WorldWideScience

Sample records for biology damage control

  1. WILD PIGS: BIOLOGY, DAMAGE, CONTROL TECHINQUES AND MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, John; Brisbin, I. Lehr

    2009-12-31

    about anything; and, they can live just about anywhere. On top of that, wild pigs are both very difficult to control and, with the possible exception of island ecosystems, almost impossible to eradicate (Dickson et al. 2001, Sweeney et al. 2003). The solution to the wild pig problem has not been readily apparent. The ultimate answer as to how to control these animals has not been found to date. In many ways, wild pigs are America's most successful large invasive species. All of which means that wild pigs are a veritable nightmare for land and resource managers trying to keep the numbers of these animals and the damage that they do under control. Since the more that one knows about an invasive species, the easier it is to deal with and hopefully control. For wild pigs then, it is better to 'know thy enemy' than to not, especially if one expects to be able to successfully control them. In an effort to better 'know thy enemy,' a two-day symposium was held in Augusta, Georgia, on April 21-22, 2004. This symposium was organized and sponsored by U.S.D.A. Forest Service-Savannah River (USFS-SR), U. S. Department of Energy-Savannah River Operations Office (DOE-SR), the Westinghouse Savannah River Company (WSRC), the South Carolina Chapter of the Soil & Water Conservation Society, and the Savannah River Ecology Laboratory (SREL). The goal of this symposium was to assemble researchers and land managers to first address various aspects of the biology and damage of wild pigs, and then review the control techniques and management of this invasive species. The result would then be a collected synopsis of what is known about wild pigs in the United States. Although the focus of the symposium was primarily directed toward federal agencies, presenters also included professionals from academic institutions, and private-sector control contractors and land managers. Most of the organizations associated with implementing this symposium were affiliated with the

  2. WILD PIGS: BIOLOGY, DAMAGE, CONTROL TECHINQUES AND MANAGEMENT

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, John; Brisbin, I. Lehr

    2009-12-31

    about anything; and, they can live just about anywhere. On top of that, wild pigs are both very difficult to control and, with the possible exception of island ecosystems, almost impossible to eradicate (Dickson et al. 2001, Sweeney et al. 2003). The solution to the wild pig problem has not been readily apparent. The ultimate answer as to how to control these animals has not been found to date. In many ways, wild pigs are America's most successful large invasive species. All of which means that wild pigs are a veritable nightmare for land and resource managers trying to keep the numbers of these animals and the damage that they do under control. Since the more that one knows about an invasive species, the easier it is to deal with and hopefully control. For wild pigs then, it is better to 'know thy enemy' than to not, especially if one expects to be able to successfully control them. In an effort to better 'know thy enemy,' a two-day symposium was held in Augusta, Georgia, on April 21-22, 2004. This symposium was organized and sponsored by U.S.D.A. Forest Service-Savannah River (USFS-SR), U. S. Department of Energy-Savannah River Operations Office (DOE-SR), the Westinghouse Savannah River Company (WSRC), the South Carolina Chapter of the Soil & Water Conservation Society, and the Savannah River Ecology Laboratory (SREL). The goal of this symposium was to assemble researchers and land managers to first address various aspects of the biology and damage of wild pigs, and then review the control techniques and management of this invasive species. The result would then be a collected synopsis of what is known about wild pigs in the United States. Although the focus of the symposium was primarily directed toward federal agencies, presenters also included professionals from academic institutions, and private-sector control contractors and land managers. Most of the organizations associated with implementing this symposium were affiliated with the

  3. THE DAMAGE, BIOLOGY AND CONTROL OF PINE MISTLETOES (Viscum album ssp. austriacum (Wiesb.) Vollman)

    OpenAIRE

    Yüksel, Beşir; Akbulut, Süleyman; KETEN, Akif

    2009-01-01

    Although mistletoes are known as parasitic plants on coniferous forest of Turkey, their control is still an important problem for Forest Service. In this paper, the information on the characteristics of pine mistletoe (biology, damage, and control methods) were gathered from different sources and observations. Possible control methods and damage ratings of mistletoe were discussed. Keywords: Mistletoes, Parasite plant, Pine

  4. Influence of biological control damage on efficacy of penoxsulam and two other herbicides on waterhyacinth

    Science.gov (United States)

    Populations of waterhyacinth (Eichhornia crassipes (Mart.) Solms.) in the southeastern U.S. have been reduced by widespread herbicidal control and by introduced waterhyacinth weevils (Neochetina spp) and native pathogens. However, damaging populations of this weed persist and integrated approaches ...

  5. Commercializing Biological Control

    Science.gov (United States)

    LeLeu, K. L.; Young, M. A.

    1973-01-01

    Describes the only commercial establishment involved in biological control in Australia. The wasp Aphitis melinus, which parasitizes the insect Red Scale, is bred in large numbers and released in the citrus groves where Red Scale is causing damage to the fruit. (JR)

  6. Thoracic damage control surgery.

    Science.gov (United States)

    Gonçalves, Roberto; Saad, Roberto

    2016-01-01

    The damage control surgery came up with the philosophy of applying essential maneuvers to control bleeding and abdominal contamination in trauma patients who are within the limits of their physiological reserves. This concept was extended to thoracic injuries, where relatively simple maneuvers can shorten operative time of in extremis patients. This article aims to revise the various damage control techniques in thoracic organs that must be known to the surgeon engaged in emergency care. RESUMO A cirurgia de controle de danos surgiu com a filosofia de se aplicar manobras essenciais para controle de sangramento e contaminação abdominal, em doentes traumatizados, nos limites de suas reservas fisiológicas. Este conceito se estendeu para as lesões torácicas, onde manobras relativamente simples, podem abreviar o tempo operatório de doentes in extremis. Este artigo tem como objetivo, revisar as diversas técnicas de controle de dano em órgãos torácicos, que devem ser de conhecimento do cirurgião que atua na emergência.

  7. Biological control of the spruce coneworm Dioryctria abietella: Spraying with Bacillus thuringiensis reduced damage in a seed orchard

    Energy Technology Data Exchange (ETDEWEB)

    Weslien, Jan [Forestry Research Inst. of Sweden, Uppsala (Sweden)

    1999-08-01

    Spraying of cones with Bacillus thuringiensis var. Kurstaki x Aizawa in a Norway spruce (Picea abies (L.) Karst.) seed orchard reduced damage by Dioryctria abietella Den. et Schiff. (Lepidoptera, Pyralidae). The incidence of D. abietella attacks was about 80% among unsprayed cones, but less than 15% showed attacks among cones that had been sprayed three times at 9-day intervals with a 0.2% suspension (weight/weight) of the B. thuringiensis preparation in water (Turex 50 WP, 25 000 IU/mg). Attacked, sprayed cones had fewer D. abietella larvae per cone than attacked, unsprayed cones. Spraying did not reduce the damage by Cydia strobilella (L.) (Lepidoptera, Tortricidae) or by Strobilomyia anthracina Czerny (Diptera, Anthomyiidae) 13 refs, 3 tabs

  8. Insecticides and Biological Control

    Science.gov (United States)

    Furness, G. O.

    1972-01-01

    Use of insecticides has been questioned due to their harmful effects on edible items. Biological control of insects along with other effective practices for checking spread of parasites on crops are discussed. (PS)

  9. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model

    DEFF Research Database (Denmark)

    Sørensen, Brita Singers; Horsman, Michael Robert; Alsner, Jan;

    2015-01-01

    Background. The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. Material and methods. CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of t...

  10. Biological control of ticks

    Science.gov (United States)

    Samish, M.; Ginsberg, H.; Glazer, I.; Bowman, A.S.; Nuttall, P.

    2004-01-01

    Ticks have numerous natural enemies, but only a few species have been evaluated as tick biocontrol agents (BCAs). Some laboratory results suggest that several bacteria are pathogenic to ticks, but their mode of action and their potential value as biocontrol agents remain to be determined. The most promising entomopathogenic fungi appear to be Metarhizium anisopliae and Beauveria bassiana, strains of which are already commercially available for the control of some pests. Development of effective formulations is critical for tick management. Entomopathogenic nematodes that are pathogenic to ticks can potentially control ticks, but improved formulations and selection of novel nematode strains are needed. Parasitoid wasps of the genus Ixodiphagus do not typically control ticks under natural conditions, but inundative releases show potential value. Most predators of ticks are generalists, with a limited potential for tick management (one possible exception is oxpeckers in Africa). Biological control is likely to play a substantial role in future IPM programmes for ticks because of the diversity of taxa that show high potential as tick BCAs. Considerable research is required to select appropriate strains, develop them as BCAs, establish their effectiveness, and devise production strategies to bring them to practical use.

  11. From ozone depletion to biological UV damage

    Energy Technology Data Exchange (ETDEWEB)

    Tamm, E.; Thomalla, E.; Koepke, P. [Munich Univ. (Germany). Meteorological Inst.

    1995-12-31

    Based on the ozone data from the Meteorological Observatory Hohenpeissenberg (MOHP: 47.8 deg N, 11.01 deg E) and corresponding mean atmospheric conditions, high resolution UV spectra are calculated with a complex radiation transfer model STAR. Biologically weighted UV spectra are investigated as integrated irradiances (dose rates) for maximum zenith angles and as daily integrals for selected days of the year. Ozone variation and uncertainty of action spectra are investigated

  12. Damage-mitigating control of mechanical systems

    Science.gov (United States)

    Holmes, Michael S.

    Damage-Mitigating Control is a field of research involving the integration of two distinct disciplines: Systems Sciences and Mechanics of Materials. This dissertation presents a feedback control architecture for mechanical systems to achieve a tradeoff between dynamic performance and structural durability of critical plant components. The proposed damage-mitigating control system has a two-tier structure: (i) A lower-level linear output feedback controller for plant output tracking and stability robustness over a specified operating range; and (ii) An upper-level nonlinear feedback controller which takes advantage of the real-time information generated by a physics-based model of material damage. The advantages and disadvantages of various methods available for the design of linear tracking controllers are discussed. A robust sampled-data Hsbinfty controller is designed for a reusable rocket engine, similar to the Space Shuttle Main Engine, based on a 2-input/2-output, 20-state model. The mu-synthesis technique is used to design a robust sampled-data controller for a commercial-scale fossil-fueled power plant based on a 4-input/4-output, 27-state model. A procedure for the design of damage-mitigating linear tracking controllers is also presented. The concept of fuzzy control is used to synthesize upper-level nonlinear feedback controllers based on real-time damage information. Damage-mitigating controllers are designed for the reusable rocket engine and the fossil-fueled power plant. A major advantage of using the fuzzy method for damage-mitigating controller design is that the controller can be synthesized without directly dealing with the inherent nonlinearities of the damage model. Simulation results for the reusable rocket engine and the fossil-fueled power plant suggest that the fuzzy method of damage mitigation is a practical way to design damage controllers for mechanical systems. The damage controller parameter optimization method is presented as an

  13. Conserving and enhancing biological control of nematodes.

    Science.gov (United States)

    Timper, Patricia

    2014-06-01

    Conservation biological control is the modification of the environment or existing practices to protect and enhance antagonistic organisms to reduce damage from pests. This approach to biological control has received insufficient attention compared with inundative applications of microbial antagonists to control nematodes. This review provides examples of how production practices can enhance or diminish biological control of plant-parasitic nematodes and other soilborne pests. Antagonists of nematodes can be enhanced by providing supplementary food sources such as occurs when organic amendments are applied to soil. However, some organic amendments (e.g., manures and plants containing allelopathic compounds) can also be detrimental to nematode antagonists. Plant species and genotype can strongly influence the outcome of biological control. For instance, the susceptibility of the plant to the nematode can determine the effectiveness of control; good hosts will require greater levels of suppression than poor hosts. Plant genotype can also influence the degree of rhizosphere colonization and antibiotic production by antagonists, as well the expression of induced resistance by plants. Production practices such as crop rotation, fallow periods, tillage, and pesticide applications can directly disrupt populations of antagonistic organisms. These practices can also indirectly affect antagonists by reducing their primary nematode host. One of the challenges of conservation biological control is that practices intended to protect or enhance suppression of nematodes may not be effective in all field sites because they are dependent on indigenous antagonists. Ultimately, indicators will need to be identified, such as the presence of particular antagonists, which can guide decisions on where it is practical to use conservation biological control. Antagonists can also be applied to field sites in conjunction with conservation practices to improve the consistency, efficacy, and

  14. An Exercise in Biological Control.

    Science.gov (United States)

    Lennox, John; Duke, Michael

    1997-01-01

    Discusses the history of the use of pesticides and biological control. Introduces the concept of biological control as illustrated in the use of the entomopathogenic bacterium Bacillus thuringiensis and highlights laboratory demonstrations of Koch's postulates. Includes an exercise that offers the student and teacher several integrated learning…

  15. Early mechanisms in radiation-induced biological damage

    Energy Technology Data Exchange (ETDEWEB)

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical. (ACR)

  16. Damage control resuscitation for massive hemorrhage

    Institute of Scientific and Technical Information of China (English)

    Osaree Akaraborworn

    2014-01-01

    Hemorrhage is the second most common cause of death among trauma patients and almost half of the deaths occur within 24 hours after arrival.Damage control resuscitation is a new paradigm for patients with massive bleeding.It consists of permissive hypotension,hemostatic resuscitation and transfusion strategies,and damage control surgery.Permissive hypotension seems to have better results before the bleeding is controlled.The strategy of fluid resuscitation is minimizing crystalloid infusion and increasing early transfusion with a high ratio of fresh frozen plasma to packed red cells.Damage control surgery is done when the patient's condition is unfit for definitive surgery.Hemorrhage and contamination control with temporary abdominal closure is performed before transferring the patients to intensive care unit and the operating room for a permanent laparotomy.

  17. Biological pest control in Mexico.

    Science.gov (United States)

    Williams, Trevor; Arredondo-Bernal, Hugo C; Rodríguez-del-Bosque, Luis A

    2013-01-01

    Mexico is a megadiverse country that forms part of the Mesoamerican biological corridor that connects North and South America. Mexico's biogeographical situation places it at risk from invasive exotic insect pests that enter from the United States, Central America, or the Caribbean. In this review we analyze the factors that contributed to some highly successful past programs involving classical biological control and/or the sterile insect technique (SIT). The present situation is then examined with reference to biological control, including SIT programs, targeted at seven major pests, with varying degrees of success. Finally, we analyze the current threats facing Mexico's agriculture industry from invasive pests that have recently entered the country or are about to do so. We conclude that despite a number of shortcomings, Mexico is better set to develop biological control-based pest control programs, particularly on an area-wide basis, than many other Latin American countries are. Classical and augmentative biological control and SIT-based programs are likely to provide effective and sustainable options for control of native and exotic pests, particularly when integrated into technology packages that meet farmers' needs across the great diversity of production systems in Mexico.

  18. Herbivory, Predation, and Biological Control.

    Science.gov (United States)

    Murphy, Terence M.; And Others

    1992-01-01

    Authors describe a set of controlled ecosystems that can be used to demonstrate the effects of herbivory on the health and growth of a plant population and of predation on the growth of a primary consumer population. The system also shows the effectiveness of biological pest control measures in a dramatic way. The construction of the ecosystems is…

  19. Damage control apronectomy for necrotising fasciitis and strangulated umbilical hernia.

    LENUS (Irish Health Repository)

    Coyle, P

    2012-01-31

    We present a case of a 50-year-old morbidly obese woman who presented with a case of necrotizing fasciitis of the anterior abdominal wall due to a strangulated umbilical hernia. The case was managed through damage control surgery (DCS) with an initial surgery to stabilise the patient and a subsequent definitive operation and biological graft hernia repair. We emphasise the relevance of DCS principles in the management of severe abdominal sepsis.

  20. Combat Damage Control Resuscitation: Today and Tomorrow

    Science.gov (United States)

    2010-04-01

    blood components to optimize hemostasis, the concept of permissive hypotension is used to decrease the bleeding from uncontrolled bleeding points, the...physiologic deterioration. The future of damage control resuscitation will most likely involve the refinement and customization of blood components for the

  1. Advanced concept for damage control : A framework to simulate fire propagation and damage control effects

    NARCIS (Netherlands)

    Gillis, M.P.W.; Keijer, W.; Smit, C.S.

    2003-01-01

    Current damage control procedures are developed on the basis of a long-standing experience. However there are reasons to believe that these procedures do not account for major weapon-induced calamities. Fire fighting after substantial blast and fragmentation damage, due to a weaponhit, is quite beyo

  2. ATLS® and damage control in spine trauma

    Directory of Open Access Journals (Sweden)

    Gosse Andreas

    2009-03-01

    Full Text Available Abstract Substantial inflammatory disturbances following major trauma have been found throughout the posttraumatic course of polytraumatized patients, which was confirmed in experimental models of trauma and in vitro settings. As a consequence, the principle of damage control surgery (DCS has developed over the last two decades and has been successfully introduced in the treatment of severely injured patients. The aim of damage control surgery and orthopaedics (DCO is to limit additional iatrogenic trauma in the vulnerable phase following major injury. Considering traumatic brain and acute lung injury, implants for quick stabilization like external fixators as well as decided surgical approaches with minimized potential for additional surgery-related impairment of the patient's immunologic state have been developed and used widely. It is obvious, that a similar approach should be undertaken in the case of spinal trauma in the polytraumatized patient. Yet, few data on damage control spine surgery are published to so far, controlled trials are missing and spinal injury is addressed only secondarily in the broadly used ATLS® polytrauma algorithm. This article reviews the literature on spine trauma assessment and treatment in the polytrauma setting, gives hints on how to assess the spine trauma patient regarding to the ATLS® protocol and recommendations on therapeutic strategies in spinal injury in the polytraumatized patient.

  3. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.

  4. Autophagy and mitophagy in cellular damage control

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2013-01-01

    Full Text Available Autophagy and mitophagy are important cellular processes that are responsible for breaking down cellular contents, preserving energy and safeguarding against accumulation of damaged and aggregated biomolecules. This graphic review gives a broad summary of autophagy and discusses examples where autophagy is important in controlling protein degradation. In addition we highlight how autophagy and mitophagy are involved in the cellular responses to reactive species and mitochondrial dysfunction. The key signaling pathways for mitophagy are described in the context of bioenergetic dysfunction.

  5. Intestinal nematodes: biology and control.

    Science.gov (United States)

    Epe, Christian

    2009-11-01

    A variety of nematodes occur in dogs and cats. Several nematode species inhabit the small and large intestines. Important species that live in the small intestine are roundworms of the genus Toxocara (T canis, T cati) and Toxascaris (ie, T leonina), and hookworms of the genus Ancylostoma (A caninum, A braziliense, A tubaeforme) or Uncinaria (U stenocephala). Parasites of the large intestine are nematodes of the genus Trichuris (ie, whipworms, T vulpis). After a comprehensive description of their life cycle and biology, which are indispensable for understanding and justifying their control, current recommendations for nematode control are presented and discussed thereafter.

  6. GUI to Facilitate Research on Biological Damage from Radiation

    Science.gov (United States)

    Cucinotta, Frances A.; Ponomarev, Artem Lvovich

    2010-01-01

    A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.

  7. Billeddiagnostiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Ewertsen, Caroline; Hansen, Kristoffer Lindskov; Nielsen, Michael Bachmann

    2011-01-01

    The imaging modalities computed tomography (CT) and the ultrasonography (US) examination focused assessment with sonography for trauma (FAST) in relation to damage control in traumas are discussed. CT has the advantage of high sensitivity and specificity for detection of organ specific lesions....... FAST ultrasound is a good screening tool for intraperitoneal bleeding, but the sensitivity and specificity is lower than by CT. We recommend FAST-US prehospitally or early in the trauma room resuscitation. Haemodynamically stable patients with relevant traumas should undergo CT....

  8. Anæstesiologiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Steinmetz, Jacob

    2011-01-01

    Patients with severe traumatic injuries occasionally undergo damage control surgery. This paper highlights some of the perioperative anaesthesiological considerations. Although damage control is often used as a surgical term, it is crucial that personnel involved in the parallel resuscitation of ...

  9. Biological effect of penetration controlled irradiation with ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi; Shimizu, Takashi; Kikuchi, Masahiro; Kobayashi, Yasuhiko; Watanabe, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment; Yamashita, Takao

    1997-03-01

    To investigate the effect of local irradiation with ion beams on biological systems, technique for penetration controlled irradiation has been established. The range in a target was controlled by changing the distance from beam window in the atmosphere, and could be controlled linearly up to about 31 {mu}m in biological material. In addition, the effects of the penetration controlled irradiations with 1.5 MeV/u C and He ions were examined using tobacco pollen. The increased frequency of leaky pollen produced by ion beams suggests that the efficient pollen envelope damages would be induced at the range-end of ion beams. (author)

  10. "Protected biological control"- Biological pest management in the greenhouse industry

    NARCIS (Netherlands)

    Pilkington, L.J.; Messelink, G.J.; Lenteren, van J.C.; Mottee, Le K.

    2010-01-01

    This paper briefly describes the foundations and characteristics of biological control in protected cropping and what drivers are behind adoption of this management system within this industry. Examining a brief history of biological control in greenhouses and what makes it a successful management s

  11. Integrated Damage-Adaptive Control System (IDACS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI proposes to further develop, implement and test the damage-adaptive control algorithms developed in Phase I within the framework of an Integrated Damage...

  12. Resuscitation og abdominalkirurgiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Hillingsø, Jens G; Svendsen, Lars Bo; Johansson, Pär I

    2011-01-01

    vicious cycle". Due to this a new resuscitation practice has been defined; damage control resuscitation, consisting of hypotensive resuscitation (restricted use of crystalloids), haemostatic resuscitation (balanced use of blood components) in combination with surgical haemostatic procedures (damage...

  13. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control). Augmentati

  14. Delineating the DNA damage response using systems biology approaches

    NARCIS (Netherlands)

    Stechow, Louise von

    2013-01-01

    Cellular responses to DNA damage are highly variable and strongly depend on the cellular and organismic context. Studying the DNA damage response is crucial for a better understanding of cancer formation and ageing as well as genotoxic stress-induced cancer therapy. To do justice to the multifaceted

  15. Biology and Water Pollution Control.

    Science.gov (United States)

    Warren, Charles E.

    Within this text, the reader is attuned to the role biology can and should play in combating the alarming increase in water pollution. Both the urgency of the problem and the biological techniques that are being developed to cope with the water pollution crisis are scrutinized; what is and is not known about the problem is explained; past,…

  16. DAMAGE MODEL OF CONTROL FISSURE IN PERILOUS ROCK

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong-kai; TANG Hong-mei; YE Si-qiao

    2006-01-01

    Hitherto, perilous rock is the weakest topic in disasters studies. Specially,damage of control fissure under loads is one key technique in study of develop mechanism of perilous rock. Damage division of end area of control fissure was defined by authors,then calculation methods of timed-Poisson's ratio and timed-Young's modulus were established in damage mechanics theory. Further, the authors set up damage constitutive equation of control fissure, which founds important basis to numerical simulation for control fissure to develop.

  17. Nonlinear active control of damaged piezoelectric smart laminated plates and damage detection

    Institute of Scientific and Technical Information of China (English)

    Fu Yi-ming; RUAN Jian-li

    2008-01-01

    Considering mass and stiffness of piezoelectric layers and damage effects of composite layers,nonlinear dynamic equations of damaged piezoelectric smart laminated plates are derived.The derivation is based on the Hamilton's principle,the higherorder shear deformation plate theory, von Karman type geometrically nonlinear straindisplacement relations,and the strain energy equivalence theory.A negative velocity feedback control algorithm coupling the direct and converse piezoelectric effects is used to realize the active control and damage detection with a closed control loop. Simply supported rectangular laminated plates with immovable edges are used in numerical computation.Influence of the piezoelectric layers'location on the vibration control is investigated.In addition,effects of the degree and location of damage on the sensor output voltage are discussed.A method for damage detection is introduced.

  18. Relative Biological Effectiveness and Peripheral Damage of Antiproton Annihilation

    CERN Multimedia

    Kavanagh, J N; Kaiser, F; Tegami, S; Schettino, G; Kovacevic, S; Hajdukovic, D; Welsch, C P; Currell, F J; Toelli, H T; Doser, M; Holzscheiter, M; Herrmann, R; Timson, D J; Alsner, J; Landua, R; Knudsen, H; Comor, J; Moller, S P; Beyer, G

    2002-01-01

    The use of ions to deliver radiation to a body for therapeutic purposes has the potential to be significant improvement over the use of low linear energy transfer (LET) radiation because of the improved energy deposition profile and the enhanced biological effects of ions relative to photons. Proton therapy centers exist and are being used to treat patients. In addition, the initial use of heavy ions such as carbon is promising to the point that new treatment facilities are planned. Just as with protons or heavy ions, antiprotons can be used to deliver radiation to the body in a controlled way; however antiprotons will exhibit additional energy deposition due to annihilation of the antiprotons within the body. The slowing down of antiprotons in matter is similar to that of protons except at the very end of the range beyond the Bragg peak. Gray and Kalogeropoulos estimated the additional energy deposited by heavy nuclear fragments within a few millimeters of the annihilation vertex to be approximately 30 MeV (...

  19. The biological control of disease vectors.

    Science.gov (United States)

    Okamoto, Kenichi W; Amarasekare, Priyanga

    2012-09-21

    Vector-borne diseases are common in nature and can have a large impact on humans, livestock and crops. Biological control of vectors using natural enemies or competitors can reduce vector density and hence disease transmission. However, the indirect interactions inherent in host-vector disease systems make it difficult to use traditional pest control theory to guide biological control of disease vectors. This necessitates a conceptual framework that explicitly considers a range of indirect interactions between the host-vector disease system and the vector's biological control agent. Here we conduct a comparative analysis of the efficacy of different types of biological control agents in controlling vector-borne diseases. We report three key findings. First, highly efficient predators and parasitoids of the vector prove to be effective biological control agents, but highly virulent pathogens of the vector also require a high transmission rate to be effective. Second, biocontrol agents can successfully reduce long-term host disease incidence even though they may fail to reduce long-term vector densities. Third, inundating a host-vector disease system with a natural enemy of the vector has little or no effect on reducing disease incidence, but inundating the system with a competitor of the vector has a large effect on reducing disease incidence. The comparative framework yields predictions that are useful in developing biological control strategies for vector-borne diseases. We discuss how these predictions can inform ongoing biological control efforts for host-vector disease systems.

  20. The DNA-damage response in human biology and disease

    DEFF Research Database (Denmark)

    Jackson, Stephen P; Bartek, Jiri

    2009-01-01

    The prime objective for every life form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damag...

  1. Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-08-31

    of, and perhaps will not be tolerated in, manmade critical systems. Although this paper does not directly address questions of ethics associated...political, ethical , and moral issues associated with the use of autonomous systems in warfare will be debated long after the technology hurdles to...accessible discussion on the interplay of biochemistry, genetics and embryology in animal evolution; Wagner, 2005 describes biological concepts of

  2. Biological Control of Mosquitoes with Mermithids

    OpenAIRE

    Platzer, E. G.

    1981-01-01

    Mermithid nematodes parasitizing mosquitoes have substantial potential for vector control. Studies on the physiological ecology of Romanomermis culicivorax have defined some of the general requirements of mermithid nematodes and produced general guidelines for the experimental release of mermithids in biological control. Experimental field studies have established the biological control potential of R. culicivorax, but further development and ulilization of this parasite will require a substa...

  3. Dynamics and Adaptive Control for Stability Recovery of Damaged Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Krishnakumar, Kalmanje; Kaneshige, John; Nespeca, Pascal

    2006-01-01

    This paper presents a recent study of a damaged generic transport model as part of a NASA research project to investigate adaptive control methods for stability recovery of damaged aircraft operating in off-nominal flight conditions under damage and or failures. Aerodynamic modeling of damage effects is performed using an aerodynamic code to assess changes in the stability and control derivatives of a generic transport aircraft. Certain types of damage such as damage to one of the wings or horizontal stabilizers can cause the aircraft to become asymmetric, thus resulting in a coupling between the longitudinal and lateral motions. Flight dynamics for a general asymmetric aircraft is derived to account for changes in the center of gravity that can compromise the stability of the damaged aircraft. An iterative trim analysis for the translational motion is developed to refine the trim procedure by accounting for the effects of the control surface deflection. A hybrid direct-indirect neural network, adaptive flight control is proposed as an adaptive law for stabilizing the rotational motion of the damaged aircraft. The indirect adaptation is designed to estimate the plant dynamics of the damaged aircraft in conjunction with the direct adaptation that computes the control augmentation. Two approaches are presented 1) an adaptive law derived from the Lyapunov stability theory to ensure that the signals are bounded, and 2) a recursive least-square method for parameter identification. A hardware-in-the-loop simulation is conducted and demonstrates the effectiveness of the direct neural network adaptive flight control in the stability recovery of the damaged aircraft. A preliminary simulation of the hybrid adaptive flight control has been performed and initial data have shown the effectiveness of the proposed hybrid approach. Future work will include further investigations and high-fidelity simulations of the proposed hybrid adaptive Bight control approach.

  4. Biology and control of Varroa destructor.

    Science.gov (United States)

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed.

  5. Changes of color coordinates of biological tissue with superficial skin damage due to mechanical trauma

    Science.gov (United States)

    Pteruk, Vail; Mokanyuk, Olexander; Kvaternuk, Olena; Yakenina, Lesya; Kotyra, Andrzej; Romaniuk, Ryszard S.; Dussembayeva, Shynar

    2015-12-01

    Change of color coordinates of normal and pathological biological tissues is based on calculated spectral diffuse reflection. The proposed color coordinates of normal and pathological biological tissues of skin provided using standard light sources, allowing accurately diagnose skin damage due to mechanical trauma with a blunt object for forensic problems.

  6. Systems Biology of Saccharomyces cerevisiae Physiology and its DNA Damage Response

    DEFF Research Database (Denmark)

    Fazio, Alessandro

    damage response (Chapter 5). When DNA damage is repaired, cells restart the cell cycle and resume growth. This process is called damage recovery. In S. cerevisiae, the molecular mechanism of recovery relies on dephosphorylation of Rad53 by protein phosphatases (PPs), that, in case of recovery from MMS......The yeast Saccharomyces cerevisiae is a model organism in biology, being widely used in fundamental research, the first eukaryotic organism to be fully sequenced and the platform for the development of many genomics techniques. Therefore, it is not surprising that S. cerevisiae has also been widely...... used in the field of systems biology during the last decade. This thesis investigates S. cerevisiae growth physiology and DNA damage response by using a systems biology approach. Elucidation of the relationship between growth rate and gene expression is important to understand the mechanisms regulating...

  7. Flight dynamics and control modelling of damaged asymmetric aircraft

    Science.gov (United States)

    Ogunwa, T. T.; Abdullah, E. J.

    2016-10-01

    This research investigates the use of a Linear Quadratic Regulator (LQR) controller to assist commercial Boeing 747-200 aircraft regains its stability in the event of damage. Damages cause an aircraft to become asymmetric and in the case of damage to a fraction (33%) of its left wing or complete loss of its vertical stabilizer, the loss of stability may lead to a fatal crash. In this study, aircraft models for the two damage scenarios previously mentioned are constructed using stability derivatives. LQR controller is used as a direct adaptive control design technique for the observable and controllable system. Dynamic stability analysis is conducted in the time domain for all systems in this study.

  8. Integrated Damage-Adaptive Control System (IDACS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI, in collaboration with Boeing Phantom Works, proposes to develop and test an efficient Integrated Damage Adaptive Control System (IDACS). The proposed system is...

  9. Fatigue-Damage Estimation and Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus

    How can fatigue-damage for control of wind turbines be represented? Fatigue-damage is indeed a crucial factor in structures such as wind turbines that are exposed to turbulent and rapidly changing wind flow conditions. This is relevant both in their design stage and during the control......, the inclusion of fatigue-damage within feedback control loops is of special interest. Four strategies in total are proposed in this work: three for the wind turbine level and one for the wind farm level. On one hand, the three strategies in the turbine level are based on hysteresis operators and strive......-damage estimation in wind turbine components, to the mixed objective operation of wind energy conversion systems, and to the synthesis of control strategies that include hysteresis operators....

  10. Large-Scale Damage Control Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs large‑scale fire protection experiments that simulate actual Navy platform conditions. Remote control firefighting systems are also tested....

  11. Biological Control of Olive Green Mold in Agaricus bisporus Cultivation.

    Science.gov (United States)

    Tautorus, T E; Townsley, P M

    1983-02-01

    Successful methods to control the damaging weed mold Chaetomium olivaceum (olive green mold) in mushroom beds are not presently known. An attempt was made to control C. olivaceum by biological means. A thermophilic Bacillus sp. which showed dramatic activity against C. olivaceum on Trypticase soy agar (BBL Microbiology Systems)-0.4% yeast extract agar plates was isolated from commercial mushroom compost (phase I). When inoculated into conventional and hydroponic mushroom beds, the bacillus not only provided a significant degree of protection from C. olivaceum, but also increased yields of Agaricus bisporus.

  12. Controlled ecological life support system - biological problems

    Science.gov (United States)

    Moore, B., III (Editor); Macelroy, R. D. (Editor)

    1982-01-01

    The general processes and controls associated with two distinct experimental paradigms are examined. Specific areas for research related to biotic production (food production) and biotic decomposition (waste management) are explored. The workshop discussions were directed toward Elemental cycles and the biological factors that affect the transformations of nutrients into food, of food material into waste, and of waste into nutrients were discussed. To focus on biological issues, the discussion assumed that (1) food production would be by biological means (thus excluding chemical synthesis), (2) energy would not be a limiting factor, and (3) engineering capacity for composition and leak rate would be adequate.

  13. Bacterial Genotoxins: Merging the DNA Damage Response into Infection Biology

    Directory of Open Access Journals (Sweden)

    Francesca Grasso

    2015-08-01

    Full Text Available Bacterial genotoxins are unique among bacterial toxins as their molecular target is DNA. The consequence of intoxication or infection is induction of DNA breaks that, if not properly repaired, results in irreversible cell cycle arrest (senescence or death of the target cells. At present, only three bacterial genotoxins have been identified. Two are protein toxins: the cytolethal distending toxin (CDT family produced by a number of Gram-negative bacteria and the typhoid toxin produced by Salmonella enterica serovar Typhi. The third member, colibactin, is a peptide-polyketide genotoxin, produced by strains belonging to the phylogenetic group B2 of Escherichia coli. This review will present the cellular effects of acute and chronic intoxication or infection with the genotoxins-producing bacteria. The carcinogenic properties and the role of these effectors in the context of the host-microbe interaction will be discussed. We will further highlight the open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.

  14. Evidence for DNA Damage as a Biological Link Between Diabetes and Cancer

    Institute of Scientific and Technical Information of China (English)

    Shao Chin Lee; Juliana CN Chan

    2015-01-01

    Objective:This review examines the evidence that:Diabetes is a state of DNA damage;pathophysiological factors in diabetes can cause DNA damage;DNA damage can cause mutations;and DNA mutation is linked to carcinogenesis.Data Sources:We retrieved information from the PubMed database up to January,2014,using various search terms and their combinations including DNA damage,diabetes,cancer,high glucose,hyperglycemia,free fatty acids,palmitic acid,advanced glycation end products,mutation and carcinogenesis.Study Selection:We included data from peer-reviewed journals and a textbook printed in English on relationships between DNA damage and diabetes as well as pathophysiological factors in diabetes.Publications on relationships among DNA damage,mutagenesis,and carcinogenesis,were also reviewed.We organized this information into a conceptual framework to explain the possible causal relationship between DNA damage and carcinogenesis in diabetes.Results:There are a large amount of data supporting the view that DNA mutation is a typical feature in carcinogenesis.Patients with type 2 diabetes have increased production of reactive oxygen species,reduced levels of antioxidant capacity,and increased levels of DNA damage.The pathophysiological factors and metabolic milieu in diabetes can cause DNA damage such as DNA strand break and base modification (i.e.,oxidation).Emerging experimental data suggest that signal pathways (i.e.,Akt/tuberin) link diabetes to DNA damage.This collective evidence indicates that diabetes is a pathophysiological state of oxidative stress and DNA damage which can lead to various types of mutation to cause aberration in cells and thereby increased cancer risk.Conclusions:This review highlights the interrelationships amongst diabetes,DNA damage,DNA mutation and carcinogenesis,which suggests that DNA damage can be a biological link between diabetes and cancer.

  15. Resuscitation og abdominalkirurgiske aspekter ved damage control-kirurgi

    DEFF Research Database (Denmark)

    Hillingsø, Jens G; Svendsen, Lars Bo; Johansson, Pär I

    2011-01-01

    In multitrauma patients continuous bleeding is one of the major killers. Coagulation defects have been shown to be a primary event and to occur very early in multitrauma patients (acute traumatic coagulopathy). It is enhanced by acidosis, hypothermia and further coagulation disorders in the "bloody...... vicious cycle". Due to this a new resuscitation practice has been defined; damage control resuscitation, consisting of hypotensive resuscitation (restricted use of crystalloids), haemostatic resuscitation (balanced use of blood components) in combination with surgical haemostatic procedures (damage...

  16. The Biological Control of the Malaria Vector

    Directory of Open Access Journals (Sweden)

    Layla Kamareddine

    2012-09-01

    Full Text Available The call for malaria control, over the last century, marked a new epoch in the history of this disease. Many control strategies targeting either the Plasmodium parasite or the Anopheles vector were shown to be effective. Yet, the emergence of drug resistant parasites and insecticide resistant mosquito strains, along with numerous health, environmental, and ecological side effects of many chemical agents, highlighted the need to develop alternative tools that either complement or substitute conventional malaria control approaches. The use of biological means is considered a fundamental part of the recently launched malaria eradication program and has so far shown promising results, although this approach is still in its infancy. This review presents an overview of the most promising biological control tools for malaria eradication, namely fungi, bacteria, larvivorous fish, parasites, viruses and nematodes.

  17. Ecology and biological control of Verticillium dahliae

    NARCIS (Netherlands)

    Soesanto, L.

    2000-01-01

    The dynamics of Verticillium dahliae , the causal agent of wilt disease in many crops including potato, cotton, and olive, were investigated. Its biological control with Talaromyces flavus with or without additional Pseudomonas fluorescens was attempted. Arabidopsis thaliana was selected as a bioass

  18. Biological Control of Nematodes with Bacteria

    Science.gov (United States)

    Biological control of nematodes is receiving increased attention as environmental considerations with the use of nematicides have increased in importance and their high cost prohibits use on many crops. In addition, nematode resistant cultivars are not available for many crops and resistance that i...

  19. Economic Benefit for Cuban Laurel Thrips Biological Control.

    Science.gov (United States)

    Shogren, C; Paine, T D

    2016-02-01

    The Cuban laurel thrips, Gynaikothrips ficorum Marchal (Thysanoptera: Phlaeothripidae), is a critical insect pest of Ficus microcarpa in California urban landscapes and production nurseries. Female thrips feed and oviposit on young Ficus leaves, causing the expanding leaves to fold or curl into a discolored leaf gall. There have been attempts to establish specialist predator natural enemies of the thrips, but no success has been reported. We resampled the same areas in 2013-2014 where we had released Montandoniola confusa (= morguesi) Streito and Matocq (Hemiptera: Anthocoridae) in southern California in 1995 but had been unable to recover individuals in 1997-1998. Thrips galls were significantly reduced in all three of the locations in the recent samples compared with the earlier samples. M. confusa was present in all locations and appears to be providing successful biological control. The value of the biological control, the difference between street trees in good foliage condition and trees with poor foliage, was $58,766,166. If thrips damage reduced the foliage to very poor condition, the value of biological control was $73,402,683. Total cost for the project was $61,830. The benefit accrued for every dollar spent on the biological control of the thrips ranged from $950, if the foliage was in poor condition, to $1,187, if the foliage was in very poor condition. The value of urban forest is often underappreciated. Economic analyses that clearly demonstrate the very substantial rates of return on investment in successful biological control in urban forests provide compelling arguments for supporting future efforts.

  20. Biological control of aflatoxin contamination of crops

    Institute of Scientific and Technical Information of China (English)

    Yan-ni YIN; Lei-yan YAN; Jin-hua JIANG; Zhong-hua MA

    2008-01-01

    Aflatoxins produced primarily by two closely related fungi, Aspergillus flavus and Aspergillus parasiticus, are mutagenic and carcinogenic in animals and humans. Of many approaches investigated to manage aflatoxin contamination, biological control method has shown great promise. Numerous organisms, including bacteria, yeasts and nontoxigenic fungal strains of A.flavus and A. parasiticus, have been tested for their ability in controlling aflatoxin contamination. Great successes in reducing aflatoxin contamination have been achieved by application of nontoxigenic strains of A. flavus and A. parasiticus in fields of cotton, peanut, maize and pistachio. The nontoxigenic strains applied to soil occupy the same niches as the natural occurring toxigenic strains. They, therefore, are capable of competing and displacing toxigenic strains. In this paper, we review recent development in biological control of aflatoxin contamination.

  1. Biological control of the terrestrial carbon sink

    Science.gov (United States)

    Schulze, E.-D.

    2006-03-01

    This lecture reviews the past (since 1964 when the International Biological Program began) and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production) and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in plant growth has

  2. Biological control of the terrestrial carbon sink

    Directory of Open Access Journals (Sweden)

    E.-D. Schulze

    2006-01-01

    Full Text Available This lecture reviews the past (since 1964 when the International Biological Program began and the future of our understanding of terrestrial carbon fluxes with focus on photosynthesis, respiration, primary-, ecosystem-, and biome-productivity. Photosynthetic capacity is related to the nitrogen concentration of leaves, but the capacity is only rarely reached under field conditions. Average rates of photosynthesis and stomatal conductance are closely correlated and operate near 50% of their maximal rate, with light being the limiting factor in humid regions and air humidity and soil water the limiting factor in arid climates. Leaf area is the main factor to extrapolate from leaves to canopies, with maximum surface conductance being dependent on leaf level stomatal conductance. Additionally, gas exchange depends also on rooting depth which determines the water and nutrient availability and on mycorrhizae which regulate the nutrient status. An important anthropogenic disturbance is the nitrogen uptake from air pollutants, which is not balanced by cation uptake from roots and this may lead to damage and breakdown of the plant cover. Photosynthesis is the main carbon input into ecosystems, but it alone does not represent the ecosystem carbon balance, which is determined by respiration of various kinds. Plant respiration and photosynthesis determine growth (net primary production and microbial respiration balances the net ecosystem flux. In a spruce forest, 30% of the assimilatory carbon gain is used for respiration of needles, 20% is used for respiration in stems. Soil respiration is about 50% the carbon gain, half of which is root respiration, half is microbial respiration. In addition, disturbances lead to carbon losses, where fire, harvest and grazing bypass the chain of respiration. In total, the carbon balance at the biome level is only about 1% of the photosynthetic carbon input, or may indeed become negative. The recent observed increase in

  3. The Molecular Crosstalk between the MET Receptor Tyrosine Kinase and the DNA Damage Response — Biological and Clinical Aspects

    Energy Technology Data Exchange (ETDEWEB)

    Medová, Michaela, E-mail: michaela.medova@dkf.unibe.ch; Aebersold, Daniel M.; Zimmer, Yitzhak, E-mail: michaela.medova@dkf.unibe.ch [Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, 3010 Bern (Switzerland); Department of Clinical Research, University of Bern, DKF, MEM-E807, Murtenstrasse 35, 3010 Bern (Switzerland)

    2013-12-19

    Radiation therapy remains an imperative treatment modality for numerous malignancies. Enduring significant technical achievements both on the levels of treatment planning and radiation delivery have led to improvements in local control of tumor growth and reduction in healthy tissue toxicity. Nevertheless, resistance mechanisms, which presumably also involve activation of DNA damage response signaling pathways that eventually may account for loco-regional relapse and consequent tumor progression, still remain a critical problem. Accumulating data suggest that signaling via growth factor receptor tyrosine kinases, which are aberrantly expressed in many tumors, may interfere with the cytotoxic impact of ionizing radiation via the direct activation of the DNA damage response, leading eventually to so-called tumor radioresistance. The aim of this review is to overview the current known data that support a molecular crosstalk between the hepatocyte growth factor receptor tyrosine kinase MET and the DNA damage response. Apart of extending well established concepts over MET biology beyond its function as a growth factor receptor, these observations directly relate to the role of its aberrant activity in resistance to DNA damaging agents, such as ionizing radiation, which are routinely used in cancer therapy and advocate tumor sensitization towards DNA damaging agents in combination with MET targeting.

  4. [Influence of Detector Radiation Damage on CR Mammography Quality Control].

    Science.gov (United States)

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage.

  5. Damage control kirurgi--en gennemgang af et Cochranereview

    DEFF Research Database (Denmark)

    Boel, Thomas; Hillingsø, Jens G; Svendsen, Lars Bo

    2011-01-01

    Damage Control Surgery (DCS) has been the approach in dealing with multi-trauma patients for the last 15 years. In this Cochrane-review the authors seek to compare the outcome of DCS with the outcome after the conventional strategy which is often a time-consuming operation with definitive repair...

  6. Damages of Biological Components in Bacteria and Bacteriophages Exposed to Atmospheric Non-thermal Plasma

    Science.gov (United States)

    Mizuno, Akira; Yasuda, Hachiro

    Mechanism of inactivation of bio-particles exposed to dielectric barrier discharge, DBD, has been studied using E. coli and bacteriophages. States of different biological components were monitored during the course of inactivation. Analysis of green fluorescent protein, GFP, introduced into E.coli cells proved that Non-thermal Plasma, NTP causes a prominent protein damages without cutting peptide bonds. We have developed a biological assay which evaluates in vitro DNA damage of the bacteriophages. Bacteriophage λ having double stranded DNA was exposed to DBD, then DNA was purified and subjected to in vitro DNA packaging reactions. The re-packaged phages consist of the DNA from discharged phages and brand-new coat proteins. Survival curves of the re-packaged phages showed extremely large D value (D = 25 s) compared to the previous D value (D = 3 s) from the discharged phages. The results indicate that DNA damage hardly contributed to the inactivation, and the damage in coat proteins is responsible for inactivation of the phages. M13 phages having single stranded DNA were also examined with the same manner. In this case, damage to DNA was as severe as that of the coat proteins.

  7. Reactive species and DNA damage in chronic inflammation: reconciling chemical mechanisms and biological fates.

    Science.gov (United States)

    Lonkar, Pallavi; Dedon, Peter C

    2011-05-01

    Chronic inflammation has long been recognized as a risk factor for many human cancers. One mechanistic link between inflammation and cancer involves the generation of nitric oxide, superoxide and other reactive oxygen and nitrogen species by macrophages and neutrophils that infiltrate sites of inflammation. Although pathologically high levels of these reactive species cause damage to biological molecules, including DNA, nitric oxide at lower levels plays important physiological roles in cell signaling and apoptosis. This raises the question of inflammation-induced imbalances in physiological and pathological pathways mediated by chemical mediators of inflammation. At pathological levels, the damage sustained by nucleic acids represents the full spectrum of chemistries and likely plays an important role in carcinogenesis. This suggests that DNA damage products could serve as biomarkers of inflammation and oxidative stress in clinically accessible compartments such as blood and urine. However, recent studies of the biotransformation of DNA damage products before excretion point to a weakness in our understanding of the biological fates of the DNA lesions and thus to a limitation in the use of DNA lesions as biomarkers. This review will address these and other issues surrounding inflammation-mediated DNA damage on the road to cancer.

  8. Onchocerciasis control: biological research is still needed

    Directory of Open Access Journals (Sweden)

    Boussinesq M.

    2008-09-01

    Full Text Available Achievements obtained by the onchocerciasis control programmes should not lead to a relaxation in the biological research on Onchocerca volvulus. Issues such as the Loa loa-related postivermectin serious adverse events, the uncertainties as to whether onchocerciasis can be eliminated by ivermectin treatments, and the possible emergence of ivermectin-resistant O. volvulus populations should be addressed proactively. Doxycycline, moxidectin and emodepside appear to be promising as alternative drugs against onchocerciasis but support to researches in immunology and genomics should also be increased to develop new control tools, including both vaccines and macrofilaricidal drugs.

  9. 'Nothing of chemistry disappears in biology': the Top 30 damage-prone endogenous metabolites.

    Science.gov (United States)

    Lerma-Ortiz, Claudia; Jeffryes, James G; Cooper, Arthur J L; Niehaus, Thomas D; Thamm, Antje M K; Frelin, Océane; Aunins, Thomas; Fiehn, Oliver; de Crécy-Lagard, Valérie; Henry, Christopher S; Hanson, Andrew D

    2016-06-15

    Many common metabolites are intrinsically unstable and reactive, and hence prone to chemical (i.e. non-enzymatic) damage in vivo Although this fact is widely recognized, the purely chemical side-reactions of metabolic intermediates can be surprisingly hard to track down in the literature and are often treated in an unprioritized case-by-case way. Moreover, spontaneous chemical side-reactions tend to be overshadowed today by side-reactions mediated by promiscuous ('sloppy') enzymes even though chemical damage to metabolites may be even more prevalent than damage from enzyme sloppiness, has similar outcomes, and is held in check by similar biochemical repair or pre-emption mechanisms. To address these limitations and imbalances, here we draw together and systematically integrate information from the (bio)chemical literature, from cheminformatics, and from genome-scale metabolic models to objectively define a 'Top 30' list of damage-prone metabolites. A foundational part of this process was to derive general reaction rules for the damage chemistries involved. The criteria for a 'Top 30' metabolite included predicted chemical reactivity, essentiality, and occurrence in diverse organisms. We also explain how the damage chemistry reaction rules ('operators') are implemented in the Chemical-Damage-MINE (CD-MINE) database (minedatabase.mcs.anl.gov/#/top30) to provide a predictive tool for many additional potential metabolite damage products. Lastly, we illustrate how defining a 'Top 30' list can drive genomics-enabled discovery of the enzymes of previously unrecognized damage-control systems, and how applying chemical damage reaction rules can help identify previously unknown peaks in metabolomics profiles.

  10. Achieving Control of Lesion Growth in CNS with Minimal Damage

    CERN Document Server

    Raja, Mathankumar

    2012-01-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist which minimizes system damage while achieving control of lesion growth.

  11. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    Science.gov (United States)

    Kim, Myung-Hee Y.; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2014-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ''biological Bragg curve'' is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta, et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called "overkill".

  12. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control.

    Science.gov (United States)

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and…

  13. Predicting spillover risk to non-target plants pre-release: Bikasha collaris a potential biological control agent of Chinese tallowtree (Triadica sebifera)

    Science.gov (United States)

    Quarantine host range tests accurately predict direct risk of biological control agents to non-target species. However, a well-known indirect effect of biological control of weeds releases is spillover damage to non-target species. Spillover damage may occur when the population of agents achieves ou...

  14. Self-repairing control for damaged robotic manipulators

    Energy Technology Data Exchange (ETDEWEB)

    Eisler, G.R.; Robinett, R.D.; Dohrmann, C.R.; Driessen, B.J. [and others

    1997-03-01

    Algorithms have been developed allowing operation of robotic systems under damaged conditions. Specific areas addressed were optimal sensor location, adaptive nonlinear control, fault-tolerant robot design, and dynamic path-planning. A seven-degree-of-freedom, hydraulic manipulator, with fault-tolerant joint design was also constructed and tested. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  15. Damage control surgery for severe thoracic and abdominal injuries

    Institute of Scientific and Technical Information of China (English)

    HUANG Xian-kai; ZHU Yu-jun; ZHANG Lian-yang

    2007-01-01

    Objective: To investigate the application of damage control surgery in treatment of patients with severe thoracic and abdominal injuries.Methods: A retrospective study was done on 37 patients with severe thoracic and abdominal injuries who underwent damage control surgery from January 2000 to October 2006 in our department. There were 8 cases of polytrauma ( with thoracic injury most commonly seen), 21 of polytrauma (with abdominal injury most commonly seen) and 8 of single abdominal trauma. Main organ damage included smashed hepatic injuries in 17 cases,posterior hepatic veins injuries in 8, pancreaticoduodenal injuries in 7, epidural or subdural hemorrhage in 4,contusion and laceration of brain in 5, severe lung and bronchus injuries in 4, pelvis and one smashed lower limb wound in 3 and pelvic fractures and retroperitoneal hemorrhage in 6. Injury severity score (ISS) was 28-45 scores (38.4 scores on average), abbreviated injury scale (ALS) ≥ 4.13. The patients underwent arteriography and arterial embolization including arteria hepatica embolization in 4 patients, arteria renalis embolization in 2 and pelvic arteria retroperitoneal embolization in 7. Once abbreviated operation finished, the patients were sent to ICU for resuscitation. Twenty-four cases underwent definitive operation within 48 hours after initial operation, 5 underwent definitive operation within 72 hours after initial operation, 2 cases underwent definitive operation postponed to 96 hours after initial operation for secondary operation to control bleeding because of abdominal cavity hemorrhea.Two cases underwent urgent laparotomy and decompression because of abdominal compartment syndrome and 2 cases underwent secondary operation because of intestinal fistulae (1 case of small intestinal fistula and 1 colon fistula) and gangrene of gallbladder.Results: A total of 28 patients survived, with a survival rate of 75.68%, and 9 died (4 died within 24 hours and 5 died 3-9 days after injury). The

  16. Track Structure and the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    Science.gov (United States)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2011-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to195 keV/micron. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons.

  17. Biological control of tropical soda apple (Solanaceae) in Florida: Post-release evaluation

    Science.gov (United States)

    The leaf feeding beetle Gratiana boliviana Spaeth (Coleoptera: Chrysomelidae) was released as a biological control agent against tropical soda apple (TSA) (Solanum viarum Dunal (Solanaceae)) in Sumter County, FL in 2006. Evaluation of beetle feeding damage to TSA plants and changes in the beetle po...

  18. Host range of the inadvertent biological control agent Caloptilia triadicae: an invasive herbivore of Chinese tallowtree

    Science.gov (United States)

    An inadvertent biological control agent of the invasive weed Chinese tallowtree (Triadica sebifera) first appeared in North America in 2004. Identified as a Caloptilia triadicae, this leaf miner was found damaging T. sebifera saplings. In Gainesville, FL we exposed naturalized populations of C. tria...

  19. Integration of biological control and transgenic insect protection for mitigation of mycotoxins in corn

    Science.gov (United States)

    Biological control is known to be effective in reducing aflatoxin contamination of corn and some transgenic corn hybrids incur greatly reduced damage from corn earworm (Helicoverpa zea). We conducted seven field trials over two years to test the hypothesis that transgenic insect protection and biol...

