WorldWideScience

Sample records for biology advanced scientific

  1. The biology, prevention, diagnosis and treatment of dental caries: scientific advances in the United States.

    Science.gov (United States)

    Zero, Domenick T; Fontana, Margherita; Martínez-Mier, E Angeles; Ferreira-Zandoná, Andréa; Ando, Masatoshi; González-Cabezas, Carlos; Bayne, Stephen

    2009-09-01

    Scientific advances in cariology in the past 150 years have led to the understanding that dental caries is a chronic, dietomicrobial, site-specific disease caused by a shift from protective factors favoring tooth remineralization to destructive factors leading to demineralization. Epidemiologic data indicate that caries has changed in the last century; it now is distributed unequally in the U.S. population. People who are minorities, homeless, migrants, children with disabilities and of lower socioeconomic status suffer from the highest prevalence and severity of dental caries. Scientific advances have led to improvements in the prevention, diagnosis and treatment of dental caries, but there is a need for new diagnostic tools and treatment methods. and Future management of dental caries requires early detection and risk assessment if the profession is to achieve timely and cost-effective prevention and treatment for those who need it most. Dental professionals look forward to the day when people of all ages and backgrounds view dental caries as a disease of the past.

  2. Biology, Philosophy, and Scientific Method.

    Science.gov (United States)

    Hill, L.

    1985-01-01

    The limits of falsification are discussed and the historically based models of science described by Lakatos and Kuhn are shown to offer greater insights into the practice of science. The theory of natural selection is used to relate biology to philosophy and scientific method. (Author/JN)

  3. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  4. Impact of scientific and technological advances.

    Science.gov (United States)

    Dragan, I F; Dalessandri, D; Johnson, L A; Tucker, A; Walmsley, A D

    2018-03-01

    Advancements in research and technology are transforming our world. The dental profession is changing too, in the light of scientific discoveries that are advancing biological technology-from new biomaterials to unravelling the genetic make-up of the human being. As health professionals, we embrace a model of continuous quality improvement and lifelong learning. Our pedagogical approach to incorporating the plethora of scientific-technological advancements calls for us to shift our paradigm from emphasis on skill acquisition to knowledge application. The 2017 ADEE/ADEA workshop provided a forum to explore and discuss strategies to ensure faculty, students and, ultimately, patients are best positioned to exploit the opportunities that arise from integrating new technological advances and research outcomes. Participants discussed methods of incorporating the impact of new technologies and research findings into the education of our dental students. This report serves as a signpost of the way forward and how to promote incorporation of research and technology advances and lifelong learning into the dental education curriculum. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Advances in radiation biology

    International Nuclear Information System (INIS)

    Lett, J.T.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    The classical period of radiation biology is coming to a close. Such change always occurs at a time when the ideas and concepts that promoted the burgeoning of an infant science are no longer adequate. This volume covers a number of areas in which new ideas and research are playing a vital role, including cellular radiation sensitivity, radioactive waste disposal, and space radiation biology

  6. Advanced Excel for scientific data analysis

    CERN Document Server

    De Levie, Robert

    2004-01-01

    Excel is by far the most widely distributed data analysis software but few users are aware of its full powers. Advanced Excel For Scientific Data Analysis takes off from where most books dealing with scientific applications of Excel end. It focuses on three areas-least squares, Fourier transformation, and digital simulation-and illustrates these with extensive examples, often taken from the literature. It also includes and describes a number of sample macros and functions to facilitate common data analysis tasks. These macros and functions are provided in uncompiled, computer-readable, easily

  7. The Notion of Scientific Knowledge in Biology

    Science.gov (United States)

    Morante, Silvia; Rossi, Giancarlo

    2016-03-01

    The purpose of this work is to reconsider and critically discuss the conceptual foundations of modern biology and bio-sciences in general, and provide an epistemological guideline to help framing the teaching of these disciplines and enhancing the quality of their presentation in High School, Master and Ph.D. courses. After discussing the methodological problems that arise in trying to construct a sensible and useful scientific approach applicable to the study of living systems, we illustrate what are the general requirements that a workable scheme of investigation should meet to comply with the principles of the Galilean method. The amazing success of basic physics, the Galilean science of election, can be traced back to the development of a radically " reductionistic" approach in the interpretation of experiments and a systematic procedure tailored on the paradigm of " falsifiability" aimed at consistently incorporating new information into extended models/theories. The development of bio-sciences seems to fit with neither reductionism (the deeper is the level of description of a biological phenomenon the more difficult looks finding general and simple laws), nor falsifiability (not always experiments provide a yes-or-no answer). Should we conclude that biology is not a science in the Galilean sense? We want to show that this is not so. Rather in the study of living systems, the novel interpretative paradigm of " complexity" has been developed that, without ever conflicting with the basic principles of physics, allows organizing ideas, conceiving new models and understanding the puzzling lack of reproducibility that seems to affect experiments in biology and in other modern areas of investigation. In the delicate task of conveying scientific concepts and principles to students as well as in popularising bio-sciences to a wider audience, it is of the utmost importance for the success of the process of learning to highlight the internal logical consistency of

  8. OPENING REMARKS: Scientific Discovery through Advanced Computing

    Science.gov (United States)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such

  9. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Arkin, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bader, David C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Esnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Aluru, Srinivas [Georgia Inst. of Technology, Atlanta, GA (United States); Andersen, Amity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Aprá, Edoardo [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Azad, Ariful [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bates, Susan [National Center for Atmospheric Research, Boulder, CO (United States); Blaby, Ian [Brookhaven National Lab. (BNL), Upton, NY (United States); Blaby-Haas, Crysten [Brookhaven National Lab. (BNL), Upton, NY (United States); Bonneau, Rich [New York Univ. (NYU), NY (United States); Bowen, Ben [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bradford, Mark A. [Yale Univ., New Haven, CT (United States); Brodie, Eoin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, James (Ben) [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bernholdt, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bylaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Calvin, Kate [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cannon, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chen, Xingyuan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cheng, Xiaolin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cheung, Margaret [Univ. of Houston, Houston, TX (United States); Chowdhary, Kenny [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Colella, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Compo, Gil [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States); Crowley, Mike [National Renewable Energy Lab. (NREL), Golden, CO (United States); Debusschere, Bert [Sandia National Lab. (SNL-CA), Livermore, CA (United States); D’Imperio, Nicholas [Brookhaven National Lab. (BNL), Upton, NY (United States); Dror, Ron [Stanford Univ., Stanford, CA (United States); Egan, Rob [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Friedberg, Iddo [Iowa State Univ., Ames, IA (United States); Fyke, Jeremy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Zheng [Stony Brook Univ., Stony Brook, NY (United States); Georganas, Evangelos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Giraldo, Frank [Naval Postgraduate School, Monterey, CA (United States); Gnanakaran, Gnana [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Grandy, Stuart [Univ. of New Hampshire, Durham, NH (United States); Gustafson, Bill [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hammond, Glenn [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hargrove, William [USDA Forest Service, Washington, D.C. (United States); Heroux, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Forrest [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hofmeyr, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hunke, Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jackson, Charles [Univ. of Texas-Austin, Austin, TX (United States); Jacob, Rob [Argonne National Lab. (ANL), Argonne, IL (United States); Jacobson, Dan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobson, Matt [Univ. of California, San Francisco, CA (United States); Jain, Chirag [Georgia Inst. of Technology, Atlanta, GA (United States); Johansen, Hans [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Johnson, Jeff [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Jones, Phil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kalyanaraman, Ananth [Washington State Univ., Pullman, WA (United States); Kang, Senghwa [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); King, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Koanantakool, Penporn [Univ. of California, Berkeley, CA (United States); Kollias, Pavlos [Stony Brook Univ., Stony Brook, NY (United States); Kopera, Michal [Univ. of California, Santa Cruz, CA (United States); Kotamarthi, Rao [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kyrpides, Nikos [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Li, Xiaolin [Stony Brook Univ., Stony Brook, NY (United States); Lin, Wuyin [Brookhaven National Lab. (BNL), Upton, NY (United States); Link, Robert [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Yangang [Brookhaven National Lab. (BNL), Upton, NY (United States); Loew, Leslie [Univ. of Connecticut, Storrs, CT (United States); Luke, Edward [Brookhaven National Lab. (BNL), Upton, NY (United States); Ma, Hsi -Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mahadevan, Radhakrishnan [Univ. of Toronto, Toronto, ON (Canada); Maranas, Costas [Pennsylvania State Univ., University Park, PA (United States); Martin, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Maslowski, Wieslaw [Naval Postgraduate School, Monterey, CA (United States); McCue, Lee Ann [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mills, Richard [Intel Corp., Santa Clara, CA (United States); Molins Rafa, Sergi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mostafavi, Sara [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Moulton, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mourao, Zenaida [Univ. of Cambridge (United Kingdom); Najm, Habib [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ng, Bernard [Center for Molecular Medicine and Therapeutics, Vancouver, BC (Canada); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Norman, Matt [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Oh, Sang -Yun [Univ. of California, Santa Barbara, CA (United States); Oliker, Leonid [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pan, Chongle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pass, Rebecca [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pau, George S. H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Petridis, Loukas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Prakash, Giri [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Price, Stephen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Randall, David [Colorado State Univ., Fort Collins, CO (United States); Renslow, Ryan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Riihimaki, Laura [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ringler, Todd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Roberts, Andrew [Naval Postgraduate School, Monterey, CA (United States); Rokhsar, Dan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ruebel, Oliver [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Salinger, Andrew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scheibe, Tim [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schulz, Roland [Intel, Mountain View, CA (United States); Sivaraman, Chitra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Smith, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sreepathi, Sarat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Talbot, Jenifer [Boston Univ., Boston, MA (United States); Tantillo, D. J. [Univ. of California, Davis, CA (United States); Tartakovsky, Alex [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Taylor, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Taylor, Ronald [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Trebotich, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Urban, Nathan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Valiev, Marat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States). EMSL; Wagner, Allon [Univ. of California, Berkeley, CA (United States); Wainwright, Haruko [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wieder, Will [NCAR/Univ. of Colorado, Boulder, CO (United States); Wiley, Steven [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Williams, Dean [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Worley, Pat [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Xie, Shaocheng [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yoo, Shinjae [Brookhaven National Lab. (BNL), Upton, NY (United States); Yosef, Niri [Univ. of California, Berkeley, CA (United States); Zhang, Minghua [Stony Brook Univ., Stony Brook, NY (United States)

    2016-03-31

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOE began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.

  10. Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Benson, Jeff; Thelen, Mary Catherine

    2011-01-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  11. Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

    2011-08-01

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

  12. Advanced pixel architectures for scientific image sensors

    CERN Document Server

    Coath, R; Godbeer, A; Wilson, M; Turchetta, R

    2009-01-01

    We present recent developments from two projects targeting advanced pixel architectures for scientific applications. Results are reported from FORTIS, a sensor demonstrating variants on a 4T pixel architecture. The variants include differences in pixel and diode size, the in-pixel source follower transistor size and the capacitance of the readout node to optimise for low noise and sensitivity to small amounts of charge. Results are also reported from TPAC, a complex pixel architecture with ~160 transistors per pixel. Both sensors were manufactured in the 0.18μm INMAPS process, which includes a special deep p-well layer and fabrication on a high resistivity epitaxial layer for improved charge collection efficiency.

  13. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  14. Scientific Opinion on Risk Assessment of Synthetic Biology.

    Science.gov (United States)

    Epstein, Michelle M; Vermeire, Theo

    2016-08-01

    In 2013, three Scientific Committees of the European Commission (EC) drafted Scientific Opinions on synthetic biology that provide an operational definition and address risk assessment methodology, safety aspects, environmental risks, knowledge gaps, and research priorities. These Opinions contribute to the international discussions on the risk governance for synthetic biology developments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. SNAB: A New Advanced Level Biology Course

    Science.gov (United States)

    Reiss, Michael J.

    2005-01-01

    Of all the sciences, biology has probably made the most rapid progress in recent years and the need for this to be reflected in a new Advanced Level biology course has long been recognised in the UK. After wide-ranging consultation and successful piloting in over 50 schools and colleges in England and Wales, the new Salters-Nuffield Advanced…

  16. The Crossroads between Biology and Mathematics: The Scientific Method as the Basics of Scientific Literacy

    Science.gov (United States)

    Karsai, Istvan; Kampis, George

    2010-01-01

    Biology is changing and becoming more quantitative. Research is creating new challenges that need to be addressed in education as well. New educational initiatives focus on combining laboratory procedures with mathematical skills, yet it seems that most curricula center on a single relationship between scientific knowledge and scientific method:…

  17. Scientific Advances in Thoracic Oncology 2016

    NARCIS (Netherlands)

    Soo, Ross A.; Stone, Emily C. A.; Cummings, K. Michael; Jett, James R.; Field, John K.; Groen, Harry J. M.; Mulshine, James L.; Yatabe, Yasushi; Bubendorf, Lukas; Dacic, Sanja; Rami-Porta, Ramon; Detterbeck, Frank C.; Lim, Eric; Asamura, Hisao; Donington, Jessica; Wakelee, Heather A.; Wu, Yi-Long; Higgins, Kristin; Senan, Suresh; Solomon, Benjamin; Kim, Dong-Wan; Johnson, Melissa; Yang, James C. H.; Sequist, Lecia V.; Shaw, Alice T.; Ahn, Myung-Ju; Costa, Daniel B.; Patel, Jyoti D.; Horn, Leora; Gettinger, Scott; Peters, Solange; Wynes, Murry W.; Faivre-Finn, Corinne; Rudin, Charles M.; Tsao, Anne; Baas, Paul; Kelly, Ronan J.; Leighl, Natasha B.; Scagliotti, Giorgio V.; Gandara, David R.; Hirsch, Fred R.; Spigel, David R.

    Lung cancer care is rapidly changing with advances in genomic testing, the development of next-generation targeted kinase inhibitors, and the continued broad study of immunotherapy in new settings and potential combinations. The International Association for the Study of Lung Cancer and the Journal

  18. Enhancing Scientific Communication Through an Undergraduate Biology and Journalism Partnership.

    Science.gov (United States)

    Schwingel, Johanna M

    2018-01-01

    Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk. This was followed by a peer interview with a student in a journalism course, in which the biology students needed to comprehend the article to effectively communicate it to the journalism students, and the journalism students needed to ask questions about an unfamiliar, technical topic. Next, the biology students wrote a summary of their article for a scientific audience. Finally, the students presented a figure from the article to their peers in a scientific, Bio-Minute format. The biology-journalism partnership allowed biology students to develop their ability to communicate scientific information and journalism students their ability to ask appropriate questions and establish a base of knowledge from which to write.

  19. Scientific opportunities at the advanced light source

    International Nuclear Information System (INIS)

    Robinson, A.L.

    1989-01-01

    The Advaned Light Source (ALS) is a national used facility for the production of high-brightness and partially coherent X-ray and ultraviolet synchrotron radiation. Now under construction at the Lawrence Berkeley Laboratory with a projected completion date of September 1992, the ALS is based on a low-emittance electron storage ring optimized for operation at 1.5 GeV with insertion devices in eleven long straight sections. It will also have up to 48 bending-magnet ports. Scientific opportunities in materials science, surface science, chemistry, atomic and molecular physics, life science, and other fields are reflected in Letters of Interest received for the establishment of beamlines. (orig.)

  20. Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Damevski, Kostadin [Virginia State Univ., Petersburg, VA (United States)

    2009-03-30

    A resounding success of the Scientific Discover through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedened computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative hig-performance scientific computing.

  1. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  2. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  3. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  4. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Riley, Katherine [Argonne National Lab., IL (United States). Argonne Leadership Computing Facility (ALCF); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility (ALCF); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States). Argonne Leadership Computing Facility; Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2018-01-22

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, and deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  5. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee Report on Scientific and Technical Information

    Energy Technology Data Exchange (ETDEWEB)

    Hey, Tony [eScience Institute, University of Washington; Agarwal, Deborah [Lawrence Berkeley National Laboratory; Borgman, Christine [University of California, Los Angeles; Cartaro, Concetta [SLAC National Accelerator Laboratory; Crivelli, Silvia [Lawrence Berkeley National Laboratory; Van Dam, Kerstin Kleese [Pacific Northwest National Laboratory; Luce, Richard [University of Oklahoma; Arjun, Shankar [CADES, Oak Ridge National Laboratory; Trefethen, Anne [University of Oxford; Wade, Alex [Microsoft Research, Microsoft Corporation; Williams, Dean [Lawrence Livermore National Laboratory

    2015-09-04

    The Advanced Scientific Computing Advisory Committee (ASCAC) was charged to form a standing subcommittee to review the Department of Energy’s Office of Scientific and Technical Information (OSTI) and to begin by assessing the quality and effectiveness of OSTI’s recent and current products and services and to comment on its mission and future directions in the rapidly changing environment for scientific publication and data. The Committee met with OSTI staff and reviewed available products, services and other materials. This report summaries their initial findings and recommendations.

  6. Scientific Discovery through Advanced Computing in Plasma Science

    Science.gov (United States)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations

  7. Leveraging advances in biology to design biomaterials

    Science.gov (United States)

    Darnell, Max; Mooney, David J.

    2017-12-01

    Biomaterials have dramatically increased in functionality and complexity, allowing unprecedented control over the cells that interact with them. From these engineering advances arises the prospect of improved biomaterial-based therapies, yet practical constraints favour simplicity. Tools from the biology community are enabling high-resolution and high-throughput bioassays that, if incorporated into a biomaterial design framework, could help achieve unprecedented functionality while minimizing the complexity of designs by identifying the most important material parameters and biological outputs. However, to avoid data explosions and to effectively match the information content of an assay with the goal of the experiment, material screens and bioassays must be arranged in specific ways. By borrowing methods to design experiments and workflows from the bioprocess engineering community, we outline a framework for the incorporation of next-generation bioassays into biomaterials design to effectively optimize function while minimizing complexity. This framework can inspire biomaterials designs that maximize functionality and translatability.

  8. Designing and Implementing a New Advanced Level Biology Course

    Science.gov (United States)

    Hall, Angela; Reiss, Michael J.; Rowell, Cathy; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course, piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the…

  9. 'Bio-corrosion 2012' - From advanced techniques towards scientific perspectives

    International Nuclear Information System (INIS)

    Feron, Damien; Neumann, Eberhard

    2014-01-01

    The annual European corrosion congress EUROCORR 2012, September 9 to 13, 2012 in Istanbul (Turkey) had organized a larger session on 'microbial corrosion', with the aim at bringing the more technical aspects and the results of the various groups in the BIOCOR network, to the attention of the larger scientific community. The three days of the session had been co-organized by Turid Liegen, head of the Working Party of the European Federation of Corrosion on microbial corrosion (EFC WP 10) and Regine Basseguy, leader of the European program BIOCOR ITN; the session included 27 oral presentations and 10 posters. The session on industrial and technical approaches of bio-corrosion phenomena demonstrated impressively the results on improved scientific analysis, more detailed mechanisms as well as future perspectives. The great resonance of the session led the organizers to the idea of gathering the main contributions in a special issue of a multidisciplinary bioelectrochemical journal. Alain Bergel, Associate Editor of the interdisciplinary journal Bioelectrochemistry, proposed to document in this journal, the results and discussions on 'Technical Biocorrosion' thereby providing a document for strengthening the scientific basis of this economically so important field. The ambitious aim of this special issue includes drawing the attention of 'traditional biological electrochemistry' to the scientific and technical aspects of bio-corrosion in general. (authors)

  10. Report on the scientifical feasibility of advanced separation

    International Nuclear Information System (INIS)

    2001-01-01

    The advanced separation process Purex has been retained for the recovery of neptunium, technetium and iodine from high level and long lived radioactive wastes. Complementary solvent extraction processes will be used for the recovery of americium, curium and cesium from the high activity effluents of the spent fuel reprocessing treatment. This document presents the researches carried out to demonstrate the scientifical feasibility of the advanced separation processes: the adaptation of the Purex process would allow the recovery of 99% of the neptunium, while the association of the Diamex and Sanex (low acidity variant) processes, or the Paladin concept (single cycle with selective de-extraction of actinides) make it possible the recovery of 99.8% of the actinides III (americium and curium) with a high lanthanides decontamination factor (greater than 150). The feasibility of the americium/curium separation is demonstrated with the Sesame process (extraction of americium IV after electrolytic oxidation). Iodine is today recovered at about 99% with the Purex process and the dissolved fraction of technetium is also recovered at 99% using an adaptation of the Purex process. The non-dissolved fraction is retained by intermetallic compounds in dissolution residues. Cesium is separable from other fission products with recovery levels greater than 99.9% thanks to the use of functionalized calixarenes. The scientifical feasibility of advanced separation is thus demonstrated. (J.S.)

  11. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  12. Molecular biology in a distributed world. A Kantian perspective on scientific practices and the human mind

    Directory of Open Access Journals (Sweden)

    Mariagrazia Portera

    2016-01-01

    Full Text Available In recent years the number of scholarly publications devoted to Kant's theory of biology has rapidly growing, with particular attention being given to Kant's thoughts about the concepts of teleology, function, organism, and their respective roles in scientific practice. Moving from these recent studies, and distancing itself from their mostly evolutionary background, the main aim of the present paper is to suggest an original "cognitive turn" in the interpretation of Kant's theory of biology. More specifically, the Authors will trace a connection between some Kantian theses about the “peculiar” or special nature of the human mind (intellectus ectypus, advanced in the Critique of the Power of Judgement (§ 76, 77, and some specific epistemological issues pertaining to the research practice of contemporary molecular biology.

  13. Performance evaluation of scientific programs on advanced architecture computers

    International Nuclear Information System (INIS)

    Walker, D.W.; Messina, P.; Baille, C.F.

    1988-01-01

    Recently a number of advanced architecture machines have become commercially available. These new machines promise better cost-performance then traditional computers, and some of them have the potential of competing with current supercomputers, such as the Cray X/MP, in terms of maximum performance. This paper describes an on-going project to evaluate a broad range of advanced architecture computers using a number of complete scientific application programs. The computers to be evaluated include distributed- memory machines such as the NCUBE, INTEL and Caltech/JPL hypercubes, and the MEIKO computing surface, shared-memory, bus architecture machines such as the Sequent Balance and the Alliant, very long instruction word machines such as the Multiflow Trace 7/200 computer, traditional supercomputers such as the Cray X.MP and Cray-2, and SIMD machines such as the Connection Machine. Currently 11 application codes from a number of scientific disciplines have been selected, although it is not intended to run all codes on all machines. Results are presented for two of the codes (QCD and missile tracking), and future work is proposed

  14. Designing and implementing a new advanced level biology course.

    OpenAIRE

    Hall, Angela; Reiss, Michael; Rowell, Cathy; Scott, C.; Scott, Anne

    2003-01-01

    Salters-Nuffield Advanced Biology is a new advanced level biology course currently being piloted from September 2002 in England with around 1200 students. This paper discusses the reasons for developing a new advanced biology course at this time, the philosophy of the project and how the materials are being written and the specification devised. The aim of the project is to provide an up-to-date course that interests students, is considered appropriate by teachers and other professionals in b...

  15. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    Science.gov (United States)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  16. Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing

    Science.gov (United States)

    Meng, Xiang

    The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In

  17. 76 FR 71045 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-11-16

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... period for the notice on its report of scientific and medical literature and information concerning the... ``Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information...

  18. Scientific opportunities with advanced facilities for neutron scattering

    International Nuclear Information System (INIS)

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10 15 n cm -2 s -1 steady state source or a 10 17 n cm -2 s -1 peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee

  19. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  20. Scientific capabilities of the advanced light source for radioactive materials

    International Nuclear Information System (INIS)

    Shuh, D.K.

    2007-01-01

    The Advanced Light Source (ALS) of Lawrence Berkeley National Laboratory (LBNL) is a third-generation synchrotron radiation light source and is a U.S. Department of Energy (DOE) national user facility. Currently, the ALS has approximately forty-five operational beamlines spanning a spectrum of scientific disciplines, and provides scientific opportunities for more than 2 000 users a year. Access to the resources of the ALS is through a competitive proposal mechanism within the general user program. Several ALS beamlines are currently being employed for a range of radioactive materials investigations. These experiments are reviewed individually relying on a graded hazard approach implemented by the ALS in conjunction with the LBNL Environmental, Health, and Safety (EH and S) Radiation Protection Program. The ALS provides radiological work authorization and radiological control technician support and assistance for accepted user experimental programs. LBNL has several radioactive laboratory facilities located near the ALS that provide support for ALS users performing experiments with radioactive materials. The capabilities of the ALS beamlines for investigating radioactive materials are given and examples of several past studies are summarised. (author)

  1. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  2. [Advance in molecular biology of Dendrobium (Orchidaceae)].

    Science.gov (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2016-08-01

    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  3. 76 FR 59407 - Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and...

