placed under Medical Physics Group, Radiation Healthy and Safety Division. This laboratory offers calibration services to their customers that covered doses calibration, tube voltan (kVp), exposure doses, sensitometer and densitometer. After 12 years of operation, it is the right time for this laboratory to upgrade their quality services based on ISO/ IEC 17025. Accreditation scope covered calibration for diagnostic doses only. Starting from 2009, serious effort was done to prepare the quality documents that covered quality manual, quality procedure and work orders. Meanwhile, several series of audit were done by Quality Management Center (QMC), now Innovation Management Center (IMC) with collaboration with Standard Department. This paper works revealed challenges and experience during the process toward ISO/ IEC 17025 accreditation. (author)

  16. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  17. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-01-01

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers

  18. Guaiacol peroxidase zymography for the undergraduate laboratory.

    Science.gov (United States)

    Wilkesman, Jeff; Castro, Diana; Contreras, Lellys M; Kurz, Liliana

    2014-01-01

    This laboratory exercise presents a novel way to introduce undergraduate students to the specific detection of enzymatic activity by electrophoresis. First, students prepare a crude peroxidase extract and then analyze the homogenate via electrophoresis. Zymography, that is, a SDS-PAGE method to detect enzyme activity, is used to specifically detect peroxidase activity and furthermore, to analyze the total protein profile. After the assay, students may estimate the apparent molecular mass of the enzyme and discuss its structure. After the 4-h experiment, students gain knowledge concerning biological sample preparation, gel preparation, electrophoresis, and the importance of specific staining procedures for the detection of enzymatic activity. Copyright © 2014 The International Union of Biochemistry and Molecular Biology.

  19. The effect of teaching methods on cognitive achievement, retention, and attitude among in biology studying

    Directory of Open Access Journals (Sweden)

    Snezana Stavrova Veselinovskaa

    2011-12-01

    Full Text Available The purpose of this paper is to determine the effects of usage of sequential teaching method on the academic achievement and retention level of students. Three student groups of biology students in University “Goce Delcev”, Faculty of Natural and Technical Sciences, Institute of Biology, - Stip, R. Macedonia were offered a topic on general characteristics of Proteins: Their Biological Functions and Primary Structure with different sequences of 3 teaching methods. The teaching methods were Laboratory method (student experiment, slide demonstration and lecture method. The first group started to course with experiments in the laboratory, then the relevant theory of proteins was given lecture method, and then the slides was shown (Group I. The sequence of these three teaching methods used in the first group was changed in both second and third group as follow: The lecture methods, slide show and experiment in Group II, and slide show, experiment and lecture method in Group III, respectively. Laboratory method used in the study was focused on the topic of this diversity and abundance reflect the central role of proteins in virtually all aspects of cell structure and function. Achievement test contained 20 questions, testing the knowledge of facts as well as the ability to transfer the knowledge and problem solving ability. This test was used as pre-test before methods’ application, post-test after the methods’ application and retention test after 30 days from methods’ applied.

  20. A Western Blot-based Investigation of the Yeast Secretory Pathway Designed for an Intermediate-Level Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Hood-DeGrenier, Jennifer K.

    2008-01-01

    The movement of newly synthesized proteins through the endomembrane system of eukaryotic cells, often referred to generally as the secretory pathway, is a topic covered in most intermediate-level undergraduate cell biology courses. An article previously published in this journal described a laboratory exercise in which yeast mutants defective in…

  1. Laboratory Experiments on Meandering Meltwater Channels

    Science.gov (United States)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  2. Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments

    International Nuclear Information System (INIS)

    Rubio-Franchini, Isidoro; Rico-Martinez, Roberto

    2011-01-01

    This report includes atomic absorption data from water column, elutriates and zooplankton that demonstrate that lead biomagnifies at El Niagara reservoir, Mexico. Results include field data (bioaccumulation factors) (BAFs) and laboratory data (bioconcentration factors) (BCFs). Two findings: high BAFs for invertebrate predator like Acanthocyclops robustus, Asplanchna brightwellii, Culex sp. larvae, and Hyalella azteca, compared to grazer species Moina micrura and Simocephalus vetulus; low BCF's found for some predators, suggested that lead biomagnifications were taking place. The presence of Moina micrura in the gut of Asplanchna allowed us to design experiments where A. brightwellii was fed lead-exposed M. micrura neonates. The BAF of Asplanchna was 123,684, BCF was 490. Asplanchna individuals fed exposed Moina had 13.31 times more lead than Asplanchna individuals just exposed 48-h to lead, confirming that lead biomagnification occurs. Results of two fish species showed no lead biomagnification, suggesting that lead biomagnification might be restricted to invertebrate predators. - Highlights: → Study shows lead biomagnification evidence in reservoirs where top predators are invertebrates. → Study discusses why in previous studies lead biomagnifications were not detected. → Evidence of biomagnification comes from field and laboratory studies. - This study shows evidence (from field and laboratory experiments) of lead biomagnification in a freshwater reservoir where the main predators are invertebrates.

  3. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  4. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  5. A reverse engineering approach to optimize experiments for the construction of biological regulatory networks.

    Science.gov (United States)

    Zhang, Xiaomeng; Shao, Bin; Wu, Yangle; Qi, Ouyang

    2013-01-01

    One of the major objectives in systems biology is to understand the relation between the topological structures and the dynamics of biological regulatory networks. In this context, various mathematical tools have been developed to deduct structures of regulatory networks from microarray expression data. In general, from a single data set, one cannot deduct the whole network structure; additional expression data are usually needed. Thus how to design a microarray expression experiment in order to get the most information is a practical problem in systems biology. Here we propose three methods, namely, maximum distance method, trajectory entropy method, and sampling method, to derive the optimal initial conditions for experiments. The performance of these methods is tested and evaluated in three well-known regulatory networks (budding yeast cell cycle, fission yeast cell cycle, and E. coli. SOS network). Based on the evaluation, we propose an efficient strategy for the design of microarray expression experiments.

  6. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  7. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    Science.gov (United States)

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  8. Correlation of microdosimetric measurements with relative biological effectiveness from clinical experience for two neutron therapy beams

    International Nuclear Information System (INIS)

    Stinchcomb, T.G.; Kuchnir, F.T.; Myrianthopoulos, L.C.; Horton, J.L. Jr.; Roberts, W.K.

    1986-01-01

    Microdosimetric measurements were made for the neutron therapy beams at the University of Chicago and at the Cleveland Clinic with the same geometry and phantom material using the same tissue-equivalent spherical proportional counter and standard techniques. The energy deposition spectra (dose distributions in lineal energy) are compared for these beams and for their scattered components (direct beam blocked). The model of dual radiation action (DRA) of Kellerer and Rossi is employed to interpret these data in terms of biological effectiveness over this limited range of radiation qualities. The site-diameter parameter of the DRA theory is determined for the Cleveland beam by setting the biological effectiveness (relative to 60 Co gamma radiation) equal to the relative biological effectiveness value deduced from radiobiology experiments and clinical experience. The resulting value of this site-diameter parameter is then used to predict the biological effectiveness of the Chicago beam. The prediction agrees with the value deduced from radiobiology and clinical experience. The biological effectiveness of the scattered components of both beams is also estimated using the model

  9. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX

    Directory of Open Access Journals (Sweden)

    Pengcheng Yu

    2017-10-01

    Full Text Available In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6 into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase due to the decrease of the electron density. Compared to the traditional active release experiments, the laboratory scheme can be more efficient, high repetition rate and simpler measurement of the varying plasma parameter after chemical releasing. Therefore, it can effective building the bridge between the theoretical work and real space observation.

  10. Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments

    Science.gov (United States)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Weihs, Philipp; Rieder, Harald E.

    2017-03-01

    This study investigates the effects of ambient meteorology on the accuracy of radiation (R) measurements performed with pyranometers contained in various heating and ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spray tests or observed under ambient conditions) significantly affects the thermal environment of the instruments and thus their stability. Statistical analyses of laboratory experiments showed that precipitation triggers zero offsets of -4 W m-2 or more, independent of the HV-system. Similar offsets were observed in field experiments under ambient environmental conditions, indicating a clear exceedance of BSRN (Baseline Surface Radiation Network) targets following precipitation events. All pyranometers required substantial time to return to their initial signal states after the simulated precipitation events. Therefore, for BSRN-class measurements, the recommendation would be to flag the radiation measurements during a natural precipitation event and 90 min after it in nighttime conditions. Further daytime experiments show pyranometer offsets of 50 W m-2 or more in comparison to the reference system. As they show a substantially faster recovery, the recommendation would be to flag the radiation measurements within a natural precipitation event and 10 min after it in daytime conditions.

  11. Students' Interest in Biology and Their Out-of-School Experiences

    Science.gov (United States)

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Meisalo, Veijo

    2006-01-01

    Interest in biology and the out-of-school experiences of Finnish secondary school pupils (n = 3626, median age 15) were surveyed in the spring of 2003 using the international ROSE questionnaire. Likert-scaled items were categorised with an explorative factor analysis. The scores of eight interest-context factors and seven out-of-school experience…

  12. [Historic Development of Clinical Biology Laboratories in Luxembourg].

    Science.gov (United States)

    Wennig R; Humbel R-L

    2014-01-01

    After a short overview on the development of diagnostic tools in clinical biology at an international level from Antiquity towards today, a history of the clinical biology including public and private institutions in Luxembourg will be outlined.

  13. Reproducible computational biology experiments with SED-ML--the Simulation Experiment Description Markup Language.

    Science.gov (United States)

    Waltemath, Dagmar; Adams, Richard; Bergmann, Frank T; Hucka, Michael; Kolpakov, Fedor; Miller, Andrew K; Moraru, Ion I; Nickerson, David; Sahle, Sven; Snoep, Jacky L; Le Novère, Nicolas

    2011-12-15

    The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research

  14. Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

    Science.gov (United States)

    2011-01-01

    Background The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from

  15. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Loar, J.M.; Amano, H.; Jimenez, B.D.; Kitchings, J.T.; Meyers-Schoene, L.; Mohrbacher, D.A.; Olsen, C.R.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986

  16. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J. M. [ed.; Adams, S. M.; Blaylock, B. G.; Boston, H. L.; Frank, M. L.; Garten, C. T.; Houston, M. A.; Kimmel, B. L.; Ryon, M. G.; Smith, J. G.; Southworth, G. R.; Stewart, A. J.; Walton, B. T.; Berry, J. B.; Talmage, S. S. [Oak Ridge National Lab., TN (United States); Amano, H. [JAERI, Tokai Res., Establishment, Ibari-Ken (Japan); Jimenez, B. D. [School of Pharmacy, Univ. of Puerto Rico (San Juan); Kitchings, J. T. [ERCE, Denver, CO (United States); Meyers-Schoene, L. [Advanced Sciences, Inc., Fernald, OH (United States); Mohrbacher, D. A. [Univ. of Tennessee, Knoxville, TN (United States); Olsen, C. R. [USDOE Office of Energy Research, Washington, DC (United States). Office of Health and Environmental Research

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  17. Preliminary report of biological intrusion studies at the Idaho National Engineering Laboratory subsurface disposal area

    International Nuclear Information System (INIS)

    Reynolds, T.D.; Arthur, W.J.

    1983-01-01

    As part of a larger study on the effects of biological intrusion of plants and animals into the soil cover placed over low-level radioactive wastes stored at the Idaho National Engineering Laboratory Subsurface Disposal Area (SDA), research was initiated in the summer of 1982 to determine the burrow characteristics and movement patterns of several small mammal species, and the rooting depths of various plants. The depth, length, and volume of burrows were determined for four small mammal species: deer mouse (Peromyscus maniculatus), Ord's kangaroo rat (Dipodomys ordii), montane vole (Microtus montanus), and Townsend's ground squirrel (Spermophilis townsendii). The latter species excavated the greatest mean burrow depth (39 cm), length (404 cm), and volume (14.8 1). Movement patterns of three species were determined by radiotelemetry. The mean area of use for P. maniculatus, D. ordii, and M. montanus was 2.3, 1.5, and 1.2 ha respectively. Limited data on rooting depths of various native and introduced plant species at the SDA were obtained by literature review and excavation. During FY-83, experiments will be conducted, using the information obtained from the first year of this study, to evaluate the impact of burrowing mammals and root intrusion on the integrity of the soil cover currently existing at the SDA. Details of these experimental studies are presented

  18. CO[subscript 2] Investigations: An Open Inquiry Experiment for General Chemistry

    Science.gov (United States)

    Stout, Roland P.

    2016-01-01

    This paper presents a successful, free inquiry experiment in which students devise an experiment to measure carbon dioxide in an important chemical, biological, or environmental situation. Also discussed is rationale for adopting an open inquiry experiment and how it fits into the laboratory as a whole. Typical student projects are given, and data…

  19. Ethical and methodological standards for laboratory and medical biological rhythm research.

    Science.gov (United States)

    Portaluppi, Francesco; Touitou, Yvan; Smolensky, Michael H

    2008-11-01

    The main objectives of this article are to update the ethical standards for the conduct of human and animal biological rhythm research and recommend essential elements for quality chronobiological research information, which should be especially useful for new investigators of the rhythms of life. A secondary objective is to provide for those with an interest in the results of chronobiology investigations, but who might be unfamiliar with the field, an introduction to the basic methods and standards of biological rhythm research and time series data analysis. The journal and its editors endorse compliance of all investigators to the principles of the Declaration of Helsinki of the World Medical Association, which relate to the conduct of ethical research on human beings, and the Guide for the Care and Use of Laboratory Animals of the Institute for Laboratory Animal Research of the National Research Council, which relate to the conduct of ethical research on laboratory and other animals. The editors and the readers of the journal expect the authors of submitted manuscripts to have adhered to the ethical standards dictated by local, national, and international laws and regulations in the conduct of investigations and to be unbiased and accurate in reporting never-before-published research findings. Authors of scientific papers are required to disclose all potential conflicts of interest, particularly when the research is funded in part or in full by the medical and pharmaceutical industry, when the authors are stock-holders of the company that manufactures or markets the products under study, or when the authors are a recent or current paid consultant to the involved company. It is the responsibility of the authors of submitted manuscripts to clearly present sufficient detail about the synchronizer schedule of the studied subjects (i.e., the sleep-wake schedule, ambient light-dark cycle, intensity and spectrum of ambient light exposure, seasons when the research was

  20. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  1. Laboratory experiments inform iceberg-calving forces

    Science.gov (United States)

    Cathles, L. M.; Burton, J. C.