  20. Recent progress in a classical biological control program for olive fruit fly in California

    Science.gov (United States)

    The olive fruit fly, Bactrocera oleae (Diptera: Tephritidae), causes severe damage to olive production worldwide. Control of olive fruit fly typically relies on pesticides, and under such conditions the impact of natural enemies is relatively low. About 15 years ago, the USDA-ARS European Biologic...

  1. Biological control of invasive Dryocosmus kuriphilus with introduced parasitoid Torymus sinensis in Croatia, Slovenia and Hungary

    OpenAIRE

    2016-01-01

    Background and purpose: Dryocosmus kuriphilus is considered as one of the major pests of sweet chestnut and the effective method of controlling its populations and damage is the biological control with its introduced parasitoid Torymus sinensis. T. sinensis is a univoltine, host specific parasitoid, phenologically synchronized and morphologically adapted to D. kuriphilus. It has a good dispersal ability, it builds up populations quickly and it effectively controls the pest already few years a...

  2. Chemical Biology Strategies for Biofilm Control.

    Science.gov (United States)

    Yang, Liang; Givskov, Michael

    2015-08-01

    Microbes live as densely populated multicellular surface-attached biofilm communities embedded in self-generated, extracellular polymeric substances (EPSs). EPSs serve as a scaffold for cross-linking biofilm cells and support development of biofilm architecture and functions. Biofilms can have a clear negative impact on humans, where biofilms are a common denominator in many chronic diseases in which they prime development of destructive inflammatory conditions and the failure of our immune system to efficiently cope with them. Our current assortment of antimicrobial agents cannot efficiently eradicate biofilms. For industrial applications, the removal of biofilms within production machinery in the paper and hygienic food packaging industry, cooling water circuits, and drinking water manufacturing systems can be critical for the safety and efficacy of those processes. Biofilm formation is a dynamic process that involves microbial cell migration, cell-to-cell signaling and interactions, EPS synthesis, and cell-EPS interactions. Recent progress of fundamental biofilm research has shed light on novel chemical biology strategies for biofilm control. In this article, chemical biology strategies targeting the bacterial intercellular and intracellular signaling pathways will be discussed.

  3. Programmable temperature control system for biological materials

    Science.gov (United States)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  4. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  5. Autoimmune control of lesion growth in CNS with minimal damage

    Science.gov (United States)

    Mathankumar, R.; Mohan, T. R. Krishna

    2013-07-01

    Lesions in central nervous system (CNS) and their growth leads to debilitating diseases like Multiple Sclerosis (MS), Alzheimer's etc. We developed a model earlier [1, 2] which shows how the lesion growth can be arrested through a beneficial auto-immune mechanism. We compared some of the dynamical patterns in the model with different facets of MS. The success of the approach depends on a set of control parameters and their phase space was shown to have a smooth manifold separating the uncontrolled lesion growth region from the controlled. Here we show that an optimal set of parameter values exist in the model which minimizes system damage while, at once, achieving control of lesion growth.

  6. Damage control (revised & updated) the essential lessons of crisis management

    CERN Document Server

    Dezenhall, Eric

    2011-01-01

    No one knows this better than Eric Dezenhall and John Weber, who help companies, politicians, and celebrities get out of various kinds of trouble. In this brutally honest and eye-opening guide, they take you behind the scenes of some of the biggest public relations successes—and debacles—of modern business, politics, and entertainment. You'll discover: • Why the 1982 Tylenol cyanide-poisoning case is always cited as the best model for damage control, when in fact it has no relevance to the typical corporate crisis. • Why Audi never fully recovered from driver accusations of “sudden acceleratio

  7. Protein damage and repair controlling seed vigor and longevity.

    Science.gov (United States)

    Ogé, Laurent; Broyart, Caroline; Collet, Boris; Godin, Béatrice; Jallet, Denis; Bourdais, Gildas; Job, Dominique; Grappin, Philippe

    2011-01-01

    The formation of abnormal isoaspartyl residues derived from aspartyl or asparaginyl residues is a major source of spontaneous protein misfolding in cells. The repair enzyme protein L: -isoaspartyl methyltransferase (PIMT) counteracts such damage by catalyzing the conversion of abnormal isoaspartyl residues to their normal aspartyl forms. Thus, this enzyme contributes to the survival of many organisms, including plants. Analysis of the accumulation of isoaspartyl-containing proteins and its modulation by the PIMT repair pathway, using germination tests, immunodetection, enzymatic assays, and HPLC analysis, gives new insights in understanding controlling mechanisms of seed longevity and vigor.

  8. Comparison of Model Calculations of Biological Damage from Exposure to Heavy Ions with Measurements

    Science.gov (United States)

    Kim, Myung-Hee Y.; Wu, Honglu; Hada, Megumi; Cucinotta, Francis

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET g or X rays, the presence of shielding does not always reduce the radiation risks for energetic charged-particle exposure. Dose delivered by the charged particle increases sharply at the Bragg peak. However, the Bragg curve does not necessarily represent the biological damage along the particle path since biological effects are influenced by the track structures of both primary and secondary particles. Therefore, the ‘‘biological Bragg curve’’ is dependent on the energy and the type of the primary particle and may vary for different biological end points. Measurements of the induction of micronuclei (MN) have made across the Bragg curve in human fibroblasts exposed to energetic silicon and iron ions in vitro at two different energies, 300 MeV/nucleon and 1 GeV/nucleon. Although the data did not reveal an increased yield of MN at the location of the Bragg peak, the increased inhibition of cell progression, which is related to cell death, was found at the Bragg peak location. These results are compared to the calculations of biological damage using a stochastic Monte-Carlo track structure model, Galactic Cosmic Ray Event-based Risk Model (GERM) code (Cucinotta et al., 2011). The GERM code estimates the basic physical properties along the passage of heavy ions in tissue and shielding materials, by which the experimental set-up can be interpreted. The code can also be used to describe the biophysical events of interest in radiobiology, cancer therapy, and space exploration. The calculation has shown that the severely damaged cells at the Bragg peak are more likely to go through reproductive death, the so called “overkill”. F. A. Cucinotta, I. Plante, A. L. Ponomarev, and M. Y. Kim, Nuclear Interactions in Heavy Ion Transport and Event

  9. Changes of trabecular bone under control of biologically mechanical mechanism

    Science.gov (United States)

    Wang, C.; Zhang, C. Q.; Dong, X.; Wu, H.

    2008-10-01

    In this study, a biological process of bone remodeling was considered as a closed loop feedback control system, which enables bone to optimize and renew itself over a lifetime. A novel idea of combining strain-adaptive and damage-induced remodeling algorithms at Basic Multicellular Unit (BMU) level was introduced. In order to make the outcomes get closer to clinical observation, the stochastic occurrence of microdamage was involved and a hypothesis that remodeling activation probability is related to the value of damage rate was assumed. Integrated with Finite Element Analysis (FEA), the changes of trabecular bone in morphology and material properties were simulated in the course of five years. The results suggest that deterioration and anisotropy of trabecluar bone are inevitable with natural aging, and that compression rather than tension can be applied to strengthen the ability of resistance to fracture. This investigation helps to gain more insight the mechanism of bone loss and identify improved treatment and prevention for osteoporosis or stress fracture.

  10. Models for integrated pest control and their biological implications.

    Science.gov (United States)

    Tang, Sanyi; Cheke, Robert A

    2008-09-01

    Successful integrated pest management (IPM) control programmes depend on many factors which include host-parasitoid ratios, starting densities, timings of parasitoid releases, dosages and timings of insecticide applications and levels of host-feeding and parasitism. Mathematical models can help us to clarify and predict the effects of such factors on the stability of host-parasitoid systems, which we illustrate here by extending the classical continuous and discrete host-parasitoid models to include an IPM control programme. The results indicate that one of three control methods can maintain the host level below the economic threshold (ET) in relation to different ET levels, initial densities of host and parasitoid populations and host-parasitoid ratios. The effects of host intrinsic growth rate and parasitoid searching efficiency on host mean outbreak period can be calculated numerically from the models presented. The instantaneous pest killing rate of an insecticide application is also estimated from the models. The results imply that the modelling methods described can help in the design of appropriate control strategies and assist management decision-making. The results also indicate that a high initial density of parasitoids (such as in inundative releases) and high parasitoid inter-generational survival rates will lead to more frequent host outbreaks and, therefore, greater economic damage. The biological implications of this counter intuitive result are discussed.

  11. BIOLOGICAL CONTROL OF WEEDS BY MEANS OF PLANT PATHOGENS

    Directory of Open Access Journals (Sweden)

    Marija Ravlić

    2014-06-01

    Full Text Available Biological control is the use of live beneficial organisms and products of their metabolism in the pests control. Plant pathogens can be used for weed control in three different ways: as classical, conservation and augmentative (inoculative and inundated biological control. Inundated biological control involves the use of bioherbicides (mycoherbicides or artificial breeding of pathogens and application in specific stages of crops and weeds. Biological control of weeds can be used where chemical herbicides are not allowed, if resistant weed species are present or in the integrated pest management against weeds with reduced herbicides doses and other non-chemical measures, but it has certain limitations and disadvantages.

  12. Biological Effects of Gamma-Ray Bursts: Critical distances for severe damage on the biota

    CERN Document Server

    Galante, D; Galante, Douglas; Horvath, Jorge Ernesto

    2005-01-01

    We present in this work a unified, quantitative synthesis of analytical and numerical calculations of the effects caused on an Earth-like planet by a Gamma-Ray Burst (GRB), considering atmospheric and biological implications. The main effects of the illumination by a GRB are classified in four distinct ones and analyzed separately, namely the direct gamma radiation transmission, UV flash, ozone layer depletion and cosmic rays. The effectiveness of each of these effects is compared and lethal distances for significant biological damage are given for each one. We find that the first three effects have potential to cause global environmental changes and biospheric damages, even if the source is located at great distances (perhaps up to ~ 100 kpc). Instead, cosmic rays would only be a serious threat for very close sources. As a concrete example of a recorded similar event, the effects of the giant flare from SGR1806-20 of Dec 27, 2004 could cause on the biosphere are addressed. In spite of not belonging to the so...

  13. Ecological Compatibility of GM Crops and Biological Control

    Science.gov (United States)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  14. Complexity, Analysis and Control of Singular Biological Systems

    CERN Document Server

    Zhang, Qingling; Zhang, Xue

    2012-01-01

    Complexity, Analysis and Control of Singular Biological Systems follows the control of real-world biological systems at both ecological and phyisological levels concentrating on the application of now-extensively-investigated singular system theory. Much effort has recently been dedicated to the modelling and analysis of developing bioeconomic systems and the text establishes singular examples of these, showing how proper control can help to maintain sustainable economic development of biological resources. The book begins from the essentials of singular systems theory and bifurcations before tackling  the use of various forms of control in singular biological systems using examples including predator-prey relationships and viral vaccination and quarantine control. Researchers and graduate students studying the control of complex biological systems are shown how a variety of methods can be brought to bear and practitioners working with the economics of biological systems and their control will also find the ...

  15. Histopathological And Biological Studies On The Role Of Soybean And Broad Bean AgainstRadiation Induce Damage In Rat Kidney

    Directory of Open Access Journals (Sweden)

    Hanaa Fathy Waer, **Abdel El ­ Rahman Mohamed Attia

    2002-09-01

    Full Text Available Most of the physiological and histological activities in the animal body are disturbed after exposure to ionizing radiation. These disturbances are either due to direct harmful effect of radiation on the biological systems or to the indirect effect of free radicals formed in the body after irradiation. There is growing evidence that the type of food plays an important role in the prevention of chronic diseases. The biological disturbance due to ionizing radiation makes search for ways of protecting living organisms essential for controlling the radiation hazards. Much of the world population relies on legumes, as a stable food. Legumes can affectively protect cells and tissues against damage. Our present study was conducted to investigate the hazardous effects of single dose !"#$%#&f the possible protective effect of feeding beans (broad beans and soybeans against radiation exposure. Histopathological, and biological changes of kidney function in irradiated, and bean fed animals were carried out. Animals were weighted and daily food intake was determined. The result obtained revealed that soybean is an extremely rich source of protein and fat as compared to faba bean. Radiations cause a reduction in food intake and weight gain. It causes great changes in the kidney glomeruli and collecting tubules. The recovery of the cells depend on the type of feeding so, feeding soybean gives a significant radiation protection and decreases the extent of changes induced by radiation

  16. Maternal feeding controls fetal biological clock.

    Directory of Open Access Journals (Sweden)

    Hidenobu Ohta

    Full Text Available BACKGROUND: It is widely accepted that circadian physiological rhythms of the fetus are affected by oscillators in the maternal brain that are coupled to the environmental light-dark (LD cycle. METHODOLOGY/PRINCIPAL FINDINGS: To study the link between fetal and maternal biological clocks, we investigated the effects of cycles of maternal food availability on the rhythms of Per1 gene expression in the fetal suprachiasmatic nucleus (SCN and liver using a transgenic rat model whose tissues express luciferase in vitro. Although the maternal SCN remained phase-locked to the LD cycle, maternal restricted feeding phase-advanced the fetal SCN and liver by 5 and 7 hours respectively within the 22-day pregnancy. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that maternal feeding entrains the fetal SCN and liver independently of both the maternal SCN and the LD cycle. This indicates that maternal-feeding signals can be more influential for the fetal SCN and particular organ oscillators than hormonal signals controlled by the maternal SCN, suggesting the importance of a regular maternal feeding schedule for appropriate fetal molecular clockwork during pregnancy.

  17. Biological control with Trichogramma pretiosum increases organic maize productivity by 19.4%

    OpenAIRE

    de Lourdes Corrêa Figueiredo, Maria; Cruz, Ivan; da Silva, Rafael Braga; Foster, John Edward

    2015-01-01

    International audience; AbstractSpodoptera frugiperda is a major pest causing maize yield loss in Brazil. There is therefore a need for control methods, notably for organic farming because classical pesticides are not allowed. A potential solution for organic maize is to apply the biological control agent Trichogramma pretiosum to reduce S. frugiperda populations. Here, we tested the application of one, two, or three releases of T. pretiosum. We measured plant damage ratings, egg masses paras...

  18. Optically controlled collisions of biological objects

    Science.gov (United States)

    Davies, Benjamin J.; Kishore, Rani; Mammen, Mathai; Helmerson, Kristian; Choi, Seok-Ki; Phillips, William D.; Whitesides, George M.

    1998-04-01

    We have developed a new assay in which two mesoscale particles are caused to collide using two independently controlled optical tweezers. This assay involves the measurement of the adhesion probability following a collision. Since the relative orientation, impact parameter (i.e., distance of closest approach), and collision velocity of the particles, as well as the components of the solution, are all under the user's control, this assay can mimic a wide range of biologically relevant collisions. We illustrate the utility of our assay by evaluating the adhesion probability of a single erythrocyte (red blood cell) to an influenza virus-coated microsphere, in the presence of sialic acid-bearing inhibitors of adhesion. This probability as a function of inhibitor concentration yields a measure of the effectiveness of the inhibitor for blocking viral adhesion. Most of the inhibition constants obtained using the tweezers agree well with those obtained from other techniques, although the inhibition constants for the best of the inhibitors were beyond the limited resolution of conventional assays. They were readily evaluated using our tweezers-based assay, however, and prove to be the most potent inhibitors of adhesion between influenza virus and erythrocytes ever measured. Further studies are underway to investigate the effect of collision velocity on the adhesion probability, with the eventual goal of understanding the various mechanisms of inhibition (direct competition for viral binding sites versus steric stabilization). Analysis of these data also provide evidence that the density of binding sites may be a crucial parameter in the application of this assay and polymeric inhibition in general.

  19. Will the Convention on Biological Diversity put an end to biological control?

    Directory of Open Access Journals (Sweden)

    Joop C. van Lenteren

    2011-03-01

    Full Text Available Will the Convention on Biological Diversity put an end to biological control? Under the Convention on Biological Diversity countries have sovereign rights over their genetic resources. Agreements governing the access to these resources and the sharing of the benefits arising from their use need to be established between involved parties. This also applies to species collected for potential use in biological control. Recent applications of access and benefit sharing principles have already made it difficult or impossible to collect and export natural enemies for biological control research in several countries. If such an approach is widely applied it would impede this very successful and environmentally safe pest management method based on the use of biological diversity. The International Organization for Biological Control of Noxious Animals and Plants has, therefore, created the "Commission on Biological Control and Access and Benefit Sharing". This commission is carrying out national and international activities to make clear how a benefit sharing regime might seriously frustrate the future of biological control. In addition, the IOBC Commission members published information on current regulations and perceptions concerning exploration for natural enemies and drafted some 30 case studies selected to illustrate a variety of points relevant to access and benefit sharing. In this article, we summarize our concern about the effects of access and benefit sharing systems on the future of biological control.

  20. Multi-objective evolutionary optimization of biological pest control with impulsive dynamics in soybean crops.

    Science.gov (United States)

    Cardoso, Rodrigo T N; da Cruz, André R; Wanner, Elizabeth F; Takahashi, Ricardo H C

    2009-08-01

    The biological pest control in agriculture, an environment-friendly practice, maintains the density of pests below an economic injury level by releasing a suitable quantity of their natural enemies. This work proposes a multi-objective numerical solution to biological pest control for soybean crops, considering both the cost of application of the control action and the cost of economic damages. The system model is nonlinear with impulsive control dynamics, in order to cope more effectively with the actual control action to be applied, which should be performed in a finite number of discrete time instants. The dynamic optimization problem is solved using the NSGA-II, a fast and trustworthy multi-objective genetic algorithm. The results suggest a dual pest control policy, in which the relative price of control action versus the associated additional harvest yield determines the usage of either a low control action strategy or a higher one.

  1. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  2. A modal H∞-norm-based performance requirement for damage-tolerant active controller design

    Science.gov (United States)

    Genari, Helói F. G.; Mechbal, Nazih; Coffignal, Gérard; Nóbrega, Eurípedes G. O.

    2017-04-01

    Damage-tolerant active control (DTAC) is a recent research area that encompasses control design methodologies resulting from the application of fault-tolerant control methods to vibration control of structures subject to damage. The possibility of damage occurrence is not usually considered in the active vibration control design requirements. Damage changes the structure dynamics, which may produce unexpected modal behavior of the closed-loop system, usually not anticipated by the controller design approaches. A modal H∞ norm and a respective robust controller design framework were recently introduced, and this method is here extended to face a new DTAC strategy implementation. Considering that damage affects each vibration mode differently, this paper adopts the modal H∞ norm to include damage as a design requirement. The basic idea is to create an appropriate energy distribution over the frequency range of interest and respective vibration modes, guaranteeing robustness, damage tolerance, and adequate overall performance, taking into account that it is common to have previous knowledge of the structure regions where damage may occur during its operational life. For this purpose, a structural health monitoring technique is applied to evaluate modal modifications caused by damage. This information is used to create modal weighing matrices, conducting to the modal H∞ controller design. Finite element models are adopted for a case study structure, including different damage severities, in order to validate the proposed control strategy. Results show the effectiveness of the proposed methodology with respect to damage tolerance.

  3. New Biologic Drug Tackles Hard-To-Control Asthma

    Science.gov (United States)

    ... html New Biologic Drug Tackles Hard-to-Control Asthma Benralizumab significantly cuts respiratory attacks, two trials show ... drug reduces flare-ups in patients with severe asthma that is not controlled by steroid inhalers alone, ...

  4. Dynamical Systems and Control Theory Inspired by Molecular Biology

    Science.gov (United States)

    2014-10-02

    in both bacterial and eukaryotic signaling pathways. A common theme in the systems biology literature is that certain systems whose output variables...AFRL-OSR-VA-TR-2014-0282 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY Eduardo Sontag RUTGERS THE STATE UNIVERSITY OF NEW JERSEY...Standard Form 298 (Re . 8-98) v Prescribed by ANSI Std. Z39.18 DYNAMICAL SYSTEMS AND CONTROL THEORY INSPIRED BY MOLECULAR BIOLOGY AFOSR FA9550-11-1-0247

  5. Parasitoids as biological control agents of thrips pests

    NARCIS (Netherlands)

    Loomans, A.J.M.

    2003-01-01

    Keywords: Thysanoptera, Frankliniella occidentalis, Hymenoptera, Ceranisus menes, Ceranisus americensis, biological controlThe thesis presented here is the result of a joint European Research project "Biological Control of Thrips Pests". Specific aims of the project were to collect, evaluate, mass p

  6. Climate warming increases biological control agent impact on a non-target species

    Science.gov (United States)

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species. PMID:25376303

  7. Climate warming increases biological control agent impact on a non-target species.

    Science.gov (United States)

    Lu, Xinmin; Siemann, Evan; He, Minyan; Wei, Hui; Shao, Xu; Ding, Jianqing

    2015-01-01

    Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.

  8. Biological control and nutrition: food for thought

    Science.gov (United States)

    Chemical pesticides are used frequently to combat arthropod pests that plague crops; however, these compounds come with potential risks to the environment and human health. Research efforts have focused on using natural agents as an alternative to these chemical insecticides. These biological contro...

  9. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  10. [Application of damage control theory on the trauma orthopaedic treatment].

    Science.gov (United States)

    Wang, Jing-bo; Jin, Hong-bin

    2009-07-01

    The treatment of severely traumatic patients was changing from total care treament to the damage control surgery, as a result in the inflammatory reaction caused by trauma, in which the inflammatory marks, such as interleukin-6 and serum procalcitonin in the blood increased, and caused hypothermia, acidosis, and disturbance of blood coagulation, and resulted in the acute respiratory distress syndrome and multiple organs failure. A long-term operation as the second hit made the disease worse. In the patients, the femoral fracture was treated with external fixator; the pelvic fracture was treated with external fixator, and the uncontrolled haemorrhage in the pelvis was treated through direct hemostasis, angiography and embolism of arteries, and the tamponade of pelvis; the purpose of treatment of spinal fracture was keeping the stability of spine, avoiding the secondary injury on the spinal cord. It must pay attention to the injury of the adjacent organs and infection in the opening spinal injury. The result of operation was better in the incomplete spinal cord injury.

  11. Damage Adaptation Using Integrated Structural, Propulsion, and Aerodynamic Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, researchers have been making great strides in the development of algorithms that detect and compensate for damaged aircraft. Before these...

  12. Encyrtid parasitoids of soft scale insects: biology, behavior, and their use in biological control.

    Science.gov (United States)

    Kapranas, Apostolos; Tena, Alejandro

    2015-01-07

    Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects.

  13. Project Summary: Biology-Inspired Autonomous Control

    Science.gov (United States)

    2011-02-01

    relative high performance predictability currently associated with automated machines. Anyone who has walked a normally well behaved male dog in the...possibilities as well. Attitude control systems normally include proportional and integral control on sensed attitude, with damping and robustness provided...attacking predators. Some examples include red-wing black bird nest defense [1], meerkat predator mobbing [2], and predator identification in guppy schools

  14. Biological control of weeds release sites : Kulm Wetland Management District

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Table of release sites of insects for biological control of invasive plants at Kulm Wetland Management District (WMD). Insects were released on Kulm WMD to...

  15. Arms Control: US and International efforts to ban biological weapons

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The Bacteriological (Biological) and Toxin Weapons Convention, the treaty that bans the development, production, and stockpiling and acquisition of biological weapons was opened for signature in 1972 and came into force in 1975 after being ratified by 22 governments, including the depository nations of the USA, the United Kingdom, and the former Soviet Union. In support of the Convention, the USA later established export controls on items used to make biological weapons. Further, in accordance with the 1990 President`s Enhanced Proliferation Control Initiative, actions were taken to redefine and expand US export controls, as well as to encourage multilateral controls through the Australia Group. Thus far, the Convention has not been effective in stopping the development of biological weapons. The principal findings as to the reasons of the failures of the Convention are found to be: the Convention lacks universality, compliance measures are effective, advantage of verification may outweigh disadvantages. Recommendations for mitigating these failures are outlined in this report.

  16. Biological control of tortricids and aphids in strawberries

    DEFF Research Database (Denmark)

    Sigsgaard, Lene; Enkegaard, Annie; Eilenberg, Jørgen;

    Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising.......Cropping practice and biological control can contribute to reduced pesticide use in strawberries. Organic strawberries are less attacked by strawberry tortricid and buckwheat flower strips can augment its natural enemies. Against shallot aphid the two-spot ladybird is promising....

  17. Controllability and observability of Boolean networks arising from biology.

    Science.gov (United States)

    Li, Rui; Yang, Meng; Chu, Tianguang

    2015-02-01

    Boolean networks are currently receiving considerable attention as a computational scheme for system level analysis and modeling of biological systems. Studying control-related problems in Boolean networks may reveal new insights into the intrinsic control in complex biological systems and enable us to develop strategies for manipulating biological systems using exogenous inputs. This paper considers controllability and observability of Boolean biological networks. We propose a new approach, which draws from the rich theory of symbolic computation, to solve the problems. Consequently, simple necessary and sufficient conditions for reachability, controllability, and observability are obtained, and algorithmic tests for controllability and observability which are based on the Gröbner basis method are presented. As practical applications, we apply the proposed approach to several different biological systems, namely, the mammalian cell-cycle network, the T-cell activation network, the large granular lymphocyte survival signaling network, and the Drosophila segment polarity network, gaining novel insights into the control and/or monitoring of the specific biological systems.

  18. Optimal Control through Biologically-Inspired Pursuit

    Science.gov (United States)

    2004-01-01

    Transactions on Automatic Control 48, 988– 1001. Roumeliotis, S.I. and G.A. Bekey (2002). Distributed multi-robot localization. IEEE Transactions on Robotics and...1999). Distributed covering by ant- robots using evaporating traces. IEEE Transactions on Robotics and Automation 15(5), 918–933.

  19. Enzymatic recognition of DNA damage induced by UVB-photosensitized titanium dioxide and biological consequences in Saccharomyces cerevisiae: Evidence for oxidatively DNA damage generation

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A. Viviana, E-mail: alicia.pinto@incqs.fiocruz.br [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Deodato, Elder L. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Cardoso, Janine S. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Oliveira, Eliza F.; Machado, Sergio L.; Toma, Helena K. [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil); Leitao, Alvaro C. [Laboratorio de Radiobiologia Molecular, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21949-900, Rio de Janeiro (Brazil); Padula, Marcelo de [Laboratorio de Diagnostico Molecular e Hematologia, Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Centro de Ciencias da Saude - Ilha do Fundao, CEP 21941-540, Rio de Janeiro (Brazil)

    2010-06-01

    Although titanium dioxide (TiO{sub 2}) has been considered to be biologically inert, finding use in cosmetics, paints and food colorants, recent reports have demonstrated that when TiO{sub 2} is attained by UVA radiation oxidative genotoxic and cytotoxic effects are observed in living cells. However, data concerning TiO{sub 2}-UVB association is poor, even if UVB radiation represents a major environmental carcinogen. Herein, we investigated DNA damage, repair and mutagenesis induced by TiO{sub 2} associated with UVB irradiation in vitro and in vivo using Saccharomyces cerevisiae model. It was found that TiO{sub 2} plus UVB treatment in plasmid pUC18 generated, in addition to cyclobutane pyrimidine dimers (CPDs), specific damage to guanine residues, such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), which are characteristic oxidatively generated lesions. In vivo experiments showed that, although the presence of TiO{sub 2} protects yeast cells from UVB cytotoxicity, high mutation frequencies are observed in the wild-type (WT) and in an ogg1 strain (deficient in 8-oxoG and FapyG repair). Indeed, after TiO{sub 2} plus UVB treatment, induced mutagenesis was drastically enhanced in ogg1 cells, indicating that mutagenic DNA lesions are repaired by the Ogg1 protein. This effect could be attenuated by the presence of metallic ion chelators: neocuproine or dipyridyl, which partially block oxidatively generated damage occurring via Fenton reactions. Altogether, the results indicate that TiO{sub 2} plus UVB potentates UVB oxidatively generated damage to DNA, possibly via Fenton reactions involving the production of DNA base damage, such as 8-oxo-7,8-dihydroguanine.

  20. Anti-tick biological control agents: assessment and future perspectives

    Science.gov (United States)

    Samish, M.; Ginsberg, H.S.; Glazer, I.; Bowman, Alan. S.; Nuttall, Patricia A.

    2008-01-01

    Widespread and increasing resistance to most available acaracides threatens both global livestock industries and public health. This necessitates better understanding of ticks and the diseases they transmit in the development of new control strategies. Ticks: Biology, Disease and Control is written by an international collection of experts and covers in-depth information on aspects of the biology of the ticks themselves, various veterinary and medical tick-borne pathogens, and aspects of traditional and potential new control methods. A valuable resource for graduate students, academic researchers and professionals, the book covers the whole gamut of ticks and tick-borne diseases from microsatellites to satellite imagery and from exploiting tick saliva for therapeutic drugs to developing drugs to control tick populations. It encompasses the variety of interconnected fields impinging on the economically important and biologically fascinating phenomenon of ticks, the diseases they transmit and methods of their control.

  1. Nrf2 as a master regulator of tissue damage control and disease tolerance to infection

    Science.gov (United States)

    Soares, Miguel P.; Ribeiro, Ana M.

    2015-01-01

    Damage control refers to those actions made towards minimizing damage or loss. Depending on the context, these can range from emergency procedures dealing with the sinking of a ship or to a surgery dealing with severe trauma or even to an imaginary company in Marvel comics, which repairs damaged property arising from conflicts between super heroes and villains. In the context of host microbe interactions, tissue damage control refers to an adaptive response that limits the extent of tissue damage associated with infection. Tissue damage control can limit the severity of infectious diseases without interfering with pathogen burden, conferring disease tolerance to infection. This contrasts with immune-driven resistance mechanisms, which although essential to protect the host from infection, can impose tissue damage to host parenchyma tissues. This damaging effect is countered by stress responses that confer tissue damage control and disease tolerance to infection. Here we discuss how the stress response regulated by the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) acts in such a manner. PMID:26551709

  2. Controlling nickel silicide phase formation by Si implantation damage

    Energy Technology Data Exchange (ETDEWEB)

    Guihard, M.; Turcotte-Tremblay, P. [Departement de Physique, Universite de Montreal, Montreal (Canada); Gaudet, S.; Coia, C. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Roorda, S. [Departement de Physique, Universite de Montreal, Montreal (Canada); Desjardins, P. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York (United States); Schiettekatte, F. [Departement de Physique, Universite de Montreal, Montreal (Canada)], E-mail: francois.schiettekatte@umontreal.ca

    2009-05-01

    In the context of fabrication process of contacts in CMOS integrated circuits, we studied the effect of implantation-induced damage on the Ni silicide phase formation sequence. The device layers of Silicon-on-insulator samples were implanted with 30 or 60 keV Si ions at several fluences up to amorphization. Next, 10 or 30 nm Ni layers were deposited. The monitoring of annealing treatments was achieved with time-resolved X-ray diffraction (XRD) technique. Rutherford Backscattering Spectrometry and pole figure XRD were also used to characterize some intermediate phase formations. We show the existence of an implantation threshold (1 ions/nm{sup 2}) from where the silicidation behaviour changes significantly, the formation temperature of the disilicide namely shifting abruptly from 800 to 450 deg. C. It is also found that the monosilicide formation onset temperature for the thinner Ni deposits increases linearly by about 30 deg. C with the amount of damage.

  3. Controlling Nickel Sillicide Phase by Si Implantation Damage

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, M.; Turcotte-Tremblay, P; Gaudet, S; Coia, C; Roorda, S; Desjardins, P; Lavoie, C; Schiettekatte, F

    2009-01-01

    In the context of fabrication process of contacts in CMOS integrated circuits, we studied the effect of implantation-induced damage on the Ni silicide phase formation sequence. The device layers of Silicon-on-insulator samples were implanted with 30 or 60 keV Si ions at several fluences up to amorphization. Next, 10 or 30 nm Ni layers were deposited. The monitoring of annealing treatments was achieved with time-resolved X-ray diffraction (XRD) technique. Rutherford Backscattering Spectrometry and pole figure XRD were also used to characterize some intermediate phase formations. We show the existence of an implantation threshold (1 ions/nm{sup 2}) from where the silicidation behaviour changes significantly, the formation temperature of the disilicide namely shifting abruptly from 800 to 450 C. It is also found that the monosilicide formation onset temperature for the thinner Ni deposits increases linearly by about 30 C with the amount of damage.

  4. Exogenous control of biological and ecological systems through evolutionary modelling

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2013-09-01

    Full Text Available The controllability of network-like systems is a topical issue in ecology and biology. It relies on the ability to lead a system's behaviour towards the desired state through the appropriate handling of input variables. Up to now, controllability of networks is based on the permanent control of a set of driver nodes that can guide the system's dynamics. This assumption seems motivated by real-world networks observation, where a decentralized control is often applied only to part of the nodes. While in a previous paper I showed that ecological and biological networks can be efficaciously controlled from the inside, here I further introduce a new framework for network controllability based on the employment of exogenous controllers and evolutionary modelling, and provide an exemplification of its application.

  5. Augmentative biological control of arthropods in Latin America

    NARCIS (Netherlands)

    Lenteren, van J.C.; Bueno, V.H.P.

    2003-01-01

    Augmentative forms of biological control, where natural enemies are periodically introduced, are applied over large areas in various cropping systems in Latin America. About 25% of the world area under augmentative control is situated in this region. Well-known examples are the use of species of the

  6. The cactus moth, Cactoblastis cactorum: Lessons in Biological Control

    Science.gov (United States)

    The cactus moth was one of the success stories in classical biological control. In the 1920s, the prickly pear cactus was a serious pest in Australia. The cactus moth was imported from its native habitat in South America and proved so successful in controlling cactus that it was mass reared and exp...

  7. Biological Signatures of Brain Damage Associated with High Serum Ferritin Levels in Patients with Acute Ischemic Stroke and Thrombolytic Treatment

    Directory of Open Access Journals (Sweden)

    Mónica Millán

    2008-01-01

    Full Text Available Background and purpose: Increased body iron stores have been related to greater oxidative stress and brain injury in clinical and experimental cerebral ischemia and reperfusion. We aimed to investigate the biological signatures of excitotoxicity, inflammation and blood brain barrier disruption potentially associated with high serum ferritin levels-related damage in acute stroke patients treated with i.v. t-PA.

  8. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  9. THE ROLE OF HALTICA SP. (COLEOPTERA: HALTICIDAE AS BIOLOGICAL CONTROL AGENT OF POLYGONUM CHINENSE

    Directory of Open Access Journals (Sweden)

    SUN JAY A

    1991-01-01

    Full Text Available The role of Haltica sp. (Coleoptera: Halticidae with emphasis on host specificity and damage potential in controlling Polygonum chinense was evaluated under laboratory condition. Starvation test of the weevil on 33 weeds and 14 crop plant species indicated that only 6 weed species were attacked: Polygonum chinense, P. nepalense, P. barbatum, P. longisetum, Ludwigia octovalvis and L. parennis with P. chinense as the most preferred host plant. Preliminary damage potential test indicated that a population of 0, 1,2 and 3 pairs of adult weevil reduced the percentage of fresh weight increment of P. chinense by 0; 46.2; 74.7 and 75.5% respectively. Field observations indicated that the larvae as well as adult weevils are potential biological control agents of P. chinense. Further studies are, however, on the host-range of this weevil.

  10. Implementation of integral feedback control in biological systems.

    Science.gov (United States)

    Somvanshi, Pramod R; Patel, Anilkumar K; Bhartiya, Sharad; Venkatesh, K V

    2015-01-01

    Integral control design ensures that a key variable in a system is tightly maintained within acceptable levels. This approach has been widely used in engineering systems to ensure offset free operation in the presence of perturbations. Several biological systems employ such an integral control design to regulate cellular processes. An integral control design motif requires a negative feedback and an integrating process in the network loop. This review describes several biological systems, ranging from bacteria to higher organisms in which the presence of integral control principle has been hypothesized. The review highlights that in addition to the negative feedback, occurrence of zero-order kinetics in the process is a key element to realize the integral control strategy. Although the integral control motif is common to these systems, the mechanisms involved in achieving it are highly specific and can be incorporated at the level of signaling, metabolism, or at the phenotypic levels.

  11. The Biological Effectiveness of Different Radiation Qualities for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    Hada, M.; George, Kerry; Cucinotta, F. A.

    2011-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, Ti-48-ions with energies ranging from 240 to 1000 MeV/u, or to Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Si beams in this study ranged from 48 to 158 keV/ m, the LET of the Ti ions ranged from 107 to 240 keV/micron, and the LET of the Fe-ions ranged from 145 to 440 keV/ m. Doses delivered were in the 10- to 200-cGy range. Dose-response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole-chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose-response curve for chromosome damage with respect to gamma-rays. The estimates of RBEmax values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, 21.4+/-1.7 to 28.3+/-2.4 for Ti ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBEmax value for Fe ions was obtained with the 600 MeV/u beam, the highest RBEmax value for Ti ions was obtained 1000 MeV/u beam, and the highest RBEmax value for Si ions was obtained with the 170 MeV/u beam. For Si and Fe ions the RBEmax values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreasing with further increase in LET. Additional studies for low doses Si-28-ions down to 0.02 Gy will be discussed.

  12. Citrus growers vary in their adoption of biological control

    OpenAIRE

    Grogan, Kelly A.; Goodhue, Rachael E.

    2012-01-01

    In a spring 2010 survey, we investigated the characteristics that influenced whether California growers controlled major citrus pests with beneficial insects. We also performed statistical analysis of growers' reliance on Aphytus melinus, a predatory wasp, to control California red scale. The survey results suggest that growers with greater citrus acreage and more education are more likely to use biological control. Marketing outlets, ethnicity and primary information sources also influenced ...

  13. DNA-damaging agents in cancer chemotherapy: serendipity and chemical biology.

    Science.gov (United States)

    Cheung-Ong, Kahlin; Giaever, Guri; Nislow, Corey

    2013-05-23

    DNA-damaging agents have a long history of use in cancer chemotherapy. The full extent of their cellular mechanisms, which is essential to balance efficacy and toxicity, is often unclear. In addition, the use of many anticancer drugs is limited by dose-limiting toxicities as well as the development of drug resistance. Novel anticancer compounds are continually being developed in the hopes of addressing these limitations; however, it is essential to be able to evaluate these compounds for their mechanisms of action. This review covers the current DNA-damaging agents used in the clinic, discusses their limitations, and describes the use of chemical genomics to uncover new information about the DNA damage response network and to evaluate novel DNA-damaging compounds.

  14. Active fault tolerant control for vertical tail damaged aircraft with dissimilar redundant actuation system

    Institute of Scientific and Technical Information of China (English)

    Wang Jun; Wang Shaoping; Wang Xingjian; Shi Cun; Mileta M. Tomovic

    2016-01-01

    This paper proposes an active fault-tolerant control strategy for an aircraft with dissim-ilar redundant actuation system (DRAS) that has suffered from vertical tail damage. A damage degree coefficient based on the effective vertical tail area is introduced to parameterize the damaged flight dynamic model. The nonlinear relationship between the damage degree coefficient and the corresponding stability derivatives is considered. Furthermore, the performance degradation of new input channel with electro-hydrostatic actuator (EHA) is also taken into account in the dam-aged flight dynamic model. Based on the accurate damaged flight dynamic model, a composite method of linear quadratic regulator (LQR) integrating model reference adaptive control (MRAC) is proposed to reconfigure the fault-tolerant control law. The numerical simulation results validate the effectiveness of the proposed fault-tolerant control strategy with accurate flight dynamic model. The results also indicate that aircraft with DRAS has better fault-tolerant control ability than the traditional ones when the vertical tail suffers from serious damage.

  15. FRF-based structural damage detection of controlled buildings with podium structures: Experimental investigation

    Science.gov (United States)

    Xu, Y. L.; Huang, Q.; Zhan, S.; Su, Z. Q.; Liu, H. J.

    2014-06-01

    How to use control devices to enhance system identification and damage detection in relation to a structure that requires both vibration control and structural health monitoring is an interesting yet practical topic. In this study, the possibility of using the added stiffness provided by control devices and frequency response functions (FRFs) to detect damage in a building complex was explored experimentally. Scale models of a 12-storey main building and a 3-storey podium structure were built to represent a building complex. Given that the connection between the main building and the podium structure is most susceptible to damage, damage to the building complex was experimentally simulated by changing the connection stiffness. To simulate the added stiffness provided by a semi-active friction damper, a steel circular ring was designed and used to add the related stiffness to the building complex. By varying the connection stiffness using an eccentric wheel excitation system and by adding or not adding the circular ring, eight cases were investigated and eight sets of FRFs were measured. The experimental results were used to detect damage (changes in connection stiffness) using a recently proposed FRF-based damage detection method. The experimental results showed that the FRF-based damage detection method could satisfactorily locate and quantify damage.

  16. Controlling large malpractice claims: the unexpected impact of damage caps.

    Science.gov (United States)

    Gronfein, W P; Kinney, E D

    1991-01-01

    Indiana's comprehensive malpractice reforms, inaugurated in 1975, include a cap on damages, a mandated medical review before trial, and a state insurance fund to pay claims equal to or greater than $100,000. We have found that the amount of compensation going to claimants with such large malpractice claims in Indiana is, on average, substantially higher than in Michigan and Ohio. Indiana's mean claim severity between 1977 and 1988 was $404,832, while the means for Michigan and Ohio were $290,022 and $303,220, respectively, with the difference between these three means being highly significant. Although data on claim and claimant characteristics reveal considerable interstate variation, the results of regression analyses show that Indiana claim payment amounts are higher than Michigan or Ohio payments, independent of the effect of factors such as sex, age, severity of injury, allegations of negligence, and year of settlement.

  17. Methylene Diphosphonate Chemical and Biological control of MDP complex

    CERN Document Server

    Aungurarat, A

    2000-01-01

    Technetium-9 sup 9 sup m MDP easy prepared from MDP kits which different sources such as OAP (In house), SIGMA. The resulting Tc 9 sup 9 sup m -MDP preparations were controlled in chemical and biological tests to compare the different results in these cases: radiochemical purity, the quantity of starting material and biodistribution result.

  18. Successful biological control of tropical soda apple in Florida

    Science.gov (United States)

    Tropical soda apple, Solanum viarum, is a small shrub native to tropical regions of Brazil, Paraguay, and Argentina. This weed was first found in Florida in 1988. In May 2003, a leaf feeding beetle, Gratiana boliviana, from South America was released in Florida as a biological control agent of tro...

  19. Conditional lethality strains for the biological control of Anastrepha species

    Science.gov (United States)

    Pro-apoptotic cell death genes are promising candidates for biologically-based autocidal control of pest insects as demonstrated by tetracycline (tet)-suppressible systems for conditional embryonic lethality in Drosophila melanogaster (Dm) and the medfly, Ceratitis capitata (Cc). However, for medfly...

  20. Identification and evaluation of Trichogramma parasitoids for biological pest control

    NARCIS (Netherlands)

    Silva, I.M.M.S.

    1999-01-01

    Egg parasitoids of the genus Trichogramma are used as biological control agents against lepidopterous pests. From the 180 species described world-wide, only 5 have large scale application. The development of better methods to select other Trichogramma species/strains is necessary for a more effectiv

  1. Integrating Biological Systems in the Process Dynamics and Control Curriculum

    Science.gov (United States)

    Parker, Robert S.; Doyle, Francis J.; Henson, Michael A.

    2006-01-01

    The evolution of the chemical engineering discipline motivates a re-evaluation of the process dynamics and control curriculum. A key requirement of future courses will be the introduction of theoretical concepts and application examples relevant to emerging areas, notably complex biological systems. We outline the critical concepts required to…

  2. Rhagoletis cerasi Loew (Diptera: Tephritidae – Biological Characteristics, Harmfulness, and Control

    Directory of Open Access Journals (Sweden)

    Svetomir Stamenković

    2012-01-01

    Full Text Available The European cherry fruit fly, Rhagoletis cerasi Loew (Diptera: Tephritidae, is a highlydestructive pest in sweet and sour cherry orchards with a distribution area throughoutEurope and the temperate regions of Asia. It occurs regularly in all production regions ofthese fruit species in Serbia, damaging up to 10% of cherries in commercial production,while damage can go up to 100% in orchards and on solitary threes unprotected by controlmeasures.In Serbia, European cherry fruit fly most often attacks and damages fruits of the lateripeningcultivars of sweet cherry (Van, Stela, Hedelfinger, Bing, Lambert, Drogan’s Yellow.After a sweet cherry harvest, adults migrate to sour cherry where they continue feedingand ovipositing in half-mature sour cherries (prevailingly the domestic ecotype Oblačinska.During their activity period, larvae damage the fruits, so that they can no longer be consumedeither fresh or processed. The high percentage of sour cherries damaged by R. cerasihas become a factor limiting exports because the intensity of infestation of this fruitexceeds permissible limits. Pesticide use for controlling this pest, especially in integratedproduction, is based on a very poor selection of insecticides which cause problems withresidual ecotoxicity. Consequently, alternative measures for controlling European cherryfruit fly have been intensively studied over the past few years.This work surveys up-to-date results of various studies on the European cherry fruit flyas a very important pest in Serbia and other South and Mid-European countries. The workcontains detailed descriptions of its biological characteristics, flight phenology, infestationintensity and possibilities of fly control in sweet and sour cherry production areas.

  3. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A., E-mail: sarah.martin@qmul.ac.uk [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ (United Kingdom)

    2014-08-05

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting.

  4. Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius.

    Science.gov (United States)

    Reilly, Michelle S; Grogan, Dennis W

    2002-02-19

    To investigate the generality of efficient double-strand break repair and damage-induced mutagenesis in hyperthermophilic archaea, we systematically measured the effects of five DNA-damaging agents on Sulfolobus acidocaldarius and compared the results to those obtained for Escherichia coli under corresponding conditions. The observed lethality of gamma-radiation was very similar for S. acidocaldarius and E. coli, arguing against unusually efficient double-strand break repair in S. acidocaldarius. In addition, DNA-strand-breaking agents (gamma-radiation or bleomycin), as well as DNA-cross-linking agents (mechlorethamine, butadiene diepoxide or cisplatin) stimulated forward mutation, reverse mutation, and formation of recombinants via conjugation in Sulfolobus cells. Although two of the five DNA-damaging agents failed to revert the E. coli auxotrophs under these conditions, all five reverted S. acidocaldarius auxotrophs.

  5. An analysis of the influences of biological variance, measurement error, and uncertainty on retinal photothermal damage threshold studies

    Science.gov (United States)

    Wooddell, David A., Jr.; Schubert-Kabban, Christine M.; Hill, Raymond R.

    2012-03-01

    Safe exposure limits for directed energy sources are derived from a compilation of known injury thresholds taken primarily from animal models and simulation data. The summary statistics for these experiments are given as exposure levels representing a 50% probability of injury, or ED50, and associated variance. We examine biological variance in focal geometries and thermal properties and the influence each has in singlepulse ED50 threshold studies for 514-, 694-, and 1064-nanometer laser exposures in the thermal damage time domain. Damage threshold is defined to be the amount of energy required for a retinal burn on at least one retinal pigment epithelium (RPE) cell measuring approximately 10 microns in diameter. Better understanding of experimental variance will allow for more accurate safety buffers for exposure limits and improve directed energy research methodology.

  6. On Feeling in Control: A Biological Theory for Individual Differences in Control Perception

    Science.gov (United States)

    Declerck, Carolyn H.; Boone, Christophe; De Brabander, Bert

    2006-01-01

    This review aims to create a cross-disciplinary framework for understanding the perception of control. Although, the personality trait locus of control, the most common measure of control perception, has traditionally been regarded as a product of social learning, it may have biological antecedents as well. It is suggested that control perception…

  7. Maintaining Genetic Integrity Under Extreme Conditions: Novel DNA Damage Repair Biology in the Archaea

    Science.gov (United States)

    2013-11-23

    11/23/2013 Final Report DISTRIBUTION A: Distribution approved for public release. AIR FORCE RESEARCH LABORATORY AF OFFICE OF SCIENTIFIC RESEARCH...damaging agents, the genetic interactions with known DNA repair pathways and, crucially, the observed delay in DSB repair visualised by PFGE confirm the

  8. Epigenetics and Why Biological Networks are More Controllable than Expected

    Science.gov (United States)

    Motter, Adilson

    2013-03-01

    A fundamental property of networks is that perturbations to one node can affect other nodes, potentially causing the entire system to change behavior or fail. In this talk, I will show that it is possible to exploit this same principle to control network behavior. This approach takes advantage of the nonlinear dynamics inherent to real networks, and allows bringing the system to a desired target state even when this state is not directly accessible or the linear counterpart is not controllable. Applications show that this framework permits both reprogramming a network to a desired task as well as rescuing networks from the brink of failure, which I will illustrate through various biological problems. I will also briefly review the progress our group has made over the past 5 years on related control of complex networks in non-biological domains.

  9. Fatigue Damage Estimation and Data-based Control for Wind Turbines

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal; Soltani, Mohsen

    2015-01-01

    The focus of this work is on fatigue estimation and data-based controller design for wind turbines. The main purpose is to include a model of the fatigue damage of the wind turbine components in the controller design and synthesis process. This study addresses an online fatigue estimation method...... turbine components. The outcome is an adaptive or self-tuning MPC strategy for wind turbine fatigue damage reduction, which relies on parameter identification on previous measurement data. The results of the proposed strategy are compared with a baseline model predictive controller....... based on hysteresis operators, which can be used in control loops. The authors propose a data-based model predictive control (MPC) strategy that incorporates an online fatigue estimation method through the objective function, where the ultimate goal in mind is to reduce the fatigue damage of the wind...

  10. Damage-mitigating control of a reusable rocket engine for high performance and extended life

    Science.gov (United States)

    Ray, Asok; Dai, Xiaowen

    1995-01-01

    The goal of damage mitigating control in reusable rocket engines is to achieve high performance with increased durability of mechanical structures such that functional lives of the critical components are increased. The major benefit is an increase in structural durability with no significant loss of performance. This report investigates the feasibility of damage mitigating control of reusable rocket engines. Phenomenological models of creep and thermo-mechanical fatigue damage have been formulated in the state-variable setting such that these models can be combined with the plant model of a reusable rocket engine, such as the Space Shuttle Main Engine (SSME), for synthesizing an optimal control policy. Specifically, a creep damage model of the main thrust chamber wall is analytically derived based on the theories of sandwich beam and viscoplasticity. This model characterizes progressive bulging-out and incremental thinning of the coolant channel ligament leading to its eventual failure by tensile rupture. The objective is to generate a closed form solution of the wall thin-out phenomenon in real time where the ligament geometry is continuously updated to account for the resulting deformation. The results are in agreement with those obtained from the finite element analyses and experimental observation for both Oxygen Free High Conductivity (OFHC) copper and a copper-zerconium-silver alloy called NARloy-Z. Due to its computational efficiency, this damage model is suitable for on-line applications of life prediction and damage mitigating control, and also permits parametric studies for off-line synthesis of damage mitigating control systems. The results are presented to demonstrate the potential of life extension of reusable rocket engines via damage mitigating control. The control system has also been simulated on a testbed to observe how the damage at different critical points can be traded off without any significant loss of engine performance. The research work

  11. A theoretical approach on controlling agricultural pest by biological controls.

    Science.gov (United States)

    Mondal, Prasanta Kumar; Jana, Soovoojeet; Kar, T K

    2014-03-01

    In this paper we propose and analyze a prey-predator type dynamical system for pest control where prey population is treated as the pest. We consider two classes for the pest namely susceptible pest and infected pest and the predator population is the natural enemy of the pest. We also consider average delay for both the predation rate i.e. predation to the susceptible pest and infected pest. Considering a subsystem of original system in the absence of infection, we analyze the existence of all possible non-negative equilibria and their stability criteria for both the subsystem as well as the original system. We present the conditions for transcritical bifurcation and Hopf bifurcation in the disease free system. The theoretical evaluations are demonstrated through numerical simulations.

  12. 飞机操纵钢索损伤分析%Damage Analysis of Aircraft Control Cable

    Institute of Scientific and Technical Information of China (English)

    史珂

    2015-01-01

    Aircraft control cable damage can affect flight performance and flight safety. The damaged cables are collected and analyzed. Combined with the structure of flight control system ,corrosion and wear theory ,the damage type and damage mechanism of aircraft control cable are generalized according to morphology analysis of the damaged cables. In addition , maintenance experiences are summarized ,and methods to alleviate the damage of flight control cables are provided.%飞机操纵钢索损伤会影响飞机性能和飞行安全,文中对日常飞机维护中收集的损伤钢索进行形貌分析,结合钢索系统结构,参考腐蚀、磨损理论,将常见的飞机操纵钢索损伤形式进行了归纳、分类,并分析了各种损伤形式的机理;另外,通过总结维修实践中的经验,针对性地提出了减缓钢索损伤的措施,为飞机操纵钢索的维护提供了指导。

  13. The development of controlled damage mechanisms-based design method for nonlinear static pushover analysis

    Directory of Open Access Journals (Sweden)

    Ćosić Mladen

    2014-01-01

    Full Text Available This paper presents the original method of controlled building damage mechanisms based on Nonlinear Static Pushover Analysis (NSPA-DMBD. The optimal building damage mechanism is determined based on the solution of the Capacity Design Method (CDM, and the response of the building is considered in incremental situations. The development of damage mechanism of a system in such incremental situations is being controlled on the strain level, examining the relationship of current and limit strains in concrete and reinforcement steel. Since the procedure of the system damage mechanism analysis according to the NSPA-DMBD method is being iteratively implemented and designing checked after the strain reaches the limit, for this analysis a term Iterative-Interactive Design (IID has been introduced. By selecting, monitoring and controlling the optimal damage mechanism of the system and by developed NSPA-DMBD method, damage mechanism of the building is being controlled and the level of resistance to an early collapse is being increased. [Projekat Ministarstva nauke Republike Srbije, br. TR 36043

  14. The small hive beetle Aethina tumida: A review of its biology and control measures

    Directory of Open Access Journals (Sweden)

    Andrew G. S. CUTHBERTSON et al

    2013-10-01

    Full Text Available The small hive beetle Aethina tumida is an endemic parasitic pest and scavenger of colonies of social bees indigenous to sub-Saharan Africa. In this region this species rarely inflicts severe damage on strong colonies since the bees have develo­­ped strategies to combat them. However, A. tumida has since ‘escaped’ from its native home and has recently invaded areas such as North America and Australia where its economic impact on the apiculture industry has been significant. Small hive beetle, should it become established within Europe, represents a real and live threat to the UK bee keeping industry. Here we review the biology and current pest status of A. tumida and up to-date research in terms of both chemical and biological control used against this honey bee pest [Current Zoology 59 (5: 644–653, 2013].