    Science.gov (United States)

    2011-09-26

    ...] Center for Biologics Evaluation and Research Report of Scientific and Medical Literature and Information... Administration (FDA) is announcing the availability of its report of scientific and medical literature and... Research Report of Scientific and Medical Literature and Information on Non-Standardized Allergenic...

  4. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  5. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  6. Advanced Functional Nanomaterials for Biological Processes

    Science.gov (United States)

    2014-01-01

    regeneration based on HA, gold nanoparticles, and graphene. We devised a one-step method in which Au and hydroxyapatite were used as a catalytic system in a...magnetic and spectroscopic properties. They were linked with targeting agents and used for successful Radio- Frequency (RF) driven thermal ablation of...State University (KSU). This work encompassed outstanding research at the nanostructural level and the use of advanced multifunctiona l nanomaterials in

  7. Adherence to Scientific Method while Advancing Exposure Science

    Science.gov (United States)

    Paul Lioy was simultaneously a staunch adherent to the scientific method and an innovator of new ways to conduct science, particularly related to human exposure. Current challenges to science and the application of the scientific method are presented as they relate the approaches...

  8. OPENING REMARKS: SciDAC: Scientific Discovery through Advanced Computing

    Science.gov (United States)

    Strayer, Michael

    2005-01-01

    with industry and virtual prototyping. New instruments of collaboration will include institutes and centers while summer schools, workshops and outreach will invite new talent and expertise. Computational science adds new dimensions to science and its practice. Disciplines of fusion, accelerator science, and combustion are poised to blur the boundaries between pure and applied science. As we open the door into FY2006 we shall see a landscape of new scientific challenges: in biology, chemistry, materials, and astrophysics to name a few. The enabling technologies of SciDAC have been transformational as drivers of change. Planning for major new software systems assumes a base line employing Common Component Architectures and this has become a household word for new software projects. While grid algorithms and mesh refinement software have transformed applications software, data management and visualization have transformed our understanding of science from data. The Gordon Bell prize now seems to be dominated by computational science and solvers developed by TOPS ISIC. The priorities of the Office of Science in the Department of Energy are clear. The 20 year facilities plan is driven by new science. High performance computing is placed amongst the two highest priorities. Moore's law says that by the end of the next cycle of SciDAC we shall have peta-flop computers. The challenges of petascale computing are enormous. These and the associated computational science are the highest priorities for computing within the Office of Science. Our effort in Leadership Class computing is just a first step towards this goal. Clearly, computational science at this scale will face enormous challenges and possibilities. Performance evaluation and prediction will be critical to unraveling the needed software technologies. We must not lose sight of our overarching goal—that of scientific discovery. Science does not stand still and the landscape of science discovery and computing holds

  9. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  10. Using the Scientific Method to Motivate Biology Students to Study Precalculus

    Science.gov (United States)

    Fulton, James P.; Sabatino, Linda

    2008-01-01

    During the last two years we have developed a precalculus course customized around biology by using the scientific method as a framework to engage and motivate biology students. Historically, the precalculus and calculus courses required for the Suffolk County Community College biology curriculum were designed using examples from the physical…

  11. Recent advances in plant centromere biology.

    Science.gov (United States)

    Feng, Chao; Liu, YaLin; Su, HanDong; Wang, HeFei; Birchler, James; Han, FangPu

    2015-03-01

    The centromere, which is one of the essential parts of a chromosome, controls kinetochore formation and chromosome segregation during mitosis and meiosis. While centromere function is conserved in eukaryotes, the centromeric DNA sequences evolve rapidly and have few similarities among species. The histone H3 variant CENH3 (CENP-A in human), which mostly exists in centromeric nucleosomes, is a universal active centromere mark in eukaryotes and plays an essential role in centromere identity determination. The relationship between centromeric DNA sequences and centromere identity determination is one of the intriguing questions in studying centromere formation. Due to the discoveries in the past decades, including "neocentromeres" and "centromere inactivation", it is now believed that the centromere identity is determined by epigenetic mechanisms. This review will present recent progress in plant centromere biology.

  12. Imaging morphogenesis: technological advances and biological insights.

    Science.gov (United States)

    Keller, Philipp J

    2013-06-07

    Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.

  13. Effects Of Advance Organizers On Students\\' Achievement In Biology ...

    African Journals Online (AJOL)

    Science Education is emphasized in school curriculum in order to meet the country\\'s socioeconomic needs by producing a scientifically literate populace and professionals in science and technology based careers. Biology as a science subject is expected to make a contribution towards these objective. However, the ...

  14. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  15. Advancing nuclear technology and research. The advanced test reactor national scientific user facility

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Jeff B; Marshall, Frances M [Idaho National Laboratory, Idaho Falls, ID (United States); Allen, Todd R [Univ. of Wisconsin, Madison, WI (United States)

    2012-03-15

    The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is one of the world's premier test reactors for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research. The mission of the ATR NSUF is to provide access to world-class facilities, thereby facilitating the advancement of nuclear science and technology. Cost free access to the ATR, INL post irradiation examination facilities, and partner facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to United States Department of Energy. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. (author)

  16. Advanced Test Reactor National Scientific User Facility 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary Catherine Thelen; Todd R. Allen

    2011-05-01

    This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

  17. Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad

    2009-09-28

    The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.

  18. Representations of the Nature of Scientific Knowledge in Turkish Biology Textbooks

    Science.gov (United States)

    Irez, Serhat

    2016-01-01

    Considering the impact of textbooks on learning, this study set out to assess representations of the nature of scientific knowledge in Turkish 9th grade biology textbooks. To this end, the ten most commonly used 9th grade biology textbooks were analyzed. A qualitative research approach was utilized and the textbooks were analyzed using…

  19. International Conference on Recent Advances in Mathematical Biology, Analysis and Applications

    CERN Document Server

    Saleem, M; Srivastava, H; Khan, Mumtaz; Merajuddin, M

    2016-01-01

    The book contains recent developments and contemporary research in mathematical analysis and in its application to problems arising from the biological and physical sciences. The book is of interest to readers who wish to learn of new research in such topics as linear and nonlinear analysis, mathematical biology and ecology, dynamical systems, graph theory, variational analysis and inequalities, functional analysis, differential and difference equations, partial differential equations, approximation theory, and chaos. All papers were prepared by participants at the International Conference on Recent Advances in Mathematical Biology, Analysis and Applications (ICMBAA-2015) held during 4–6 June 2015 in Aligarh, India. A focal theme of the conference was the application of mathematics to the biological sciences and on current research in areas of theoretical mathematical analysis that can be used as sophisticated tools for the study of scientific problems. The conference provided researchers, academicians and ...

  20. Final Report for 'Center for Technology for Advanced Scientific Component Software'

    International Nuclear Information System (INIS)

    Shasharina, Svetlana

    2010-01-01

    The goal of the Center for Technology for Advanced Scientific Component Software is to fundamentally changing the way scientific software is developed and used by bringing component-based software development technologies to high-performance scientific and engineering computing. The role of Tech-X work in TASCS project is to provide an outreach to accelerator physics and fusion applications by introducing TASCS tools into applications, testing tools in the applications and modifying the tools to be more usable.

  1. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  2. Information Literacy in Biology Education: An Example from an Advanced Cell Biology Course

    Science.gov (United States)

    Porter, John R.

    2005-01-01

    Information literacy skills are critically important for the undergraduate biology student. The ability to find, understand, evaluate, and use information, whether from the scientific literature or from Web resources, is essential for a good understanding of a topic and for the conduct of research. A project in which students receive information…

  3. Scientific projection paper on biologic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Matanoski, G.

    1980-01-01

    There is widespread knowledge about the effects of radiation in human populations but the studies have had some limitations which have left gaps in our knowledge. Most populations have had exposure to high doses with little information on the effect of dose rate. The characteristics of the populations have been restricted by the location of the disaster, the occupational limitations, or the basic risks associated with the under-lying disease for which radiation was given. All doses have been estimated and such values are subject to marked variability particularly when they rely on sources of data such as hospital records. The biological data although extensive have several deficits in information. Which are the sites in which cancer is produced by irradiation and what are the cell types which are produced. The sensitivity of various tissues and organs are not similar and it is important to rank them according to susceptibility. This has been done in the past but the results are not complete for all cell types and organs. The temporal patterns for tumor development, the latent period, the period of expressed excess, the life-time risks need to be defined more precisely for the cancers. Many populations have not been followed long enough to express the complete risk

  4. Advancing metabolic engineering through systems biology of industrial microorganisms.

    Science.gov (United States)

    Dai, Zongjie; Nielsen, Jens

    2015-12-01

    Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Advancing metabolic engineering through systems biology of industrial microorganisms

    DEFF Research Database (Denmark)

    Dai, Zongjie; Nielsen, Jens

    2015-01-01

    resources. The objective of systems biology is to gain a comprehensive and quantitative understanding of living cells and can hereby enhance our ability to characterize and predict cellular behavior. Systems biology of industrial microorganisms is therefore valuable for metabolic engineering. Here we review......Development of sustainable processes to produce bio-based compounds is necessary due to the severe environmental problems caused by the use of fossil resources. Metabolic engineering can facilitate the development of highly efficient cell factories to produce these compounds from renewable...... the application of systems biology tools for the identification of metabolic engineering targets which may lead to reduced development time for efficient cell factories. Finally, we present some perspectives of systems biology for advancing metabolic engineering further....

  6. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  7. Advances in Neuroscience and the Biological and Toxin Weapons Convention

    Science.gov (United States)

    Dando, Malcolm

    2011-01-01

    This paper investigates the potential threat to the prohibition of the hostile misuse of the life sciences embodied in the Biological and Toxin Weapons Convention from the rapid advances in the field of neuroscience. The paper describes how the implications of advances in science and technology are considered at the Five Year Review Conferences of the Convention and how State Parties have developed their appreciations since the First Review Conference in 1980. The ongoing advances in neurosciences are then assessed and their implications for the Convention examined. It is concluded that State Parties should consider a much more regular and systematic review system for such relevant advances in science and technology when they meet at the Seventh Review Conference in late 2011, and that neuroscientists should be much more informed and engaged in these processes of protecting their work from malign misuse. PMID:21350673

  8. jsGraph and jsNMR—Advanced Scientific Charting

    Directory of Open Access Journals (Sweden)

    Norman Pellet

    2014-09-01

    Full Text Available The jsGraph library is a versatile javascript library that allows advanced charting to be rendered interactively in web browsers without relying on server-side image processing. jsGraph is released under the MIT license and is free of charge. While being highly customizable through an intuitive javascript API, jsGraph is optimized to render a large quantity of data in a short amount of time. jsGraphs can display line, scatter, contour or zone series. Examples can be consulted on the project home page [1]. Customization of the chart, its axis and its series is achieved through simple but comprehensive JSON configurations.

  9. Scientific reasoning skills development in the introductory biology courses for undergraduates

    Science.gov (United States)

    Schen, Melissa S.

    Scientific reasoning is a skill of critical importance to those students who seek to become professional scientists. Yet, there is little research on the development of such reasoning in science majors. In addition, scientific reasoning is often investigated as two separate entities: hypothetico-deductive reasoning and argumentation, even though these skills may be linked. With regard to argumentation, most investigations look at its use in discussing socioscientific issues, not in analyzing scientific data. As scientists often use the same argumentation skills to develop and support conclusions, this avenue needs to be investigated. This study seeks to address these issues and establish a baseline of both hypothetico-deductive reasoning and argumentation of scientific data of biology majors through their engagement in introductory biology coursework. This descriptive study investigated the development of undergraduates' scientific reasoning skills by assessing them multiple times throughout a two-quarter introductory biology course sequence for majors. Participants were assessed at the beginning of the first quarter, end of the first quarter, and end of the second quarter. A split-half version of the revised Lawson Classroom Test of Scientific Reasoning (LCTSR) and a paper and pencil argumentation instrument developed for this study were utilized to assess student hypothetico-deductive reasoning and argumentation skills, respectively. To identify factors that may influence scientific reasoning development, demographic information regarding age, gender, science coursework completed, and future plans was collected. Evidence for course emphasis on scientific reasoning was found in lecture notes, assignments, and laboratory exercises. This study did not find any trends of improvement in the students' hypothetico-deductive reasoning or argumentation skills either during the first quarter or over both quarters. Specific difficulties in the control of variables and

  10. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    Energy Technology Data Exchange (ETDEWEB)

    Kostadin, Damevski [Virginia State Univ., Petersburg, VA (United States)

    2015-01-25

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  11. Center for Technology for Advanced Scientific Component Software (TASCS) Consolidated Progress Report July 2006 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; McInnes, L C; Govindaraju, M; Bramley, R; Epperly, T; Kohl, J A; Nieplocha, J; Armstrong, R; Shasharina, S; Sussman, A L; Sottile, M; Damevski, K

    2009-04-14

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technology for Advanced Scientific Component Software (TASCS) tackles these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.

  12. Advanced I/O for large-scale scientific applications

    International Nuclear Information System (INIS)

    Klasky, Scott; Schwan, Karsten; Oldfield, Ron A.; Lofstead, Gerald F. II

    2010-01-01

    As scientific simulations scale to use petascale machines and beyond, the data volumes generated pose a dual problem. First, with increasing machine sizes, the careful tuning of IO routines becomes more and more important to keep the time spent in IO acceptable. It is not uncommon, for instance, to have 20% of an application's runtime spent performing IO in a 'tuned' system. Careful management of the IO routines can move that to 5% or even less in some cases. Second, the data volumes are so large, on the order of 10s to 100s of TB, that trying to discover the scientifically valid contributions requires assistance at runtime to both organize and annotate the data. Waiting for offline processing is not feasible due both to the impact on the IO system and the time required. To reduce this load and improve the ability of scientists to use the large amounts of data being produced, new techniques for data management are required. First, there is a need for techniques for efficient movement of data from the compute space to storage. These techniques should understand the underlying system infrastructure and adapt to changing system conditions. Technologies include aggregation networks, data staging nodes for a closer parity to the IO subsystem, and autonomic IO routines that can detect system bottlenecks and choose different approaches, such as splitting the output into multiple targets, staggering output processes. Such methods must be end-to-end, meaning that even with properly managed asynchronous techniques, it is still essential to properly manage the later synchronous interaction with the storage system to maintain acceptable performance. Second, for the data being generated, annotations and other metadata must be incorporated to help the scientist understand output data for the simulation run as a whole, to select data and data features without concern for what files or other storage technologies were employed. All of these features should be attained while

  13. Advancing the scientific basis of trivalent actinide-lanthanide separations

    International Nuclear Information System (INIS)

    Nash, K.L.

    2013-01-01

    For advanced fuel cycles designed to support transmutation of transplutonium actinides, several options have been demonstrated for process-scale aqueous separations for U, Np, Pu management and for partitioning of trivalent actinides and fission product lanthanides away from other fission products. The more difficult mutual separation of Am/Cm from La-Tb remains the subject of considerable fundamental and applied research. The chemical separations literature teaches that the most productive alternatives to pursue are those based on ligand donor atoms less electronegative than O, specifically N- and S-containing complexants and chloride ion (Cl - ). These 'soft-donor' atoms have exhibited usable selectivity in their bonding interactions with trivalent actinides relative to lanthanides. In this report, selected features of soft donor reagent design, characterization and application development will be discussed. The roles of thiocyanate, aminopoly-carboxylic acids and lactate in separation processes are detailed. (authors)

  14. Communication, interventions, and scientific advances in autism: a commentary.

    Science.gov (United States)

    Llaneza, Danielle C; DeLuke, Susan V; Batista, Myra; Crawley, Jacqueline N; Christodulu, Kristin V; Frye, Cheryl A

    2010-06-01

    Autism spectrum disorders (ASD) affect approximately 1 in 150 children across the U.S., and are characterized by abnormal social actions, language difficulties, repetitive or restrictive behaviors, and special interests. ASD include autism (autistic disorder), Asperger Syndrome, and Pervasive Developmental Disorder not otherwise specified (PDD-NOS or atypical autism). High-functioning individuals may communicate with moderate-to-high language skills, although difficulties in social skills may result in communication deficits. Low-functioning individuals may have severe deficiencies in language, resulting in poor communication between the individual and others. Behavioral intervention programs have been developed for ASD, and are frequently adjusted to accommodate specific individual needs. Many of these programs are school-based and aim to support the child in the development of their skills, for use outside the classroom with family and friends. Strides are being made in understanding the factors contributing to the development of ASD, particularly the genetic contributions that may underlie these disorders. Mutant mouse models provide powerful research tools to investigate the genetic factors associated with ASD and its co-morbid disorders. In support, the BTBR T+tf/J mouse strain incorporates ASD-like social and communication deficits and high levels of repetitive behaviors. This commentary briefly reviews the reciprocal relationship between observations made during evidence-based behavioral interventions of high- versus low-functioning children with ASD and the accumulating body of research in autism, including animal studies and basic research models. This reciprocity is one of the hallmarks of the scientific method, such that research may inform behavioral treatments, and observations made during treatment may inform subsequent research. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Scientific program of the Advanced Light Source at LBL

    International Nuclear Information System (INIS)

    Robinson, A.L.; Schlachter, A.S.

    1991-10-01

    Construction of the Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory is nearing completion, with operation as a US Department of Energy national user facility scheduled to begin in the spring of 1993. Based on a low-emittance, 1.5-GeV electron storage ring with 10 long straight sections available for insertion devices and, initially, 24 bend-magnet ports, the ALS will be a third-generation source of soft x-ray and ultraviolet (collectively, the XUV) synchrotron radiation. Experimental facilities (insertion devices, beamlines, and end stations) will be developed and operated by participating research teams working with the ALS staff. The ability to exploit the high spectral brightness of the ALS was the main criterion for PRT selection. In the XUV spectral regions served by the ALS, a major benefit of high brightness will be the ability to achieve spatial resolution in the neighborhood of 200 angstroms in x-ray microscopy and holography and in spatially resolved spectroscopy. Other beneficiaries of high brightness include very-high-resolution spectroscopy, spectroscopy of dilute species, diffraction from very small samples, and time-resolved spectroscopy and diffraction

  16. Advanced Beta Dosimetry Techniques.Final Scientific/Technical Report

    International Nuclear Information System (INIS)

    David M. Hamby, PhD

    2006-01-01

    Final report describing NEER research on Advanced Beta Dosimetry Techniques. The research funded by this NEER grant establishes the framework for a detailed understanding of the challenges in beta dosimetry, especially in the presence of a mixed radiation field. The work also stimulated the thinking of the research group which will lead to new concepts in digital signal processing to allow collection of detection signals and real-time analysis such that simultaneous beta and gamma spectroscopy can take place. The work described herein (with detail in the many publications that came out of this research) was conducted in a manner that provided dissertation and thesis topics for three students, one of which was completely funded by this grant. The overall benefit of the work came in the form of a dramatic shift in signal processing that is normally conducted in pulse shape analysis. Analog signal processing was shown not to be feasible for this type of work and that digital signal processing was a must. This, in turn, led the research team to a new understanding of pulse analysis, one in which expands the state-of-the-art in simultaneous beta and gamma spectroscopy with a single detector

  17. Climate Solutions based on advanced scientific discoveries of Allatra physics

    Directory of Open Access Journals (Sweden)

    Vershigora Valery

    2016-01-01

    Full Text Available Global climate change is one of the most important international problems of the 21st century. The overall rapid increase in the dynamics of cataclysms, which have been observed in recent decades, is particularly alarming. Howdo modern scientists predict the occurrence of certain events? In meteorology, unusually powerful cumulonimbus clouds are one of the main conditions for the emergence of a tornado. The former, in their turn, are formed during the invasion of cold air on the overheated land surface. The satellite captures the cloud front, and, based on these pictures, scientists make assumptions about the possibility of occurrence of the respective natural phenomena. In fact, mankind visually observes and draws conclusions about the consequences of the physical phenomena which have already taken place in the invisible world, so the conclusions of scientists are assumptions by their nature, rather than precise knowledge of the causes of theorigin of these phenomena in the physics of microcosm. The latest research in the field of the particle physics and neutrino astrophysics, which was conducted by a working team of scientists of ALLATRA International Public Movement (hereinafter ALLATRA SCIENCE groupallatra-science.org, last accessed 10 April 2016., offers increased opportunities for advanced fundamental and applied research in climatic engineering.

  18. Invited Review Article: Advanced light microscopy for biological space research

    Science.gov (United States)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; van Loon, Jack J. W. A.; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-10-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  19. Invited Review Article: Advanced light microscopy for biological space research

    International Nuclear Information System (INIS)

    De Vos, Winnok H.; Beghuin, Didier; Schwarz, Christian J.; Jones, David B.; Loon, Jack J. W. A. van; Bereiter-Hahn, Juergen; Stelzer, Ernst H. K.

    2014-01-01

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy

  20. Invited Review Article: Advanced light microscopy for biological space research

    Energy Technology Data Exchange (ETDEWEB)

    De Vos, Winnok H., E-mail: winnok.devos@uantwerpen.be [Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Antwerp (Belgium); Cell Systems and Imaging Research Group, Department of Molecular Biotechnology, Ghent University, Ghent (Belgium); Beghuin, Didier [Lambda-X, Nivelles (Belgium); Schwarz, Christian J. [European Space Agency (ESA), ESTEC, TEC-MMG, Noordwijk (Netherlands); Jones, David B. [Institute for Experimental Orthopaedics and Biomechanics, Philipps University, Marburg (Germany); Loon, Jack J. W. A. van [Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, Amsterdam (Netherlands); Bereiter-Hahn, Juergen; Stelzer, Ernst H. K. [Physical Biology, BMLS (FB15, IZN), Goethe University, Frankfurt am Main (Germany)

    2014-10-15

    As commercial space flights have become feasible and long-term extraterrestrial missions are planned, it is imperative that the impact of space travel and the space environment on human physiology be thoroughly characterized. Scrutinizing the effects of potentially detrimental factors such as ionizing radiation and microgravity at the cellular and tissue level demands adequate visualization technology. Advanced light microscopy (ALM) is the leading tool for non-destructive structural and functional investigation of static as well as dynamic biological systems. In recent years, technological developments and advances in photochemistry and genetic engineering have boosted all aspects of resolution, readout and throughput, rendering ALM ideally suited for biological space research. While various microscopy-based studies have addressed cellular response to space-related environmental stressors, biological endpoints have typically been determined only after the mission, leaving an experimental gap that is prone to bias results. An on-board, real-time microscopical monitoring device can bridge this gap. Breadboards and even fully operational microscope setups have been conceived, but they need to be rendered more compact and versatile. Most importantly, they must allow addressing the impact of gravity, or the lack thereof, on physiologically relevant biological systems in space and in ground-based simulations. In order to delineate the essential functionalities for such a system, we have reviewed the pending questions in space science, the relevant biological model systems, and the state-of-the art in ALM. Based on a rigorous trade-off, in which we recognize the relevance of multi-cellular systems and the cellular microenvironment, we propose a compact, but flexible concept for space-related cell biological research that is based on light sheet microscopy.

  1. The advanced test reactor national scientific user facility advancing nuclear technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Thelen, M.C.; Meyer, M.K.; Marshall, F.M.; Foster, J.; Benson, J.B.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  2. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    International Nuclear Information System (INIS)

    Allen, T.R.; Benson, J.B.; Foster, J.A.; Marshall, F.M.; Meyer, M.K.; Thelen, M.C.

    2009-01-01

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team

  3. Construction of the Cognitive Dimension of the Scientific Literacy in the Students through the Costa Rican Biological Sciences Olympics

    Directory of Open Access Journals (Sweden)

    Shirley Camacho-Vargas

    2012-08-01

    Full Text Available This research recognizes the cognitive contributions to the students participating in the Third Costa Rican Biological Sciences Olympics that will define the advancement and strengthening in the construction of its conceptual dimension in the scientific literacy.  This paper is based, mainly, on qualitative approach techniques (ethnographic design:  case study; however, some data are interpreted through quantitative methodologies (descriptive design with an explanatory and exploratory touch for the analysis of a sample of 54 high school students, finalists in the category A of the Olympics, through the use of tools such as a documentary study and a survey, in July 2009.  The information generated was analyzed using elements of inferential and descriptive statistics, figures and histograms.  It was proved that there is a better cognitive management in the topics assessed, an increase in the students’ academic performance as the tests are applied, a commitment for the academic update supported by the development of several tasks for previous preparation, curriculum contributions unprecedented based on our sample, a consent to optimize student’s knowledge about Biology, which will allow the application of scientific notions to diversify and renew the knowledge, according to what is established in the principles of scientific literacy.

  4. Advances in Biological Water-saving Research: Challenge and Perspectives

    Institute of Scientific and Technical Information of China (English)

    Lun Shan; Xiping Deng; Suiqi Zhang

    2006-01-01

    Increasing the efficiency of water use by crops continues to escalate as a topic of concern because drought is a restrictive environmental factor for crop productivity worldwide. Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture. Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yield now provides us with an opportunity to identify and then precisely select for physiological and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goat. A definition of biological water-saving measures is proposed which embraces improvements in water-use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of biological water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of biological water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.