    2013-12-01

    Globally detected glacial earthquakes are produced during cubic-kilometer scale calving events. The mechanism producing these earthquakes and the dependence of the seismic moment on iceberg size and glacial calving front geometry are not well established. We use a laboratory-scale model of the post-fracture calving process to measure aspects of the calving process not observable in nature. In our experiments, buoyant plastic blocks rest against against a force plate (glacial terminus) which measures both the total force and the torque exerted during the calving process. The blocks are gravitationally unstable, so that they will spontaneously capsize and rotate away from the terminus. We find that hydrodynamics are crucial when considering the coupling between the calving process and the solid earth. There is both a pushing contact force and a simultaneous pulling hydrodynamic force created by a reduced pressure along the terminus face. This suggests that a single couple force mechanism is a more appropriate mode for glacial earthquakes than the commonly used centroid single force model.

  2. Molecular biology problem solver: a laboratory guide

    National Research Council Canada - National Science Library

    Gerstein, Alan S

    2001-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Chapter 1. Preparing for Success in the Laboratory Phillip P. Franciskovich . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2. Getting What You Need...

  3. Students' motivation toward laboratory work in physiology teaching.

    Science.gov (United States)

    Dohn, Niels Bonderup; Fago, Angela; Overgaard, Johannes; Madsen, Peter Teglberg; Malte, Hans

    2016-09-01

    The laboratory has been given a central role in physiology education, and teachers report that it is motivating for students to undertake experimental work on live animals or measuring physiological responses on the students themselves. Since motivation is a critical variable for academic learning and achievement, then we must concern ourselves with questions that examine how students engage in laboratory work and persist at such activities. The purpose of the present study was to investigate how laboratory work influences student motivation in physiology. We administered the Lab Motivation Scale to assess our students' levels of interest, willingness to engage (effort), and confidence in understanding (self-efficacy). We also asked students about the role of laboratory work for their own learning and their experience in the physiology laboratory. Our results documented high levels of interest, effort, and self-efficacy among the students. Correlation analyses were performed on the three motivation scales and exam results, yet a significant correlation was only found between self-efficacy in laboratory work and academic performance at the final exam. However, almost all students reported that laboratory work was very important for learning difficult concepts and physiological processes (e.g., action potential), as the hands-on experiences gave a more concrete idea of the learning content and made the content easier to remember. These results have implications for classroom practice as biology students find laboratory exercises highly motivating, despite their different personal interests and subject preferences. This highlights the importance of not replacing laboratory work by other nonpractical approaches, for example, video demonstrations or computer simulations. Copyright © 2016 The American Physiological Society.

  4. Landing in the future: Biological experiments on Earth and in space orbit

    Science.gov (United States)

    Pokrovskiy, A.

    1980-01-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  5. Landing in the future: Biological experiments on Earth and in space orbit

    Science.gov (United States)

    Pokrovskiy, A.

    1980-09-01

    The development of an Earth biosatellite to duplicate the parameters of pressure, temperature, humidity and others in a space environment onboard Cosmos-1129 is discussed. Effects of a space environment on fruit flies, dogs, laboratory rats in procreation, behavior, stress, biorhythm, body composition, gravitation preference, and cell cultures are examined. The space environment for agricultural products is also studied. The effects of heavy nuclei of galactic space radiation on biological objects inside and outside the satellite is studied, and methods of electrostatic protection are developed.

  6. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  7. Sample collections from healthy volunteers for biological variation estimates' update: a new project undertaken by the Working Group on Biological Variation established by the European Federation of Clinical Chemistry and Laboratory Medicine.

    Science.gov (United States)

    Carobene, Anna; Strollo, Marta; Jonker, Niels; Barla, Gerhard; Bartlett, William A; Sandberg, Sverre; Sylte, Marit Sverresdotter; Røraas, Thomas; Sølvik, Una Ørvim; Fernandez-Calle, Pilar; Díaz-Garzón, Jorge; Tosato, Francesca; Plebani, Mario; Coşkun, Abdurrahman; Serteser, Mustafa; Unsal, Ibrahim; Ceriotti, Ferruccio

    2016-10-01

    Biological variation (BV) data have many fundamental applications in laboratory medicine. At the 1st Strategic Conference of the European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) the reliability and limitations of current BV data were discussed. The EFLM Working Group on Biological Variation is working to increase the quality of BV data by developing a European project to establish a biobank of samples from healthy subjects to be used to produce high quality BV data. The project involved six European laboratories (Milan, Italy; Bergen, Norway; Madrid, Spain; Padua, Italy; Istanbul, Turkey; Assen, The Netherlands). Blood samples were collected from 97 volunteers (44 men, aged 20-60 years; 43 women, aged 20-50 years; 10 women, aged 55-69 years). Initial subject inclusion required that participants completed an enrolment questionnaire to verify their health status. The volunteers provided blood specimens once per week for 10 weeks. A short questionnaire was completed and some laboratory tests were performed at each sampling consisting of blood collected under controlled conditions to provide serum, K2EDTA-plasma and citrated-plasma samples. Samples from six out of the 97 enroled subjects were discarded as a consequence of abnormal laboratory measurements. A biobank of 18,000 aliquots was established consisting of 120 aliquots of serum, 40 of EDTA-plasma, and 40 of citrated-plasma from each subject. The samples were stored at -80 °C. A biobank of well-characterised samples collected under controlled conditions has been established delivering a European resource to enable production of contemporary BV data.

  8. Comparison of laboratory and field experience of PWSCC in Alloy 182 weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Meunier, M.-C.; Steltzlen, F. [AREVA NP, Tour AREVA, Paris La Defense (France); Calonne, O.; Foucault, M. [AREVA NP, Centre Technique, Le Creusot Cedex (France); Combrade, P. [ACXCOR, Saint Etienne (France); Amzallag, C. [EDF, SEPTEN, Villeurbanne (France)

    2007-07-01

    Laboratory studies of stress corrosion cracking of the nickel base weld metal, Alloy 182, in simulated PWR primary water suggest similar resistance to crack initiation and somewhat enhanced propagation rates relative to wrought Alloy 600. By contrast, field experience of cracking in the primary circuits of PWRs shows in general much better performance for Alloy 182 relative to Alloy 600 than would be anticipated from laboratory studies. This paper endeavours to resolve this apparent conundrum. It draws on the conclusions of recent research that has focussed on the role of surface finish, particularly cold work and residual stresses resulting from different fabrication processes, on the risk of initiating IGSCC in nickel base alloys in PWR primary water. It also draws on field experience of stress corrosion cracking that highlights the important role of surface finish for crack initiation. (author)

  9. Effect of Bacillus subtilis on Granite Weathering: A Laboratory Experiment

    Science.gov (United States)

    Song, W.; Ogawa, N.; Oguchi, C. T.; Hatta, T.; Matsukura, Y.

    2006-12-01

    We performed a comparative experiment to investigate how the ubiquitous soil bacterium Bacillus subtilis weathers granite and which granite-forming minerals weather more rapidly via biological processes. Batch type experiments (granite specimen in a 500 ml solution including NaCl, glucose, yeast extract and bacteria Bacillus subtilis at 27°E C) were carried out for 30 days. Granite surfaces were observed by SEM before and after the experiment. Bacillus subtilis had a strong influence on granite weathering by forming pits. There were 2.4 times as many pits and micropores were 2.3 times wider in granite exposed to Bacillus subtilis when compared with bacteria-free samples. Bacillus subtilis appear to preferentially select an optimum place to adhere to the mineral and dissolve essential elements from the mineral to live. Plagioclase was more vulnerable to bacterial weathering than biotite among the granite composing minerals.

  10. Larva of Glyptotendipes (Glyptotendipes) glaucus (Meigen 1818) (Chironomidae, Diptera)-morphology by Scanning Electron Microscope (SEM), karyotype, and biology in laboratory conditions.

    Science.gov (United States)

    Kownacki, Andrzej; Woznicka, Olga; Szarek-Gwiazda, Ewa; Michailova, Paraskeva

    2016-09-21

    Larvae belonging to the family Chironomidae are difficult to identify. The aim of the present study was to describe the larval morphology of G. (G.) glaucus with the aid of a Scanning Electron Microscope (SEM), the karyotype and biology based on materials obtained from laboratory culture. Describing the morphology of larvae, special attention was paid to rarely or never described structures like the maxilla (lacinia and maxillary palp), the long plate situated below the ventromental plate, and plate X situated between lacinia and mentum. The use of SEM allowed also to obtain better images of labrum and ventromental plate. Morphological features of this species have been supplemented by karyotype and biology of larvae in laboratory conditions. Under controlled experimental conditions we found non-synchronous development of G. (G.) glaucus larvae hatched from one egg mass reflected in different lengths of larvae and emerged imagoes.

  11. Historical parallels of biological space experiments from Soyuz, Salyut and Mir to Shenzhou flights

    Science.gov (United States)

    Nechitailo, Galina S.; Kondyurin, Alexey

    2016-07-01

    Human exploitation of space is a great achievement of our civilization. After the first space flights a development of artificial biological environment in space systems is a second big step. First successful biological experiments on a board of space station were performed on Salyut and Mir stations in 70-90th of last century such as - first long time cultivation of plants in space (wheat, linen, lettuce, crepis); - first flowers in space (Arabidopsis); - first harvesting of seeds in space (Arabidopsis); - first harvesting of roots (radish); - first full life cycle from seeds to seeds in space (wheat), Guinness recorded; - first tissue culture experiments (Panax ginseng L, Crocus sativus L, Stevia rebaundiana B; - first tree growing in space for 2 years (Limonia acidissima), Guinness recorded. As a new wave, the modern experiments on a board of Shenzhou Chinese space ships are performed with plants and tissue culture. The space flight experiments are now focused on applications of the space biology results to Earth technologies. In particular, the tomato seeds exposed 6 years in space are used in pharmacy industry in more then 10 pharmaceutical products. Tissue culture experiments are performed on the board of Shenzhou spaceship for creation of new bioproducts including Space Panax ginseng, Space Spirulina, Space Stetatin, Space Tomato and others products with unique properties. Space investments come back.

  12. Biological Interaction of Molybdenocene Dichloride with Bovine Serum Albumin Using Fluorescence Spectroscopy

    Science.gov (United States)

    Domínguez, Moralba; Cortes-Figueroa, Jose´ E.; Meléndez, Enrique

    2018-01-01

    Bioinorganic topics are ubiquitous in the inorganic chemistry curriculum; however, experiments to enhance understanding of related topics are scarce. In this proposed laboratory, upper undergraduate students assess the biological interaction of molybdenocene dichloride (Cp2MoCl2) with bovine serum albumin (BSA) by fluorescence spectroscopy.…

  13. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  14. Characterization of Pathogenic Human MSH2 Missense Mutations Using Yeast as a Model System: A Laboratory Course in Molecular Biology

    Science.gov (United States)

    Gammie, Alison E.; Erdeniz, Naz

    2004-01-01

    This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring…

  15. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  16. Laboratory Tests

    Science.gov (United States)

    ... Medical Devices Radiation-Emitting Products Vaccines, Blood & Biologics Animal & ... What are lab tests? Laboratory tests are medical devices that are intended for use on samples of blood, urine, or other tissues ...

  17. An Inexpensive Biophysics Laboratory Apparatus for Acquiring Pulmonary Function Data with Clinical Applications

    Science.gov (United States)

    Harkay, Gregory

    2001-11-01

    Interest on the part of the Physics Department at KSC in developing a computer interfaced lab with appeal to biology majors and a need to perform a clinical pulmonological study to fulfill a biology requirement led to the author's undergraduate research project in which a recording spirometer (typical cost: $15K) was constructed from readily available materials and a typical undergraduate lab computer interface. Simple components, including a basic photogate circuit, CPU fan, and PVC couplings were used to construct an instrument for measuring flow rates as a function of time. Pasco software was used to build an experiment in which data was collected and integration performed such that one could obtain accurate values for FEV1 (forced expiratory volume for one second) and FVC (forced vital capacity) and their ratio for a large sample of subjects. Results were compared to published norms and subjects with impaired respiratory mechanisms identified. This laboratory exercise is one with which biology students can clearly identify and would be a robust addition to the repertoire for a HS or college physics or biology teaching laboratory.

  18. Attributions of Academic Performance among Third Year and Fourth Year Biology Major Students

    Directory of Open Access Journals (Sweden)

    Nick John B. Solar

    2015-08-01

    Full Text Available This is a descriptive study aimed to determine the attributions of academic performance of third year and fourth year biology major students in the College of Education, West Visayas State University, School Year 2013-2014. The academic performance were categorized or measured in terms of test, projects, workbooks, and laboratory experiments, class participation, and attendance. The Attributions in academic performance were evaluated using the closed-form questionnairechecklist,categorized intoin termsof ability, effort, luck, or task difficulty. Mean frequency, mean percentage, Mann-Whitney U-test, two-sampled test set at 0.05 level of significance were used to determine if there were significant difference in the attribution when the students were taken according to their year level. The result of the study revealed that the Third Year biology majors attributed their academic performance to effort which is shown to have the highest percentage attribution in overall rank. There was no significant difference in the attributions of academic performance for third year and fourth year biology major students in termsof test, whilethe result forprojects, workbooks, and laboratory experiment and class participation and attendance categories,was found out to havea significant difference in the attributionfor the third and fourth years biology Major students’ academic performances.

  19. [Errors in laboratory daily practice].

    Science.gov (United States)

    Larrose, C; Le Carrer, D

    2007-01-01

    Legislation set by GBEA (Guide de bonne exécution des analyses) requires that, before performing analysis, the laboratory directors have to check both the nature of the samples and the patients identity. The data processing of requisition forms, which identifies key errors, was established in 2000 and in 2002 by the specialized biochemistry laboratory, also with the contribution of the reception centre for biological samples. The laboratories follow a strict criteria of defining acceptability as a starting point for the reception to then check requisition forms and biological samples. All errors are logged into the laboratory database and analysis report are sent to the care unit specifying the problems and the consequences they have on the analysis. The data is then assessed by the laboratory directors to produce monthly or annual statistical reports. This indicates the number of errors, which are then indexed to patient files to reveal the specific problem areas, therefore allowing the laboratory directors to teach the nurses and enable corrective action.

  20. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  1. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  2. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  3. Biological control of Alternaria radicina in seed production of carrots with Ulocladium atrum

    NARCIS (Netherlands)

    Köhl, J.; Langerak, C.J.; Meekes, E.T.M.; Molhoek, W.M.L.