  15. Biologically Inspired Self-Stabilizing Control for Bipedal Robots

    Directory of Open Access Journals (Sweden)

    Woosung Yang

    2013-02-01

    Full Text Available Despite recent major advances in computational power and control algorithms, the stable and robust control of a bipedal robot is still a challenging issue due to the complexity and high nonlinearity of robot dynamics. To address the issue an efficient and powerful alternative based on a biologically inspired control framework employing neural oscillators is proposed and tested. In a numerical test the virtual force controller combined with the neural oscillator of a humanoid robot generated rhythmic control signals and stable bipedal locomotion when coupled with proper impedance components. The entrainment nature inherent to neural oscillators also achieved stable and robust walking even in the presence of unexpected disturbances, in that the centre of mass (COM was successfully kept in phase with the zero moment point (ZMP input trajectory. The efficiency of the proposed control scheme is discussed alongside simulation results.

  16. Ecological Complexity and the Success of Fungal Biological Control Agents

    Directory of Open Access Journals (Sweden)

    Guy R. Knudsen

    2014-01-01

    Full Text Available Fungal biological control agents against plant pathogens, especially those in soil, operate within physically, biologically, and spatially complex systems by means of a variety of trophic and nontrophic interspecific interactions. However, the biocontrol agents themselves are also subject to the same types of interactions, which may reduce or in some cases enhance their efficacy against target plant pathogens. Characterization of these ecologically complex systems is challenging, but a number of tools are available to help unravel this complexity. Several of these tools are described here, including the use of molecular biology to generate biocontrol agents with useful marker genes and then to quantify these agents in natural systems, epifluorescence and confocal laser scanning microscopy to observe their presence and activity in situ, and spatial statistics and computer simulation modeling to evaluate and predict these activities in heterogeneous soil habitats.

  17. Controlled biological and biomimetic systems for landmine detection.

    Science.gov (United States)

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  18. Recurrence Plot Based Damage Detection Method by Integrating  Control Chart

    OpenAIRE

    Cheng Zhou; Weidong Zhang

    2015-01-01

    Because of the importance of damage detection in manufacturing systems and other areas, many fault detection methods have been developed that are based on a vibration signal. Little work, however, has been reported in the literature on using a recurrence plot method to analyze the vibration signal for damage detection. In this paper, we develop a recurrence plot based fault detection method by integrating the statistical process control technique. The recurrence plots of the vibration signals...

  19. Relative biological damage in and out of field of 6, 10 and 18 MV clinical photon beams

    Science.gov (United States)

    Ezzati, A. O.

    2016-08-01

    The lower energy of scattered radiation in and out of a megavoltage (MV) photon beam suggests that relative biological damage (RBD) may change from in- to out-of-field regions for unit absorbed dose. Because of high linear energy transfer (LET) and potential of causing severe damage to the DNA, low-energy (10 eV-1 keV) slowing down electrons should be included in radiation biological damage calculations. In this study RBD was calculated in and out of field of 6, 10 and 18 MV clinical photon beams including low-energy slowing down electrons in the track length estimated method. Electron spectra at energies higher than 2 keV were collected in a water phantom at different depths and off-axis points by using the MCNP code. A new extrapolation method was used to estimate the electron spectra at energies lower than 2 keV. The obtained spectra at energies lower than 2 keV merged with spectra at energies higher than 2 keV by using continuity of the spectra. These spectra were used as an input to a validated microdosimetric Monte Carlo (MC) code, MC damage simulation (MCDS), to calculate the RBD of induced DSB in DNA at points in and out of the primary radiation field under fully aerobic (100% O2 and anoxic (0% O2 conditions. There was an observable difference in the energy spectra for electrons for points in the primary radiation field and those points out of field. RBD had maximum variation, 11% in 6 MV photons at field size of 20×20 cm2. This variation was less than 11% for 10 and 18 MV photons and field sizes smaller than 20×20 cm2. Our simulations also showed that under the anoxic condition, RBD increases up to 6% for 6 and 10 MV photons and the 20×20 cm2 field size. This work supports the hypothesis that in megavoltage treatments out-of-field radiation quality can vary enough to have an impact on RBD per unit dose and that this may play a role as the radiation therapy community explores biological optimization as a tool to assist treatment planning.

  20. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental approaches

  1. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  2. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Shikazono, Naoya, E-mail: shikazono.naoya@jaea.go.jp [Japan Atomic Energy Agency, Advanced Research Science Center, 2-4 Shirakata-Shirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); O' Neill, Peter [Gray Institute for Radiation Oncology and Biology, University of Oxford, Roosevelt Drive, Oxford OX3 7DQ (United Kingdom)

    2009-10-02

    Clustered DNA damage induced by a single radiation track is a unique feature of ionizing radiation. Using a plasmid-based assay in Escherichia coli, we previously found significantly higher mutation frequencies for bistranded clusters containing 7,8-dihydro-8-oxoguanine (8-oxoG) and 5,6-dihydrothymine (DHT) than for either a single 8-oxoG or a single DHT in wild type and in glycosylase-deficient strains of E. coli. This indicates that the removal of an 8-oxoG from a clustered damage site is most likely retarded compared to the removal of a single 8-oxoG. To gain further insights into the processing of bistranded base lesions, several potential repair intermediates following 8-oxoG removal were assessed. Clusters, such as DHT + apurinic/apyrimidinic (AP) and DHT + GAP have relatively low mutation frequencies, whereas clusters, such as AP + AP or GAP + AP, significantly reduce the number of transformed colonies, most probably through formation of a lethal double strand break (DSB). Bistranded AP sites placed 3' to each other with various interlesion distances also blocked replication. These results suggest that bistranded base lesions, i.e., single base lesions on each strand, but not clusters containing only AP sites and strand breaks, are repaired in a coordinated manner so that the formation of DSBs is avoided. We propose that, when either base lesion is initially excised from a bistranded base damage site, the remaining base lesion will only rarely be converted into an AP site or a single strand break in vivo.

  3. Decentralized control of ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-09-01

    Full Text Available Evolutionary Network Control (ENC has been recently introduced to allow the control of any kind of ecological and biological networks, with an arbitrary number of nodes and links, acting from inside and/or outside. To date, ENC has been applied using a centralized approach where an arbitrary number of network nodes and links could be tamed. This approach has shown to be effective in the control of ecological and biological networks. However a decentralized control, where only one node and the correspondent input/output links are controlled, could be more economic from a computational viewpoint, in particular when the network is very large (i.e. big data. In this view, ENC is upgraded here to realize the decentralized control of ecological and biological nets.

  4. Biological Control of the Invasive Dryocosmus kuriphilus (Hymenoptera: Cynipidae) - an Overview and the First Trials in Croatia

    OpenAIRE

    2014-01-01

    Background and Purpose: Dryocosmus kuriphilus is a globally invasive insect pest, spreading very quickly in new habitats and making serious damage to sweet chestnut forests in Croatia and in several other European countries. Indigenous parasitoid species trophically associated with oak gallwasps have adapted to this new host but cannot effectively regulate its population density. Classical biological control using parasitoid Torymus sinensis has been proven to be the only effective method of ...

  5. Self-Organized Biological Dynamics and Nonlinear Control

    Science.gov (United States)

    Walleczek, Jan

    2006-04-01

    The frontiers and challenges of biodynamics research Jan Walleczek; Part I. Nonlinear Dynamics in Biology and Response to Stimuli: 1. External signals and internal oscillation dynamics - principal aspects and response of stimulated rhythmic processes Friedemann Kaiser; 2. Nonlinear dynamics in biochemical and biophysical systems: from enzyme kinetics to epilepsy Raima Larter, Robert Worth and Brent Speelman; 3. Fractal mechanisms in neural control: human heartbeat and gait dynamics in health and disease Chung-Kang Peng, Jeffrey M. Hausdorff and Ary L. Goldberger; 4. Self-organising dynamics in human coordination and perception Mingzhou Ding, Yanqing Chen, J. A. Scott Kelso and Betty Tuller; 5. Signal processing in biochemical reaction networks Adam P. Arkin; Part II. Nonlinear Sensitivity of Biological Systems to Electromagnetic Stimuli: 6. Electrical signal detection and noise in systems with long-range coherence Paul C. Gailey; 7. Oscillatory signals in migrating neutrophils: effects of time-varying chemical and electrical fields Howard R. Petty; 8. Enzyme kinetics and nonlinear biochemical amplification in response to static and oscillating magnetic fields Jan Walleczek and Clemens F. Eichwald; 9. Magnetic field sensitivity in the hippocampus Stefan Engström, Suzanne Bawin and W. Ross Adey; Part III. Stochastic Noise-Induced Dynamics and Transport in Biological Systems: 10. Stochastic resonance: looking forward Frank Moss; 11. Stochastic resonance and small-amplitude signal transduction in voltage-gated ion channels Sergey M. Bezrukov and Igor Vodyanoy; 12. Ratchets, rectifiers and demons: the constructive role of noise in free energy and signal transduction R. Dean Astumian; 13. Cellular transduction of periodic and stochastic energy signals by electroconformational coupling Tian Y. Tsong; Part IV. Nonlinear Control of Biological and Other Excitable Systems: 14. Controlling chaos in dynamical systems Kenneth Showalter; 15. Electromagnetic fields and biological

  6. Adaptive Fuzzy-Lyapunov Controller Using Biologically Inspired Swarm Intelligence

    Directory of Open Access Journals (Sweden)

    Alejandro Carrasco Elizalde

    2008-01-01

    Full Text Available The collective behaviour of swarms produces smarter actions than those achieved by a single individual. Colonies of ants, flocks of birds and fish schools are examples of swarms interacting with their environment to achieve a common goal. This cooperative biological intelligence is the inspiration for an adaptive fuzzy controller developed in this paper. Swarm intelligence is used to adjust the parameters of the membership functions used in the adaptive fuzzy controller. The rules of the controller are designed using a computing-with-words approach called Fuzzy-Lyapunov synthesis to improve the stability and robustness of an adaptive fuzzy controller. Computing-with-words provides a powerful tool to manipulate numbers and symbols, like words in a natural language.

  7. Protective Effect of Selected Medicinal Plants against Hydrogen Peroxide Induced Oxidative Damage on Biological Substrates

    Directory of Open Access Journals (Sweden)

    Namratha Pai Kotebagilu

    2014-01-01

    Full Text Available Oxidative stress is developed due to susceptibility of biological substrates to oxidation by generation of free radicals. In degenerative diseases, oxidative stress level can be reduced by antioxidants which neutralize free radicals. Primary objective of this work was to screen four medicinal plants, namely, Andrographis paniculata, Costus speciosus, Canthium parviflorum, and Abrus precatorius, for their antioxidant property using two biological substrates—RBC and microsomes. The antioxidative ability of three solvent extracts, methanol (100% and 80% and aqueous leaf extracts, was studied at different concentrations by thiobarbituric acid reactive substances method using Fenton’s reagent to induce oxidation in the substrates. The polyphenol and flavonoid content were analyzed to relate with the observed antioxidant effect of the extracts. The phytochemical screening indicated the presence of flavonoids, polyphenols, tannins, and β-carotene in the samples. In microsomes, 80% methanol extract of Canthium and Costus and, in RBC, 80% methanol extract of Costus showed highest inhibition of oxidation and correlated well with the polyphenol and flavonoid content. From the results it can be concluded that antioxidants from medicinal plants are capable of inhibiting oxidation in biological systems, suggesting scope for their use as nutraceuticals.

  8. Biopesticides: An option for the biological pest control

    Directory of Open Access Journals (Sweden)

    Eusebio Nava Pérez

    2012-09-01

    Full Text Available The indiscriminate use of synthetic pesticides and the problems that its cause to human health, agriculture and the environment is comment, this paper also present general aspects about of biopesticides, and their uses in the biological pest control. By the nature these can be safely used in a sustainable agriculture. An example is the use of botanical pesticides whose active ingredient are the terpenes, alkaloids and phenolics, these have insecticide effects for many agriculture pests; also its are less expensive, are biodegradable and safe for humans and the environment, however havelittle residuality. Microbial pesticides are being introduced successfully to pests control in important crops such as; coffee, sugar cane, beans and corn. These products contain bacteria, fungi, viruses or nematodes. However, few entomopathogenic agents have been developed as effective biocontrol agents, one of them is the bacterium Bacillus thuringiensis (Berlinier for control of armyworm Spodoptera frugiperda (J.E Smith covering about 74% of the market,fungus 10% , viruses 5% and 11% others. Other upstanding case is the use of the fungus Beauveria bassiana (Balsamoagainst bean weevil Acanthoscelides obtectus (Say. Biopesticides have shown that when are used properly in the biological pest control its favor the practice of a sustainable agriculture, with less dependence of chemical insecticides.

  9. Supplemental control of lepidopterous pests on Bt transgenic sweet corn with biologically-based spray treatments.

    Science.gov (United States)

    Farrar, Robert R; Shepard, B Merle; Shapiro, Martin; Hassell, Richard L; Schaffer, Mark L; Smith, Chad M

    2009-01-01

    Biologically-based spray treatments, including nucleopolyhedroviruses, neem, and spinosad, were evaluated as supplemental controls for the fall armyworm, Spodoptera frugiperda (J. E. Smith), and corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), on transgenic sweet corn, Zea mays (L.) (Poales: Poaceae), expressing a Cry1Ab toxin from Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). Overall, transgenic corn supported lower densities of both pests than did nontransgenic corn. Control of the fall armyworm was improved in both whorl-stage and tassel-stage corn by the use of either a nucleopolyhedrovirus or neem, but the greatest improvement was seen with spinosad. Only spinosad consistently reduced damage to ears, which was caused by both pest species. In general, efficacy of the spray materials did not differ greatly between transgenic and nontransgenic corn.

  10. Impact of changes in sugar exudate created by biological damage to tomato plants on the persistence of Escherichia coli O157:H7.

    Science.gov (United States)

    Aruscavage, Daniel; Phelan, P Larry; Lee, Ken; LeJeune, Jeffrey T

    2010-05-01

    The survival of enteric pathogens on vegetable leaves improves due to presence of phytopathogens. Phytopathogen damage alters the microenvironment on the leaf surface. The objective of this study was to identify differences in sugar concentrations in tomato leaves damaged by biotropic plant pathogens and determine if these differences affect Escherichia coli O157:H7 survival. E. coli O157:H7 survived better on tomato plants damaged by Xanthomonas campestris than on healthy plants (P = 0.012). The most common sugars and sugar alcohols in the damaged leaf exudate were glucose, fructose, inositol, and sucrose. The abundance of sucrose and inositol differed between the healthy and infected plants (P E. coli O157:H7 to proliferate. Keeping plants free from biological damage can limit the amount of leaching of sugars that could allow human pathogens to proliferate. There is the possibility of increasing food safety of vegetable products by limiting phytopathogenic damage to plants.

  11. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    KAUST Repository

    Prest, Emmanuelle I.

    2016-02-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  12. Biological stability of drinking water: controlling factors, methods and challenges

    Directory of Open Access Journals (Sweden)

    Emmanuelle ePrest

    2016-02-01

    Full Text Available Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g. development of opportunistic pathogens, aesthetic (e.g. deterioration of taste, odour, colour or operational (e.g. fouling or biocorrosion of pipes problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors such as (i type and concentration of available organic and inorganic nutrients, (ii type and concentration of residual disinfectant, (iii presence of predators such as protozoa and invertebrates, (iv environmental conditions such as water temperature, and (v spatial location of microorganisms (bulk water, sediment or biofilm. Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i existing knowledge on biological stability controlling factors and (ii how these factors are affected by drinking water production and distribution conditions. In addition, (iii the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discuss how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order to

  13. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    Science.gov (United States)

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  14. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    Science.gov (United States)

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  15. Damage control surgery--new concept or reenacting of a classical idea?

    Science.gov (United States)

    Beuran, Mircea; Iordache, Florin-Mihail

    2008-01-01

    Damage-control surgery is an example of a paradigm shift. The term is borrowed from naval teminology and means gaining the initial control of a damaged ship. Because of the lethal triad the polytrauma patient is at a grave risk. The classical concept of surgically solving all the patient's injuries in the first moment was even theoretically incorrect as a multiple injured patient is a critical patient with depleted reserves. As such, complex procedures were doomed from this point of view. The concept of damage-control surgery emerged in 1992. The core idea was that as minimal as possible had to be done in these critical patients in the first phase, meaning temporary control of a hemorrhage and simple measures for stopping contamination. After 24-48 hours in the ICU, in which time the physiological disturbances were corrected, a further intervention is perfomed for definitively treating the injuries. Further refinements consider five stages and not three in damage-control surgery. The bright side of the concept is an up to 70% survivability rate but with a higher risk of complications, mostly due to the policy of temporary closing the abdomen and sepsis.

  16. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways.

  17. Study on Biological Control Of Rhizoctonia solani via Trichoderma

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Strain T02-25 was selected from approximately 30 rhizosphere isolates of Trichoderma species isolated from roots of crops. Its biological activity against Rhizoctonia solani was determined for the control efficacy to pepper seedling blight caused by R. solani in the field. The assay methods were treating R. solani sclerotia by Trichoderma conidial suspension (106cfu ml-1) and scattering Thichoderma rice bran over the pepper root medium. The results showed that T02-25 was active against R. solani in both ways, and its control efficacy was 82.7% and 78.0%, respectively. In addition to comparison of the efficacy of the two application methods, the relationship of different factors in the control efficacy of Trichoderma against R. solani was discussed.

  18. Biological control of thrips pests (Thysanoptera: Thripidae in a commercial greenhouse in Hungary

    Directory of Open Access Journals (Sweden)

    Farkas Péter

    2016-12-01

    Full Text Available Polyphagous thrips, like western flower thrips Frankliniella occidentalis and onion thrips Thrips tabaci, are major pests in various ornamental and vegetable crops in greenhouses throughout the world. In Hungary, both of these polyphagous thrips species frequently cause severe damage in many greenhouse crops, especially in commercial sweet pepper. Chemical control is not always feasible because of certain ecological characteristics of these thrips species. The commercially available phytoseiid predatory mites like Amblyseius swirskii and anthocorid flower bugs like Orius laevigatus are often used simultaneously for the biological control of severe thrips infestation in sweet pepper cultivation in Hungary. Our observations demonstrated that the polyphagous thrips assemblages were effectively controlled by the combined release of natural enemies, despite the fact that the establishment of O. laevigatus did not seem to be successful in the first year. Overall, the thrips population density remained below the economic threshold in both years. However, the low infestation level of thrips suggests that a single predator release strategy could be applied effectively and still maintain the thrips below the damage threshold in greenhouse sweet pepper.

  19. Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents.

    Science.gov (United States)

    Card, Stuart; Johnson, Linda; Teasdale, Suliana; Caradus, John

    2016-08-01

    Endophytes associate with the majority of plant species found in natural and managed ecosystems. They are regarded as extremely important plant partners that provide improved stress tolerance to the host compared with plants that lack this symbiosis. Fossil records of endophytes date back more than 400 million years, implicating these microorganisms in host plant adaptation to habitat transitions. However, it is only recently that endophytes, and their bioactive products, have received meaningful attention from the scientific community. The benefits some endophytes can confer on their hosts include plant growth promotion and survival through the inhibition of pathogenic microorganisms and invertebrate pests, the removal of soil contaminants, improved tolerance of low fertility soils, and increased tolerance of extreme temperatures and low water availability. Endophytes are extremely diverse and can exhibit many different biological behaviours. Not all endophyte technologies have been successfully commercialised. Of interest in the development of the next generation of plant protection products is how much of this is due to the biology of the particular endophytic microorganism. In this review, we highlight selected case studies of endophytes and discuss their lifestyles and behavioural traits, and discuss how these factors contribute towards their effectiveness as biological control agents.

  20. Indoor biology pollution control based on system-based humidity priority control strategy

    Institute of Scientific and Technical Information of China (English)

    刘亚昱; 谢慧; 石博强

    2009-01-01

    Indoor biological contamination and HVAC system secondary contamination problems caused wide public concerns. Biological contamination control will be the next step to achieve better IAQ. The most efficient and safe way to control biological contamination was to limit relative humidity in HVAC system and conditioned environment in the range that is more unsuitable for microorganism to survive. In this paper,by referring to bio-clean project experiences,a system-based humidity priority control manner came into being by lowering outdoor air humidity ratio to eliminate all indoor latent load and using self recirculation units to bear indoor sensible load. Based on the whole-course residue humidity contaminant control concept,dynamic step models for coil and conditioned zone were developed to describe mass and energy conservation and transformation processes. Then,HVAC system and conditioned zone dynamic models were established on LabVIEW+Matlab platform to investigate optimized regulation types,input signatures and control logics. Decoupling between cooling and dehumidification processes can be achieved and a more simplified and stable control system can be acquired by the system-based humidity priority control strategy. Therefore,it was a promising way for controlling biological pollution in buildings in order to achieve better IAQ.

  1. Farmer survey in the hinterland of Kisangani (Democratic Republic of Congo) on rodent crop damage and rodent control techniques used

    DEFF Research Database (Denmark)

    Drazo, Nicaise Amundala; Kennis, Jan; Leirs, Herwig;

    2008-01-01

    We conducted a survey on rodent crop damage among farmers in the hinterland of Kisangani (Democratic Republic of Congo). We studied the amount of crop damage, the rodent groups causing crop damage, the growth stages affected and the control techniques used. We conducted this survey in three munic...

  2. Integration of plant defense traits with biological control of arthropod pests: challenges and opportunities

    Directory of Open Access Journals (Sweden)

    Julie A Peterson

    2016-11-01

    Full Text Available Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically-, plant toxin-, plant nutrient-, and/or physically-mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management.

  3. Biological control of surface temperature in the Arabian Sea

    Science.gov (United States)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  4. Nutriomes and personalised nutrition for DNA damage prevention, telomere integrity maintenance and cancer growth control.

    Science.gov (United States)

    Fenech, Michael F

    2014-01-01

    DNA damage at the base sequence and chromosome level is a fundamental cause of developmental and degenerative diseases. Multiple micronutrients and their interactions with the inherited and/or acquired genome determine DNA damage and genomic instability rates. The challenge is to identify for each individual the combination of micronutrients and their doses (i.e. the nutriome) that optimises genome stability, including telomere integrity and functionality and DNA repair. Using nutrient array systems with high-content analysis diagnostics of DNA damage, cell death and cell growth, it is possible to define, on an individual basis, the optimal nutriome for DNA damage prevention and cancer growth control. This knowledge can also be used to improve culture systems for cells used in therapeutics such as stem cells to ensure that they are not genetically aberrant when returned to the body. Furthermore, this information could be used to design dietary patterns that deliver the micronutrient combinations and concentrations required for preventing DNA damage by micronutrient deficiency or excess. Using this approach, new knowledge could be obtained to identify the dietary restrictions and/or supplementations required to control specific cancers, which is particularly important given that reliable validated advice is not yet available for those diagnosed with cancer.

  5. Extended Kalman filter based structural damage detection for MR damper controlled structures

    Science.gov (United States)

    Jin, Chenhao; Jang, Shinae; Sun, Xiaorong; Jiang, Zhaoshuo; Christenson, Richard

    2016-04-01

    The Magneto-rheological (MR) dampers have been widely used in many building and bridge structures against earthquake and wind loadings due to its advantages including mechanical simplicity, high dynamic range, low power requirements, large force capacity, and robustness. However, research about structural damage detection methods for MR damper controlled structures is limited. This paper aims to develop a real-time structural damage detection method for MR damper controlled structures. A novel state space model of MR damper controlled structure is first built by combining the structure's equation of motion and MR damper's hyperbolic tangent model. In this way, the state parameters of both the structure and MR damper are added in the state vector of the state space model. Extended Kalman filter is then used to provide prediction for state variables from measurement data. The two techniques are synergistically combined to identify parameters and track the changes of both structure and MR damper in real time. The proposed method is tested using response data of a three-floor MR damper controlled linear building structure under earthquake excitation. The testing results show that the adaptive extended Kalman filter based approach is capable to estimate not only structural parameters such as stiffness and damping of each floor, but also the parameters of MR damper, so that more insights and understanding of the damage can be obtained. The developed method also demonstrates high damage detection accuracy and light computation, as well as the potential to implement in a structural health monitoring system.

  6. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul

  7. Microstructure synthesis control of biological polyhydroxyalkanoates with mass spectrometry

    Science.gov (United States)

    Pederson, Erik Norman

    Polyhydroxyalkanoates (PHA's) are a class of biologically produced polymers, or plastic, that is synthesized by various microorganisms. PHA's are made from biorenewable resources and are fully biodegradable and biocompatible, making them an environmentally friendly green polymer. A method of incorporating polymer microstructure into the PHA synthesized in Ralstonia eutropha was developed. These microstructures were synthesized with polyhydroxybutyrate (PHB) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) as the polymer domains. To synthesize the PHB V copolymer, the additional presence of valerate was required. To control valerate substrate additions to the bioreactor, an off-gas mass spectrometry (MS) feedback control system was developed. Important process information including the cell physiology, growth kinetics, and product formation kinetics in the bioreactor was obtained with MS and used to control microstructure synthesis. The two polymer microstructures synthesized were core-shell granules and block copolymers. Block copolymers control the structure of the individual polymer chains while core-shell granules control the organization of many polymer chains. Both these microstructures result in properties unattainable by blending the two polymers together. The core-shell structures were synthesized with controlled domain thickness based on a developed model. Different block copolymers compositions were synthesized by varying the switching time of the substrate pulses responsible for block copolymer synthesis. The block copolymers were tested to determine their chemical properties and cast into films to determine the materials properties. These block copolymer films possessed new properties not achieved by copolymers or blends of the two polymers.

  8. DNA damage among thyroid cancer and multiple cancer cases, controls, and long-lived individuals

    Energy Technology Data Exchange (ETDEWEB)

    Sigurdson, A J; Hauptmann, M; Alexander, B J; Doody, M M; Thomas, C B; Struewing, J P; Jones, I M

    2004-08-24

    Variation in the detection, signaling, and repair of DNA damage contributes to human cancer risk. To assess capacity to modulate endogenous DNA damage among radiologic technologists who had been diagnosed with breast cancer and another malignancy (breast-other; n=42), early-onset breast cancer (early-onset, age {<=} 35; n=38), thyroid cancer (n=68), long-lived cancer-free individuals (hyper-normals; n=20) and cancer-free controls (n=49) we quantified DNA damage (single strand breaks and abasic sites) in untreated lymphoblastoid cell lines using the alkaline comet assay. Komet{trademark} software provided comet tail length, % DNA in tail (tail DNA), comet distributed moment (CDM), and Olive tail moment (OTM) summarized as the geometric mean of 100 cells. Category cut-points (median and 75th percentile) were determined from the distribution among controls. Tail length (for {>=} 75% vs. below the median, age adjusted) was most consistently associated with the highest odds ratios in the breast-other, early-onset, and thyroid cancer groups (with risk increased 10-, 5- or 19-fold, respectively, with wide confidence intervals) and decreased risk among the hyper-normal group. For the other three Comet measures, risk of breast-other was elevated approximately three-fold. Risk of early-onset breast cancer was mixed and risk of thyroid cancer ranged from null to a two-fold increase. The hyper-normal group showed decreased odds ratios for tail DNA and OTM, but not CDM. DNA damage, as estimated by all Comet measures, was relatively unaffected by survival time, reproductive factors, and prior radiation treatment. We detected a continuum of endogenous DNA damage that was highest among cancer cases, less in controls, and suggestively lowest in hyper-normal individuals. Measuring this DNA damage phenotype may contribute to the identification of susceptible sub-groups. Our observations require replication in a prospective study with a large number of pre-diagnostic samples.

  9. Biological Characteristics and Control of Orobanche Crenata Forsk., a Review

    Directory of Open Access Journals (Sweden)

    Giuseppe Restuccia

    2011-02-01

    Full Text Available Orobanche crenata is a holoparasitic phanerogam which is particularly noxious to legumes, such as faba bean (Vicia faba L., pea (Pisum sativum L., chickpea (Cicer arietinum L., lentil (Lens culinaris Medik., etc., and commonly considered one of the major causes which has contributed to re-rizing the area designed to their cultivation. After a few brief references on the origin and diffusion of O. crenata, in this work summarises the results of research into biological aspects and control of this species. The information obtained especially concerns seed production, seed viability, seed longevity and dormancy, seed conditioning and germination, parasitism phases, the effects of parasite attacks on host plants and the means of control.

  10. Compact and controlled microfluidic mixing and biological particle capture

    Science.gov (United States)

    Ballard, Matthew; Owen, Drew; Mills, Zachary Grant; Hesketh, Peter J.; Alexeev, Alexander

    2016-11-01

    We use three-dimensional simulations and experiments to develop a multifunctional microfluidic device that performs rapid and controllable microfluidic mixing and specific particle capture. Our device uses a compact microfluidic channel decorated with magnetic features. A rotating magnetic field precisely controls individual magnetic microbeads orbiting around the features, enabling effective continuous-flow mixing of fluid streams over a compact mixing region. We use computer simulations to elucidate the underlying physical mechanisms that lead to effective mixing and compare them with experimental mixing results. We study the effect of various system parameters on microfluidic mixing to design an efficient micromixer. We also experimentally and numerically demonstrate that orbiting microbeads can effectively capture particles transported by the fluid, which has major implications in pre-concentration and detection of biological particles including various cells and bacteria, with applications in areas such as point-of-care diagnostics, biohazard detection, and food safety. Support from NSF and USDA is gratefully acknowledged.

  11. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China

    Science.gov (United States)

    Zhang, Ke-cun; Qu, Jian-jun; Liao, Kong-tai; Niu, Qing-he; Han, Qing-jie

    2010-01-01

    Qinghai-Tibet Railway, with an average altitude of 4500 m above sea level, is the longest railway in a high altitude region. It passes through 550 km-long permafrost belt and crosses the Kunlun and Tanggulha Mountain on Tibetan Plateau. Since it opened in 2006, damage by wind-blown sand began to and rapidly spread along the railway. The aim of this paper is to provide an overview of the climatic conditions, the damage by wind-blown sand and its control along Qinghai-Tibet Railway.

  12. Control of Linear Systems with Preisach Hysteresis Output with Application to Damage Reduction

    DEFF Research Database (Denmark)

    Barradas Berglind, Jose de Jesus; Wisniewski, Rafal

    2015-01-01

    The focus of this work is on the Preisach hysteresis operator which has been widely used in fields such as ferromagnetics, phase transitions, filtration through porous media, and shape memory alloys. The main purpose is to incorporate discrete linear time invariant systems with discretized Preisach...... hysteresis output into the mixed logical dynamical (MLD) systems framework, such that the Preisach hysteresis can be included in control settings. Subsequently, an application to damage reduction is presented, where the Preisach hysteresis is used as an online fatigue damage estimator for a simplified wind...

  13. Viable spore counts in biological controls pre-sterilization.

    Science.gov (United States)

    Brusca, María I; Bernat, María I; Turcot, Liliana; Nastri, Natalia; Nastri, Maria; Rosa, Alcira

    2005-01-01

    The aim of the present study was to evaluate the total count of viable spores in standardized inoculated carriers pre-sterilization. Samples of "Bacterial Spore Sterilization Strip" (R Biological Laboratories) (well before their expiry date) were divided into Group A (B. subtilis) and Group B (B. stearothermophylus). Twenty-four strips were tested per group. The strips were minced in groups of three, placed in chilled sterile water and vortexed for 5 minutes to obtain a homogenous suspension. Ten ml of the homogenous suspension were transferred to two sterile jars, i.e. one jar per group. The samples were then heated in a water bath at 95 degrees C (Group A) or 80 degrees C (Group B) for 15 minutes and cooled rapidly in an ice bath at 0- 4 degrees C during 15 minutes. Successive dilutions were performed until a final aliquot of 30 to 300 colony-forming units (CFU) was obtained. The inoculums were placed in Petri dishes with culture medium (soy extract, casein agar adapted for spores, melted and cooled to 45-50 degrees C) and incubated at 55 degrees C or 37 degrees C. Statistical analysis of the data was performed. A larger number of spores were found at 48 hours than at 24 hours. However, this finding did not hold true for all the groups. The present results show that monitoring viable spores pre-sterilization would guarantee the accuracy of the data. Total spore counts must be within 50 and 300% of the number of spores indicated in the biological control. The procedure is essential to guarantee the efficacy of the biological control.

  14. Control of Lymantria dispar L. by biological agents

    Institute of Scientific and Technical Information of China (English)

    ZHANGGuo-cai; WANGYue-jie; YANGXiao-guang

    2005-01-01

    The experiment on control of Lymantria dispar L by using different kinds of biological measures, including nuclear polyhedrosis virus (NPV) of Lymantria dispar L., BtMP-342, sex-attractant as well as botanical insecticide, was carried out in the forest regions of Inner Mongolia in 2003. Two concentrations (2.632×106 PIB·ml-1 and 2.632×107 PIB·ml-1) of Lymantria dispar L. NPV were sprayed on the 2rd-instar-larvae of L. dispar and 70% and 77.8% control effect were obtained respectively. BtMP0-342 was applied to the 3rd- and 4th-instar larvae and the control effect was around 80%. The sex-attractant provided by Canada Pacific Forestry Research Center also showed a good result in trapping L. dispar adults. The self-produced botanical insecticide, which was extracted from a kind of poisonous plant distributed in Daxing'an Mountains, China, exhibited a good control result in controlling the larvae of L. dispar, and 82% mortality was observed when spraying primary liquid of the botanical insecticide on the 3rd-5th-instar-larvae in lab.

  15. Controlling a Mobile Robot with a Biological Brain

    Directory of Open Access Journals (Sweden)

    Kevin Warwick

    2010-01-01

    Full Text Available The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot–thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots.Defence Science Journal, 2010, 60(1, pp.5-14, DOI:http://dx.doi.org/10.14429/dsj.60.11

  16. Reevaluation of the value of autoparasitoids in biological control.

    Directory of Open Access Journals (Sweden)

    Lian-Sheng Zang

    Full Text Available Autoparasitoids with the capacity of consuming primary parasitoids that share the same hosts to produce males are analogous to intraguild predators. The use of autoparasitoids in biological control programs is a controversial matter because there is little evidence to support the view that autoparasitoids do not disrupt and at times may promote suppression of insect pests in combination with primary parasitoids. We found that Encarsia sophia, a facultative autoparasitoid, preferred to use heterospecific hosts as secondary hosts for producing males. The autoparasitoids mated with males originated from heterospecifics may parasitize more hosts than those mated with males from conspecifics. Provided with an adequate number of males, the autoparasitoids killed more hosts than En. formosa, a commonly used parasitoid for biological control of whiteflies. This study supports the view that autoparasitoids in combination with primary parasitoids do not disrupt pest management and may enhance such programs. The demonstrated preference of an autoparasitoid for heterospecifics and improved performance of males from heterospecifics observed in this study suggests these criteria should be considered in strategies that endeavor to mass-produce and utilize autoparasitoids in the future.

  17. INTEGRATED MANAGEMENT OF CHROMOLAENA ODORATA EMPHASIZING THE CLASSICAL BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    SOEKISMAN TJITROSEMITO

    1998-01-01

    Full Text Available Chromolaena odorata, Siam weed, a very important weed of Java Island (Indonesia is native to Central and South America. In the laboratory it showed rapid growth (1.15 g/g/week in the first 8 weeks of its growth. The biomass was mainly as leaves (LAR : 317.50 cm'/g total weight. It slowed down in the following month as the biomass was utilized for stem and branch formation. This behavior supported the growth of C. odorata into a very dense stand. It flowered, fruited during the dry season, and senesced following maturation of seeds from inflorescence branches. These branches dried out, but soon the stem resumed aggressive growth following the wet season. Leaf biomass was affected by the size of the stem in its early phase of regrowth, but later on it was more affected by the number of branches. The introduction of Pareuchaetes pseudoinsulata to Indonesia, was successful only in North Sumatera. In Java it has not been reported to establish succesfully. The introduction of another biological control agent, Procecidochares conneca to Indonesia was shown to be sp ecific and upon release in West Java it established immediately. It spread exponentia lly in the first 6 months of its release. Field monitoring continues to eval uate the impact of the agents. Other biocontrol agents (Actmole anteas and Conotrachelus wilt be introduced to Indonesia in 1997 through ACIAR Project on the Biological Control of Chromolaena odorata in Indonesia and Papua New Guinea.

  18. Modeling marrow damage from response data: Morphallaxis from radiation biology to benzene toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T.D.; Morris, M.D.; Hasan, J.S.

    1995-12-01

    Consensus principles from radiation biology were used to describe a generic set of nonlinear, first-order differential equations for modeling of toxicity-induced compensatory cell kinetics in terms of sublethal injury, repair, direct killing, killing of cells with unrepaired sublethal injury, and repopulation. This cellular model was linked to a probit model of hematopoietic mortality that describes death from infection and/or hemorrhage between {approximately} 5 and 30 days. Mortality data from 27 experiments with 851 doseresponse groups, in which doses were protracted by rate and/or fractionation, were used to simultaneously estimate all rate constants by maximum-likelihood methods. Data used represented 18,940 test animals distributed according to: (mice, 12,827); (rats, 2,925); (sheep, 1,676); (swine, 829); (dogs, 479); and (burros, 204). Although a long-term, repopulating hematopoietic stem cell is ancestral to all lineages needed to restore normal homeostasis, the dose-response data from the protracted irradiations indicate clearly that the particular lineage that is ``critical`` to hematopoietic recovery does not resemble stem-like cells with regard to radiosensitivity and repopulation rates. Instead, the weakest link in the chain of hematopoiesis was found to have an intrinsic radioresistance equal to or greater than stromal cells and to repopulate at the same rates. Model validation has been achieved by predicting the LD{sub 50} and/or fractional group mortality in 38 protracted-dose experiments (rats and mice) that were not used in the fitting of model coefficients.

  19. 75 FR 28232 - Availability of an Environmental Assessment for a Biological Control Agent for Hemlock Woolly...

    Science.gov (United States)

    2010-05-20

    ... a biological control agent to reduce the severity of hemlock woolly adelgid infestations. We are... continental United States for use as a biological control agent to reduce the severity of hemlock woolly... releasing an insect, L. osakensis, into the continental United States for use as a biological control...

  20. 75 FR 64984 - Availability of an Environmental Assessment for a Biological Control Agent for Hawkweeds

    Science.gov (United States)

    2010-10-21

    ... Assessment for a Biological Control Agent for Hawkweeds AGENCY: Animal and Plant Health Inspection Service... States as a biological control agent to reduce the severity of infestations of hawkweeds. We are making... subterminalis, into the continental United States for the biological control of hawkweeds (Hieracium...

  1. 76 FR 3076 - Availability of an Environmental Assessment for a Biological Control Agent for Air Potato

    Science.gov (United States)

    2011-01-19

    ..., Lilioceris cheni, into the continental United States for use as a biological control agent to reduce the..., Lilioceris cheni, into the continental United States for use as a biological control agent to reduce the.... cheni, into the continental United States for use as a biological control agent to reduce the...

  2. 75 FR 69396 - Availability of an Environmental Assessment for a Biological Control Agent for Arundo donax

    Science.gov (United States)

    2010-11-12

    ... Assessment for a Biological Control Agent for Arundo donax AGENCY: Animal and Plant Health Inspection Service... a biological control agent to reduce the severity of Arundo donax infestations. We are making the... United States for use as a biological control agent to reduce the severity of Arundo donax...

  3. Damage by insect pests to the Djingarey Ber Mosque in Timbuktu: detection and control

    Directory of Open Access Journals (Sweden)

    Lara Maistrello

    2011-08-01

    Full Text Available The Djingarey Ber Mosque in Timbuktu (Mali is one of the most significant earthen construction in West Africa. Originally constructed in 1327, it was included in 1988 on the World Heritage UNESCO List for its unique architecture and historical importance. During its restoration, recently undertaken by the Aga Khan Trust for Culture, the wooden parts of the roof and architraves showed clear signs of threatening insect presence. In order to identify the pests responsible of the damage, evaluate its extent and suggest a proper control strategy, a detailed survey was performed inside the Mosque complex and in its immediate surroundings. The entomological inspection, performed in the dry-cold season, allowed to detect signs of insect damage in most of the wooden elements, even in the recently replaced beams, but also in walls, pillars and the precious decorated panels. Damages in the wood elements could be attributed to Amitermes evuncifer Silvestri (Termitidae, Bostrychoplites zycheli Marseuli (Bostrichidae and Lyctus africanus Lesne (Lyctidae, which were collected alive on site. Injures in the walls and decorated panels appeared to be performed by hymenopterans such as “plasterer bees” (Colletidae and Sphecidae. From the evaluation of the type and extent of damage in relation to the architecture and materials used in its construction and decoration, the most serious pest and the worse threat for the mosque is represented by termites. Control and preventive measures, in the view of a sustainable, long-lasting integrated management are suggested.

  4. Improving biological control of stalk borers in sugarcane by applying silicon as a soil amendment

    Directory of Open Access Journals (Sweden)

    Nikpay Amin

    2016-12-01

    Full Text Available The sugarcane stalk borers, Sesamia spp. (Lepidoptera: Noctuidae are the most destructive sugarcane insect pests in Iran. The efficiency of Telenomus busseolae Gahan (Hymenoptera: Scelionidae used alone or in combination with silicon fertilization was investigated for controlling the sugarcane stalk borers under field conditions. The treatments were: a combination of silicon plus multiple releases of 2,500 T. busseolae, and multiple releases of 5,000, 2,500 and 1,250 T. busseolae alone. Plots receiving no soil amendment or parasites were included as the controls. Three weeks after the first application of each treatment, 100 shoots were selected randomly from each plot and the percentage of dead heart was determined. Then, three months after the first application of parasites, the percentage of stalks damaged, the percentage of internodes bored, and the level of parasitism were determined. Finally, at harvest the percentage of stalks damaged, the percentage of internodes bored, and sugarcane quality characteristics were determined. Results indicated that the efficiency of parasitism increased when combined with an application of silicon fertilizer. The release of 2,500 T. busseolae followed by an application of silicon fertilizer decreased dead hearts to 4%, while 12% dead hearts was observed in the control plots. For the combination treatment, the percentages of stalk damage were 1.5% and 17.2%, at 3 weeks and 3 months after time release, respectively. However, the percentages of stalk damage were 35.2% and 51% when no treatment was applied. Cane quality was significantly higher with the application of silicon fertilizer plus the release of 2,500 T. busseolae, followed by releasing 5,000 Hymenoptera. The level of parasitism was also greater when parasites were released in combination with an application of silicon. We conclude that biological control by egg parasitoids can be enhanced with concurrent applications of silicon fertilizer as a soil

  5. Successful application of entomopathogenic nematodes for the biological control of western corn rootworm larvae in Europe – a mini review

    Directory of Open Access Journals (Sweden)

    Toepfer, Stefan

    2014-02-01

    Full Text Available 10 years of joint efforts in research and development have led to a nematode-based biological control solution for one of the most destructive maize pests, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae. Commercially mass-produced Heterorhabditis species of beneficial entomopathogenic nematodes are ready to use. They can be applied into the soil during sowing of maize for controlling the subsequently hatching larvae of D. virgifera virgifera thus preventing root feeding and damage to maize. Policy bodies, decision makers and farmers are advised to consider biological control as one of the alternatives to synthetic pesticides in maize production, and according to the EC Directive on the sustainable use of pesticides and implementation of integrated pest management.

  6. Integration of principles of systems biology and radiation biology: toward development of in silico models to optimize IUdR-mediated radiosensitization of DNA mismatch repair-deficient (damage tolerant human cancers

    Directory of Open Access Journals (Sweden)

    Timothy James Kinsella

    2011-08-01

    Full Text Available Over the last 7 years, we have focused our experimental and computational research efforts on improving our understanding of the biochemical, molecular, and cellular processing of iododeoxyuridine (IUdR and ionizing radiation (IR induced DNA base damage by DNA mismatch repair (MMR. These coordinated research efforts, sponsored by the National Cancer Institute Integrative Cancer Biology Program (ICBP, brought together system scientists with expertise in engineering, mathematics, and complex systems theory and translational cancer researchers with expertise in radiation biology. Our overall goal was to begin to develop computational models of IUdR- and/or IR- induced base damage processing by MMR that may provide new clinical strategies to optimize IUdR-mediated radiosensitiztion in MMR deficient (MMR- damage tolerant human cancers. Using multiple scales of experimental testing, ranging from purified protein systems to in vitro (cellular and to in vivo (human tumor xenografts in athymic mice models, we have begun to integrate and interpolate these experimental data with hybrid stochastic biochemical models of MMR damage processing and probabilistic cell cycle regulation models through a systems biology approach. In this article, we highlight the results and current status of our integration of radiation biology approaches and computational modeling to enhance IUdR-mediated radiosensitization in MMR- damage tolerant cancers.

  7. Recurrence Plot Based Damage Detection Method by Integrating  Control Chart

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2015-04-01

    Full Text Available Because of the importance of damage detection in manufacturing systems and other areas, many fault detection methods have been developed that are based on a vibration signal. Little work, however, has been reported in the literature on using a recurrence plot method to analyze the vibration signal for damage detection. In this paper, we develop a recurrence plot based fault detection method by integrating the statistical process control technique. The recurrence plots of the vibration signals are derived by using the recurrence plot (RP method. Five types of features are extracted from the recurrence plots to quantify the vibration signals’ characteristic. Then, the  control chart, a multivariate statistical process control technique, is used to monitor these features. The  control chart technique, however, has the assumption that all the data should follow a normal distribution. The RP based  bootstrap control chart is proposed to estimate the control chart parameters. The performance of the proposed RP based  bootstrap control chart is evaluated by a simulation study and compared with other univariate bootstrap control charts based on recurrence plot features. A real case study of rolling element bearing fault detection demonstrates that the proposed fault detection method achieves a very good performance.

  8. Biology and host range of Heterapoderopsis bicallosicollis; a potential biological control agent for Chinese tallow Triadica sebifera

    Science.gov (United States)

    Chinese tallow, Triadica sebifera, is an invasive weed that infests natural and agricultural areas of the southeastern USA. A candidate for biological control of Chinese tallow has been studied under quarantine conditions. The biology and host range of a primitive leaf feeding beetle, Heterapoderops...

  9. Parasites and biological invasions: parallels, interactions, and control.

    Science.gov (United States)

    Dunn, Alison M; Hatcher, Melanie J

    2015-05-01

    Species distributions are changing at an unprecedented rate owing to human activity. We examine how two key processes of redistribution - biological invasion and disease emergence - are interlinked. There are many parallels between invasion and emergence processes, and invasions can drive the spread of new diseases to wildlife. We examine the potential impacts of invasion and disease emergence, and discuss how these threats can be countered, focusing on biosecurity. In contrast with international policy on emerging diseases of humans and managed species, policy on invasive species and parasites of wildlife is fragmented, and the lack of international cooperation encourages individual parties to minimize their input into control. We call for international policy that acknowledges the strong links between emerging diseases and invasion risk.

  10. A Biologically Inspired Cooperative Multi-Robot Control Architecture

    Science.gov (United States)

    Howsman, Tom; Craft, Mike; ONeil, Daniel; Howell, Joe T. (Technical Monitor)

    2002-01-01

    A prototype cooperative multi-robot control architecture suitable for the eventual construction of large space structures has been developed. In nature, there are numerous examples of complex architectures constructed by relatively simple insects, such as termites and wasps, which cooperatively assemble their nests. The prototype control architecture emulates this biological model. Actions of each of the autonomous robotic construction agents are only indirectly coordinated, thus mimicking the distributed construction processes of various social insects. The robotic construction agents perform their primary duties stigmergically i.e., without direct inter-agent communication and without a preprogrammed global blueprint of the final design. Communication and coordination between individual agents occurs indirectly through the sensed modifications that each agent makes to the structure. The global stigmergic building algorithm prototyped during the initial research assumes that the robotic builders only perceive the current state of the structure under construction. Simulation studies have established that an idealized form of the proposed architecture was indeed capable of producing representative large space structures with autonomous robots. This paper will explore the construction simulations in order to illustrate the multi-robot control architecture.

  11. Biological control of biofilms on membranes by metazoans.

    Science.gov (United States)

    Klein, Theresa; Zihlmann, David; Derlon, Nicolas; Isaacson, Carl; Szivak, Ilona; Weissbrodt, David G; Pronk, Wouter

    2016-01-01

    Traditionally, chemical and physical methods have been used to control biofouling on membranes by inactivating and removing the biofouling layer. Alternatively, the permeability can be increased using biological methods while accepting the presence of the biofouling layer. We have investigated two different types of metazoans for this purpose, the oligochaete Aelosoma hemprichi and the nematode Plectus aquatilis. The addition of these grazing metazoans in biofilm-controlled membrane systems resulted in a flux increase of 50% in presence of the oligochaetes (Aelosoma hemprichi), and a flux increase of 119-164% in presence of the nematodes (Plectus aquatilis) in comparison to the control system operated without metazoans. The change in flux resulted from (1) a change in the biofilm structure, from a homogeneous, cake-like biofilm to a more heterogeneous, porous structure and (2) a significant reduction in the thickness of the basal layer. Pyrosequencing data showed that due to the addition of the predators, also the community composition of the biofilm in terms of protists and bacteria was strongly affected. The results have implications for a range of membrane processes, including ultrafiltration for potable water production, membrane bioreactors and reverse osmosis.

  12. Damage control orthopaedics in 53 cases of severe polytrauma who have mainly sustained orthopaedic trauma

    Institute of Scientific and Technical Information of China (English)

    WANG Ai-min; YIN Xiang; SUN Hong-zhen; DU Quan-yin; WANG Zi-ming

    2008-01-01

    Objective: To discuss damage control orthopaedics in 53 cases of severe polytrauma who have mainly sustained orthopaedic trauma.Methods: The data of 53 cases of severe polytrauma who had mainly sustained orthopaedic trauma were retrospectively analyzed.And the methods and timing of damage control orthopaedics were discussed in this study.Results: We succeeded in rescuing the lives of all the 53 patients,and 38 patients returned to their former work.Conclusions: Injury Severity Seore (ISS90) should be 17 in severe polytrauma patients,but in severe polytrauma patients who have mainly sustained orthopaedic trauma,the ISS90 of bone and joint injuries should be 16.We recommend that primary minimally-invasive external fracture stabilization should be made for extremities and pelvis in these patients to avoid additional surgical trauma and that definitive secondary fracture care should be performed after medical stabilization for these patients in intensive care unit (ICU).

  13. Economic value of biological control in integrated pest management of managed plant systems.

    Science.gov (United States)

    Naranjo, Steven E; Ellsworth, Peter C; Frisvold, George B

    2015-01-07

    Biological control is an underlying pillar of integrated pest management, yet little focus has been placed on assigning economic value to this key ecosystem service. Setting biological control on a firm economic foundation would help to broaden its utility and adoption for sustainable crop protection. Here we discuss approaches and methods available for valuation of biological control of arthropod pests by arthropod natural enemies and summarize economic evaluations in classical, augmentative, and conservation biological control. Emphasis is placed on valuation of conservation biological control, which has received little attention. We identify some of the challenges of and opportunities for applying economics to biological control to advance integrated pest management. Interaction among diverse scientists and stakeholders will be required to measure the direct and indirect costs and benefits of biological control that will allow farmers and others to internalize the benefits that incentivize and accelerate adoption for private and public good.

  14. Insect pathogens as biological control agents: Back to the future.

    Science.gov (United States)

    Lacey, L A; Grzywacz, D; Shapiro-Ilan, D I; Frutos, R; Brownbridge, M; Goettel, M S

    2015-11-01

    The development and use of entomopathogens as classical, conservation and augmentative biological control agents have included a number of successes and some setbacks in the past 1years. In this forum paper we present current information on development, use and future directions of insect-specific viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for control of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the control of lepidopteran pests. Most research is focused on the baculoviruses, important pathogens of some globally important pests for which control has become difficult due to either pesticide resistance or pressure to reduce pesticide residues. Baculoviruses are accepted as safe, readily mass produced, highly pathogenic and easily formulated and applied control agents. New baculovirus products are appearing in many countries and gaining an increased market share. However, the absence of a practical in vitro mass production system, generally higher production costs, limited post application persistence, slow rate of kill and high host specificity currently contribute to restricted use in pest control. Overcoming these limitations are key research areas for which progress could open up use of insect viruses to much larger markets. A small number of entomopathogenic bacteria have been commercially developed for control of insect pests. These include several Bacillus thuringiensis sub-species, Lysinibacillus (Bacillus) sphaericus, Paenibacillus spp. and Serratia entomophila. B. thuringiensis sub-species kurstaki is the most widely used for control of pest insects of crops and forests, and B. thuringiensis sub-species israelensis and L. sphaericus are the primary pathogens used for control of medically important pests including dipteran vectors. These pathogens

  15. Controlled light field concentration through turbid biological membrane for phototherapy.

    Science.gov (United States)

    Wang, Fujuan; He, Hexiang; Zhuang, Huichang; Xie, Xiangsheng; Yang, Zhenchong; Cai, Zhigang; Gu, Huaiyu; Zhou, Jianying

    2015-06-01

    Laser propagation through a turbid rat dura mater membrane is shown to be controllable with a wavefront modulation technique. The scattered light field can be refocused into a target area behind the rat dura mater membrane with a 110 times intensity enhancement using a spatial light modulator. The efficient laser intensity concentration system is demonstrated to imitate the phototherapy for human brain tumors. The power density in the target area is enhanced more than 200 times compared with the input power density on the dura mater membrane, thus allowing continued irradiation concentration to the deep lesion without damage to the dura mater. Multibeam inputs along different directions, or at different positions, can be guided to focus to the same spot behind the membrane, hence providing a similar gamma knife function in optical spectral range. Moreover, both the polarization and the phase of the input field can be recovered in the target area, allowing coherent field superposition in comparison with the linear intensity superposition for the gamma knife.

  16. Use of rhizobacteria and endophytes for biological control of weeds

    Directory of Open Access Journals (Sweden)

    Trognitz, Friederike

    2014-02-01

    Full Text Available Weeds cause severe yield losses in agriculture, with a maximum estimate of 34% of yield loss worldwide due to competition between the crops and the weeds for nutrition, light and humidity (OERKE, 2006. Invasive plants contribute partially to other problems. The pollen of common ragweed, Ambrosia artemisiifolia L., for example, is five times more allergenic than grass pollen; already ten pollen grains per m3 air can trigger allergy in sensitized patients, including rhinitis, conjunctivitis and asthma. This neophyte from America has extended the season of allergy in European patients to October. Common ragweed is currently most frequent in Hungary, France and Italy. In Austria, ragweed populations along roads have increased dramatically since 2000. The effective means to control this weed of the Asteraceae family are limited; a single plant can produce up to 6000 seeds which stay in the soil for 40 years. Control using selective herbicides is not possible within stands of the Asteraceae member sunflower. Efforts to use herbivore insects as biological control agents also failed due to the unavailability of insects specializing on this ragweed. The use of plant-associated rhizobacteria and endophytes as bio-herbicides offers a novel alternative to conventional methods. By analogy to experiences from other plant-microbe systems, the chances to find microbes of the desired characteristics are highest when isolating and testing specimens directly from ragweed plants. These organisms often have an extremely narrow host range that permits their use for the control of among several even closely related plant species growing together in a field.