  5. Biological network extraction from scientific literature: state of the art and challenges.

    Science.gov (United States)

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. © The Author 2013. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Collectively Improving Our Teaching: Attempting Biology Department-Wide Professional Development in Scientific Teaching

    Science.gov (United States)

    Owens, Melinda T.; Trujillo, Gloriana; Seidel, Shannon B.; Harrison, Colin D.; Farrar, Katherine M.; Benton, Hilary P.; Blair, J. R.; Boyer, Katharyn E.; Breckler, Jennifer L.; Burrus, Laura W.; Byrd, Dana T.; Caporale, Natalia; Carpenter, Edward J.; Chan, Yee-Hung M.; Chen, Joseph C.; Chen, Lily; Chen, Linda H.; Chu, Diana S.; Cochlan, William P.; Crook, Robyn J.; Crow, Karen D.; de la Torre, José R.; Denetclaw, Wilfred F.; Dowdy, Lynne M.; Franklin, Darleen; Fuse, Megumi; Goldman, Michael A.; Govindan, Brinda; Green, Michael; Harris, Holly E.; He, Zheng-Hui; Ingalls, Stephen B.; Ingmire, Peter; Johnson, Amber R. B.; Knight, Jonathan D.; LeBuhn, Gretchen; Light, Terrye L.; Low, Candace; Lund, Lance; Márquez-Magaña, Leticia M.; Miller-Sims, Vanessa C.; Moffatt, Christopher A.; Murdock, Heather; Nusse, Gloria L.; Parker, V. Thomas; Pasion, Sally G.; Patterson, Robert; Pennings, Pleuni S.; Ramirez, Julio C.; Ramirez, Robert M.; Riggs, Blake; Rohlfs, Rori V.; Romeo, Joseph M.; Rothman, Barry S.; Roy, Scott W.; Russo-Tait, Tatiane; Sehgal, Ravinder N. M.; Simonin, Kevin A.; Spicer, Greg S.; Stillman, Jonathon H.; Swei, Andrea; Timpe, Leslie C.; Vredenburg, Vance T.; Weinstein, Steven L.; Zink, Andrew G.; Kelley, Loretta A.; Domingo, Carmen R.; Tanner, Kimberly D.

    2018-01-01

    Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching…

  7. Using Mini-Reports to Teach Scientific Writing to Biology Students

    Science.gov (United States)

    Simmons, Alexandria D.; Larios-Sanz, Maia; Amin, Shivas; Rosell, Rosemarie C.

    2014-01-01

    Anyone who has taught an introductory biology lab has sat at their desk in front of a towering stack of lengthy lab reports and wondered if there was a better way to teach scientific writing. We propose the use of a one-page format that we have called a "mini-report," which we believe better allows students to understand the structure…

  8. The Student Writing Toolkit: Enhancing Undergraduate Teaching of Scientific Writing in the Biological Sciences

    Science.gov (United States)

    Dirrigl, Frank J., Jr.; Noe, Mark

    2014-01-01

    Teaching scientific writing in biology classes is challenging for both students and instructors. This article offers and reviews several useful "toolkit" items that improve student writing. These include sentence and paper-length templates, funnelling and compartmentalisation, and preparing compendiums of corrections. In addition,…

  9. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    Science.gov (United States)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  10. Advances in biologic augmentation for rotator cuff repair

    Science.gov (United States)

    Patel, Sahishnu; Gualtieri, Anthony P.; Lu, Helen H.; Levine, William N.

    2016-01-01

    Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon–bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue is discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing is covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon–bone interface and improve delivery of biological factors for enhanced integrative repair. PMID:27750374

  11. Study of nanoscale structural biology using advanced particle beam microscopy

    Science.gov (United States)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  12. Novel advances in shotgun lipidomics for biology and medicine.

    Science.gov (United States)

    Wang, Miao; Wang, Chunyan; Han, Rowland H; Han, Xianlin

    2016-01-01

    The field of lipidomics, as coined in 2003, has made profound advances and been rapidly expanded. The mass spectrometry-based strategies of this analytical methodology-oriented research discipline for lipid analysis are largely fallen into three categories: direct infusion-based shotgun lipidomics, liquid chromatography-mass spectrometry-based platforms, and matrix-assisted laser desorption/ionization mass spectrometry-based approaches (particularly in imagining lipid distribution in tissues or cells). This review focuses on shotgun lipidomics. After briefly introducing its fundamentals, the major materials of this article cover its recent advances. These include the novel methods of lipid extraction, novel shotgun lipidomics strategies for identification and quantification of previously hardly accessible lipid classes and molecular species including isomers, and novel tools for processing and interpretation of lipidomics data. Representative applications of advanced shotgun lipidomics for biological and biomedical research are also presented in this review. We believe that with these novel advances in shotgun lipidomics, this approach for lipid analysis should become more comprehensive and high throughput, thereby greatly accelerating the lipidomics field to substantiate the aberrant lipid metabolism, signaling, trafficking, and homeostasis under pathological conditions and their underpinning biochemical mechanisms. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Shaping scientific attitude of biology education students through research-based teaching

    Science.gov (United States)

    Firdaus, Darmadi

    2017-08-01

    Scientific attitude is need of today's society for peaceful and meaningful living of every person in a multicultural world. A case study was conducted at the Faculty of Teacher Training and Education, University of Riau, Pekanbaru in order to describe the scientific attitude that shaped by research-based teaching (RBT). Eighteen students of English for Biology bilingual program were selected from 88 regular students as a subject of the study. RBT designed consists of 9 steps: 1) field observations, 2) developing research proposals, 3) research proposal seminar, 4) field data collecting, 5) data analyzing & ilustrating, 6) writing research papers, 7) preparing power point slides, 8) creating a scientific poster, 9) seminar & poster session. Data were collected by using check list observation instuments during 14 weeks (course sessions), then analyzed by using descriptive-quantitative method. The results showed that RBT were able to shape critical-mindedness, suspended judgement, respect for evidence, honesty, objectivity, and questioning attitude as well as tolerance of uncertainty. These attitudes which shaped were varies according to every steps of learning activities. It's seems that the preparation of scientific posters and research seminar quite good in shaping the critical-mindedness, suspended judgment, respect for evidence, honesty, objectivity, and questioning attitude, as well as tolerance of uncertainty. In conclusion, the application of research-based teaching through the English for Biology courses could shape the students scientific attitudes. However, the consistency of the appearance of a scientific attitude in every stage of Biology-based RBT learning process need more intensive and critical assessment.

  14. Design and validation of general biology learning program based on scientific inquiry skills

    Science.gov (United States)

    Cahyani, R.; Mardiana, D.; Noviantoro, N.

    2018-03-01

    Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.

  15. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Composting on-farm of dead poultry

    DEFF Research Database (Denmark)

    Hald, Tine

    EFSA’s Scientific Panel on Biological Hazards (BIOHAZ) was asked for a scientific opinion on two alternative methods for processing Category (Cat) 2 Animal By-Products (ABP). The material to be treated consists of poultry manure, straw and dead-on-farm poultry; this implies that the animals died...... due to a disease, which in most cases was not properly diagnosed. The proposed processes are composting methods to be used on-farm. The first method is a continuous open system where composting is done under roof in piles separated by wooden partition walls. The piles are processed without enforced...

  16. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on On-site treatment of pig carcasses

    DEFF Research Database (Denmark)

    Hald, Tine

    EFSA’s Scientific Panel on Biological Hazards (BIOHAZ) was asked for a scientific opinion on an alternative method for processing Category (Cat) 2 Animal By-Products (ABP). The materials to be treated are placentas and fallen pigs; this implies that the animals died due to a disease, which in most...... of the animals’ death, the presence of more resistant hazards cannot be considered negligible. The sterilisation process defined in the current legislation is able to minimise the risks due to unidentified agents, such as Bacillus anthracis and TSE agents. The BIOHAZ Panel concluded that the process proposed...

  17. Intelligent tools for building a scientific information platform advanced architectures and solutions

    CERN Document Server

    Skonieczny, Lukasz; Rybinski, Henryk; Kryszkiewicz, Marzena; Niezgodka, Marek

    2013-01-01

    This book is a selection of results obtained within two years of research per- formed under SYNAT - a nation-wide scientific project aiming at creating an infrastructure for scientific content storage and sharing for academia, education and open knowledge society in Poland. The selection refers to the research in artificial intelligence, knowledge discovery and data mining, information retrieval and natural language processing, addressing the problems of implementing intelligent tools for building a scientific information platform.This book is a continuation and extension of the ideas presented in “Intelligent Tools for Building a Scientific Information Platform” published as volume 390 in the same series in 2012. It is based on the SYNAT 2012 Workshop held in Warsaw. The papers included in this volume present an overview and insight into information retrieval, repository systems, text processing, ontology-based systems, text mining, multimedia data processing and advanced software engineering.  

  18. Scientific Conceptions of Photosynthesis among Primary School Pupils and Student Teachers of Biology

    Directory of Open Access Journals (Sweden)

    Darja Skribe Dimec

    2017-03-01

    Full Text Available Photosynthesis is the most important biochemical process on Earth. Most living beings depend on it directly or indirectly. Knowledge about photosynthesis enables us to understand how the world functions as an ecosystem and how photosynthesis acts as a bridge between the non-living and living worlds. It is, therefore, understandable that photosynthesis is included in national curricula around the world. The practice unfortunately shows that students at all school levels mostly learn about photosynthesis by rote. Consequently, they have difficulties understanding this vital process. Research also shows many misconceptions in relation to photosynthesis among students of different ages. Based on these, the main aim of our study was to explore the scientific conceptions about photosynthesis held by primary school pupils and student teachers of biology. Data were collected using a questionnaire containing seven biology content questions. The sample consisted of 634 participants, 427 primary school pupils (aged 11–14, and 207 student teachers of biology (aged 20–23. We found that the populations of primary school pupils and student teachers of biology differ greatly concerning scientific conceptions of photosynthesis. The student teachers showed good and complex understanding of photosynthesis, while pupils showed some misconceptions (location of chlorophyll and photosynthesis in a plant, transformation of energy in photosynthesis. Analysis of the development of scientific conceptions about photosynthesis with age showed that there is very little progress among primary school pupils and none among biology student teachers. More involvement of student teachers of biology in practical work at primary schools during their study was suggested to make student teachers aware of, and better understand pupils’ misconceptions.

  19. Advances, gaps, and future prospects in biological soil crust research

    Science.gov (United States)

    Weber, Bettina; Büdel, Burkhard; Belnap, Jayne

    2017-04-01

    Research progress has led to the understanding that biological soil crusts (biocrusts) are often complete miniature ecosystems comprising a variety of photosynthesizers (cyanobacteria, algae, lichens, bryophytes), decomposers like bacteria, fungi, and archaea, and heterotrophic organisms, like protozoa, nematodes, and microarthropods feeding on them. Biocrusts are one of the oldest terrestrial ecosystems, playing central roles in the structure and functioning of dryland ecosystems and presumably also influencing global biogeochemical cycles. On the other hand, biocrusts have been shown to be highly sensitive to global change, being easily destroyed by mechanical disturbance and severely threatened by minor changes in climate patterns. Despite the large increase in biocrust research, we still see major knowledge gaps which need to be tackled. Considering biodiversity studies, there are major regions of potential biocrust occurrence, where hardly any studies have been conducted. Molecular identification techniques are increasingly employed, but genetically characterized entities need to be linked with morphologically identified organisms to identify their ecological roles. Although there is a large body of research on the role of biocrusts in water and nutrient budgets, we are still far from closing the overall cycles. Results suggest that not all mechanisms have been identified, yet, leading to sometimes contradictory results between different studies. Knowledge on how to minimize impact to biocrusts during surface-disturbing activities has hardly been gained, and despite research efforts, instructions on effective biocrust restoration are still exemplary. In order to fill these research gaps, novel scientific approaches are needed. We expect that global research networks could be extremely helpful to answer scientific questions by tackling them within different regions, utilizing the same methodological techniques. Global networks could also be used for long

  20. Advances in cryo-electron tomography for biology and medicine.

    Science.gov (United States)

    Koning, Roman I; Koster, Abraham J; Sharp, Thomas H

    2018-05-01

    Cryo-electron tomography (CET) utilizes a combination of specimen cryo-fixation and multi-angle electron microscopy imaging to produce three-dimensional (3D) volume reconstructions of native-state macromolecular and subcellular biological structures with nanometer-scale resolution. In recent years, cryo-electron microscopy (cryoEM) has experienced a dramatic increase in the attainable resolution of 3D reconstructions, resulting from technical improvements of electron microscopes, improved detector sensitivity, the implementation of phase plates, automated data acquisition schemes, and improved image reconstruction software and hardware. These developments also greatly increased the usability and applicability of CET as a diagnostic and research tool, which is now enabling structural biologists to determine the structure of proteins in their native cellular environment to sub-nanometer resolution. These recent technical developments have stimulated us to update on our previous review (Koning, R.I., Koster, A.J., 2009. Cryo-electron tomography in biology and medicine. Ann Anat 191, 427-445) in which we described the fundamentals of CET. In this follow-up, we extend this basic description in order to explain the aforementioned recent advances, and describe related 3D techniques that can be applied to the anatomy of biological systems that are relevant for medicine. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Mediating objects: scientific and public functions of models in nineteenth-century biology.

    Science.gov (United States)

    Ludwig, David

    2013-01-01

    The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.

  2. Guiding Development Based Approach Practicum Vertebrates Taxonomy Scientific Study Program for Students of Biology Education

    Science.gov (United States)

    Arieska, M.; Syamsurizal, S.; Sumarmin, R.

    2018-04-01

    Students having difficulty in identifying and describing the vertebrate animals as well as less skilled in science process as practical. Increased expertise in scientific skills, one of which is through practical activities using practical guidance based on scientific approach. This study aims to produce practical guidance vertebrate taxonomy for biology education students PGRI STKIP West Sumatra valid. This study uses a model of Plomp development consisting of three phases: the initial investigation, floating or prototype stage, and the stage of assessment. Data collection instruments used in this study is a validation sheet guiding practicum. Data were analyzed descriptively based on data obtained from the field. The result of the development of practical guidance vertebrate taxonomic validity value of 3.22 is obtained with very valid category. Research and development has produced a practical guide based vertebrate taxonomic scientific approach very valid.

  3. Advanced scientific computational methods and their applications of nuclear technologies. (1) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (1)

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Okuda, Hiroshi

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the first issue showing their overview and introduction of continuum simulation methods. Finite element method as their applications is also reviewed. (T. Tanaka)

  4. Advances in Structural Biology and the Application to Biological Filament Systems.

    Science.gov (United States)

    Popp, David; Koh, Fujiet; Scipion, Clement P M; Ghoshdastider, Umesh; Narita, Akihiro; Holmes, Kenneth C; Robinson, Robert C

    2018-04-01

    Structural biology has experienced several transformative technological advances in recent years. These include: development of extremely bright X-ray sources (microfocus synchrotron beamlines and free electron lasers) and the use of electrons to extend protein crystallography to ever decreasing crystal sizes; and an increase in the resolution attainable by cryo-electron microscopy. Here we discuss the use of these techniques in general terms and highlight their application for biological filament systems, an area that is severely underrepresented in atomic resolution structures. We assemble a model of a capped tropomyosin-actin minifilament to demonstrate the utility of combining structures determined by different techniques. Finally, we survey the methods that attempt to transform high resolution structural biology into more physiological environments, such as the cell. Together these techniques promise a compelling decade for structural biology and, more importantly, they will provide exciting discoveries in understanding the designs and purposes of biological machines. © 2018 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  5. Recent advances in understanding the biology of marginal zone lymphoma

    Science.gov (United States)

    Zucca, Emanuele

    2018-01-01

    There are three different marginal zone lymphomas (MZLs): the extranodal MZL of mucosa-associated lymphoid tissue (MALT) type (MALT lymphoma), the splenic MZL, and the nodal MZL. The three MZLs share common lesions and deregulated pathways but also present specific alterations that can be used for their differential diagnosis. Although trisomies of chromosomes 3 and 18, deletions at 6q23, deregulation of nuclear factor kappa B, and chromatin remodeling genes are frequent events in all of them, the three MZLs differ in the presence of recurrent translocations, mutations affecting the NOTCH pathway, and the transcription factor Kruppel like factor 2 ( KLF2) or the receptor-type protein tyrosine phosphatase delta ( PTPRD). Since a better understanding of the molecular events underlying each subtype may have practical relevance, this review summarizes the most recent and main advances in our understanding of the genetics and biology of MZLs. PMID:29657712

  6. [Scientific advice by the national and European approval authorities concerning advanced therapy medicinal products].

    Science.gov (United States)

    Jost, Nils; Schüssler-Lenz, Martina; Ziegele, Bettina; Reinhardt, Jens

    2015-11-01

    The aim of scientific advice is to support pharmaceutical developers in regulatory and scientific questions, thus facilitating the development of safe and efficacious new medicinal products. Recent years have shown that the development of advanced therapy medicinal products (ATMPs) in particular needs a high degree of regulatory support. On one hand, this is related to the complexity and heterogeneity of this group of medicinal products and on the other hand due to the fact that mainly academic research institutions and small- and medium-sized enterprises (SMEs) are developing ATMPs. These often have limited regulatory experience and resources. In 2009 the Paul-Ehrlich-Institut (PEI) initiated the Innovation Office as a contact point for applicants developing ATMPs. The mandate of the Innovation Office is to provide support on regulatory questions and to coordinate national scientific advice meetings concerning ATMPs for every phase in drug development and especially with view to the preparation of clinical trial applications. On the European level, the Scientific Advice Working Party (SAWP) of the Committee for Medicinal Products for Human Use (CHMP) of the European Medicinal Agency (EMA) offers scientific advice. This article describes the concepts of national and EMA scientific advice concerning ATMPs and summarizes the experience of the last six years.

  7. Advanced scientific computational methods and their applications to nuclear technologies. (4) Overview of scientific computational methods, introduction of continuum simulation methods and their applications (4)

    International Nuclear Information System (INIS)

    Sekimura, Naoto; Okita, Taira

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the fourth issue showing the overview of scientific computational methods with the introduction of continuum simulation methods and their applications. Simulation methods on physical radiation effects on materials are reviewed based on the process such as binary collision approximation, molecular dynamics, kinematic Monte Carlo method, reaction rate method and dislocation dynamics. (T. Tanaka)

  8. PREFACE: International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014)

    Science.gov (United States)

    Kopanitsa, Natalia O.

    2015-01-01

    In October 15-17, 2014 International Scientific Conference of Young Scientists: Advanced Materials in Construction and Engineering (TSUAB2014) took place at Tomsk State University of Architecture and Building (Tomsk, Russia). The Conference became a discussion platform for researchers in the fields of studying structure and properties of advanced building materials and included open lectures of leading scientists and oral presentations of master, postgraduate and doctoral students. A special session was devoted to reports of school children who further plan on starting a research career. The Conference included an industrial exhibition where companies displayed the products and services they supply. The companies also gave presentations of their products within the Conference sessions.

  9. UNEDF: Advanced Scientific Computing Collaboration Transforms the Low-Energy Nuclear Many-Body Problem

    International Nuclear Information System (INIS)

    Nam, H; Stoitsov, M; Nazarewicz, W; Hagen, G; Kortelainen, M; Pei, J C; Bulgac, A; Maris, P; Vary, J P; Roche, K J; Schunck, N; Thompson, I; Wild, S M

    2012-01-01

    The demands of cutting-edge science are driving the need for larger and faster computing resources. With the rapidly growing scale of computing systems and the prospect of technologically disruptive architectures to meet these needs, scientists face the challenge of effectively using complex computational resources to advance scientific discovery. Multi-disciplinary collaborating networks of researchers with diverse scientific backgrounds are needed to address these complex challenges. The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper describes UNEDF and identifies attributes that classify it as a successful computational collaboration. We illustrate significant milestones accomplished by UNEDF through integrative solutions using the most reliable theoretical approaches, most advanced algorithms, and leadership-class computational resources.

  10. Advanced Scientific Computing Research Exascale Requirements Review. An Office of Science review sponsored by Advanced Scientific Computing Research, September 27-29, 2016, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Almgren, Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); DeMar, Phil [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Vetter, Jeffrey [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Riley, Katherine [Argonne Leadership Computing Facility, Argonne, IL (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Monga, Inder [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Science Network; Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bernholdt, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bethel, Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bosilca, George [Univ. of Tennessee, Knoxville, TN (United States); Cappello, Frank [Argonne National Lab. (ANL), Argonne, IL (United States); Gamblin, Todd [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, Judy [Oak Ridge Leadership Computing Facility, Oak Ridge, TN (United States); Hollingsworth, Jeffrey K. [Univ. of Maryland, College Park, MD (United States); McInnes, Lois Curfman [Argonne National Lab. (ANL), Argonne, IL (United States); Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moore, Shirley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moreland, Ken [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roser, Rob [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Shende, Sameer [Univ. of Oregon, Eugene, OR (United States); Shipman, Galen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of the U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.

  11. Emerging scientific advances: how do they enter dental curricula and the profession?

    Science.gov (United States)

    Shuler, Charles F

    2005-10-01

    What is meant by emerging scientific advances? In brief, this terminology is equivalent to new research findings, however, the term "research" is often associated with scientific investigations that have very limited direct clinical relevance. Unfortunately, basic dental research and dental clinical practice have, in many instances, been considered to have nonoverlapping spheres of existence. The existence of mutually exclusive domains is rapidly changing with considerable translational activities between basic research investigation and clinical application developing. There is a growing emphasis at a national level for the importance of moving basic biomedical research laboratory findings into clinical patient-related applications to realize improvements in health based on the research findings. Ultimately, new approaches to diagnose, treat, and prevent disease will be available and represent the translation of the best scientific evidence into clinical applications. It is critical at this time to prepare our dental graduates to be members of the dental profession who will understand the implications that new scientific advances will have on their approach to patient care. The patterns and practices of oral health care delivery will undergo major changes during the careers of our new dental graduates. They need to be prepared to respond to these changes to the benefit of their patients.

  12. Biological Discourses on Human Races and Scientific Racism in Brazil (1832-1911).

    Science.gov (United States)

    Arteaga, Juanma Sánchez

    2017-05-01

    This paper analyzes biological and scientific discourses about the racial composition of the Brazilian population, between 1832 and 1911. The first of these dates represents Darwin's first arrival in the South-American country during his voyage on H.M.S. Beagle. The study ends in 1911, with the celebration of the First universal Races congress in London, where the Brazilian physical anthropologist J.B. Lacerda predicted the complete extinction of black Brazilians by the year 2012. Contemporary European and North-American racial theories had a profound influence in Brazilian scientific debates on race and miscegenation. These debates also reflected a wider political and cultural concern, shared by most Brazilian scholars, about the future of the Nation. With few known exceptions, Brazilian evolutionists, medical doctors, physical anthropologists, and naturalists, considered that the racial composition of the population was a handicap to the commonly shared nationalistic goal of creating a modern and progressive Brazilian Republic.

  13. Low cost biological lung volume reduction therapy for advanced emphysema

    Directory of Open Access Journals (Sweden)

    Bakeer M

    2016-08-01

    Full Text Available Mostafa Bakeer,1 Taha Taha Abdelgawad,1 Raed El-Metwaly,1 Ahmed El-Morsi,1 Mohammad Khairy El-Badrawy,1 Solafa El-Sharawy2 1Chest Medicine Department, 2Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt Background: Bronchoscopic lung volume reduction (BLVR, using biological agents, is one of the new alternatives to lung volume reduction surgery.Objectives: To evaluate efficacy and safety of biological BLVR using low cost agents including autologous blood and fibrin glue.Methods: Enrolled patients were divided into two groups: group A (seven patients in which autologous blood was used and group B (eight patients in which fibrin glue was used. The agents were injected through a triple lumen balloon catheter via fiberoptic bronchoscope. Changes in high resolution computerized tomography (HRCT volumetry, pulmonary function tests, symptoms, and exercise capacity were evaluated at 12 weeks postprocedure as well as for complications.Results: In group A, at 12 weeks postprocedure, there was significant improvement in the mean value of HRCT volumetry and residual volume/total lung capacity (% predicted (P-value: <0.001 and 0.038, respectively. In group B, there was significant improvement in the mean value of HRCT volumetry and (residual volume/total lung capacity % predicted (P-value: 0.005 and 0.004, respectively. All patients tolerated the procedure with no mortality.Conclusion: BLVR using autologous blood and locally prepared fibrin glue is a promising method for therapy of advanced emphysema in term of efficacy, safety as well as cost effectiveness. Keywords: BLVR, bronchoscopy, COPD, interventional pulmonology

  14. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  15. Computational brain models: Advances from system biology and future challenges

    Directory of Open Access Journals (Sweden)

    George E. Barreto

    2015-02-01

    Full Text Available Computational brain models focused on the interactions between neurons and astrocytes, modeled via metabolic reconstructions, are reviewed. The large source of experimental data provided by the -omics techniques and the advance/application of computational and data-management tools are being fundamental. For instance, in the understanding of the crosstalk between these cells, the key neuroprotective mechanisms mediated by astrocytes in specific metabolic scenarios (1 and the identification of biomarkers for neurodegenerative diseases (2,3. However, the modeling of these interactions demands a clear view of the metabolic and signaling pathways implicated, but most of them are controversial and are still under evaluation (4. Hence, to gain insight into the complexity of these interactions a current view of the main pathways implicated in the neuron-astrocyte communication processes have been made from recent experimental reports and reviews. Furthermore, target problems, limitations and main conclusions have been identified from metabolic models of the brain reported from 2010. Finally, key aspects to take into account into the development of a computational model of the brain and topics that could be approached from a systems biology perspective in future research are highlighted.