    2004-01-01

    Black rot of carrots is caused by seed-borne Alternaria radicina. Biological control of seed infestation by treatments applied to plants in flower during seed production with the fungal antagonist Ulocladium atrum was investigated in laboratory and field experiments resulting in a reduction of seed

  4. Selecting a Laboratory Information Management System for Biorepositories in Low- and Middle-Income Countries: The H3Africa Experience and Lessons Learned

    Science.gov (United States)

    Musinguzi, Henry; Lwanga, Newton; Kezimbira, Dafala; Kigozi, Edgar; Katabazi, Fred Ashaba; Wayengera, Misaki; Joloba, Moses Lutaakome; Abayomi, Emmanuel Akin; Swanepoel, Carmen; Croxton, Talishiea; Ozumba, Petronilla; Thankgod, Anazodo; van Zyl, Lizelle; Mayne, Elizabeth Sarah; Kader, Mukthar; Swartz, Garth

    2017-01-01

    Biorepositories in Africa need significant infrastructural support to meet International Society for Biological and Environmental Repositories (ISBER) Best Practices to support population-based genomics research. ISBER recommends a biorepository information management system which can manage workflows from biospecimen receipt to distribution. The H3Africa Initiative set out to develop regional African biorepositories where Uganda, Nigeria, and South Africa were successfully awarded grants to develop the state-of-the-art biorepositories. The biorepositories carried out an elaborate process to evaluate and choose a laboratory information management system (LIMS) with the aim of integrating the three geographically distinct sites. In this article, we review the processes, African experience, lessons learned, and make recommendations for choosing a biorepository LIMS in the African context.

  5. Mouse Genome Informatics (MGI) Resource: Genetic, Genomic, and Biological Knowledgebase for the Laboratory Mouse.

    Science.gov (United States)

    Eppig, Janan T

    2017-07-01

    The Mouse Genome Informatics (MGI) Resource supports basic, translational, and computational research by providing high-quality, integrated data on the genetics, genomics, and biology of the laboratory mouse. MGI serves a strategic role for the scientific community in facilitating biomedical, experimental, and computational studies investigating the genetics and processes of diseases and enabling the development and testing of new disease models and therapeutic interventions. This review describes the nexus of the body of growing genetic and biological data and the advances in computer technology in the late 1980s, including the World Wide Web, that together launched the beginnings of MGI. MGI develops and maintains a gold-standard resource that reflects the current state of knowledge, provides semantic and contextual data integration that fosters hypothesis testing, continually develops new and improved tools for searching and analysis, and partners with the scientific community to assure research data needs are met. Here we describe one slice of MGI relating to the development of community-wide large-scale mutagenesis and phenotyping projects and introduce ways to access and use these MGI data. References and links to additional MGI aspects are provided. © The Author 2017. Published by Oxford University Press.

  6. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    Science.gov (United States)

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  7. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  8. Using a Molecular-Genetic Approach to Investigate Bacterial Physiology in a Continuous, Research-Based, Semester-Long Laboratory for Undergraduates

    Directory of Open Access Journals (Sweden)

    Jeremiah Foster Ault

    2011-09-01

    Full Text Available Designing investigative laboratory exercises that encourage critical thinking, problem solving, and independent thought for upper-division biology courses is a difficult but worthwhile task. In an effort to do so, we developed a semester-long, continuous, research-based investigative laboratory that integrates numerous genetic and molecular biology methods into the investigation of a bacterial physiological process. In this lab, students use random Tn5 transposon mutagenesis to create prodigiosin pigment mutants in the bacterium, Serratia marcescens. This is followed by phenotypic characterization, cloning, and sequencing the Tn insertion site to identify genes involved in pigment biosynthesis. During this lab, students gain ample experience performing basic lab techniques while learning about — and applying — methods for elucidating gene function. The approach to the laboratory and the outcomes are intimately integrated into the teaching of many fundamental physiological processes underlying prodigiosin production in bacteria. The result is a cohesive course that integrates the theory and application of molecular genetic techniques with the study of bacterial physiology. Assessments of student learning objectives demonstrated that students greatly improved their understanding of both physiological processes and the genetic techniques used to investigate them. In addition, students felt that this semester-long exercise provided the necessary laboratory experience they needed and desired in preparation for careers in molecular biology, microbiology, and biochemistry.

  9. Virtual Laboratories in Chemistry, Biochemistry, & Molecular Biology

    DEFF Research Database (Denmark)

    May, Michael; Achiam, Marianne

    2013-01-01

    Report (state-of-the-art review) from a research and development project on virtual laboratories supported by Markedmodningsfonden (tidl. "Fornyelsesfonden")(2012-2014). http://markedsmodningsfonden.dk/projekt/0/34/495....

  10. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Science.gov (United States)

    Martínez-Pardo, M. E.; Ley-Chávez, E.; Reyes-Frías, M. L.; Rodríguez-Ferreyra, P.; Vázquez-Maya, L.; Salazar, M. A.

    2007-11-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is "Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation". At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  11. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Pardo, M.E. [Instituto Nacional de Investigaciones Nucleares, Apdo. postal 18-1027, Col. Escandon 11801 Mexico DF (Mexico)], E-mail: memp@nuclear.inin.mx; Ley-Chavez, E. [ISSEMYM Toluca, Mexico DF (Mexico); Reyes-Frias, M.L. [Instituto Nacional de Investigaciones Nucleares, Apdo. postal 18-1027, Col. Escandon 11801 Mexico DF (Mexico); Rodriguez-Ferreyra, P. [Hospital ' Dr. Nicolas San Juan' , Toluca, Mexico DF (Mexico); Vazquez-Maya, L.; Salazar, M.A. [Hospital General de Mexico, Mexico DF (Mexico)

    2007-11-15

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders.

  12. Biological wound dressings sterilized with gamma radiation: Mexican clinical experience

    International Nuclear Information System (INIS)

    Martinez-Pardo, M.E.; Ley-Chavez, E.; Reyes-Frias, M.L.; Rodriguez-Ferreyra, P.; Vazquez-Maya, L.; Salazar, M.A.

    2007-01-01

    Biological wound dressings sterilized with gamma radiation, such as amnion and pig skin, are a reality in Mexico. These tissues are currently processed in the tissue bank and sterilized in the Gamma Industrial Irradiation Plant; both facilities belong to the Instituto Nacional de Investigaciones Nucleares (ININ) (National Institute of Nuclear Research). With the strong support of the International Atomic Energy Agency, the bank was established at the ININ and the Mexican Ministry of Health issued its sanitary license on July 7, 1999. The Quality Management System of the bank was certified by ISO 9001:2000 on August 1, 2003; the scope of the system is 'Research, Development and Processing of Biological Tissues Sterilized with Gamma Radiation'. At present, more than 150 patients from 16 hospitals have been successfully treated with these tissues. This paper presents a brief description of the tissue processing, as well as the present Mexican clinical experience with children and adult patients who underwent medical treatment with radiosterilized amnion and pig skin, used as biological wound dressings on burns and ocular surface disorders

  13. Experience of TLD personnel monitoring laboratory

    International Nuclear Information System (INIS)

    Jakhete, Prashant

    2002-01-01

    Full text: Renentech Laboratories is the first Private Enterprise in India to have been chosen to provide Personnel radiation monitoring services to radiation workers at different parts of the country. Since 1992 the Company has been manufacturing TLD phosphor powder of requisite quality and from 1995 commenced the production of TLD cards for radiation monitoring. After getting the necessary approval from the competent authorities in the country, the company undertook a rigorous quality assurance programme and received the accreditation in 1999 to carry out the personnel monitoring of radiation. Since then the trained staff of the Company is covering 1200 institutions in 16 states where radiation is being used. This translates to processing of 60,000 Till cards annually, the maximum limit permitted by BARC. Processing of exposure data is done strictly according well-laid guidelines. Any cases of overexposure are immediately referred to Calibration and Dose Record Section of BARC to meet the regulatory requirements. Necessary procedural guidelines are followed to handle such cases. In this lecture, learning, operation and implementation experience of a typical Private Company in a task, which, hitherto had been regarded as exclusive responsibility of state owned institution, is enumerated

  14. Chloridrate of N-isopropyl-p-iodoamphetamine labeled with Iodine-131. Biological distribution in laboratory animals

    International Nuclear Information System (INIS)

    Colturato, Maria Tereza; Muramoto, Emiko; Carvalho, Olga Goncalves de

    2000-01-01

    The development of this work was based on a great interest from the medical class in the utilization of chloridrate of N-isopropyl-p-iodoamphetamine (IMP) labeled with 123 I, for brain perfusion evaluation. Studies were performed to optimize the labeling parameters of IMP with 131 I using nucleophilic substitution: temperature and, time reaction, ascorbic acid mass, pH and relation IMP mass/radioiodo activity, and stability of the final product. Radiochemistry purity method used showed to be efficient, quick and of easily handling for routine production. Biological distribution studies were performed in mice to determine the percent administered dose in the blood, different organs and whole body after intravenous administration of the radiopharmaceutical. The product crossed the intact blood brain barrier, allowing a follow up of further studies after the intravenous administration of the radiopharmaceutical. The principal elimination route 131 I-IMP was the urinary. Based on the results from radiochemical purity, stability and biological behavior in laboratory animals, we concluded that the studied radiopharmaceutical presents all ideal characteristics for clinical use in brain studies in nuclear medicine. (author)

  15. Ice and Atoms: experiments with laboratory-based positron beams

    International Nuclear Information System (INIS)

    Coleman, P G

    2011-01-01

    This short review presents results of new positron and positronium (Ps) experiments in condensed matter and atomic physics, as an illustration of the satisfying variety of scientific endeavours involving positron beams which can be pursued with relatively simple apparatus in a university laboratory environment. The first of these two studies - on ice films - is an example of how positrons and Ps can provide new insights into an important system which has been widely interrogated by other techniques. The second is an example of how simple positron beam systems can still provide interesting information - here on a current interesting fundamental problem in positron atomic physics.

  16. Hyperthermia: from the clinic to the laboratory and back again

    International Nuclear Information System (INIS)

    Maher, E.J.

    1989-01-01

    Murine tumours have been used extensively to investigate the effects of heat and radiation, but there are significant differences between controlled laboratory studies and relatively uncontrolled clinical experience. From 1983 to 1986 a simple clinical system was developed in order to investigate biological questions in the clinic. This involved identifying a suitable patient population, reliable heating and thermometry, and methods of evaluating response of human tumours and their vasculature. (author)

  17. Solid deuterated water in space: detection constraints from laboratory experiments

    Science.gov (United States)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  18. Benveniste’s Experiments Explained by a Non-Conventional Experimenter Effect

    Directory of Open Access Journals (Sweden)

    Francis Beauvais

    2018-03-01

    Full Text Available Background: Benveniste’s biology experiments suggested the existence of molecular-like effects without molecules (“memory of water”. In this article, it is proposed that these disputed experiments could have been the consequence of a previously unnoticed and non-conventional experimenter effect. Methods: A probabilistic modelling is built in order to describe an elementary laboratory experiment. A biological system is modelled with two possible states (“resting” and “activated” and exposed to two experimental conditions labelled “control” and “test”, but both are biologically inactive. The modelling takes into account not only the biological system, but also the experimenters. In addition, an outsider standpoint is adopted to describe the experimental situation. Results: A classical approach suggests that, after experiment completion, the “control” and “test” labels of biologically-inactive conditions should both be associated with the “resting” state (i.e., no significant relationship between labels and system states. However, if the fluctuations of the biological system are also considered, a quantum-like relationship emerges and connects labels and system states (analogous to a biological “effect” without molecules. Conclusions: No hypotheses about water properties or other exotic explanations are needed to describe Benveniste’s experiments, including their unusual features. This modelling could be extended to other experimental situations in biology, medicine, and psychology.

  19. Detection of the "cp4 epsps" Gene in Maize Line NK603 and Comparison of Related Protein Structures: An Advanced Undergraduate Experiment

    Science.gov (United States)

    Swope, Nicole K.; Fryfogle, Patrick J.; Sivy, Tami L.

    2015-01-01

    A flexible, rigorous laboratory experiment for upper-level biochemistry undergraduates is described that focuses on the Roundup Ready maize line. The work is appropriate for undergraduate laboratory courses that integrate biochemistry, molecular biology, or bioinformatics. In this experiment, DNA is extracted and purified from maize kernel and…

  20. Analytical quality assurance in laboratories using tracers for biological and environmental studies

    International Nuclear Information System (INIS)

    Melaj, Mariana; Martin, Olga; Lopez, Silvia; Rojas de Tramontini, Susana

    1999-01-01

    This work describe the way we are organizing a quality assurance system to apply in the analytical measurements of the relation 14 N/ 15 N in biological and soil material. The relation 14 / 15 is measured with a optic emission spectrometer (NOI6PC), which distinguish the differences in wave length of electromagnetic radiation emitted by N-28, N-29 and N-30. The major problem is the 'cross contamination' of samples with different enrichments. The elements that are been considered to reach satisfactory analytical results are: 1) A proper working area; 2) The samples must be homogeneous and the samples must represent the whole sampled system; 3) The use of reference materials. In each digestion, a known reference sample must be added; 4) Adequate equipment operation; 5) Standard operating procedures; 6) Control charts, laboratory and equipment books. All operations using the equipment is registered in a book; 7) Training of the operators. (author)

  1. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    Science.gov (United States)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  2. Operational experience at RCD and FCD laboratories during various ventilation conditions

    International Nuclear Information System (INIS)

    Murali, S.; Ashok Kumar, P.; Thanamani, M.; Rath, D.P.; Sapkal, J.A.; Raman, Anand

    2007-01-01

    Radiochemistry and Fuel Chemistry wing of Radiological Laboratory facility has various radio-chemical operations on isotopes of plutonium and trans-plutonium elements, carried out under containment and safe operational conditions. The ventilation provided to the facility is a Once - through system. The ventilation system is designed with separate headers for laboratory and glove box exhausts. There is scheduled periodic shut down of ventilation system for maintenance during non-occupancy hours/week ends. The buildup of natural α - emitters activity due to ventilation shut down, observed to be prevailing on stack air sample filter papers after the ventilation startup, is studied. The paper describes the operational experience gained over a period during ventilation shut down and suggests the course of remedial action for reducing the internal exposure due to build up of natural α - emitters and their progenies. (author)

  3. Influencing attitudes toward science through field experiences in biology

    Science.gov (United States)

    Carpenter, Deborah Mcintyre

    The purpose of this study was to determine how student attitudes toward science are influenced by field experiences in undergraduate biology courses. The study was conducted using two institutions of higher education including a 2-year lower-level and a 2-year upper-level institution. Data were collected through interviews with student participants, focus group discussions, students' journal entries, and field notes recorded by the researcher during the field activities. Photographs and video recordings were also used as documentation sources. Data were collected over a period of 34 weeks. Themes that emerged from the qualitative data included students' beliefs that field experiences (a) positively influence student motivation to learn, (b) increase student ability to learn the concepts being taught, and (c) provide opportunities for building relationships and for personal growth. The findings of the study reinforce the importance of offering field-study programs at the undergraduate level to allow undergraduate students the opportunity to experience science activities in a field setting. The research study was framed by the behavioral and developmental theories of attitude and experience including the Theory of Planned Behavior (Ajzen, 1991) and the Theory of Experiential Learning (Kolb, 1984).