  17. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  18. Controlling the response to DNA damage by the APC/C-Cdh1.

    Science.gov (United States)

    de Boer, H Rudolf; Guerrero Llobet, S; van Vugt, Marcel A T M

    2016-03-01

    Proper cell cycle progression is safeguarded by the oscillating activities of cyclin/cyclin-dependent kinase complexes. An important player in the regulation of mitotic cyclins is the anaphase-promoting complex/cyclosome (APC/C), a multi-subunit E3 ubiquitin ligase. Prior to entry into mitosis, the APC/C remains inactive, which allows the accumulation of mitotic regulators. APC/C activation requires binding to either the Cdc20 or Cdh1 adaptor protein, which sequentially bind the APC/C and facilitate targeting of multiple mitotic regulators for proteasomal destruction, including Securin and Cyclin B, to ensure proper chromosome segregation and mitotic exit. Emerging data have indicated that the APC/C, particularly in association with Cdh1, also functions prior to mitotic entry. Specifically, the APC/C-Cdh1 is activated in response to DNA damage in G2 phase cells. These observations are in line with in vitro and in vivo genetic studies, in which cells lacking Cdh1 expression display various defects, including impaired DNA repair and aberrant cell cycle checkpoints. In this review, we summarize the current literature on APC/C regulation in response to DNA damage, the functions of APC/C-Cdh1 activation upon DNA damage, and speculate how APC/C-Cdh1 can control cell fate in the context of persistent DNA damage.

  19. Biological control of Ascaris suum eggs by Pochonia chlamydosporia fungus.

    Science.gov (United States)

    Ferreira, Sebastião Rodrigo; de Araújo, Jackson Victor; Braga, Fábio Ribeiro; Araujo, Juliana Milani; Frassy, Luiza Neme; Ferreira, Aloízio Soares

    2011-12-01

    Ascaris suum is a gastrointestinal nematode parasite of swines. The aim of this study was to observe Pochonia chlamydosporia fungus on biological control of A. suum eggs after fungus passage through swines gastrointestinal tract. Eighteen pigs, previously dewormed, were randomly divided into three groups: group 1, treated with the fungus isolate VC4; group 2, treated with the fungus isolate VC1 and group 3 did not receive fungus (control). In the treated groups, each animal received a 9 g single dose of mycelium mass containing P. chlamydosporia (VC1 or VC4). Thereafter, animal fecal samples were collected at the following intervals: 8, 12, 24, 36, 48, 72 and 96 h after treatment beginning and these were poured in Petri dishes containing 2% water-agar culture medium. Then, 1,000 A. suum eggs were poured into each dish and kept in an incubator at 26 °C and in the dark for 30 days. After this period, approximately 100 eggs were removed from each Petri dish and morphologically analyzed under light microscopy following the ovicidal activity parameters. The higher percentage observed for isolated VC4 eggs destruction was 57.5% (36 h) after fungus administration and for isolate VC1 this percentage was 45.8% (24 h and 72 h) (p > 0.01). P. chlamydosporia remained viable after passing through the gastrointestinal tract of swines, maintaining its ability of destroying A. suum eggs.

  20. The influence of shielding on the biological effectiveness of accelerated particles for the induction of chromosome damage

    Science.gov (United States)

    George, K.; Cucinotta, F. A.

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to 28Si (490 or 600 MeV/n), 48Ti (1000 MeV/n), or 56Fe (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/μm and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. After chromosomes were prematurely condensed using calyculin-A, chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and at mitosis in first division post-irradiation. The yield of chromosome aberrations increased linearly with dose, and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose-response curve for total chromosome exchanges with respect to γ-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/μm. When the LET of the primary beam was below about 100 keV/μm, the addition of shielding material increased the effectiveness per unit dose. When the LET of the primary beam was greater than 100 keV/μm, shielding decreased the effectiveness per unit dose.

  1. The Biological Effectiveness of Four Energies of Neon Ions for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2011-01-01

    Chromosomal aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to neon ions at energies of 64, 89, 142, or 267. The corresponding LET values for these energies of neon ranged from 38-103 keV/micrometers and doses delivered were in the 10 to 80 cGy range. Chromosome exchanges were assessed in metaphase and G2 phase cells at first division after exposure using fluorescence in situ hybridization (FISH) with whole chromosome probes and dose response curves were generated for different types of chromosomal exchanges. The yields of total chromosome exchanges were similar for the 64, 89, and 142 MeV exposures, whereas the 267 MeV/u neon with LET of 38 keV/micrometers produced about half as many exchanges per unit dose. The induction of complex type chromosome exchanges (exchanges involving three or more breaks and two or more chromosomes) showed a clear LET dependence for all energies. The ratio of simple to complex type exchanges increased with LET from 18 to 51%. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The RBE(sub max) values for total chromosome exchanges for the 64 MeV/u was around 30.

  2. The Influence of Shielding on the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damages

    Science.gov (United States)

    George, K.; Cucinotta, F. A.

    2006-01-01

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from approximately 50 to 174 keV/micrometers and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected 48-56 hours after irradiation using a chemical-induced premature chromosome condensation (PCC) technique. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 14 to 35. The RBE values increased with LET, reaching a maximum for the 1 GeV/n Fe ions with LET of 150 keV/micrometers, and decreased with further increases in LET. When LET of the primary beam was in the region of increasing RBE (i.e. below approximately 100 keV/micrometers), the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of the primary particle beam was higher than 150 keV/micrometers.

  3. Enhancing the effectiveness of biological control programs of invasive species through a more comprehensive pest management approach.

    Science.gov (United States)

    DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P

    2017-01-01

    Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry.

  4. Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae)?

    Science.gov (United States)

    Calvo, F J; Soriano, J D; Stansly, P A; Belda, J E

    2016-08-01

    Necremnus tutae is native to the Mediterranean region where it has been observed in greenhouses parasitizing the invasive Tuta absoluta on tomato. The objective of the present study was to determine whether augmentative releases of N. tutae can improve existing biological control of T. absoluta based on predation by Nesidicoris tenuis. Two experiments were carried out, of which the first evaluated different N. tutae release rates (1 and 2 N. tutae m-2 week-1). The parasitoid reduced plant and fruit damage, especially at the higher rate. However, such reduction was considered insufficient given the large numbers of parasitoids needed and still unacceptable level of fruit damage. The second experiment focused on combining the most efficient rate of N. tutae of those evaluated during the first experiment, with the pre- and post-planting release of N. tenuis and supplemental additions of Ephestia kuehniella eggs. Addition of N. tutae decreased leaf damage by T. absoluta regardless the release method for N. tenuis, but the pre-plant release of N. tenuis alone was sufficient to prevent fruit damage by T. absoluta. This suggested that the addition of N. tutae may not be necessary to obtain satisfactory control of T. absoluta following pre-plant application of N. tenuis, although different options for using N. tutae in commercial crops may still be possible.

  5. The use of compost for the biological pest control. An alternative for pesticides; Utilizacion de compost en el control biologico de plagas. Una alternativa a los plaguicidas quimicos

    Energy Technology Data Exchange (ETDEWEB)

    Pascual, J. A.

    2000-07-01

    Traditional methods of controlling pests and diseases using chemical pesticides can provide highly effective pest control but these methods might be damaging to the environment. Compost or other organic matter added to soil has the potential to control many soil borne plant pathogens, therefore they can be used in the sustainable agriculture. The mechanisms of action of compost are not well defined, being a mix of mycoparasitism, antibiotic production and nutrient competition. Our research is focused on the potential action of compost from municipal wastes in the biological control on pest. The addition of organic waste compost improved the biological control against Pythium furthermore raised the organic matter content of an arid soil. The addition of urban waste to the soil also could act long-term against Pythium, reducing the application times. One of the compost fraction more active in biological control are the humic substances. Nowadays, composts cannot be used by themselves to prevent plant pathogens action, it also is needed some pesticide application, but the use of these pesticides can be considerably reduced with the application of compost. (Author)

  6. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM.

    Science.gov (United States)

    Ogura, Toshihiko

    2015-04-10

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolution FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials.

  7. Biological agents for whitefly control in Sardinian greenhouse tomatoes.

    Science.gov (United States)

    Nannini, M; Foddi, F; Manca, L; Pisci, R; Sanna, F

    2009-01-01

    To evaluate the effectiveness of alternative options for biocontrol of whiteflies in greenhouse tomatoes, an experiment was carried out during the cropping season 2005-2006 in one of Sardinia's major horticultural districts (S. Margherita di Pula, Cagliari, Italy). Twelve long-cycle and 17 short-cycle tomato crops (8 autumn and 9 spring crops) were surveyed. All of them were treated for insect pest control at the beginning of the growing season, but in 19 out of 29 cases whitefly natural enemies were also released (BCA greenhouses), at least four weeks after the last treatment. The following release programmes were tested: on autumn crops, 1 Macrolophus caliginosus and 12 Eretmocerus mundus/m2; on long-cycle crops, 1 M. caliginosus (released in autumn or spring) and 24 Encarsia formosa/m2 or 48 E. formosa/m2; on spring crops, 1 M. caliginosus and 24 E. formosa/m2 or 48 E. formosa/m2. The cost of each option was fixed at approximately 0.25 Euros/m2. The remaining greenhouses were maintained as controls (no BCA greenhouses). While whitefly and mirid populations were monitored monthly, whitefly species composition and mortality of immature stages were estimated at least twice during the growing season. On short-cycle autumn crops, the release of M. caliginosus and E. mundus produced negligible results in terms of Bemisia tabaci control. On long-cycle and spring crops, even though in June mortality rates in BCA greenhouses were found to be 2- to 3-fold higher than in no-BCA greenhouses, Trialeurodes vaporariorum population growth was not significantly affected by natural enemies. Among the beneficials tested, E. formosa proved to be the most effective; E. mundus and M. caliginosus did not establish well, probably owing to the persistence of insecticide residues, scarce prey availability and intense plant de-leafing. The presence of indigenous natural enemies of whiteflies was observed in most sites, but in general they contributed little to biological control. The

  8. Implications of Plasmodium vivax Biology for Control, Elimination, and Research

    Science.gov (United States)

    Olliaro, Piero L.; Barnwell, John W.; Barry, Alyssa; Mendis, Kamini; Mueller, Ivo; Reeder, John C.; Shanks, G. Dennis; Snounou, Georges; Wongsrichanalai, Chansuda

    2016-01-01

    This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed. PMID:27799636

  9. Identification of Bacillus strains for biological control of catfish pathogens.

    Directory of Open Access Journals (Sweden)

    Chao Ran

    Full Text Available Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC and motile aeromonad septicaemia (MAS, respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×10(7 CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (P<0.05. A similar challenge experiment conducted in Vietnam with four of the five Bacillus strains also showed protective effects against E. ictaluri in striped catfish. Safety of the four strains exhibiting the strongest biological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture.

  10. Before and after Silent Spring: from chemical pesticides to biological control and integrated pest management--Britain, 1945-1980.

    Science.gov (United States)

    Gay, Hannah

    2012-07-01

    The use of chemical pesticides increased considerably after World War II, and ecological damage was noticeable by the late 1940s. This paper outlines some ecological problems experienced during the post-war period in the UK, and in parts of what is now Malaysia. Also discussed is the government's response. Although Rachel Carson's book, Silent Spring (1962), was important in bringing the problems to a wider public, she was not alone in sounding the alarm. Pressure from the public and from British scientists led, among other things, to the founding of the Natural Environment Research Council in 1965. By the 1970s, environmentalism was an important movement, and funding for ecological and environmental research was forthcoming even during the economic recession. Some of the recipients were ecologists working at Imperial College London. Moved by the political climate, and by the evidence of ecological damage, they carried out research on the biological control of insect pests.

  11. Evaluation of a New Biological Control Pathogen for Management of Eurasian Watermilfoil

    Science.gov (United States)

    2013-06-01

    perceived threats to human health and the environment. Biological control has been studied as an option for milfoil management for over 40 years...2008). Combined with glyphosate in an integrated weed management approach, M. verrucaria could control weeds in fields planted to glyphosate ...radicans) controlled under field conditions by a synergistic interaction of the bioherbicide Myrothecium verrucaria, with glyphosate . Weed Biology

  12. The Influence of Shielding on the Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage

    Science.gov (United States)

    Goeorge, Kerry; Cucinotta, Francis A.

    2007-01-01

    Chromosome damage was assessed in human peripheral blood lymphocytes after in vitro exposure to the either Si-28 (490 or 600 MeV/n), Ti-48 (1000 MeV/n), or Fe-56 (600, 1000, or 5000 MeV/n). LET values for these ions ranged from 51 to 184 keV/micron and doses ranged from 10 to 200 cGy. The effect of either aluminum or polyethylene shielding on the induction of chromosome aberrations was investigated for each ion. Chromosome exchanges were measured using fluorescence in situ hybridization (FISH) with whole chromosome probes in cells collected at G2 and mitosis in first division post irradiation after chromosomes were prematurely condensed using calyculin-A. The yield of chromosomal aberrations increased linearly with dose and the relative biological effectiveness (RBE) for the primary beams, estimated from the initial slope of the dose response curve for total chromosomal exchanges with respect to gamma-rays, ranged from 9 to 35. The RBE values increased with LET, reaching a maximum for the 600 MeV/n Fe ions with LET of 184 keV/micron. When the LET of the primary beam was below approximately 100 keV/micron, the addition of shielding material increased the effectiveness per unit dose. Whereas shielding decreased the effectiveness per unit dose when the LET of primary beams was higher than 100 keV/micron. The yield of aberrations correlated with the dose-average LET of the beam after traversal through the shielding.

  13. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  14. Decreasing the damage in smart structures using integrated online DDA/ISMP and semi-active control

    Science.gov (United States)

    Karami, K.; Amini, F.

    2012-10-01

    Integrated structural health monitoring (SHM) and vibration control has been considered recently by researchers. Up to now, all of the research in the field of integrated SHM and vibration control has been conducted using control devices and control algorithms to enhance system identification and damage detection. In this study, online SHM is used to improve the performance of structural vibration control, unlike previous research. Also, a proposed algorithm including integrated online SHM and a semi-active control strategy is used to reduce both damage and seismic response of the main structure due to strong seismic disturbance. In the proposed algorithm the nonlinear behavior of the building structure is simulated during the excitation. Then, using the measured data and the damage detection algorithm based on identified system Markov parameters (DDA/ISMP), a method proposed by the authors, damage corresponding to axial and bending stiffness of all structural elements is identified. In this study, a 20 t MR damper is employed as a control device to mitigate both damage and dynamic response of the building structure. Also, the interaction between SHM and a semi-active control strategy is assessed. To illustrate the efficiency of the proposed algorithm, a two bay two story steel braced frame structure is used. By defining the damage index and damage rate index, the input current of the MR damper is generated using a fuzzy logic controller. The obtained results show that the possibility of smart building creation is provided using the proposed algorithm. In comparison to the widely used strategy of only vibration control, it is shown that the proposed algorithm is more effective. Furthermore, in the proposed algorithm, the total consumed current intensity and generated control forces are considerably less than for the strategy of only vibration control.

  15. PROTECTING ECOSYSTEMS BY WAY OF BIOLOGICAL CONTROL: CURSORY REFLECTIONS ON THE MAIN REGULATORY INSTRUMENTS FOR BIOLOGICAL CONTROL AGENTS, PRESENT AND FUTURE

    Directory of Open Access Journals (Sweden)

    R Alberts

    2013-06-01

    Full Text Available Although there are numerous threats to ecosystems and the resultant ecosystem services, alien and invasive plants (AIP have been identified as being one of the major causes of ecosystem destruction. In addressing the threat of alien and invasive plants through the use of various mechanisms, the regulatory framework imposed by legislation is key in ensuring that that controlling AIPs does in fact not do more harm than good. One such control mechanism, which has the potential to do wonders or wreak havoc if not adroitly implemented, is that of using biological control agents. This contribution provides a brief overview on the three main regulatory instruments used to control biological control agents in South Africa, namely the Conservation of Agricultural Resources Act 43 of 1983, the Agricultural Pests Act 36 of 1983 and the National Environmental Management: Biodiversity Act 10 of 2004. It also considers possible future developments on the regulation of biological control agents.

  16. Biological Control Against the Cowpea Weevil (Callosobruchus Chinensis L., Coleoptera: Bruchidae Using Essential Oils of Some Medicinal Plants

    Directory of Open Access Journals (Sweden)

    Fatiha Righi Assia

    2014-07-01

    Full Text Available Chickpea (Cicer arietinum L. is a valuable foodstuff but unfortunately this legume is prone to insect attacks from the chick pea weevil (Callosobruchus chinensis L.. This serious pest damages the chickpea and causes decreases in the yield and in the nutritional quality. Biological control is being used to deal with this problem. We tried different doses of the essential oils of three new medicinal plants, namely Salvia verbenaca L., Scilla maritima L., and Artemisia herba-alba Asso to limit the damage of the chick pea weevil pest, and to protect consumer’s health. To determine the effect and efficiency of the oil, the tests were conducted using the different biological parameters of fertility, longevity, and fecundity, under controlled temperature and relative humidity (28°C and 75%. The effectiveness of organic oils was demonstrated. We tested these oils on the germination of seeds. The obtained results showed that the tested plant oils have a real organic insecticide effect. The essential oil of Artemisia proved most effective as a biocide; achieving a mortality rate of 100%. A significant reduction in longevity was observed under the effect of 30 μl of S. maritima (1.3 days and S. verbenaca (2.8, 4.6 days, respectively, for males and females compared to 8 and 15 days for the control. For fecundity, an inhibition of oviposition was obtained using 30 μl of Salvia and Scilla essential oils. The test on the seed germination using different essential oils, showed no damage to the germinating seeds. The germination rate was 99%. These findings suggest that the tested plants can be used as a bioinsecticide for control of the C. chinensis pest of stored products.

  17. Patterns and controls on nitrogen cycling of biological soil crusts

    Science.gov (United States)

    Barger, Nichole N.; Zaady, Eli; Weber, Bettina; Garcia-Pichel, Ferran; Belnap, Jayne

    2016-01-01

    Biocrusts play a significant role in the nitrogen [N ] cycle within arid and semi-arid ecosystems, as they contribute major N inputs via biological fixation and dust capture, harbor internal N transformation processes, and direct N losses via N dissolved, gaseous and erosional loss processes (Fig. 1). Because soil N availability in arid and semi-arid ecosystems is generally low and may limit net primary production (NPP), especially during periods when adequate water is available, understanding the mechanisms and controls of N input and loss pathways in biocrusts is critically important to our broader understanding of N cycling in dryland environments. In particular, N cycling by biocrusts likely regulates short-term soil N availability to support vascular plant growth, as well as long-term N accumulation and maintenance of soil fertility. In this chapter, we review the influence of biocrust nutrient input, internal cycling, and loss pathways across a range of biomes. We examine linkages between N fixation capabilities of biocrust organisms and spatio-temporal patterns of soil N availability that may influence the longer-term productivity of dryland ecosystems. Lastly, biocrust influence on N loss pathways such as N gas loss, leakage of N compounds from biocrusts, and transfer in wind and water erosion are important to understand the maintenance of dryland soil fertility over longer time scales. Although great strides have been made in understanding the influence of biocrusts on ecosystem N cycling, there are important knowledge gaps in our understanding of the influence of biocrusts on ecosystem N cycling that should be the focus of future studies. Because work on the interaction of N cycling and biocrusts was reviewed in Belnap and Lange (2003), this chapter will focus primarily on research findings that have emerged over the last 15 years (2000-2015).

  18. Eicosanoids: Exploiting Insect Immunity to Improve Biological Control Programs

    Directory of Open Access Journals (Sweden)

    David Stanley

    2012-05-01

    Full Text Available Insects, like all invertebrates, express robust innate, but not adaptive, immune reactions to infection and invasion. Insect immunity is usually resolved into three major components. The integument serves as a physical barrier to infections. Within the hemocoel, the circulating hemocytes are the temporal first line of defense, responsible for clearing the majority of infecting bacterial cells from circulation. Specific cellular defenses include phagocytosis, microaggregation of hemocytes with adhering bacteria, nodulation and encapsulation. Infections also stimulate the humoral component of immunity, which involves the induced expression of genes encoding antimicrobial peptides and activation of prophenoloxidase. These peptides appear in the hemolymph of challenged insects 6–12 hours after the challenge. Prostaglandins and other eicosanoids are crucial mediators of innate immune responses. Eicosanoid biosynthesis is stimulated by infection in insects. Inhibition of eicosanoid biosynthesis lethally renders experimental insects unable to clear bacterial infection from hemolymph. Eicosanoids mediate specific cell actions, including phagocytosis, microaggregation, nodulation, hemocyte migration, hemocyte spreading and the release of prophenoloxidase from oenocytoids. Some invaders have evolved mechanisms to suppress insect immunity; a few of them suppress immunity by targeting the first step in the eicosanoid biosynthesis pathways, the enzyme phospholipase A2. We proposed research designed to cripple insect immunity as a technology to improve biological control of insects. We used dsRNA to silence insect genes encoding phospholipase A2, and thereby inhibited the nodulation reaction to infection. The purpose of this article is to place our view of applying dsRNA technologies into the context of eicosanoid actions in insect immunity. The long-term significance of research in this area lies in developing new pest management

  19. Decay-Accelerating Factor Mitigates Controlled Hemorrhage-Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine

    Science.gov (United States)

    2011-07-01

    Decay-Accelerating Factor Mitigates Controlled Hemorrhage- Instigated Intestinal and Lung Tissue Damage and Hyperkalemia in Swine Jurandir J. Dalle...DAF treatment improved hemorrhage- induced hyperkalemia . The protective effects of DAF appear to be related to its ability to reduce tissue complement...Decay-accelerating factor mitigates controlled hemorrhage-instigated intestinal and lung tissue damage and hyperkalemia in swine 5a. CONTRACT NUMBER

  20. Reappraisal generation after acquired brain damage: The role of laterality and cognitive control

    Science.gov (United States)

    Salas, Christian E.; Gross, James J.; Turnbull, Oliver H.

    2014-01-01

    In the past decade, there has been growing interest in the neuroanatomical and neuropsychological bases of reappraisal. Findings suggest that reappraisal activates a set of areas in the left hemisphere (LH), which are commonly associated with language abilities and verbally mediated cognitive control. The main goal of this study was to investigate whether individuals with focal damage to the LH (n = 8) were more markedly impaired on a reappraisal generation task than individuals with right hemisphere lesions (RH, n = 8), and healthy controls (HC, n = 14). The reappraisal generation task consisted of a set of ten pictures from the IAPS, depicting negative events of different sorts. Participants were asked to quickly generate as many positive reinterpretations as possible for each picture. Two scores were derived from this task, namely difficulty and productivity. A second goal of this study was to explore which cognitive control processes were associated with performance on the reappraisal task. For this purpose, participants were assessed on several measures of cognitive control. Findings indicated that reappraisal difficulty – defined as the time taken to generate a first reappraisal – did not differ between LH and RH groups. However, differences were found between patients with brain injury (LH + RH) and HC, suggesting that brain damage in either hemisphere influences reappraisal difficulty. No differences in reappraisal productivity were found across groups, suggesting that neurological groups and HC are equally productive when time constraints are not considered. Finally, only two cognitive control processes inhibition and verbal fluency- were inversely associated with reappraisal difficulty. Implications for the neuroanatomical and neuropsychological bases of reappraisal generation are discussed, and implications for neuro-rehabilitation are considered. PMID:24711799

  1. Site-specific DICER and DROSHA RNA products control the DNA-damage response.

    Science.gov (United States)

    Francia, Sofia; Michelini, Flavia; Saxena, Alka; Tang, Dave; de Hoon, Michiel; Anelli, Viviana; Mione, Marina; Carninci, Piero; d'Adda di Fagagna, Fabrizio

    2012-08-09

    Non-coding RNAs (ncRNAs) are involved in an increasingly recognized number of cellular events. Some ncRNAs are processed by DICER and DROSHA RNases to give rise to small double-stranded RNAs involved in RNA interference (RNAi). The DNA-damage response (DDR) is a signalling pathway that originates from a DNA lesion and arrests cell proliferation3. So far, DICER and DROSHA RNA products have not been reported to control DDR activation. Here we show, in human, mouse and zebrafish, that DICER and DROSHA, but not downstream elements of the RNAi pathway, are necessary to activate the DDR upon exogenous DNA damage and oncogene-induced genotoxic stress, as studied by DDR foci formation and by checkpoint assays. DDR foci are sensitive to RNase A treatment, and DICER- and DROSHA-dependent RNA products are required to restore DDR foci in RNase-A-treated cells. Through RNA deep sequencing and the study of DDR activation at a single inducible DNA double-strand break, we demonstrate that DDR foci formation requires site-specific DICER- and DROSHA-dependent small RNAs, named DDRNAs, which act in a MRE11–RAD50–NBS1-complex-dependent manner (MRE11 also known as MRE11A; NBS1 also known as NBN). DDRNAs, either chemically synthesized or in vitro generated by DICER cleavage, are sufficient to restore the DDR in RNase-A-treated cells, also in the absence of other cellular RNAs. Our results describe an unanticipated direct role of a novel class of ncRNAs in the control of DDR activation at sites of DNA damage.

  2. Damage control in thoracic and lumbar unstable fractures in polytrauma. Systematic review

    Directory of Open Access Journals (Sweden)

    Javier Peña Chávez

    2015-06-01

    Full Text Available The objective of this systematic review was to integrate the information from existing studies to determine the level of evidence and grade of recommendation of the implementation of damage control in unstable thoracic and lumbar fractures in polytraumatized patients. Eighteen papers were collected from different databases by keywords and Mesh terms; the level of evidence and grade of recommendation, the characteristics of the participants, the time of fracture fixation, the type of approach and technique used, the length of stay in the intensive care unit, the days of dependence on mechanical ventilator, and the incidence of complications in patients were assessed. The largest proportion of the studies were classified as level 4 evidence and grade C of recommendation which is favorable to the implementation of damage control in unstable thoracic and lumbar fractures in polytraumatized patients as a positive recommendation, although not conclusive. Most papers advocate fracture stabilization within 72 hours of the injury which is associated with a lower incidence of complications, hospital stay, stay in the intensive care unit and lower mortality.

  3. Neurovascular damage in experimental allergic encephalomyelitis: a target for pharmacological control

    Directory of Open Access Journals (Sweden)

    C. Bolton

    1997-01-01

    Full Text Available The blood-brain barrier (BBB is composed of a continuous endothelial layer with pericytes and astrocytes in close proximity to offer homeostatic control to the neurovasculature. The human demyelinating disease multiple sclerosis and the animal counterpart experimental allergic encephalomyelitis (EAE are characterized by enhanced permeability of the BBB facilitating oedema formation and recruitment of systemically derived inflammatory-type cells into target tissues to mediate eventual myelin loss and neuronal dysfunction. EAE is considered a useful model for examining the pathology which culminates in loss of BBB integrity and the disease is now proving valuable in assessing compounds for efficacy in limiting damage at neurovascular sites. The precise mechanisms culminating in EAE-induced BBB breakdown are unclear although several potentially disruptive mediators have been implicated and have been previously identified as potent effectors of cerebrovascular damage in non-disease related conditions of the central nervous system. The review considers evidence that common mechanisms may mediate cerebrovascular permeability changes irrespective of the initial insult and discusses therapeutic approaches for the control of BBB leakage in the demyelinating diseases.

  4. Damage Control Surgery for Hepatocellular Cancer Rupture in an Elderly Patient: Survival and Quality of Life

    Directory of Open Access Journals (Sweden)

    Konstantinos Bouliaris

    2015-01-01

    Full Text Available Spontaneous rupture of hepatocellular carcinoma (HCC is a rare emergency condition with high mortality rate. Successful management depends on patients’ hemodynamic condition upon presentation and comorbidities, correct diagnosis, HCC status, liver function, and future liver remnant, as well as available sources. There is still a debate in the literature concerning the best approach in this devastating complication. Nevertheless, the primary goal should be a definitive bleeding arrest. In most cases, patients with spontaneous rupture of HCC present with hemodynamic instability, due to hemoperitoneum, necessitating an emergency treatment modality. In such cases, transcatheter arterial embolization (TAE should be the treatment of choice. Emergency liver resection is an option when TAE fails or in cases with preserved liver function and limited tumors. Otherwise, damage control strategies, as in liver trauma, are a reasonable alternative. We report a case of an elderly patient with hemoperitoneum and hypovolemic shock from spontaneous rupture of undiagnosed HCC, who was treated successfully by emergency surgery and damage control approach.

  5. Damage control of multiple injuries headed by cervical spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    LIU Si-hai; WANG Ai-min; DU Quan-yin; ZHAO Yu-feng; WANG Zi-ming; GUO Qing-shan; SHEN Yue

    2008-01-01

    Objective: To explore the strategy of damage control in clinical treatment of multiple injuries headed by cervical spinal cord injury.Methods: A retrospective analysis was performed in 32 patients. Cervical fractures associated with tetraplegia occurred in 18 patients, traumatic intervertebral disk hernia associated with tetraplegia in 2 patients, and cervical fractures and dislocation associated with tetraplegia in 12 patients. Seventeen cases were combined with craniocerebral injury, 7 combined with pulmonary contusion, multi-fractures of rib or hemopneumothorax, 2 combined with pelvic fracture and other 8 combined with fracture of limbs. The neural function was assessed by the American Spinal Injury Association (ASIA) scale.Results:Thirty-one patients were followed up for an average of 14 months. Of them, 10 got complete recovery, 13 obtained improvement of more than one ASIA grade, 8 did not improve, and 1 died.Conclusions: For the emergency treatment of multiple injuries headed by cervical spinal cord injury, the damage control strategy is the principle to follow. The final operations are preferably performed within 5 to 10 days after injury so as to raise the successful rate of remedy.

  6. Risk control and prevention of spinal cord damage due to surgery of thoracoabdominal aneurysms: medicolegal aspects.

    Science.gov (United States)

    de Mol, B; Hamerlijnck, R; Vermeulen, F E; de Geest, R

    1991-01-01

    Surgery of thoracoabdominal aneurysms is accompanied by many complications of which spinal cord damage is the most serious. Such a complication tends to be the subject of litigation and medicolegal assessment. This report presents a risk control concept focussed on the reduction of spinal cord damage after surgery for a thoracoabdominal aneurysm. This concept may provide a basis for a risk management program in major surgery. Apart from sparing the patient a serious complication, improvement of the quality of care and anticipation of a medicolegal assessment were considered valuable benefits of such an effort. It is described how the threat of litigation--also in Europe--may affect clinical practice. A definition of surgical failure is described related to the five elements of risk homeostasis: complexity, linkage, cascade, human factor and safety margins. Limitations of risk control in the surgery of thoracoabdominal aneurysms are described. Finally the role of perception of risks by patient and doctor as well as the importance of informed consent and adequate disclosure are described in respect of medical quality improvement and litigation.

  7. Biological Control of the Invasive Dryocosmus kuriphilus (Hymenoptera: Cynipidae - an Overview and the First Trials in Croatia

    Directory of Open Access Journals (Sweden)

    Dinka Matošević

    2014-06-01

    Full Text Available Background and Purpose: Dryocosmus kuriphilus is a globally invasive insect pest, spreading very quickly in new habitats and making serious damage to sweet chestnut forests in Croatia and in several other European countries. Indigenous parasitoid species trophically associated with oak gallwasps have adapted to this new host but cannot effectively regulate its population density. Classical biological control using parasitoid Torymus sinensis has been proven to be the only effective method of controlling the populations of D. kuriphilus and has been successfully applied in Japan, South Korea, the USA and Italy. The aim of this review paper is to provide overview and up-to date knowledge about biological control of D. kurphilus and to describe first steps of introduction of T. sinensis to sweet chestnut forests in Croatia. Conclusions and Future Prospects: Results presented in this paper show adapted biology and behavioural traits of T. sinensis to its host D. kuriphilus. The history and results of introductions of T. sinensis to Japan, the USA, Italy, France and Hungary are shown. The first report of release of T. sinensis to sweet chestnut forests in Croatia is given with discussion on native parasitoids attacking D. kuriphilus. Possible negative effects of T. sinensis on native parasitoid fauna and risks that could influence the successful establishment of T. sinensis in Croatia are discussed. Previous experiences have shown that T. sinensis can successfully control the population density of D. kuriphilus, slowing down the spread and mitigating negative impact of this invasive chestnut pest and keeping the damage of D. kuriphilus at acceptable level. High specificity of T. sinensis suggests that it has limited potential of exploiting native hosts but further detailed monitoring of native parasitoid and possible interactions with introduced T. sinensis is strongly suggested.

  8. Bit by bit control of nonlinear ecological and biological networks using Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2016-06-01

    Full Text Available Evolutionary Network Control (ENC has been first introduced in 2013 to effectively subdue network-like systems. ENC opposes the idea, very common in the scientific literature, that controllability of networks should be based on the identification of the set of driver nodes that can guide the system's dynamics, in other words on the choice of a subset of nodes that should be selected to be permanently controlled. ENC has proven to be effective in the global control (i.e. the focus is on mastery of the final state of network dynamics of linear and nonlinear networks, and in the local (i.e. the focus is on the step-by-step ascendancy of network dynamics control of linear networks. In this work, ENC is applied to the local control of nonlinear networks. Using the Lotka-Volterra model as a case study, I show here that ENC is capable of locally driving nonlinear networks as well, so that also intermediate steps (not only the final state are under our strict control. ENC can be readily applied to any kind of ecological, biological, economic and network-like system.

  9. An abundant biological control agent does not provide a significant predator subsidy

    Science.gov (United States)

    Classical weed biological control agents, regardless of their effectiveness, may provide subsidies to predators and parasites. The chemically defended weevil Oxyops vitiosa Pascoe is a successful agent that was introduced to control the invasive tree Melaleuca quinquenervia. Two consecutive small ...

  10. Application of bifurcation theory and siRNA-based control signal to restore the proper response of cancer cells to DNA damage.

    Science.gov (United States)

    Kozłowska, Emilia; Puszynski, Krzysztof

    2016-11-07

    Many diseases with a genetic background such as some types of cancer are caused by damage in the p53 signaling pathway. The damage changes the system dynamics providing cancer cells with resistance to therapy such as radiation therapy. The change can be observed as the difference in bifurcation diagrams and equilibria type and location between normal and damaged cells, and summarized as the changes of the mathematical model parameters and following changes of the eigenvalues of Jacobian matrix. Therefore a change in other model parameters, such as mRNA degradation rates, may restore the proper eigenvalues and by that proper system dynamics. From the biological point of view, the change of mRNA degradation rate can be achieved by application of the small interfering RNA (siRNA). Here, we propose a general mathematical framework based on the bifurcation theory and siRNA-based control signal in order to study how to restore the proper response of cells with damaged p53 signaling pathway to therapy by using ionizing radiation (IR) therapy as an example. We show the difference between the cells with normal p53 signaling pathway and cells with abnormalities in the negative (as observed in SJSA-1 cell line) or positive (as observed in MCF-7 or PNT1a cell lines) feedback loop. Then we show how the dynamics of these cells can be restored to normal cell dynamics by using selected siRNA.

  11. Current levels of suppression of waterhyacinth in Florida by classical biological control agents

    Science.gov (United States)

    Waterhyacinth, Eichhornia crassipes, has been a global target for classical biological control efforts for decades. In Florida, herbicides are the primary tactic employed, usually without regard for the activities of the three biological control agents introduced intentionally during the 1970's, na...

  12. Indirect ecological effects in invaded landscapes: Spillover and spillback from biological control agents to native analogues

    Science.gov (United States)

    Biological control remains an effective option for managing large-scale weed problems in natural areas. The predation or parasitism of biological control agents by other species present in the introduced range (biotic resistance) is well studied and is often cited as the cause for a lack of establis...

  13. Damage control surgery–new concept or reenacting of a classical ideea?

    Science.gov (United States)

    Iordache, FM

    2008-01-01

    Damage–control surgery is an example of a paradigm shift. The term is borrowed from naval terminology and means gaining the initial control of a damaged ship. Because of the lethal triad the polytrauma patient is at a grave risk. The classical concept of surgically solving all the patient's injuries in the first moment was even theoretically incorrect as a multiple injured patient is a critical patient with depleted reserves. As such, complex procedures were doomed from this point of view. The concept of damage–control surgery emerged in 1992. The core idea was that as minimal as possible had to be done in these critical patients in the first phase, meaning temporary control of a hemorrhage and simple measures for stopping contamination. After 24–48 hours in the ICU, in which time the physiological disturbances were corrected, a further intervention is performed for definitively treating the injuries. Further refinements consider five stages and not three in damage–control surgery. The bright side of the concept is an up to 70% survivability rate but with a higher risk of complications, mostly due to the policy of temporary closing the abdomen and sepsis. PMID:20108501

  14. A theoretical framework for biological control of soil-borne plant pathogens: Identifying effective strategies.

    Science.gov (United States)

    Cunniffe, Nik J; Gilligan, Christopher A

    2011-06-07

    We develop and analyse a flexible compartmental model of the interaction between a plant host, a soil-borne pathogen and a microbial antagonist, for use in optimising biological control. By extracting invasion and persistence thresholds of host, pathogen and biological control agent, performing an equilibrium analysis, and numerical investigation of sensitivity to parameters and initial conditions, we determine criteria for successful biological control. We identify conditions for biological control (i) to prevent a pathogen entering a system, (ii) to eradicate a pathogen that is already present and, if that is not possible, (iii) to reduce the density of the pathogen. Control depends upon the epidemiology of the pathogen and how efficiently the antagonist can colonise particular habitats (i.e. healthy tissue, infected tissue and/or soil-borne inoculum). A sharp transition between totally effective control (i.e. eradication of the pathogen) and totally ineffective control can follow slight changes in biologically interpretable parameters or to the initial amounts of pathogen and biological control agent present. Effective biological control requires careful matching of antagonists to pathosystems. For preventative/eradicative control, antagonists must colonise susceptible hosts. However, for reduction in disease prevalence, the range of habitat is less important than the antagonist's bulking-up efficiency.

  15. The complex symbiotic relationships of bark beetles with microorganisms: a potential practical approach for biological control in forestry.

    Science.gov (United States)

    Popa, Valentin; Déziel, Eric; Lavallée, Robert; Bauce, Eric; Guertin, Claude

    2012-07-01

    Bark beetles, especially Dendroctonus species, are considered to be serious pests of the coniferous forests in North America. Bark beetle forest pests undergo population eruptions, causing region wide economic losses. In order to save forests, finding new and innovative environmentally friendly approaches in wood-boring insect pest management is more important than ever. Several biological control methods have been attempted over time to limit the damage and spreading of bark beetle epidemics. The use of entomopathogenic microorganisms against bark beetle populations is an attractive alternative tool for many biological control programmes in forestry. However, the effectiveness of these biological control agents is strongly affected by environmental factors, as well as by the susceptibility of the insect host. Bark beetle susceptibility to entomopathogens varies greatly between species. According to recent literature, bark beetles are engaged in symbiotic relationships with fungi and bacteria. These types of relationship are very complex and apparently involved in bark beetle defensive mechanisms against pathogens. The latest scientific discoveries in multipartite symbiosis have unravelled unexpected opportunities in bark beetle pest management, which are discussed in this article.

  16. Evolutionary game based control for biological systems with applications in drug delivery.

    Science.gov (United States)

    Li, Xiaobo; Lenaghan, Scott C; Zhang, Mingjun

    2013-06-01

    Control engineering and analysis of biological systems have become increasingly important for systems and synthetic biology. Unfortunately, no widely accepted control framework is currently available for these systems, especially at the cell and molecular levels. This is partially due to the lack of appropriate mathematical models to describe the unique dynamics of biological systems, and the lack of implementation techniques, such as ultra-fast and ultra-small devices and corresponding control algorithms. This paper proposes a control framework for biological systems subject to dynamics that exhibit adaptive behavior under evolutionary pressures. The control framework was formulated based on evolutionary game based modeling, which integrates both the internal dynamics and the population dynamics. In the proposed control framework, the adaptive behavior was characterized as an internal dynamic, and the external environment was regarded as an external control input. The proposed open-interface control framework can be integrated with additional control algorithms for control of biological systems. To demonstrate the effectiveness of the proposed framework, an optimal control strategy was developed and validated for drug delivery using the pathogen Giardia lamblia as a test case. In principle, the proposed control framework can be applied to any biological system exhibiting adaptive behavior under evolutionary pressures.

  17. SG-II-Up prototype final optics assembly:optical damage and clean-gas control

    Institute of Scientific and Technical Information of China (English)

    Dongfeng Zhao; Li Wan; Zunqi Lin; Pin Shao; Jianqiang Zhu

    2015-01-01

    The Shenguang-II Upgrade(SG-II Up) facility is an under-construction high-power laser driver with eight beams, 24 kJ energy, 3 ns pulse duration and ultraviolet laser output, in the Shanghai Institute of Optics and Fine Mechanics, China.The prototype design and experimental research of the prototype final optics assembly(FOA), which is one of the most important parts of the SG-II Up facility, have been completed on the ninth beam of the SG-II facility. Thirty-three shots were fired using 1-ω energy from 1000 to 4500 J and 3-ω energy from 500 to 2403 J with a 3 ns square pulse. During the experiments, emphasis was given to the process of optical damage and to the effects of clean-gas control. A numerical model of the FOA generated by the Integrated Computer Engineering and Manufacturing code for Computational Fluid Dynamics(ICEMCFD) demonstrated that a flux within 1–5 l s-1 and a 180 s period is effectual to avoid contaminant sputtering to the optics. The presence of surface ‘mooning’ damage and surface spots located outside the clear aperture are induced by contaminants such as wire, silica gel and millimeter order fiber and metal.

  18. Image Processing and control of a programmable spatial light modulator for optic damage protection

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, A; Leach, R; Brunton, G; Tse, E; Matone, J; Heebner, J

    2010-12-06

    The heart of the National Ignition Facility is a megajoule-class laser system consisting of 192 beams used to drive inertial confinement fusion reactions. A recently installed system of programmable, liquid-crystal-based spatial light modulators adds the capability of arbitrarily shaping the spatial beam profiles in order to enhance operational flexibility. Its primary intended use is for introducing 'blocker' obscurations shadowing isolated flaws on downstream optical elements that would otherwise be damaged by high fluence laser illumination. Because an improperly shaped blocker pattern can lead to equipment damage, both the position and shape of the obscurations must be carefully verified prior to high-fluence operations. An automatic alignment algorithm is used to perform detection and estimation of the imposed blocker centroid positions compared to their intended locations. Furthermore, in order to minimize the spatially-varying nonlinear response of the device, a calibration of the local magnification is performed at multiple sub-image locations. In this paper, we describe the control and associated image processing of this device that helps to enhance the safety and longevity of the overall system.

  19. Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling

    Institute of Scientific and Technical Information of China (English)

    Peng ZHAO; Fuzhen XUAN

    2011-01-01

    Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.

  20. Controlling the biological effects of spermine using a synthetic receptor.

    Science.gov (United States)

    Vial, Laurent; Ludlow, R Frederick; Leclaire, Julien; Pérez-Fernandez, Ruth; Otto, Sijbren

    2006-08-09

    Polyamines play an important role in biology, yet their exact function in many processes is poorly understood. Artificial host molecules capable of sequestering polyamines could be useful tools for studying their cellular function. However, designing synthetic receptors with affinities sufficient to compete with biological polyamine receptors remains a huge challenge. Binding affinities of synthetic hosts are typically separated by a gap of several orders of magnitude from those of biomolecules. We now report that a dynamic combinatorial selection approach can deliver a synthetic receptor that bridges this gap. The selected receptor binds spermine with a dissociation constant of 22 nM, sufficient to remove it from its natural host DNA and reverse some of the biological effects of spermine on the nucleic acid. In low concentrations, spermine induces the formation of left-handed DNA, but upon addition of our receptor, the DNA reverts back to its right-handed form. NMR studies and computer simulations suggest that the spermine complex has the form of a pseudo-rotaxane. The spermine receptor is a promising lead for the development of therapeutics or molecular probes for elucidating spermine's role in cell biology.

  1. Controlling the Biological Effects of Spermine Using a Synthetic Receptor

    NARCIS (Netherlands)

    Vial, Laurent; Ludlow, R. Frederick; Leclaire, Julien; Pérez-Fernández, Ruth; Otto, Sijbren

    2006-01-01

    Polyamines play an important role in biology, yet their exact function in many processes is poorly understood. Artificial host molecules capable of sequestering polyamines could be useful tools for studying their cellular function. However, designing synthetic receptors with affinities sufficient to

  2. Biological stability of drinking water: Controlling factors, methods, and challenges

    NARCIS (Netherlands)

    Prest, E.I.E.D.; Hammes, F.; Van Loosdrecht, M.C.M.; Vrouwenvelder, J.S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and ca

  3. [We control our bodies: the biological and social dialectic].

    Science.gov (United States)

    Giffin, K M

    1991-01-01

    This article aims at reviewing the discussion of biological and social factors in the analysis of women's social condition. With the appearance of a feminist perspective, the dominance of earlier biologically-based explanations was substituted by an emphasis on the social construction of female identity. Even when women's identification with the body and with nature, and their secondary status, were considered universal, biological determinism was rejected. In this process of re-definition of the object of study, the ideological role of science was pointed out, since male dominance in science and society accompanied the historical tendency which relegated "the woman question" to the sphere of natural fact. Although growing awareness of the socially-constructed nature of scientific activity itself is producing a tendency to abandon the biological/social dichotomy at the conceptual level, differences between men and women in the reproductive sphere continue to exist. It is argued that analysis of reproduction requires characterization of the sexes as biosocial entities in relationship, situated in specific historical contexts, and that in modern society women are subject to a double reproductive contradiction.

  4. Control of rugose spiraling whitefly using biological insecticides, 2014

    Science.gov (United States)

    The objective of this study was to evaluate the efficacy of selected biological insecticides against a new invasive whitefly pest, Aleurodicus rugioperculatus Martin, in white bird of paradise under field condition. The trial was conducted at United States Horticultural Research Laboratory in Fort P...

  5. Curcumin and Piperine Supplementation and Recovery Following Exercise Induced Muscle Damage: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Barthélémy Delecroix, Abd Elbasset Abaïdia, Cédric Leduc, Brian Dawson, Grégory Dupont

    2017-03-01

    Full Text Available The aim of this study was to analyze the effects of oral consumption of curcumin and piperine in combination on the recovery kinetics after exercise-induced muscle damage. Forty-eight hours before and following exercise-induced muscle damage, ten elite rugby players consumed curcumin and piperine (experimental condition or placebo. A randomized cross-over design was performed. Concentric and isometric peak torque for the knee extensors, one leg 6 seconds sprint performance on a non-motorized treadmill, counter movement jump performance, blood creatine kinase concentration and muscle soreness were assessed immediately after exercise, then at 24h, 48h and 72h post-exercise. There were moderate to large effects of the exercise on the concentric peak torque for the knee extensors (Effect size (ES = -1.12; Confidence interval at 90% (CI90%: -2.17 to -0.06, the one leg 6 seconds sprint performance (ES=-1.65; CI90% = -2.51to -0.80 and the counter movement jump performance (ES = -0.56; CI90% = -0.81 to -0.32 in the 48h following the exercise. There was also a large effect of the exercise on the creatine kinase level 72h after the exercise in the control group (ES = 3.61; CI90%: 0.24 to 6.98. This decrease in muscle function and this elevation in creatine kinase indicate that the exercise implemented was efficient to induce muscle damage. Twenty four hours post-exercise, the reduction (from baseline in sprint mean power output was moderately lower in the experimental condition (-1.77 ± 7.25%; 1277 ± 153W in comparison with the placebo condition (-13.6 ± 13.0%; 1130 ± 241W (Effect Size = -1.12; Confidence Interval 90%=-1.86 to -0.86. However, no other effect was found between the two conditions. Curcumin and piperine supplementation before and after exercise can attenuate some, but not all, aspects of muscle damage.

  6. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, Toshihiko, E-mail: t-ogura@aist.go.jp

    2015-04-10

    Scanning electron microscopy (SEM) has been widely used to examine biological specimens of bacteria, viruses and proteins. Until now, atmospheric and/or wet biological specimens have been examined using various atmospheric holders or special equipment involving SEM. Unfortunately, they undergo heavy radiation damage by the direct electron beam. In addition, images of unstained biological samples in water yield poor contrast. We recently developed a new analytical technology involving a frequency transmission electric-field (FTE) method based on thermionic SEM. This method is suitable for high-contrast imaging of unstained biological specimens. Our aim was to optimise the method. Here we describe a high-resolution FTE system based on field-emission SEM; it allows for imaging and nanoscale examination of various biological specimens in water without radiation damage. The spatial resolution is 8 nm, which is higher than 41 nm of the existing FTE system. Our new method can be easily utilised for examination of unstained biological specimens including bacteria, viruses and protein complexes. Furthermore, our high-resolution FTE system can be used for diverse liquid samples across a broad range of scientific fields, e.g. nanoparticles, nanotubes and organic and catalytic materials. - Highlights: • We developed a high-resolution frequency transmission electric-field (FTE) system. • High-resolution FTE system is introduced in the field-emission SEM. • The spatial resolution of high-resolution FTE method is 8 nm. • High-resolution FTE system enables observation of the intact IgM particles in water.

  7. Physical constraints on biological integral control design for homeostasis and sensory adaptation.

    Science.gov (United States)

    Ang, Jordan; McMillen, David R

    2013-01-22

    Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller.

  8. Translational Control Protein 80 Stimulates IRES-Mediated Translation of p53 mRNA in Response to DNA Damage

    Directory of Open Access Journals (Sweden)

    Marie-Jo Halaby

    2015-01-01

    Full Text Available Synthesis of the p53 tumor suppressor increases following DNA damage. This increase and subsequent activation of p53 are essential for the protection of normal cells against tumorigenesis. We previously discovered an internal ribosome entry site (IRES that is located at the 5′-untranslated region (UTR of p53 mRNA and found that the IRES activity increases following DNA damage. However, the mechanism underlying IRES-mediated p53 translation in response to DNA damage is still poorly understood. In this study, we discovered that translational control protein 80 (TCP80 has increased binding to the p53 mRNA in vivo following DNA damage. Overexpression of TCP80 also leads to increased p53 IRES activity in response to DNA damage. TCP80 has increased association with RNA helicase A (RHA following DNA damage and overexpression of TCP80, along with RHA, leads to enhanced expression of p53. Moreover, we found that MCF-7 breast cancer cells with decreased expression of TCP80 and RHA exhibit defective p53 induction following DNA damage and diminished expression of its downstream target PUMA, a proapoptotic protein. Taken together, our discovery of the function of TCP80 and RHA in regulating p53 IRES and p53 induction following DNA damage provides a better understanding of the mechanisms that regulate IRES-mediated p53 translation in response to genotoxic stress.

  9. Prioritization of reactor control components susceptible to fire damage as a consequence of aging

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, W.; Vigil, R. [Science and Engineering Associates, Inc., Albuquerque, NM (United States); Nowlen, S. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    The Fire Vulnerability of Aged Electrical Components Test Program is to identify and assess issues of plant aging that could lead to an increase in nuclear power plant risk because of fires. Historical component data and prior analyses are used to prioritize a list of components with respect to aging and fire vulnerability and the consequences of their failure on plant safety systems. The component list emphasizes safety system control components, but excludes cables, large equipment, and devices encompassed in the Equipment Qualification (EQ) program. The test program selected components identified in a utility survey and developed test and fire conditions necessary to maximize the effectiveness of the test program. Fire damage considerations were limited to purely thermal effects.

  10. The biological control as a strategy to support nontraditional agricultural exports in Peru: An empirical analysis

    Directory of Open Access Journals (Sweden)

    Franklin Duarte Cueva

    2012-12-01

    Full Text Available The study is oriented to explore the general characteristics of agriculture, the biological control as a pest control mechanism and agro export industry. In this context, we try to promote the use of biological control as a strategy to support nontraditional exports related to products such as asparagus and fresh avocados grown in the La Libertad Department (Peru, through an agronomic and management approach. Biological control is the basis of integrated pest management (IPM and contributes to the conservation of agricultural ecosystems allowing to export companies reduce costs, fulfill international phytosanitary measures and supports the preservation of the environment and health. Thus, the Peruvian agro export companies could build a sustainable competitive advantage and seek a positioning as socially responsible firms. We analyze variables such as crop statistics, comparative costs between biological control and chemical control, main destination markets for asparagus and fresh avocados, international standards, among others.

  11. Dynamical Systems and Control Theory Inspired by Molecular Biology

    Science.gov (United States)

    2011-02-20

    is odd) steady states, there never are more than 2n − 1 steady states, that for parameters near the standard Michaelis - Menten quasi-steady state...conditions, there are at most n + 1 steady states and that for parameters far from the standard Michaelis - Menten quasi-steady state conditions, there is at...moments for certain stochastic kinetics : We have recently started research into stochastic aspects in systems biology. Deterministic mod- els

  12. The Biological Effectiveness of Accelerated Particles for the Induction of Chromosome Damage: Track Structure Effects and Cytogenetic Signatures of High-LET Exposure

    Science.gov (United States)

    George, K.; Hada, M.; Chappell, L.; Cucinotta, F. A.

    2012-01-01

    Track structure models predict that at a fixed value of LET, particles with lower charge number, Z will have a higher biological effectiveness compared to particles with a higher Z. In this report we investigated how track structure effects induction of chromosomal aberration in human cells. Human lymphocytes were irradiated in vitro with various energies of accelerated iron, silicon, neon, or titanium ions and chromosome damage was assessed in using three color FISH chromosome painting in chemically induced PCC samples collected a first cell division post irradiation. The LET values for these ions ranged from 30 to 195 keV/micrometers. Of the particles studied, Neon ions have the highest biological effectiveness for induction of total chromosome damage, which is consistent with track structure model predictions. For complex-type exchanges 64 MeV/ u Neon and 450 MeV/u Iron were equally effective and induced the most complex damage. In addition we present data on chromosomes exchanges induced by six different energies of protons (5 MeV/u to 2.5 GeV/u). The linear dose response term was similar for all energies of protons suggesting that the effect of the higher LET at low proton energies is balanced by the production of nuclear secondaries from the high energy protons. All energies of protons have a much higher percentage of complex-type chromosome exchanges than gamma rays, signifying a cytogenetic signature for proton exposures.