  16. A Programme-Wide Training Framework to Facilitate Scientific Communication Skills Development amongst Biological Sciences Masters Students

    Science.gov (United States)

    Divan, Aysha; Mason, Sam

    2016-01-01

    In this article we describe the effectiveness of a programme-wide communication skills training framework incorporated within a one-year biological sciences taught Masters course designed to enhance the competency of students in communicating scientific research principally to a scientific audience. In one class we analysed the numerical marks…

  17. Lost in Translation: The Gap in Scientific Advancements and Clinical Application

    Directory of Open Access Journals (Sweden)

    Joseph eFernandez-Moure

    2016-06-01

    Full Text Available The evolution of medicine and medical technology hinges on the successful translation of basic science research from the bench to clinical implementation at the bedside. Born out of the increasing need to facilitate the transfer of scientific knowledge to patients, translational research has emerged. Significant leaps in improving global health such as antibiotics, vaccinations, and cancer therapies have all seen successes under this paradigm yet today it has become increasingly difficult to realize this ideal scenario. As hospital revenue demand increase, and financial support declines, clinician protected research time has been limited. Researchers, likewise, have been forced to abandon time and resource consuming translational research to focus on publication generating work to maintain funding and professional advancement. Compared to the surge in scientific innovation and new fields of science have surged, realization of transformational scientific findings in device development and materials sciences has significantly lagged behind. Herein, we describe: how the current scientific paradigm struggles in the new health-care landscape; the obstacles met by translational researchers; and solutions, both public and private, to overcoming those obstacles. We must rethink the old dogma of academia and reinvent the traditional pathways of research in order to truly impact the health-care arena and ultimately those that matter most: the patient.

  18. Review of the 25th annual scientific meeting of the International Society for Biological Therapy of Cancer

    Directory of Open Access Journals (Sweden)

    Jaffee Elizabeth M

    2011-05-01

    Full Text Available Abstract Led by key opinion leaders in the field, the 25th Annual Meeting of the International Society for Biological Therapy of Cancer (iSBTc, recently renamed the Society for Immunotherapy of Cancer, SITC provided a scientific platform for ~500 attendees to exchange cutting-edge information on basic, clinical, and translational research in cancer immunology and immunotherapy. The meeting included keynote addresses on checkpoint blockade in cancer therapy and recent advances in therapeutic vaccination against cancer induced by Human Papilloma Virus 16. Participants from 29 countries interacted through oral presentations, panel discussions, and posters on topics that included dendritic cells and cancer, targeted therapeutics and immunotherapy, innate/adaptive immune interplay in cancer, clinical trial endpoints, vaccine combinations, countering negative regulation, immune cell trafficking to tumor microenvironment, and adoptive T cell transfer. In addition to the 50 oral presentations and >180 posters on these topics, a new SITC/iSBTc initiative to create evidence-based Cancer Immunotherapy Guidelines was announced. The SITC/iSBTc Biomarkers Taskforce announced the release of recommendations on immunotherapy biomarkers and a highly successful symposium on Immuno-Oncology Biomarkers that took place on the campus of the National Institutes of Health (NIH immediately prior to the Annual Meeting. At the Annual Meeting, the NIH took the opportunity to publicly announce the award of the U01 grant that will fund the Cancer Immunotherapy Trials Network (CITN. In summary, the Annual Meeting gathered clinicians and scientists from academia, industry, and regulatory agencies from around the globe to interact and exchange important scientific advances related to tumor immunobiology and cancer immunotherapy.

  19. Review of the 25th annual scientific meeting of the International Society for Biological Therapy of Cancer.

    Science.gov (United States)

    Balwit, James M; Kalinski, Pawel; Sondak, Vernon K; Coulie, Pierre G; Jaffee, Elizabeth M; Gajewski, Thomas F; Marincola, Francesco M

    2011-05-12

    Led by key opinion leaders in the field, the 25th Annual Meeting of the International Society for Biological Therapy of Cancer (iSBTc, recently renamed the Society for Immunotherapy of Cancer, SITC) provided a scientific platform for ~500 attendees to exchange cutting-edge information on basic, clinical, and translational research in cancer immunology and immunotherapy. The meeting included keynote addresses on checkpoint blockade in cancer therapy and recent advances in therapeutic vaccination against cancer induced by Human Papilloma Virus 16. Participants from 29 countries interacted through oral presentations, panel discussions, and posters on topics that included dendritic cells and cancer, targeted therapeutics and immunotherapy, innate/adaptive immune interplay in cancer, clinical trial endpoints, vaccine combinations, countering negative regulation, immune cell trafficking to tumor microenvironment, and adoptive T cell transfer. In addition to the 50 oral presentations and >180 posters on these topics, a new SITC/iSBTc initiative to create evidence-based Cancer Immunotherapy Guidelines was announced. The SITC/iSBTc Biomarkers Taskforce announced the release of recommendations on immunotherapy biomarkers and a highly successful symposium on Immuno-Oncology Biomarkers that took place on the campus of the National Institutes of Health (NIH) immediately prior to the Annual Meeting. At the Annual Meeting, the NIH took the opportunity to publicly announce the award of the U01 grant that will fund the Cancer Immunotherapy Trials Network (CITN). In summary, the Annual Meeting gathered clinicians and scientists from academia, industry, and regulatory agencies from around the globe to interact and exchange important scientific advances related to tumor immunobiology and cancer immunotherapy.

  20. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Charles [Argonne National Lab. (ANL), Argonne, IL (United States); Bell, Greg [ESnet, Berkeley, CA (United States); Canon, Shane [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [ESnet, Berkeley, CA (United States); Dattoria, Vince [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Goodwin, Dave [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Lee, Jason [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hicks, Susan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Holohan, Ed [Argonne National Lab. (ANL), Argonne, IL (United States); Klasky, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lauzon, Carolyn [Dept. of Energy (DOE), Washington DC (United States). Office of Science. Advanced Scientific Computing Research (ASCR); Rogers, Jim [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shipman, Galen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Skinner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Tierney, Brian [ESnet, Berkeley, CA (United States)

    2013-03-08

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SC organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.

  1. Brazilian Network on Global Climate Change Research (Rede CLIMA: structure, scientific advances and future prospects

    Directory of Open Access Journals (Sweden)

    Eduardo Moraes Arraut

    2013-01-01

    Full Text Available In order to create the necessary scientific knowledge for Brazil to understand and deal with the causes and consequences of climate change, the federal government created, in 2007, the Brazilian Network on Global Climate Change Research (Rede CLIMA. Rede CLIMA needs to discuss issues, pose questions, develop methodologies and technological products, find answers, and suggest solutions that are relevant to society. In its first phase, it focused mainly on providing infrastructure and consolidating the sub-networks. Several scientific advances were also achieved, a selection of which are presented in sections focusing on climate modelling, agriculture, energy and water, human development and mobility, biodiversity and ecosystem services, and human health. Now, in its second phase, the objective is to straighten collaboration between sub-networks by means of interdisciplinary projects. It is argued that in order to succeed the Network needs to foster research whose merit is measured not exclusively by academic production.

  2. Biology

    Indian Academy of Sciences (India)

    the overarching scientific questions outlined in this essay can help advance both scientific understanding and ... Āyurveda which proclaimed over a thousand years ago that its claim to ..... traditions since a very long time past. The arts thus ...

  3. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Daniel [University of Iowa; Berzins, Martin [University of Utah; Pennington, Robert; Sarkar, Vivek [Rice University; Taylor, Valerie [Texas A& M University

    2015-08-01

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observations and recommendations of the subcommittee.

  4. National facility for advanced computational science: A sustainable path to scientific discovery

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  5. Semantic Models of Sentences with Verbs of Motion in Standard Language and in Scientific Language Used in Biology

    Directory of Open Access Journals (Sweden)

    Vita Banionytė

    2016-06-01

    Full Text Available The semantic models of sentences with verbs of motion in German standard language and in scientific language used in biology are analyzed in the article. In its theoretic part it is affirmed that the article is based on the semantic theory of the sentence. This theory, in its turn, is grounded on the correlation of semantic predicative classes and semantic roles. The combination of semantic predicative classes and semantic roles is expressed by the main semantic formula – proposition. In its practical part the differences between the semantic models of standard and scientific language used in biology are explained. While modelling sentences with verbs of motion, two groups of semantic models of sentences are singled out: that of action (Handlung and process (Vorgang. The analysis shows that the semantic models of sentences with semantic action predicatives dominate in the text of standard language while the semantic models of sentences with semantic process predicatives dominate in the texts of scientific language used in biology. The differences how the doer and direction are expressed in standard and in scientific language are clearly seen and the semantic cases (Agens, Patiens, Direktiv1 help to determine that. It is observed that in scientific texts of high level of specialization (biology science in contrast to popular scientific literature models of sentences with moving verbs are usually seldom found. They are substituted by denominative constructions. In conclusions it is shown that this analysis can be important in methodics, especially planning material for teaching professional-scientific language.

  6. Advanced scientific computational methods and their applications to nuclear technologies. (3) Introduction of continuum simulation methods and their applications (3)

    International Nuclear Information System (INIS)

    Satake, Shin-ichi; Kunugi, Tomoaki

    2006-01-01

    Scientific computational methods have advanced remarkably with the progress of nuclear development. They have played the role of weft connecting each realm of nuclear engineering and then an introductory course of advanced scientific computational methods and their applications to nuclear technologies were prepared in serial form. This is the third issue showing the introduction of continuum simulation methods and their applications. Spectral methods and multi-interface calculation methods in fluid dynamics are reviewed. (T. Tanaka)

  7. Executive Summary of the NHLBI Workshop Report: Leveraging Current Scientific Advancements to Understand Sarcoidosis Variability and Improve Outcomes.

    Science.gov (United States)

    Maier, Lisa A; Crouser, Elliott D; Martin, William J; Eu, Jerry

    2017-12-01

    Sarcoidosis is a systemic granulomatous disease that primarily affects the lung; it is associated with significant disparities, more commonly impacting those in the prime of their lives (age 20-50 yr, with a second peak after age 60 yr), black individuals, and women. However, the burden of disease, the ability to diagnose and prognose organ involvement and course, as well as specific treatment options, management options, and disease pathogenesis remain poorly understood. As a result, the National Heart, Lung, and Blood Institute undertook a sarcoidosis workshop, "Leveraging Current Scientific Advancements to Understand Sarcoidosis Variability and Improve Outcomes," to help address these issues by defining the scientific and clinical priorities to improve sarcoidosis care. The overarching recommendations from this workshop are outlined in the following summary and detailed in the accompanying articles. The recommendations included establishing collaborations and networks to conduct research based on consensus definitions of disease phenotypes and standards of care, and to provide clinical outreach to areas with a burden of disease to improve care. These collaborative networks would also serve as the hub to conduct clinical trials of devastating phenotypes (e.g., cardiac, neurologic, and fibrotic disease) not only for treatment but to enhance our understanding of the burden of disease. In addition, the networks would be used to leverage state-of-the-art "omics" and systems biology research, as well as other studies to advance understanding of disease pathogenesis, and development of biomarkers and therapeutic targets, with a goal to translate this information to improve care of individuals with sarcoidosis.

  8. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  9. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Robert [University of Southern California, Information Sciences Institute; Ang, James [Sandia National Laboratories; Bergman, Keren [Columbia University; Borkar, Shekhar [Intel; Carlson, William [Institute for Defense Analyses; Carrington, Laura [University of California, San Diego; Chiu, George [IBM; Colwell, Robert [DARPA; Dally, William [NVIDIA; Dongarra, Jack [University of Tennessee; Geist, Al [Oak Ridge National Laboratory; Haring, Rud [IBM; Hittinger, Jeffrey [Lawrence Livermore National Laboratory; Hoisie, Adolfy [Pacific Northwest National Laboratory; Klein, Dean Micron; Kogge, Peter [University of Notre Dame; Lethin, Richard [Reservoir Labs; Sarkar, Vivek [Rice University; Schreiber, Robert [Hewlett Packard; Shalf, John [Lawrence Berkeley National Laboratory; Sterling, Thomas [Indiana University; Stevens, Rick [Argonne National Laboratory; Bashor, Jon [Lawrence Berkeley National Laboratory; Brightwell, Ron [Sandia National Laboratories; Coteus, Paul [IBM; Debenedictus, Erik [Sandia National Laboratories; Hiller, Jon [Science and Technology Associates; Kim, K. H. [IBM; Langston, Harper [Reservoir Labs; Murphy, Richard Micron; Webster, Clayton [Oak Ridge National Laboratory; Wild, Stefan [Argonne National Laboratory; Grider, Gary [Los Alamos National Laboratory; Ross, Rob [Argonne National Laboratory; Leyffer, Sven [Argonne National Laboratory; Laros III, James [Sandia National Laboratories

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a system that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.

  10. Recent scientific advances in leiomyoma (uterine fibroids) research facilitates better understanding and management.

    Science.gov (United States)

    Taylor, Darlene K; Holthouser, Kristine; Segars, James H; Leppert, Phyllis C

    2015-01-01

    Uterine leiomyomas (fibroids) are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches.

  11. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on VTEC-seropathotype and scientific criteria regarding pathogenicity assessment

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    of verocytotoxins alone or genes encoding such verocytotoxins does not provide a sound scientific basis on which to assess risk to the consumer because there is no single or combination of marker(s) that fully define a ‘pathogenic’ VTEC. Strains positive for verocytotoxin 2 gene(vtx2)- and eae (intimin production...

  12. The scientific production in health and biological sciences of the top 20 Brazilian universities

    Directory of Open Access Journals (Sweden)

    R. Zorzetto

    2006-12-01

    Full Text Available Brazilian scientific output exhibited a 4-fold increase in the last two decades because of the stability of the investment in research and development activities and of changes in the policies of the main funding agencies. Most of this production is concentrated in public universities and research institutes located in the richest part of the country. Among all areas of knowledge, the most productive are Health and Biological Sciences. During the 1998-2002 period these areas presented heterogeneous growth ranging from 4.5% (Pharmacology to 191% (Psychiatry, with a median growth rate of 47.2%. In order to identify and rank the 20 most prolific institutions in these areas, searches were made in three databases (DataCAPES, ISI and MEDLINE which permitted the identification of 109,507 original articles produced by the 592 Graduate Programs in Health and Biological Sciences offered by 118 public universities and research institutes. The 20 most productive centers, ranked according to the total number of ISI-indexed articles published during the 1998-2003 period, produced 78.7% of the papers in these areas and are strongly concentrated in the Southern part of the country, mainly in São Paulo State.

  13. Intelligent biology and medicine in 2015: advancing interdisciplinary education, collaboration, and data science.

    Science.gov (United States)

    Huang, Kun; Liu, Yunlong; Huang, Yufei; Li, Lang; Cooper, Lee; Ruan, Jianhua; Zhao, Zhongming

    2016-08-22

    We summarize the 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) and the editorial report of the supplement to BMC Genomics. The supplement includes 20 research articles selected from the manuscripts submitted to ICIBM 2015. The conference was held on November 13-15, 2015 at Indianapolis, Indiana, USA. It included eight scientific sessions, three tutorials, four keynote presentations, three highlight talks, and a poster session that covered current research in bioinformatics, systems biology, computational biology, biotechnologies, and computational medicine.

  14. Data management, code deployment, and scientific visualization to enhance scientific discovery in fusion research through advanced computing

    International Nuclear Information System (INIS)

    Schissel, D.P.; Finkelstein, A.; Foster, I.T.; Fredian, T.W.; Greenwald, M.J.; Hansen, C.D.; Johnson, C.R.; Keahey, K.; Klasky, S.A.; Li, K.; McCune, D.C.; Peng, Q.; Stevens, R.; Thompson, M.R.

    2002-01-01

    The long-term vision of the Fusion Collaboratory described in this paper is to transform fusion research and accelerate scientific understanding and innovation so as to revolutionize the design of a fusion energy source. The Collaboratory will create and deploy collaborative software tools that will enable more efficient utilization of existing experimental facilities and more effective integration of experiment, theory, and modeling. The computer science research necessary to create the Collaboratory is centered on three activities: security, remote and distributed computing, and scientific visualization. It is anticipated that the presently envisioned Fusion Collaboratory software tools will require 3 years to complete

  15. Systems-Level Synthetic Biology for Advanced Biofuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Ruffing, Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jensen, Travis J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Strickland, Lucas Marshall [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tallant, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcus sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.

  16. Coastal aquifers: Scientific advances in the face of global environmental challenges

    Science.gov (United States)

    Post, Vincent E. A.; Werner, Adrian D.

    2017-08-01

    Coastal aquifers embody the subsurface transition between terrestrial and marine systems, and form the almost invisible pathway for tremendous volumes of freshwater that flow to the ocean. Changing conditions of the earth's landscapes and oceans can disrupt the fragile natural equilibrium between fresh and saltwater that exists in coastal zones. Among these, over-abstraction of groundwater is considered the leading man-made cause of seawater intrusion. Moreover, many of the world's largest urban settings, where sources of contamination are profuse, have been built over the freshwater in coastal aquifers. Thus, coastal aquifers are important receptors of human impacts to water on Earth (Michael et al., 2017). This Special Issue on 'Investigation and Management of Coastal Aquifers' contains current scientific advances on the topic, dealing with the storage and quality of water, affected by stressors ranging in scale from point source contamination to global climate change.

  17. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D L

    2009-05-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex

  18. Modeling, Simulation and Analysis of Complex Networked Systems: A Program Plan for DOE Office of Advanced Scientific Computing Research

    International Nuclear Information System (INIS)

    Brown, D.L.

    2009-01-01

    Many complex systems of importance to the U.S. Department of Energy consist of networks of discrete components. Examples are cyber networks, such as the internet and local area networks over which nearly all DOE scientific, technical and administrative data must travel, the electric power grid, social networks whose behavior can drive energy demand, and biological networks such as genetic regulatory networks and metabolic networks. In spite of the importance of these complex networked systems to all aspects of DOE's operations, the scientific basis for understanding these systems lags seriously behind the strong foundations that exist for the 'physically-based' systems usually associated with DOE research programs that focus on such areas as climate modeling, fusion energy, high-energy and nuclear physics, nano-science, combustion, and astrophysics. DOE has a clear opportunity to develop a similarly strong scientific basis for understanding the structure and dynamics of networked systems by supporting a strong basic research program in this area. Such knowledge will provide a broad basis for, e.g., understanding and quantifying the efficacy of new security approaches for computer networks, improving the design of computer or communication networks to be more robust against failures or attacks, detecting potential catastrophic failure on the power grid and preventing or mitigating its effects, understanding how populations will respond to the availability of new energy sources or changes in energy policy, and detecting subtle vulnerabilities in large software systems to intentional attack. This white paper outlines plans for an aggressive new research program designed to accelerate the advancement of the scientific basis for complex networked systems of importance to the DOE. It will focus principally on four research areas: (1) understanding network structure, (2) understanding network dynamics, (3) predictive modeling and simulation for complex networked systems

  19. Scientific advances of the MyOcean projects underpinning the transition towards the Marine Copernicus service

    Science.gov (United States)

    Brasseur, Pierre

    2015-04-01

    The MyOcean projects supported by the European Commission period have been developed during the 2008-2015 period to build an operational service of ocean physical state and ecosystem information to intermediate and downstream users in the areas of marine safety, marine resources, marine and coastal environment and weather, climate and seasonal forecasting. The "core" information provided to users is obtained through the combination of satellite and in situ observations, eddy-resolving modelling of the global ocean and regional european seas, biochemistry, ecosystem and sea-ice modelling, and data assimilation for global to basin scale circulation. A comprehensive R&D plan was established in 2010 to ensure the collection and provision of information of best possible quality for daily estimates of the ocean state (real-time), its short-term evolution, and its history over the past (reanalyses). A service validation methodology was further developed to ensure proper scientific evaluation and routine monitoring of the accuracy of MyOcean products. In this presentation, we will present an overview of the main scientific advances achieved in MyOcean using the NEMO modelling platform, ensemble-based assimilation schemes, coupled circulation-ecosystem, sea-ice assimilative models and probabilistic methodologies for ensemble validation. We will further highlight the key areas that will require additional innovation effort to support the Marine Copernicus service evolution.

  20. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update)

    DEFF Research Database (Denmark)

    Hald, Tine

    ) assessment was developed by EFSA for its own use to provide a generic risk assessment approach applicable across EFSA’s scientific Panels, for biological agents notified for intentional use in the whole food chain. The safety of unambiguously defined biological agents at the highest taxonomic unit......EFSA is requested to assess the safety of a broad range of biological agents (including microorganisms and viruses) in the context of notifications for market authorisation as sources of food and feed additives, enzymes and plant protection products. The qualified presumption of safety (QPS...

  1. [Advance in flavonoids biosynthetic pathway and synthetic biology].

    Science.gov (United States)

    Zou, Li-Qiu; Wang, Cai-Xia; Kuang, Xue-Jun; Li, Ying; Sun, Chao

    2016-11-01

    Flavonoids are the valuable components in medicinal plants, which possess a variety of pharmacological activities, including anti-tumor, antioxidant and anti-inflammatory activities. There is an unambiguous understanding about flavonoids biosynthetic pathway, that is,2S-flavanones including naringenin and pinocembrin are the skeleton of other flavonoids and they can transform to other flavonoids through branched metabolic pathway. Elucidation of the flavonoids biosynthetic pathway lays a solid foundation for their synthetic biology. A few flavonoids have been produced in Escherichia coli or yeast with synthetic biological technologies, such as naringenin, pinocembrin and fisetin. Synthetic biology will provide a new way to get valuable flavonoids and promote the research and development of flavonoid drugs and health products, making flavonoids play more important roles in human diet and health. Copyright© by the Chinese Pharmaceutical Association.

  2. Penile prosthesis implant: scientific advances and technological innovations over the last four decades.

    Science.gov (United States)

    Chung, Eric

    2017-02-01

    Despite introduction of oral phosphodiesterase type 5 inhibitors and intracavernosal vasoactive agents, penile prosthesis implant remains a relevant and desired option with sales of penile prostheses continue to stay high, as many men became refractory to medical therapy and/or seeking a more effective and permanent therapy. There are two types of penile prosthesis implants: inflatable and non-inflatable types, and the inflatable penile implants can be subdivided into single-, two- and three-piece devices. Non-inflatable penile prosthesis (non-IPP) may be referred to as semi-rigid rod or malleable prosthesis. IPP is considered a superior option to malleable prosthesis as it produces penile rigidity and flaccidity that closely replicates a normal penile erectile function. Since the introduction of IPP by Scott in 1973, surgical landscape for penile prosthesis implantation has changed dramatically. Advances in prosthesis design, device technologies and surgical techniques have made penile prosthesis implant a more natural, durable and reliable device. The following article reviews the scientific advances and technological innovation in modern penile prosthesis implants over the last four decades.

  3. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  4. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  5. Advances in reproductive biology and seed production systems of ...

    African Journals Online (AJOL)

    Eucalyptus globulus is the main eucalypt species grown in Australian plantations. The focus on seedling deployment systems, coupled with exploitation of large, open-pollinated base populations for breeding purposes over the last two decades, has required a detailed understanding of the reproductive biology of this ...

  6. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    Science.gov (United States)

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.