  4. Low-cost nonlinear optics experiment for undergraduate instructional laboratory and lecture demonstration

    Science.gov (United States)

    Turchiello, Rozane de F.; Pereira, Luiz A. A.; Gómez, Sergio L.

    2017-07-01

    This paper presents a simple and affordable experiment on the thermal lens effect, suitable for an undergraduate educational laboratory or as a tabletop demonstration in a lecture on nonlinear optics. Such an experiment exploits the formation of a lens in an absorbing medium illuminated by a laser beam with a Gaussian intensity profile. As an absorber, we use a commercial soy sauce, which exhibits a strong thermal lensing effect. Additionally, we show how to measure the radius of a Gaussian beam using the knife-edge method, and how to estimate the focal length of the induced thermal lens.

  5. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  6. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    Science.gov (United States)

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  7. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  8. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  9. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  10. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  11. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  12. The preventive Control of White Root Rot Disease in Small Holder Rubber Plantation Using Botanical, Biological and Chemical Agents

    Directory of Open Access Journals (Sweden)

    Joko Prasetyo

    2014-03-01

    Full Text Available The preventive control of white root rot disease in small holder plantation using botanical, biological, and chemical agents. A field and laboratory experiment were conducted from June 2008 to December 2009 in Panumangan, Tulang Bawang - Lampung. The  field experiment was intended to evaluate the effect of  botanical plants (Alpinia galanga, Sansiviera auranthii, and Marantha arundinacea, biological agents (organic matter and Trichoderma spp., and chemical agents (lime and natural sulphur on the incidence of white root rot disease and population of some soil microbes. The laboratory experiment was conducted  to observe the mechanism of botanical agents  in controlling white root rot disease. In the field experiment, the treatments were applied  in the experimental plot with cassava plant infection as the indicator. The variables  examined were the incidence of  white root rot and population of soil microbes. In the laboratory experiment, culture of R. microporus was grown in PDA containing root exudate of the antagonistic plant (botanical agent. The variable examined was colony diameter of R. microporus growing in the PDA plates. The results of the  field experiment  showed that planting of the botanical agents, and application of Trichoderma spp., as well as natural sulphur, decreased the incidence of white root rot disease. The effectiveness of M. arundinacea and Trichoderma spp. was comparable to natural  sulphur. The laboratory experiment showed only root exudate of  A. galanga and  S. auranthii that were significantly inhibit the growth of R. microporus.

  13. Biological Assessment of the Continued Operation of Los Alamos National Laboratory on Federally Listed Threatened and Endangered Species

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Ecology and Air Quality Group

    2006-09-19

    This biological assessment considers the effects of continuing to operate Los Alamos National Laboratory on Federally listed threatened or endangered species, based on current and future operations identified in the 2006 Site-wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory (SWEIS; DOE In Prep.). We reviewed 40 projects analyzed in the SWEIS as well as two aspects on ongoing operations to determine if these actions had the potential to affect Federally listed species. Eighteen projects that had not already received U.S. Fish and Wildlife Service (USFWS) consultation and concurrence, as well as the two aspects of ongoing operations, ecological risk from legacy contaminants and the Outfall Reduction Project, were determined to have the potential to affect threatened or endangered species. Cumulative impacts were also analyzed.

  14. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  15. The testing effect for mediator final test cues and related final test cues in online and laboratory experiments.

    Science.gov (United States)

    Coppens, Leonora C; Verkoeijen, Peter P J L; Bouwmeester, Samantha; Rikers, Remy M J P

    2016-05-31

    The testing effect is the finding that information that is retrieved during learning is more often correctly retrieved on a final test than information that is restudied. According to the semantic mediator hypothesis the testing effect arises because retrieval practice of cue-target pairs (mother-child) activates semantically related mediators (father) more than restudying. Hence, the mediator-target (father-child) association should be stronger for retrieved than restudied pairs. Indeed, Carpenter (2011) found a larger testing effect when participants received mediators (father) than when they received target-related words (birth) as final test cues. The present study started as an attempt to test an alternative account of Carpenter's results. However, it turned into a series of conceptual (Experiment 1) and direct (Experiment 2 and 3) replications conducted with online samples. The results of these online replications were compared with those of similar existing laboratory experiments through small-scale meta-analyses. The results showed that (1) the magnitude of the raw mediator testing effect advantage is comparable for online and laboratory experiments, (2) in both online and laboratory experiments the magnitude of the raw mediator testing effect advantage is smaller than in Carpenter's original experiment, and (3) the testing effect for related cues varies considerably between online experiments. The variability in the testing effect for related cues in online experiments could point toward moderators of the related cue short-term testing effect. The raw mediator testing effect advantage is smaller than in Carpenter's original experiment.

  16. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    International Nuclear Information System (INIS)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-01-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  17. Biocoder: A programming language for standardizing and automating biology protocols.

    Science.gov (United States)

    Ananthanarayanan, Vaishnavi; Thies, William

    2010-11-08

    Published descriptions of biology protocols are often ambiguous and incomplete, making them difficult to replicate in other laboratories. However, there is increasing benefit to formalizing the descriptions of protocols, as laboratory automation systems (such as microfluidic chips) are becoming increasingly capable of executing them. Our goal in this paper is to improve both the reproducibility and automation of biology experiments by using a programming language to express the precise series of steps taken. We have developed BioCoder, a C++ library that enables biologists to express the exact steps needed to execute a protocol. In addition to being suitable for automation, BioCoder converts the code into a readable, English-language description for use by biologists. We have implemented over 65 protocols in BioCoder; the most complex of these was successfully executed by a biologist in the laboratory using BioCoder as the only reference. We argue that BioCoder exposes and resolves ambiguities in existing protocols, and could provide the software foundations for future automation platforms. BioCoder is freely available for download at http://research.microsoft.com/en-us/um/india/projects/biocoder/. BioCoder represents the first practical programming system for standardizing and automating biology protocols. Our vision is to change the way that experimental methods are communicated: rather than publishing a written account of the protocols used, researchers will simply publish the code. Our experience suggests that this practice is tractable and offers many benefits. We invite other researchers to leverage BioCoder to improve the precision and completeness of their protocols, and also to adapt and extend BioCoder to new domains.

  18. Diffusion Experiments with Opalinus and Callovo-Oxfordian Clays: Laboratory, Large-Scale Experiments and Microscale Analysis by RBS

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Alonso, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2009-01-01

    Consolidated clays are potential host rocks for deep geological repositories for high-level radioactive waste. Diffusion is the main transport process for radionuclides (RN) in these clays. Radionuclide (RN) diffusion coefficients are the most important parameters for Performance Assessment (PA) calculations of clay barriers. Different diffusion methodologies were applied at a laboratory scale to analyse the diffusion behaviour of a wide range of RN. Main aims were to understand the transport properties of different RNs in two different clays and to contribute with feasible methodologies to improve in-situ diffusion experiments, using samples of larger scale. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed, together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), for diffusion analyses at the micrometer scale. The main experimental and theoretical characteristics of the different methodologies, and their advantages and limitations are here discussed. Experiments were performed with the Opalinus and the Callovo-Oxfordian clays. Both clays are studied as potential host rock for a repository. Effective diffusion coefficients ranged between 1.10 - 10 to 1.10 - 12 m 2 /s for neutral, low sorbing cations (as Na and Sr) and anions. Apparent diffusion coefficients for strongly sorbing elements, as Cs and Co, are in the order of 1.10-13 m 2 /s; europium present the lowest diffusion coefficient (5.10 - 15 m 2 /s). The results obtained by the different approaches gave a comprehensive database of diffusion coefficients for RN with different transport behaviour within both clays. (Author) 42 refs

  19. An evaluation of community college student perceptions of the science laboratory and attitudes towards science in an introductory biology course

    Science.gov (United States)

    Robinson, Nakia Rae

    The science laboratory is an integral component of science education. However, the academic value of student participation in the laboratory is not clearly understood. One way to discern student perceptions of the science laboratory is by exploring their views of the classroom environment. The classroom environment is one determinant that can directly influence student learning and affective outcomes. Therefore, this study sought to examine community college students' perceptions of the laboratory classroom environment and their attitudes toward science. Quantitative methods using two survey instruments, the Science Laboratory Environment Instrument (SLEI) and the Test of Science Related Attitudes (TORSA) were administered to measure laboratory perceptions and attitudes, respectively. A determination of differences among males and females as well as three academic streams were examined. Findings indicated that overall community college students had positive views of the laboratory environment regardless of gender of academic major. However, the results indicated that the opportunity to pursue open-ended activities in the laboratory was not prevalent. Additionally, females viewed the laboratory material environment more favorably than their male classmates did. Students' attitudes toward science ranged from favorable to undecided and no significant gender differences were present. However, there were significantly statistical differences between the attitudes of nonscience majors compared to both allied health and STEM majors. Nonscience majors had less positive attitudes toward scientific inquiry, adoption of scientific attitudes, and enjoyment of science lessons. Results also indicated that collectively, students' experiences in the laboratory were positive predicators of their attitudes toward science. However, no laboratory environment scale was a significant independent predictor of student attitudes. .A students' academic streams was the only significant

  20. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    Science.gov (United States)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  1. Small Laccase from "Streptomyces Coelicolor"--An Ideal Model Protein/Enzyme for Undergraduate Laboratory Experience

    Science.gov (United States)

    Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta

    2018-01-01

    A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…

  2. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  3. Numerical analysis of biological clogging in two-dimensional sand box experiments

    DEFF Research Database (Denmark)

    Kildsgaard, J.; Engesgaard, Peter Knudegaard

    2001-01-01

    Two-dimensional models for biological clogging and sorptive tracer transport were used to study the progress of clogging in a sand box experiment. The sand box had been inoculated with a strip of bacteria and exposed to a continuous injection of nitrate and acetate. Brilliant Blue was regularly...... injected during the clogging experiment and digital images of the tracer movement had been converted to concentration maps using an image analysis. The calibration of the models to the Brilliant Blue observations shows that Brilliant Blue has a solid biomass dependent sorption that is not compliant...... with the assumed linear constant Kd behaviour. It is demonstrated that the dimensionality of sand box experiments in comparison to column experiments results in a much lower reduction in hydraulic conductivity Žfactor of 100. and that the bulk hydraulic conductivity of the sand box decreased only slightly. However...

  4. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  5. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  6. Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments

    OpenAIRE

    S. M. Oswald; H. Pietsch; D. J. Baumgartner; P. Weihs; H. E. Rieder

    2017-01-01

    This study investigates effects of ambient meteorology on the accuracy of radiation measurements performed with pyranometers contained in various heating/ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spr...

  7. In situ and laboratory migration experiments through boom clay at Mol

    International Nuclear Information System (INIS)

    Preter, P. de; Put, M.; Canniere, P. de

    1993-01-01

    Physico-chemical characterization and migration studies in the Boom clay, envisaged as a potential host sediment for high level waste disposal in Belgium, were started some 15 years ago. A synthesis study of this experimental work has recently been conducted to compile all available data. From a comparison of the available migration data and the data requirements as derived from the performance assessment studies PAGIS (1988) and PACOMA (1991) the new migration programme (1991-1995) was defined. The critical radionuclides, both with relation to dose rates to man and to missing or unreliable migration data, turned out to be 14 C, 99 Tc. 135 Cs and 237 Np. A second group of radionuclides was found to be possibly critical: 79 Se, 93 Zr, 107 Pd, U - , Am - , Cm - , and Pu-isotopes. This report concentrates on the experimental results as obtained from the migration experiments started in the previous migration programme. Some of the reported radionuclides e.g. 90 Sr) have lost their critical character and will not be further studied within the new programme. New experimental data from laboratory tests have become available for Np, Cs, Sr and C (as HC0 3 - ) and the first results on the migration of organic molecules dissolved in the interstitial Boom clay water are reported. The hydraulic parameters (the hydraulic conductivity K and the storage coefficient S o ) were calculated from both laboratory percolation experiments and in situ piezometric measurements. Conclusions concerning Boom clay anisotropy are drawn. Finally, a short description of the ongoing in situ HTO injection experiment is given and the experimental data are analyzed and discussed. 10 refs., 4 figs., 1 tab

  8. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  9. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  10. EXPERIENCE OF THE ORGANIZATION OF VIRTUAL LABORATORIES ON THE BASIS OF TECHNOLOGIES OF CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    V. Oleksyuk

    2014-06-01

    Full Text Available The article investigated the concept of «virtual laboratory». This paper describes models of deploying of cloud technologies in IT infrastructure. The hybrid model is most recent for higher educational institution. The author suggests private cloud platforms to deploying the virtual laboratory. This paper describes the experience of the deployment enterprise cloud in IT infrastructure of Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University. The object of the research are virtual laboratories as components of IT infrastructure of higher education. The subject of the research are clouds as base of deployment of the virtual laboratories. Conclusions. The use of cloud technologies in the development virtual laboratories of the is an actual and need of the development. The hybrid model is the most appropriate in the deployment of cloud infrastructure of higher educational institution. It is reasonable to use the private (Cloudstack, Eucalyptus, OpenStack cloud platform in the universities.

  11. The Importance of Pupils' Interests and Out-of-School Experiences in Planning Biology Lessons

    Science.gov (United States)

    Uitto, Anna; Juuti, Kalle; Lavonen, Jari; Meisalo, Veijo

    2008-01-01

    How to make learning more interesting is a basic challenge for school education. In this Finnish study, the international ROSE questionnaire was used to survey, during spring of 2003, the relationship between interest in biology and out-of-school experiences for 3626 ninth-grade pupils. Interest and experience factors were extracted by using the…

  12. The great ideas of biology: Exploration through experimentation in an undergraduate lab course

    OpenAIRE

    Finch, L.; Horii, C. V.; Phillips, R.; Bois, J. S.

    2016-01-01

    We developed an introductory laboratory course to provide a visceral experience that aims at getting students truly excited about scientific study of the living world. Our vehicle to do that was to focus on what Paul Nurse dubbed “the great ideas of biology” rather than an approach to biology that celebrates specific factual knowledge. To that end, we developed eight diverse experimental modules, each of which highlights a key biological concept and gives an opportunity to use theory to g...