  13. Commercial biological control agents targeted against plant-parasitic root-knot nematodes

    OpenAIRE

    Marie-Stéphane Tranier; Johan Pognant-Gros; Reynaldo De la Cruz Quiroz; Cristóbal Noé Aguilar González; Thierry Mateille; Sevastianos Roussos

    2014-01-01

    International audience; Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated ...

  14. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage

    Institute of Scientific and Technical Information of China (English)

    Yongcan Chen; Wei-Guo Zhu

    2016-01-01

    DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources.Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways.Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway.Phosphorylation,ubiquitylation,SUMOylation,neddylation,poly(ADP-ribosyl)ation,acetylation,and methylation are all involved in the spatial-temporal regulation of DDR,among which phosphorylation and ubiquitylation are well studied.Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage.Lysine methylation is finely regulated by plenty of lysine methyltransferases,lysine demethylases,and can be recognized by proteins with chromodomain,plant homeodomain,Tudor domain,malignant brain tumor domain,or prolinetryptophan-tryptophan-proline domain.In this review,we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4,H3K9,H3K27,H3K36,H3K79,and H4K20) and non-canonical sites after DNA damage,and discuss their context-specific functions in DDR protein recruitment or extraction,chromatin environment establishment,and transcriptional regulation.We also present the emerging advances of lysine methylation in non-histone proteins during DDR.

  15. Suppressive composts from organic wastes as agents of biological control of fusariosis in Tatartan Republic (Russia)

    Science.gov (United States)

    Gumerova, Raushaniya; Galitskaya, Polina; Beru, Franchesca; Selivanovskaya, Svetlana

    2015-04-01

    Plant diseases are one of the seriously limiting factors of agriculture efficiency around the world. Diseases caused by fungi are the major threat to plants. Crop protection in modern agriculture heavily depends on chemical fungicides. Disadvantages of chemical pesticides soon became apparent as damage to the environment and a hazard to human health. In this regard use of biopesticides becomes an attractive alternative method of plant protection. For biological control of fungal plant diseases, separate bacterial or fungal strains as well as their communities can be used. Biopreparations must consist of microbes that are typical for local climate and soil conditions and therefore are able to survive in environments for a long time. Another option of plant pests' biological control is implementation of suppressive composts made of agricultural or other organic wastes. These composts can not only prevent the development of plant diseases, but also improve the soil fertility. The objective of this work was estimation of potential of composts and strains isolated from these composts as means for biological control of fusariosis that is one of the most widespread plant soil born disease. The composts were made up of the commonly produced agricultural wastes produced in Tatarstan Republic (Russia). Fusarium oxysporum f. sp. radicis-lycopersici was used as a model phytopathogen. Ten types of organic waste (Goat manure (GM), Chicken dung (CD), Chicken dung with straw addition (CS), Rabbit dung (RD), Cow manure (CM), Rerotting pork manure (RPM), Fresh pork manure (FPM), Pork manure with sawdust and straw (PMS), the remains of plants and leaves (PL), the vegetable waste (VW) were sampled in the big farms situated in Tatarstan Republic which is one of the main agricultural regions of Russia. The initial wastes were composted for 150 days. Further, the following characteristics of the composts were assessed: pH, electro conductivity, TOC, DOC, Ntot. On petri dishes with meat

  16. Codling Moth, Cydia pomonella (Lepidoptera: Tortricidae – Major Pest in Apple Production: an Overview of its Biology, Resistance, Genetic Structure and Control Strategies

    Directory of Open Access Journals (Sweden)

    Ivana Pajač

    2011-06-01

    Full Text Available The codling moth Cydia pomonella (CM (Linnaeus is a key pest in pome fruit production with a preference for apple. The pest is very adaptable to different climatic conditions and is known for developing resistance to several chemical groups of insecticides. Because of these reasons, the populations of codling moth are differentiated in many ecotypes of various biological and physiological development requirements. The article provides a bibliographic review of investigation about: morphology, biology, dispersal, damages, resistance to insecticides, population genetic structure and genetic control of this pest.

  17. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  18. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  19. Reducing losses inflicted by insect pests on cashew, using weaver ants as a biological control agent

    DEFF Research Database (Denmark)

    Anato, Florence; Wargui, Rosine; Sinzogan, Antonio

    2015-01-01

    BACKGROUND: Cashew (Anacardium occidentale Linnaeus) is the largest agricultural export product in Benin. However, yields and quality are lost due to inefficient pest control. Weaver ants (Oecophylla spp.) may control pests in this crop as they eat and deter pests. In Benin, cashew pest damages, ...

  20. Biological control of mycotoxin-producing molds Controle biológico de fungos de armazenamento produtores de micotoxinas

    Directory of Open Access Journals (Sweden)

    Flávio Henrique Vasconcelos de Medeiros

    2012-10-01

    Full Text Available Mycotoxins are produced by the secondary metabolism of many fungi and can be found in almost 25% of the world's agricultural commodities. These compounds are toxic to humans, animals, and plants and therefore, efforts should be made to avoid mycotoxin contamination in food and feed. Besides, up to 25% of all harvested fruits and vegetables are lost due to storage molds and/or mycotoxin contamination and many methods have been applied to mitigate these issues, but most of them rely on the use of fungicides. Although chemicals are often the first defensive line against mycotoxigenic fungi, the indiscriminate use of fungicides are awakening the public perception due to their noxious effects on the environment and human/animal health. Thus, there is an increasing public pressure for a safer and eco-friendly alternative to control these organisms. In this background, biological control using microbial antagonists such as bacteria, fungi and yeasts have been shown to be a feasible substitute to reduce the use of chemical compounds. Despite of the positive findings using the biocontrol agents only a few products have been registered and are commercially available to control mycotoxin-producing fungi. This review brings about the up-to-date biological control strategies to prevent or reduce harvested commodity damages caused by storage fungi and the contamination of food and feed by mycotoxins.As micotoxinas são produzidas pelo metabolismo secundário de várias espécies de fungos e podem ser encontradas em quase 25% das commodities agrícolas. Esses compostos são tóxicos a humanos, animais e plantas e, portanto, esforços para evitar a contaminação de micotoxinas em alimentos e rações devem ser feitos. Além disso, até 25% das frutas e legumes em pós-colheita são perdidos em decorrência do ataque de fungos de armazenamento e/ou contaminações por micotoxinas. Vários métodos têm sido aplicados para mitigar os problemas de micotoxinas

  1. Control of Apoptosis in Treatment and Biology of Pancreatic Cancer.

    Science.gov (United States)

    Modi, Shrey; Kir, Devika; Banerjee, Sulagna; Saluja, Ashok

    2016-02-01

    Pancreatic cancer is estimated to be the 12th most common cancer in the United States in 2014 and yet this malignancy is the fourth leading cause of cancer-related death in the United States. Late detection and resistance to therapy are the major causes for its dismal prognosis. Apoptosis is an actively orchestrated cell death mechanism that serves to maintain tissue homoeostasis. Cancer develops from normal cells by accruing significant changes through one or more mechanisms, leading to DNA damage and mutations, which in a normal cell would induce this programmed cell death pathway. As a result, evasion of apoptosis is one of the hallmarks of cancer cells. PDAC is notoriously resistant to apoptosis, thereby explaining its aggressive nature and resistance to conventional treatment modalities. The current review is focus on understanding different intrinsic and extrinsic pathways in pancreatic cancer that may affect apoptosis in this disease.

  2. Hybrid Automaton Based Controller Design for Damage Mitigation of Islanded Power Systems

    Science.gov (United States)

    Lahiri, Sudipta

    Spurred by increasingly unpredictable weather, high penetration of renewable resources and a period of focused US government policy, it is widely expected that microgrids within the electric distribution system will show exponential growth in the coming decade. Microgrids comprise of power generation, delivery and consumption assets within restricted electrical boundaries and under contiguous control oversight that enables holistic management of these assets. Microgrids can be islanded and operated independent of a larger electric power network, and as such, a primary function of microgrids is to enhance the energy reliability of the underlying loads. In this work, we focus on naval shipboard power systems. Apart from being islanded, in the true sense, resiliency and damage mitigation are key considerations in the design and operation of these power systems. Islanded power systems encompass a rich diversity of discrete and continuous dynamic behavior in multiple time-scales. A high penetration of devices with power electronics interface, low inherent system inertia, and high density of switching devices can lead to rapid disturbance propagation and system failure without advanced damage mitigation strategies. Hybrid systems formalism incorporates continuous dynamics as well as discrete switching behavior into a modeling and control framework, thus allowing a complete system description while crystallizing concepts of safety into system design criteria. We build on existing work to enhance a Dynamic Mixed Integer Programming (DMIP) model of a power system that combines continuous time differential algebraic models with switching dynamics synthesized into mixed integer inequalities. We use this model to derive an optimal system reconfiguration strategy to prevent voltage collapse of a benchmark shipboard power system. However, this methodology is restricted by the computational complexity of dynamic programming and scalability of non-automated processes. To overcome

  3. 75 FR 28233 - Availability of an Environmental Assessment for a Biological Control Agent for Asian Citrus Psyllid

    Science.gov (United States)

    2010-05-20

    ... for use as a biological control agent to reduce the severity of Asian citrus psyllid infestations. We... continental United States for use as a biological control agent to reduce the severity of Asian citrus psyllid... include chemical control and the release of an alternative biological control agent, an encyrtid...

  4. Biological control through intraguild predation: case studies in pest control, invasive species and range expansion.

    Science.gov (United States)

    Bampfylde, C J; Lewis, M A

    2007-04-01

    Intraguild predation (IGP), the interaction between species that eat each other and compete for shared resources, is ubiquitous in nature. We document its occurrence across a wide range of taxonomic groups and ecosystems with particular reference to non-indigenous species and agricultural pests. The consequences of IGP are complex and difficult to interpret. The purpose of this paper is to provide a modelling framework for the analysis of IGP in a spatial context. We start by considering a spatially homogeneous system and find the conditions for predator and prey to exclude each other, to coexist and for alternative stable states. Management alternatives for the control of invasive or pest species through IGP are presented for the spatially homogeneous system. We extend the model to include movement of predator and prey. In this spatial context, it is possible to switch between alternative stable steady states through local perturbations that give rise to travelling waves of extinction or control. The direction of the travelling wave depends on the details of the nonlinear intraguild interactions, but can be calculated explicitly. This spatial phenomenon suggests means by which invasions succeed or fail, and yields new methods for spatial biological control. Freshwater case studies are used to illustrate the outcomes.

  5. Evaluation of biological control agents for mosquitoes control in artificial breeding places

    Institute of Scientific and Technical Information of China (English)

    Salim Abadi Yaser; Vatandoost Hassan; Rassi Yavar; Abai Mohammad Reza; Sanei Dehkordi Ali Reza; Paksa Azim

    2010-01-01

    Objective:To evaluate the entomological impact of chlorpyrifos-methyl,Bacillus thuringiensis, andGambusia affinis on mosquitoes control in artificial breeding places.Methods:A Latin square design with 4 replicates was performed in order to evaluate the efficacy of chlorpyrifos-methyl,Bacillus thuringiensis, andGambusia affinis on larva. The larvicide was applied at the dosage of 100 mg a.h/ha,Bacillus thuringiensis at the recommended dosage and 10 fishes per m2 were applied at 1í1 m2 artificial breeding sites. The larval densities for both anopheline and culicine were counted according to larvae /10 dippers prior and 24 h after application.Results:All three control agents are effective for mosquito density reduction, and the difference between the three agents and the control is significant (P<0.05). There is also significant difference among chlorpyrifos-methyl,Bacillus thuringiensis andGambusia affinis.Bacillus thuringiensisexhibited more reduction on mosquito larval density than fish and larvicide (P<0.05).Conclusions:Bacillus thuringiensis in comparison with two other agents is the appropriate method for larviciding in the breeding places. Although long term assessing for biological activities as well as monitoring and mapping of resistance is required.

  6. Tectonic control of the damaged areas by land subsidence: Ameca, Jalisco Mexico, a study case

    Science.gov (United States)

    Rosas-Elguera, J.; Malagon, A.; Maciel, R.; Alatorre, M. A.; Perez, G.

    2009-04-01

    The Miocene to Quaternary Trans-Mexican Volcanic Belt (TMVB), one of the largest mexican volcanic arcs built on the North America plate, covers about 1000 km along central Mexico from the Pacific ocean to the Gulf of Mexico. The structure of west-central Mexico is dominated by a complex assemblage of crustal blocks bounded by major tectonic structures of the TMVB. These are the NW-SE Tepic-Zacoalco, the N-S Colima, and the E-W Chapala grabens, which separate the Jalisco and Michoacan blocks from the stable North American plate. The three grabens join south of Guadalajara to form what has been long interpreted as an active triple junction. The Tepic-Zacoalco rift is composed of the eastern part of the Plan de Barrancas-Santa Rosa graben and by the Ameca and Zacoalco half-grabens. The Ameca city is located in the Ameca half-graben. From 80´s several houses and buildings (more than 300) have been affected by land subsidence for more than two decades. The damage area follows a specific pattern with NW trend which is similar to the regional faults. The land subsidence is associated with the water extraction. We suggest that the distribution of the damage area is controlled by the fault system in combination with the water extraction. Because of the Ameca half-graben has been affected by historical and present day earthquakes and considering the subsurface geology (sandstones, siltstone intercalated with conglomerates) sudden collapses can be expected.

  7. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  8. Biological control of wood decay against fungal infection.

    Science.gov (United States)

    Susi, Petri; Aktuganov, Gleb; Himanen, Juha; Korpela, Timo

    2011-07-01

    Wood (timber) is an important raw material for various purposes, and having biological composition it is susceptible to deterioration by various agents. The history of wood protection by impregnation with synthetic chemicals is almost two hundred years old. However, the ever-increasing public concern and the new environmental regulations on the use of chemicals have created the need for the development and the use of alternative methods for wood protection. Biological wood protection by antagonistic microbes alone or in combination with (bio)chemicals, is one of the most promising ways for the environmentally sound wood protection. The most effective biocontrol antagonists belong to genera Trichoderma, Gliocladium, Bacillus, Pseudomonas and Streptomyces. They compete for an ecological niche by consuming available nutrients as well as by secreting a spectrum of biochemicals effective against various fungal pathogens. The biochemicals include cell wall-degrading enzymes, siderophores, chelating iron and a wide variety of volatile and non-volatile antibiotics. In this review, the nature and the function of the antagonistic microbes in wood protection are discussed.

  9. Biological control of greenhouse whitefly (Trialeurodes vaporariorum) with fungal insecticides.

    Science.gov (United States)

    Siongers, C; Coosemans, J

    2003-01-01

    The influence of the biological insecticide Botanigard (Beauveria bassiana) on different developmental stages of the greenhouse whitefly (Trialeurodes vaporariorum) has been tested and compared with the influence of Preferal (Paecilomyces fumosoroseus), also a biological product. Six experiments were set up to test the two products on eggs, which were four and seven days old, on larvae of the first, second/third and fourth stage and to test the effect on egg-deposition. These experiments were all conducted on cucumber. Egg-deposition was limited to a small area on the leaf by using leaf cages. To evaluate these tests the number of eggs or larvae developed to the next stage has been counted and compared to the total amount of eggs or larvae on the leaves. The results revealed that Botanigard has an effect on the larval stages. The first larval stage is most sensitive; the next stages have a decreasing sensitivity. There was no influence on the hatching of the eggs, but a treatment short before the hatching could have a residual effect on the new nymphs. When the treatment with Botanigard is performed shortly before a moult or a fungicide treatment, the efficacy of the product decreases significantly. The influence of Preferal on the greenhouse whitefly is, under the same circumstances, less obvious.

  10. ABT-controllable laser hyperthermia of biological objects

    Science.gov (United States)

    Krotov, Eugene V.; Yakovlev, Ivan V.; Zhadobov, Maxim; Reyman, Alexander M.

    2002-05-01

    The results of experimentally investigated laser heating of optically absorbing inhomogeneities inside the biological objects accompanied with monitoring of internal temperature by acoustical brightness thermometry (ABT) have been presented. One of the urgent problems of modern medicine is to provide organism safety during photodynamic therapy of various neoplasms including malignant ones. In the case when neoplasm differs from normal tissue mainly in optical absorption it seems to be effective to use laser heating for this purpose. In our experiments we used the NIR emission of CW and pulse-periodic Nd:YAG lasers (1064 nm) as well as CW semiconductor laser (800 nm) for heating of tissue- simulating phantom. Optically transparent gelatine with absorbing inhomogeneity inside was used as a phantom. Internal temperature was measured non-invasively by means of multi-channel ABT after long heating of an object by laser radiation. Temperature was also measured independently by contact electronic thermometer. The results of experiments demonstrated high efficiency of ABT application for internal temperature monitoring during PDT and other hyperthermia procedures. Besides that laser radiation can be used for backlighting followed by ABT investigation of internal structure of temperature distribution inside biological tissues. This work was supported by Russian Foundation for Basic Research (Projects # 00-02-16600; 01-02-06417; 01-02- 17645) and 6th competition-expertise of young scientists of Russian Academy of Sciences (Project #399).

  11. Lack of association of colonic epithelium telomere length and oxidative DNA damage in Type 2 diabetes under good metabolic control

    Directory of Open Access Journals (Sweden)

    Kennedy Hugh

    2008-10-01

    Full Text Available Abstract Background Telomeres are DNA repeat sequences necessary for DNA replication which shorten at cell division at a rate directly related to levels of oxidative stress. Critical telomere shortening predisposes to cell senescence and to epithelial malignancies. Type 2 diabetes is characterised by increased oxidative DNA damage, telomere attrition, and an increased risk of colonic malignancy. We hypothesised that the colonic mucosa in Type 2 diabetes would be characterised by increased DNA damage and telomere shortening. Methods We examined telomere length (by flow fluorescent in situ hybridization and oxidative DNA damage (flow cytometry of 8 – oxoguanosine in the colonic mucosal cells of subjects with type 2 diabetes (n = 10; mean age 62.2 years, mean HbA1c 6.9% and 22 matched control subjects. No colonic pathology was apparent in these subjects at routine gastrointestinal investigations. Results Mean colonic epithelial telomere length in the diabetes group was not significantly different from controls (10.6 [3.6] vs. 12.1 [3.4] Molecular Equivalent of Soluble Fluorochrome Units [MESF]; P = 0.5. Levels of oxidative DNA damage were similar in both T2DM and control groups (2.6 [0.6] vs. 2.5 [0.6] Mean Fluorescent Intensity [MFI]; P = 0.7. There was no significant relationship between oxidative DNA damage and telomere length in either group (both p > 0.1. Conclusion Colonic epithelium in Type 2 diabetes does not differ significantly from control colonic epithelium in oxidative DNA damage or telomere length. There is no evidence in this study for increased oxidative DNA damage or significant telomere attrition in colonic mucosa as a carcinogenic mechanism.

  12. When brain damage "improves" perception: neglect patients can localize motion-shifted probes better than controls.

    Science.gov (United States)

    de Vito, Stefania; Lunven, Marine; Bourlon, Clémence; Duret, Christophe; Cavanagh, Patrick; Bartolomeo, Paolo

    2015-12-01

    When we look at bars flashed against a moving background, we see them displaced in the direction of the upcoming motion (flash-grab illusion). It is still debated whether these motion-induced position shifts are low-level, reflexive consequences of stimulus motion or high-level compensation engaged only when the stimulus is tracked with attention. To investigate whether attention is a causal factor for this striking illusory position shift, we evaluated the flash-grab illusion in six patients with damaged attentional networks in the right hemisphere and signs of left visual neglect and six age-matched controls. With stimuli in the top, right, and bottom visual fields, neglect patients experienced the same amount of illusion as controls. However, patients showed no significant shift when the test was presented in their left hemifield, despite having equally precise judgments. Thus, paradoxically, neglect patients perceived the position of the flash more veridically in their neglected hemifield. These results suggest that impaired attentional processes can reduce the interaction between a moving background and a superimposed stationary flash, and indicate that attention is a critical factor in generating the illusory motion-induced shifts of location.

  13. Differential biologic effects of CPD and 6-4PP UV-induced DNA damage on the induction of apoptosis and cell-cycle arrest

    Directory of Open Access Journals (Sweden)

    Yasui Akira

    2005-10-01

    Full Text Available Abstract Background UV-induced damage can induce apoptosis or trigger DNA repair mechanisms. Minor DNA damage is thought to halt the cell cycle to allow effective repair, while more severe damage can induce an apoptotic program. Of the two major types of UV-induced DNA lesions, it has been reported that repair of CPD, but not 6-4PP, abrogates mutation. To address whether the two major forms of UV-induced DNA damage, can induce differential biological effects, NER-deficient cells containing either CPD photolyase or 6-4 PP photolyase were exposed to UV and examined for alterations in cell cycle and apoptosis. In addition, pTpT, a molecular mimic of CPD was tested in vitro and in vivo for the ability to induce cell death and cell cycle alterations. Methods NER-deficient XPA cells were stably transfected with CPD-photolyase or 6-4PP photolyase to specifically repair only CPD or only 6-4PP. After 300 J/m2 UVB exposure photoreactivation light (PR, UVA 60 kJ/m2 was provided for photolyase activation and DNA repair. Apoptosis was monitored 24 hours later by flow cytometric analysis of DNA content, using sub-G1 staining to indicate apoptotic cells. To confirm the effects observed with CPD lesions, the molecular mimic of CPD, pTpT, was also tested in vitro and in vivo for its effect on cell cycle and apoptosis. Results The specific repair of 6-4PP lesions after UVB exposure resulted in a dramatic reduction in apoptosis. These findings suggested that 6-4PP lesions may be the primary inducer of UVB-induced apoptosis. Repair of CPD lesions (despite their relative abundance in the UV-damaged cell had little effect on the induction of apoptosis. Supporting these findings, the molecular mimic of CPD, (dinucleotide pTpT could mimic the effects of UVB on cell cycle arrest, but were ineffective to induce apoptosis. Conclusion The primary response of the cell to UV-induced 6-4PP lesions is to trigger an apoptotic program whereas the response of the cell to CPD

  14. Biologically-Plausible Reactive Control of Mobile Robots

    OpenAIRE

    Rene, Zapata; Pascal, Lepinay

    2006-01-01

    This chapter addressed the problem of controlling the reactive behaviours of a mobile robot evolving in unstructured and dynamic environments. We have carried out successful experiments for determining the distance field of a mobile robot using two

  15. Biological control of vaginosis to improve reproductive health

    Directory of Open Access Journals (Sweden)

    P Mastromarino

    2014-01-01

    Full Text Available The human vaginal microbiota plays an important role in the maintenance of a woman′s health, as well as of her partner′s and newborns′. When this predominantly Lactobacillus community is disrupted, decreased in abundance and replaced by different anaerobes, bacterial vaginosis (BV may occur. BV is associated with ascending infections and obstetrical complications, such as chorioamnionitis and preterm delivery, as well as with urinary tract infections and sexually transmitted infections. In BV the overgrowth of anaerobes produces noxious substances like polyamines and other compounds that trigger the release of pro-inflammatory cytokines interleukin (IL-1 β and IL-8. BV can profoundly affect, with different mechanisms, all the phases of a woman′s life in relation to reproduction, before pregnancy, during fertilization, through and at the end of pregnancy. BV can directly affect fertility, since an ascending dissemination of the involved species may lead to tubal factor infertility. Moreover, the increased risk of acquiring sexually transmitted diseases contributes to damage to reproductive health. Exogenous strains of lactobacilli have been suggested as a means of re-establishing a normal healthy vaginal flora. Carefully selected probiotic strains can eliminate BV and also exert an antiviral effect, thus reducing viral load and preventing foetal and neonatal infection. The administration of beneficial microorganisms (probiotics can aid recovery from infection and restore and maintain a healthy vaginal ecosystem, thus improving female health also in relation to reproductive health.

  16. IQGAP1 and its binding proteins control diverse biological functions.

    Science.gov (United States)

    White, Colin D; Erdemir, Huseyin H; Sacks, David B

    2012-04-01

    IQGAP proteins have been identified in a wide spectrum of organisms, ranging from yeast to humans. The most extensively studied family member is the ubiquitously expressed scaffold protein IQGAP1, which participates in multiple essential aspects of mammalian biology. IQGAP1 mediates these effects by binding to and regulating the function of numerous interacting proteins. Over ninety proteins have been reported to associate with IQGAP1, either directly or as part of a larger complex. In this review, we summarise those IQGAP1 binding partners that have been identified in the last five years. The molecular mechanisms by which these interactions contribute to the functions of receptors and their signalling cascades, small GTPase function, cytoskeletal dynamics, neuronal regulation and intracellular trafficking are evaluated. The evidence that has accumulated recently validates the role of IQGAP1 as a scaffold protein and expands the repertoire of cellular activities in which it participates.

  17. Marine biological controls on atmospheric CO2 and climate

    Science.gov (United States)

    Mcelroy, M. B.

    1983-01-01

    It is argued that the ocean is losing N gas faster than N is being returned to the ocean, and that replenishment of the N supply in the ocean usually occurs during ice ages. Available N from river and estruarine transport and from rainfall after formation by lightning are shown to be at a rate too low to compensate for the 10,000 yr oceanic lifetime of N. Ice sheets advance and transfer moraine N to the ocean, lower the sea levels, erode the ocean beds, promote greater biological productivity, and reduce CO2. Ice core samples have indicated a variability in the atmospheric N content that could be attributed to the ice age scenario.

  18. Prospects for the use of biological control agents against Anoplophora in Europe

    Science.gov (United States)

    This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Ja...

  19. Holarchical Systems and Emotional Holons : Biologically-Inspired System Designs for Control of Autonomous Aerial Vehicles

    Science.gov (United States)

    Ippolito, Corey; Plice, Laura; Pisanich, Greg

    2003-01-01

    The BEES (Bio-inspired Engineering for Exploration Systems) for Mars project at NASA Ames Research Center has the goal of developing bio-inspired flight control strategies to enable aerial explorers for Mars scientific investigations. This paper presents a summary of our ongoing research into biologically inspired system designs for control of unmanned autonomous aerial vehicle communities for Mars exploration. First, we present cooperative design considerations for robotic explorers based on the holarchical nature of biological systems and communities. Second, an outline of an architecture for cognitive decision making and control of individual robotic explorers is presented, modeled after the emotional nervous system of cognitive biological systems. Keywords: Holarchy, Biologically Inspired, Emotional UAV Flight Control

  20. Comparative evaluation of two populations of Pseudophilothrips ichini as candidates for biological control of Brazilian peppertree

    Science.gov (United States)

    Brazilian peppertree, Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae) is one of the worst invasive species in Florida. The thrips Pseudophilothrips ichini Hood (Thysanoptera: Phlaeothripidae) is being considered as a potential biological control agent of Brazilian peppertree. Two populati...

  1. Early-season flood enhances native biological control agents in Wisconsin cranberry

    Science.gov (United States)

    Biological control is predicated on the concept that crop plants are protected when predators suppress herbivore populations. However, many factors, including concurrent crop protection strategies, may modify the effectiveness of a predator in a given agroecosystem. In Wisconsin commercial cranberry...

  2. Utilization of an introduced weed biological control agent by a native parasitoid

    Science.gov (United States)

    A native parasitoid, Kalopolynema ema (Schauff and Grissell) (Hymenoptera, Mymaridae), that usually parasitizes the eggs of Megamelus davisi VanDuzee (Hemiptera, Delphacidae), has begun utilizing a new host, Megamelus scutellaris (Berg) (Hemiptera, Delphacidae), the introduced biological control age...

  3. Design and control strategies for CELSS - Integrating mechanistic paradigms and biological complexities

    Science.gov (United States)

    Moore, B., III; Kaufmann, R.; Reinhold, C.

    1981-01-01

    Systems analysis and control theory consideration are given to simulations of both individual components and total systems, in order to develop a reliable control strategy for a Controlled Ecological Life Support System (CELSS) which includes complex biological components. Because of the numerous nonlinearities and tight coupling within the biological component, classical control theory may be inadequate and the statistical analysis of factorial experiments more useful. The range in control characteristics of particular species may simplify the overall task by providing an appropriate balance of stability and controllability to match species function in the overall design. The ultimate goal of this research is the coordination of biological and mechanical subsystems in order to achieve a self-supporting environment.

  4. A review and comparative analysis of the biological damage induced during space flight by HZE particles and space hadrons.

    Science.gov (United States)

    Akoev, I G; Yurov, S S; Akoev, B I

    1981-01-01

    We have studied the somatic and genetic effects of heavy ions (HZE particles) and the very high energy hadrons of space radiation on various organisms ranging in complexity from bacteriophage to man. Experimental data were obtained in space, on high mountains and in a proton accelerator at energies of 76 GeV. In all these experiments local micro- and macroradiational damage was observed. This damage was characterized by severity over large local regions and for the most part was due to cascades of secondary particle bundles resulting from the collision of very high energy space hadrons with atomic nuclei rather than from cellular hits from relatively low energy single HZE particles. At present there does not appear to be any effective way to provide shielding against these cosmic hadrons.

  5. Biological control of banana black Sigatoka disease with Trichoderma

    Directory of Open Access Journals (Sweden)

    Poholl Adan Sagratzki Cavero

    2015-06-01

    Full Text Available Black Sigatoka disease caused by Mycosphaerella fijiensis is the most severe banana disease worldwide. The pathogen is in an invasive phase in Brazil and is already present in most States of the country. The potential of 29 isolates of Trichoderma spp. was studied for the control of black Sigatoka disease under field conditions. Four isolates were able to significantly reduce disease severity and were further tested in a second field experiment. Isolate 2.047 showed the best results in both field experiments and was selected for fungicide sensitivity tests and mass production. This isolate was identified as Trichoderma atroviride by sequencing fragments of the ITS region of the rDNA and tef-1α of the RNA polymerase. Trichoderma atroviride was as effective as the fungicide Azoxystrobin, which is recommended for controlling black Sigatoka. This biocontrol agent has potential to control the disease and may be scaled-up for field applications on rice-based solid fermentation

  6. Biological Control of Mosquito Vectors: Past, Present, and Future

    Science.gov (United States)

    Benelli, Giovanni; Jeffries, Claire L.; Walker, Thomas

    2016-01-01

    Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs) is available for most of these diseases and vector control is still the main form of prevention. The limitations of traditional insecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In this review, we outline non-insecticide based strategies that have been implemented or are currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies. PMID:27706105

  7. Novel ESCRT functions in cell biology: spiraling out of control?

    Science.gov (United States)

    Campsteijn, Coen; Vietri, Marina; Stenmark, Harald

    2016-08-01

    The endosomal sorting complex required for transport (ESCRT), originally identified for its role in endosomal protein sorting and biogenesis of multivesicular endosomes (MVEs), has proven to be a versatile machinery for involution and scission of narrow membrane invaginations filled with cytosol. Budding of enveloped viruses and cytokinetic abscission were early described functions for the ESCRT machinery, and recently a number of new ESCRT functions have emerged. These include cytokinetic abscission checkpoint control, plasma membrane repair, exovesicle release, quality control of nuclear pore complexes, neuron pruning, and sealing of the newly formed nuclear envelope. Here we review these novel ESCRT mechanisms and discuss similarities and differences between the various ESCRT-dependent activities.

  8. Potential for widespread application of biological control of stored-product pests

    DEFF Research Database (Denmark)

    Hansen, Lise Stengaard

    2007-01-01

    Biological control of stored product pests has substantial potential in Europe". This is essentially the conclusion of the activities of a European working group funded by the COST system, an intergovernmental networking system. Working group 4 of COST action 842 (2000-2005) focussed on biological......, beetles and moths; (2) Preventative treatment of bulk commodities against weevils (Sitophilus spp.) and storage mites; (3) Preventative application of egg-parasitoids against moths in packaged products. Development of methods for biological control and of mass production of natural enemies...

  9. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  10. Microbial control of the dark end of the biological pump.

    Science.gov (United States)

    Herndl, Gerhard J; Reinthaler, Thomas

    2013-09-01

    A fraction of the carbon captured by phytoplankton in the sunlit surface ocean sinks to depth as dead organic matter and faecal material. The microbial breakdown of this material in the subsurface ocean generates carbon dioxide. Collectively, this microbially mediated flux of carbon from the atmosphere to the ocean interior is termed the biological pump. In recent decades it has become clear that the composition of the phytoplankton community in the surface ocean largely determines the quantity and quality of organic matter that sinks to depth. This settling organic matter, however, is not sufficient to meet the energy demands of microbes in the dark ocean. Two additional sources of organic matter have been identified: non-sinking organic particles of debated origin that escape capture by sediment traps and exhibit stable concentrations throughout the dark ocean, and microbes that convert inorganic carbon into organic matter. Whether these two sources can together account for the significant mismatch between organic matter consumption and supply in the dark ocean remains to be seen. It is clear, however, that the microbial community of the deep ocean works in a fundamentally different way from surface water communities.

  11. Biological control of harmful algal blooms: A modelling study

    Science.gov (United States)

    Solé, Jordi; Estrada, Marta; Garcia-Ladona, Emilio

    2006-07-01

    A multispecies dynamic simulation model (ERSEM) was used to examine the influence of allelopathic and trophic interactions causing feeding avoidance by predators, on the formation of harmful algal blooms, under environmental scenarios typical of a Mediterranean harbour (Barcelona). The biological state variables of the model included four functional groups of phytoplankton (diatoms, toxic and non-toxic flagellates and picophytoplankton), heterotrophic flagellates, micro- and mesozooplankton and bacteria. The physical-chemical forcing (irradiance, temperature and major nutrient concentrations) was based on an actual series of measurements taken along a year cycle in the Barcelona harbour. In order to evaluate potential effects of advection, some runs were repeated after introducing a biomass loss term. Numerical simulations showed that allelopathic effects of a toxic alga on a non-toxic but otherwise similar competitor did not have appreciable influence on the dynamics of the system. However, induction of avoidance of the toxic alga by predators, which resulted on increased predation pressure on other algal groups had a significant effect on the development of algal and predator populations. The presence of advection overrided the effect of these interactions and only allowed organisms with sufficiently high potential growth rates to thrive.

  12. Allee effects in tritrophic food chains: some insights in pest biological control.

    Science.gov (United States)

    Costa, Michel Iskin da S; Dos Anjos, Lucas

    2016-12-01

    Release of natural enemies to control pest populations is a common strategy in biological control. However, its effectiveness is supposed to be impaired, among other factors, by Allee effects in the biological control agent and by the fact that introduced pest natural enemies interact with some native species of the ecosystem. In this work, we devise a tritrophic food chain model where the assumptions previously raised are proved correct when a hyperpredator attacks the introduced pest natural enemy by a functional response type 2 or 3. Moreover, success of pest control is shown to be related to the release of large amounts (i.e., inundative releases) of natural enemies.

  13. The DNA damage- and transcription-associated protein paxip1 controls thymocyte development and emigration.

    Science.gov (United States)

    Callen, Elsa; Faryabi, Robert B; Luckey, Megan; Hao, Bingtao; Daniel, Jeremy A; Yang, Wenjing; Sun, Hong-Wei; Dressler, Greg; Peng, Weiqun; Chi, Hongbo; Ge, Kai; Krangel, Michael S; Park, Jung-Hyun; Nussenzweig, André

    2012-12-14

    Histone 3 lysine 4 trimethylation (H3K4me3) is associated with promoters of active genes and found at hot spots for DNA recombination. Here we have shown that PAXIP1 (also known as PTIP), a protein associated with MLL3 and MLL4 methyltransferase and the DNA damage response, regulates RAG-mediated cleavage and repair during V(D)J recombination in CD4(+) CD8(+) DP thymocytes. Loss of PAXIP1 in developing thymocytes diminished Jα H3K4me3 and germline transcription, suppressed double strand break formation at 3' Jα segments, but resulted in accumulation of unresolved T cell receptor α-chain gene (Tcra) breaks. Moreover, PAXIP1 was essential for release of mature single positive (SP) αβ T cells from the thymus through transcriptional activation of sphingosine-1-phosphate receptor S1pr1 as well as for natural killer T cell development. Thus, in addition to maintaining genome integrity during Tcra rearrangements, PAXIP1 controls distinct transcriptional programs during DP differentiation necessary for Tcra locus accessibility, licensing mature thymocytes for trafficking and natural killer T cell development.

  14. Biological Control of Mosquito Vectors: Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Giovanni Benelli

    2016-10-01

    Full Text Available Mosquitoes represent the major arthropod vectors of human disease worldwide transmitting malaria, lymphatic filariasis, and arboviruses such as dengue virus and Zika virus. Unfortunately, no treatment (in the form of vaccines or drugs is available for most of these diseases andvectorcontrolisstillthemainformofprevention. Thelimitationsoftraditionalinsecticide-based strategies, particularly the development of insecticide resistance, have resulted in significant efforts to develop alternative eco-friendly methods. Biocontrol strategies aim to be sustainable and target a range of different mosquito species to reduce the current reliance on insecticide-based mosquito control. In thisreview, weoutline non-insecticide basedstrategiesthat havebeenimplemented orare currently being tested. We also highlight the use of mosquito behavioural knowledge that can be exploited for control strategies.

  15. Mechanization and Control Concepts for Biologically Inspired Micro Aerial Vehicles

    Science.gov (United States)

    Raney, David L.; Slominski, Eric C.

    2003-01-01

    It is possible that MAV designs of the future will exploit flapping flight in order to perform missions that require extreme agility, such as rapid flight beneath a forest canopy or within the confines of a building. Many of nature's most agile flyers generate flapping motions through resonant excitation of an aeroelastically tailored structure: muscle tissue is used to excite a vibratory mode of their flexible wing structure that creates propulsion and lift. A number of MAV concepts have been proposed that would operate in a similar fashion. This paper describes an ongoing research activity in which mechanization and control concepts with application to resonant flapping MAVs are being explored. Structural approaches, mechanical design, sensing and wingbeat control concepts inspired by hummingbirds, bats and insects are examined. Experimental results from a testbed capable of generating vibratory wingbeat patterns that approximately match those exhibited by hummingbirds in hover, cruise, and reverse flight are presented.

  16. Open abdomen in gastrointestinal surgery: Which technique is the best for temporary closure during damage control?

    Science.gov (United States)

    Ribeiro Junior, Marcelo A F; Barros, Emily Alves; de Carvalho, Sabrina Marques; Nascimento, Vinicius Pereira; Cruvinel Neto, José; Fonseca, Alexandre Zanchenko

    2016-01-01

    AIM To compare the 3 main techniques of temporary closure of the abdominal cavity, vacuum assisted closure (vacuum-assisted closure therapy - VAC), Bogota bag and Barker technique, in damage control surgery. METHODS After systematic review of the literature, 33 articles were selected to compare the efficiency of the three procedures. Criteria such as cost, infections, capacity of reconstruction of the abdominal wall, diseases associated with the technique, among others were analyzed. RESULTS The Bogota bag and Barker techniques present as advantage the availability of material and low cost, what is not observed in the VAC procedure. The VAC technique is the most efficient, not only because it reduces the tension on the boarders of the lesion, but also removes stagnant fluids and debris and acts at cellular level increasing cell proliferation and division. Bogota bag presents the higher rates of skin laceration and evisceration, greater need for a stent for draining fluids and wash-ups, higher rates of intestinal adhesion to the abdominal wall. The Barker technique presents lack of efficiency in closing the abdominal wall and difficulty on maintaining pressure on the dressing. The VAC dressing can generate irritation and dermatitis when the drape is applied, in addition to pain, infection and bleeding, as well as toxic shock syndrome, anaerobic sepsis and thrombosis. CONCLUSION The VAC technique, showed to be superior allowing a better control of liquid on the third space, avoiding complications such as fistula with small mortality, low infection rate, and easier capability on primary closure of the abdominal cavity. PMID:27648164

  17. Exploration for the Biological Control of Flowering Rush, Butomus umbellatus

    Science.gov (United States)

    2015-06-01

    aggressive invader of freshwater systems especially in the midwestern and western states of the USA and western Canada. Since no effective control...ovipositing females had been transferred. We are currently trying different methods in order to further improve rearing success. Nevertheless we were able...ten test plant species offered, none was accepted for egg laying by female weevils, confirming the narrow host range of B. nodulosus. We will continue

  18. Impaired L1 and Executive Control after Left Basal Ganglia Damage in a Bilingual Basque-Spanish Person with Aphasia

    Science.gov (United States)

    Adrover-Roig, Daniel; Galparsoro-Izagirre, Nekane; Marcotte, Karine; Ferre, Perrine; Wilson, Maximiliano A.; Ansaldo, Ana Ines

    2011-01-01

    Bilinguals must focus their attention to control competing languages. In bilingual aphasia, damage to the fronto-subcortical loop may lead to pathological language switching and mixing and the attrition of the more automatic language (usually L1). We present the case of JZ, a bilingual Basque-Spanish 53-year-old man who, after haematoma in the…

  19. The role and control of sludge age in biological nutrient removal activated sludge systems.

    Science.gov (United States)

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  20. New experimental approaches to the biology of flight control systems.

    Science.gov (United States)

    Taylor, Graham K; Bacic, Marko; Bomphrey, Richard J; Carruthers, Anna C; Gillies, James; Walker, Simon M; Thomas, Adrian L R

    2008-01-01

    Here we consider how new experimental approaches in biomechanics can be used to attain a systems-level understanding of the dynamics of animal flight control. Our aim in this paper is not to provide detailed results and analysis, but rather to tackle several conceptual and methodological issues that have stood in the way of experimentalists in achieving this goal, and to offer tools for overcoming these. We begin by discussing the interplay between analytical and empirical methods, emphasizing that the structure of the models we use to analyse flight control dictates the empirical measurements we must make in order to parameterize them. We then provide a conceptual overview of tethered-flight paradigms, comparing classical ;open-loop' and ;closed-loop' setups, and describe a flight simulator that we have recently developed for making flight dynamics measurements on tethered insects. Next, we provide a conceptual overview of free-flight paradigms, focusing on the need to use system identification techniques in order to analyse the data they provide, and describe two new techniques that we have developed for making flight dynamics measurements on freely flying birds. First, we describe a technique for obtaining inertial measurements of the orientation, angular velocity and acceleration of a steppe eagle Aquila nipalensis in wide-ranging free flight, together with synchronized measurements of wing and tail kinematics using onboard instrumentation and video cameras. Second, we describe a photogrammetric method to measure the 3D wing kinematics of the eagle during take-off and landing. In each case, we provide demonstration data to illustrate the kinds of information available from each method. We conclude by discussing the prospects for systems-level analyses of flight control using these techniques and others like them.

  1. Great tits (Parus major) foraging for caterpillars contribute to biological control in apple orchards

    NARCIS (Netherlands)

    Mols, Christine Michaela Maria

    2003-01-01

    Most orchards in the Netherlands are run under a regime of integrated pest management (IPM) and only few are Organically Farmed (OF) orchards. Control measures both in Organic as in IPM orchards are only taken if numbers of harmful insects exceed thresholds of economic damage and thus the objective

  2. Laboratory Study on Biological Control of Ticks (Acari: Ixodidae) by Entomopathogenic Indigenous Fungi (Beauveria bassiana)

    OpenAIRE

    M Abdigoudarzi; Esmaeilnia, K; Shariat, N

    2009-01-01

    Background: Chemical control method using different acaricides as spray, dipping solution or pour-on is routinely used for controlling ticks. Biological control agents are favorable due to their safety for animals and environment. Entomopathogenic fungi such as Beauveria bassiana are well known for controlling ticks. In this study, two Iranian indigenous strains of B. bassiana (B. bassiana 5197 and B. bassiana Evin) were selected and grown on specific me­dia. The pathogenic effects of the...

  3. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France

    Science.gov (United States)

    Malausa, Thibaut; Delaunay, Mathilde; Fleisch, Alexandre; Groussier-Bout, Géraldine; Warot, Sylvie; Crochard, Didier; Guerrieri, Emilio; Delvare, Gérard; Pellizzari, Giuseppina; Kaydan, M. Bora; Al-Khateeb, Nadia; Germain, Jean-François; Brancaccio, Lisa; Le Goff, Isabelle; Bessac, Melissa; Ris, Nicolas; Kreiter, Philippe

    2016-01-01

    Pseudococcus comstocki (Hemiptera: Pseudococcidae) is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus) were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae) and Acerophagus malinus (Hymenoptera: Encyrtidae). The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids. PMID:27362639

  4. Investigating Biological Control Agents for Controlling Invasive Populations of the Mealybug Pseudococcus comstocki in France.

    Directory of Open Access Journals (Sweden)

    Thibaut Malausa

    Full Text Available Pseudococcus comstocki (Hemiptera: Pseudococcidae is a mealybug species native to Eastern Asia and present as an invasive pest in northern Italy and southern France since the start of the century. It infests apple and pear trees, grapevines and some ornamental trees. Biocontrol programmes against this pest proved successful in central Asia and North America in the second half of the 20th century. In this study, we investigated possible biocontrol agents against P. comstocki, with the aim of developing a biocontrol programme in France. We carried out systematic DNA-barcoding at each step in the search for a specialist parasitoid. First we characterised the French target populations of P. comstocki. We then identified the parasitoids attacking P. comstocki in France. Finally, we searched for foreign mealybug populations identified a priori as P. comstocki and surveyed their hymenopteran parasitoids. Three mealybug species (P. comstocki, P. viburni and P. cryptus were identified during the survey, together with at least 16 different parasitoid taxa. We selected candidate biological control agent populations for use against P. comstocki in France, from the species Allotropa burrelli (Hymenoptera: Platygastridae and Acerophagus malinus (Hymenoptera: Encyrtidae. The coupling of molecular and morphological characterisation for both pests and natural enemies facilitated the programme development and the rejection of unsuitable or generalist parasitoids.

  5. Advocating "spine damage control" as a safe and effective treatment modality for unstable thoracolumbar fractures in polytrauma patients: a hypothesis

    Directory of Open Access Journals (Sweden)

    Beauchamp Kathryn M

    2009-05-01

    Full Text Available Abstract Background The "ideal" timing and modality of fracture fixation for unstable thoracolumbar spine fractures in multiply injured patients remains controversial. The concept of "damage control orthopedics" (DCO, which has evolved globally in the past decade, provides a safe guidance for temporary external fixation of long bone or pelvic fractures in multisystem trauma. In contrast, "damage control" concepts for unstable spine injuries have not been widely implemented, and the scarce literature in the field remains largely anecdotal. The current practice standards are reflected by two distinct positions, either (1 immediate "early total care" or (2 delayed spine fixation after recovery from associated injuries. Both concepts have inherent risks which may contribute to adverse outcome. Presentation of hypothesis We hypothesize that the concept of "spine damage control" – consisting of immediate posterior fracture reduction and instrumentation, followed by scheduled 360° completion fusion during a physiological "time-window of opportunity" – will be associated with less complications and improved outcomes of polytrauma patients with unstable thoracolumbar fractures, compared to conventional treatment strategies. Testing of hypothesis We propose a prospective multicenter trial on a large cohort of multiply injured patients with an associated unstable thoracolumbar fracture. Patients will be assigned to one of three distinct study arms: (1 Immediate definitive (anterior and/or posterior fracture fixation within 24 hours of admission; (2 Delayed definitive (anterior and/or posterior fracture fixation at > 3 days after admission; (3 "Spine damage control" procedure by posterior reduction and instrumentation within 24 hours of admission, followed by anterior 360° completion fusion at > 3 days after admission, if indicated. The primary and secondary endpoints include length of ventilator-free days, length of ICU and hospital stay, mortality

  6. Agricultural biological reference materials for analytical quality control

    Energy Technology Data Exchange (ETDEWEB)

    Ihnat, M.

    1986-01-01

    Cooperative work is under way at Agriculture Canada, US Department of Agriculture, and US National Bureau of Standards in an attempt to fill some of the gaps in the world repertoire of reference materials and to provide much needed control materials for laboratories' day to day operations. This undertaking involves the preparation and characterization of a number of agricultural and food materials for data quality control for inorganic constituents. Parameters considered in the development of these materials were material selection based on importance in commerce and analysis; techniques of preparation, processing, and packaging; physical and chemical characterization; homogeneity testing and quantitation (certification). A large number of agricultural/food products have been selected to represent a wide range of not only levels of sought-for constituents (elements) but also a wide range of matrix components such as protein, carbohydrate, dietary fiber, fat, and ash. Elements whose concentrations are being certified cover some two dozen major, minor, and trace elements of nutritional, toxicological, and environmental significance.

  7. Identification of Bacillus strains for biological control of catfish pathogens.

    Science.gov (United States)

    Ran, Chao; Carrias, Abel; Williams, Malachi A; Capps, Nancy; Dan, Bui C T; Newton, Joseph C; Kloepper, Joseph W; Ooi, Ei L; Browdy, Craig L; Terhune, Jeffery S; Liles, Mark R

    2012-01-01

    Bacillus strains isolated from soil or channel catfish intestine were screened for their antagonism against Edwardsiella ictaluri and Aeromonas hydrophila, the causative agents of enteric septicemia of catfish (ESC) and motile aeromonad septicaemia (MAS), respectively. Twenty one strains were selected and their antagonistic activity against other aquatic pathogens was also tested. Each of the top 21 strains expressed antagonistic activity against multiple aquatic bacterial pathogens including Edwardsiella tarda, Streptococcus iniae, Yersinia ruckeri, Flavobacterium columnare, and/or the oomycete Saprolegnia ferax. Survival of the 21 Bacillus strains in the intestine of catfish was determined as Bacillus CFU/g of intestinal tissue of catfish after feeding Bacillus spore-supplemented feed for seven days followed by normal feed for three days. Five Bacillus strains that showed good antimicrobial activity and intestinal survival were incorporated into feed in spore form at a dose of 8×10(7) CFU/g and fed to channel catfish for 14 days before they were challenged by E. ictaluri in replicate. Two Bacillus subtilis strains conferred significant benefit in reducing catfish mortality (Pbiological control in vivo was also investigated in terms of whether the strains contain plasmids or express resistance to clinically important antibiotics. The Bacillus strains identified from this study have good potential to mediate disease control as probiotic feed additives for catfish aquaculture.

  8. Structural biology of disease-associated repetitive DNA sequences and protein-DNA complexes involved in DNA damage and repair

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, G.; Santhana Mariappan, S.V.; Chen, X.; Catasti, P.; Silks, L.A. III; Moyzis, R.K.; Bradbury, E.M.; Garcia, A.E.

    1997-07-01

    This project is aimed at formulating the sequence-structure-function correlations of various microsatellites in the human (and other eukaryotic) genomes. Here the authors have been able to develop and apply structure biology tools to understand the following: the molecular mechanism of length polymorphism microsatellites; the molecular mechanism by which the microsatellites in the noncoding regions alter the regulation of the associated gene; and finally, the molecular mechanism by which the expansion of these microsatellites impairs gene expression and causes the disease. Their multidisciplinary structural biology approach is quantitative and can be applied to all coding and noncoding DNA sequences associated with any gene. Both NIH and DOE are interested in developing quantitative tools for understanding the function of various human genes for prevention against diseases caused by genetic and environmental effects.

  9. Predator interference effects on biological control: The "paradox" of the generalist predator revisited

    Science.gov (United States)

    Parshad, Rana D.; Bhowmick, Suman; Quansah, Emmanuel; Basheer, Aladeen; Upadhyay, Ranjit Kumar

    2016-10-01

    An interesting conundrum in biological control questions the efficiency of generalist predators as biological control agents. Theory suggests, generalist predators are poor agents for biological control, primarily due to mutual interference. However field evidence shows they are actually quite effective in regulating pest densities. In this work we provide a plausible answer to this paradox. We analyze a three species model, where a generalist top predator is introduced into an ecosystem as a biological control, to check the population of a middle predator, that in turn is depredating on a prey species. We show that the inclusion of predator interference alone, can cause the solution of the top predator equation to blow-up in finite time, while there is global existence in the no interference case. This result shows that interference could actually cause a population explosion of the top predator, enabling it to control the target species, thus corroborating recent field evidence. Our results might also partially explain the population explosion of certain species, introduced originally for biological control purposes, such as the cane toad (Bufo marinus) in Australia, which now functions as a generalist top predator. We also show both Turing instability and spatio-temporal chaos in the model. Lastly we investigate time delay effects.

  10. Biological control mechanisms of D-pinitol against powdery mildew in cucumber

    OpenAIRE

    Chen, J; Fernandez, Diana; Wang, D. D.; Chen, Y. J.; Dai, G. H.

    2014-01-01

    D-pinitol is an effective agent for controlling powdery mildew (Podosphaera xanthii) in cucumber. In this study, we determined the mechanisms of D-pinitol in controlling powdery mildew in cucumber plants. We compared P. xanthii development on cucumber leaf surface treated with D-pinitol or water (2 mg ml(-1)) at different time points after inoculation. The germinating conidia, hyphae, and conidiophores of the pathogen were severely damaged by D-pinitol at any time of application tested. The h...

  11. Biologically inspired control of humanoid robot arms robust and adaptive approaches

    CERN Document Server

    Spiers, Adam; Herrmann, Guido

    2016-01-01

    This book investigates a biologically inspired method of robot arm control, developed with the objective of synthesising human-like motion dynamically, using nonlinear, robust and adaptive control techniques in practical robot systems. The control method caters to a rising interest in humanoid robots and the need for appropriate control schemes to match these systems. Unlike the classic kinematic schemes used in industrial manipulators, the dynamic approaches proposed here promote human-like motion with better exploitation of the robot’s physical structure. This also benefits human-robot interaction. The control schemes proposed in this book are inspired by a wealth of human-motion literature that indicates the drivers of motion to be dynamic, model-based and optimal. Such considerations lend themselves nicely to achievement via nonlinear control techniques without the necessity for extensive and complex biological models. The operational-space method of robot control forms the basis of many of the techniqu...