  7. Influence of Culture and Gender on Secondary School Students' Scientific Creativity in Biology Education in Turkana County, Kenya

    Science.gov (United States)

    Aruan, Susan A.; Okere, Mark I. O.; Wachanga, Samuel

    2016-01-01

    The purpose of this study was to establish the extent to which biology scientific creativity skills are influenced by the students' culture and gender in Turkana County. A mixed method research design was used. This involved cross sectional survey and ethnographic study. The target population comprised all form three students in sub county schools…

  8. Scientific Reasoning and Argumentation: Advancing an Interdisciplinary Research Agenda in Education

    Science.gov (United States)

    Fischer, Frank; Kollar, Ingo; Ufer, Stefan; Sodian, Beate; Hussmann, Heinrich; Pekrun, Reinhard; Neuhaus, Birgit; Dorner, Birgit; Pankofer, Sabine; Fischer, Martin; Strijbos, Jan-Willem; Heene, Moritz; Eberle, Julia

    2014-01-01

    Scientific reasoning and scientific argumentation are highly valued outcomes of K-12 and higher education. In this article, we first review main topics and key findings of three different strands of research, namely research on the development of scientific reasoning, research on scientific argumentation, and research on approaches to support…

  9. Advancing the science of forest hydrology A challenge to agricultural and biological engineers

    Science.gov (United States)

    Devendra Amatya; Wayne Skaggs; Carl Trettin

    2009-01-01

    For more than a century, agricultural and biological engineers have provided major advances in science, engineering, and technology to increase food and fiber production to meet the demands of a rapidly growing global population. The land base for these technological advances has originated largely from forested lands, which have experienced dramatic declines over the...

  10. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    Directory of Open Access Journals (Sweden)

    Shuo Jia

    2017-11-01

    Full Text Available Momordica charantia L. (M. charantia, a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.

  11. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  12. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    Science.gov (United States)

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  13. Teaching Controversial Socio-Scientific Issues in Biology and Geology Classes: A Case Study

    OpenAIRE

    Reis, Pedro; Galvão, Cecília

    2009-01-01

    Several educators in science have called for the inclusion of controversial socio-scientific issues’ discussion in science curricula because of its potential for creating a more real, humane image of scientific activity and for promoting scientific literacy, an essential tool for a responsible citizenship regarding decision-making processes related to socio-scientific issues. However, despite all the favourable opinions and empirical evidence concerning the educational potentia...

  14. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity

    OpenAIRE

    Turner, David P.

    2015-01-01

    Low income, poor diet, obesity and a lack of exercise are inter-related lifestyle factors that can profoundly alter our biological make-up to increase cancer risk, growth and development. We recently reported a potential mechanistic link between carbohydrate derived metabolites and cancer which may provide a biological consequence of lifestyle that can directly impact tumor biology. Advanced glycation end-products (AGEs) are reactive metabolites produced as a by-product of sugar metabolism. F...

  15. Using biological control research in the classroom to promote scientific inquiry and literacy

    Science.gov (United States)

    Many scientists who research biological control also teach at universities or more informally through cooperative outreach. The purpose of this paper is to review biological control activities for the classroom in four refereed journals, The American Biology Teacher, Journal of Biological Education...

  16. Recent advances on biological production of difructose dianhydride III.

    Science.gov (United States)

    Zhu, Yingying; Yu, Shuhuai; Zhang, Wenli; Zhang, Tao; Guang, Cuie; Mu, Wanmeng

    2018-04-01

    Difructose dianhydride III (DFA III) is a cyclic difructose containing two reciprocal glycosidic linkages. It is easily generated with a small amount by sucrose caramelization and thus occurs in a wide range of food-stuffs during food processing. DFA III has half sweetness but only 1/15 energy of sucrose, showing potential industrial application as low-calorie sucrose substitute. In addition, it displays many benefits including prebiotic effect, low cariogenicity property, and hypocholesterolemic effect, and improves absorption of minerals, flavonoids, and immunoglobulin G. DFA III is biologically produced from inulin by inulin fructotransferase (IFTase, EC 4.2.2.18). Plenty of DFA III-producing enzymes have been identified. The crystal structure of inulin fructotransferase has been determined, and its molecular modification has been performed to improve the catalytic activity and structural stability. Large-scale production of DFA III has been studied by various IFTases, especially using an ultrafiltration membrane bioreactor. In this article, the recent findings on physiological effects of DFA III are briefly summarized; the research progresses on identification, expression, and molecular modification of IFTase and large-scale biological production of DFA III by IFTase are reviewed in detail.

  17. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014

    Energy Technology Data Exchange (ETDEWEB)

    Ogden, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report October 2014 Highlights • Rory Kennedy, Dan Ogden and Brenden Heidrich traveled to Germantown October 6-7, for a review of the Infrastructure Management mission with Shane Johnson, Mike Worley, Bradley Williams and Alison Hahn from NE-4 and Mary McCune from NE-3. Heidrich briefed the group on the project progress from July to October 2014 as well as the planned path forward for FY15. • Jim Cole gave two invited university seminars at Ohio State University and University of Florida, providing an overview of NSUF including available capabilities and the process for accessing facilities through the peer reviewed proposal process. • Jim Cole and Rory Kennedy co-chaired the NuMat meeting with Todd Allen. The meeting, sponsored by Elsevier publishing, was held in Clearwater, Florida, and is considered one of the premier nuclear fuels and materials conferences. Over 340 delegates attended with 160 oral and over 200 posters presented over 4 days. • Thirty-one pre-applications were submitted for NSUF access through the NE-4 Combined Innovative Nuclear Research Funding Opportunity Announcement. • Fourteen proposals were received for the NSUF Rapid Turnaround Experiment Summer 2014 call. Proposal evaluations are underway. • John Jackson and Rory Kennedy attended the Nuclear Fuels Industry Research meeting. Jackson presented an overview of ongoing NSUF industry research.

  18. Emerging issues and methodological advances in fisheries reproductive biology

    DEFF Research Database (Denmark)

    Lowerre-Barbieri, Susan K.; Brown-Peterson, Nancy J.; Murua, Hilario

    2011-01-01

    Although incorporating detailed reproductive data into all stock assessments is not a practical goal, the need to understand how reproductive biology affects population productivity is being increasingly recognized.More research focused on reproductive biology—coupled with a shift towards...... a resilience perspective in fisheries science—is resulting in challenges to many long-held assumptions; the emergence of important new issues; and identification of the need to improve data and methods used in reproductive studies. Typically, data for reproductive studies are based on an assessment of gonadal...... while introducing improved and new histological techniques. In this introduction, we address the following needs: (1) to employ standardization, thereby improving our ability to conduct comparative studies; (2) to better understand patterns of gonadal development and spawning events over time; and (3...

  19. Biological nitrogen removal from sewage via anammox: Recent advances.

    Science.gov (United States)

    Ma, Bin; Wang, Shanyun; Cao, Shenbin; Miao, Yuanyuan; Jia, Fangxu; Du, Rui; Peng, Yongzhen

    2016-01-01

    Biological nitrogen removal from sewage via anammox is a promising and feasible technology to make sewage treatment energy-neutral or energy-positive. Good retention of anammox bacteria is the premise of achieving sewage treatment via anammox. Therefore the anammox metabolism and its factors were critically reviewed so as to form biofilm/granules for retaining anammox bacteria. A stable supply of nitrite for anammox bacteria is a real bottleneck for applying anammox in sewage treatment. Nitritation and partial-denitrification are two promising methods of offering nitrite. As such, the strategies for achieving nitritation in sewage treatment were summarized by reviewing the factors affecting nitrite oxidation bacteria growth. Meanwhile, the methods of achieving partial-denitrification have been developed through understanding the microorganisms related with nitrite accumulation and their factors. Furthermore, two cases of applying anammox in the mainstream sewage treatment plants were documented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU......-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16...... quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how...

  1. Biology and management of palm dynastid beetles: recent advances.

    Science.gov (United States)

    Bedford, Geoffrey O

    2013-01-01

    Coconut, oil, and date palms are important crops in the tropics and are attacked by dynastids that cause loss of production or death of hosts. Knowledge of their breeding sites has been extended since a previous review in 1980. The fungus Metarhizium anisopliae has potential as a biopesticide against immature stages in friable breeding sites. The molecular biology and ultrastructure of Oryctes rhinoceros Nudivirus (OrNV), disseminated by adults, have been studied, and this pathogen can reduce O. rhinoceros populations and damage when introduced into new locations, especially where damage had been high. New PCR techniques may enable reliable quantification of dosages ingested and hence virulence of different isolates. Male-produced aggregation pheromones have been identified in several species, for which they may have management potential, having been used commercially for trapping O. rhinoceros in oil palm plantations in Southeast Asia, and tested against O. monoceros in Africa.

  2. Recent advances in molecular biology of parasitic viruses.

    Science.gov (United States)

    Banik, Gouri Rani; Stark, Damien; Rashid, Harunor; Ellis, John T

    2014-01-01

    The numerous protozoa that can inhabit the human gastro-intestinal tract are known, yet little is understood of the viruses which infect these protozoa. The discovery, morphologic details, purification methods of virus-like particles, genome and proteome of the parasitic viruses, Entamoeba histolytica, Giardia lamblia, Trichomonas vaginalis, and the Eimeria sp. are described in this review. The protozoan viruses share many common features: most of them are RNA or double-stranded RNA viruses, ranging between 5 and 8 kilobases, and are spherical or icosahedral in shape with an average diameter of 30-40 nm. These viruses may influence the function and pathogenicity of the protozoa which they infect, and may be important to investigate from a clinical perspective. The viruses may be used as specific genetic transfection vectors for the parasites and may represent a research tool. This review provides an overview on recent advances in the field of protozoan viruses.

  3. Recent advances in the cell biology of aging.

    Science.gov (United States)

    Hayflick, L

    1980-01-01

    Cultured normal human and animal cells are predestined to undergo irreversible functional decrements that mimic age changes in the whole organism. When normal human embryonic fibroblasts are cultured in vitro, 50 +/- 10 population doublings occur. This maximum potential is diminished in cells derived from older donors and appears to be inversely proportional to their age. The 50 population doubling limit can account for all cells produced during a lifetime. The limitation on doubling potential of cultured normal cells is also expressed in vivo when serial transplants are made. There may be a direct correlation between the mean maximum life spans of several species and the population doubling potential of their cultured cells. A plethora of functional decrements occurs in cultured normal cells as they approach their maximum division capability. Many of these decrements are similar to those occurring in intact animals as they age. We have concluded that these functional decrements expressed in vitro, rather than cessation of cell division, are the essential contributors to age changes in intact animals. Thus, the study of events leading to functional losses in cultured normal cells may provide useful insights into the biology of aging.

  4. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  5. Nutrition Labelling: Applying Biological Concepts and Reasoning to Socio-Scientific Issues

    Science.gov (United States)

    Lee, Yeung Chung

    2016-01-01

    Nutrition labelling, which helps consumers to make informed choices, can be used as both a context and a vehicle for students to consolidate and apply their knowledge of food and nutrition to improve health. It also facilitates students' ability to negotiate socio-scientific issues from scientific and other perspectives. This article reports a…

  6. Biology and biotechnological advances in Jatropha curcas - A biodiesel plant

    KAUST Repository

    Reddy, Muppala P.

    2009-10-31

    Increasing global demand for energy, the impending depletion of fossil fuels, and concern over global climate change have lead to a resurgence in the development of alternative energy sources. Bio-fuels and bio-energy encompass a wide range of alternative sources of energy of biological origin, and offer excellent, environmentally friendly opportunities to address these issues. The recognition that Jatropha oil can yield high quality biodiesel has led to a surge of interest in Jatropha across the globe, more so in view of the potential for avoiding the dilemma of food vs fuel. Hardiness, rapid growth, easy propagation, short gestation period, wide adaptation, and optimum plant size combine to make this species suitable for sustainable cultivation on wastelands. Besides biodiesel from the seed, the plant produces several useful products that also have commercial value. Large scale cultivation remains the single most important factor that will ultimately determine the success of Jatropha as a source of bio-fuel. The limited knowledge of the genetics of this species, low and inconsistent yields, the narrow genetic variability, and vulnerability to insects and diseases are major constraints in successful cultivation of Jatropha as a bio-fuel crop. Despite the optimal protein content and composition of the pressed cake, the presence of phorbol esters makes it unsuitable for consumption by livestock. A non-toxic variety with low or no phorbol ester content has been identified from Mexico, and the utility of pressed cake from this variety as livestock feed has been demonstrated successfully. In the absence of any morphological differences, identification of linked markers for toxic/non-toxic varieties will add value to the crop and facilitate further improvement. This chapter discusses current efforts towards assessing the diversity and phylogeny of Jatropha, identification of specific markers for toxic and non-toxic varieties, and aspects of micropropagation and genetic

  7. Recent advances in the chemistry and biology of carbapenem antibiotics.

    Science.gov (United States)

    Coulton, S; Hunt, E

    1996-01-01

    The discovery of the olivanic acids and thienamycin aroused considerable interest amongst medicinal chemists and microbiologists around the world. The susceptibility of these agents to metabolic degradation has, however, been a major obstacle in their development. For many years the only notable success from such intensive research was the combination of imipenem with cilastatin, an inhibitor of the renal dipeptidase enzyme DHP-1. The enormous success of Primaxin for the treatment of a range of life-threatening bacterial infections provided the impetus for the discovery of totally synthetic, non-natural carbapenem derivatives that combine the broad spectrum of antimicrobial activity with stability to enzymatic degradation. This has indeed been realised in the development of meropenem; it possesses the broad spectrum of activity and resistance to beta-lactamases that are embodied in imipenem as well as displaying increased stability to human dehydropeptidases. Most recent research has focused upon the development of carbapenem antibiotics which combine broad spectrum antimicrobial activity and metabolic stability with oral absorption, for the treatment of community-acquired infections. Indeed, the pro-drug esters of the tricyclic carbapenems represent the first significant advance in this respect. However, the increased use of carbapenem antibiotics would undoubtedly accelerate the emergence of carbapenem-hydrolysing enzymes. The ultimate challenge could therefore be the design and synthesis of carbapenem derivatives that are resistant to these metallo-beta-lactamases. Due to the enormous problems encountered in the development of the carbapenem antibiotics, this area of research has, in the past, been described as a battlefield that did not bode well for the future [181]. Primaxin and meropenem proved however that these problems were not insurmountable, and are therefore a testimony to the persistence and dedication of those scientists in their war against

  8. Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, Renae [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    Advanced Test Reactor National Scientific User Facility (ATR NSUF) Monthly Report November 2014 Highlights Rory Kennedy and Sarah Robertson attended the American Nuclear Society Winter Meeting and Nuclear Technology Expo in Anaheim, California, Nov. 10-13. ATR NSUF exhibited at the technology expo where hundreds of meeting participants had an opportunity to learn more about ATR NSUF. Dr. Kennedy briefed the Nuclear Engineering Department Heads Organization (NEDHO) on the workings of the ATR NSUF. • Rory Kennedy, James Cole and Dan Ogden participated in a reactor instrumentation discussion with Jean-Francois Villard and Christopher Destouches of CEA and several members of the INL staff. • ATR NSUF received approval from the NE-20 office to start planning the annual Users Meeting. The meeting will be held at INL, June 22-25. • Mike Worley, director of the Office of Innovative Nuclear Research (NE-42), visited INL Nov. 4-5. Milestones Completed • Recommendations for the Summer Rapid Turnaround Experiment awards were submitted to DOE-HQ Nov. 12 (Level 2 milestone due Nov. 30). Major Accomplishments/Activities • The University of California, Santa Barbara 2 experiment was unloaded from the GE-2000 at HFEF. The experiment specimen packs will be removed and shipped to ORNL for PIE. • The Terrani experiment, one of three FY 2014 new awards, was completed utilizing the Advanced Photon Source MRCAT beamline. The experiment investigated the chemical state of Ag and Pd in SiC shell of irradiated TRISO particles via X-ray Absorption Fine Structure (XAFS) spectroscopy. Upcoming Meetings/Events • The ATR NSUF program review meeting will be held Dec. 9-10 at L’Enfant Plaza. In addition to NSUF staff and users, NE-4, NE-5 and NE-7 representatives will attend the meeting. Awarded Research Projects Boise State University Rapid Turnaround Experiments (14-485 and 14-486) Nanoindentation and TEM work on the T91, HT9, HCM12A and 9Cr ODS specimens has been completed at

  9. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  10. A New Approach in Advance Network Reservation and Provisioning for High-Performance Scientific Data Transfers

    Energy Technology Data Exchange (ETDEWEB)

    Balman, Mehmet; Chaniotakis, Evangelos; Shoshani, Arie; Sim, Alex

    2010-01-28

    Scientific applications already generate many terabytes and even petabytes of data from supercomputer runs and large-scale experiments. The need for transferring data chunks of ever-increasing sizes through the network shows no sign of abating. Hence, we need high-bandwidth high speed networks such as ESnet (Energy Sciences Network). Network reservation systems, i.e. ESnet's OSCARS (On-demand Secure Circuits and Advance Reservation System) establish guaranteed bandwidth of secure virtual circuits at a certain time, for a certain bandwidth and length of time. OSCARS checks network availability and capacity for the specified period of time, and allocates requested bandwidth for that user if it is available. If the requested reservation cannot be granted, no further suggestion is returned back to the user. Further, there is no possibility from the users view-point to make an optimal choice. We report a new algorithm, where the user specifies the total volume that needs to be transferred, a maximum bandwidth that he/she can use, and a desired time period within which the transfer should be done. The algorithm can find alternate allocation possibilities, including earliest time for completion, or shortest transfer duration - leaving the choice to the user. We present a novel approach for path finding in time-dependent networks, and a new polynomial algorithm to find possible reservation options according to given constraints. We have implemented our algorithm for testing and incorporation into a future version of ESnet?s OSCARS. Our approach provides a basis for provisioning end-to-end high performance data transfers over storage and network resources.

  11. Beyond traditional scientific training: The importance of community and empowerment for women in ecology and evolutionary biology

    Directory of Open Access Journals (Sweden)

    M. Claire Horner-Devine

    2016-10-01

    Full Text Available While the biological sciences have achieved gender parity in the undergraduate and graduate career stages, this is not the case at the faculty level. The WEBS (Women Evolving the Biological Sciences symposia go beyond traditional scientific training and professional development to address factors critical to women’s persistence in faculty careers: community and empowerment. Through a series of panel discussions, personal reflections and skills workshops, WEBS creates a community-based professional development experience and a space for participants to grapple with central issues affecting their scientific careers. Longitudinal qualitative survey data suggest that WEBS bolsters the participants’ confidence and empowerment, in addition to providing concrete skills for addressing a range of issues necessary to navigating scientific careers, leading to increased career satisfaction and career self-efficacy (i.e., the belief in one’s capacity to pursue their chosen career. These results highlight the importance and need for programs and opportunities for women in STEM that go beyond training in scientific skills and traditional professional development to include those that create a sense of community and empowerment.

  12. Mass digitization of scientific collections: New opportunities to transform the use of biological specimens and underwrite biodiversity science.

    Science.gov (United States)

    Beaman, Reed S; Cellinese, Nico

    2012-01-01

    New information technologies have enabled the scientific collections community and its stakeholders to adapt, adopt, and leverage novel approaches for a nearly 300 years old scientific discipline. Now, few can credibly question the transformational impact of technology on efforts to digitize scientific collections, as IT now reaches into almost every nook and cranny of society. Five to ten years ago this was not the case. Digitization is an activity that museums and academic institutions increasingly recognize, though many still do not embrace, as a means to boost the impact of collections to research and society through improved access. The acquisition and use of scientific collections is a global endeavor, and digitization enhances their value by improved access to core biodiversity information, increases use, relevance and potential downstream value, for example, in the management of natural resources, policy development, food security, and planetary and human health. This paper examines new opportunities to design and implement infrastructure that will support not just mass digitization efforts, but also a broad range of research on biological diversity and physical sciences in order to make scientific collections increasingly relevant to societal needs and interest.

  13. Technological advancements for the detection of and protection against biological and chemical warfare agents.

    Science.gov (United States)

    Eubanks, Lisa M; Dickerson, Tobin J; Janda, Kim D

    2007-03-01

    There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.

  14. NATO Advanced Research Workshop, 19-22 May 1997: Rapid Method for Monitoring the Environment for Biological Hazards

    National Research Council Canada - National Science Library

    1997-01-01

    The NATO Advanced Research Workshop met for the purpose of bringing to light rapid methods for monitoring the environment for biological hazards such as biological warfare agents, naturally occurring...

  15. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  16. Advanced Level Biology Teachers' Attitudes towards Assessment and Their Engagement in Assessment for Learning

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2015-01-01

    This paper reports on a Mixed Methods study involving an investigation into the attitudes of advanced level biology teachers towards assessment and describes the teachers' experiences while being engaged in Assessment for Learning (AfL) practices such as sharing of learning objectives and peer- and self-assessment. Quantitative data were collected…

  17. The Oral Histories of Six African American Males in Their Ecology of Advanced Placement Biology

    Science.gov (United States)

    Halasa, Katrina Bassam

    2012-01-01

    The major purpose of this qualitative study was to examine the past in order to understand the complex phenomenon of students engaging in science (Newman, Ridenour, Newman, & DeMarco, 2003) specifically through the oral histories of six self-identified African American males enrolled in a high school Advanced Placement Biology class and the…

  18. [Scientific bases for the development of functional meat products with combined biological activity].

    Science.gov (United States)

    Palanca, V; Rodríguez, E; Señoráns, J; Reglero, G

    2006-01-01

    The scientific evidences on the relationship between food and health have given place to a new food market of rapid growth in the last years: the market of the functional food. Though the interest of maintaining or improving the state of health by means of the consumption of traditional food with bioactive ingredients added is undoubtedly high, the Spanish population, increasingly formed and informed, is unwilling to consume functional food, until these possess a scientific rigorous base. This article presents a review of the scientific bases that support the development of functional meat products with balanced ratio omega-6/omega-3 and a combination of synergic antioxidants, among them an extract of rosemary obtained by means of extraction with supercritical CO2.

  19. Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources.

    Science.gov (United States)

    Bousfield, David; McEntyre, Johanna; Velankar, Sameer; Papadatos, George; Bateman, Alex; Cochrane, Guy; Kim, Jee-Hyub; Graef, Florian; Vartak, Vid; Alako, Blaise; Blomberg, Niklas

    2016-01-01

    Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry.  We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications.

  20. Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources

    Science.gov (United States)

    Bousfield, David; McEntyre, Johanna; Velankar, Sameer; Papadatos, George; Bateman, Alex; Cochrane, Guy; Kim, Jee-Hyub; Graef, Florian; Vartak, Vid; Alako, Blaise; Blomberg, Niklas

    2016-01-01

    Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry.  We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications. PMID:27092246

  1. Writing toward a Scientific Identity: Shifting from Prescriptive to Reflective Writing in Undergraduate Biology

    Science.gov (United States)

    Otfinowski, Rafael; Silva-Opps, Marina

    2015-01-01

    Analytical writing enhances retention of science learning and is integral to student-centered classrooms. Despite this, scientific writing in undergraduate programs is often presented as a series of sentence-level conventions of grammar, syntax, and citation formats, reinforcing students' perceptions of its highly prescriptive nature. The authors…

  2. Iterative Systems Biology for Medicine – time for advancing from network signature to mechanistic equations

    KAUST Repository

    Gomez-Cabrero, David

    2017-05-09

    The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity. Such type of analysis effectively identified and associated molecular network signatures operative in biological processes across different systems. Yet, it has proven difficult to distinguish between causes and consequences, thus making it challenging to attack medical questions where we require precise causative drug targets and disease mechanisms beyond a web of associated markers. Here we review principal advances with regard to identification of structure, dynamics, control, and design of biological systems, following the structure in the visionary review from 2002 by Dr. Kitano. Yet, here we find that the underlying challenge of finding the governing mechanistic system equations enabling precision medicine remains open thus rendering clinical translation of systems biology arduous. However, stunning advances in raw computational power, generation of high-precision multi-faceted biological data, combined with powerful algorithms hold promise to set the stage for data-driven identification of equations implicating a fundamental understanding of living systems during health and disease.

  3. Thirty Years of Research on Crown-of-Thorns Starfish (1986–2016: Scientific Advances and Emerging Opportunities

    Directory of Open Access Journals (Sweden)

    Morgan S. Pratchett

    2017-09-01

    Full Text Available Research on the coral-eating crown-of-thorns starfish (CoTS has waxed and waned over the last few decades, mostly in response to population outbreaks at specific locations. This review considers advances in our understanding of the biology and ecology of CoTS based on the resurgence of research interest, which culminated in this current special issue on the Biology, Ecology and Management of Crown-of-Thorns Starfish. More specifically, this review considers progress in addressing 41 specific research questions posed in a seminal review by P. Moran 30 years ago, as well as exploring new directions for CoTS research. Despite the plethora of research on CoTS (>1200 research articles, there are persistent knowledge gaps that constrain effective management of outbreaks. Although directly addressing some of these questions will be extremely difficult, there have been considerable advances in understanding the biology of CoTS, if not the proximate and ultimate cause(s of outbreaks. Moving forward, researchers need to embrace new technologies and opportunities to advance our understanding of CoTS biology and behavior, focusing on key questions that will improve effectiveness of management in reducing the frequency and likelihood of outbreaks, if not preventing them altogether.

  4. Biologic Treatments for Sports Injuries II Think Tank-Current Concepts, Future Research, and Barriers to Advancement, Part 1: Biologics Overview, Ligament Injury, Tendinopathy.