  13. A Laboratory experiment on vermicomposting of winery residues and sewage sledge

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, M. D.; Molina, M. J.; Llinares, J.; Pons, V.; Pallares, L.

    2009-07-01

    Organic waste addition to agricultural soils is proposed as a disposal strategy to improve the structural properties and organic matter content of soils. In this work, the results obtained after a vermicomposting process are reported. The process has been performed mixing rabitt crop wastes with increasing addition of either vinasse bio solids or municipal sewage sludges. For this purpose, a laboratory experiment was conducted in which both wastes were inoculated with earthworms (Eisenia foetida) and maintained under controlled conditions for 4 months. (Author)

  14. A Laboratory experiment on vermicomposting of winery residues and sewage sledge

    International Nuclear Information System (INIS)

    Soriano, M. D.; Molina, M. J.; Llinares, J.; Pons, V.; Pallares, L.

    2009-01-01

    Organic waste addition to agricultural soils is proposed as a disposal strategy to improve the structural properties and organic matter content of soils. In this work, the results obtained after a vermicomposting process are reported. The process has been performed mixing rabitt crop wastes with increasing addition of either vinasse bio solids or municipal sewage sludges. For this purpose, a laboratory experiment was conducted in which both wastes were inoculated with earthworms (Eisenia foetida) and maintained under controlled conditions for 4 months. (Author)

  15. An intercomparison of γ-spectrometry on two samples of biological origin by eight laboratories in four countries

    International Nuclear Information System (INIS)

    Twining, J.R.

    1996-01-01

    This report gives details of the first inter-laboratory comparison of γ-spectrometry to be run within SPERA, the South Pacific Environmental Radioactivity Association since its inauguration in 1991. Laboratories in Australia, Chile, French Polynesia and New Zealand participated in the exercise. Two 'unknown' samples of biological origin were analysed. The first was a sample of milk powder derived from IAEA reference material. This sample provided an assessment of overall accuracy of 134 Cs, 137 Cs and 40 K determinations. The second sample consisted of dried fish flesh including natural 40 K and spiked with a mixed nuclide solution containing 210 Pb, 109 Cd, 54 Mn, 60 Co and trace 133 Ba. Together the samples gave information on analytical precision over a range of energies and activities. When the results were compared with the recommended values and confidence intervals of the IAEA reference material, the overall accuracy of the γ-spectrometry analytical procedures was found to be good. The average mean values for combined laboratory data fell within the recommended value ranges for each isotope. Ninety percent of the individual laboratory isotope mean values were within two standard errors of the 95% confidence interval of the standard, 75% were within 1 s.e., and 33% of the analyses fell within the confidence interval. The largest sources of error were derived from reporting and calculating of results which gave a 16% gross error rate. (Author)

  16. A Survey on Faculty Perspectives on the Transition to a Biochemistry Course-Based Undergraduate Research Experience Laboratory

    Science.gov (United States)

    Craig, Paul A.

    2017-01-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for "in silico" prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown…

  17. Biological effects of transuranium elements in experimental animals

    International Nuclear Information System (INIS)

    Bair, W.J.

    1975-01-01

    Results are reported from life span studies of the biological effects of the transuranium elements ( 238 Pu, 239 Pu, 241 Am, and 242 Cm) on laboratory animals following inhalation, skin absorption, or injection in various chemical forms. The dose levels at which major biological effects have been observed in experimental animals are discussed relative to the maximum permissible lung burden of 0.016 μCi for occupational exposures. Lung cancer has been observed at dose levels equivalent to about 100 times the maximum permissible lung burden. Current experiments directed towards determining whether health effects will occur at lower levels and the mechanisms by which α emitters induce cancer are reviewed. (U.S.)

  18. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    Science.gov (United States)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-01-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…

  19. Ranking protective coatings: Laboratory vs. field experience

    Science.gov (United States)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  20. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    Science.gov (United States)

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  1. If you pay peanuts: a laboratory experiment on reward schemes in employment service contracting

    NARCIS (Netherlands)

    van de Meerendonk, A.; Onderstal, S.

    2010-01-01

    The design of tenders and contracts is a crucial factor in the success or failure of the contracting-out of reintegration services. In a laboratory experiment with professionals from private reintegration service providers, we tested two tender designs. In the first design, the government announces

  2. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  3. A CMOS active pixel sensor system for laboratory- based x-ray diffraction studies of biological tissue

    International Nuclear Information System (INIS)

    Bohndiek, Sarah E; Cook, Emily J; Arvanitis, Costas D; Olivo, Alessandro; Royle, Gary J; Clark, Andy T; Prydderch, Mark L; Turchetta, Renato; Speller, Robert D

    2008-01-01

    X-ray diffraction studies give material-specific information about biological tissue. Ideally, a large area, low noise, wide dynamic range digital x-ray detector is required for laboratory-based x-ray diffraction studies. The goal of this work is to introduce a novel imaging technology, the CMOS active pixel sensor (APS) that has the potential to fulfil all these requirements, and demonstrate its feasibility for coherent scatter imaging. A prototype CMOS APS has been included in an x-ray diffraction demonstration system. An industrial x-ray source with appropriate beam filtration is used to perform angle dispersive x-ray diffraction (ADXRD). Optimization of the experimental set-up is detailed including collimator options and detector operating parameters. Scatter signatures are measured for 11 different materials, covering three medical applications: breast cancer diagnosis, kidney stone identification and bone mineral density calculations. Scatter signatures are also recorded for three mixed samples of known composition. Results are verified using two independent models for predicting the APS scatter signature: (1) a linear systems model of the APS and (2) a linear superposition integral combining known monochromatic scatter signatures with the input polychromatic spectrum used in this case. Cross validation of experimental, modelled and literature results proves that APS are able to record biologically relevant scatter signatures. Coherent scatter signatures are sensitive to multiple materials present in a sample and provide a means to quantify composition. In the future, production of a bespoke APS imager for x-ray diffraction studies could enable simultaneous collection of the transmitted beam and scattered radiation in a laboratory-based coherent scatter system, making clinical transfer of the technique attainable

  4. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    Science.gov (United States)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  5. "Sickle cell anemia: tracking down a mutation": an interactive learning laboratory that communicates basic principles of genetics and cellular biology.

    Science.gov (United States)

    Jarrett, Kevin; Williams, Mary; Horn, Spencer; Radford, David; Wyss, J Michael

    2016-03-01

    "Sickle cell anemia: tracking down a mutation" is a full-day, inquiry-based, biology experience for high school students enrolled in genetics or advanced biology courses. In the experience, students use restriction endonuclease digestion, cellulose acetate gel electrophoresis, and microscopy to discover which of three putative patients have the sickle cell genotype/phenotype using DNA and blood samples from wild-type and transgenic mice that carry a sickle cell mutation. The inquiry-based, problem-solving approach facilitates the students' understanding of the basic concepts of genetics and cellular and molecular biology and provides experience with contemporary tools of biotechnology. It also leads to students' appreciation of the causes and consequences of this genetic disease, which is relatively common in individuals of African descent, and increases their understanding of the first principles of genetics. This protocol provides optimal learning when led by well-trained facilitators (including the classroom teacher) and carried out in small groups (6:1 student-to-teacher ratio). This high-quality experience can be offered to a large number of students at a relatively low cost, and it is especially effective in collaboration with a local science museum and/or university. Over the past 15 yr, >12,000 students have completed this inquiry-based learning experience and demonstrated a consistent, substantial increase in their understanding of the disease and genetics in general. Copyright © 2016 The American Physiological Society.

  6. Diffusion Experiments with Opalinus and Callovo-Oxfordian Clays: Laboratory, Large-Scale Experiments and Microscale Analysis by RBS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2009-09-25

    Consolidated clays are potential host rocks for deep geological repositories for high-level radioactive waste. Diffusion is the main transport process for radionuclides (RN) in these clays. Radionuclide (RN) diffusion coefficients are the most important parameters for Performance Assessment (PA) calculations of clay barriers. Different diffusion methodologies were applied at a laboratory scale to analyse the diffusion behaviour of a wide range of RN. Main aims were to understand the transport properties of different RNs in two different clays and to contribute with feasible methodologies to improve in-situ diffusion experiments, using samples of larger scale. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed, together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), for diffusion analyses at the micrometer scale. The main experimental and theoretical characteristics of the different methodologies, and their advantages and limitations are here discussed. Experiments were performed with the Opalinus and the Callovo-Oxfordian clays. Both clays are studied as potential host rock for a repository. Effective diffusion coefficients ranged between 1.10{sup -}10 to 1.10{sup -}12 m{sup 2}/s for neutral, low sorbing cations (as Na and Sr) and anions. Apparent diffusion coefficients for strongly sorbing elements, as Cs and Co, are in the order of 1.10-13 m{sup 2}/s; europium present the lowest diffusion coefficient (5.10{sup -}15 m{sup 2}/s). The results obtained by the different approaches gave a comprehensive database of diffusion coefficients for RN with different transport behaviour within both clays. (Author) 42 refs.

  7. Cleaning and dismantling of a high activity laboratory (abstract and presentation slides)

    Energy Technology Data Exchange (ETDEWEB)

    Bredel; Thierry; Buzare, Alain

    2005-01-01

    The high activity laboratories have been built at the end of the 50ies. The particularity of this facility was that about 14 different laboratories worked in 14 different fields (biology, production of Cs and Cf sources, metallurgy, mechanical testing ...). Because of the optimization of the nuclear research, the CEA decided to close progressively this facility and to transfer the different experiments in other places. This action began in 1997 and is planed to end in 2010. 6 laboratories have been closed from 1997 to 2001 and the dismantling of the shielded cells has begun since 2002. Therefore, several laboratories have been cleaned of the materials and experiments. Nevertheless, the main particularity of this subject is that some experimental activities have been pursued during the cleaning and dismantling of other laboratories. For example, we describe the dismantling of the laboratory that performed metallurgical and mechanical characterization of irradiated materials. This laboratory occupied 20 lead cells and 2 glove boxes. The exploitation of those cells has been stopped progressively (12 at the end of 2001 and 5 at the end of 2003). The end of the last 3 cell exploitation is planed to end 2005. Since the end of 2001, 9 lead cells have been cleaned. Their dismantling is planed for next the two years. In parallel, we will clean all the other cells. During this phase we will have also to transfer all the irradiated samples (about 5000) that are still in the laboratory to the waste treatment facility of the CEA centre or to the new laboratory which has been presented during the previous hotlab meeting in Saclay. The paper gives details for background about ended operations: Organization, waste production, specific designs which improve radioprotection, waste destinations and costs, Difficulties and feedback experience of dismantling. (Author)

  8. Part I: Virtual laboratory versus traditional laboratory: Which is more effective for teaching electrochemistry? Part II: The green synthesis of aurones using a deep eutectic solvent

    Science.gov (United States)

    Hawkins, Ian C.

    The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic

  9. Hormones and Antibiotics in Nature: A Laboratory Module Designed to Broaden Undergraduate Perspectives on Typically Human-Centered Topics

    Directory of Open Access Journals (Sweden)

    Carolyn F. Weber

    2014-07-01

    Full Text Available Bringing discovery-based research into undergraduate laboratory courses increases student motivation and learning gains over traditional exercises that merely teach technique or demonstrate well-documented phenomena. Laboratory experiences are further enhanced when they are designed to challenge student perspectives on topics relevant to their lives. To this end, a laboratory module on antibiotics and hormones, which are generally discussed in the context of human health, was developed for students to explore the multifaceted roles of antibiotics and hormones in nature (e.g. interspecies communication via reading primary scientific literature and performing discovery-based experiments. The main objective of this module was to increase the general biological literacy of students as determined by their ability to connect the Five Core Concepts of Biological Literacy (American Association for the Advancement of Science, Vision and Change in Undergraduate Education: A Call to Action, 2011 to the topics “hormones” and “antibiotics” in pre- and postmodule surveys. After discussing unpublished research findings, cell biology students performed experiments demonstrating that: 1 fungi may promote fern growth via hormone production, 2 novel bacterial isolates in the genus Streptomyces produce antifungal compounds, and 3 subinhibitory antibiotic concentrations may enhance soil bacterial growth. The third finding provided evidence supporting a hypothesis framed in a scientific article that students read and discussed. Student perspectives on premodule surveys focused on roles of hormones and antibiotics in the human body (e.g. development, fighting infection, but their broadened postmodule perspectives encompassed the roles of these molecules in organismal communication and possibly the evolution of multicellularity.

  10. Multichannel microformulators for massively parallel machine learning and automated design of biological experiments

    Science.gov (United States)

    Wikswo, John; Kolli, Aditya; Shankaran, Harish; Wagoner, Matthew; Mettetal, Jerome; Reiserer, Ronald; Gerken, Gregory; Britt, Clayton; Schaffer, David

    Genetic, proteomic, and metabolic networks describing biological signaling can have 102 to 103 nodes. Transcriptomics and mass spectrometry can quantify 104 different dynamical experimental variables recorded from in vitro experiments with a time resolution approaching 1 s. It is difficult to infer metabolic and signaling models from such massive data sets, and it is unlikely that causality can be determined simply from observed temporal correlations. There is a need to design and apply specific system perturbations, which will be difficult to perform manually with 10 to 102 externally controlled variables. Machine learning and optimal experimental design can select an experiment that best discriminates between multiple conflicting models, but a remaining problem is to control in real time multiple variables in the form of concentrations of growth factors, toxins, nutrients and other signaling molecules. With time-division multiplexing, a microfluidic MicroFormulator (μF) can create in real time complex mixtures of reagents in volumes suitable for biological experiments. Initial 96-channel μF implementations control the exposure profile of cells in a 96-well plate to different temporal profiles of drugs; future experiments will include challenge compounds. Funded in part by AstraZeneca, NIH/NCATS HHSN271201600009C and UH3TR000491, and VIIBRE.

  11. DRDC Ottawa working standard for biological dosimetry

    International Nuclear Information System (INIS)

    Segura, T.M.; Prud'homme-Lalonde, L.; Thorleifson, E.; Lachapelle, S.; Mullins, D.; Qutob, S.; Wilkinson, D.