  12. Control biológico del entrenamiento de resistencia. Biological control of endurance training.

    Directory of Open Access Journals (Sweden)

    González Gross, Marcela

    2006-01-01

    Full Text Available ResumenLa alta exigencia en los deportistas de elite hace cada vez más necesario controlar el proceso de adaptación al entrenamiento. El objetivo de esta revisión es analizar la información biológica de un análisis de sangre, al objeto de obtener información de la carga de entrenamiento en atletas de resistencia. La mayor parte de los parámetros sanguíneos han sido empleados, más que para determinar el proceso del entrenamiento, precisamente, para lo opuesto: el sobreentrenamiento. La concentración en plasma de sustratos metabólicos (glucosa y ácidos grasos no son parámetros que pueda utilizarse para controlar el entrenamiento, debido a las bajas especificidad y sensibilidad. No obstante, la concentración de determinados enzimas que intervienen en la utilización de los sustratos puede ser importante. Valores de creatín kinasa superiores a 200 U/l en una persona sana sugiere claramente que la carga de entrenamiento total de una determinada sesión ha sido elevada. La concentración en plasma de algún producto de degradación del catabolismo también puede señalar la adaptación del organismo al entrenamiento. La concentración de ácido láctico en plasma es la herramienta más común en la valoración de la carga de entrenamiento. La concentración de urea es un buen marcador biológico de la carga de entrenamiento. Valores superiores a 8 mmol/l en varones y de 6,5 mmol/l en mujeres, indican que el entrenamiento ha sido muy intenso. La determinación de otros productos (amonio o sustratos (glutamina se han utilizado para detectar el sobreentrenamiento.AbstractThe high exigency in the elite sportsmen does more necessary to control the process of training adaptation. The purpose of this review is to analyze the biological information of a blood analysis to obtain data of load training in endurance athletes. Most blood parameters has been used to evaluate the overtraining state instead of determining the training process. The

  13. Compatible biological and chemical control systems for Rhizoctonia solani in potato

    NARCIS (Netherlands)

    Boogert, van den P.H.J.F.; Luttikholt, A.J.G.

    2004-01-01

    A series of chemical and biological control agents were tested for compatibility with the Rhizoctonia-specific biocontrol fungus Verticillium biguttatum aimed at designing novel control strategies for black scurf (Rhizoctonia solani) and other tuber diseases in potato. The efficacy of chemicals, alo

  14. Candidate predators for biological control of the poultry red mite Dermanyssus gallinae

    NARCIS (Netherlands)

    Lesna, Izabela; Wolfs, Peter; Faraji, Farid; Roy, Lise; Komdeur, Jan; Sabelis, Maurice W.

    2009-01-01

    The poultry red mite, Dermanyssus gallinae, is currently a significant pest in the poultry industry in Europe. Biological control by the introduction of predatory mites is one of the various options for controlling poultry red mites. Here, we present the first results of an attempt to identify poten

  15. Application of damage control orthopedics in 41 patients with severe multiple injuries

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; GAO Jing-mou; HU Ping; LI Chang-hua; ZHAO San-hong; LIN Xi

    2008-01-01

    Objective: To probe the feasibility and efficacy of damage control orthopedics (DCO) in treating severe multiple injuries. Methods: A retrospective analysis was made on the clinical data of 41 patients (31 males and 10 females, aged 18-71 years, mean: 36.4) with multiple injuries admitted to our department and treated by DCO from January 1995 to December 2005. Results: As a first-stage therapy, devascularization of internal iliac arteries was performed in 29 patients with pelvic fractures combined with massive bleeding, including ligation of bilateral internal iliac arteries in 21 patients and embolization of bilateral internal iliac arteries in 8. And early external fixation of pelvis was performed in 10 patients. Ten patients with severe multiple injuries combined with femoral fractures were managed with primary debridement and temporal external fixation and 2 patients with spinal fractures combined with spinal cord compression received simple laminectomy. Thirty-one patients received definite internal fixation after resuscitation in intensive care unit. The overall mortality rate was 12.1% (5/41) with an average injury severity score of 41.4. The main causes of death were hemorrhagic shock and associated injuries. Complications occurred in 7 patients including acute respiratory distress syndrome in 3 cases, thrombosis of right common iliac artery in 1, subphernic abscess in 2 and infection of deep wound in lower extremity in 1. After treatment, all the patients got cured. Conclusions: Prompt diagnosis and integrated treatment are keys to higher survival rate in patients with severe multiple injuries. In this condition, DCO is an effective and safe option.

  16. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  17. Zika virus: History, emergence, biology, and prospects for control.

    Science.gov (United States)

    Weaver, Scott C; Costa, Federico; Garcia-Blanco, Mariano A; Ko, Albert I; Ribeiro, Guilherme S; Saade, George; Shi, Pei-Yong; Vasilakis, Nikos

    2016-06-01

    Zika virus (ZIKV), a previously obscure flavivirus closely related to dengue, West Nile, Japanese encephalitis and yellow fever viruses, has emerged explosively since 2007 to cause a series of epidemics in Micronesia, the South Pacific, and most recently the Americas. After its putative evolution in sub-Saharan Africa, ZIKV spread in the distant past to Asia and has probably emerged on multiple occasions into urban transmission cycles involving Aedes (Stegomyia) spp. mosquitoes and human amplification hosts, accompanied by a relatively mild dengue-like illness. The unprecedented numbers of people infected during recent outbreaks in the South Pacific and the Americas may have resulted in enough ZIKV infections to notice relatively rare congenital microcephaly and Guillain-Barré syndromes. Another hypothesis is that phenotypic changes in Asian lineage ZIKV strains led to these disease outcomes. Here, we review potential strategies to control the ongoing outbreak through vector-centric approaches as well as the prospects for the development of vaccines and therapeutics.

  18. Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia

    OpenAIRE

    Kenneth A. McColl; Sunarto, Agus; Holmes, Edward C.

    2016-01-01

    Biological invasions are a major threat to global biodiversity. Australia has experienced many invasive species, with the common carp (Cyprinus carpio L.) a prominent example. Cyprinid herpesvirus 3 (CyHV-3) has been proposed as a biological control (biocontrol) agent for invasive carp in Australia. Safety and efficacy are critical factors in assessing the suitability of biocontrol agents, and extensive host-specificity testing suggests that CyHV-3 is safe. Efficacy depends on the relationshi...

  19. Natural biological control of pest mites in Brazilian sun coffee agroecosystems.

    Science.gov (United States)

    Teodoro, Adenir V; Sarmento, Renato A; Rêgo, Adriano S; da Graça S Maciel, Anilde

    2010-06-01

    Coffee is one of the leading commodities in tropical America. Although plantations are usually established under a canopy of trees in most producing countries in the region, Brazilian coffee is mostly produced under full sun conditions. Such simple, single-crop agroecosystems with intensive agrochemical inputs often suffer with pests like mites. Predatory mites of the family Phytoseiidae are the main natural enemies associated with pest mites in the field. However, these beneficial arthropods struggle to survive in intensive agroecosystems such as coffee monocultures due to unfavorable microclimatic conditions, widespread pesticide use, and lack of alternative food (pollen, nectar). Conservation biological control uses a range of management strategies to sustain and enhance populations of indigenous natural enemies such as predatory mites. We discuss here conservation biological control as a strategy to improve biological control of pest mites by native predatory mites in Brazilian coffee monocultures as well as some related patents.

  20. Global stability and optimisation of a general impulsive biological control model

    CERN Document Server

    Mailleret, Ludovic

    2008-01-01

    An impulsive model of augmentative biological control consisting of a general continuous predator-prey model in ordinary differential equations augmented by a discrete part describing periodic introductions of predators is considered. It is shown that there exists an invariant periodic solution that corresponds to prey eradication and a condition ensuring its global asymptotic stability is given. An optimisation problem related to the preemptive use of augmentative biological control is then considered. It is assumed that the per time unit budget of biological control (i.e. the number of predators to be released) is fixed and the best deployment of this budget is sought after in terms of release frequency. The cost function to be minimised is the time taken to reduce an unforeseen prey (pest) invasion under some harmless level. The analysis shows that the optimisation problem admits a countable infinite number of solutions. An argumentation considering the required robustness of the optimisation result is the...

  1. Low doses of ionizing radiation to mammalian cells may rather control than cause DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Feinendegen, L.E. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.; Bond, V.P. [Washington State Univ., Richland, WA (United States); Sondhaus, C.A. [Univ. of Arizona, Tucson, AZ (United States). Dept. of Radiology and Radiation Control Office; Altman, K.I. [Univ. of Rochester Medical Center, NY (United States). Dept. of Biochemistry and Biophysics

    1998-12-31

    This report examines the origin of tissue effects that may follow from different cellular responses to low-dose irradiation, using published data. Two principal categories of cellular responses are considered. One response category relates to the probability of radiation-induced DNA damage. The other category consists of low-dose induced metabolic changes that induce mechanisms of DNA damage mitigation, which do not operate at high levels of exposure. Modeled in this way, tissue is treated as a complex adaptive system. The interaction of the various cellular responses results in a net tissue dose-effect relation that is likely to deviate from linearity in the low-dose region. This suggests that the LNT hypothesis should be reexamined. This paper aims at demonstrating tissue effects as an expression of cellular responses, both damaging and defensive, in relation to the energy deposited in cell mass, by use of microdosimetric concepts.

  2. DNA-damage response control of E2F7 and E2F8

    OpenAIRE

    Panagiotis Zalmas, L.; Zhao, Xiujie; Graham, Anne L; FISHER Rebecca; Reilly, Carmel; Coutts, Amanda S; La Thangue, Nicholas B

    2008-01-01

    Here, we report that the two recently identified E2F subunits, E2F7 and E2F8, are induced in cells treated with DNA-damaging agents where they have an important role in dictating the outcome of the DNA-damage response. The DNA-damage-dependent induction coincides with the binding of E2F7 and E2F8 to the promoters of certain E2F-responsive genes, most notably that of the E2F1 gene, in which E2F7 and E2F8 coexist in a DNA-binding complex. As a consequence, E2F7 and E2F8 repress E2F target genes...

  3. The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage

    Science.gov (United States)

    Varanita, Tatiana; Soriano, Maria Eugenia; Romanello, Vanina; Zaglia, Tania; Quintana-Cabrera, Rubén; Semenzato, Martina; Menabò, Roberta; Costa, Veronica; Civiletto, Gabriele; Pesce, Paola; Viscomi, Carlo; Zeviani, Massimo; Di Lisa, Fabio; Mongillo, Marco; Sandri, Marco; Scorrano, Luca

    2015-01-01

    Summary Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo. PMID:26039448

  4. Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection.

    Science.gov (United States)

    Süss, Jacqueline; Volz, Sabrina; Obst, Ursula; Schwartz, Thomas

    2009-08-01

    As nucleic acids are major targets in bacteria during standardised UV disinfection (254 nm), inactivation rates also depend on bacterial DNA repair. Due to UV-related DNA modifications, PCR-based approaches allow for a direct detection of DNA damage and repair during UV disinfection. By applying different primer sets, the correlation between amplicon length and PCR amplification became obvious. The longer the targeted DNA fragment was, the more UV-induced DNA lesions inhibited the PCR. Regeneration of Pseudomonas aeruginosa, Enterococcus faecium, and complex wastewater communities was recorded over a time period of 66 h. While phases of intensive repair and proliferation were found for P. aeruginosa, no DNA repair was detected by qPCR in E. faecium. Cultivation experiments verified these results. Despite high UV mediated inactivation rates original wastewater bacteria seem to express an enhanced robustness against irradiation. Regeneration of dominant and proliferation of low-abundant, probably UV-resistant species contributed to a strong post-irradiation recovery accompanied by a selection for beta-Proteobacteria.

  5. 电磁辐射对生物体损伤的研究进展*%Progress about biological damage effect of electromagnetic radiation

    Institute of Scientific and Technical Information of China (English)

    祝青鸾; 李俊堂; 高春芳

    2015-01-01

    电磁波目前广泛应用于无线通信、军事、医疗等领域,与此同时,电磁辐射的生物效应和对健康的影响也愈来愈受人们的重视。电磁辐射可引起机体多系统、多脏器的损伤,本文就电磁辐射的损伤机制及其对大脑、心脏、眼睛和血液等重要器官系统影响的研究进展作一综述。%The electromagnetic wave has been currently widely used in wireless communication, military, medicine, etc. The biological effects on human health have been arousing great concerns of people. Electromagnetic radiation can cause multi -system and multi -organ damage. In this paper , the damaged mechanism of electromagnetic radiation and its related effects on some important organs or systems such as brain , heart, blood and eyes were reviewed.

  6. A Case of Traumatic Pancreaticoduodenal Injury: A Simple and an Organ-Preserving Approach as Damage Control Surgery

    Directory of Open Access Journals (Sweden)

    Sae Byeol Choi

    2012-01-01

    Full Text Available Context Traumatic pancreaticoduodenal injury still remains challenging with high morbidity and mortality. Optimal management by performing simple and fast damage control surgery ensures better outcomes. Case report A 36-year-old man was admitted with a combined pancreaticoduodenal injury after being assaulted. More than 80% of duodenal circumference (first portion was disrupted and the neck of the pancreas was transected. Primary repair of the duodenum and pancreaticogastrostomy were performed. The stump of the proximal pancreatic duct was also sutured. The patient developed an intra-abdominal abscess with pancreatic fistula that eventually recovered by conservative treatment. Conclusion Pancreaticogastrostomy can be a treatment option for pancreatic transection. Rapid and simple damage control surgery with functional preservation of the organ will be beneficial for trauma patients.

  7. Biological control of invasive plant species: a reassessment for the Anthropocene.

    Science.gov (United States)

    Seastedt, Timothy R

    2015-01-01

    The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources.

  8. The NBS1-Treacle complex controls ribosomal RNA transcription in response to DNA damage

    DEFF Research Database (Denmark)

    Larsen, Dorthe H; Hari, Flurina; Clapperton, Julie A;

    2014-01-01

    recruitment of the Nijmegen breakage syndrome protein 1 (NBS1), a central regulator of DNA damage responses, into the nucleoli. We further identify TCOF1 (also known as Treacle), a nucleolar factor implicated in ribosome biogenesis and mutated in Treacher Collins syndrome, as an interaction partner of NBS1...

  9. Interface Control Document for the EMPACT Module that Estimates Electric Power Transmission System Response to EMP-Caused Damage

    Energy Technology Data Exchange (ETDEWEB)

    Werley, Kenneth Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mccown, Andrew William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)ory

    2016-06-26

    The EPREP code is designed to evaluate the effects of an Electro-Magnetic Pulse (EMP) on the electric power transmission system. The EPREP code embodies an umbrella framework that allows a user to set up analysis conditions and to examine analysis results. The code links to three major physics/engineering modules. The first module describes the EM wave in space and time. The second module evaluates the damage caused by the wave on specific electric power (EP) transmission system components. The third module evaluates the consequence of the damaged network on its (reduced) ability to provide electric power to meet demand. This third module is the focus of the present paper. The EMPACT code serves as the third module. The EMPACT name denotes EMP effects on Alternating Current Transmission systems. The EMPACT algorithms compute electric power transmission network flow solutions under severely damaged network conditions. Initial solutions are often characterized by unacceptible network conditions including line overloads and bad voltages. The EMPACT code contains algorithms to adjust optimally network parameters to eliminate network problems while minimizing outages. System adjustments include automatically adjusting control equipment (generator V control, variable transformers, and variable shunts), as well as non-automatic control of generator power settings and minimal load shedding. The goal is to evaluate the minimal loss of customer load under equilibrium (steady-state) conditions during peak demand.

  10. The inception and evolution of a unique masters program in cancer biology, prevention and control.

    Science.gov (United States)

    Cousin, Carolyn; Blancato, Jan

    2010-09-01

    The University of the District of Columbia (UDC) and the Lombardi Comprehensive Cancer Center (LCCC), Georgetown University Medical Center established a Masters Degree Program in Cancer Biology, Prevention and Control at UDC that is jointly administered and taught by UDC and LCCC faculty. The goal of the Masters Degree Program is to educate students as master-level cancer professionals capable of conducting research and service in cancer biology, prevention, and control or to further advance the education of students to pursue doctoral studies. The Program's unique nature is reflected in its philosophy "the best cancer prevention and control researchers are those with a sound understanding of cancer biology". This program is a full-time, 2-year, 36-credit degree in which students take half of their coursework at UDC and half of their coursework at LCCC. During the second year, students are required to conduct research either at LCCC or UDC. Unlike most cancer biology programs, this unique Program emphasizes both cancer biology and cancer outreach training.

  11. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    Science.gov (United States)

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework.

  12. Comparative study of abdominal cavity temporary closure techniques for damage control.

    Science.gov (United States)

    Ribeiro, Marcelo A F; Barros, Emily Alves; Carvalho, Sabrina Marques DE; Nascimento, Vinicius Pereira; Cruvinel, José; Fonseca, Alexandre Zanchenko

    2016-01-01

    The damage control surgery, with emphasis on laparostomy, usually results in shrinkage of the aponeurosis and loss of the ability to close the abdominal wall, leading to the formation of ventral incisional hernias. Currently, various techniques offer greater chances of closing the abdominal cavity with less tension. Thus, this study aims to evaluate three temporary closure techniques of the abdominal cavity: the Vacuum-Assisted Closure Therapy - VAC, the Bogotá Bag and the Vacuum-pack. We conducted a systematic review of the literature, selecting 28 articles published in the last 20 years. The techniques of the bag Bogotá and Vacuum-pack had the advantage of easy access to the material in most centers and low cost, contrary to VAC, which, besides presenting high cost, is not available in most hospitals. On the other hand, the VAC technique was more effective in reducing stress at the edges of lesions, removing stagnant fluids and waste, in addition to acting at the cellular level by increasing proliferation and cell division rates, and showed the highest rates of primary closure of the abdominal cavity. RESUMO A cirurgia de controle de danos, com ênfase em peritoneostomia, geralmente resulta em retração da aponeurose e perda da capacidade de fechar a parede abdominal, levando à formação de hérnias ventrais incisionais. Atualmente, várias técnicas oferecem maiores chances de fechamento da cavidade abdominal, com menor tensão. Deste modo, este estudo tem por objetivo avaliar três técnicas de fechamento temporário da cavidade abdominal: fechamento a vácuo (Vacuum-Assisted Closure Therapy - VAC), Bolsa de Bogotá e Vacuum-pack. Realizou-se uma revisão sistemática da literatura com seleção de 28 artigos publicados nos últimos 20 anos. As técnicas de Bolsa de Bogotá e Vacuum-pack tiveram como vantagem o acesso fácil ao material, na maioria dos centros, e baixo custo, ao contrário do que se observa na terapia a vácuo, VAC, que além de apresentar

  13. Tissue Damage Markers after a Spinal Manipulation in Healthy Subjects: A Preliminary Report of a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    A. Achalandabaso

    2014-01-01

    Full Text Available Spinal manipulation (SM is a manual therapy technique frequently applied to treat musculoskeletal disorders because of its analgesic effects. It is defined by a manual procedure involving a directed impulse to move a joint past its physiologic range of movement (ROM. In this sense, to exceed the physiologic ROM of a joint could trigger tissue damage, which might represent an adverse effect associated with spinal manipulation. The present work tries to explore the presence of tissue damage associated with SM through the damage markers analysis. Thirty healthy subjects recruited at the University of Jaén were submitted to a placebo SM (control group; n=10, a single lower cervical manipulation (cervical group; n=10, and a thoracic manipulation (n=10. Before the intervention, blood samples were extracted and centrifuged to obtain plasma and serum. The procedure was repeated right after the intervention and two hours after the intervention. Tissue damage markers creatine phosphokinase (CPK, lactate dehydrogenase (LDH, C-reactive protein (CRP, troponin-I, myoglobin, neuron-specific enolase (NSE, and aldolase were determined in samples. Statistical analysis was performed through a 3×3 mixed-model ANOVA. Neither cervical manipulation nor thoracic manipulation did produce significant changes in the CPK, LDH, CRP, troponin-I, myoglobin, NSE, or aldolase blood levels. Our data suggest that the mechanical strain produced by SM seems to be innocuous to the joints and surrounding tissues in healthy subjects.

  14. Enhancement of biological control agents for use against forest insect pests and diseases through biotechnology

    Science.gov (United States)

    Slavicek, James M.

    1991-01-01

    Research and development efforts in our research group are focused on the generation of more efficacious biological control agents through the techniques of biotechnology for use against forest insect pests and diseases. Effective biological controls for the gypsy moth and for tree fungal wilt pathogens are under development. The successful use of Gypchek, a formulation of the Lymantria dispar nuclear polyhedrosis virus (LdNPV), in gypsy moth control programs has generated considerable interest in that agent. As a consequence of its specificity, LdPNV has negligible adverse ecological impacts compared to most gypsy moth control agents. However, LdNPV is not competitive with other control agents in terms of cost and efficacy. We are investigating several parameters of LdNPV replication and polyhedra production in order to enhance viral potency and efficacy thus mitigating the current disadvantages of LdNPV for gypsy moth control, and have identified LdNPV variants that will facilitate these efforts. Tree endophytic bacteria that synthesize antifungal compounds were identified and an antibiotic compound from one of these bacteria was characterized. The feasibility of developing tree endophytes as biological control agents for tree vascular fungal pathogens is being investigated.

  15. Understanding the biology and control of the poultry red mite Dermanyssus gallinae: a review.

    Science.gov (United States)

    Pritchard, James; Kuster, Tatiana; Sparagano, Olivier; Tomley, Fiona

    2015-01-01

    Dermanyssus gallinae, the poultry red mite (PRM), is a blood-feeding ectoparasite capable of causing pathology in birds, amongst other animals. It is an increasingly important pathogen in egg layers and is responsible for substantial economic losses to the poultry industry worldwide. Even though PRM poses a serious problem, very little is known about the basic biology of the mite. Here we review the current body of literature describing red mite biology and discuss how this has been, or could be, used to develop methods to control PRM infestations. We focus primarily on the PRM digestive system, salivary glands, nervous system and exoskeleton and also explore areas of PRM biology which have to date received little or no study but have the potential to offer new control targets.

  16. Protocol for a randomized controlled trial on risk adapted damage control orthopedic surgery of femur shaft fractures in multiple trauma patients

    Directory of Open Access Journals (Sweden)

    Rixen Dieter

    2009-08-01

    Full Text Available Abstract Background Fractures of the long bones and femur fractures in particular are common in multiple trauma patients, but the optimal management of femur fractures in these patients is not yet resolved. Although there is a trend towards the concept of "Damage Control Orthopedics" (DCO in the management of multiple trauma patients with long bone fractures as reflected by a significant increase in primary external fixation of femur fractures, current literature is insufficient. Thus, in the era of "evidence-based medicine", there is the need for a more specific, clarifying trial. Methods/Design The trial is designed as a randomized controlled open-label multicenter study. Multiple trauma patients with femur shaft fractures and a calculated probability of death between 20 and 60% will be randomized to either temporary fracture fixation with fixateur externe and defined secondary definitive treatment (DCO or primary reamed nailing (early total care. The primary objective is to reduce the extent of organ failure as measured by the maximum sepsis-related organ failure assessment (SOFA score. Discussion The Damage Control Study is the first to evaluate the risk adapted damage control orthopedic surgery concept of femur shaft fractures in multiple trauma patients in a randomized controlled design. The trial investigates the differences in clinical outcome of two currently accepted different ways of treating multiple trauma patients with femoral shaft fractures. This study will help to answer the question whether the "early total care" or the „damage control” concept is associated with better outcome. Trial registration Current Controlled Trials ISRCTN10321620

  17. Polynomial-Time Algorithm for Controllability Test of a Class of Boolean Biological Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2010-01-01

    Full Text Available In recent years, Boolean-network-model-based approaches to dynamical analysis of complex biological networks such as gene regulatory networks have been extensively studied. One of the fundamental problems in control theory of such networks is the problem of determining whether a given substance quantity can be arbitrarily controlled by operating the other substance quantities, which we call the controllability problem. This paper proposes a polynomial-time algorithm for solving this problem. Although the algorithm is based on a sufficient condition for controllability, it is easily computable for a wider class of large-scale biological networks compared with the existing approaches. A key to this success in our approach is to give up computing Boolean operations in a rigorous way and to exploit an adjacency matrix of a directed graph induced by a Boolean network. By applying the proposed approach to a neurotransmitter signaling pathway, it is shown that it is effective.

  18. Direct and indirect control of the initiation of meiotic recombination by DNA damage checkpoint mechanisms in budding yeast.

    Directory of Open Access Journals (Sweden)

    Bilge Argunhan

    Full Text Available Meiotic recombination plays an essential role in the proper segregation of chromosomes at meiosis I in many sexually reproducing organisms. Meiotic recombination is initiated by the scheduled formation of genome-wide DNA double-strand breaks (DSBs. The timing of DSB formation is strictly controlled because unscheduled DSB formation is detrimental to genome integrity. Here, we investigated the role of DNA damage checkpoint mechanisms in the control of meiotic DSB formation using budding yeast. By using recombination defective mutants in which meiotic DSBs are not repaired, the effect of DNA damage checkpoint mutations on DSB formation was evaluated. The Tel1 (ATM pathway mainly responds to unresected DSB ends, thus the sae2 mutant background in which DSB ends remain intact was employed. On the other hand, the Mec1 (ATR pathway is primarily used when DSB ends are resected, thus the rad51 dmc1 double mutant background was employed in which highly resected DSBs accumulate. In order to separate the effect caused by unscheduled cell cycle progression, which is often associated with DNA damage checkpoint defects, we also employed the ndt80 mutation which permanently arrests the meiotic cell cycle at prophase I. In the absence of Tel1, DSB formation was reduced in larger chromosomes (IV, VII, II and XI whereas no significant reduction was found in smaller chromosomes (III and VI. On the other hand, the absence of Rad17 (a critical component of the ATR pathway lead to an increase in DSB formation (chromosomes VII and II were tested. We propose that, within prophase I, the Tel1 pathway facilitates DSB formation, especially in bigger chromosomes, while the Mec1 pathway negatively regulates DSB formation. We also identified prophase I exit, which is under the control of the DNA damage checkpoint machinery, to be a critical event associated with down-regulating meiotic DSB formation.

  19. Biology, host specificity tests, and risk assessment of the sawfly Heteroperreyia hubrichi, a potential biological control agent of Schinus terebinthifolius in Hawaii

    Science.gov (United States)

    Abstract. Heteroperreyia hubrichi Malaise (Hymenoptera: Pergidae), a foliage feeding sawfly of Schinus terebinthifolius Raddi (Sapindales: Anacardiaceae), was studied to assess its suitability as a classical biological control agent of this invasive weed in Hawaii. Nochoice host-specificity tests we...

  20. Flower power? Potential benefits and pitfalls of using (flowering) vegetation for conservation biological control

    NARCIS (Netherlands)

    Wackers, F.L.; Rijn, van P.C.J.; Winkler, K.; Olson, D.

    2006-01-01

    Whereas nectar and pollen provision to predators and parasitoids is a main objective in pursuing agricultural biodiversity, we often know little about whether the flowering plant species involved are actually suitable as insect food sources or about their ultimate impact on biological pest control.

  1. Acquired natural enemies of the weed biological control agent Oxyops vitiosa (Coleoptera: Curculionidae)

    Science.gov (United States)

    The Australian curculionid Oxyops vitiosa Pascoe was introduced into Florida during 1997 as a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) S.T. Blake. Populations of the weevil increased rapidly and became widely distributed throughout much of the invasive tree’s adve...

  2. Diapause in Abrostola asclepiadis (Lepidoptera: Noctuidae) may make for an ineffective weed biological control agent

    Science.gov (United States)

    Pale and black swallow-wort (Vincetoxicum rossicum and V. nigrum; Apocynaceae, subfamily Asclepiadoideae) are perennial vines from Europe that are invasive in various terrestrial habitats in the northeastern USA and southeastern Canada. A classical weed biological control program has been in develop...

  3. Preliminary study on three pathogens with potential biological control in Barnyard grass (Echinochloa crus galli)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ More than 10 species of pathogenic fungi were isolated from the naturally infected leaves of barnyard grass (Echinochloa crus-galli) in paddy. After preliminary bioassaying, it was found that the Alternaria alternata (Fr.) keissler(AA), Exserohilum monoceras (EM),and "99-10" were three potential agents for biological control of barnyard grass.

  4. Erroneous host identification frustrates systematics and delays implementation of biological control

    NARCIS (Netherlands)

    Bin, F.; Roversi, P.F.; Lenteren, van J.C.

    2012-01-01

    Misidentifications of pests and their natural enemies and misinterpretations of pest-natural enemy associations have led to the failure of a number of biological control projects. In addition to misidentification, more complicated kinds of errors, such as mistakes in establishing host records of par

  5. Augmentative Biological Control Using Parasitoids for Fruit Fly Management in Brazil

    Directory of Open Access Journals (Sweden)

    Flávio R. M. Garcia

    2012-12-01

    Full Text Available The history of classical biological control of fruit flies in Brazil includes two reported attempts in the past 70 years. The first occurred in 1937 when an African species of parasitoid larvae (Tetrastichus giffardianus was introduced to control the Mediterranean fruit fly, Ceratitis capitata and other tephritids. The second occurred in September 1994 when the exotic parasitoid Diachasmimorpha longicaudata, originally from Gainesville, Florida, was introduced by a Brazilian agricultural corporation (EMBRAPA to evaluate the parasitoid’s potential for the biological control of Anastrepha spp. and Ceratitis capitata. Although there are numerous native Brazilian fruit fly parasitoids, mass rearing of these native species is difficult. Thus, D. longicaudata was chosen due to its specificity for the family Tephritidae and its ease of laboratory rearing. In this paper we review the literature on Brazilian fruit fly biological control and suggest that those tactics can be used on a large scale, together creating a biological barrier to the introduction of new fruit fly populations, reducing the source of outbreaks and the risk of species spread, while decreasing the use of insecticides on fruit destined for domestic and foreign markets.

  6. Evolutionary interactions between the invasive tallow tree and herbivores: implications for biological control

    Science.gov (United States)

    Understanding interactions between insect agents and host plants is critical for forecasting their impact before the insects are introduced, and for improving our knowledge of the mechanisms driving success or failure in biological weed control. As invasive plants may undergo rapid adaptive evolutio...

  7. Biological control of whitefly on greenhouse tomato in Colombia: Encarsia formosa or Amitus fuscipennis?

    NARCIS (Netherlands)

    Vis, de R.J.

    2001-01-01

    In Colombia, biological control of pests in greenhouse crops is only applied on a very limited scale in ornamentals and as yet non-existent in greenhouse vegetables. Greenhouse production of vegetables - mostly tomatoes- is a recent development, as a result of the high losses of field production due

  8. Augmentative Biological Control Using Parasitoids for Fruit Fly Management in Brazil.

    Science.gov (United States)

    Garcia, Flávio R M; Ricalde, Marcelo P

    2012-12-21

    The history of classical biological control of fruit flies in Brazil includes two reported attempts in the past 70 years. The first occurred in 1937 when an African species of parasitoid larvae (Tetrastichus giffardianus) was introduced to control the Mediterranean fruit fly, Ceratitis capitata and other tephritids. The second occurred in September 1994 when the exotic parasitoid Diachasmimorpha longicaudata, originally from Gainesville, Florida, was introduced by a Brazilian agricultural corporation (EMBRAPA) to evaluate the parasitoid's potential for the biological control of Anastrepha spp. and Ceratitis capitata. Although there are numerous native Brazilian fruit fly parasitoids, mass rearing of these native species is difficult. Thus, D. longicaudata was chosen due to its specificity for the family Tephritidae and its ease of laboratory rearing. In this paper we review the literature on Brazilian fruit fly biological control and suggest that those tactics can be used on a large scale, together creating a biological barrier to the introduction of new fruit fly populations, reducing the source of outbreaks and the risk of species spread, while decreasing the use of insecticides on fruit destined for domestic and foreign markets.

  9. Agronomic aspects of strip intercropping lettuce with alyssum for biological control of aphids

    Science.gov (United States)

    Organic growers in California typically devote 5 to 10% of the area in lettuce (Lactuca sativa L.) fields to insectary strips of alyssum (Lobularia maritime (L.) Desv.) to attract syrphid flies (Syrphidae) whose larvae provide biological control of aphids. A 2-year study with organic romaine lettuc...

  10. Grape Berry Colonization and Biological Control of Botrytis cinerea by Indigenous Vineyard Yeasts

    Science.gov (United States)

    Botrytis bunch rot, caused by Botrytis cinerea, is the most important disease of grape berries, especially during transportation and storage. Biological control is a potential means of postharvest management of Botrytis bunch rot. The study was aimed at testing the hypothesis that antagonistic yeast...

  11. Status of biological control projects on terrestrial invasive alien weeds in California

    Science.gov (United States)

    In cooperation with foreign scientists, we are currently developing new classical biological control agents for five species of invasive alien terrestrial weeds. Cape-Ivy. A gall-forming fly, Parafreutreta regalis, and a stem-boring moth, Digitivalva delaireae, have been favorably reviewed by TAG...

  12. Evaluation of Puccinia carduorum for biological control of Carduus pycnocephalus in Tunisia

    Science.gov (United States)

    The rust fungus Puccinia carduorum is a candidate for biological control of Carduus pycnocephalus in the USA. In Tunisia, rusted C. pycnocephalus has been found in many fields during surveys conducted in the north of the country. The pathogenicity of Puccinia carduorum was evaluated under greenhou...

  13. Biological Control of Olive Fruit Fly in California with a Parasitoid Imported from Guatemala

    Science.gov (United States)

    The parasitoid, Psyttalia cf. concolor (Szépligeti), was imported into California from the USDA-APHIS-PPQ, Moscamed, San Miguel Petapa, Guatemala for biological control of olive fruit fly, Bactrocera oleae (Gmelin), in olives, Olea europaea L. The parasitoid did not develop in the seedhead fly, Cha...

  14. Ex-ante analysis of economic returns from biological control of coconut mite in Tanzania

    NARCIS (Netherlands)

    Oleke, J.M.; Manyong, V.; Mignouna, D.; Isinika, A.; Mutabazi, K.; Hanna, R.; Sabelis, M.

    2013-01-01

    The coconut mite, Aceria guerreronis Keifer, has been identified as one of the pests that pose a threat to the coconut industry in Benin. The study presents the simulation results of the economic benefits of the biological control of coconut mites in Benin using a standard economic surplus model. In

  15. Evaluation of Amitus fuscipennis as biological control agent of Trialeurodes vaporariorum on bean in Colombia

    NARCIS (Netherlands)

    Manzano Martinez, M.R.

    2000-01-01

    The research described in this thesis concerns the study of a natural enemy of whiteflies, Amitus fuscipennis MacGown & Nebeker under Colombian field and laboratory conditions. The general aim of the project was to study whether biological control of Trialeurodes vaporariorum (Westwood) with A. fusc

  16. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Biological control of pests and insects. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliography contains citations concerning the use of biological agents to control insects and pests. Radiation, genetic breeding, bacteria, fungi, viruses, and pheromones are discussed as alternatives to pesticidal management. Methods for monitoring the effectiveness and environmental impact of these agents are reviewed. Population control of fruit flies, spruce sawflies, flies, mosquitoes, cockroaches, gypsy moths, and other agriculturally-important insects is also discussed. (Contains a minimum of 190 citations and includes a subject term index and title list.)

  18. Integrated Pest Management of Aphis spiraecola (Hemiptera: Aphididae) in clementines: enhancing its biological control

    OpenAIRE

    GOMEZ MARCO, FRANCESC

    2016-01-01

    [EN] Aphis spiraecola Patch. (Hemiptera: Aphididae) is a key pest of clementines. Biological control of A. spiraecola is still poorly known and efforts were based on the use and conservation of parasitoids but it did not success. With all this said, the aims of this thesis were: i) to disentangle the reasons behind the low parasitism of A. spiraecola; ii) to determine when and how predators can control A. spiraecola populations; and, finally, iii) to evaluate whether a ground cover of Poaceae...

  19. Do biological-based strategies hold promise to biofouling control in MBRs?

    KAUST Repository

    Malaeb, Lilian

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  20. Do biological-based strategies hold promise to biofouling control in MBRs?

    Science.gov (United States)

    Malaeb, Lilian; Le-Clech, Pierre; Vrouwenvelder, Johannes S; Ayoub, George M; Saikaly, Pascal E

    2013-10-01

    Biofouling in membrane bioreactors (MBRs) remains a primary challenge for their wider application, despite the growing acceptance of MBRs worldwide. Research studies on membrane fouling are extensive in the literature, with more than 200 publications on MBR fouling in the last 3 years; yet, improvements in practice on biofouling control and management have been remarkably slow. Commonly applied cleaning methods are only partially effective and membrane replacement often becomes frequent. The reason for the slow advancement in successful control of biofouling is largely attributed to the complex interactions of involved biological compounds and the lack of representative-for-practice experimental approaches to evaluate potential effective control strategies. Biofouling is driven by microorganisms and their associated extra-cellular polymeric substances (EPS) and microbial products. Microorganisms and their products convene together to form matrices that are commonly treated as a black box in conventional control approaches. Biological-based antifouling strategies seem to be a promising constituent of an effective integrated control approach since they target the essence of biofouling problems. However, biological-based strategies are in their developmental phase and several questions should be addressed to set a roadmap for translating existing and new information into sustainable and effective control techniques. This paper investigates membrane biofouling in MBRs from the microbiological perspective to evaluate the potential of biological-based strategies in offering viable control alternatives. Limitations of available control methods highlight the importance of an integrated anti-fouling approach including biological strategies. Successful development of these strategies requires detailed characterization of microorganisms and EPS through the proper selection of analytical tools and assembly of results. Existing microbiological/EPS studies reveal a number of

  1. Cardiocladius oliffi (Diptera: Chironomidae as a potential biological control agent against Simulium squamosum (Diptera: Simuliidae

    Directory of Open Access Journals (Sweden)

    Wilson Michael D

    2009-04-01

    Full Text Available Abstract Background The control of onchocerciasis in the African region is currently based mainly on the mass drug administration of ivermectin. Whilst this has been found to limit morbidity, it does not stop transmission. In the absence of a macrofilaricide, there is a need for an integrated approach for disease management, which includes vector control. Vector control using chemical insecticides is expensive to apply, and therefore the use of other measures such as biological control agents is needed. Immature stages of Simulium squamosum, reared in the laboratory from egg masses collected from the field at Boti Falls and Huhunya (River Pawnpawn in Ghana, were observed to be attacked and fed upon by larvae of the chironomid Cardiocladius oliffi Freeman, 1956 (Diptera: Chironomidae. Methods Cardiocladius oliffi was successfully reared in the rearing system developed for S. damnosum s.l. and evaluated for its importance as a biological control agent in the laboratory. Results Even at a ratio of one C. oliffi to five S. squamosum, they caused a significant decrease in the number of adult S. squamosum emerging from the systems (treatments. Predation was confirmed by the amplification of Simulium DNA from C. oliffi observed to have fed on S. squamosum pupae. The study also established that the chironomid flies could successfully complete their development on a fish food diet only. Conclusion Cardiocladius oliffi has been demonstrated as potential biological control agent against S. squamosum.

  2. Imposing early stability to ecological and biological networks through Evolutionary Network Control

    Directory of Open Access Journals (Sweden)

    Alessandro Ferrarini

    2015-03-01

    Full Text Available The stability analysis of the dynamical networks is a well-studied topic, both in ecology and in biology. In this work, I adopt a different perspective: instead of analysing the stability of an arbitrary ecological network, I seek here to impose such stability as soon as possible (or, contrariwise, as late as possible during network dynamics. Evolutionary Network Control (ENC is a theoretical and methodological framework aimed to the control of ecological and biological networks by coupling network dynamics and evolutionary modelling. ENC covers several topics of network control, for instance a the global control from inside and b from outside, c the local (step-by-step control, and the computation of: d control success, e feasibility, and f degree of uncertainty. In this work, I demonstrate that ENC can also be employed to impose early (but, also, late stability to arbitrary ecological and biological networks, and provide an applicative example based on the nonlinear, widely-used, Lotka-Volterra model.

  3. Birds in Human Modified Environments and Bird Damage Control: Social, Economic, and Health Implications

    Science.gov (United States)

    1989-12-01

    Methiocarb has also been successfully used to reduce bird damage to fruit: sweet cherries (Guarino et al. 1973, 1974); sour cherries (Guarino et al...during the milk and dough stages of kernel development (Kelly and Dolbeer 1984, Avitrol label). Upon ingestion of 4-AP, blackbirds elicit strong distress...English sparrows Sweet Cherries Finches Sour Cherries Jays Grapes Orioles Robins Methiocarb birds Taste repellent (Registration Corn questionable

  4. Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae.

    Science.gov (United States)

    Lis, Ewa T; O'Neill, Bryan M; Gil-Lamaignere, Cristina; Chin, Jodie K; Romesberg, Floyd E

    2008-05-01

    Mutation in response to most types of DNA damage is thought to be mediated by the error-prone sub-branch of post-replication repair and the associated translesion synthesis polymerases. To further understand the mutagenic response to DNA damage, we screened a collection of 4848 haploid gene deletion strains of Saccharomyces cerevisiae for decreased damage-induced mutation of the CAN1 gene. Through extensive quantitative validation of the strains identified by the screen, we identified ten genes, which included error-prone post-replication repair genes known to be involved in induced mutation, as well as two additional genes, FYV6 and RNR4. We demonstrate that FYV6 and RNR4 are epistatic with respect to induced mutation, and that they function, at least partially, independently of post-replication repair. This pathway of induced mutation appears to be mediated by an increase in dNTP levels that facilitates lesion bypass by the replicative polymerase Pol delta, and it is as important as error-prone post-replication repair in the case of UV- and MMS-induced mutation, but solely responsible for EMS-induced mutation. We show that Rnr4/Pol delta-induced mutation is efficiently inhibited by hydroxyurea, a small molecule inhibitor of ribonucleotide reductase, suggesting that if similar pathways exist in human cells, intervention in some forms of mutation may be possible.

  5. Strengthening cancer biology research, prevention, and control while reducing cancer disparities: student perceptions of a collaborative master's degree program in cancer biology, preventions, and control.

    Science.gov (United States)

    Jillson, I A; Cousin, C E; Blancato, J K

    2013-09-01

    This article provides the findings of a survey of previous and current students in the UDC/GU-LCCC master's degree program. This master's degree program, Cancer Biology, Prevention, and Control is administered and taught jointly by faculty of a Minority Serving Institution, the University of the District of Columbia, and the Lombardi Comprehensive Cancer Center to incorporate the strengths of a community-based school with a research intensive medical center. The program was initiated in 2008 through agreements with both University administrations and funding from the National Cancer Institute. The master's degree program is 36 credits with a focus on coursework in biostatistics, epidemiology, tumor biology, cancer prevention, medical ethics, and cancer outreach program design. For two semesters during the second year, students work full-time with a faculty person on a laboratory or outreach project that is a requirement for graduation. Students are supported and encouraged to transition to a doctoral degree after they obtain the master's and many of them are currently in doctorate programs. Since the inception of the program, 45 students have initiated the course of study, 28 have completed the program, and 13 are currently enrolled in the program. The survey was designed to track the students in their current activities, as well as determine which courses, program enhancements, and research experiences were the least and most useful, and to discern students' perceptions of knowledge acquired on various aspects of Cancer Biology Prevention, and Control Master's Program. Thirty of the 35 individuals to whom email requests were sent responded to the survey, for a response rate of 85.7%. The results of this study will inform the strengthening of the Cancer Biology program by the Education Advisory Committee. They can also be used in the development of comparable collaborative master's degree programs designed to address the significant disparities in prevalence of

  6. Temporary transarticular K-wire fixation of critical ankle injuries at risk: a neglected "damage control" strategy?

    Science.gov (United States)

    Friedman, Jamie; Ly, Anhchi; Mauffrey, Cyril; Stahel, Philip F

    2015-02-01

    High-energy ankle fracture-dislocations are at significant risk for postoperative complications. Closed reduction and temporary percutaneous transarticular K-wire fixation was first described more than 50 years ago. This simple and effective "damage control" strategy is widely practiced in Europe, yet appears largely forgotten and abandoned in the United States. Anecdotal opposing arguments include the notion that drilling K-wires through articular cartilage may damage the joint and contribute to postinjury arthritis. This article describes the experience in a US academic level I trauma center with transarticular pinning of selected critical ankle fracture-dislocations followed by delayed definitive fracture fixation once the soft tissues are healed. Median patient follow-up of 2 years showed that the transarticular pinning technique was performed safely, not associated with increased postoperative complication rates, and characterized by good subjective outcomes using the American Academy of Orthopaedic Surgeons Foot and Ankle Outcome Score questionnaire.

  7. Subterranean, herbivore-induced plant volatile increases biological control activity of multiple beneficial nematode species in distinct habitats.

    Directory of Open Access Journals (Sweden)

    Jared G Ali

    Full Text Available While the role of herbivore-induced volatiles in plant-herbivore-natural enemy interactions is well documented aboveground, new evidence suggests that belowground volatile emissions can protect plants by attracting entomopathogenic nematodes (EPNs. However, due to methodological limitations, no study has previously detected belowground herbivore-induced volatiles in the field or quantified their impact on attraction of diverse EPN species. Here we show how a belowground herbivore-induced volatile can enhance mortality of agriculturally significant root pests. First, in real time, we identified pregeijerene (1,5-dimethylcyclodeca-1,5,7-triene from citrus roots 9-12 hours after initiation of larval Diaprepes abbreviatus feeding. This compound was also detected in the root zone of mature citrus trees in the field. Application of collected volatiles from weevil-damaged citrus roots attracted native EPNs and increased mortality of beetle larvae (D. abbreviatus compared to controls in a citrus orchard. In addition, field applications of isolated pregeijerene caused similar results. Quantitative real-time PCR revealed that pregeijerene increased pest mortality by attracting four species of naturally occurring EPNs in the field. Finally, we tested the generality of this root-zone signal by application of pregeijerene in blueberry fields; mortality of larvae (Galleria mellonella and Anomala orientalis again increased by attracting naturally occurring populations of an EPN. Thus, this specific belowground signal attracts natural enemies of widespread root pests in distinct agricultural systems and may have broad potential in biological control of root pests.

  8. Biological control of Ixodes ricinus larvae and nymphs with Metarhizium anisopliae blastospores.

    Science.gov (United States)

    Wassermann, Marion; Selzer, Philipp; Steidle, Johannes L M; Mackenstedt, Ute

    2016-07-01

    The entomopathogenic fungus Metarhizium anisopliae is used as a biological pest control agent against various arthropod species, including ticks. However, the efficacy depends on tick species, tick stage and fungus strain. We studied the effect of M. anisopliae on engorged larvae and nymphs of Ixodes ricinus, the most abundant tick species in Europe, under laboratory and semi-field conditions. A significant reduction of engorged larvae and nymphs could be shown under laboratory as well as under semi-field conditions. Only 3.5% of the larvae treated in the lab and only 18.5% kept under semi-field conditions were able to develop into nymphs compared to the recovered nymphs of the control groups, which were regarded as 100%. Only 7.1% of nymphs were recovered as adult ticks after fungal treatment under semi-field conditions compared to the control (100%). The efficacy of blastospores of M. anisopliae against engorged larvae and nymphs of I. ricinus under semi-field conditions was demonstrated in this study, showing their high potential as a biological control agent of ticks. Further studies will have to investigate the effect of this agent against other stages of I. ricinus as well as other tick species before its value as a biological control agent against ticks can be fully assessed.

  9. Commercial Biological Control Agents Targeted Against Plant-Parasitic Root-knot Nematodes

    Directory of Open Access Journals (Sweden)

    Marie-Stéphane Tranier

    2014-12-01

    Full Text Available Root-knot nematodes are microscopic round worms, which cause severe agricultural losses. Their attacks affect the productivity by reducing the amount and the caliber of the fruits. Chemical control is widely used, but biological control appears to be a better solution, mainly using microorganisms to reduce the quantity of pests infecting crops. Biological control is developing gradually, and with time, more products are being marketed worldwide. They can be formulated with bacteria, viruses or with filamentous fungi, which can destroy and feed on phytoparasitic nematodes. To be used by the farmers, biopesticides must be legalized by the states, which has led to the establishment of a legal framework for their use, devised by various governmental organizations.

  10. The Google matrix controls the stability of structured ecological and biological networks

    Science.gov (United States)

    Stone, Lewi

    2016-09-01

    May's celebrated theoretical work of the 70's contradicted the established paradigm by demonstrating that complexity leads to instability in biological systems. Here May's random-matrix modelling approach is generalized to realistic large-scale webs of species interactions, be they structured by networks of competition, mutualism or both. Simple relationships are found to govern these otherwise intractable models, and control the parameter ranges for which biological systems are stable and feasible. Our analysis of model and real empirical networks is only achievable on introducing a simplifying Google-matrix reduction scheme, which in the process, yields a practical ecological eigenvalue stability index. These results provide an insight into how network topology, especially connectance, influences species stable coexistence. Constraints controlling feasibility (positive equilibrium populations) in these systems are found more restrictive than those controlling stability, helping explain the enigma of why many classes of feasible ecological models are nearly always stable.

  11. Assessing frost damages using dynamic models in walnut trees: exposure rather than vulnerability controls frost risks.

    Science.gov (United States)

    Charrier, Guillaume; Chuine, Isabelle; Bonhomme, Marc; Améglio, Thierry

    2017-02-09

    Frost damages develop when exposure overtakes frost vulnerability. Frost risk assessment therefore needs dynamic simulation of frost hardiness using temperature and photoperiod in interaction with developmental stage. Two models, including or not the effect of photoperiod were calibrated using five years of frost hardiness monitoring (2007-2012), in two locations (low and high elevation) for three walnut genotypes with contrasted phenology and maximum hardiness (Juglans regia cv Franquette, Juglans regia x nigra 'Early' and 'Late'). The Photothermal model predicted more accurate values for all genotypes (Efficiency = 0.879; RMSEP = 2.55 °C) than the Thermal model (Efficiency = 0.801; RMSEP = 3.24 °C). Predicted frost damages were strongly correlated to minimum temperature of the freezing events (ρ = -0.983) rather than actual frost hardiness (ρ = -0.515), or ratio of phenological stage completion (ρ = 0.336). Higher frost risks are consequently predicted during winter, at high elevation, whereas spring is only risky at low elevation in early genotypes exhibiting faster dehardening rate. However, early frost damages, although of lower value, may negatively affect fruit production the subsequent year (R(2)  = 0.381, P = 0.057). These results highlight the interacting pattern between frost exposure and vulnerability at different scales and the necessity of intra-organ studies to understand the time course of frost vulnerability in flower buds along the winter.

  12. Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate

    Institute of Scientific and Technical Information of China (English)

    JIANG Nan; CHEN Shi-Jian

    2011-01-01

    Chaos control in random Boolean networks is implemented by freezing part of the network to drive it from chaotic to ordered phase. However, controlled nodes are only viewed as passive blocks to prevent perturbation spread. We propose a new control method in which controlled nodes can exert an active impact on the network.Controlled nodes and frozen values are deliberately selected according to the information of connection and Boolean functions. Simulation results showy that the number of nodes needed to achieve control is largely reduced compared to the previous method. Theoretical analysis is also given to estimate the least fraction of nodes needed to achieve control.%Chaos control in random Boolean networks is implemented by freezing part of the network to drive it from chaotic to ordered phase.However, controlled nodes are only viewed as passive blocks to prevent perturbation spread.We propose a new control method in which controlled nodes can exert an active impact on the network.Controlled nodes and frozen values are deliberately selected according to the information of connection and Boolean functions.Simulation results show that the number of nodes needed to achieve control is largely reduced compared to the previous method.Theoretical analysis is also given to estimate the least fraction of nodes needed to achieve control

  13. Metarhizium anisopliae as a biological control agent against Hyalomma anatolicum (Acari: Ixodidae).

    Science.gov (United States)

    Suleiman, Elham A; Shigidi, M T; Hassan, S M

    2013-12-15

    In the Sudan, ticks and Tick-borne Diseases (TBDs) with subsequent costs of control and treatment are causing substantial economic loss. Control of ticks is mainly by chemical insecticides. The rising environmental hazards and problem of resistance has motivated research on biological agents as alternative methods of control. The present study aims at controlling livestock ticks using fungi for their unique mode of action besides their ability to adhere to the cuticle, to germinate and penetrate enzymatically. The study was conducted to evaluate the fungus Metarhizium anisopliae for tick control as an alternative mean to chemical acaricides. Pathogenicity of the fungus was tested on different developmental stages of the tick Hyalomma anatolicum. The fungus induced high mortality to flat immature stages. It, also, affected reproductive potential of the females. Egg laid, hatching percent, fertility and moulting percent of immature stages were significantly (p anisopliae to control ticks is discussed.

  14. A family of metal-dependent phosphatases implicated in metabolite damage-control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Lili; Khusnutdinova, Anna; Nocek, Boguslaw; Brown, Greg; Xu, Xiaohui; Cui, Hong; Petit, Pierre; Flick, Robert; Zallot, Rémi; Balmant, Kelly; Ziemak, Michael J.; Shanklin, John; de Crécy-Lagard, Valérie; Fiehn, Oliver; Gregory, Jesse F.; Joachimiak, Andrzej; Savchenko, Alexei; Yakunin, Alexander F.; Hanson, Andrew D.

    2016-06-20

    DUF89 family proteins occur widely in both prokaryotes and eukaryotes, but their functions are unknown. Here we define three DUF89 subfamilies (I, II, and III), with subfamily II being split into stand-alone proteins and proteins fused to pantothenate kinase (PanK). We demonstrated that DUF89 proteins have metal-dependent phosphatase activity against reactive phosphoesters or their damaged forms, notably sugar phosphates (subfamilies II and III), phosphopantetheine and its S-sulfonate or sulfonate (subfamily II-PanK fusions), and nucleotides (subfamily I). Genetic and comparative genomic data strongly associated DUF89 genes with phosphoester metabolism. The crystal structure of the yeast (Saccharomyces cerevisiae) subfamily III protein YMR027W revealed a novel phosphatase active site with fructose 6-phosphate and Mg2+ bound near conserved signature residues Asp254 and Asn255 that are critical for activity. These findings indicate that DUF89 proteins are previously unrecognized hydrolases whose characteristic in vivo function is to limit potentially harmful buildups of normal or damaged phosphometabolites.

  15. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    Full Text Available Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history, the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard, or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae in 2,528 olive groves in Andalusia (Spain from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  16. Is ground cover vegetation an effective biological control enhancement strategy against olive pests?

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2015-01-01

    Ground cover vegetation is often added or allowed to generate to promote conservation biological control, especially in perennial crops. Nevertheless, there is inconsistent evidence of its effectiveness, with studies reporting positive, nil or negative effects on pest control. This might arise from differences between studies at the local scale (e.g. orchard management and land use history), the landscape context (e.g. presence of patches of natural or semi-natural vegetation near the focal orchard), or regional factors, particularly climate in the year of the study. Here we present the findings from a long-term regional monitoring program conducted on four pest species (Bactrocera oleae, Prays oleae, Euphyllura olivina, Saissetia oleae) in 2,528 olive groves in Andalusia (Spain) from 2006 to 2012. Generalized linear mixed effect models were used to analyze the effect of ground cover on different response variables related to pest abundance, while accounting for variability at the local, landscape and regional scales. There were small and inconsistent effects of ground cover on the abundance of pests whilst local, landscape and regional variability explained a large proportion of the variability in pest response variables. This highlights the importance of local and landscape-related variables in biological control and the potential effects that might emerge from their interaction with practices, such as groundcover vegetation, implemented to promote natural enemy activity. The study points to perennial vegetation close to the focal crop as a promising alternative strategy for conservation biological control that should receive more attention.