    Science.gov (United States)

    LaPrade, Robert F; Geeslin, Andrew G; Murray, Iain R; Musahl, Volker; Zlotnicki, Jason P; Petrigliano, Frank; Mann, Barton J

    2016-12-01

    Biologic therapies, including stem cells, platelet-rich plasma, growth factors, and other biologically active adjuncts, have recently received increased attention in the basic science and clinical literature. At the 2015 AOSSM Biologics II Think Tank held in Colorado Springs, Colorado, a group of orthopaedic surgeons, basic scientists, veterinarians, and other investigators gathered to review the state of the science for biologics and barriers to implementation of biologics for the treatment of sports medicine injuries. This series of current concepts reviews reports the summary of the scientific presentations, roundtable discussions, and recommendations from this think tank. © 2016 The Author(s).

  5. On the growth of scientific knowledge: yeast biology as a case study.

    Directory of Open Access Journals (Sweden)

    Xionglei He

    2009-03-01

    Full Text Available The tempo and mode of human knowledge expansion is an enduring yet poorly understood topic. Through a temporal network analysis of three decades of discoveries of protein interactions and genetic interactions in baker's yeast, we show that the growth of scientific knowledge is exponential over time and that important subjects tend to be studied earlier. However, expansions of different domains of knowledge are highly heterogeneous and episodic such that the temporal turnover of knowledge hubs is much greater than expected by chance. Familiar subjects are preferentially studied over new subjects, leading to a reduced pace of innovation. While research is increasingly done in teams, the number of discoveries per researcher is greater in smaller teams. These findings reveal collective human behaviors in scientific research and help design better strategies in future knowledge exploration.

  6. Learning biology through connecting mathematics to scientific mechanisms: Student outcomes and teacher supports

    Science.gov (United States)

    Schuchardt, Anita

    Integrating mathematics into science classrooms has been part of the conversation in science education for a long time. However, studies on student learning after incorporating mathematics in to the science classroom have shown mixed results. Understanding the mixed effects of including mathematics in science has been hindered by a historical focus on characteristics of integration tangential to student learning (e.g., shared elements, extent of integration). A new framework is presented emphasizing the epistemic role of mathematics in science. An epistemic role of mathematics missing from the current literature is identified: use of mathematics to represent scientific mechanisms, Mechanism Connected Mathematics (MCM). Building on prior theoretical work, it is proposed that having students develop mathematical equations that represent scientific mechanisms could elevate their conceptual understanding and quantitative problem solving. Following design and implementation of an MCM unit in inheritance, a large-scale quantitative analysis of pre and post implementation test results showed MCM students, compared to traditionally instructed students) had significantly greater gains in conceptual understanding of mathematically modeled scientific mechanisms, and their ability to solve complex quantitative problems. To gain insight into the mechanism behind the gain in quantitative problem solving, a small-scale qualitative study was conducted of two contrasting groups: 1) within-MCM instruction: competent versus struggling problem solvers, and 2) within-competent problem solvers: MCM instructed versus traditionally instructed. Competent MCM students tended to connect their mathematical inscriptions to the scientific phenomenon and to switch between mathematical and scientifically productive approaches during problem solving in potentially productive ways. The other two groups did not. To address concerns about teacher capacity presenting barriers to scalability of MCM

  7. Using Nonfiction Scientific Literature for Conservation Biology Education: The "Tigerland" Effect

    Science.gov (United States)

    Neff, Paula Kleintjes; Weiss, Nicole M.; Middlesworth, Laura; Wierich, Joseph; Beilke, Elizabeth; Lee, Jacqueline; Rohlinger, Spencer; Pletzer, Joshua

    2017-01-01

    Despite the volume of research published and pedagogy practiced in conservation biology, there is little assessment of the effectiveness of pedagogical techniques for improving undergraduate conservation literacy and student engagement. We evaluated student responses (2009-2011) to reading "Tigerland and Other Unintended Destinations" by…

  8. What we-authors, reviewers and editors of scientific work-can learn from the analytical history of biological 3-nitrotyrosine.

    Science.gov (United States)

    Tsikas, Dimitrios

    2017-07-15

    Tyrosine and tyrosine residues in proteins are attacked by the reactive oxygen and nitrogen species peroxynitrite (O=N-OO - ) to generate 3-nitrotyrosine (3-NT) and 3-nitrotyrosine-proteins (3-NTProt), respectively. 3-NT and 3-NTProt are widely accepted as biomarkers of nitr(os)ative stress. Over the years many different analytical methods have been reported for 3-NT and 3-NTProt. Reported concentrations often differ by more than three orders of magnitude, indicative of serious analytical problems. Strategies to overcome pre-analytical and analytical shortcomings and pitfalls have been proposed. The present review investigated whether recently published work on the quantitative measurement of biological 3-nitrotyrosine did adequately consider the analytical past of this biomolecule. 3-Nitrotyrosine was taken as a representative of biomolecules that occur in biological samples in the pM-to-nM concentration range. This examination revealed that in many cases the main protagonists involved in the publication of scientific work, i.e., authors, reviewers and editors, failed to do so. Learning from the analytical history of 3-nitrotyrosine means advancing analytical and biological science and implies the following key issues. (1) Choosing the most reliable analytical approach in terms of sensitivity and accuracy; presently this is best feasible by stable-isotope dilution tandem mass spectrometry coupled with gas chromatography (GC-MS/MS) or liquid chromatography (LC-MS/MS). (2) Minimizing artificial formation of 3-nitrotyrosine during sample work up, a major pitfall in 3-nitrotyrosine analysis. (3) Validating adequately the final method in the intendent biological matrix and the established concentration range. (4) Inviting experts in the field for critical evaluation of the novelty and reliability of the proposed analytical method, placing special emphasis on the compliance of the analytical outcome with 3-nitrotyrosine concentrations obtained by validated GC-MS/MS and

  9. Methods for open innovation on a genome-design platform associating scientific, commercial, and educational communities in synthetic biology.

    Science.gov (United States)

    Toyoda, Tetsuro

    2011-01-01

    Synthetic biology requires both engineering efficiency and compliance with safety guidelines and ethics. Focusing on the rational construction of biological systems based on engineering principles, synthetic biology depends on a genome-design platform to explore the combinations of multiple biological components or BIO bricks for quickly producing innovative devices. This chapter explains the differences among various platform models and details a methodology for promoting open innovation within the scope of the statutory exemption of patent laws. The detailed platform adopts a centralized evaluation model (CEM), computer-aided design (CAD) bricks, and a freemium model. It is also important for the platform to support the legal aspects of copyrights as well as patent and safety guidelines because intellectual work including DNA sequences designed rationally by human intelligence is basically copyrightable. An informational platform with high traceability, transparency, auditability, and security is required for copyright proof, safety compliance, and incentive management for open innovation in synthetic biology. GenoCon, which we have organized and explained here, is a competition-styled, open-innovation method involving worldwide participants from scientific, commercial, and educational communities that aims to improve the designs of genomic sequences that confer a desired function on an organism. Using only a Web browser, a participating contributor proposes a design expressed with CAD bricks that generate a relevant DNA sequence, which is then experimentally and intensively evaluated by the GenoCon organizers. The CAD bricks that comprise programs and databases as a Semantic Web are developed, executed, shared, reused, and well stocked on the secure Semantic Web platform called the Scientists' Networking System or SciNetS/SciNeS, based on which a CEM research center for synthetic biology and open innovation should be established. Copyright © 2011 Elsevier Inc

  10. A Writing-Intensive Course Improves Biology Undergraduates' Perception and Confidence of Their Abilities to Read Scientific Literature and Communicate Science

    Science.gov (United States)

    Brownell, Sara E.; Price, Jordan V.; Steinman, Lawrence

    2013-01-01

    Most scientists agree that comprehension of primary scientific papers and communication of scientific concepts are two of the most important skills that we can teach, but few undergraduate biology courses make these explicit course goals. We designed an undergraduate neuroimmunology course that uses a writing-intensive format. Using a mixture of…

  11. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on Bioreduction application

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    A method for on-farm containment of animal by-products (ABPs), called a ‘Bioreduction’ system, was assessed. The material for containment is of ovine origin and classified as a Category (Cat.) 1 ABP material. The proposed process consists of an aerobic degradation of the ABP material in a vented...... the risks related to pathogens such as non-spore forming bacteria and viruses. However, it is highly improbable that the risks related to more resistant biological hazards can be reduced. The application does not provide clear information about the location of the system and the origin of the material...... the risk of aerogenic transmission of biological agents and it is accessible to living vectors. Moreover, there is a risk of release of pathogens to the environment when opening the vessel. Therefore, the whole system cannot be considered as a closed system. The proposed Bioreduction method cannot...

  12. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  13. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  14. Biological assessment of the advanced turbine design at Wanapum Dam, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Deng, Z. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, M. C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moursund, R. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Carlson, T. J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rakowski, C. L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Duncan, J. P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2007-08-01

    Three studies were conducted to evaluate the biological performance of an advanced design turbine installed at Unit 8 of Wanapum Dam on the Columbia River in 2005 versus a conventional Kaplan turbine, Unit 9. The studies included an evaluation of blade-strike using deterministic and probabilistic models, integrated analysis of the response of the Sensor Fish to sever hydraulic events within the turbine system, and a novel dye technique to measure injury to juvenile salmonids in the field.

  15. The Development of Nanotechnologies and Advanced Materials Industry in Science and Entrepreneurship: Scientific Indicators. A Case Study of Latvia (Part Three)

    Science.gov (United States)

    Geipele, S.; Geipele, I.; Kauskale, L.; Zeltins, N.; Staube, T.; Pudzis, E.

    2017-10-01

    The present scientific paper is the third part and continuation of the indepth scientific study of the developed system of engineering economic indicators, where the authors obtain results from the scientific research presented in a series of works on the development of the nanotechnologies and advanced materials industry in science and entrepreneurship in Latvia. Part three determines the crucial scientific indicators of the development of nano-field at the macro, micro, and meso development levels of the economic environment in Latvia. The paper provides the interaction of new identified indicators of nanofield in terms of further scientific and practical activities. Latvia is analysed in comparison with other countries in the world.

  16. A New role of ontologies and advanced scientific visualization in big data analytics

    OpenAIRE

    Chuprina, Svetlana

    2016-01-01

    Accessing and contextual semantic searching structured, semi-structured and unstructured information resources and their ontology based analysis in a uniform way across text-free Big Data query implementation is a main feature of approach under discussion. To increase the semantic power of query results’ analysis the ontology based implementation of multiplatform adaptive tools of scientific visualization are demonstrated. The ontologies are used not for integration of heterogeneous resources...

  17. National Energy Research Scientific Computing Center (NERSC): Advancing the frontiers of computational science and technology

    Energy Technology Data Exchange (ETDEWEB)

    Hules, J. [ed.

    1996-11-01

    National Energy Research Scientific Computing Center (NERSC) provides researchers with high-performance computing tools to tackle science`s biggest and most challenging problems. Founded in 1974 by DOE/ER, the Controlled Thermonuclear Research Computer Center was the first unclassified supercomputer center and was the model for those that followed. Over the years the center`s name was changed to the National Magnetic Fusion Energy Computer Center and then to NERSC; it was relocated to LBNL. NERSC, one of the largest unclassified scientific computing resources in the world, is the principal provider of general-purpose computing services to DOE/ER programs: Magnetic Fusion Energy, High Energy and Nuclear Physics, Basic Energy Sciences, Health and Environmental Research, and the Office of Computational and Technology Research. NERSC users are a diverse community located throughout US and in several foreign countries. This brochure describes: the NERSC advantage, its computational resources and services, future technologies, scientific resources, and computational science of scale (interdisciplinary research over a decade or longer; examples: combustion in engines, waste management chemistry, global climate change modeling).

  18. The scientific and technical requirements for biology at Australia's Replacement Research Reactor

    International Nuclear Information System (INIS)

    2001-01-01

    A Symposium and Workshop on Neutrons for Biology was held in the School of Biochemistry and Molecular Biology at the University of Melbourne, under the auspices of AINSE, Univ of Melbourne and ANSTO. Invited talks were given on the subjects of Genome, small-angle neutron scattering (SANS) as a critical framework for understanding bio-molecular, neutron diffraction at high and low resolution, and the investigation of viruses and large-scale biological structures using neutrons. There were also talks from prominent NMR practitioners and X-ray protein crystallographers, with substantial discussion about how the various methods might fit together in the future. Significant progress was made on defining Australia's needs, which include a strong push to use SANS and reflectometry for the study of macromolecular complexes and model membranes, and a modest network of supporting infrastructure in Brisbane, Melbourne and the Sydney Basin. Specific recommendations were that the small-angle neutron scattering and reflectometry instruments in the Replacement Research Reactor (RRR) be pursued with high priority, that there be no specific effort to provide high-resolution protein-crystallography facilities at the RRR, but that a watching brief be kept on instrumentation and sample-preparation technologies elsewhere. A watch be kept on inelastic and quasielastic neutron scattering capabilities elsewhere, although these methods will not initially be pursued at the RRR and that should be input from this community into the design of the biochemistry/chemistry laboratories at the Replacement Research Reactor. It was also recommended that a small number of regional facilities be established (or enhanced) to allow users to perform deuteration of biomolecules. These facilities would be of significant value to the NMR and neutron scattering communities

  19. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. In search of the proper scientific approach: Hayek's views on biology, methodology, and the nature of economics.

    Science.gov (United States)

    Beck, Naomi

    2009-12-01

    Friedrich August von Hayek (1899-1992) is mainly known for his defense of free-market economics and liberalism. His views on science--more specifically on the methodological differences between the physical sciences on the one hand, and evolutionary biology and the social sciences on the other--are less well known. Yet in order to understand, and properly evaluate Hayek's political position, we must look at the theory of scientific method that underpins it. Hayek believed that a basic misunderstanding of the discipline of economics and the complex phenomena with which it deals produced misconceptions concerning its method and goals, which led in turn to the adoption of dangerous policies. The objective of this article is to trace the development of Hayek's views on the nature of economics as a scientific discipline and to examine his conclusions concerning the scope of economic prediction. In doing so, I will first show that Hayek's interest in the natural sciences (especially biology), as well as his interest in epistemology, were central to his thought, dating back to his formative years. I will then emphasize the important place of historical analysis in Hayek's reflections on methodology and examine the reasons for his strong criticism of positivism and socialism. Finally, in the third and fourth sections that constitute the bulk of this article, I will show how Hayek's understanding of the data and goal of the social sciences (which he distinguished from those of the physical sciences), culminated in an analogy that sought to establish economics and evolutionary biology as exemplary complex sciences. I will challenge Hayek's interpretation of this analogy through a comparison with Darwin's views in The Origin of Species, and thus open a door to re-evaluating the theoretical foundations of Hayek's political claims.

  1. Proceedings 21. International Conference on Applied Physics of Condensed Matter and of the Scientific Conference Advanced Fast Reactors

    International Nuclear Information System (INIS)

    Vajda, J.; Jamnicky, I.

    2015-01-01

    The 21. International Conference on Applied Physics of Condensed Matter was held on 24-26 June, 2015 on Strbske Pleso, Strba, Slovakia. The Scientific Conference the Advanced Fast Reactors was part of the 21 st International Conference on APCOM 2015. The specialists discussed various aspects of modern problems in: Physical properties and structural aspects of solid materials and their influencing; Advanced fast reactors; Physical properties and structural aspects of solid materials and their influencing; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Computational physics and theory of physical properties of matter; interdisciplinary physics of condensed matter; Nuclear science and technology, influence of irradiation on physical properties of materials, radiation detection; Optical phenomena in materials, photovoltaics and photonics, new principles in sensors and detection methods. Fifty seven contributions relevant of INIS interest has been inputted to INIS.

  2. New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Rempe, J.L.; Knudson, D.L.; Daw, J.E.; Condie, K.G.; Wilkins, S. Curtis

    2009-01-01

    The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation's energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

  3. UNEDF: Advanced Scientific Computing Transforms the Low-Energy Nuclear Many-Body Problem

    International Nuclear Information System (INIS)

    Stoitsov, Mario; Nam, Hai Ah; Nazarewicz, Witold; Bulgac, Aurel; Hagen, Gaute; Kortelainen, E.M.; Pei, Junchen; Roche, K.J.; Schunck, N.; Thompson, I.; Vary, J.P.; Wild, S.

    2011-01-01

    The UNEDF SciDAC collaboration of nuclear theorists, applied mathematicians, and computer scientists is developing a comprehensive description of nuclei and their reactions that delivers maximum predictive power with quantified uncertainties. This paper illustrates significant milestones accomplished by UNEDF through integration of the theoretical approaches, advanced numerical algorithms, and leadership class computational resources.

  4. Community Science: creating equitable partnerships for the advancement of scientific knowledge for action.

    Science.gov (United States)

    Lewis, E. S.; Gehrke, G. E.

    2017-12-01

    In a historical moment where the legitimacy of science is being questioned, it is essential to make science more accessible to the public. Active participation increases the legitimacy of projects within communities (Sidaway 2009). Creating collaborations in research strengthens not only the work by adding new dimensions, but also the social capital of communities through increased knowledge, connections, and decision making power. In this talk, Lewis will discuss how engagement at different stages of the scientific process is possible, and how researchers can actively develop opportunities that are open and inviting. Genuine co-production in research pushes scientists to work in new ways, and with people from different backgrounds, expertise, and lived experiences. This approach requires a flexible and dynamic balance of learning, sharing, and creating for all parties involved to ensure more meaningful and equitable participation. For example, in community science such as that by Public Lab, the community is at the center of scientific exploration. The research is place-based and is grounded in the desired outcomes of community members. Researchers are able to see themselves as active participants in this work alongside community members. Participating in active listening, developing plans together, and using a shared language built through learning can be helpful tools in all co-production processes. Generating knowledge is powerful. Through genuine collaboration and co-creation, science becomes more relevant. When community members are equitable stakeholders in the scientific process, they are better able to engage and advocate for the changes they want to see in their communities. Through this talk, session attendees will learn about practices that promote equitable participation in science, and hear examples of how the community science process engages people in both the knowledge production, and in the application of science.

  5. Advanced Cellular and Biomolecular Imaging at Lehigh University, (PA) Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Cassimeris, Lynne, U.

    2010-09-10

    Lehigh University is establishing an interdisciplinary program in high resolution cellular and subcellular biological imaging for a range of applications including improved cancer detection. The completed DOE project added to Lehigh?s bio-imaging infrastructure through acquisition of a new confocal microscope system as well as upgrades to two pieces of existing equipment. Bio-imaging related research at Lehigh was also supported through two seed grants for initiation of new projects.

  6. Advanced glycation end-products: a biological consequence of lifestyle contributing to cancer disparity.

    Science.gov (United States)

    Turner, David P

    2015-05-15

    Low income, poor diet, obesity, and a lack of exercise are interrelated lifestyle factors that can profoundly alter our biologic make up to increase cancer risk, growth, and development. We recently reported a potential mechanistic link between carbohydrate-derived metabolites and cancer, which may provide a biologic consequence of lifestyle that can directly affect tumor biology. Advanced glycation end-products (AGE) are reactive metabolites produced as a by-product of sugar metabolism. Failure to remove these highly reactive metabolites can lead to protein damage, aberrant cell signaling, increased stress responses, and decreased genetic fidelity. Critically, AGE accumulation is also directly affected by our lifestyle choices and shows a race-specific, tumor-dependent pattern of accumulation in cancer patients. This review will discuss the contribution of AGEs to the cancer phenotype, with a particular emphasis on their biologic links with the socioeconomic and environmental risk factors that drive cancer disparity. Given the potential benefits of lifestyle changes and the potential biologic role of AGEs in promoting cancer, opportunities exist for collaborations affecting basic, translational, epidemiologic, and cancer prevention initiatives. ©2015 American Association for Cancer Research.

  7. Advances in Scientific Possibilities Offered by Real-Time Monitoring Technology.

    Science.gov (United States)

    Kleiman, Evan M; Nock, Matthew K

    2017-01-01

    There has been a marked increase in research aimed at studying dynamic (e.g., day-to-day, moment-to-moment) changes in mental disorders and related behavior problems. Indeed, the number of scientific papers published that focus on real-time monitoring has been nearly doubling every five years for the past several decades. These methods allow for a more fine-grained description of phenomena of interest as well as for real-world tests of theoretical models of human behavior. Here we comment on the recent study by van Winkel and colleagues (this issue)as an excellent example of the use of real-time monitoring methods to better understand mental disorders. We also discuss the expanding universe of new technologies (e.g., smartphones, wearable biosensors) that can be used to make discoveries about psychopathology and related constructs and describe what we perceive to be some of the most exciting scientific possibilities that can be achieved in the near term by taking advantage of these new and rapidly developing tools.

  8. Enhancing research publications and advancing scientific writing in health research collaborations: sharing lessons learnt from the trenches.

    Science.gov (United States)

    Li, Guowei; Jin, Yanling; Mbuagbaw, Lawrence; Dolovich, Lisa; Adachi, Jonathan D; Levine, Mitchell Ah; Cook, Deborah; Samaan, Zainab; Thabane, Lehana

    2018-01-01

    Disseminating research protocols, processes, methods or findings via peer-reviewed publications has substantive merits and benefits to various stakeholders. In this article, we share strategies to enhance research publication contents (ie, what to write about) and to facilitate scientific writing (ie, how to write) in health research collaborations. Empirical experience sharing. To enhance research publication contents, we encourage identifying appropriate opportunities for publications, publishing protocols ahead of results papers, seeking publications related to methodological issues, considering justified secondary analyses, and sharing academic process or experience. To advance writing, we suggest setting up scientific writing as a goal, seeking an appropriate mentorship, making full use of scientific meetings and presentations, taking some necessary formal training in areas such as effective communication and time and stress management, and embracing the iterative process of writing. All the strategies we share are dependent upon each other; and they advocate gradual academic accomplishments through study and training in a "success-breeds-success" way. It is expected that the foregoing shared strategies in this paper, together with other previous guidance articles, can assist one with enhancing research publications, and eventually one's academic success in health research collaborations.

  9. International space station accomplishments update: Scientific discovery, advancing future exploration, and benefits brought home to earth

    Science.gov (United States)

    Thumm, Tracy; Robinson, Julie A.; Alleyne, Camille; Hasbrook, Pete; Mayo, Susan; Buckley, Nicole; Johnson-Green, Perry; Karabadzhak, George; Kamigaichi, Shigeki; Umemura, Sayaka; Sorokin, Igor V.; Zell, Martin; Istasse, Eric; Sabbagh, Jean; Pignataro, Salvatore

    2014-10-01

    Throughout the history of the International Space Station (ISS), crews on board have conducted a variety of scientific research and educational activities. Well into the second year of full utilization of the ISS laboratory, the trend of scientific accomplishments and educational opportunities continues to grow. More than 1500 investigations have been conducted on the ISS since the first module launched in 1998, with over 700 scientific publications. The ISS provides a unique environment for research, international collaboration and educational activities that benefit humankind. This paper will provide an up to date summary of key investigations, facilities, publications, and benefits from ISS research that have developed over the past year. Discoveries in human physiology and nutrition have enabled astronauts to return from ISS with little bone loss, even as scientists seek to better understand the new puzzle of “ocular syndrome” affecting the vision of up to half of astronauts. The geneLAB campaign will unify life sciences investigations to seek genomic, proteomic and metabolomics of the effect of microgravity on life as a whole. Combustion scientists identified a new “cold flame” phenomenon that has the potential to improve models of efficient combustion back on Earth. A significant number of instruments in Earth remote sensing and astrophysics are providing new access to data or nearing completion for launch, making ISS a significant platform for understanding of the Earth system and the universe. In addition to multidisciplinary research, the ISS partnership conducts a myriad of student led research investigations and educational activities aimed at increasing student interest in science, technology, engineering and mathematics (STEM). Over the past year, the ISS partnership compiled new statistics of the educational impact of the ISS on students around the world. More than 43 million students, from kindergarten to graduate school, with more than 28

  10. Advancements in Large-Scale Data/Metadata Management for Scientific Data.

    Science.gov (United States)

    Guntupally, K.; Devarakonda, R.; Palanisamy, G.; Frame, M. T.