    2005-07-01

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  12. DRDC Ottawa working standard for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Segura, T M; Prud' homme-Lalonde, L [Defence Research and Development Canada, Ottawa, Ontario (Canada); Thorleifson, E [Health Canada, Gatineau, Quebec (Canada); Lachapelle, S; Mullins, D [JERA Consulting (Canada); Qutob, S [Health Canada, Gatineau, Quebec (Canada); Wilkinson, D

    2005-07-15

    This Standard provides quality assurance, quality control, and evaluation of the performance criteria for the purpose of accreditation of the Radiation Biology laboratory at Defence Research and Development Canada - Ottawa (DRDC Ottawa) using biological dosimetry to predict radiation exposure doses. The International Standard (ISO 19238) and the International Atomic Energy Association (IAEA) Technical Report Series No. 405 are used as guiding documents in preparation of this working document specific to the DRDC Ottawa Radiation Biology Laboratory. This Standard addresses: 1. The confidentiality of personal information, for the customer and the service laboratory; 2. The laboratory safety requirements; 3. The calibration sources and calibration dose ranges useful for establishing the reference dose-effect curves allowing the dose estimation from chromosome aberration frequency, and the minimum detection levels; 4. Transportation criteria for shipping of test samples to the laboratory; 5. Preparation of samples for analysis; 6. The scoring procedure for unstable chromosome aberrations used for biological dosimetry; 7. The criteria for converting a measured aberration frequency into an estimate of absorbed dose; 8. The reporting of results; 9. The quality assurance and quality control plan for the laboratory; and 10. Informative annexes containing examples of a questionnaire, instructions for customers, a data sheet for recording aberrations, a sample report and other supportive documents. (author)

  13. Introductory Biology Labs... They Just Aren't Sexy Enough!

    Science.gov (United States)

    Cotner, Sehoya; Gallup, Gordon G., Jr.

    2011-01-01

    The typical introductory biology curriculum includes the nature of science, evolution and genetics. Laboratory activities are designed to engage students in typical subject areas ranging from cell biology and physiology, to ecology and evolution. There are few, if any, laboratory classes exploring the biology and evolution of human sexual…

  14. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students

    Science.gov (United States)

    Eckdahl, Todd; Cronk, Brian; Andresen, Corinne; Frederick, Paul; Huckuntod, Samantha; Shinneman, Claire; Wacker, Annie; Yuan, Jason

    2014-01-01

    The Vision and Change report recommended genuine research experiences for undergraduate biology students. Authentic research improves science education, increases the number of scientifically literate citizens, and encourages students to pursue research. Synthetic biology is well suited for undergraduate research and is a growing area of science. We developed a laboratory module called pClone that empowers students to use advances in molecular cloning methods to discover new promoters for use by synthetic biologists. Our educational goals are consistent with Vision and Change and emphasize core concepts and competencies. pClone is a family of three plasmids that students use to clone a new transcriptional promoter or mutate a canonical promoter and measure promoter activity in Escherichia coli. We also developed the Registry of Functional Promoters, an open-access database of student promoter research results. Using pre- and posttests, we measured significant learning gains among students using pClone in introductory biology and genetics classes. Student posttest scores were significantly better than scores of students who did not use pClone. pClone is an easy and affordable mechanism for large-enrollment labs to meet the high standards of Vision and Change. PMID:26086659

  15. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  16. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course

    Science.gov (United States)

    Evans, Hedeel Guy; Heyl, Deborah L.; Liggit, Peggy

    2016-01-01

    This biochemistry laboratory course was designed to provide significant learning experiences to expose students to different ways of succeeding as scientists in academia and foster development and improvement of their potential and competency as the next generation of investigators. To meet these goals, the laboratory course employs three…

  18. Neutron structural biology

    International Nuclear Information System (INIS)

    Schoenborn, B.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). We investigated design concepts of neutron scattering capabilities for structural biology at spallation sources. This included the analysis of design parameters for protein crystallography as well as membrane diffraction instruments. These instruments are designed to be general user facilities and will be used by scientists from industry, universities, and other national laboratories

  19. Bioremediation of petroleum contaminated soil at CFS Alert - Laboratory scale respirometry experiment

    International Nuclear Information System (INIS)

    Haidar, S.; Bennett, J.; Jarrett, P.; Biggar, K.

    1998-01-01

    The feasibility of 'biopiling' was tested at Canadian Forces Station 'Alert', located in the high Arctic where the feasibility of bioremediation is yet to be proven. Laboratory respirometer experiments were conducted at 11 degrees C that examined the behaviour of indigenous microorganisms. Experiments were also carried out at one contaminated site. Various soil properties were analyzed, as well as total petroleum hydrocarbons. Results showed that the respirometer system functioned properly in monitoring the behaviour of microorganisms, that indigenous microorganisms were active at 11 degrees C, and that they functioned at a constant rate of oxygen consumption. These results suggest that biopiling may be feasible under the conditions existing at CFS 'Alert'. 12 refs., 5 tabs., 8 figs

  20. A synchrotron-based X-ray exposure station for radiation biology experiments

    International Nuclear Information System (INIS)

    Thompson, A.C.; Blakely, E.A.; Bjornstad, K.A.; Chang, P.Y.; Rosen, C.J.; Schwarz, R.I.

    2007-01-01

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 μm). A series of experiments have been done with a four-well slide where a stripe (100 μm widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments

  1. A synchrotron-based X-ray exposure station for radiation biology experiments

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, A.C. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)], E-mail: acthompson@lbl.gov; Blakely, E.A.; Bjornstad, K.A. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); Chang, P.Y. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States); SRI International, Menlo Park, CA (United States); Rosen, C.J.; Schwarz, R.I. [Division of Life Sciences, Lawrence Berkeley National Laboratory, Bld. 50A-6120, Berkeley, CA 94720 (United States)

    2007-11-11

    Synchrotron X-ray sources enable radiation biology experiments that are difficult with conventional sources. A synchrotron source can easily deliver a monochromatic, tunable energy, highly collimated X-ray beam of well-calibrated intensity. An exposure station at beamline 10.3.1 of the Advanced Light Source (ALS) has been developed which delivers a variable energy (5-20 keV) X-ray fan beam with very sharp edges (10-90% in less than 3 {mu}m). A series of experiments have been done with a four-well slide where a stripe (100 {mu}m widex18 mm long) of cells in each well has been irradiated and the dose varied from well to well. With this facility we have begun a series of experiments to study cells adjacent to irradiated cells and how they respond to the damage of their neighbors. Initial results have demonstrated the advantages of using synchrotron radiation for these experiments.

  2. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    International Nuclear Information System (INIS)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs

  3. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    Energy Technology Data Exchange (ETDEWEB)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  4. Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment

    Science.gov (United States)

    Friesen, J. Brent; Schretzman, Robert

    2011-01-01

    The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…

  5. Nulling interferometry for the darwin mission: laboratory demonstration experiment

    Science.gov (United States)

    Ollivier, Marc; Léger, Alain; Sekulic, Predrag; Labèque, Alain; Michel, Guy

    2017-11-01

    The DARWIN mission is a project of the European Space Agency that should allow around 2012 the search for extrasolar planets and a spectral analysis of their potential atmosphere in order to evidence gases and particularly tracers of life. The principle of the instrument is based on the Bracewell nulling interferometer. It allows high angular resolution and high dynamic range. However, this concept, proposed more than 20 years ago, has never been experimentally demonstrated in the thermal infrared with high levels of extinction. We present here a laboratory monochromatic experiment dedicated to this goal. A theoretical and numerical approach of the question highlights a strong difficulty: the need for very clean and homogeneous wavefronts, in terms of intensity, phase and polarisation distribution. A classical interferometric approach appears to be insufficient to reach our goals. We have shown theoretically then numerically that this difficulty can be surpassed if we perform an optical filtering of the interfering beams. This technique allows us to decrease strongly the optical requirements and to view very high interferometric contrast measurements with commercial optical pieces. We present here a laboratory interferometer working at 10,6 microns, and implementing several techniques of optical filtering (pinholes and single-mode waveguides), its realisation, and its first promising results. We particularly present measurements that exhibit stable visibility levels better than 99,9% that is to say extinction levels better than 1000.

  6. An RNA Phage Lab: MS2 in Walter Fiers' laboratory of molecular biology in Ghent, from genetic code to gene and genome, 1963-1976.

    Science.gov (United States)

    Pierrel, Jérôme

    2012-01-01

    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück's phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA (mRNA), genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA due to the availability of specific RNases, enzymes used as chemical tools to analyse RNA. Finally, RNA phages provided scientists with a pure source of mRNA to investigate the genetic code, genes and even a genome sequence. This paper focuses on Walter Fiers' laboratory at Ghent University (Belgium) and their work on the RNA phage MS2. When setting up his Laboratory of Molecular Biology, Fiers planned a comprehensive study of the virus with a strong emphasis on the issue of structure. In his lab, RNA sequencing, now a little-known technique, evolved gradually from a means to solve the genetic code, to a tool for completing the first genome sequence. Thus, I follow the research pathway of Fiers and his 'RNA phage lab' with their evolving experimental system from 1960 to the late 1970s. This study illuminates two decisive shifts in post-war biology: the emergence of molecular biology as a discipline in the 1960s in Europe and of genomics in the 1990s.

  7. Biological degradation of EDTA in pulping effluents at higher pH - a laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Ek, M; Remberger, M; Allard, A S

    1999-01-01

    The biological degradation of EDTA at different pH, sludge load and sludge age has been investigated in laboratory experiments. The experiments showed that relatively fast degradation of EDTA in the form found in this waste water (from production of TMP) took place at least at pH around 8.5 with moderate COD load and high sludge age. In continuous reactors the degradation of EDTA in a pulp and paper waste water was 2-3 mg EDTA/g SS*day at both pH 7 and 8,5, and at sludge ages from 5 to 21 days. The degradation was dependent on sludge load, and no degradation was seen above 1 g COD/g SS*day. In kinetic experiments with half strength waste water the same degradation rate (1,5-2 mg EDTA/g SS*day) was found at pH 7 and at pH 8,5 with sludge of low age (9 and 5 days SRT). Much faster degradation was found at pH 8,5 with sludge of high age (21 days in the continuous experiment). The mean degradation rate was over 10 mg EDTA/g SS*day from 20 to 5 mg EDTA/l. v{sub max} was determined to be 35 mg EDTA/g SS*day and K{sub M} to 31 mg EDTA/l. COD removal was at least as good at pH 8,5 as at pH 7. Sludge properties were best at pH 8,5 and long sludge retention time (giving low sludge load). Both sludge volume index and residual suspended solids after sedimentation were lower than under normal conditions at pH 7. The direct cost for caustic lime would be about 15 SEK per ton of TMP, with a water like the one investigated here. This can vary a lot depending on starting pH and buffering capacity. Costs for addition of nitrogen source could probably be omitted, but this is normally not more than 1-2 SEK per ton of TMP. The extra need for oxygen in the treatment would not be more than some percent, but may be important if oxygen is limited. A substantial extra cost would be if the aeration volume has to be increased. According to the best results from the kinetic study, this would not be needed in an extended aeration activated plant with 2 days HRT and sludge concentrations of 2

  8. The Effect of an Open-Ended Design Experience on Student Achievement in an Engineering Laboratory Course

    Directory of Open Access Journals (Sweden)

    Matthew Cullin

    2017-11-01

    Full Text Available This study explores the effect of incorporating an Open-Ended Design Experience (OEDE into an undergraduate materials science laboratory taken by third-year mechanical engineering students. The focus of the OEDE was carbon fiber reinforced plastics and sandwich structures. The results indicate that the incorporation of OEDE’s in laboratory courses produces significant benefits in terms of student engagement, participation, and perception of competence. In addition, the OEDE was found to enhance students’ ability to apply related concepts as compared to non-OEDE lab activities. The authors conclude that the incorporation of OEDE’s can increase the effectiveness of engineering laboratory courses.

  9. Biological investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M.

    1994-10-01

    This report provides results of a comprehensive biological field survey performed on the Sandia National Laboratories Aerial Cable Facility, at the east end of Kirtland Air Force Base (KAFB), Bernalillo County, New Mexico. This survey was conducted late September through October, 1991. ACF occupies a 440-acre tract of land withdrawn by the US Forest Service (USFS) for use by KAFB, and in turn placed under operational control of SNL by the Department of Energy (DOE). All land used by SNL for ACF is part of a 15,851-acre tract of land withdrawn by the US Forest Service. In addition, a number of different organizations use the 15,851-acre area. The project area used by SNL encompasses portions of approximately six sections (3,840 acres) of US Forest Service land located within the foothills of the west side of the Manzano Mountains (East Mesa). The biological study area is used by the KAFB, the US Department of Interior, and SNL. This area includes: (1) Sol se Mete Springs and Canyon, (2) East Anchor Access Road, (3) East Anchor Site, (4) Rocket Sled Track, (5) North Arena, (6) East Instrumentation Site and Access Road, (7) West Anchor Access Road, (8) West Anchor Site, (9) South Arena, (10) Winch Sites, (11) West Instrumentation Sites, (12) Explosive Assembly Building, (13) Control Building, (14) Lurance Canyon Road and vicinity. Although portions of approximately 960 acres of withdrawn US Forest Service land have been altered, only 700 acres have been disturbed by activities associated with ACF; approximately 2,880 acres consist of natural habitat. Absence of grazing by livestock and possibly native ungulates, and relative lack of human disturbance have allowed this area to remain in a more natural vegetative state relative to the condition of private range lands throughout New Mexico. This report evaluates threatened and endangered species found on ACF, as well as a comprehensive assessment of biological habitats.

  10. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  11. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  12. Performance of the upgraded ultracold neutron source at Los Alamos National Laboratory and its implication for a possible neutron electric dipole moment experiment

    Science.gov (United States)

    Ito, T. M.; Adamek, E. R.; Callahan, N. B.; Choi, J. H.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Ding, X.; Fellers, D. E.; Geltenbort, P.; Lamoreaux, S. K.; Liu, C.-Y.; MacDonald, S.; Makela, M.; Morris, C. L.; Pattie, R. W.; Ramsey, J. C.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S.; Sprow, A. P.; Tang, Z.; Weaver, H. L.; Wei, W.; Young, A. R.

    2018-01-01

    The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was 184 (32 ) UCN /cm3 , a fourfold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be 39 (7 ) UCN /cm3 , which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of σ (dn) =3 ×10-27e cm .