  17. Conservation biological control of pests in the molecular era: new opportunities to address old constraints

    Directory of Open Access Journals (Sweden)

    Gurr eGeoff

    2016-01-01

    Full Text Available ABSTRACTBiological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA and now – in turn – are being overtaken by next generation sequencing (NGS- based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate the plant defence mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles.

  18. Prospects for the use of biological control agents against Anoplophora in Europe.

    Science.gov (United States)

    Brabbs, Thomas; Collins, Debbie; Hérard, Franck; Maspero, Matteo; Eyre, Dominic

    2015-01-01

    This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Japan, and fungal infection results in high mortality rates. Parasitic nematodes: Steinernema feltiae Filipjev (Rhabditida: Steinernematidae) and Steinernema carpocapsae Weiser have potential for use as biopesticides as an alternative to chemical treatments. Parasitoids: a parasitoid of Anoplophora chinensis Forster, Aprostocetus anoplophorae Delvare (Hymenoptera: Eulophidae), was discovered in Italy in 2002 and has been shown to be capable of parasitising up to 72% of A. chinensis eggs; some native European parasitoid species (e.g. Spathius erythrocephalus) also have potential to be used as biological control agents. Predators: two woodpecker (Piciformis: Picidae) species that are native to Europe, Dendrocopos major Beicki and Picus canus Gmelin, have been shown to be effective at controlling Anoplophora glabripennis Motschulsky in Chinese forests. The removal and destruction of infested and potentially infested trees is the main eradication strategy for Anoplophora spp. in Europe, but biological control agents could be used in the future to complement other management strategies, especially in locations where eradication is no longer possible.

  19. Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control.

    Science.gov (United States)

    Otto-Hanson, L K; Grabau, Z; Rosen, C; Salomon, C E; Kinkel, L L

    2013-01-01

    Success in biological control of plant diseases remains inconsistent in the field. A collection of well-characterized Streptomyces antagonists (n = 19 isolates) was tested for their capacities to inhibit pathogenic Streptomyces scabies (n = 15 isolates). There was significant variation among antagonists in ability to inhibit pathogen isolates and among pathogens in their susceptibility to inhibition. Only one antagonist could inhibit all pathogens, and antagonist-pathogen interactions were highly specific, highlighting the limitations of single-strain inoculum in biological control. However, the collection of pathogens could be inhibited by several combinations of antagonists, suggesting the potential for successful antagonist mixtures. Urea generally increased effectiveness of antagonists at inhibiting pathogens in vitro (increased mean inhibition zones) but its specific effects varied among antagonist-pathogen combinations. In greenhouse trials, urea enhanced the effectiveness of antagonist mixtures relative to individual antagonists in controlling potato scab. Although antagonist mixtures were frequently antagonistic in the absence of urea, all n= 2 and n = 3 antagonist-isolate combinations were synergistic in the presence of urea. This work provides insights into the efficacy of single- versus multiple-strain inocula in biological control and on the potential for nutrients to influence mixture success.

  20. Optical control of filamentation-induced damage to DNA by intense, ultrashort, near-infrared laser pulses

    Science.gov (United States)

    Dharmadhikari, J. A.; Dharmadhikari, A. K.; Kasuba, K. C.; Bharambe, H.; D’Souza, J. S.; Rathod, K. D.; Mathur, D.

    2016-06-01

    We report on damage to DNA in an aqueous medium induced by ultrashort pulses of intense laser light of 800 nm wavelength. Focusing of such pulses, using lenses of various focal lengths, induces plasma formation within the aqueous medium. Such plasma can have a spatial extent that is far in excess of the Rayleigh range. In the case of water, the resulting ionization and dissociation gives rise to in situ generation of low-energy electrons and OH-radicals. Interactions of these with plasmid DNA produce nicks in the DNA backbone: single strand breaks (SSBs) are induced as are, at higher laser intensities, double strand breaks (DSBs). Under physiological conditions, the latter are not readily amenable to repair. Systematic quantification of SSBs and DSBs at different values of incident laser energy and under different external focusing conditions reveals that damage occurs in two distinct regimes. Numerical aperture is the experimental handle that delineates the two regimes, permitting simple optical control over the extent of DNA damage.

  1. Guiding Classical Biological Control of an Invasive Mealybug Using Integrative Taxonomy.

    Directory of Open Access Journals (Sweden)

    Aleixandre Beltrà

    Full Text Available Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa, sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain.

  2. Guiding Classical Biological Control of an Invasive Mealybug Using Integrative Taxonomy

    Science.gov (United States)

    Beltrà, Aleixandre; Addison, Pia; Ávalos, Juan Antonio; Crochard, Didier; Garcia-Marí, Ferran; Guerrieri, Emilio; Giliomee, Jan H.; Malausa, Thibaut; Navarro-Campos, Cristina; Palero, Ferran; Soto, Antonia

    2015-01-01

    Delottococcus aberiae De Lotto (Hemiptera: Pseudococcidae) is a mealybug of Southern African origin that has recently been introduced into Eastern Spain. It causes severe distortions on young citrus fruits and represents a growing threat to Mediterranean citrus production. So far, biological control has proven unsatisfactory due to the absence of efficient natural enemies in Spain. Hence, the management of this pest currently relies only on chemical control. The introduction of natural enemies of D. aberiae from the native area of the pest represents a sustainable and economically viable alternative to reduce the risks linked to pesticide applications. Since biological control of mealybugs has been traditionally challenged by taxonomic misidentification, an intensive survey of Delottococcus spp. and their associated parasitoids in South Africa was required as a first step towards a classical biological control programme. Combining morphological and molecular characterization (integrative taxonomy) a total of nine mealybug species were identified in this study, including three species of Delottococcus. Different populations of D. aberiae were found on wild olive trees, in citrus orchards and on plants of Chrysanthemoides monilifera, showing intra-specific divergences according to their host plants. Interestingly, the invasive mealybug populations from Spanish orchards clustered together with the population on citrus from Limpopo Province (South Africa), sharing COI haplotypes. This result pointed to an optimum location to collect natural enemies against the invasive mealybug. A total of 14 parasitoid species were recovered from Delottococcus spp. and identified to genus and species level, by integrating morphological and molecular data. A parasitoid belonging to the genus Anagyrus, collected from D. aberiae in citrus orchards in Limpopo, is proposed here as a good biological control agent to be introduced into Spain. PMID:26047349

  3. The effect of temperature on the biology of Phytoseiulus macropilis (Banks (Phytoseiidae in applied biological control program

    Directory of Open Access Journals (Sweden)

    Catiane Dameda

    2016-10-01

    Full Text Available Phytoseiulus macropilis (Banks (Phytoseiidae is a natural enemy of Tetranychus urticae Koch (TSSM, a common pest in several cultures, especially in greenhouses. This research aimed to know the biological parameters of a strain of P. macropilis from Vale do Taquari, State of Rio Grande do Sul, feeding on TSSM at different temperatures. The study was initiated with 30 eggs individualized in arenas under the temperature of 20, 25 and 30 ± 1°C and relative humidity of 80 ± 10%. The average length (T of each generation decreased with the increase of temperature, ranging from 25.71 days at 20°C to 11.14 days at 30°C. The net reproductive rate (Ro ranged from 45.47 at 20°C to 18.25 at 30°C; the innate capacity for increase (rm was 0.15 at 20°C, reaching 0.26 at 30°C and the finite increase rate (λ ranged from 1.41 to 1.82 females day-1 at 20 and 30°C, respectively. In the present study, it was observed that the strain of the evaluated predatory mite from mild climate of South Brazil, might present a good performance to control TSSM when exposed to a temperature range between 20 and 30°C.

  4. 77 FR 46373 - Field Release of Aphelinus glycinis for the Biological Control of the Soybean Aphid in the...

    Science.gov (United States)

    2012-08-03

    ... the Biological Control of the Soybean Aphid in the Continental United States; Availability of an... release of Aphelinus glycinis for the biological control of the soybean aphid, Aphis glycines, in the...-2323. SUPPLEMENTARY INFORMATION: Background The soybean aphid, Aphis glycinis, which is native to...

  5. Development of biological control of Tetranychus urticae (Acari:Tetranychidae) and Phorodon humuli (Hemiptera: Aphididae) in Oregon Hop yards

    Science.gov (United States)

    The temporal development of biological control of arthropod pests in perennial cropping systems is largely unreported. In this study, the development of biological control of twospotted spider mite, Tetranychus urticae Koch and hop aphid, Phorodon humuli (Schrank) in a new planting of hop in Oregon...

  6. The influence of flower morphology and nectar quality on the longevity of a parasitoid biological control agent

    NARCIS (Netherlands)

    Vattala, H.D.; Wratten, S.D.; Phillips, C.B.; Wäckers, F.L.

    2006-01-01

    Conservation biological control aims to enhance the efficacy of arthropod biological control agents, such as parasitoids, partly by providing them with access to floral nectar. However, the suitability of a flower species for providing nectar to a parasitoid is dependent on the morphologies of the p

  7. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    Advances in on-line monitoring of nutrient salt concentrations and computer technology has created a large potential for the implementation of advanced and complex control strategies in biological nutrient removal systems. The majority of wastewater treatment plants today are operated with very...... strategies incorporating information from the grey box models are capable of reducing the total nitrogen discharge as well as energy costs. These results have a major impact on both existing and future plants. In fact, it is expected that future plants can be reduced with 10-20 per cent in size......, and that the complexity in reactor design of biological nutrient removal systems will be substituted by complexity in control in the future....

  8. Radiation damage studies of a recycling integrator VLSI chip for dosimetry and control of therapeutical beams

    Science.gov (United States)

    Cirio, R.; Bourhaleb, F.; Degiorgis, P. G.; Donetti, M.; Marchetto, F.; Marletti, M.; Mazza, G.; Peroni, C.; Rizzi, E.; SanzFreire, C.

    2002-04-01

    A VLSI chip based on a recycling integrator has been designed and built to be used as front-end readout of detectors for dosimetry and beam monitoring. The chip is suitable for measurements with both conventional radiotherapy accelerators (photon or electron beams) and with hadron accelerators (proton or light ion beams). As the chips might be located at few centimeters from the irradiation area and they are meant to be used in routine hospital practice, it is mandatory to assert their damage to both electromagnetic and neutron irradiation. We have tested a few chips on a X-ray beam and on thermal and fast neutron beams. Results of the tests are reported and an estimate of the expected lifetime of the chip for routine use is given.

  9. A simulation benchmark to evaluate the performance of advanced control techniques in biological wastewater treatment plants

    Directory of Open Access Journals (Sweden)

    Sotomayor O.A.Z.

    2001-01-01

    Full Text Available Wastewater treatment plants (WWTP are complex systems that incorporate a large number of biological, physicochemical and biochemical processes. They are large and nonlinear systems subject to great disturbances in incoming loads. The primary goal of a WWTP is to reduce pollutants and the second goal is disturbance rejection, in order to obtain good effluent quality. Modeling and computer simulations are key tools in the achievement of these two goals. They are essential to describe, predict and control the complicated interactions of the processes. Numerous control techniques (algorithms and control strategies (structures have been suggested to regulate WWTP; however, it is difficult to make a discerning performance evaluation due to the nonuniformity of the simulated plants used. The main objective of this paper is to present a benchmark of an entire biological wastewater treatment plant in order to evaluate, through simulations, different control techniques. This benchmark plays the role of an activated sludge process used for removal of organic matter and nitrogen from domestic effluents. The development of this simulator is based on models widely accepted by the international community and is implemented in Matlab/Simulink (The MathWorks, Inc. platform. The benchmark considers plant layout and the effects of influent characteristics. It also includes a test protocol for analyzing the open and closed-loop responses of the plant. Examples of control applications in the benchmark are implemented employing conventional PI controllers. The following common control strategies are tested: dissolved oxygen (DO concentration-based control, respirometry-based control and nitrate concentration-based control.

  10. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    OpenAIRE

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two...

  11. The Use and Exchange of Biological Control Agents for Food and Agriculture

    Institute of Scientific and Technical Information of China (English)

    J.C.van; Lenteren; M.J.W.Cock; J.Brodeur; B.Barratt; F.Bigler; K.Bolckmans; F.Haas; P.G.Mason; J.R.P.Parra

    2010-01-01

    The report sets out to summarize the past and current situation regarding the practice of biologicalcontrol inrelationtothe use and exchange of genetic resources relevant for BCAs.It considers the twomain categories of biological control:classical and augmentative.Allowing access to BCAs for use inanother country imposes no risk of liability to the source country.Local scientific knowledge abouthabitats,fauna andflora,can be helpful

  12. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  13. Phosphorus limitation controls rates of biological N2-fixation in boreal peatlands

    Science.gov (United States)

    Dynarski, K. A.; Wieder, R.; Vile, M. A.

    2013-12-01

    N2-fixation, once thought to occur at negligible rates in pristine boreal peatlands, has recently been demonstrated to be the dominant input of nitrogen (N) to these ecosystems. The controls of biological N2-fixation in pristine boreal peatlands are not well understood, but limitation of the nutrients molybdenum (Mo) and phosphorus (P) may play a key role. Because the enzyme nitrogenase requires molybdenum-containing cofactors to function, biological N2-fixation may be limited by the trace metal molybdenum. Recent studies have shown that Mo limits nitrogen fixation rates in tropical soils. P availability may also be important in regulating N2-fixation rates; N2-fixation is a P-intensive process because the nitrogenase enzyme is rich in P, and P is likely to be the most limiting nutrient to boreal peatland productivity, next to N. In this study, we examined the role of Mo and P limitation in controlling rates of biological N2-fixation in boreal peatlands. We applied Mo and P nutrient amendments equivalent to 5 mg m-2 yr-1and 10 kg ha-1 yr-1 respectively, both alone and in combination, to fifteen 0.36 m2 plots in a pristine Alberta fen throughout the summer 2013 growing season. We periodically assessed N2-fixation rates in Sphagnum angustifolium moss samples using the acetylene reduction assay with subsequent calibration using 15N2. We found a significant overall treatment effect (F3,44=15.62, pTukey's HSD indicates that N2-fixation rates were significantly higher in plots receiving P additions relative to control plots. However, Mo additions had no effect on N2-fixation rates. These results indicate that P, not Mo, availability is dominant in controlling rates of biological N2-fixation in boreal peatland ecosystems.

  14. Invasive Species Biology, Control, and Research. Part 2. Multiflora Rose (Rosa multiflora)

    Science.gov (United States)

    2008-11-01

    this agent should be considered in concert with other biological control methods. The dying canes are incapable of asexual reproduction via layering...two, Multiflora Rose seedlings grow inconspicuously, but quickly become well anchored. Multiflora Rose reproduces asexually by suckering and...mowing the remaining topgrowth eliminates any remaining live plant parts that could asexually reproduce. ERDC TR-08-11 8 Table 1. Herbicides that

  15. Recent Advances in Biological Control of Pest Insects by Using Viruses in China

    Institute of Scientific and Technical Information of China (English)

    Xiu-lian SUN; Hui-yin PENG

    2007-01-01

    Insect viruses are attractive as biological control agents and could be a feasible alternative to chemical insecticides in the management of insect infestations. This review describes recent advances in the development of wild-type and genetically modified viruses as insecticides. A new strategy of application of insect viruses in China is reviewed. Also, the assessment of biosafety of genetically modified Helicoverpa armigera Nucleopolyhedovirus (HearNPV) is emphasized as a case-study.

  16. Integration of biological control and botanical pesticides : evaluation in a tritrophic context

    OpenAIRE

    Charleston, D.S.; Dicke, M.; Vet, L.E.M.; Kfir, R.

    2001-01-01

    The plant kingdom is by far the most efficient producer of chemical compounds, synthesising many products that are used in defence against herbivores. Extracts made from some plants, particularly extracts from plants within the Meliaceae (mahogany) family, have been shown to have insecticidal properties. We investigated the potential of these extracts and the possibility of integrating botanical pesticides with biological control of the diamondback moth, Plutella xylostella. Sub-lethal doses ...

  17. Parasites, politics and public science: the promotion of biological control in Western Australia, 1900-1910.

    Science.gov (United States)

    Deveson, Edward

    2016-06-01

    Biological control of arthropods emerged as a scientific enterprise in the late nineteenth century and the orchard industry of California was an early centre of expertise. In 1900, as the Australian colonies prepared for federation, each had a government entomologist attached to its agriculture department. The hiring of George Compere from California by the Western Australian Department of Agriculture began a controversial chapter in the early history of biological control that was linked to a late, local popularization of acclimatization. Compere became known as the 'travelling entomologist' and for a decade brought 'parasites' of pest insects from overseas and released them in Perth. His antagonistic disciplinary rhetoric and inflated claims for the 'parasite theory' created conflict with his counterparts in the eastern states. The resulting inter-state entomological controversy was played out in the press, revealing the political use of science for institutional and even state identity. It is a story of transnational exchanges, chance discoveries and popular public science: popular because of the promise of a simple, natural solution to agricultural insect pests and because of the public nature of the disputes it generated between the experts. This microcosm contributes to the global historiography of acclimatization, biological control, scientific exposition and the professionalization of agricultural science.

  18. Possibility of biological control of primocane fruiting raspberry disease caused by Fusarium sambucinum.

    Science.gov (United States)

    Shternshis, Margarita V; Belyaev, Anatoly A; Matchenko, Nina S; Shpatova, Tatyana V; Lelyak, Anastasya A

    2015-10-01

    Biological control agents are a promising alternative to chemical pesticides for plant disease suppression. The main advantage of the natural biocontrol agents, such as antagonistic bacteria compared with chemicals, includes environmental pollution prevention and a decrease of chemical residues in fruits. This study is aimed to evaluate the impact of three Bacillus strains on disease of primocane fruiting raspberry canes caused by Fusarium sambucinum under controlled infection load and uncontrolled environmental factors. Bacillus subtilis, Bacillus licheniformis, and Bacillus amyloliquefaciens were used for biocontrol of plant disease in 2013 and 2014 which differed by environmental conditions. The test suspensions were 10(5) CFU/ml for each bacterial strain. To estimate the effect of biological agents on Fusarium disease, canes were cut at the end of vegetation, and the area of outer and internal lesions was measured. In addition to antagonistic effect, the strains revealed the ability to induce plant resistance comparable with chitosan-based formulation. Under variable ways of cane treatment by bacterial strains, the more effective were B. subtilis and B. licheniformis demonstrating dual biocontrol effect. However, environmental factors were shown to impact the strain biocontrol ability; changes in air temperature and humidity led to the enhanced activity of B. amyloliquefaciens. For the first time, the possibility of replacing chemicals with environmentally benign biological agents for ecologically safe control of the raspberry primocane fruiting disease was shown.

  19. Herbivore-induced plant volatiles to enhance biological control in agriculture.

    Science.gov (United States)

    Peñaflor, M F G V; Bento, J M S

    2013-08-01

    Plants under herbivore attack synthetize defensive organic compounds that directly or indirectly affect herbivore performance and mediate other interactions with the community. The so-called herbivore-induced plant volatiles (HIPVs) consist of odors released by attacked plants that serve as important cues for parasitoids and predators to locate their host/prey. The understanding that has been gained on the ecological role and mechanisms of HIPV emission opens up paths for developing novel strategies integrated with biological control programs with the aim of enhancing the efficacy of natural enemies in suppressing pest populations in crops. Tactics using synthetic HIPVs or chemically/genetically manipulating plant defenses have been suggested in order to recruit natural enemies to plantations or help guiding them to their host more quickly, working as a "synergistic" agent of biological control. This review discusses strategies using HIPVs to enhance biological control that have been proposed in the literature and were categorized here as: (a) exogenous application of elicitors on plants, (b) use of plant varieties that emit attractive HIPVs to natural enemies, (c) release of synthetic HIPVs, and (d) genetic manipulation targeting genes that optimize HIPV emission. We discuss the feasibility, benefits, and downsides of each strategy by considering not only field studies but also comprehensive laboratory assays that present an applied approach for HIPVs or show the potential of employing them in the field.

  20. Effectiveness of fencing and hunting to control Lama guanicoe browsing damage: Implications for Nothofagus pumilio regeneration in harvested forests.

    Science.gov (United States)

    Martínez Pastur, Guillermo; Soler, Rosina; Ivancich, Horacio; Lencinas, María V; Bahamonde, Héctor; Peri, Pablo L

    2016-03-01

    Browsing damage by native ungulates is often to be considered one of the reasons of regeneration failure in Nothofagus pumilio silvicultural systems. Fencing and hunting in forests at regeneration phase have been proposed to mitigate browsing effects. This study aims to determine effectiveness of these control methods in harvested forests, evaluating browsing damage over regeneration, as well as climate-related constraints (freezing or desiccation). Forest structure and regeneration plots were established in two exclosures against native ungulates (Lama guanicoe) by wire fences in the Chilean portion of Tierra del Fuego island, where tree regeneration density, growth, abiotic damage and quality (multi-stems and base/stem deformation) were assessed. Exclosures did not influence regeneration density (at the initial stage with 1.3 m high). However, sapling height at 10-years old was significantly lower outside (40-50 cm high) than inside exclosures (80-100 cm), and also increased their annual height growth, probably as a hunting effect. Likewise, quality was better inside exclosures. Alongside browsing, abiotic conditions negatively influenced sapling quality in the regeneration phase (20%-28% of all seedlings), but greatly to taller plants (as those from inside exclosure). This highlights the importance of considering climatic factors when analysing browsing effects. For best results, control of guanaco in recently harvested areas by fencing should be applied in combination with a reduction of guanaco density through continuous hunting. The benefits of mitigation actions (fencing and hunting) on regeneration growth may shorten the regeneration phase period in shelterwood cutting forests (30-50% less time), but incremental costs must be analysed in the framework of management planning by means of long-term studies.

  1. Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity.

    Science.gov (United States)

    Corty, Megan M; Freeman, Marc R

    2013-11-11

    Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron-glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.

  2. Trauma hemostasis and oxygenation research position paper on remote damage control resuscitation: definitions, current practice, and knowledge gaps.

    Science.gov (United States)

    Jenkins, Donald H; Rappold, Joseph F; Badloe, John F; Berséus, Olle; Blackbourne, Lorne; Brohi, Karim H; Butler, Frank K; Cap, Andrew P; Cohen, Mitchell Jay; Davenport, Ross; DePasquale, Marc; Doughty, Heidi; Glassberg, Elon; Hervig, Tor; Hooper, Timothy J; Kozar, Rosemary; Maegele, Marc; Moore, Ernest E; Murdock, Alan; Ness, Paul M; Pati, Shibani; Rasmussen, Todd; Sailliol, Anne; Schreiber, Martin A; Sunde, Geir Arne; van de Watering, Leo M G; Ward, Kevin R; Weiskopf, Richard B; White, Nathan J; Strandenes, Geir; Spinella, Philip C

    2014-05-01

    The Trauma Hemostasis and Oxygenation Research Network held its third annual Remote Damage Control Resuscitation Symposium in June 2013 in Bergen, Norway. The Trauma Hemostasis and Oxygenation Research Network is a multidisciplinary group of investigators with a common interest in improving outcomes and safety in patients with severe traumatic injury. The network's mission is to reduce the risk of morbidity and mortality from traumatic hemorrhagic shock, in the prehospital phase of resuscitation through research, education, and training. The concept of remote damage control resuscitation is in its infancy, and there is a significant amount of work that needs to be done to improve outcomes for patients with life-threatening bleeding secondary to injury. The prehospital phase of resuscitation is critical in these patients. If shock and coagulopathy can be rapidly identified and minimized before hospital admission, this will very likely reduce morbidity and mortality. This position statement begins to standardize the terms used, provides an acceptable range of therapeutic options, and identifies the major knowledge gaps in the field.

  3. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus.

    Science.gov (United States)

    Hung, Phung Manh; Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-09-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen.

  4. Biological control of Tetranychus urticae by Phytoseiulus macropilis and Macrolophus pygmaeus in tomato greenhouses.

    Science.gov (United States)

    Gigon, Vincent; Camps, Cédric; Le Corff, Josiane

    2016-01-01

    Biological control against phytophagous arthropods has been widely used under greenhouse conditions. Its success is dependent on a number of factors related to the abiotic conditions and to the interactions between pests and biological control agents. In particular, when multiple predator species are introduced to suppress one pest, competitive interactions might occur, including intraguild predation (IGP). In tomato crops, the spider mite Tetranychus urticae Koch is a very problematic phytophagous mite and its control is not yet satisfactory. In 2012 and 2013, the ability of a potential new predatory mite Phytoseiulus macropilis (Banks) was assessed, alone and in the presence of Macrolophus pygmaeus Rambur. Macrolophus pygmaeus is a polyphagous mirid supposed to predate on P. macropilis. Both years, under greenhouse conditions, the effectiveness of the two predators was compared between the following treatments: T. urticae, T. urticae + P. macropilis, T. urticae + M. pygmaeus, and T. urticae + P. macropilis + M. pygmaeus. The number of arthropods per tomato plant over time indicated that P. macropilis well-controlled the population of T. urticae, whereas M. pygmaeus had a very limited impact. Furthermore, there was no evidence of IGP between the two predators but in the presence of M. pygmaeus, P. macropilis tended to have a more clumped spatial distribution. Further studies should clarify the number and location of inoculation points to optimize the control of T. urticae by P. macropilis.

  5. Biological control of white mold by Trichoderma harzianum in common bean under field conditions

    Directory of Open Access Journals (Sweden)

    Daniel Diego Costa Carvalho

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate Trichoderma harzianum isolates for biological control of white mold in common bean (Phaseolus vulgaris. Five isolates were evaluated for biocontrol of white mold in 'Perola' common bean under field conditions, in the 2009 and 2010 crop seasons. A commercial isolate (1306 and a control treatment were included. Foliar applications at 2x109 conidia mL-1 were performed at 42 and 52 days after sowing (DAS, in 2009, and at 52 DAS in 2010. The CEN287, CEN316, and 1306 isolates decreased the number of Sclerotinia sclerotiorum apothecia per square meter in comparison to the control, in both crop seasons. CEN287, CEN316, and 1306 decreased white mold severity during the experimental period, when compared to the control.

  6. Primary Study on Biological Control Potential of Trichoderma harzianum TL-1

    Institute of Scientific and Technical Information of China (English)

    Su; Zhenyu; Xiao; Man; Gao; Xinzheng; Tang; Libo; Li; Li

    2014-01-01

    Trichoderma harzianum is a widely used biocontrol fungus. The growth promoting effect of strain Trichoderma harzianum TL-1 on tomato and pepper and its biological control effects against tomato seedling damping-off and pepper blight were investigated through pot experiments. The results showed that the stain TL-1 had significant promotion effect on growth of pepper and tomato in sterilized and natural soils. With the application dose of 3. 0 and 0. 5g/ pot,their dry weight were increased up to 46% and 150% compared with control,respectively. In addition,TL-1 had good control effects against tomato seedling damping-off and pepper blight. Compared with fungicide treatment,TL-1 treatment could control diseases for long term,without repeat occurrence of diseases.

  7. High-latitude controls of thermocline nutrients and low latitude biological productivity.

    Science.gov (United States)

    Sarmiento, J L; Gruber, N; Brzezinski, M A; Dunne, J P

    2004-01-01

    The ocean's biological pump strips nutrients out of the surface waters and exports them into the thermocline and deep waters. If there were no return path of nutrients from deep waters, the biological pump would eventually deplete the surface waters and thermocline of nutrients; surface biological productivity would plummet. Here we make use of the combined distributions of silicic acid and nitrate to trace the main nutrient return path from deep waters by upwelling in the Southern Ocean and subsequent entrainment into subantarctic mode water. We show that the subantarctic mode water, which spreads throughout the entire Southern Hemisphere and North Atlantic Ocean, is the main source of nutrients for the thermocline. We also find that an additional return path exists in the northwest corner of the Pacific Ocean, where enhanced vertical mixing, perhaps driven by tides, brings abyssal nutrients to the surface and supplies them to the thermocline of the North Pacific. Our analysis has important implications for our understanding of large-scale controls on the nature and magnitude of low-latitude biological productivity and its sensitivity to climate change.

  8. Damage caused to our forests and its control up to 1918

    Energy Technology Data Exchange (ETDEWEB)

    Nozicka, J.

    1963-01-01

    Air pollution was mentioned as soon as 1699 by Chr. Lehman, chronicler of Krusne hory and its injurious effects were observed since the thirties of the nineteenth century by brothers Baar on their plot situated in the neighborhood of a manufactory chimney at Kdyne near Klatovy, as well as since 1843 by the surveyor William Rowland in managing the town forest of Pribram in the surroundings of silver works at Brezove hory. The problem of damage caused to our forests by air pollution arose the interest of our foresters 1850, when at the conference of the Bohemian Forestry Union held in Decin Rowland read a paper on air pollution in the area of Pribram and in surroundings of a brick-kiln at Zdiky in the Kaplice region. After 1853, the smoke effects began to be apparent in the Jachymov region, since 1880 in the Ostrava region, since the nineties of the past century in the Sokolovo, Loket, Karlovy Vary, Usti n. L. and Nachod regions and, since the first decade of the present century in the Bilina and Kladno regions. It was found that silver fir, Norway spruce and Scotch pine were the most sensitive species to smoke, whereas European larch proved to be very resistant. Broadleaved species showed also a good growth in the smoke affected areas. Basing on this experience, our foresters tried, therefore, to reduce the injouris smoke effects by growing broadleaved species in those areas. 12 references.

  9. Genes and gene expression: Localization, damage and control: A multilevel and inter-disciplinary study

    Energy Technology Data Exchange (ETDEWEB)

    Ts' o, P.O.P.

    1990-09-01

    The main objectives of this Program Project is to develop strategy and technology for the study of gene structure, organization and function in a multi-disciplinary, highly coordinated manner. In Project I, Molecular Cytology, the establishment of all instrumentation for the computerized microscopic imaging system (CMIS) has been completed with the software in place, including measurement of the third dimension (along the Z-axis). The technique is now at hand to measure single copy DNA in the nucleus, single copy mRNA in the cell, and finally, we are in the process of developing mathematical approaches for the analysis of the relative spatial 3-D relationship among the chromosomes and the individual genes in the interphasal nucleus. Also, we have a sensitive and reliable method for measuring single-stranded DNA breaks which will be useful for the determination of damage to DNA caused by ionizing radiation. In Project II, the mapping of restriction fragments by 2-D enzymatic and electrophoretic analysis has been perfected for application. In Project III, a major finding is that the binding constant and effectiveness of antisense oligonucleotide analogues, Matagen, can be significantly improved by substituting 2{prime}-O-methylribos methylphosphonate backbones for the current 2{prime}-deoxyribomethylphosphonate backbones. 15 refs., 10 figs., 2 tabs.

  10. Genetic Control or Repair and Adaptive Response to Low-Level DNA Damage

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Haber

    2009-10-05

    Research was focused on how a single double-strand break - a model of low-dose ionizing radiation-induced DNA damage - could be studied in a simple model system, budding yeast. Breaks were induced in several different ways. We used the site-specific HO endonuclease to create a single DSB in all cells of the population so that its fate could be extensively analyzed genetically and molecularly. We also used two heterologous systems, the plant DS element and the Rag1/Rag2 proteins, to generate different types of DSBs, these containing hairpin ends that needed to be cleaved open before end-joining could take place. All three approaches yielded important new findings. We also extended our analysis of the Mre11 protein that plays key roles in both NHEJ and in homologous recombination. Finally we analyzed the poorly understood recombination events that were independent of the key recombination protein, Rad52. This line of inquiry was strongly motivated by the fact that vertebrate cells do not rely strongly on Rad52 for homologous recombination, so that some clues about alternative mechanisms could be gained by understanding how Rad52-independent recombination occurred. We found that the Mre11 complex was the most important element in Rad52-independent recombination.

  11. Simulation of Wild Pig Control via Hunting and Contraceptives

    Science.gov (United States)

    2013-10-01

    Investigator was Dr. James Westervelt. Appreciation is owed to Marina Drigo, Ying Li, Ariana Peralta, Johanna Salzer, Kranthi Varala, and Jennifer...reproductive biology . Wild Pigs: Biology , Damage, Control Techniques, and Management. Aiken, SC: Savannah River National Laboratory, pp 51-75...Ecological Applications. 14:1746-1756. Ditchkoff, S. S., and M. S. Mitchell 2009. Ft. Benning Military Reservation. Wild Pigs: Biology , Damage

  12. Elucidating the digital control mechanism for DNA damage repair with the p53-Mdm2 system: single cell data analysis and ensemble modelling.

    Science.gov (United States)

    Ogunnaike, Babatunde A

    2006-02-22

    Recent experimental evidence about DNA damage response using the p53-Mdm2 system has raised some fundamental questions about the control mechanism employed. In response to DNA damage, an ensemble of cells shows a damped oscillation in p53 expression whose amplitude increases with increased DNA damage--consistent with 'analogue' control. Recent experimental results, however, show that the single cell response is a series of discrete pulses in p53; and with increase in DNA damage, neither the height nor the duration of the pulses change, but the mean number of pulses increase--consistent with 'digital' control. Here we present a system engineering model that uses published data to elucidate this mechanism and resolve the dilemma of how digital behaviour at the single cell level can manifest as analogue ensemble behaviour. First, we develop a dynamic model of the p53-Mdm2 system that produces non-oscillatory responses to a stress signal. Second, we develop a probability model of the distribution of pulses in a cell population, and combine the two with the simplest digital control algorithm to show how oscillatory responses whose amplitudes grow with DNA damage can arise from single cell behaviour in which each single pulse response is independent of the extent of DNA damage. A stochastic simulation of the hypothesized control mechanism reproduces experimental observations remarkably well.

  13. Control efficacy of three biological pesticides on Locusta migratoria tibetensis%3种生物农药对西藏飞蝗的防治效果

    Institute of Scientific and Technical Information of China (English)

    赵磊; 周俗; 严东海; 余勇; 杨廷勇; 张绪校

    2015-01-01

    西藏飞蝗是川西北草原主要的生物灾害之一,近年来平均危害面积在7.5万 hm2左右,且呈现出逐年加重趋势。为加大对西藏飞蝗的防治力度,试验应用瑞·苏生防剂、2%阿维·苏云菌可湿性粉剂、1%苦参碱可溶液剂3种生物农药分别对西藏飞蝗进行小区和大面积防治试验,比较3种生物药剂的防治效果。结果表明,3种生物农药对西藏飞蝗的小区试验防治效果在89.99%~92.12%之间,大面积防治效果在86.50%~92.41%之间,均具有较高的防效,可作为防治川西草原西藏飞蝗的选用药剂。%Locusta migratoria tibetensis is one of the main biological disasters in northwest Sichuan grassland.Dur-ing the past years,the annual damaged grassland area was 75 thousand hectares,and presents the increasing trend year by year.In order to effectively control L .migratoria tibetensis ,three biological pesticides were used for con-trolling L .migratoria tibetensis by plot experiments and large-area field trials.The control efficacies of the three biological pesticides are 89.99%-92.12% and 86.50%-92.41% in plot experiments and field trials,respective-ly,which indicates that the three biological pesticides all can be used for controlling L .migratoria tibetensis .

  14. State-of-the-art exposure chamber for highly controlled and reproducible THz biological effects studies

    Science.gov (United States)

    Cerna, Cesario Z.; Elam, David P.; Echchgadda, Ibtissam; Sloan, Mark A.; Wilmink, Gerald J.

    2014-03-01

    Terahertz (THz) imaging and sensing technologies are increasingly being used at international airports for security screening purposes and at major medical centers for cancer and burn diagnosis. The emergence of new THz applications has directly resulted in an increased interest regarding the biological effects associated with this frequency range. Knowledge of THz biological effects is also desired for the safe use of THz systems, identification of health hazards, and development of empirically-based safety standards. In this study, we developed a state-of-the-art exposure chamber that allowed for highly controlled and reproducible studies of THz biological effects. This innovative system incorporated an industry grade cell incubator system that permitted a highly controlled exposure environment, where temperatures could be maintained at 37 °C +/- 0.1 °C, carbon dioxide (CO2) levels at 5% +/- 0.1%, and relative humidity (RH) levels at 95% +/- 1%. To maximize the THz power transmitted to the cell culture region inside the humid incubator, a secondary custom micro-chamber was fabricated and incorporated into the system. This micro-chamber shields the THz beam from the incubator environment and could be nitrogen-purged to eliminate water absorption effects. Additionally, a microscope that allowed for real-time visualization of the live cells before, during, and after THz exposure was integrated into the exposure system.

  15. Interaction of Ulocladium atrum, a Potential Biological Control Agent, with Botrytis cinerea and Grapevine Plantlets

    Directory of Open Access Journals (Sweden)

    Sébastien Ronseaux

    2013-09-01

    Full Text Available The effectiveness of biological control agent, Ulocladium atrum (isolates U13 and U16 in protecting Vitis vinifera L. cv. Chardonnay against gray mold disease caused by Botrytis cinerea, and simulation of the foliar defense responses was investigated. A degraded mycelium structure during cultural assay on potato dextrose agar revealed that U. atrum isolates U13 and U16 were both antagonistic to B. cinerea, mainly when isolates were inoculated two days before Botrytis. Under in vitro conditions, foliar application of U. atrum protected grapevine leaves against gray mold disease. An increase in chitinase activity was induced by the presence of U. atrum isolates indicating that the biological control agents triggered plant defense mechanisms. Moreover, U13 has the potential to colonize the grapevine plantlets and to improve their growth. The ability of U. atrum isolates to exhibit an antagonistic effect against B. cinerea in addition to their aptitude to induce plant resistance and to promote grapevine growth may explain a part of their biological activity. Hence, this study suggests that U. atrum provides a suitable biocontrol agent against gray mold in grapevines.

  16. Perspectives on the potential of entomopathogenic fungi in biological control of ticks.

    Science.gov (United States)

    Fernandes, Éverton K K; Bittencourt, Vânia R E P; Roberts, Donald W

    2012-03-01

    Ticks are serious health threats for humans, and both domestic and wild animals. Ticks are controlled mostly by application of chemical products; but these acaricides have several negative side effects, including toxicity to animals, environmental contamination, and induction of chemical resistance in some tick populations. Entomopathogenic fungi infect arthropods in nature and can occur at enzootic or epizootic levels in their host populations. Laboratory studies clearly demonstrate that these fungi can cause high mortality in all developmental stages of several tick species, and also reduce oviposition of infected engorged females. Tick mortality following application of fungi in the field, however, often is less than that suggested by laboratory tests. This is due to many negative biotic and climatic factors. To increase efficacy of fungal agents for biological control of ticks under natural conditions, several points need consideration: (1) select effective isolates (viz., high virulence; and tolerance to high temperature, ultraviolet radiation and desiccation); (2) understand the main factors that affect virulence of fungal isolates to their target arthropods including the role of toxic metabolites of the fungal isolates; and (3) define with more precision the immune response of ticks to infection by entomopathogenic fungi. The current study reviews recent literature on biological control of ticks, and comments on the relevance of these results to advancing the development of fungal biocontrol agents, including improving formulation of fungal spores for use in tick control, and using entomopathogenic fungi in integrated pest (tick) management programs.

  17. Phenotypic charactheristics of fluorescent pseudomonss, biological control agent of lincat disease of temanggung tobacco

    Directory of Open Access Journals (Sweden)

    NINING NURUL AZIZAH

    2007-04-01

    Full Text Available Fluorescent pseudomonass isolated from local plants-rishosphere in temanggung controlled lincat disease of tobacco. This report describe phenotypic charactheristics of the bacteria in order to be used as a base for the development of the bacteria as a biological control agent of lincat disease. Phenotypic charactheristics of six isolates of fluorescent Pseudomonass which controlled lincat disease in the field were determined in the laboratory of Plant Bacteriology, Faculty of Agriculture, Gadjah Mada University. Plant pathogenicity tests were conducted by hypersensitive reaction into tobacco leaf and inoculation to tobacco plants. Antagonism test between fluorescent Pseudomonass and other candidate of biological control agents were also conducted. The results indicated that the bacteria were rod shape, Gram negative, positive reaction in catalase and oxidase tests. Nitrate reduce to nitrite, arginine was hydrolysed, fluorescent pigment were produced on King’s B medium, levan formation positive and all bacteria denitrifiy. The bacteria used urea, tween 80 and amylum were not hydrolised, poly--hydroxybutyrate was not accumulated in the cells. Negative reactions were observed for lysine decarboxylation, indol production, VP/MR reaction, and gelatn liquefation. Some compounds could be used as solely carbon sources. All isolates grew on the medium containing 2% NaCl. The best pH for growth was 6-7 and all isolates grew at 20-41C. Negative result were obtained for hypersensitive reaction and pathogenicity tests.

  18. The role of bacillus-based biological control agents in integrated pest management systems: plant diseases.

    Science.gov (United States)

    Jacobsen, B J; Zidack, N K; Larson, B J

    2004-11-01

    ABSTRACT Bacillus-based biological control agents (BCAs) have great potential in integrated pest management (IPM) systems; however, relatively little work has been published on integration with other IPM management tools. Unfortunately, most research has focused on BCAs as alternatives to synthetic chemical fungicides or bactericides and not as part of an integrated management system. IPM has had many definitions and this review will use the national coalition for IPM definition: "A sustainable approach to managing pests by combining biological, cultural, physical and chemical tools in a way that minimizes economic, health and environmental risks." This review will examine the integrated use of Bacillus-based BCAs with disease management tools, including resistant cultivars, fungicides or bactericides, or other BCAs. This integration is important because the consistency and degree of disease control by Bacillus-based BCAs is rarely equal to the control afforded by the best fungicides or bactericides. In theory, integration of several tools brings stability to disease management programs. Integration of BCAs with other disease management tools often provides broader crop adaptation and both more efficacious and consistent levels of disease control. This review will also discuss the use of Bacillus-based BCAs in fungicide resistance management. Work with Bacillus thuringiensis and insect pest management is the exception to the relative paucity of reports but will not be the focus of this review.

  19. Control of the C. albicans cell wall damage response by transcriptional regulator Cas5.

    Directory of Open Access Journals (Sweden)

    Vincent M Bruno

    2006-03-01

    Full Text Available The fungal cell wall is vital for growth, development, and interaction of cells with their environment. The response to cell wall damage is well understood from studies in the budding yeast Saccharomyces cerevisiae, where numerous cell wall integrity (CWI genes are activated by transcription factor ScRlm1. Prior evidence suggests the hypothesis that both response and regulation may be conserved in the major fungal pathogen Candida albicans. We have tested this hypothesis by using a new C. albicans genetic resource: we have screened mutants defective in putative transcription factor genes for sensitivity to the cell wall biosynthesis inhibitor caspofungin. We find that the zinc finger protein CaCas5, which lacks a unique ortholog in S. cerevisiae, governs expression of many CWI genes. CaRlm1 has a modest role in this response. The transcriptional coactivator CaAda2 is also required for expression of many CaCas5-dependent genes, as expected if CaCas5 recruits CaAda2 to activate target gene transcription. Many caspofungin-induced C. albicans genes specify endoplasmic reticulum and secretion functions. Such genes are not induced in S. cerevisiae, but promote its growth in caspofungin. We have used a new resource to identify a key C. albicans transcriptional regulator of CWI genes and antifungal sensitivity. Our gene expression findings indicate that both divergent and conserved response genes may have significant functional roles. Our strategy may be broadly useful for identification of pathogen-specific regulatory pathways and critical response genes.

  20. The Biological Effectiveness of Silicon Ions is Significantly Higher than Iron Ions for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, or Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET Si ions ranged from 48 to 158 keV/micron. Doses delivered were in the 10 to 200 cGy range. Dose response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600 Mev/u beam and 170 MeV/u beam produced the highest RBE(sub max) value for Si ions. For both ions the RBE(sub max) values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreased with further increase in LET.

  1. [Biological activities of exogenous polysaccharides via controlling endogenous proteoglycan metabolism in vascular endothelial cells].

    Science.gov (United States)

    Sato, Tomoko; Yamamoto, Chika; Fujiwara, Yasuyuki; Kaji, Toshiyuki

    2008-05-01

    Proteoglycan contains glycosmainoglycans, which are endogenous sulfated polysaccharides, in the molecule. The metabolism of proteoglycans regulates cell behavior and cellular events. It is possible that exogenous polysaccharide-related molecules exhibit their biological activities by two mechanisms. One is the interaction with cells and the other is the interaction with growth factors/cytokines that regulate proteoglycans. In this review, we describe sodium spirulan, a sulfated polysaccharide obtained from a hot-water extract of the blue-green alga Spirulina platensis, as an exogenous polysaccharide that stimulates the release of proteoglycans from vascular endothelial cells. Factors that regulate endothelial proteoglycan metabolism are also being described as possible target molecules of exogenous polysaccharides. Further research is required to obtain exogenous polysaccharide-related molecules that exhibit useful biological activities through controlling endothelial proteoglycan metabolism for protection against vascular lesions such as atheroslcerosis.

  2. The dangers of damage control orthopedics: a case report of vascular injury after femoral fracture external fixation

    Directory of Open Access Journals (Sweden)

    Staeheli Gregory R

    2012-03-01

    Full Text Available Abstract Background Placement of external fixation frames is an expedient and minimally invasive method of achieving bone and joint stability in the setting of severe trauma. Although anatomic safe zones are established for placement of external fixation pins, neurovascular structures may be at risk in the setting of severe trauma. Case report We present a case of a 21-year-old female involved in a high speed motorcycle accident who sustained a Type IIIB open segmental femur fracture with significant thigh soft tissue injury. Damage control orthopedic principals were applied and a spanning external fixator placed for provisional femoral stabilization. Intraoperative vascular examination noted absent distal pulses, however an intraoperative angiogram showed arterial flow distal to the trifurcation. Immediately postoperatively the dorsalis pedis pulse was detected using Doppler ultrasound but was then non-detectable over the preceding 12-hours. Femoral artery CT angiogram revealed iatrogenic superficial femoral artery occlusion due to kinking of the artery around an external fixator pin. Although the pin causing occlusion was placed under direct visualization, the degree of soft tissue injury altered the appearance of the local anatomy. The pin was subsequently revised allowing the artery to travel in its anatomic position, restoring perfusion. Conclusion This case highlights the dangers associated with damage control orthopedics, especially when severe trauma alters normal local anatomy. Careful assessment of external fixator pin placement is crucial to avoiding iatrogenic injury. We recommend a thorough vascular examination pre-operatively and prior to leaving the operating room, which allows any abnormalities to be further evaluated while the patient remains in a controlled environment. When an unrecognized iatrogenic injury occurs, serial postoperative neurovascular examinations allow early recognition and corrective actions.

  3. Dual-tasking postural control in patients with right brain damage.

    Science.gov (United States)

    Bourlon, Clémence; Lehenaff, Laurent; Batifoulier, Cécile; Bordier, Aurélie; Chatenet, Aurélia; Desailly, Eric; Fouchard, Christian; Marsal, Muriel; Martinez, Marianne; Rastelli, Federica; Thierry, Anaïs; Bartolomeo, Paolo; Duret, Christophe

    2014-01-01

    The control of dual-tasking effects is a daily challenge in stroke neurorehabilitation. It maybe one of the reasons why there is poor functional prognosis after a stroke in the right hemisphere, which plays a dominant role in posture control. The purpose of this study was to explore cognitive motor interference in right brain-lesioned and healthy subjects maintaining a standing position while performing three different tasks: a control task, a simple attentional task and a complex attentional task. We measured the sway area of the subjects on a force platform, including the center of pressure and its displacements. Results showed that stroke patients presented a reduced postural sway compared to healthy subjects, who were able to maintain their posture while performing a concomitant attentional task in the same dual-tasking conditions. Moreover, in both groups, the postural sway decreased with the increase in attentional load from cognitive tasks. We also noticed that the stability of stroke patients in dual-tasking conditions increased together with the weight-bearing rightward deviation, especially when the attentional load of the cognitive tasks and lower limb motor impairments were high. These results suggest that stroke patients and healthy subjects adopt a similar postural regulation pattern aimed at maintaining stability in dual-tasking conditions involving a static standing position and different attention-related cognitive tasks. Our results indicate that attention processes might facilitate static postural control.

  4. Systems biology approach identifies the kinase Csnk1a1 as a regulator of the DNA damage response in embryonic stem cells

    DEFF Research Database (Denmark)

    Carreras Puigvert, Jordi; von Stechow, Louise; Siddappa, Ramakrishnaiah

    2013-01-01

    In pluripotent stem cells, DNA damage triggers loss of pluripotency and apoptosis as a safeguard to exclude damaged DNA from the lineage. An intricate DNA damage response (DDR) signaling network ensures that the response is proportional to the severity of the damage. We combined an RNA interference...... screen targeting all kinases, phosphatases, and transcription factors with global transcriptomics and phosphoproteomics to map the DDR in mouse embryonic stem cells treated with the DNA cross-linker cisplatin. Networks derived from canonical pathways shared in all three data sets were implicated in DNA...... damage repair, cell cycle and survival, and differentiation. Experimental probing of these networks identified a mode of DNA damage-induced Wnt signaling that limited apoptosis. Silencing or deleting the p53 gene demonstrated that genotoxic stress elicited Wnt signaling in a p53-independent manner...

  5. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins.

    Science.gov (United States)

    Alberts, Johanna F; van Zyl, Willem H; Gelderblom, Wentzel C A

    2016-01-01

    Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Post-harvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although, the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, post-harvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP) production, and storage management, together with

  6. Biologically Based Methods for Control of Fumonisin-producing Fusarium species and Reduction of the Fumonisins

    Directory of Open Access Journals (Sweden)

    Johanna Francina Alberts

    2016-04-01

    Full Text Available Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin contamination of maize adversely affect international trade and economy with deleterious effects on human and animal health. In developed countries high standards of the major food suppliers and retailers are upheld and regulatory controls deter the importation and local marketing of fumonisin-contaminated food products. In developing countries regulatory measures are either lacking or poorly enforced, due to food insecurity, resulting in an increased mycotoxin exposure. The lack and poor accessibility of effective and environmentally safe control methods have led to an increased interest in practical and biological alternatives to reduce fumonisin intake. These include the application of natural resources, including plants, microbial cultures, genetic material thereof or clay minerals pre- and postharvest. Pre-harvest approaches include breeding for resistant maize cultivars, introduction of biocontrol microorganisms, application of phenolic plant extracts, and expression of antifungal proteins and fumonisin degrading enzymes in transgenic maize cultivars. Postharvest approaches include the removal of fumonisins by natural clay adsorbents and enzymatic degradation of fumonisins through decarboxylation and deamination by recombinant carboxylesterase and aminotransferase enzymes. Although the knowledge base on biological control methods has expanded, only a limited number of authorized decontamination products and methods are commercially available. As many studies detailed the use of natural compounds in vitro, concepts in reducing fumonisin contamination should be developed further for application in planta and in the field pre-harvest, postharvest, and during storage and food-processing. In developed countries an integrated approach, involving good agricultural management practices, hazard analysis and critical control point (HACCP production and storage management

  7. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  8. A controlled rate freeze/thaw system for cryopreservation of biological materials

    Science.gov (United States)

    Anselmo, V. J.; Harrison, R. G.

    1979-01-01

    A system which allows programmable temperature-time control for a 5 cc sample volume of an arbitrary biological material was constructed. Steady state and dynamic temperature control was obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container was totally immersed into a cold heat sink. Sample volume thermodynamic property data were obtained by measurements of heater power and heat flux through the container walls. Using a mixture of dry ice and alcohol at -79 C, sample volume was controlled from +40 C to -60 C at rates from steady state to + or - 65 C/min. Steady state temperature precision was better than 0.2 C while the dynamic capability depends on the temperature rate of change as well as the thermal mass of the sample and the container.

  9. [Nematophagous fungi used for the biological control of gastrointestinal nematodes in livestock and administration routes].

    Science.gov (United States)

    Sagüés, María Federica; Purslow, Peter; Fernández, Silvina; Fusé, Luis; Iglesias, Lucía; Saumell, Carlos

    2011-01-01

    The control of gastrointestinal nematodes relies at present mostly on antihelmintic treatments using synthetic molecules. This approach, however, has led to the appearance of resistance to some types of antihelmintics which, together with the need to cut down on the use of chemicals, has fostered the development of other control methods, such as biological control, which is the use of living organisms that are naturally antagonistic to an unwanted species. Among the natural enemies of nematode parasitic larvae is the microfungus Duddingtonia flagrans. Research has shown the ability of this fungus to reduce the number of nematode larvae in faeces, the ability of its chlamydospores to survive the passage through the gastrointestinal tract of livestock and, moreover, to keep its germinative ability, thus facilitating the development of formulations. The present review looks at the species currently used and the different ways of administering already tested nematophagous fungi.

  10. A cross-sectional case control study on genetic damage in individuals residing in the vicinity of a mobile phone base station.

    Science.gov (United States)

    Gandhi, Gursatej; Kaur, Gurpreet; Nisar, Uzma

    2015-01-01

    Mobile phone base stations facilitate good communication, but the continuously emitting radiations from these stations have raised health concerns. Hence in this study, genetic damage using the single cell gel electrophoresis (comet) assay was assessed in peripheral blood leukocytes of individuals residing in the vicinity of a mobile phone base station and comparing it to that in healthy controls. The power density in the area within 300 m from the base station exceeded the permissive limits and was significantly (p = 0.000) higher compared to the area from where control samples were collected. The study participants comprised 63 persons with residences near a mobile phone tower, and 28 healthy controls matched for gender, age, alcohol drinking and occupational sub-groups. Genetic damage parameters of DNA migration length, damage frequency (DF) and damage index were significantly (p = 0.000) elevated in the sample group compared to respective values in healthy controls. The female residents (n = 25) of the sample group had significantly (p = 0.004) elevated DF than the male residents (n = 38). The linear regression analysis further revealed daily mobile phone usage, location of residence and power density as significant predictors of genetic damage. The genetic damage evident in the participants of this study needs to be addressed against future disease-risk, which in addition to neurodegenerative disorders, may lead to cancer.

  11. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J;

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological...... control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility....