    2017-12-01

    Scientific data often comes with complex and diverse metadata which are critical for data discovery and users. The Online Metadata Editor (OME) tool, which was developed by an Oak Ridge National Laboratory team, effectively manages diverse scientific datasets across several federal data centers, such as DOE's Atmospheric Radiation Measurement (ARM) Data Center and USGS's Core Science Analytics, Synthesis, and Libraries (CSAS&L) project. This presentation will focus mainly on recent developments and future strategies for refining OME tool within these centers. The ARM OME is a standard based tool (https://www.archive.arm.gov/armome) that allows scientists to create and maintain metadata about their data products. The tool has been improved with new workflows that help metadata coordinators and submitting investigators to submit and review their data more efficiently. The ARM Data Center's newly upgraded Data Discovery Tool (http://www.archive.arm.gov/discovery) uses rich metadata generated by the OME to enable search and discovery of thousands of datasets, while also providing a citation generator and modern order-delivery techniques like Globus (using GridFTP), Dropbox and THREDDS. The Data Discovery Tool also supports incremental indexing, which allows users to find new data as and when they are added. The USGS CSAS&L search catalog employs a custom version of the OME (https://www1.usgs.gov/csas/ome), which has been upgraded with high-level Federal Geographic Data Committee (FGDC) validations and the ability to reserve and mint Digital Object Identifiers (DOIs). The USGS's Science Data Catalog (SDC) (https://data.usgs.gov/datacatalog) allows users to discover a myriad of science data holdings through a web portal. Recent major upgrades to the SDC and ARM Data Discovery Tool include improved harvesting performance and migration using new search software, such as Apache Solr 6.0 for serving up data/metadata to scientific communities. Our presentation will highlight

  11. Omega-3 Fatty Acids and Depression: Scientific Evidence and Biological Mechanisms

    Directory of Open Access Journals (Sweden)

    Giuseppe Grosso

    2014-01-01

    Full Text Available The changing of omega-6/omega-3 polyunsaturated fatty acids (PUFA in the food supply of Western societies occurred over the last 150 years is thought to promote the pathogenesis of many inflammatory-related diseases, including depressive disorders. Several epidemiological studies reported a significant inverse correlation between intake of oily fish and depression or bipolar disorders. Studies conducted specifically on the association between omega-3 intake and depression reported contrasting results, suggesting that the preventive role of omega-3 PUFA may depend also on other factors, such as overall diet quality and the social environment. Accordingly, tertiary prevention with omega-3 PUFA supplement in depressed patients has reached greater effectiveness during the last recent years, although definitive statements on their use in depression therapy cannot be yet freely asserted. Among the biological properties of omega-3 PUFA, their anti-inflammatory effects and their important role on the structural changing of the brain should be taken into account to better understand the possible pathway through which they can be effective both in preventing or treating depression. However, the problem of how to correct the inadequate supply of omega-3 PUFA in the Westernized countries’ diet is a priority in order to set food and health policies and also dietary recommendations for individuals and population groups.

  12. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bochev, Pavel B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cameron-Smith, Philip J.. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Easter, Richard C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Scott M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ghan, Steven J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Xiaohong [Univ. of Wyoming, Laramie, WY (United States); Lowrie, Robert B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ma, Po-lun [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sacks, William J. [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Shrivastava, Manish [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Singh, Balwinder [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Tautges, Timothy J. [Argonne National Lab. (ANL), Argonne, IL (United States); Taylor, Mark A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Vertenstein, Mariana [National Center for Atmospheric Research (NCAR), Boulder, CO (United States); Worley, Patrick H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-01-15

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  13. Cephalopod biology and care, a COST FA1301 (CephsInAction) training school: anaesthesia and scientific procedures.

    Science.gov (United States)

    Lopes, Vanessa M; Sampaio, Eduardo; Roumbedakis, Katina; Tanaka, Nobuaki K; Carulla, Lucía; Gambús, Guillermo; Woo, Theodosia; Martins, Catarina P P; Penicaud, Virginie; Gibbings, Colette; Eberle, Jessica; Tedesco, Perla; Fernández, Isabel; Rodríguez-González, Tania; Imperadore, Pamela; Ponte, Giovanna; Fiorito, Graziano

    2017-09-01

    Cephalopods are the sole invertebrates included in the list of regulated species following the Directive 2010/63/EU. According to the Directive, achieving competence through adequate training is a requisite for people having a role in the different functions (article 23) as such carrying out procedures on animals, designing procedures and projects, taking care of animals, killing animals. Cephalopod Biology and Care Training Program is specifically designed to comply with the requirements of the "working document on the development of a common education and training framework to fulfil the requirements under the Directive 2010/63/EU". The training event occurred at the ICM-CSIC in Barcelona (Spain) where people coming from Europe, America and Asia were instructed on how to cope with regulations for the use of cephalopod molluscs for scientific purposes. The training encompasses discussion on the guidelines for the use and care of animals and their welfare with particular reference to procedures that may be of interest for neuroscience. Intensive discussion has been carried out during the training sessions with focus on behavioural studies and paradigms, welfare assessment, levels of severity of scientific procedures, animal care, handling, transport, individual identification and marking, substance administration, anaesthesia, analgesia and humane killing.

  14. Non-destructive evaluation of scientific and biological samples by scattering of 145 keV gamma rays

    International Nuclear Information System (INIS)

    Singh, M.P.; Sharma, Amandeep; Singh, Bhajan; Sandhu, B.S.

    2010-01-01

    The objective of present experiment is to assign effective atomic number (Z eff ) to samples of scientific interest (oxides of lanthanoids, also called rare earths, and alloys of lead and tin of known composition) and to measure stable iodine content of tissue (biological sample). An HPGe semiconductor detector, placed at 70 o to the incident beam, detects gamma photons scattered from the sample under investigation. The experiment is performed on various elements with atomic number satisfying, 6 ≤Z ≤ 82, for 145 keV incident photons. The intensity ratio of Rayleigh to Compton scattered peaks, corrected for photo-peak efficiency of gamma detector and absorption of photons in the sample and air, is plotted as a function of atomic number and constituted a fit curve. From this fit curve, the respective effective atomic numbers of the scientific samples are determined. The agreement of measured values of Z eff with theoretical calculations is found to be quite satisfactory. The measured intensity ratio from phantom (KI solutions, simulating thyroid content of stable iodine) varies linearly with KI concentration and provides stable iodine content of tissue.

  15. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    1971-01-01

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  16. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. [Recent advances of synthetic biology for production of functional ingredients in Chinese materia medica].

    Science.gov (United States)

    Su, Xin-Yao; Xue, Jian-Ping; Wang, Cai-Xia

    2016-11-01

    The functional ingredients in Chinese materia medica are the main active substance for traditional Chinese medicine and most of them are secondary metabolites derivatives. Until now,the main method to obtain those functional ingredients is through direct extraction from the Chinese materia medica. However, the income is very low because of the high extraction costs and the decreased medicinal plants. Synthetic biology technology, as a new and microbial approach, can be able to carry out large-scale production of functional ingredients and greatly ease the shortage of traditional Chinese medicine ingredients. This review mainly focused on the recent advances in synthetic biology for the functional ingredients production. Copyright© by the Chinese Pharmaceutical Association.

  18. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    Science.gov (United States)

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    Science.gov (United States)

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  1. Advances in downstream processing of biologics - Spectroscopy: An emerging process analytical technology.

    Science.gov (United States)

    Rüdt, Matthias; Briskot, Till; Hubbuch, Jürgen

    2017-03-24

    Process analytical technologies (PAT) for the manufacturing of biologics have drawn increased interest in the last decade. Besides being encouraged by the Food and Drug Administration's (FDA's) PAT initiative, PAT promises to improve process understanding, reduce overall production costs and help to implement continuous manufacturing. This article focuses on spectroscopic tools for PAT in downstream processing (DSP). Recent advances and future perspectives will be reviewed. In order to exploit the full potential of gathered data, chemometric tools are widely used for the evaluation of complex spectroscopic information. Thus, an introduction into the field will be given. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    International Nuclear Information System (INIS)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation

  3. Advances in radiation biology: Relative radiation sensitivities of human organ systems. Volume 12

    Energy Technology Data Exchange (ETDEWEB)

    Lett, J.T.; Altman, K.I.; Ehmann, U.K.; Cox, A.B.

    1987-01-01

    This volume is a thematically focused issue of Advances in Radiation Biology. The topic surveyed is relative radiosensitivity of human organ systems. Topics considered include relative radiosensitivities of the thymus, spleen, and lymphohemopoietic systems; relative radiosensitivities of the small and large intestine; relative rediosensitivities of the oral cavity, larynx, pharynx, and esophagus; relative radiation sensitivity of the integumentary system; dose response of the epidermal; microvascular, and dermal populations; relative radiosensitivity of the human lung; relative radiosensitivity of fetal tissues; and tolerance of the central and peripheral nervous system to therapeutic irradiation.

  4. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    Science.gov (United States)

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  5. Antibiotic abatement in different advanced oxidation processes coupled with a biological sequencing batch biofilm reactor

    International Nuclear Information System (INIS)

    Esplugas, M.; Gonzalez, O.; Benito, J.; Sans, C.

    2009-01-01

    During the last decade, the lack of fresh water is becoming a major concern. Recently, the present of recalcitrant products such as pharmaceuticals has caused a special interest due to their undefined environmental impact. Among these antibiotics are one of the numerous recalcitrant pollutants present in surface waters that might not be completely removed in the biological stage of sewage treatment plants because of their antibacterial nature. Advanced Oxidation Processes (AOPs) have proved to be highly efficient for the degradation of most organic pollutants in wastewaters. (Author)

  6. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  7. Scientific Advances with Aspergillus Species that Are Used for Food and Biotech Applications.

    Science.gov (United States)

    Biesebeke, Rob Te; Record, Erik

    2008-01-01

    Yeast and filamentous fungi have been used for centuries in diverse biotechnological processes. Fungal fermentation technology is traditionally used in relation to food production, such as for bread, beer, cheese, sake and soy sauce. Last century, the industrial application of yeast and filamentous fungi expanded rapidly, with excellent examples such as purified enzymes and secondary metabolites (e.g. antibiotics), which are used in a wide range of food as well as non-food industries. Research on protein and/or metabolite secretion by fungal species has focused on identifying bottlenecks in (post-) transcriptional regulation of protein production, metabolic rerouting, morphology and the transit of proteins through the secretion pathway. In past years, genome sequencing of some fungi (e.g. Aspergillus oryzae, Aspergillus niger) has been completed. The available genome sequences have enabled identification of genes and functionally important regions of the genome. This has directed research to focus on a post-genomics era in which transcriptomics, proteomics and metabolomics methodologies will help to explore the scientific relevance and industrial application of fungal genome sequences.

  8. DIII-D research advancing the scientific basis for burning plasmas and fusion energy

    Science.gov (United States)

    W. M. SolomonThe DIII-D Team

    2017-10-01

    The DIII-D tokamak has addressed key issues to advance the physics basis for ITER and future steady-state fusion devices. In work related to transient control, magnetic probing is used to identify a decrease in ideal stability, providing a basis for active instability sensing. Improved understanding of 3D interactions is emerging, with RMP-ELM suppression correlated with exciting an edge current driven mode. Should rapid plasma termination be necessary, shattered neon pellet injection has been shown to be tunable to adjust radiation and current quench rate. For predictive simulations, reduced transport models such as TGLF have reproduced changes in confinement associated with electron heating. A new wide-pedestal variant of QH-mode has been discovered where increased edge transport is found to allow higher pedestal pressure. New dimensionless scaling experiments suggest an intrinsic torque comparable to the beam-driven torque on ITER. In steady-state-related research, complete ELM suppression has been achieved that is relatively insensitive to q 95, having a weak effect on the pedestal. Both high-q min and hybrid steady-state plasmas have avoided fast ion instabilities and achieved increased performance by control of the fast ion pressure gradient and magnetic shear, and use of external control tools such as ECH. In the boundary, experiments have demonstrated the impact of E× B drifts on divertor detachment and divertor asymmetries. Measurements in helium plasmas have found that the radiation shortfall can be eliminated provided the density near the X-point is used as a constraint in the modeling. Experiments conducted with toroidal rings of tungsten in the divertor have indicated that control of the strike-point flux is important for limiting the core contamination. Future improvements are planned to the facility to advance physics issues related to the boundary, transients and high performance steady-state operation.

  9. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  10. The Effects of Using Concept Mapping for Improving Advanced Level Biology Students' Lower- and Higher-Order Cognitive Skills

    Science.gov (United States)

    Bramwell-Lalor, Sharon; Rainford, Marcia

    2014-01-01

    This paper reports on teachers' use of concept mapping as an alternative assessment strategy in advanced level biology classes and its effects on students' cognitive skills on selected biology concepts. Using a mixed methods approach, the study employed a pre-test/post-test quasi-experimental design involving 156 students and 8 teachers from…

  11. To Fly or Not to Fly: Teaching Advanced Secondary School Students about Principles of Flight in Biological Systems

    Science.gov (United States)

    Pietsch, Renée B.; Bohland, Cynthia L.; Schmale, David G., III.

    2015-01-01

    Biological flight mechanics is typically taught in graduate level college classes rather than in secondary school classes. We developed an interdisciplinary unit for advanced upper-level secondary school students (ages 15-18) to teach the principles of flight and applications to biological systems. This unit capitalised on the tremendous…

  12. Crossdisciplinary fundamental research--the seed for scientific advance and technological innovation.

    Science.gov (United States)

    Kroto, Harold

    2011-12-28

    As it was earlier in the 1980's, so it is now, fundamental science research is under threat as decisions are made on science funding by people who do not do fundamental research, seem congenitally incapable of understanding what it is and furthermore in the face of countless examples seem blind to how important it has been to the technologies that govern our modern life and will be to the future technologies that we desperately need to develop to survive. In this article some general observations are made on how the fascination for what happens in space and stars was the key trigger that gave birth to Science itself and a particular case is outlined which indicates that this same fascination is still the catalyst of some fundamental breakthroughs today. This article also outlines an archetypal example of the way major breakthroughs are often made by the synergy that comes from cross-disciplinary research in a way which is totally surprising. In this case it started from a curiosity about the quantum mechanical description of molecular dynamics and involved pioneering advances in synthetic organic chemistry which led to the suprising discovery that some exotic carbon molecules were abundant in space and stars. These results initiated an experiment using a new technology that represented a major breakthrough in cluster science. The upshot was totally unpredictable, the birth of a whole new field of Chemistry as well as a paradigm shift in major areas of Nanoscience and Nanotechnology.

  13. Translating scientific advances to improved outcomes for children with sickle cell disease: a timely opportunity.

    Science.gov (United States)

    Raphael, Jean L; Kavanagh, Patricia L; Wang, C Jason; Mueller, Brigitta U; Zuckerman, Barry

    2011-07-01

    Despite the recent advances made in the care of children with sickle cell disease (SCD), premature mortality, especially among older children and young adults, remains a hallmark of this disease. The lack of survival gains highlights the translational gap of implementing innovations found efficacious in the controlled trial setting into routine clinical practice. Health services research (HSR) examines the most effective ways to finance, organize, and deliver high quality care in an equitable manner. To date, HSR has been underutilized as a means to improve the outcomes for children with SCD. Emerging national priorities in health care delivery, new sources of funding, and evolving electronic data collection systems for patients with SCD have provided a unique opportunity to overcome the translational gap in pediatric SCD. The purpose of this article is to provide a comprehensive HSR agenda to create patient-specific evidence of clinical effectiveness for interventions used in the routine care setting, understand the barriers faced by clinicians to providing high quality care, assess and improve the interactions of patients with the health care system, and measure the quality of care delivered to increase survival for all children and young adults with SCD. Copyright © 2011 Wiley-Liss, Inc.

  14. Nationwide Buildings Energy Research enabled through an integrated Data Intensive Scientific Workflow and Advanced Analysis Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lansing, Carina S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elsethagen, Todd O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hathaway, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Guillen, Zoe C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dirks, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Skorski, Daniel C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephan, Eric G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorrissen, Willy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gorton, Ian [Carnegie Mellon Univ., Pittsburgh, PA (United States); Liu, Yan [Concordia Univ., Montreal, QC (Canada)

    2014-01-28

    Modern workflow systems enable scientists to run ensemble simulations at unprecedented scales and levels of complexity, allowing them to study system sizes previously impossible to achieve, due to the inherent resource requirements needed for the modeling work. However as a result of these new capabilities the science teams suddenly also face unprecedented data volumes that they are unable to analyze with their existing tools and methodologies in a timely fashion. In this paper we will describe the ongoing development work to create an integrated data intensive scientific workflow and analysis environment that offers researchers the ability to easily create and execute complex simulation studies and provides them with different scalable methods to analyze the resulting data volumes. The integration of simulation and analysis environments is hereby not only a question of ease of use, but supports fundamental functions in the correlated analysis of simulation input, execution details and derived results for multi-variant, complex studies. To this end the team extended and integrated the existing capabilities of the Velo data management and analysis infrastructure, the MeDICi data intensive workflow system and RHIPE the R for Hadoop version of the well-known statistics package, as well as developing a new visual analytics interface for the result exploitation by multi-domain users. The capabilities of the new environment are demonstrated on a use case that focusses on the Pacific Northwest National Laboratory (PNNL) building energy team, showing how they were able to take their previously local scale simulations to a nationwide level by utilizing data intensive computing techniques not only for their modeling work, but also for the subsequent analysis of their modeling results. As part of the PNNL research initiative PRIMA (Platform for Regional Integrated Modeling and Analysis) the team performed an initial 3 year study of building energy demands for the US Eastern

  15. Recent advances in medical device triage technologies for chemical, biological, radiological, and nuclear events.

    Science.gov (United States)

    Lansdowne, Krystal; Scully, Christopher G; Galeotti, Loriano; Schwartz, Suzanne; Marcozzi, David; Strauss, David G

    2015-06-01

    In 2010, the US Food and Drug Administration (Silver Spring, Maryland USA) created the Medical Countermeasures Initiative with the mission of development and promoting medical countermeasures that would be needed to protect the nation from identified, high-priority chemical, biological, radiological, or nuclear (CBRN) threats and emerging infectious diseases. The aim of this review was to promote regulatory science research of medical devices and to analyze how the devices can be employed in different CBRN scenarios. Triage in CBRN scenarios presents unique challenges for first responders because the effects of CBRN agents and the clinical presentations of casualties at each triage stage can vary. The uniqueness of a CBRN event can render standard patient monitoring medical device and conventional triage algorithms ineffective. Despite the challenges, there have been recent advances in CBRN triage technology that include: novel technologies; mobile medical applications ("medical apps") for CBRN disasters; electronic triage tags, such as eTriage; diagnostic field devices, such as the Joint Biological Agent Identification System; and decision support systems, such as the Chemical Hazards Emergency Medical Management Intelligent Syndromes Tool (CHEMM-IST). Further research and medical device validation can help to advance prehospital triage technology for CBRN events.

  16. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    Science.gov (United States)

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Advanced-ORIENT cycle, its scientific progress and prospect for engineering feasibility

    International Nuclear Information System (INIS)

    Koyama, Shin-ichi; Yamagishi, Isao; Fujii, Yasuhiko; Suzuki, Tatsuya; Ozawa, Masaki; Fujita, Reiko; Okada, Ken; Tatenuma, Katsuyoshi; Mimura, Hitoshi

    2011-01-01

    For the ultimate minimization of the ecological risks originated in nuclear fuel recycling, a new fuel cycle paradigm was proposed and the basic researches have been carried out as a first phase under the Adv.-ORIENT (Advanced Optimization by Recycling Instructive Elements) Cycle project. In this paradigm, effective separation of actinide (An) and long lived-fission product (LLFP), transmutation of An, utilization of separated nuclides, such as lanthanides (Lns) and platinum group metals (PGM), were the main directions. In such directions, tertiary pyridine-type resin (TPR) enabled to separate minor actinide (MA)/Ln and then Am/Cm precisely from spent fuel, provided permitting to use HCl as well as and HNO 3 media. Recovery of very pure Am and Cm products could be done in this phase. The PGM and Tc separation; Catalytic electrolytic extraction (CEE) method could effectively separate the light PGM ,Tc from HCl and HNO 3 media, especially by HCl media. The PGM and Tc utilization; Mixed deposit obtained from the CEE experiments, Ru/Rh/Pd/Tc(Re)-Pt electrodes indicated the highest catalytic reactivity on electrolytic production of hydrogen in an alkali solution. Recovery of Cs from simulated spent fuel solution by silica gel loaded with ammonium molybdophosphate (AMP) was carried out, and the uptake rate achieved more than 90%. Separated Cs is expected to utilize as a heat source element. As basic engineering research efforts, some candidate metals, such as Ta, Nb, Zr and Hastelloy-B (Ni-28Mo), were examined to confirm an anti-corrosive property in wide HCl environment. Gram scale experiment to identify a thermo-chemical stability of TPR and TBP (as a reference) was also performed experimentally, and process safety conditions could be found out for its practical use. In this paper, study for each integrant technology was concluded as first trial of Adv.-ORIENT Cycle project, and the perspective for next phase was proposed. (author)

  18. Genelab: Scientific Partnerships and an Open-Access Database to Maximize Usage of Omics Data from Space Biology Experiments

    Science.gov (United States)

    Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.

    2016-01-01

    interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments.

  19. Advanced oxidation process-biological system for wastewater containing a recalcitrant pollutant.

    Science.gov (United States)

    Oller, I; Malato, S; Sánchez-Pérez, J A; Maldonado, M I; Gernjak, W; Pérez-Estrada, L A

    2007-01-01

    Two advanced oxidation processes (AOPs), ozonation and photo-Fenton, combined with a pilot aerobic biological reactor at field scale were employed for the treatment of industrial non-biodegradable saline wastewater (TOC around 200 mgL(-1)) containing a biorecalcitrant compound, alpha-methylphenylglycine (MPG), at a concentration of 500 mgL(-1). Ozonation experiments were performed in a 50-L reactor with constant inlet ozone of 21.9 g m(-3). Solar photo-Fenton tests were carried out in a 75-L pilot plant made up of four compound parabolic collector (CPC) units. The catalyst concentration employed in this system was 20 mgL(-1) of Fe2+ and the H2O2 concentration was kept in the range of 200-500mgL(-1). Complete degradation of MPG was attained after 1,020 min of ozone treatment, while only 195 min were required for photo-Fenton. Samples from different stages of both AOPs were taken for Zahn-Wellens biocompatibility tests. Biodegradability enhancement of the industrial saline wastewater was confirmed (>70% biodegradability). Biodegradable compounds generated during the preliminary oxidative processes were biologically mineralised in a 170-L aerobic immobilised biomass reactor (IBR). The global efficiency of both AOP/biological combined systems was 90% removal of an initial TOC of over 500 mgL(-1).

  20. Advances in the Application of Genetics in Marine Turtle Biology and Conservation

    Directory of Open Access Journals (Sweden)

    Lisa M. Komoroske

    2017-06-01

    Full Text Available Marine turtles migrate across long distances, exhibit complex life histories, and occupy habitats that are difficult to observe. These factors present substantial challenges to understanding fundamental aspects of their biology or assessing human impacts, many of which are important for the effective conservation of these threatened and endangered species. The early development and application of genetic tools made important contributions to understanding marine turtle population and evolutionary biology, such as providing evidence of regional natal homing by breeding adults, establishing connectivity between rookeries and foraging habitats, and determining phylogeography and broad scale stock structure for most marine turtle species. Recent innovations in molecular technologies, statistical methods, and creative application of genetic tools have significantly built upon this knowledge to address key questions in marine turtle biology and conservation management. Here, we evaluate the latest major advances and potential of marine turtle genetic applications, including improved resolution and large-scale syntheses of population structure, connectivity and phylogeography, estimation of key demographic rates such as age to maturity and operational or breeding sex ratios, insight into reproductive strategies and behavior, and assessment of differential human impacts among populations. We then discuss remaining challenges and emerging capabilities, such as rapid, multiplexed genotyping, and investigation of the genomic underpinnings of adaptive variation afforded by high-throughput sequencing technologies.

  1. Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Clifford J.; Sayre, Richard T.; Magnuson, Jon K.; Anderson, Daniel B.; Baxter, Ivan; Blaby, Ian K.; Brown, Judith K.; Carleton, Michael; Cattolico, Rose Ann; Dale, Taraka; Devarenne, Timothy P.; Downes, C. Meghan; Dutcher, Susan K.; Fox, David T.; Goodenough, Ursula; Jaworski, Jan; Holladay, Jonathan E.; Kramer, David M.; Koppisch, Andrew T.; Lipton, Mary S.; Marrone, Babetta L.; McCormick, Margaret; Molnár, István; Mott, John B.; Ogden, Kimberly L.; Panisko, Ellen A.; Pellegrini, Matteo; Polle, Juergen; Richardson, James W.; Sabarsky, Martin; Starkenburg, Shawn R.; Stormo, Gary D.; Teshima, Munehiro; Twary, Scott N.; Unkefer, Pat J.; Yuan, Joshua S.; Olivares, José A.