  13. Performance assessment experience at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lee, D.W.

    1994-01-01

    The development of a performance assessment (PA) for low-level radioactive waste disposal operations at Oak Ridge National Laboratory (ORNL) was initiated in 1989 and is continuing. A draft PA was prepared in September 1990 and submitted to the DOE Peer Review Panel for review and comment. Recommendations were received that formed the basis for a revised PA that was completed in December 1993. The review of the revised PA is continuing. This paper reviews the experience gained in the preparation of the PA including the technical difficulties associated with performance assessment in Oak Ridge and an overview of the methods used in the PA. Changes in waste operations that resulted from the findings in the PA include improved waste acceptance criteria, waste certification, and waste management practices. The discussion includes issues that relate to the application of current performance objectives to older disposal facilities, which are being addressed as part of the CERCLA process

  14. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    Science.gov (United States)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  15. Testing the Vibrational Theory of Olfaction: A Bio-Organic Chemistry Laboratory Experiment Using Hooke's Law and Chirality

    Science.gov (United States)

    Muthyala, Rajeev S.; Butani, Deepali; Nelson, Michelle; Tran, Kiet

    2017-01-01

    Sense of smell is one of the important senses that enables us to interact with our environment. The molecular basis of olfactory signal transduction is a fascinating area for organic chemistry educators to explore in terms of developing undergraduate laboratory activities at the interface of chemistry and biology. In this paper, a guided-inquiry…

  16. Network Performance and Quality of Experience of Remote Access Laboratories

    Directory of Open Access Journals (Sweden)

    Alexander A. Kist

    2012-11-01

    Full Text Available Remote Access Laboratories (RAL have become important learning and teaching tools. This paper presents a performance study that targets a specific remote access architecture implemented within a universities operational environment. This particular RAL system provides globally authenticated and arbitrated remote access to virtualized computers as well as computer controlled hardware experiments. This paper presents system performance results that have been obtained utilizing both a set of automated and human subject tests. Principle objectives of the study were: To gain a better understanding of the nature of network traffic caused by experimental activity usage; to obtain an indication of user expectations of activity performance; and to develop a measure to predict Quality of Experience, based on easily measurable Quality of Service parameters. The study emulates network layer variation of access-bandwidth and round-trip-time of typical usage scenarios and contrasts against user perception results that allow classifying expected user performance. It demonstrates that failure rate is excellent measure of usability, and that round-trip-time predominantly affects user experience. Thin-client and remote desktop architectures are popular to separate the location of users and the actual data processing and use similar structures, hence results of this study to be applied in these application areas as well.

  17. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  18. Tracer tests and image analysis of biological clogging in a two-dimentsional sandbox experiment

    DEFF Research Database (Denmark)

    Kildsgaard, J.; Engesgaard, Peter Knudegaard

    2002-01-01

    A two-dimensional flow experiment on biological clogging was carried out by biostimulating a sandbox packed with sand inoculated with bacteria. Biostimulation. consisted of continuously injecting nutrients (acetate and nitrate). Clogging was visualized by frequently carrying out colored tracer...... experiments using Brilliant Blue. The tracer experiments were recorded with a digital camera and converted to concentration maps using an image-analysis method that revealed in detail the complex spreading pattern surrounding clogged areas. Clogging resulted in a finger-like spreading of the tracer around...

  19. Laboratory Impact Experiments

    Science.gov (United States)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  20. Environmental Assessment for moving the Pacific Northwest Laboratory radon generators from Life Sciences Laboratory II, Richland North Area, to Life Sciences Laboratory I, 300 Area, and their continued use in physical and biological research

    International Nuclear Information System (INIS)

    Nelson, I.C.

    1993-01-01

    The Pacific Northwest Laboratory (PNL) radon generators are a core resource of the overall U. S. Department of Energy's (DOE) Radon Research Program and are administratively controlled within the ''Radon Hazards in Homes'' project. This project primarily focuses on radon exposures of animals and addresses the major biologic effects and factors influencing risks of indoor radon exposures. For example, the ''Mechanisms of Radon Injury'' and ''In vivo/In vitro Radon-Induced Cellular Damage'' projects specifically address the cytogenetic and DNA damage produced by radon exposure as part of a larger effort to understand radon carcinogenesis. Several other ongoing PNL projects, namely: ''Biological Effectiveness of Radon Alpha Particles: A Microbeam Study of Dose Rate Effects,'' ''Laser Measurements of Pb-210,'' ''Radon Transport Modeling in Soils,'' ''Oncogenes in Radiation Carcinogenesis,'' ''Mutation of DNA Targets,'' ''Dosimetry of Radon Progeny,'' and ''Aerosol Technology Development'' also use the radon exposure facilities in the conduct of their work. While most, but not all, studies in the PNL Radon Research Program are funded through DOE's Office of Health and Environmental Research, PNL also has ongoing collaborative radon studies with investigators worldwide; many of these use the radon exposure facilities. The purpose of the proposed action is to provide for relocation of the radon generators to a DOE-owned facility and to continue to provide a controlled source of radon-222 for continued use in physical and biological research

  1. Experiences of mobility for people living with rheumatoid arthritis who are receiving biologic drug therapy: implications for podiatry services.

    Science.gov (United States)

    Sanders, Lucy; Donovan-Hall, Margaret; Borthwick, Alan; Bowen, Catherine J

    2017-01-01

    Despite significant advancements in new treatment modalities for rheumatoid arthritis with biological therapies, foot complications remain a disabling and common feature of the disease . In this study the aim was to explore and describe the personal experiences of people with rheumatoid arthritis in receipt of biologic treatments in a bid to understand the impact of this form of medication on their mobility. An interpretative phenomenological analysis (IPA) was undertaken to explore in depth the individual experience of rheumatoid disease through personal accounts of the patient journey spanning both 'before' and 'after' the instigation of biologic therapy. A purposive sampling strategy was adopted and in-depth semi structured interviews used to facilitate rich, detailed interview data exploring the lived experiences of individuals undertaking biological therapy and the changes to mobility experienced as a result. Thematic analysis was employed with an IPA framework to identify key meanings, and report patterns within the data. Five people with rheumatoid arthritis participated in the study. The mean disease duration was 20.2 years (range: 6 -32) and all were being treated with biologic therapies. Four key themes emerged from the data: 1) Life before biologic treatment, depicted in accounts as a negative experience characterised by painful and disabling symptoms and feelings of hopelessness. 2) Life with biologic treatment, often experienced as a life changing transition, restoring function and mobility and offering renewed hope. 3) Sense of self, in which the impact of rheumatoid disease and the subsequent changes arising from biologic therapy reveal a profound impact on feelings of personal identity both pre and post biologic therapy; an effect of footwear on self-image emerges as a dominant sub theme; 4) Unmet footcare needs were evident in the patient narrative, where the unrelenting if diminished impact of foot pain on mobility was viewed in the context of

  2. Factors influencing biosafety level and lai among the staff of medical laboratories

    OpenAIRE

    Anna Kozajda; Karolina Bródka; Irena Szadkowska-Stańczyk

    2013-01-01

    Background: The aim of the study was to assess the biological risks of medical laboratory employees with particular focus on laboratory acquired infection (LAI), activities having the greatest risk, accidents with biological material, post exposure procedure, preventive measures and workers' knowledge about biological exposure. Materials and Methods: The study involved 9 laboratories. A questionnaire survey was attended by 123 employees and 9 heads of these units with the use of two questionn...

  3. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  4. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  5. The status of electronic laboratory notebooks for chemistry and biology.

    Science.gov (United States)

    Taylor, Keith T

    2006-05-01

    Documenting an experiment in a way that ensures that the record can act as evidence to support a patent claim or to demonstrate compliance with the US Food and Drug Administration's (FDA's) predicate rules, puts demands on an electronic laboratory notebook (ELN) that are not trivial. The 1996 General Agreement on Tariffs and Trade (GATT) allowed notebook records that were generated outside of the US to be used to claim precedence in US patent claims. This agreement spurred interest in the development of ELNs in Europe. The pharmaceutical research process became dependent on computer systems during the latter part of the 1990s, and this also led to a wider interest in ELNs. More recently, the FDA began to encourage submissions in an all-electronic form, leading to great interest in the use of ELNs in development and manufacturing. As a result of these influences, the pharmaceutical industry is now actively pursuing ELN evaluations and implementations. This article describes some of the early efforts and the recent drivers for ELN adoption. The state of the ELN market in 2005 is also described.

  6. High-resolution emission tomography of small laboratory animals: physics and gamma-astronomy meet molecular biology

    International Nuclear Information System (INIS)

    Beekman, F.J.; Colijn, A.P.; Vastenhouw, B.; Wiegant, V.M.; Gerrits, M.A.F.M.

    2003-01-01

    Molecular imaging can be defined as the characterization and measurement of biological processes in living animals, model systems and humans at the cellular and molecular level using remote imaging detectors. An example concerns the mapping of the distributions of radioactively labeled molecules in laboratory animals which is of crucial importance for life sciences. Tomographic methods like Single Photon Emission Computed Tomography (SPECT) offer a possibility to visualize distributions of radioactively labeled molecules in living animals. Miniature tomography systems, derived from their clinical counterparts, but with a much higher image resolution are under development in several institutes. An example is U-SPECT that will be discussed in the present paper. Such systems are expected to accelerate several biomedical research procedures, the understanding of gene and protein function, as well as pharmaceutical development

  7. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    Science.gov (United States)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  8. Collaborative Systems Biology Projects for the Military Medical Community.

    Science.gov (United States)

    Zalatoris, Jeffrey J; Scheerer, Julia B; Lebeda, Frank J

    2017-09-01

    This pilot study was conducted to examine, for the first time, the ongoing systems biology research and development projects within the laboratories and centers of the U.S. Army Medical Research and Materiel Command (USAMRMC). The analysis has provided an understanding of the breadth of systems biology activities, resources, and collaborations across all USAMRMC subordinate laboratories. The Systems Biology Collaboration Center at USAMRMC issued a survey regarding systems biology research projects to the eight U.S.-based USAMRMC laboratories and centers in August 2016. This survey included a data call worksheet to gather self-identified project and programmatic information. The general topics focused on the investigators and their projects, on the project's research areas, on omics and other large data types being collected and stored, on the analytical or computational tools being used, and on identifying intramural (i.e., USAMRMC) and extramural collaborations. Among seven of the eight laboratories, 62 unique systems biology studies were funded and active during the final quarter of fiscal year 2016. Of 29 preselected medical Research Task Areas, 20 were associated with these studies, some of which were applicable to two or more Research Task Areas. Overall, studies were categorized among six general types of objectives: biological mechanisms of disease, risk of/susceptibility to injury or disease, innate mechanisms of healing, diagnostic and prognostic biomarkers, and host/patient responses to vaccines, and therapeutic strategies including host responses to therapies. We identified eight types of omics studies and four types of study subjects. Studies were categorized on a scale of increasing complexity from single study subject/single omics technology studies (23/62) to studies integrating results across two study subject types and two or more omics technologies (13/62). Investigators at seven USAMRMC laboratories had collaborations with systems biology experts

  9. Biology and bionomics of dysdercus koenigii f. (hemiptera: pyrrhocoridae) under laboratory conditions

    International Nuclear Information System (INIS)

    Jaleel, W.; Naqqash, M.N.

    2013-01-01

    Red Cotton Bug, Dysdercus koenigii F., (Hemiptera: Pyrrhocoridae) is an important pest of cotton in South East Asia. Studies were carried out during 2012 to find the effect of temperature on incubation period and to explore the reproductive biology and bionomics of D. koenigii under laboratory conditions. Minimum incubation period (4.70+-0.42 days) was recorded at 35 degree C while the eggs failed to hatch at 40 degree C at 70-75% relative humidity. There were five nymphal instars which completed their development in 23.42+-2.49 days. The female lived longer (20.85+-6.12 days) than the male (16.18+-6.06 days). Each female mated three times in her life and there was statistically significant difference in mating duration (days), number of eggs laid and hatching percentage in each mating time. Number of eggs and hatching percentage was significantly higher after 1st time mating followed by 2nd and 3rd time matings. Duration of pre-oviposition, oviposition and post oviposition period recorded was 7.47+-0.86, 12.43+-0.82 and 8.77+-2.41 days, respectively. The study will help in devising pest management strategy against D. koenigii. (author)

  10. Laboratory experiments in the study of the chemistry of the outer planets

    Science.gov (United States)

    Scattergood, Thomas W.

    1987-01-01

    It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.

  11. Oyster Reef Communities in the Chesapeake Bay: A Brief Primer. VORTEX: Virginia's Oyster Reef Teaching EXperience.

    Science.gov (United States)

    Harding, Juliana M.; Mann, Roger; Clark, Vicki P.

    This document introduces Virginia's Oyster Reef Teaching EXperience (VORTEX), which is an interdisciplinary program focusing on the importance of oyster reef communities in the Chesapeake Bay ecosystem. The VORTEX program uses field and laboratory experience supported by multimedia instruction. This document presents an overview on the biology of…

  12. Laboratory directed research and development

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  13. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  14. ASPIRE: An automated sample positioning and irradiation system for radiation biology experiments at Inter University Accelerator Centre, New Delhi

    International Nuclear Information System (INIS)

    Kothari, Ashok; Barua, P.; Archunan, M.; Rani, Kusum; Subramanian, E.T.; Pujari, Geetanjali; Kaur, Harminder; Satyanarayanan, V.V.V.; Sarma, Asitikantha; Avasthi, D.K.

    2015-01-01

    An automated irradiation setup for biology samples has been built at Inter University Accelerator Centre (IUAC), New Delhi, India. It can automatically load and unload 20 biology samples in a run of experiment. It takes about 20 min [2% of the cell doubling time] to irradiate all the 20 samples. Cell doubling time is the time taken by the cells (kept in the medium) to grow double in numbers. The cells in the samples keep growing during entire of the experiment. The fluence irradiated to the samples is measured with two silicon surface barrier detectors. Tests show that the uniformity of fluence and dose of heavy ions reaches to 2% at the sample area in diameter of 40 mm. The accuracy of mean fluence at the center of the target area is within 1%. The irradiation setup can be used to the studies of radiation therapy, radiation dosimetry and molecular biology at the heavy ion accelerator. - Highlights: • Automated positioning and irradiation setup for biology samples at IUAC is built. • Loading and unloading of 20 biology samples can be automatically carried out. • Biologicals cells keep growing during entire experiment. • Fluence and dose of heavy ions are measured by two silicon barrier detectors. • Uniformity of fluence and dose of heavy ions at sample position reaches to 2%

  15. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  16. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  17. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  18. Biological effects of high strength electric fields. Second interim progress report, September 1976--March 1977

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, R.D.; Kaune, W.T.

    1977-05-01

    This report describes progress made on the Project during the period of September 9, 1976 to March 31, 1977 towards the determination of the biological effects of high strength electric fields on small laboratory animals. The efforts to date can be divided into five categories: (1) the design, construction, and testing of a prototype and special studies exposure system; (2) the design and construction of exposure systems for rats and mice; (3) dosimetry; (4) experiments to determine the maximum field strength which does not produce corona discharge, ozone formation, shocks to the animal, hair stimulation, or a behavioral preference by rats to avoid exposure to the field; and (5) preparations for the biological screening experiments.