  12. Biological and chemical control of the Asiatic garden beetle, Maladera castanea (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Koppenhöfer, Albrecht M; Fuzy, Eugene M

    2003-08-01

    The efficacy of chemical and biological control agents against larvae of the Asiatic garden beetle, Maladera castanea (Arrow), in turfgrass under laboratory, greenhouse, and field conditions were determined. In field trials where insecticides were applied preventively against eggs and young larvae, the molt-accelerating compound halofenozide and the neonicotinoids imidacloprid and thiamethoxam were ineffective, whereas another neonicotinoid, clothianidin, provided 62-93% control. In greenhouse experiments against third instars in pots, the carbamate insecticide carbaryl was ineffective, whereas the organophosphate trichlorfon provided 71-83% control. In laboratory, greenhouse, and field experiments, the entomopathogenic nematode Heterorhabditis bacteriophora Poinar and Steinernema glaseri Steiner (not tested in the field) were ineffective against third instars, whereas S. scarabaei Stock & Koppenhöfer provided excellent control. In microplot field experiments at a rate of 2.5 x 10(9) infective juveniles per ha, H. bacteriophora provided 12-33% control and S. scarabaei 71-86% control. Combinations of S. scarabaei and imidacloprid did not provide more control of third instars compared with S. scarabaei alone.

  13. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control.

    Science.gov (United States)

    Kocaturk, Mehmet; Gulcur, Halil Ozcan; Canbeyli, Resit

    2015-01-01

    In this article, we introduce the Bioinspired Neuroprosthetic Design Environment (BNDE) as a practical platform for the development of novel brain-machine interface (BMI) controllers, which are based on spiking model neurons. We built the BNDE around a hard real-time system so that it is capable of creating simulated synapses from extracellularly recorded neurons to model neurons. In order to evaluate the practicality of the BNDE for neuroprosthetic control experiments, a novel, adaptive BMI controller was developed and tested using real-time closed-loop simulations. The present controller consists of two in silico medium spiny neurons, which receive simulated synaptic inputs from recorded motor cortical neurons. In the closed-loop simulations, the recordings from the cortical neurons were imitated using an external, hardware-based neural signal synthesizer. By implementing a reward-modulated spike timing-dependent plasticity rule, the controller achieved perfect target reach accuracy for a two-target reaching task in one-dimensional space. The BNDE combines the flexibility of software-based spiking neural network (SNN) simulations with powerful online data visualization tools and is a low-cost, PC-based, and all-in-one solution for developing neurally inspired BMI controllers. We believe that the BNDE is the first implementation, which is capable of creating hybrid biological/in silico neural networks for motor neuroprosthetic control and utilizes multiple CPU cores for computationally intensive real-time SNN simulations.

  14. Use of ryegrass strips to enhance biological control of aphids by ladybirds in wheat fields

    Institute of Scientific and Technical Information of China (English)

    Zhao-Ke Dong; Feng-Juan Gao; Run-Zhi Zhang

    2012-01-01

    Non-crop habitats may play a vital role in conservation biological control.This study tested the effect of ryegrass (Lolium muitiflorum L.) strips on aphid and ladybird populations in adjacent winter wheat fields.The field experiment was conducted in three ryegrass-margin wheat plots and three control plots in 2010 in North China.In spring,the same aphid species,Sitobion miscanthi (Takahashi),was found in both the ryegrass strips and wheat plots.The population density of ladybirds in the ryegrass strips (3.5±0.9/m2) was significantly higher than in the wheat plots (1.5±0.5/m2).We cut the ryegrass,forcing the ladybirds to migrate to the wheat fields.Three and eight days after cutting the ryegrass,the aphid numbers in the ryegrass-margin wheat plots decreased significantly:they were 19.9% and 53.6%,respectively,lower than in control plots.In the early period of ladybird population development,the percentage of larvae was greater in the ryegrass-margin wheat plots than in controls,and the peak number of pupae in the ryegrass-margin wheat plots occurred 5 days earlier than in the control plots.The results suggest that ryegrass strips may promote the development of ladybird populations.Cutting ryegrass can manipulate ladybirds to enhance biological aphid control in wheat fields.The efficiency of this management approach is discussed.

  15. Laboratory Study on Biological Control of Ticks (Acari: Ixodidae by Entomopathogenic Indigenous Fungi (Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    M Abdigoudarzi

    2009-12-01

    Full Text Available Background: Chemical control method using different acaricides as spray, dipping solution or pour-on is routinely used for controlling ticks. Biological control agents are favorable due to their safety for animals and environment. Entomopathogenic fungi such as Beauveria bassiana are well known for controlling ticks. In this study, two Iranian indigenous strains of B. bassiana (B. bassiana 5197 and B. bassiana Evin were selected and grown on specific me­dia. The pathogenic effects of these strains were evaluated on adult stages of two Iranian Ixodidae members (H. anatolicum anatolicum Koch 1844, and H. marginatum Koch 1844 by dipping method."nMethods: Two Iranian strains of Beauveria bassiana (Beauveria bassiana 5197 and Beauveria bassiana Evin were selected and were grown successfully on specific media. The pathogenic effects of these strains were evaluated on adult stages of Iranian Ixodidae members such as, Hyalomma anatolicum anatolicum and H. marginatum by dipping method (these ticks were grown up at laboratory conditions during 2002 up to 2003 and still it is continued ."nResults: There was no effect of strain 5197 on mortality or fecundity rates for ticks. There was acute phase sign of paralysis in test group after dipping ticks in suspension made from Evin strain of B. bassiana. In addition, the test groups were totally died after four months, but the control groups survived for six months."nConclusion: High concentration of fungal spores is needed for inducing fungal infection. Additional study using different strains and fungi on Iranian ticks is proposed.   Keywords: Biological control, fungi, Beauveria bassiana, ticks, Ixodidae, Iran

  16. Dynamic response of the Trinity River Relief Bridge to controlled pile damage: modeling and experimental data analysis comparing Fourier and Hilbert Huang techniques

    Science.gov (United States)

    Zhang, Ray Ruichong; King, Robert; Olson, Larry; Xu, You-Lin

    2005-08-01

    This paper presents the implementation of a method for nonlinear, nonstationary data processing, namely the Hilbert-Huang transform (HHT) in traditional vibration-based approaches to characterizing structural damage and shows the frequency signature of local structural damage in nonstationary vibration recordings. In particular, following the review of traditional approaches to characterizing structural damage from nonstationary vibration recordings, this study first offers the justifications of the HHT as an alternative and complementary data process in addressing the nonstationarity of the vibration. With the use of recordings from controlled field vibration tests of substructures in the Trinity River Relief Bridge in Texas in its intact, minor- and severe-damage pile states, this study then shows that the HHT-based approach can single out some natural frequencies of the structure from a mixed frequency content in recordings that also contain the time-dependent excitation and noise frequencies. Subsequently, this study exposes that the frequency downshift for the damaged pile relative to the undamaged one is an indicative index for the damage extent. The above results are also validated by an ANSYS model-based analysis. Finally, a comprehensive HHT-based characterization of structural damage is discussed, and the potential use for cost-effective, efficient structural damage diagnosis procedures and health-monitoring systems is provided.

  17. Biologically inspired kinematic synergies enable linear balance control of a humanoid robot.

    Science.gov (United States)

    Hauser, Helmut; Neumann, Gerhard; Ijspeert, Auke J; Maass, Wolfgang

    2011-05-01

    Despite many efforts, balance control of humanoid robots in the presence of unforeseen external or internal forces has remained an unsolved problem. The difficulty of this problem is a consequence of the high dimensionality of the action space of a humanoid robot, due to its large number of degrees of freedom (joints), and of non-linearities in its kinematic chains. Biped biological organisms face similar difficulties, but have nevertheless solved this problem. Experimental data reveal that many biological organisms reduce the high dimensionality of their action space by generating movements through linear superposition of a rather small number of stereotypical combinations of simultaneous movements of many joints, to which we refer as kinematic synergies in this paper. We show that by constructing two suitable non-linear kinematic synergies for the lower part of the body of a humanoid robot, balance control can in fact be reduced to a linear control problem, at least in the case of relatively slow movements. We demonstrate for a variety of tasks that the humanoid robot HOAP-2 acquires through this approach the capability to balance dynamically against unforeseen disturbances that may arise from external forces or from manipulating unknown loads.

  18. Biological and chemical treatment of Cedrela fissilis seeds for controlling Rhizoctonia sp.

    Directory of Open Access Journals (Sweden)

    Marília Lazarotto

    2013-03-01

    Full Text Available This research evaluated the effect of a fungicide and a biological product, singly and combined, for the control of pathogens, especially Rhizoctonia sp., in seeds of Cedrela fissilis. Before the seeds treatment, the inoculation of Rhizoctonia sp., isolated from C. fissilis seeds in blotter-test and considered pathogenic for the specie, was done on half of the seeds used. After, the seeds were subjected to treatments with powder organic product based on Trichoderma spp. (singly, powder fungicide Captan (also singly, combination of two products in a maximum dose considered (100% and combination of half dose of both products, besides the control. After the seeds treatments the following tests were done: germination, emergence in vermiculite, with evaluations of seedlings and sanitary by blotter-test. No treatment could eradicate Rhizoctonia sp. inoculated seed, but the treatment with 100% of the dose of both products reduced its incidence. The combination of chemical and biological products can be a viable alternative for the treatment of C. fissililis seeds, especially in the control of Rhizoctonia sp.

  19. Early pest development and loss of biological control are associated with urban warming.

    Science.gov (United States)

    Meineke, Emily K; Dunn, Robert R; Frank, Steven D

    2014-11-01

    Climate warming is predicted to cause many changes in ectotherm communities, one of which is phenological mismatch, wherein one species' development advances relative to an associated species or community. Phenological mismatches already lead to loss of pollination services, and we predict that they also cause loss of biological control. Here, we provide evidence that a pest develops earlier due to urban warming but that phenology of its parasitoid community does not similarly advance. This mismatch is associated with greater egg production that likely leads to more pests on trees.

  20. Clinical light damage to the eye

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.

    1987-01-01

    This book contains four sections: The Nature of Light and of Light Damage to Biological Tissues; Light Damage to the Eye; Protecting the Eye from Light Damage; and Overview of Light Damage to the Eye. Some of the paper titles are: Ultraviolet-Absorbing Intraocular Lens Implants; Phototoxic Changes in the Retina; Light Damage to the Lens; and Radiation, Light, and Sight.

  1. Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity

    Directory of Open Access Journals (Sweden)

    Shahid Ali Ahmad

    2012-01-01

    Full Text Available Entomopathogenic fungi vary considerably in their mode of action and virulence. Successful infection depends primarily on the adherence and penetration ability of a fungus to the host integuments. A variety of extracellular enzymes is produced during the degradation of insect integument. The attempts to control insects have changed over time from chemicals to natural control methods. This is why the development of natural methods of insect control or biopesticides, is preferred. By the use of fungal entomopathogens, insect pests can be controlled. There is no doubt that insects have been used for many years, but their effective use in the field remains elusive. However, their additional role in nature has also been discovered. Comparison of entomopathogens with conventional chemical pesticides depends on their efficiency and cost. In addition to efficiency, there are advantages in using microbial control agents, such as human safety and other non-target organisms; pesticide residues are minimized in food and biodiversity increased in managed ecosystems. In the present review the pathogenicity and virulence of entomopathogenic fungi and their role as biological control agents using biotechnology will be discussed.

  2. Survey of locomotion control of legged robots inspired by biological concept

    Institute of Scientific and Technical Information of China (English)

    WU QiDi; LIU ChengJu; ZHANG JiaQi; CHEN QiJun

    2009-01-01

    Compared with wheeled mobile robots, legged robots can easily step over obstacles and walk through rugged ground. They have more flexible bodies and therefore, can deal with complex environment. Nev-ertheless, some other issues make the locomotion control of legged robots a much complicated task, such as the redundant degree of freedoms and balance keeping. From literatures, locomotion control has been solved mainly based on programming mechanism. To use this method, walking trajectories for each leg and the gaits have to be designed, and the adaptability to an unknown environment cannot be guaranteed. From another aspect, studying and simulating animals' walking mechanism for engi-neering application is an efficient way to break the bottleneck of locomotion control for legged robots. This has attracted more and more attentions. Inspired by central pattern generator (CPG), a control method has been proved to be a successful attempt within this scope. In this paper, we will review the biological mechanism, the existence evidences, and the network properties of CPG. From the en-gineering perspective, we will introduce the engineering simulation of CPG, the property analysis, and the research progress of CPG inspired control method in locomotion control of legged robots. Then, in our research, we will further discuss on existing problems, hot issues, and future research directions in this field.

  3. Reliability of unstable periodic orbit based control strategies in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Nagender; Singh, Harinder P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Hasse, Maria [Institut für Höchstleistungsrechnen, Universität Stuttgart, D-70569 Stuttgart (Germany); Biswal, B. [Cluster Innovation Center, University of Delhi, Delhi 110007 (India); Sri Venkateswara College, University of Delhi, Delhi 110021 (India)

    2015-04-15

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  4. Reliability of unstable periodic orbit based control strategies in biological systems

    Science.gov (United States)

    Mishra, Nagender; Hasse, Maria; Biswal, B.; Singh, Harinder P.

    2015-04-01

    Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.

  5. Cyprinid herpesvirus 3 and its evolutionary future as a biological control agent for carp in Australia.

    Science.gov (United States)

    McColl, Kenneth A; Sunarto, Agus; Holmes, Edward C

    2016-12-08

    Biological invasions are a major threat to global biodiversity. Australia has experienced many invasive species, with the common carp (Cyprinus carpio L.) a prominent example. Cyprinid herpesvirus 3 (CyHV-3) has been proposed as a biological control (biocontrol) agent for invasive carp in Australia. Safety and efficacy are critical factors in assessing the suitability of biocontrol agents, and extensive host-specificity testing suggests that CyHV-3 is safe. Efficacy depends on the relationship between virus transmissibility and virulence. Based on observations from natural outbreaks, as well as the biology of virus-host interactions, we hypothesize that (i) close contact between carp provides the most efficient transmission of virus, (ii) transmission occurs at regular aggregations of carp that favour recrudescence of latent virus, and (iii) the initially high virulence of CyHV-3 will decline following its release in Australia. We also suggest that the evolution of carp resistance to CyHV-3 will likely necessitate the future release of progressively more virulent strains of CyHV-3, and/or an additional broad-scale measure(s) to complement the effect of the virus. If the release of CyHV-3 does go ahead, longitudinal studies are required to track the evolution of a virus-host relationship from its inception, and particularly the complex interplay between transmission, virulence and host resistance.

  6. Quantifying uncertainty in partially specified biological models: how can optimal control theory help us?

    Science.gov (United States)

    Adamson, M W; Morozov, A Y; Kuzenkov, O A

    2016-09-01

    Mathematical models in biology are highly simplified representations of a complex underlying reality and there is always a high degree of uncertainty with regards to model function specification. This uncertainty becomes critical for models in which the use of different functions fitting the same dataset can yield substantially different predictions-a property known as structural sensitivity. Thus, even if the model is purely deterministic, then the uncertainty in the model functions carries through into uncertainty in model predictions, and new frameworks are required to tackle this fundamental problem. Here, we consider a framework that uses partially specified models in which some functions are not represented by a specific form. The main idea is to project infinite dimensional function space into a low-dimensional space taking into account biological constraints. The key question of how to carry out this projection has so far remained a serious mathematical challenge and hindered the use of partially specified models. Here, we propose and demonstrate a potentially powerful technique to perform such a projection by using optimal control theory to construct functions with the specified global properties. This approach opens up the prospect of a flexible and easy to use method to fulfil uncertainty analysis of biological models.

  7. Decreased functional diversity and biological pest control in conventional compared to organic crop fields.

    Science.gov (United States)

    Krauss, Jochen; Gallenberger, Iris; Steffan-Dewenter, Ingolf

    2011-01-01

    Organic farming is one of the most successful agri-environmental schemes, as humans benefit from high quality food, farmers from higher prices for their products and it often successfully protects biodiversity. However there is little knowledge if organic farming also increases ecosystem services like pest control. We assessed 30 triticale fields (15 organic vs. 15 conventional) and recorded vascular plants, pollinators, aphids and their predators. Further, five conventional fields which were treated with insecticides were compared with 10 non-treated conventional fields. Organic fields had five times higher plant species richness and about twenty times higher pollinator species richness compared to conventional fields. Abundance of pollinators was even more than one-hundred times higher on organic fields. In contrast, the abundance of cereal aphids was five times lower in organic fields, while predator abundances were three times higher and predator-prey ratios twenty times higher in organic fields, indicating a significantly higher potential for biological pest control in organic fields. Insecticide treatment in conventional fields had only a short-term effect on aphid densities while later in the season aphid abundances were even higher and predator abundances lower in treated compared to untreated conventional fields. Our data indicate that insecticide treatment kept aphid predators at low abundances throughout the season, thereby significantly reducing top-down control of aphid populations. Plant and pollinator species richness as well as predator abundances and predator-prey ratios were higher at field edges compared to field centres, highlighting the importance of field edges for ecosystem services. In conclusion organic farming increases biodiversity, including important functional groups like plants, pollinators and predators which enhance natural pest control. Preventative insecticide application in conventional fields has only short-term effects on aphid

  8. Biological and Cultural Control of Olive Fruit Fly in California---Utilization of Parasitoids from USDA-APHIS-PPQ, Guatemala and Cultural Control Methods

    Science.gov (United States)

    The parasitoid Psytallia humilis = P. cf. concolor (Szépligeti) was reared on sterile Mediterranean fruit fly, Ceratitis capitata (Wiedemann), larvae at the USDA, APHIS, PPQ, Moscamed biological control laboratory in San Miguel Petapa, Guatemala and shipped to the USDA, ARS, Parlier, for biological ...

  9. Præhospital behandling af svært tilskadekomne patienter med fokus på damage control-kirurgi

    DEFF Research Database (Denmark)

    Sørensen, Anne Marie; Larsen, Claus Falck; Steinmetz, Jacob

    2011-01-01

    The majority of patients undergoing damage control surgery initially receive prehospital treatment. Bleeding causes 40% of trauma deaths, half of which happen in the prehospital setting. Future research and improved treatment before hospital admission should focus on control of the bleeding, avoi...

  10. Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA)

    Science.gov (United States)

    Williams, Amanda J.; Buck, Brenda J.; Soukup, Deborah A.; Merkler, Douglas J.

    2013-08-01

    Biological soil crusts (BSCs) are bio-sedimentary features that play critical geomorphic and ecological roles in arid environments. Extensive mapping, surface characterization, GIS overlays, and statistical analyses explored relationships among BSCs, geomorphology, and soil characteristics in a portion of the Mojave Desert (USA). These results were used to develop a conceptual model that explains the spatial distribution of BSCs. In this model, geologic and geomorphic processes control the ratio of fine sand to rocks, which constrains the development of three surface cover types and biogeomorphic feedbacks across intermontane basins. (1) Cyanobacteria crusts grow where abundant fine sand and negligible rocks form saltating sand sheets. Cyanobacteria facilitate moderate sand sheet activity that reduces growth potential of mosses and lichens. (2) Extensive tall moss-lichen pinnacled crusts are favored on early to late Holocene surfaces composed of mixed rock and fine sand. Moss-lichen crusts induce a dust capture feedback mechanism that promotes further crust propagation and forms biologically-mediated vesicular (Av) horizons. The presence of thick biogenic vesicular horizons supports the interpretation that BSCs are long-lived surface features. (3) Low to moderate density moss-lichen crusts grow on early Holocene and older geomorphic surfaces that display high rock cover and negligible surficial fine sand. Desert pavement processes and abiotic vesicular horizon formation dominate these surfaces and minimize bioturbation potential. The biogeomorphic interactions that sustain these three surface cover trajectories support unique biological communities and soil conditions, thereby sustaining ecological stability. The proposed conceptual model helps predict BSC distribution within intermontane basins to identify biologically sensitive areas, set reference conditions for ecological restoration, and potentially enhance arid landscape models, as scientists address impacts

  11. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    NARCIS (Netherlands)

    Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fliessbach, A.; Gunst, L.; Hedlund, K.; Mäder, P.; Mikola, J.; Robin, C.; Setälä, H.; Tatin-Froux, F.; Putten, van der W.H.; Scheu, S.

    2008-01-01

    Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological param

  12. High Host Specificity in Encarsia diaspidicola (Hymenoptera: Aphelinidae), a Biological Control Candidate Against the White Peach Scale in Hawaii

    Science.gov (United States)

    Pre-introductory host specificity tests were performed with Encarsia diaspidicola, a biological control candidate against the invasive white peach scale, Pseudaulacaspis pentagona. False oleander scale, P. cockerelli, coconut scale, Aspidiotus destructor, cycad scale, Aulacaspis yasumatsui, greenh...

  13. Damage and Control of Poisonous Weeds in Western Grassland of China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Bao-yu; SHI Zhi-cheng; LIU Zhong-yan; LU Hao; WANG Zhan-xin; SUN Li-sha; WAN Xue-pan; GUO Xi; ZHAO Yan-tao; WANG Jian-jun

    2010-01-01

    Western grassland is the main source of living and means of production of western inhabitants. For many years,desertification and poisonous-weeds growth in grassland were resulted from over-grazing, over-reclaiming, over-spading and population growth. Western natural ecological environment is destroyed severly. Meanwhile, it has restricted the sustainable development of animal husbandry. The fast spreading poisonous-weeds, which caused grassland ecology unbalance, is one of the considerable bioecology problems and an important index of grassland degeneration. Based on analysis and induction of previous data, this article introduced the situation of poisonous-weeds disaster of western grassland in recent decades, category and distribution of poisonous-weeds, integrated control and reasonable utilization.

  14. The DNA damage- and transcription-associated protein Paxip1 controls thymocyte development and emigration

    DEFF Research Database (Denmark)

    Callen, E.; Faryabi, R.B.; Daniel, Jeremy Austin;

    2012-01-01

    -mediated cleavage and repair during V(D)J recombination in CD4 CD8 DP thymocytes. Loss of PAXIP1 in developing thymocytes diminished Jα H3K4me3 and germline transcription, suppressed double strand break formation at 3' Jα segments, but resulted in accumulation of unresolved T cell receptor α-chain gene (Tcra......) breaks. Moreover, PAXIP1 was essential for release of mature single positive (SP) αβ T cells from the thymus through transcriptional activation of sphingosine-1-phosphate receptor S1pr1 as well as for natural killer T cell development. Thus, in addition to maintaining genome integrity during Tcra...... rearrangements, PAXIP1 controls distinct transcriptional programs during DP differentiation necessary for Tcra locus accessibility, licensing mature thymocytes for trafficking and natural killer T cell development. © 2012 Elsevier Inc....

  15. Aespoe Hard Rock Laboratory. Studies of factors that affect and controls the Excavation Damaged/Disturbed Zone

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Martin; Baeckstroem, Ann; Quanhong Feng (AaF - Berg och Maetteknik, Stockholm (Sweden)); Berglund, Johan (Vattenfall Power Consultant, Stockholm (Sweden)); Johansson, Malin; Mas Ivars, Diego (Itasca Geomekanik AB, Solna (Sweden)); Olsson, Mats (SweBefo, Stockholm (Sweden))

    2009-07-15

    A tunnel was developed at the Aespoe Hard Rock Laboratory (HRL) in 2003 purposely for a large in-situ rock mechanics experiment, the Aespoe Pillar Stability Experiment (APSE). The tunnel had a large height/width ratio with a circular floor, primarily to control the stress situation around the tunnel and concentrate the stresses under the floor. An extensive set of data for understanding the Excavation Damaged Zone (EDZ) was collected within section 47 of the tunnel. It consist of the blast design, blast sequences, convergence measurements during excavation, geological mapping of tunnel and cores, 3D-laser scanning of the tunnel geometry etc. Furthermore, in 2006, ultrasonic measurements along eight boreholes were carried out in order to estimate the extent of the EDZ in the tunnel. The collection of all these different information provides an opportunity to evaluate the mechanical damages caused by the excavation work. The overall aim with this project is to give feed-back to future planning of tunnelling on issues of importance for requirements with respect to minimising the EDZ in crystalline rock from the drill and blast method. A combination of the mapped geological features (tunnel and cores) and the geometry of the blasted tunnel obtained from the 3D-laser scanning were used to build a 3D model of the geology with emphasis on the geometry of the natural fractures. The rock mechanic response to the tunnelling was evaluated in a numerical model including the as-built geometry in combination with the 3D model of the geology. The modelling of the rock mechanical processes of importance for the EDZ could be calibrated against actual measurements. From observed changes in the ultrasonic wave velocity along the boreholes it was found that the locations of the velocity changes corresponded well with the location of the mapped fractures in the drill cores. This indicates that EDZ can be detected using the ultrasonic method with high accuracy. Furthermore, the

  16. Biological Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores

    Directory of Open Access Journals (Sweden)

    Alan Kergunteuil

    2016-11-01

    Full Text Available Sustainable agriculture is certainly one of the most important challenges at present, considering both human population demography and evidence showing that crop productivity based on chemical control is plateauing. While the environmental and health threats of conventional agriculture are increasing, ecological research is offering promising solutions for crop protection against herbivore pests. While most research has focused on aboveground systems, several major crop pests are uniquely feeding on roots. We here aim at documenting the current and potential use of several biological control agents, including micro-organisms (viruses, bacteria, fungi, and nematodes and invertebrates included among the macrofauna of soils (arthropods and annelids that are used against root herbivores. In addition, we discuss the synergistic action of different bio-control agents when co-inoculated in soil and how the induction and priming of plant chemical defense could be synergized with the use of the bio-control agents described above to optimize root pest control. Finally, we highlight the gaps in the research for optimizing a more sustainable management of root pests.

  17. Biological Control of Spreading Dayflower (Commelina diffusa with the Fungal Pathogen Phoma commelinicola

    Directory of Open Access Journals (Sweden)

    Clyde D. Boyette

    2015-10-01

    Full Text Available Greenhouse and field experiments showed that conidia of the fungal pathogen, Phoma commelinicola, exhibited bioherbicidal activity against spreading dayflower (Commelina diffusa seedlings when applied at concentrations of 106 to 109 conidia·mL−1. Greenhouse tests determined an optimal temperature for conidial germination of 25 °C–30 °C, and that sporulation occurred on several solid growth media. A dew period of ≥ 12 h was required to achieve 60% control of cotyledonary-first leaf growth stage seedlings when applications of 108 conidia·mL−1 were applied. Maximal control (80% required longer dew periods (21 h and 90% plant dry weight reduction occurred at this dew period duration. More efficacious control occurred on younger plants (cotyledonary-first leaf growth stage than older, larger plants. Mortality and dry weight reduction values in field experiments were ~70% and >80%, respectively, when cotyledonary-third leaf growth stage seedlings were sprayed with 108 or 109 conidia·mL−1. These results indicate that this fungus has potential as a biological control agent for controlling this problematic weed that is tolerant to the herbicide glyphosate.

  18. Laboratory Study on Biological Control of Ticks (Acari: Ixodidae by Entomopathogenic Indigenous Fungi (Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    M Abdigoudarzi

    2009-12-01

    Full Text Available Background: Chemical control method using different acaricides as spray, dipping solution or pour-on is routinely used for controlling ticks. Biological control agents are favorable due to their safety for animals and environment. Entomopathogenic fungi such as Beauveria bassiana are well known for controlling ticks. In this study, two Iranian indigenous strains of B. bassiana (B. bassiana 5197 and B. bassiana Evin were selected and grown on specific me­dia. The pathogenic effects of these strains were evaluated on adult stages of two Iranian Ixodidae members (H. anatolicum anatolicum Koch 1844, and H. marginatum Koch 1844 by dipping method.Methods: Two Iranian strains of Beauveria bassiana (Beauveria bassiana 5197 and Beauveria bassiana Evin were selected and were grown successfully on specific media. The pathogenic effects of these strains were evaluated on adult stages of Iranian Ixodidae members such as, Hyalomma anatolicum anatolicum and H. marginatum by dipping method (these ticks were grown up at laboratory conditions during 2002 up to 2003 and still it is continued .Results: There was no effect of strain 5197 on mortality or fecundity rates for ticks. There was acute phase sign of paralysis in test group after dipping ticks in suspension made from Evin strain of B. bassiana. In addition, the test groups were totally died after four months, but the control groups survived for six months.Conclusion: High concentration of fungal spores is needed for inducing fungal infection. Additional study using different strains and fungi on Iranian ticks is proposed. 

  19. Manipulating the banana rhizosphere microbiome for biological control of Panama disease.

    Science.gov (United States)

    Xue, Chao; Penton, C Ryan; Shen, Zongzhuan; Zhang, Ruifu; Huang, Qiwei; Li, Rong; Ruan, Yunze; Shen, Qirong

    2015-08-05

    Panama disease caused by Fusarium oxysporum f. sp. cubense infection on banana is devastating banana plantations worldwide. Biological control has been proposed to suppress Panama disease, though the stability and survival of bio-control microorganisms in field setting is largely unknown. In order to develop a bio-control strategy for this disease, 16S rRNA gene sequencing was used to assess the microbial community of a disease-suppressive soil. Bacillus was identified as the dominant bacterial group in the suppressive soil. For this reason, B. amyloliquefaciens NJN-6 isolated from the suppressive soil was selected as a potential bio-control agent. A bioorganic fertilizer (BIO), formulated by combining this isolate with compost, was applied in nursery pots to assess the bio-control of Panama disease. Results showed that BIO significantly decreased disease incidence by 68.5%, resulting in a doubled yield. Moreover, bacterial community structure was significantly correlated to disease incidence and yield and Bacillus colonization was negatively correlated with pathogen abundance and disease incidence, but positively correlated to yield. In total, the application of BIO altered the rhizo-bacterial community by establishing beneficial strains that dominated the microbial community and decreased pathogen colonization in the banana rhizosphere, which plays an important role in the management of Panama disease.

  20. Pochonia chlamydosporia in the biological control of Fasciola hepatica in cattle in Southeastern Brazil.

    Science.gov (United States)

    Dias, A S; Araújo, J V; Braga, F R; Puppin, A C; Perboni, W R

    2013-06-01

    Biological control with the use of nematophagous fungi has been described very successfully by many authors and presents itself as a complementary control method, acting on the free-living forms of helminths. The efficacy of a formulation containing the fungus Pochonia chlamydosporia in controlling Fasciola hepatica eggs in faeces was evaluated in an experimental field assay. Two bovine groups (six animals each) were used: A (control) and B (treated with fungus). At 30 days after deworming, the animals were separated into two similar paddocks with flooded areas and were given pellets containing 25 % mycelial mass (group B) or no fungus (group A) at a dose of 1 g/10 kg body weight, twice a week, during 18 months. Faecal samples were harvested fortnightly in the animals of groups A and B and they were submitted at examination of quantitative sedimentation. The mean count of F. hepatica eggs per grams of faeces was significantly higher in group A (1.19) compared with those from group B (0.82) (P control group (A). Every month, faecal samples from paddocks A and B were collected and they were incubated. P. chlamydosporia was identified only in sample source of the paddock B. It can be concluded that the application of this fungical formulation with P. chlamydosporia 25 % mycelial mass was effective in reducing the availability of eggs in the environment and reinfections in calves in natural conditions.

  1. Effect of non-crop vegetation types on conservation biological control of pests in olive groves.

    Science.gov (United States)

    Paredes, Daniel; Cayuela, Luis; Gurr, Geoff M; Campos, Mercedes

    2013-01-01

    Conservation biological control (CBC) is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina) and the olive moth (Prays oleae). Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  2. COMPLEMENTARY SEX DETERMINATION IN HYMENOPTERAN PARASITOIDS AND ITS IMPLICATIONS FOR BIOLOGICAL CONTROL

    Institute of Scientific and Technical Information of China (English)

    WUZhishan; KeithR.Hopper; PaulJ.Ode; RogerW.Fuester; CHENJia-hua; GeorgeE.Heimpel

    2003-01-01

    In haplodiploid Hymenoptera, unfertilized eggs produce haploid males while fertilized eggs lead to diploid females under most circumstances. Diploid males can also be produced from fertilization under a system of sex determination known as complementary sex determination (CSD). Under single-locus CSD, sex is determined by multiple alleles at a single sex locus. Individuals heterozygous at the sex locus are female while hemizygous and homozygous individuals develop as haploid and diploid males, respectively. In multiple-locus CSD, two or more loci, each with two or more alleles, determine sex. Diploid individuals are female if one or more sex loci are het-erozygous, while a diploid is male only if homozygous at all sex loci. Diploid males are known to occur in 43 hym-enopteran species and single-locus CSD has been demonstrated in 22 of these species. Diploid males are either developmentally inviable or sterile, so their production constitutes a genetic load. Because diploid male production is more likely under inbreeding, CSD is a form of inbreeding depression. It is crucial to preserve the diversity of sex alleles and reduce the loss of genetic variation in biological control. In the parasitoid species with single-locus CSD, certain precautionary procedures can prevent negative effects of single-locus CSD on biological control.

  3. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases.

    Science.gov (United States)

    Hu, Johnny H; Davis, Kevin M; Liu, David R

    2016-01-21

    Programmable DNA nucleases have provided scientists with the unprecedented ability to probe, regulate, and manipulate the human genome. Zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeat-Cas9 system (CRISPR-Cas9) represent a powerful array of tools that can bind to and cleave a specified DNA sequence. In their canonical forms, these nucleases induce double-strand breaks at a DNA locus of interest that can trigger cellular DNA repair processes that disrupt or replace genes. The fusion of these programmable nucleases with a variety of other protein domains has led to a rapidly growing suite of tools for activating, repressing, visualizing, and modifying loci of interest. Maximizing the usefulness and therapeutic relevance of these tools, however, requires precisely controlling their activity and specificity to minimize potentially toxic side effects arising from off-target activities. This need has motivated the application of chemical biology principles and methods to genome-editing proteins, including the engineering of variants of these proteins with improved or altered specificities, and the development of genetic, chemical, optical, and protein delivery methods that control the activity of these agents in cells. Advancing the capabilities, safety, effectiveness, and therapeutic relevance of genome-engineering proteins will continue to rely on chemical biology strategies that manipulate their activity, specificity, and localization.

  4. Effect of non-crop vegetation types on conservation biological control of pests in olive groves

    Directory of Open Access Journals (Sweden)

    Daniel Paredes

    2013-07-01

    Full Text Available Conservation biological control (CBC is an environmentally sound potential alternative to the use of chemical insecticides. It involves modifications of the environment to promote natural enemy activity on pests. Despite many CBC studies increasing abundance of natural enemies, there are far fewer demonstrations of reduced pest density and very little work has been conducted in olive crops. In this study we investigated the effects of four forms of non-crop vegetation on the abundance of two important pests: the olive psyllid (Euphyllura olivina and the olive moth (Prays oleae. Areas of herbaceous vegetation and areas of woody vegetation near olive crops, and smaller patches of woody vegetation within olive groves, decreased pest abundance in the crop. Inter-row ground covers that are known to increase the abundance of some predators and parasitoids had no effect on the pests, possibly as a result of lack of synchrony between pests and natural enemies, lack of specificity or intra-guild predation. This study identifies examples of the right types of diversity for use in conservation biological control in olive production systems.

  5. An intensive search for promising fungal biological control agents of ticks, particularly Rhipicephalus microplus.

    Science.gov (United States)

    Fernandes, Everton K K; Angelo, Isabele C; Rangel, Drauzio E N; Bahiense, Thiago C; Moraes, Aurea M L; Roberts, Donald W; Bittencourt, Vânia R E P

    2011-12-15

    Entomopathogenic fungi have been investigated worldwide as promising biological control agents of the cattle tick Rhipicephalus microplus. The current study evaluates the virulence of several fungal isolates to R. microplus larva in the laboratory as part of an effort to identify isolates with promise for effective biocontrol of R. microplus in the field. Sixty fungal isolates, encompassing 5 Beauveria spp. and 1 Engyodontium albus (=Beauveria alba), were included in this study. In addition to bioassays, the isolates were characterized morphologically and investigated as to their potential for conidial mass production. These findings were correlated with previous reports on the same fungal isolates of their natural UV-B tolerance (Fernandes et al., 2007), thermotolerance and cold activity (Fernandes et al., 2008), and genotypes (Fernandes et al., 2009). R. microplus larvae obtained from artificially infested calves were less susceptible to Beauveria bassiana infection than ticks acquired from naturally infested cattle from a different location. Isolates CG 464, CG 500 and CG 206 were among the most virulent Beauveria isolates tested in this study. All fungal isolates presented morphological features consistent with their species descriptions. Of the 53 B. bassiana isolates, five (CG 481, CG 484, CG 206, CG 235 and CG 487) had characteristics that qualified them as promising candidates for biological control agents of R. microplus, viz., mean LC(50) between 10(7) and 10(8)conidiaml(-1); produced 5000 conidia or more on 60mm(2) surface area of PDAY medium; and, in comparison to untreated (control) conidia, had the best conidial tolerances to UV-B (7.04 kJ m(-2)) and heat (45°C, 2h) of 50% or higher, and conidial cold (5°C, 15d) activity (mycelial growth) higher than 60%. The current study of 60 Beauveria spp. isolates, therefore, singles out a few (five) with high potential for controlling ticks under field conditions.

  6. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  7. Water Chemistry Control System for Recovery of Damaged and Degraded Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R.; Fisher, D.; Thomas, J.

    2011-02-18

    The International Atomic Energy Agency (IAEA) and the government of Serbia have led the project cosponsored by the U.S, Russia, European Commission, and others to repackage and repatriate approximately 8000 spent fuel elements from the RA reactor fuel storage basins at the VIN?A Institute of Nuclear Sciences to Russia for reprocessing. The repackaging and transportation activities were implemented by a Russian consortium which includes the Sosny Company, Tekhsnabeksport (TENEX) and Mayak Production Association. High activity of the water of the fuel storage basin posed serious risk and challenges to the fuel removal from storage containers and repackaging for transportation. The risk centered on personnel exposure, even above the basin water, due to the high water activity levels caused by Cs-137 leached from fuel elements with failed cladding. A team of engineers from the U.S. DOE-NNSA's Global Threat Reduction Initiative, the Vinca Institute, and the IAEA performed the design, development, and deployment of a compact underwater water chemistry control system (WCCS) to remove the Cs-137 from the basin water and enable personnel safety above the basin water for repackaging operations. Key elements of the WCCS system included filters, multiple columns containing an inorganic sorbent, submersible pumps and flow meters. All system components were designed to be remotely serviceable and replaceable. The system was assembled and successfully deployed at the Vinca basin to support the fuel removal and repackaging activities. Following the successful operations, the Cs-137 is now safely contained and consolidated on the zeolite sorbent used in the columns of the WCCS, and the fuel has been removed from the basins. This paper reviews the functional requirements, design, and deployment of the WCCS.

  8. Hemispheric specificity for proprioception: Postural control of standing following right or left hemisphere damage during ankle tendon vibration.

    Science.gov (United States)

    Duclos, Noémie C; Maynard, Luc; Abbas, Djawad; Mesure, Serge

    2015-11-02

    Right brain damage (RBD) following stroke often causes significant postural instability. In standing (without vision), patients with RBD are more unstable than those with left brain damage (LBD). We hypothesised that this postural instability would relate to the cortical integration of proprioceptive afferents. The aim of this study was to use tendon vibration to investigate whether these changes were specific to the paretic or non-paretic limbs. 14 LBD, 12 RBD patients and 20 healthy subjects were included. Displacement of the Centre of Pressure (CoP) was recorded during quiet standing, then during 3 vibration conditions (80 Hz - 20s): paretic limb, non-paretic limb (left and right limbs for control subjects) and bilateral. Vibration was applied separately to the peroneal and Achilles tendons. Mean antero-posterior position of the CoP, variability and velocity were calculated before (4s), during and after (24s) vibration. For all parameters, the strongest perturbation was during Achilles vibrations. The Achilles non-paretic condition induced a larger backward displacement than the Achilles paretic condition. This condition caused specific behaviour on the velocity: the LBD group was perturbed at the onset of the vibrations, but gradually recovered their stability; the RBD group was significantly perturbed thereafter. After bilateral Achilles vibration, RBD patients required the most time to restore initial posture. The reduction in use of information from the paretic limb may be a central strategy to deal with risk-of-fall situations such as during Achilles vibration. The postural behaviour is profoundly altered by lesions of the right hemisphere when proprioception is perturbed.

  9. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available BACKGROUND: Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate, the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate, the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF diet and high beta-palmitate fat (HBPF diet on colitis development in Muc2 deficient (Muc2(-/- mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. METHODS: Muc2(-/- mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. RESULTS: Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/- mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1, genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. CONCLUSIONS: This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/- mice by inducing an immunosuppressive Treg cell response.

  10. Partitioning the climatic and biological controls on photosynthetic fluxes in Amazonian tropical evergreen forests

    Science.gov (United States)

    Wu, J.; Guan, K.; Albert, L.; Hayek, M.; Restrepo-Coupe, N.; Prohaska, N.; Wiedemann, K. T.; Marostica, S. F.; Stark, S. C.; Smith, M.; Silva, R. D.; Dye, D. G.; Nelson, B. W.; Huete, A. R.; Saleska, S. R.

    2014-12-01

    Understanding the mechanistic controls on tropical forests photosynthetic metabolism is a central problem of ecology and global change biology. We hypothesize two different temporal scales for the mechanisms regulating tropical photosynthesis (Gross Ecosystem Productivity, GEP): (1) at seasonal scales, leaf phenology (changing age and amount of leaves) is the primary control on GEP seasonality; (2) at the hourly scale with a constant phenological stage, climatic variables are the first order controls on GEP. In order to test this hypothesis, we partitioned the sources of GEP variation measured on eddy flux towers in central Amazon forests into biological and climatic components. The biological component (photosynthetic capacity, or PC) was defined as the monthly mean value of GEP extracted under a fixed narrow range of climate conditions, representing phenological changes associated with the amount and age of leaves. The climatic component was extracted via a path analysis of the hourly flux data, conditioned on a given monthly PC, representing the effects of fluctuating climate operating on the given PC. The main climatic variables were PAR, air-temperature, VPD, and Cloudiness Index (CI), the fraction of reduction of incident solar radiance due to clouds and aerosols relative to that expected under clear sky conditions. We found that the variability in monthly GEP arises from both seasonality of PC and that of climate, but despite the strong seasonality of climate, GEP was dominated by PC seasonality (R2=0.92). We found that the variability in hourly GEP (relative to the potential represented by monthly PC) was controlled primarily by PAR and VPD (as modified by the influence of CI). The tradeoff between the positive GEP effects of increased PAR and the negative effects of higher VPD stress indicates that tropical forests are stable in the face of modest climatic variability. For example, a significant reduction in mean cloudiness (of 0.1 CI units, corresponding

  11. Biological control via "ecological" damping: An approach that attenuates non-target effects.

    Science.gov (United States)

    Parshad, Rana D; Quansah, Emmanuel; Black, Kelly; Beauregard, Matthew

    2016-03-01

    In this work we develop and analyze a mathematical model of biological control to prevent or attenuate the explosive increase of an invasive species population, that functions as a top predator, in a three-species food chain. We allow for finite time blow-up in the model as a mathematical construct to mimic the explosive increase in population, enabling the species to reach "disastrous", and uncontrollable population levels, in a finite time. We next improve the mathematical model and incorporate controls that are shown to drive down the invasive population growth and, in certain cases, eliminate blow-up. Hence, the population does not reach an uncontrollable level. The controls avoid chemical treatments and/or natural enemy introduction, thus eliminating various non-target effects associated with such classical methods. We refer to these new controls as "ecological damping", as their inclusion dampens the invasive species population growth. Further, we improve prior results on the regularity and Turing instability of the three-species model that were derived in Parshad et al. (2014). Lastly, we confirm the existence of spatiotemporal chaos.

  12. Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft

    Science.gov (United States)

    Abdulrahim, Mujahid

    Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.

  13. Molecular biological approaches to the study of vectors in relation to malaria control

    Directory of Open Access Journals (Sweden)

    J. M. Crampton

    1992-01-01

    Full Text Available To a large extent, control of malaria vectors relies on the elimination of breeding sites and the application of chemical agents. There are increasing problems associated with the use of synthetic insecticides for vector control, including the evolution of resistance, the high cost of developing and registering new insecticides and an awareness of pollution from insecticide residues. These factors have stimulated interest in the application of molecular biology to the study of mosquito vectors of malaria; focussing primarily on two aspects. First, the improvement of existing control measures through the development of simplified DNA probe systems suitable for identification of vectors of malaria. The development of synthetic, non-radioactive DNA probes suitable for identification of species in the Anopheles gambiae complex is described with the aim of defining a simplified methodology wich is suitable for entomologist in the field. The second aspect to be considered is the development of completely novel strategies through the development of completely novel strategies through the genetic manipulation of insect vectors of malaria in order to alter their ability to transmit the disease. The major requirements for producing transgenic mosquitoes are outlined together with the progress wich has been made to date and discussed in relation to the prospects which this type of approach has for the future control of malaria.

  14. Control of rRNA Synthesis in Escherichia coli: a Systems Biology Approach†

    Science.gov (United States)

    Dennis, Patrick P.; Ehrenberg, Mans; Bremer, Hans

    2004-01-01

    The first part of this review contains an overview of the various contributions and models relating to the control of rRNA synthesis reported over the last 45 years. The second part describes a systems biology approach to identify the factors and effectors that control the interactions between RNA polymerase and rRNA (rrn) promoters of Escherichia coli bacteria during exponential growth in different media. This analysis is based on measurements of absolute rrn promoter activities as transcripts per minute per promoter in bacterial strains either deficient or proficient in the synthesis of the factor Fis and/or the effector ppGpp. These absolute promoter activities are evaluated in terms of rrn promoter strength (Vmax/Km) and free RNA polymerase concentrations. Three major conclusions emerge from this evaluation. First, the rrn promoters are not saturated with RNA polymerase. As a consequence, changes in the concentration of free RNA polymerase contribute to changes in rrn promoter activities. Second, rrn P2 promoter strength is not specifically regulated during exponential growth at different rates; its activity changes only when the concentration of free RNA polymerase changes. Third, the effector ppGpp reduces the strength of the rrn P1 promoter both directly and indirectly by reducing synthesis of the stimulating factor Fis. This control of rrn P1 promoter strength forms part of a larger feedback loop that adjusts the synthesis of ribosomes to the availability of amino acids via amino acid-dependent control of ppGpp accumulation. PMID:15590778

  15. Supplemental food that supports both predator and pest: a risk for biological control?

    Science.gov (United States)

    Leman, Ada; Messelink, Gerben J

    2015-04-01

    Supplemental food sources to support natural enemies in crops are increasingly being tested and used. This is particularly interesting for generalist predators that can reproduce on these food sources. However, a potential risk for pest control could occur when herbivores also benefit from supplemental food sources. In order to optimize biological control, it may be important to select food sources that support predator populations more than herbivore populations. In this study we evaluated the nutritional quality of four types of supplemental food for the generalist predatory mites Amblyseius swirskii Athias-Henriot and Amblydromalus (Typhlodromalus) limonicus (Garman and McGregor), both important thrips predators, and for the herbivore western flower thrips Frankliniella occidentalis Pergande, by assessing oviposition rates. These tests showed that application of corn pollen, cattail pollen or sterilized eggs of Ephestia kuehniella Zeller to chrysanthemum leaves resulted in three times higher oviposition rates of thrips compared to leaves without additional food. None of the tested food sources promoted predatory mites or western flower thrips exclusively. Decapsulated cysts of Artemia franciscana Kellogg were not suitable, whereas cattail pollen was very suitable for both predatory mites and western flower thrips. In addition, we found that the rate of thrips predation by A. swirskii can be reduced by 50 %, when pollen is present. Nevertheless, application of pollen or Ephestia eggs to a chrysanthemum crop still strongly enhanced the biological control of thrips with A. swirskii, both at low and high release densities of predatory mites through the strong numerical response of the predators. Despite these positive results, application in a crop should be approached with caution, as the results may strongly depend on the initial predator-prey ratio, the nutritional quality of the supplemental food source, the species of predatory mites, the distribution of the

  16. Fungal biological control agents for integrated management of Culicoides spp. (Diptera: Ceratopogonidae of livestock

    Directory of Open Access Journals (Sweden)

    B. W. Narladkar

    2015-02-01

    Full Text Available Aim: Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana had wide host range against insects and hence these are being exploited as fungal bio-pesticide on a large scale. Both fungi are proved pesticides against many crop pests and farmers are well acquainted with their use on the field. Thus, research was aimed to explore the potency of these fungal spores against larval and adult Culicoides midges, a pest of livestock. Materials and Methods: In-vitro testing of both fungal biological control agents was undertaken in Petri dishes against field collected Culicoides larvae, while in plastic beakers against field collected blood-engorged female Culicoides midges. In-vivo testing was undertaken by spraying requisite concentration of fungal spores on the drainage channel against larvae and resting sites of adult Culicoides midges in the cattle shed. Lethal concentration 50 (LC50 values and regression equations were drawn by following probit analysis using SPSS statistical computerized program. Results: The results of this study revealed LC50 values of 2692 mg and 3837 mg (108 cfu/g for B. bassiana and M. anisopliae, respectively, against Culicoides spp. larvae. Death of Culicoides larvae due to B. bassiana showed greenish coloration in the middle of the body with head and tail showed intense blackish changes, while infection of M. anisopliae resulted in death of Culicoides larvae with greenish and blackish coloration of body along with total destruction, followed by desquamation of intestinal channel. The death of adult Culicoides midges were caused by both the fungi and after death growth of fungus were very well observed on the dead cadavers proving the efficacy of the fungus. Conclusion: Preliminary trials with both funguses (M. anisopliae, B. bassiana showed encouraging results against larvae and adults of Culicoides spp. Hence, it was ascertained that, these two fungal molecules can form a part of biological control and

  17. 损伤控制骨科的理论与实践%Clinical theory and practice of damage control orthopaedics

    Institute of Scientific and Technical Information of China (English)

    王雷; 蒋电明

    2006-01-01

    近些年来,针对多发创伤,尤其是伴发严重骨折患者的治疗,经历了一个从"早期全面处理(early total care,ETC)"到"损伤控制骨科(damage control orthopaedics,DCO)"的转变,即"损伤控制"(damage control,DC)理论在骨科的应用和发展.临床实践证明,合理应用DCO可提高严重多发伤的生存率.

  18. Potential Use of Entomopathogenic Virus Native to Sumatra Island as Biological Control Agent of Setora nitens L. (Lepidoptera:Limacodidae, the Main Pest of Oilpalm

    Directory of Open Access Journals (Sweden)

    Suparman Suparman

    2013-01-01

    Full Text Available Slug caterpillars Setora nitens, have been appearing to be more serious insect pest of oil palm as it might cause frond damages up to 90%. Many effort had been made to control the caterpillars using insecticides but the insects are still existing and causing significant damages to the palm. Microbial insecticide, especially the one developed from indigenous entomopathogenic virus, is a promising method of controlling the insect since its toxicity to non target animals and humans is extremely low. A conventional way of controlling S. nitens using crude sap of infected larvae has been applied in several oil palm plantations in Sumatra Island, but various improvements are required to make the method more effective, efficient, widely acceptable and scientifically justified. A research on the potential use of entomopathogenic virus native to Sumatra Island as biological control agent of slug caterpillar was conducted to comprehend the pathogenicity and virulence of the entomopathogenic virus and to reveal the morphological identify of its particle. The results showed that the use of virus infecting caterpillars to control the insect was quite successful in term of increasing the number of infected caterpillars and reducing the rate of population development in the field. The use of homogenized infected caterpillars to orally infect healty S. nitens caterpillars resulted in the symptoms characteristics to viral infections appeared in all treated caterpillars with various extent of symptom developments. Some caterpillars could spine cocons but failed to release adult moth. Purification of the virus particles from infected caterpillars resulted in the apperarance of white band in the sucrose gradient indicated the presence of viral RNA. Electron microscopic observation showed that the white band in the sucrose gradient contained sphericle shape of virus particles justifying that the agent infecting S. nitens caterpillars is a virus which still need

  19. [Biological weapons].

    Science.gov (United States)

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage.

  20. In vitro evaluation of {sup 213}Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbulcke, Katia; Lahorte, Christophe; Slegers, Guido [Department of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Gent (Belgium); De Vos, Filip; Dierckx, Rudi A. [Division of Nuclear Medicine, Ghent University Hospital (Belgium); Offner, Fritz [Department of Hematology, Ghent University Hospital (Belgium); Philippe, Jan [Department of Clinical Chemistry, Ghent University Hospital (Belgium); Apostolidis, Christos; Molinet, Roger; Nikula, Tuomo K. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Bacher, Klaus; De Gelder, Virginie; Vral, Anne; Thierens, Hubert [Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University (Belgium)

    2003-10-01

    External source radiotherapy and beta radioimmunotherapy (RIT) are effective treatments for lymphoid malignancies. The development of RIT with alpha emitters is attractive because of the high linear energy transfer (LET) and short path length, allowing higher tumour cell kill and lower toxicity to healthy tissues. We assessed the relative biological efficacy (RBE) of alpha RIT (in vitro) compared to external gamma irradiation with respect to induction of apoptosis in B chronic lymphocytic leukaemia (B-CLL) and induction of chromosomal damage in healthy donor B and T lymphocytes. The latter was measured by a micronucleus assay. {sup 213}Bi was eluted from a {sup 225}Ac generator and conjugated to CD20 antibody (rituximab) with CHX-A''-DTPA as a chelator. B-CLL cells from five patients were cultured for 24 h in RPMI/10% FCS while exposed to {sup 213}Bi conjugated to CD20 antibody or after external {sup 60}Co gamma irradiation. Binding assays were performed in samples of all patients to calculate the total absorbed dose. Apoptosis was scored by flow cytometric analyses of the cells stained with annexin V-FITC and 7-AAD. Apoptosis was expressed as % excess over spontaneous apoptosis in control. Full dose range experiments demonstrated {sup 213}Bi-conjugated CD20 antibody to be more effective than equivalent doses of external gamma irradiation, but showed that similar plateau values were reached at 10 Gy. The RBE for induction of apoptosis in B-CLL was 2 between 1.5 and 7 Gy. The micronucleus yield in lymphocytes of healthy volunteers was measured to assess the late toxicity caused by induction of chromosomal instability. While gamma radiation induced a steady increase in micronucleus yields in B and T cells, the damage induced by {sup 213}Bi was more dramatic, with RBE ranging from 5 to 2 between 0.1 Gy and 2 Gy respectively. In contrast to gamma irradiation, {sup 213}Bi inhibited mitogen-stimulated mitosis almost completely at 2 Gy. In conclusion, high