  19. Frederick National Laboratory's Contribution to ATOM | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    As a founding member organization of ATOM, the Frederick National Laboratory will contribute scientific expertise in precision oncology, computational chemistry and cancer biology, as well as support for open sharing of data sets and predictive model

  20. Gaining a Child: Comparing the Experiences of Biological Parents, Adoptive Parents, and Stepparents

    Science.gov (United States)

    Ceballo, Rosario; Lansford, Jennifer E.; Abbey, Antonia; Stewart, Abigail J.

    2004-01-01

    This study compares the experience of gaining a child through birth, adoption, or marriage, extending the focus of investigation beyond biological parenthood and the transition made by first-time parents. Using a subsample from the National Survey of Families and Households N=204, we compared reasons for having children, parental well-being,…

  1. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    International Nuclear Information System (INIS)

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail

  2. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    Science.gov (United States)

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  3. Practice makes pretty good: assessment of primary literature reading abilities across multiple large-enrollment biology laboratory courses.

    Science.gov (United States)

    Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark

    2014-01-01

    Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    Science.gov (United States)

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  5. On the possibility of measuring the Earth's gravitomagnetic force in a new laboratory experiment

    International Nuclear Information System (INIS)

    Iorio, Lorenzo

    2003-01-01

    In this letter we propose, in a preliminary way, a new Earth-based laboratory experiment aimed at the detection of the gravitomagnetic field of the Earth. It consists of the measurement of the difference between the circular frequencies of two rotators moving along identical circular paths, but in opposite directions, on a horizontal friction-free plane in a vacuum chamber placed at the South Pole. The accuracy to our knowledge of the Earth's rotation from VLBI and the possibility of measuring the rotators' periods over many revolutions should allow for the feasibility of the proposed experiment. (letter to the editor)

  6. [Biological research and security institutes].

    Science.gov (United States)

    Darsie, G; Falczuk, A J; Bergmann, I E

    2006-04-01

    The threat of using biological material for ago-bioterrorist ends has risen in recent years, which means that research and diagnostic laboratories, biological agent banks and other institutions authorised to carry out scientific activities have had to implement biosafety and biosecurity measures to counter the threat, while carrying out activities to help prevent and monitor the accidental or intentional introduction of exotic animal diseases. This article briefly sets outthe basic components of biosafety and biosecurity, as well as recommendations on organisational strategies to consider in laboratories that support agro-bioterrorist surveillance and prevention programs.

  7. Open source laboratory sample rotator mixer and shaker

    Directory of Open Access Journals (Sweden)

    Karankumar C. Dhankani

    2017-04-01

    Full Text Available An open-source 3-D printable laboratory sample rotator mixer is developed here in two variants that allow users to opt for the level of functionality, cost saving and associated complexity needed in their laboratories. First, a laboratory sample rotator is designed and demonstrated that can be used for tumbling as well as gentle mixing of samples in a variety of tube sizes by mixing them horizontally, vertically, or any position in between. Changing the mixing angle is fast and convenient and requires no tools. This device is battery powered and can be easily transported to operate in various locations in a lab including desktops, benches, clean hoods, chemical hoods, cold rooms, glove boxes, incubators or biological hoods. Second, an on-board Arduino-based microcontroller is incorporated that adds the functionality of a laboratory sample shaker. These devices can be customized both mechanically and functionally as the user can simply select the operation mode on the switch or alter the code to perform custom experiments. The open source laboratory sample rotator mixer can be built by non-specialists for under US$30 and adding shaking functionality can be done for under $20 more. Thus, these open source devices are technically superior to the proprietary commercial equipment available on the market while saving over 90% of the costs.

  8. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  9. Positive experiences of volunteers working in deployable laboratories in West Africa during the Ebola outbreak.

    NARCIS (Netherlands)

    Belfroid, Evelien; Mollers, Madelief; Smit, Pieter W; Hulscher, Marlies; Koopmans, Marion; Reusken, Chantal; Timen, Aura

    2018-01-01

    The largest outbreak of Ebola virus disease ever started in West Africa in December 2013; it created a pressing need to expand the workforce dealing with it. The aim of this study was to gain insight into the experiences of volunteers from the European Union who worked in deployable laboratories in

  10. Reform in a General Chemistry Laboratory: How Do Students Experience Change in the Instructional Approach?

    Science.gov (United States)

    Chopra, I.; O'Connor, J.; Pancho, R.; Chrzanowski, M.; Sandi-Urena, S.

    2017-01-01

    This qualitative study investigated the experience of a cohort of students exposed consecutively to two substantially different environments in their General Chemistry Laboratory programme. To this end, the first semester in a traditional expository programme was followed by a semester in a cooperative, problem-based, multi-week format. The focus…

  11. LabView Based Nuclear Physics Laboratory experiments as a remote teaching and training tool for Latin American Educational Centers

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Greaves, E. D.; Barros, H.; Gonzalez, W.; Rangel, A.

    2007-01-01

    A virtual laboratory via internet to provide a highly iterative and powerful teaching tool for scientific and technical discipline is given. The experimenter takes advantage of a virtual laboratory and he can execute nuclear experiment at introductory level e.g. Gamma ray detection with Geiger-Mueller Counter at remote location using internet communication technology

  12. The Laboratory Course Assessment Survey: A Tool to Measure Three Dimensions of Research-Course Design

    Science.gov (United States)

    Corwin, Lisa A.; Runyon, Christopher; Robinson, Aspen; Dolan, Erin L.

    2015-01-01

    Course-based undergraduate research experiences (CUREs) are increasingly being offered as scalable ways to involve undergraduates in research. Yet few if any design features that make CUREs effective have been identified. We developed a 17-item survey instrument, the Laboratory Course Assessment Survey (LCAS), that measures students’ perceptions of three design features of biology lab courses: 1) collaboration, 2) discovery and relevance, and 3) iteration. We assessed the psychometric properties of the LCAS using established methods for instrument design and validation. We also assessed the ability of the LCAS to differentiate between CUREs and traditional laboratory courses, and found that the discovery and relevance and iteration scales differentiated between these groups. Our results indicate that the LCAS is suited for characterizing and comparing undergraduate biology lab courses and should be useful for determining the relative importance of the three design features for achieving student outcomes. PMID:26466990

  13. The US/USSR Biological Satellite Program: COSMOS 936 Mission Overview

    Science.gov (United States)

    Souza, K. A.

    1978-01-01

    On August 3, 1977, the Soviet Union launched Cosmos 936, an unmanned spacecraft carrying biology and physics experiments from 9 countries, including both the Soviet Union and U.S. The launch marked the second time the Soviet Union has flown U.S. experiments aboard one of its spacecraft, the first being Cosmos 782 launched Nov. 25, 1975, which remained in orbit 19.5 days. Aboard Cosmos 936 were: 30 young male Wistar SPF rats, 20 of which was exposed to hypogravity during flight while the remainder were subjected to a l x g acceleration by continuous configuration; 2) experiments with plants and fruit flies; 3) radiation physics experiments; and 4) a heat convection experiment. After 18.5 days in orbit, the spacecraft landed in central Asia where a Soviet recovery team began experiment operations, including animal autopsies, within 4.5 hr of landing. Half of the animals were autopsied at the recovery site and the remainder returned to Moscow and allowed to readapt to terrestrial gravity for 25 days after which they, too, were autopsied. Specimens for U.S. were initially prepared at the recovery site or Soviet laboratories and transferred to U.S. laboratories for complete analyses. An overview of the mission focusing on preflight, on-orbit, and postflight activities pertinent to the seven U.S. experiments aboard Cosmos 936 will be presented.

  14. Laboratory measurements of immersion freezing abilities of non-proteinaceous and proteinaceous biological particulate proxies

    Science.gov (United States)

    Cory, K.; Tobo, Y.; Murata, K.; Whiteside, C. L.; McCauley, B.; Bouma, C.; Hiranuma, N.

    2017-12-01

    Non-proteinaceous and proteinaceous biological aerosols are abundant within the atmosphere and have the potential to impact the climate through cloud and precipitation formation. In this study, we present the differences in the laboratory-measured freezing capabilities of the non-proteinaceous and proteinaceous biological materials to determine which has more potential to impact the ice nucleation in the clouds. As non-proteinaceous surrogates, we examined multiple cellulose materials (e.g., microcrystalline and nanocrystalline cellulose) whose sizes range from 100 nm to >100 μm (according to manufacturer report). For proteinaceous proxies, we looked at different gram-negative bacteria, such as Pseudamonas aeruginosa, Escherichia coli, Serratia marcescens, Citrobacter freundii, and Snomax, (which contains P. syringae) that can be found around the proximity of the Texas Panhandle. By using the Cryogenic Refrigeration Applied Freezing Test (CRAFT) system, we estimated immersion freezing efficiency (i.e., ice nucleation activity scaled to a unit of mass) of each sample at the temperatures greater than -30°C. We have observed that not all gram-negative bacteria has high immersion freezing activity, but the few do have a warmer temperature onset (>-20 °C) than the cellulose used. For those that did not exhibit substantial freezing efficiencies, they had similar freezing properties as the broth, in which the bacteria were incubated, as well as the cellulose materials examined. These observations suggest the presence and potential importance of bacterial cellulose in the atmospheric ice nucleation. From here, we need to conduct more in-depth investigation in the effects of a wider variety of atmospherically relevant biological aerosols to get a better understanding of the effects of said aerosols on overall aerosol-cloud interactions. Acknowledgments: K. Cory would like to acknowledge NSF-EAPSI and JSPS Summer Program for the travel fellowship support. N. Hiranuma

  15. The beginning of Space Life Science in China exploration rockets for biological experiment during 1960's

    Science.gov (United States)

    Jiang, Peidong; Zhang, Jingxue

    The first step of space biological experiment in China was a set of five exploration rockets launched during 1964 to 1966, by Shanghai Institute of Machine and Electricity, and Institute of Biophysics of The Chinese Academy of Sciences. Three T-7AS1rockets for rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1964 and June of 1965. Two T-7AS2rockets for dog, rats, mice and other samples in a biological cabin were launched and recovered safely in July of 1966. Institute of Biophysics in charged of the general design of biological experiments, telemetry of physiological parameters, and selection and training of experiment animals. The samples on-board were: rats, mice, dogs, and test tubes with fruit fly, enzyme, bacteria, E. Coli., lysozyme, bacteriaphage, RNAase, DNAase, crystals of enzyme, etc. Physiological, biochemical, bacte-riological, immunological, genetic, histochemical studies had been conducted, in cellular and sub cellular level. The postures of rat and dog were monitored during flight and under weight-lessness. Physiological parameters of ECG, blood pressure, respiration rate, body temperature were recorded. A dog named"Xiao Bao"was flight in 1966 with video monitor, life support system and conditioned reflex equipment. It flighted for more than 20 minutes and about 70km high. After 40 years, the experimental data recorded of its four physiological parameters during the flight process was reviewed. The change of 4 parameters during various phase of total flight process were compared, analyzed and discussed.

  16. Coulometric Titration of Ethylenediaminetetraacetate (EDTA) with Spectrophotometric Endpoint Detection: An Experiment for the Instrumental Analysis Laboratory

    Science.gov (United States)

    Williams, Kathryn R.; Young, Vaneica Y.; Killian, Benjamin J.

    2011-01-01

    Ethylenediaminetetraacetate (EDTA) is commonly used as an anticoagulant in blood-collection procedures. In this experiment for the instrumental analysis laboratory, students determine the quantity of EDTA in commercial collection tubes by coulometric titration with electrolytically generated Cu[superscript 2+]. The endpoint is detected…

  17. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  18. Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment.

    Science.gov (United States)

    Kreuzinger, N; Farnleitner, A; Wandl, G; Hornek, R; Mach, R

    2003-01-01

    Incomplete nitrification at an activated sludge plant for biological pre-treatment of rendering plant effluents led to a detailed investigation on the origin and solution of this problem. Preliminary studies revealed that an inhibition of ammonia oxidising microorganisms (AOM) by process waters of the rendering plant was responsible for the situation. We were able to show a correlation between the existence of specific AOM and nitrification capacity expressed as oxygen uptake rate for maximal nitrification (OURNmax). Only Nitrosospira sp. was found in the activated sludge of the rendering plant and another industrial wastewater treatment plant with problems in nitrification, while reference plants without nitrification problems showed Nitrosomonas spp. as the predominant ammonia oxidising bacteria. By accompanying engineering investigations and experiments (cross-feeding experiments, operation of a two-stage laboratory plant) with molecular biological methods (DGGE--Denaturing Gradient Gel Electrophoresis) we were able to elaborate an applicable solution for the rendering plant. Laboratory experiments with a two-stage process layout finally provided complete nitrification overcoming the inhibiting nature of process waters from the rendering plant. DGGE analysis of the second stage activated sludge from the laboratory plant showed a shift in population structure from Nitrosospira sp. towards Nitrosomonas spp. simultaneous to the increase of nitrification capacity. Nitrification capacities comparable to full-scale municipal wastewater treatment plants could be maintained for more than two months. As the design of wastewater treatment plants for nitrification is linked to the growth characteristics of Nitrosomonas spp., established criteria can be applied for the redesign of the full-scale plant.

  19. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.

    Science.gov (United States)

    Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C

    2016-10-07

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

  20. Laboratory Experiments to Stimulate CO2 Ocean Disposal

    International Nuclear Information System (INIS)

    Masutani, S.M.

    1997-01-01

    This Technical Progress Report summarizes activities conducted over the period 8/16/96-2/15/97 as part of this project. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation is to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO 2 ) from coal and other fossil fuel combustion systems into the atmosphere. Critical technical uncertainties of ocean disposal of CO 2 will be addressed by performing experiments that: (1) characterize size spectra and velocities of a dispersed CO 2 phase in the near-field of a discharge jet; and (2) estimate rates of mass transfer from dissolving droplets of liquid CO 2 encased in a thin hydrate shell. Experiments will be conducted in a laboratory facility that can reproduce conditions in the ocean to depths of 600 m (1,969 ft). Between 8/16/96 and 2/15/97, activities focused on modifications to the experimental apparatus and the testing of diagnostics. Following completion of these tasks, experiments will be initiated and will continue through the end of the 36 month period of performance. Major accomplishments of this reporting period were: (1) delivery, set-up, and testing of the PDPA (Phase Doppler Particle Analyzer), which will be the principal diagnostic of the continuous CO 2 jet injection tests; (2) presentation of research papers and posters at the 212th American Chemical Society National Meeting and the Third International Conference on Carbon Dioxide Removal; (3) participation in the 4th Expert Workshop on Ocean Storage of Carbon Dioxide; (4) execution of an Agreement with ABB Management, Ltd. to support and extend the activities of this grant; and (5) initiation of research collaborations with Dr. P.M. Haugen of the University of