    2017-03-01

    In 2010,when the National Alliance for Advanced Biofuels and Bioproducts (NAABB) consortiumbegan, littlewas known about themolecular basis of algal biomass or oil production. Very fewalgal genome sequenceswere available and efforts to identify the best-producing wild species through bioprospecting approaches had largely stalled after the U.S. Department of Energy's Aquatic Species Program. This lack of knowledge included how reduced carbon was partitioned into storage products like triglycerides or starch and the role played bymetabolite remodeling in the accumulation of energy-dense storage products. Furthermore, genetic transformation and metabolic engineering approaches to improve algal biomass and oil yields were in their infancy. Genome sequencing and transcriptional profiling were becoming less expensive, however; and the tools to annotate gene expression profiles under various growth and engineered conditions were just starting to be developed for algae. It was in this context that an integrated algal biology program was introduced in the NAABB to address the greatest constraints limiting algal biomass yield. This review describes the NAABB algal biology program, including hypotheses, research objectives, and strategies to move algal biology research into the twenty-first century and to realize the greatest potential of algae biomass systems to produce biofuels.

  2. Advanced Communication and Control for Distributed Energy Resource Integration: Phase 2 Scientific Report

    Energy Technology Data Exchange (ETDEWEB)

    BPL Global

    2008-09-30

    The objective of this research project is to demonstrate sensing, communication, information and control technologies to achieve a seamless integration of multivendor distributed energy resource (DER) units at aggregation levels that meet individual user requirements for facility operations (residential, commercial, industrial, manufacturing, etc.) and further serve as resource options for electric and natural gas utilities. The fully demonstrated DER aggregation system with embodiment of communication and control technologies will lead to real-time, interactive, customer-managed service networks to achieve greater customer value. Work on this Advanced Communication and Control Project (ACCP) consists of a two-phase approach for an integrated demonstration of communication and control technologies to achieve a seamless integration of DER units to reach progressive levels of aggregated power output. Phase I involved design and proof-of-design, and Phase II involves real-world demonstration of the Phase I design architecture. The scope of work for Phase II of this ACCP involves demonstrating the Phase I design architecture in large scale real-world settings while integrating with the operations of one or more electricity supplier feeder lines. The communication and control architectures for integrated demonstration shall encompass combinations of software and hardware components, including: sensors, data acquisition and communication systems, remote monitoring systems, metering (interval revenue, real-time), local and wide area networks, Web-based systems, smart controls, energy management/information systems with control and automation of building energy loads, and demand-response management with integration of real-time market pricing. For Phase II, BPL Global shall demonstrate the Phase I design for integrating and controlling the operation of more than 10 DER units, dispersed at various locations in one or more Independent System Operator (ISO) Control Areas, at

  3. Biological efficacy and toxic effect of emergency water disinfection process based on advanced oxidation technology.

    Science.gov (United States)

    Tian, Yiping; Yuan, Xiaoli; Xu, Shujing; Li, Rihong; Zhou, Xinying; Zhang, Zhitao

    2015-12-01

    An innovative and removable water treatment system consisted of strong electric field discharge and hydrodynamic cavitation based on advanced oxidation technologies was developed for reactive free radicals producing and waterborne pathogens eliminating in the present study. The biological efficacy and toxic effects of this advanced oxidation system were evaluated during water disinfection treatments. Bench tests were carried out with synthetic microbial-contaminated water, as well as source water in rainy season from a reservoir of Dalian city (Liaoning Province, China). Results showed that high inactivation efficiency of Escherichia coli (>5 log) could be obtained for synthetic contaminated water at a low concentration (0.5-0.7 mg L(-1)) of total oxidants in 3-10 s. The numbers of wild total bacteria (108 × 10(3) CFU mL(-1)) and total coliforms (260 × 10(2) MPN 100 mL(-1)) in source water greatly reduced to 50 and 0 CFU mL(-1) respectively after treated by the advanced oxidation system, which meet the microbiological standards of drinking water, and especially that the inactivation efficiency of total coliforms could reach 100%. Meanwhile, source water qualities were greatly improved during the disinfection processes. The values of UV254 in particular were significantly reduced (60-80%) by reactive free radicals. Moreover, the concentrations of possible disinfection by-products (formaldehyde and bromide) in treated water were lower than detection limits, indicating that there was no harmful effect on water after the treatments. These investigations are helpful for the ecotoxicological studies of advanced oxidation system in the treatments of chemical polluted water or waste water. The findings of this work suggest that the developed water treatment system is ideal in the acute phases of emergencies, which also could offer additional advantages over a wide range of applications in water pollution control.

  4. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  5. Ensuring Biologics Advanced Development and Manufacturing Capability for the United States Government: A Summary of Key Findings and Conclusions

    Science.gov (United States)

    2009-10-06

    CRISP Computer Retrieval Information on Scientific Projects DARPA Defense Advanced Research Projects Agency DCA Demand Capacity Assessment DHS...2007. 8. BARDA, HHS. Personal interview. 20 September 2007. 9. Bravata DM . Reducing mortality from anthrax bioterrorism: strategies for stockpiling...Projects ( CRISP ). Novel smallpox vaccine derived from VV/VAR Immunome. EPIVAX, INC. 17. Congressional Research Services (CRS) RL32917: Bioterrorism

  6. Biological effects of space radiation on human cells. History, advances and outcomes

    International Nuclear Information System (INIS)

    Maalouf, M.; Foray, N.; Durante, M.

    2011-01-01

    Exposure to radiation is one of the main concerns for space exploration by humans. By focusing deliberately on the works performed on human cells, we endeavored to review, decade by decade, the technological developments and conceptual advances of space radiation biology. Despite considerable efforts, the cancer and the toxicity risks remain to be quantified: the nature and the frequency of secondary heavy ions need to be better characterized in order to estimate their contribution to the dose and to the final biological response; the diversity of radiation history of each astronaut and the impact of individual susceptibility make very difficult any epidemiological analysis for estimating hazards specifically due to space radiation exposure. Cytogenetic data undoubtedly revealed that space radiation exposure produce significant damage in cells. However, our knowledge of the basic mechanisms specific to low-dose, to repeated doses and to adaptive response is still poor. The application of new radiobiological techniques, like immunofluorescence, and the use of human tissue models different from blood, like skin fibroblasts, may help in clarifying all the above items. (author)

  7. Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination-A review

    International Nuclear Information System (INIS)

    Oller, I.; Malato, S.; Sanchez-Perez, J.A.

    2011-01-01

    Nowadays there is a continuously increasing worldwide concern for development of alternative water reuse technologies, mainly focused on agriculture and industry. In this context, Advanced Oxidation Processes (AOPs) are considered a highly competitive water treatment technology for the removal of those organic pollutants not treatable by conventional techniques due to their high chemical stability and/or low biodegradability. Although chemical oxidation for complete mineralization is usually expensive, its combination with a biological treatment is widely reported to reduce operating costs. This paper reviews recent research combining AOPs (as a pre-treatment or post-treatment stage) and bioremediation technologies for the decontamination of a wide range of synthetic and real industrial wastewater. Special emphasis is also placed on recent studies and large-scale combination schemes developed in Mediterranean countries for non-biodegradable wastewater treatment and reuse. The main conclusions arrived at from the overall assessment of the literature are that more work needs to be done on degradation kinetics and reactor modeling of the combined process, and also dynamics of the initial attack on primary contaminants and intermediate species generation. Furthermore, better economic models must be developed to estimate how the cost of this combined process varies with specific industrial wastewater characteristics, the overall decontamination efficiency and the relative cost of the AOP versus biological treatment.

  8. A review of soft-tissue sarcomas: translation of biological advances into treatment measures

    Directory of Open Access Journals (Sweden)

    Hoang NT

    2018-05-01

    Full Text Available Ngoc T Hoang,* Luis A Acevedo,* Michael J Mann, Bhairavi Tolani Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA *These authors contributed equally to this work Abstract: Soft-tissue sarcomas are rare malignant tumors arising from connective tissues and have an overall incidence of about five per 100,000 per year. While this diverse family of malignancies comprises over 100 histological subtypes and many molecular aberrations are prevalent within specific sarcomas, very few are therapeutically targeted. Instead of utilizing molecular signatures, first-line sarcoma treatment options are still limited to traditional surgery and chemotherapy, and many of the latter remain largely ineffective and are plagued by disease resistance. Currently, the mechanism of sarcoma oncogenesis remains largely unknown, thus necessitating a better understanding of pathogenesis. Although substantial progress has not occurred with molecularly targeted therapies over the past 30 years, increased knowledge about sarcoma biology could lead to new and more effective treatment strategies to move the field forward. Here, we discuss biological advances in the core molecular determinants in some of the most common soft-tissue sarcomas – liposarcoma, angiosarcoma, leiomyosarcoma, rhabdomyosarcoma, Ewing’s sarcoma, and synovial sarcoma – with an emphasis on emerging genomic and molecular pathway targets and immunotherapeutic treatment strategies to combat this confounding disease. Keywords: sarcoma, molecular pathways, immunotherapy, genomics

  9. IBPRO - A Novel Short-Duration Teaching Course in Advanced Physics and Biology Underlying Cancer Radiotherapy.

    Science.gov (United States)

    Joiner, Michael C; Tracey, Monica W; Kacin, Sara E; Burmeister, Jay W

    2017-06-01

    This article provides a summary and status report of the ongoing advanced education program IBPRO - Integrated course in Biology and Physics of Radiation Oncology. IBPRO is a five-year program funded by NCI. It addresses the recognized deficiency in the number of mentors available who have the required knowledge and skill to provide the teaching and training that is required for future radiation oncologists and researchers in radiation sciences. Each year, IBPRO brings together 50 attendees typically at assistant professor level and upwards, who are already qualified/certified radiation oncologists, medical physicists or biologists. These attendees receive keynote lectures and activities based on active learning strategies, merging together the clinical, biological and physics underpinnings of radiation oncology, at the forefront of the field. This experience is aimed at increasing collaborations, raising the level and amount of basic and applied research undertaken in radiation oncology, and enabling attendees to confidently become involved in the future teaching and training of researchers and radiation oncologists.

  10. Advances in wastewater nitrogen removal by biological processes: state of the art review

    Directory of Open Access Journals (Sweden)

    Andrea G. Capodaglio

    2016-04-01

    Full Text Available The paper summarizes the state-of-the-art of the most recent advances in biological nitrogen removal, including process design criteria and technological innovations. With reference to the Modified Ludzck Ettinger (MLE process (pre-denitrification and nitrification in the activated sludge process, the most common nitrogen removal process used nowadays, a new design equation for the denitrification reactor based on specific denitrification rate (SDNR has been proposed. In addition, factors influencing SDNR (DO in the anoxic reactor; hydrodynamic behavior are analyzed, and technological solutions are proposed. Concerning technological advances, the paper presents a summary of various “deammonification” processes, better known by their patent names like ANAMMOX®, DEMON®, CANON®, ANITA® and others. These processes have already found applications in the treatment of high-strength wastewater such as digested sludge liquor and landfill leachate. Among other emerging denitrification technologies, consideration is given to the Membrane Biofilm Reactors (MBfRs that can be operated both in oxidation and reduction mode.

  11. Advanced high school biology in an era of rapid change: a summary of the biology panel report from the NRC Committee on Programs for Advanced Study of Mathematics and Science in American High Schools.

    Science.gov (United States)

    Wood, William B

    2002-01-01

    A recently released National Research Council (NRC) report, Learning and Understanding: Improving Advanced Study of Mathematics and Science in U.S. High Schools, evaluated and recommended changes in the Advanced Placement (AP), International Baccalaureate (IB), and other advanced secondary school science programs. As part of this study, discipline-specific panels were formed to evaluate advanced programs in biology, chemistry, physics, and mathematics. Among the conclusions of the Content Panel for Biology were that AP courses in particular suffer from inadequate quality control as well as excessive pressure to fulfill their advanced placement function, which encourages teachers to attempt coverage of all areas of biology and emphasize memorization of facts rather than in-depth understanding. In this essay, the Panel's principal findings are discussed, with an emphasis on its recommendation that colleges and universities should be strongly discouraged from using performance on either the AP examination or the IB examination as the sole basis for automatic placement out of required introductory courses for biology majors and distribution requirements for nonmajors.

  12. Advanced biological activated carbon filter for removing pharmaceutically active compounds from treated wastewater.

    Science.gov (United States)

    Sbardella, Luca; Comas, Joaquim; Fenu, Alessio; Rodriguez-Roda, Ignasi; Weemaes, Marjoleine

    2018-04-28

    Through their release of effluents, conventional wastewater treatment plants (WWTPs) represent a major pollution point sources for pharmaceutically active compounds (PhACs) in water bodies. The combination of a biological activated carbon (BAC) filter coupled with an ultrafiltration (UF) unit was evaluated as an advanced treatment for PhACs removal at pilot scale. The BAC-UF pilot plant was monitored for one year. The biological activity of the biofilm that developed on the granular activated carbon (GAC) particles and the contribution of this biofilm to the overall removal of PhACs were evaluated. Two different phases were observed during the long-term monitoring of PhACs removal. During the first 9200 bed volumes (BV; i.e., before GAC saturation), 89, 78, 83 and 79% of beta-blockers, psychiatric drugs, antibiotics and a mix of other therapeutic groups were removed, respectively. The second phase was characterized by deterioration of the overall performances during the period between 9200 and 13,800 BV. To quantify the respective contribution of adsorption and biodegradation, a lab-scale setup was operated for four months and highlighted the essential role played by GAC in biofiltration units. Physical adsorption was indeed the main removal mechanism. Nevertheless, a significant contribution due to biological activity was detected for some PhACs. The biofilm contributed to the removal of 22, 25, 30, 32 and 35% of ciprofloxacin, bezafibrate, ofloxacin, azithromycin and sulfamethoxazole, respectively. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. NATO Advanced Research Workshop on Fluorescence and other Optical Properties of Biological Particles for Biological Warfare Agent Sensors

    CERN Document Server

    Hoekstra, Alfons; Videen, Gorden; Optics of Biological Particles

    2007-01-01

    This book covers the optics of single biological particles, both theory and experiment, with emphasis on Elastic Light Scattering and Fluorescence. It deals with the optics of bacteria (bio-aerosols), marine particles (selected phytoplankton communities) and red and white blood cells. Moreover, there are dedicated chapters on a general theory for scattering by a cell, and modelling and simulation of scattering by inhomogeneous biological cells. Finally, one chapter is dedicated to astro-biological signatures, discussing the possibilities for detecting non-terrestrial biological material. The volume has up-to-date discussions on new experimental and numerical techniques, and many examples of applications of these techniques in real-life systems, as used to detect and characterize e.g. biological warfare agents or human blood cells.

  14. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Saffer, Shelley (Sam) I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  15. The oral histories of six African American males in their ecology of Advanced Placement Biology

    Science.gov (United States)

    Halasa, Katrina Bassam

    The major purpose of this qualitative study was to examine the past in order to understand the complex phenomenon of students engaging in science (Newman, Ridenour, Newman, & DeMarco, 2003) specifically through the oral histories of six self-identified African American males enrolled in a high school Advanced Placement Biology class and the oral histories about events that followed during their post high school experiences. To elucidate an understanding of this phenomenon, this research explored the ecology of African American males' descriptions of their school science, their peer school science community, their lived experiences during and after graduation, and their meso-community (Bronfenbrenner, 1979). Many minority and low-income students are less likely to enroll in rigorous courses during high school (Education Trust, 2006). This study is of utmost importance because capturing the informants' oral histories may improve rigorous science education. Many African American male students are attending urban schools with an ever growing achievement gap among their White counterparts (Norman, Ault, Bentz, & Meskimen, 2001); therefore, they are disengaging in science. As a result, African American males are underrepresented in both science careers and achievements in science (Atwater, 2000; National Science Foundation, 1994). The six oral histories highlighted the ecological factors that affected African American males regarding (1) the impact of their relationship with their mothers, (2) the understanding of personal responsibility, (3) the notion of a scientist, (4) the issue of gender being more of an obstacle than race, (5) the understanding that education is valuable, (6) the interactions and influence of relationships with others on their decisions, (7) the development of integrity through the participation in sports, (8) the ecological neighborhood environment influences an image, (9) the enrollment of Advanced Placement Biology course helped the transition

  16. Microscopy of biological sample through advanced diffractive optics from visible to X-ray wavelength regime.

    Science.gov (United States)

    Di Fabrizio, Enzo; Cojoc, Dan; Emiliani, Valentina; Cabrini, Stefano; Coppey-Moisan, Maite; Ferrari, Enrico; Garbin, Valeria; Altissimo, Matteo

    2004-11-01

    The aim of this report is to demonstrate a unified version of microscopy through the use of advanced diffractive optics. The unified scheme derives from the technical possibility of realizing front wave engineering in a wide range of electromagnetic spectrum. The unified treatment is realized through the design and nanofabrication of phase diffractive elements (PDE) through which wave front beam shaping is obtained. In particular, we will show applications, by using biological samples, ranging from micromanipulation using optical tweezers to X-ray differential interference contrast (DIC) microscopy combined with X-ray fluorescence. We report some details on the design and physical implementation of diffractive elements that besides focusing also perform other optical functions: beam splitting, beam intensity, and phase redistribution or mode conversion. Laser beam splitting is used for multiple trapping and independent manipulation of micro-beads surrounding a cell as an array of tweezers and for arraying and sorting microscopic size biological samples. Another application is the Gauss to Laguerre-Gauss mode conversion, which allows for trapping and transfering orbital angular momentum of light to micro-particles immersed in a fluid. These experiments are performed in an inverted optical microscope coupled with an infrared laser beam and a spatial light modulator for diffractive optics implementation. High-resolution optics, fabricated by means of e-beam lithography, are demonstrated to control the intensity and the phase of the sheared beams in x-ray DIC microscopy. DIC experiments with phase objects reveal a dramatic increase in image contrast compared to bright-field x-ray microscopy. Besides the topographic information, fluorescence allows detection of certain chemical elements (Cl, P, Sc, K) in the same setup, by changing the photon energy of the x-ray beam. (c) 2005 Wiley-Liss, Inc.

  17. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Scientific Opinion on risk based control of biogenic amine formation in fermented foods

    DEFF Research Database (Denmark)

    Hald, Tine

    A qualitative risk assessment of biogenic amines (BA) in fermented foods was conducted, using data from the scientific literature, as well as from European Union-related surveys, reports and consumption data. Histamine and tyramine are considered as the most toxic and food safety relevant...... chromatography (HPLC)-based methods enable simultaneous and high sensitivity quantification of all BA in foods, hence are best suited for monitoring and control purposes. Monitoring of BA concentrations in fermented foods during the production process and along the food chain would be beneficial for controls...... and further knowledge. Further research on BA in fermented foods is needed; particularly on toxicity and associated concentrations, production process-based control measures, further process hygiene and/or food safety criteria development, and validation of analysis methods....

  18. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    Science.gov (United States)

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total

  19. Evaluating the influence of organ motion during photon vs. proton therapy for locally advanced prostate cancer using biological models

    DEFF Research Database (Denmark)

    Busch, Kia; G Andersen, Andreas; Casares-Magaz, Oscar

    2017-01-01

    beam angles for pelvic irradiation, we aimed to evaluate the influence of organ motion for PT using biological models, and to compare this with contemporary photon-based RT. MATERIAL AND METHODS: Eight locally advanced prostate cancer patients with a planning CT (pCT) and 8-9 repeated CT scans (r...

  20. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatmen : A laboratory batch study

    NARCIS (Netherlands)

    Wang, F.; van Halem, D.; Liu, G.; Lekkerkerker-Teunissen, K.; van der Hoek, J.P.

    2017-01-01

    H2O2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H2O2 residuals influence sand systems with an emphasis on

  1. Using the Principles of SoTL to Redesign an Advanced Evolutionary Biology Course

    Directory of Open Access Journals (Sweden)

    Michael deBraga

    2015-03-01

    Full Text Available A primary goal of university instruction is the students’ demonstration of improved, highly developed critical thinking (CT skills. However, how do faculty encourage CT and its potential concomitant increase in student workload without negatively impacting student perceptions of the course? In this investigation, an advanced biology course is evaluated after structural changes (implemented in 2010 met with a poor student evaluation of the course and the instructor. This analysis first examines the steps used to transform a course to encourage CT and then explains how it can be assessed. To accomplish these goals, the instructor collaborated with an educational developer to redesign the course using a philosophy informed by SoTL. This approach, as we see it, represents a set of principles that demand transparency in the development and application of strategies whose aim is to encourage student learning. However, the SoTL approach would be insufficient to simply promote a set of strategies without some mechanism for evaluating its efficacy. Therefore, we designed a “Graded Response” (GR multiple-choice test to measure CT development and hence to properly evaluate whether the strategies embedded in our SoTL-informed course redesign have adequately met our goals.

  2. Advancing Ocean Acidification Biology Using Durafet® pH Electrodes

    Directory of Open Access Journals (Sweden)

    Lydia Kapsenberg

    2017-10-01

    Full Text Available Research assessing the biological impacts of global ocean change often requires a burdensome characterization of seawater carbonate chemistry. For laboratory-based ocean acidification research, this impedes the scope of experimental design. Honeywell Durafet® III pH electrodes provide precise and continuous seawater pH measurements. In addition to use in oceanographic sensor packages, Durafets can also be used in the laboratory to track and control seawater treatments via Honeywell Universal Dual Analyzers (UDAs. Here we provide performance data, instructions, and step-by-step recommendations for use of multiple UDA-Durafets. Durafet pH measurements were within ±0.005 units pHT of spectrophotometric measurements and agreement among eight Durafets was better than ±0.005 units pHT. These results indicate equal performance to Durafets in oceanographic sensor packages, but methods for calibration and quality control differ. Use of UDA-Durafets vastly improves time-course documentation of experimental conditions and reduces person-hours dedicated to this activity. Due to the versatility of integrating Durafets in laboratory seawater systems, this technology opens the door to advance the scale of questions that the ocean acidification research community aims to address.

  3. Final Technical Report - Use of Systems Biology Approaches to Develop Advanced Biofuel-Synthesizing Cyanobacterial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Pakrasi, Himadri [Washington Univ., St. Louis, MO (United States)

    2016-09-01

    The overall objective of this project was to use a systems biology approach to evaluate the potentials of a number of cyanobacterial strains for photobiological production of advanced biofuels and/or their chemical precursors. Cyanobacteria are oxygen evolving photosynthetic prokaryotes. Among them, certain unicellular species such as Cyanothece can also fix N2, a process that is exquisitely sensitive to oxygen. To accommodate such incompatible processes in a single cell, Cyanothece produces oxygen during the day, and creates an O2-limited intracellular environment during the night to perform O2-sensitive processes such as N2-fixation. Thus, Cyanothece cells are natural bioreactors for the storage of captured solar energy with subsequent utilization at a different time during a diurnal cycle. Our studies include the identification of a novel, fast-growing, mixotrophic, transformable cyanobacterium. This strain has been sequenced and will be made available to the community. In addition, we have developed genome-scale models for a family of cyanobacteria to assess their metabolic repertoire. Furthermore, we developed a method for rapid construction of metabolic models using multiple annotation sources and a metabolic model of a related organism. This method will allow rapid annotation and screening of potential phenotypes based on the newly available genome sequences of many organisms.

  4. Advances in Wilms Tumor Treatment and Biology: Progress Through International Collaboration.

    Science.gov (United States)

    Dome, Jeffrey S; Graf, Norbert; Geller, James I; Fernandez, Conrad V; Mullen, Elizabeth A; Spreafico, Filippo; Van den Heuvel-Eibrink, Marry; Pritchard-Jones, Kathy

    2015-09-20

    Clinical trials in Wilms tumor (WT) have resulted in overall survival rates of greater than 90%. This achievement is especially remarkable because improvements in disease-specific survival have occurred concurrently with a reduction of therapy for large patient subgroups. However, the outcomes for certain patient subgroups, including those with unfavorable histologic and molecular features, bilateral disease, and recurrent disease, remain well below the benchmark survival rate of 90%. Therapy for WT has been advanced in part by an increasingly complex risk-stratification system based on patient age; tumor stage, histology, and volume; response to chemotherapy; and loss of heterozygosity at chromosomes 1p and 16q. A consequence of this system has been the apportionment of patients into such small subgroups that only collaboration between large international WT study groups will support clinical trials that are sufficiently powered to answer challenging questions that move the field forward. This article gives an overview of the Children's Oncology Group and International Society of Pediatric Oncology approaches to WT and focuses on four subgroups (stage IV, initially inoperable, bilateral, and relapsed WT) for which international collaboration is pressing. In addition, biologic insights resulting from collaborative laboratory research are discussed. A coordinated expansion of international collaboration in both clinical trials and laboratory science will provide real opportunity to improve the treatment and outcomes for children with renal tumors on a global level. © 2015 by American Society of Clinical Oncology.

  5. Merkel cell carcinoma - recent advances in the biology, diagnostics and treatment.

    Science.gov (United States)

    Czapiewski, Piotr; Biernat, Wojciech

    2014-08-01

    Merkel cell carcinoma (MCC) is an uncommon primary cutaneous carcinoma with neuroendocrine differentiation. Since recent discovery of MCCs strong association with Merkel cell polyomavirus (MCPyV), there has been a rapid increase in the understanding of the carcinomas genetics, molecular biology and pathogenesis. In our study, we reviewed recent advances and controversies concerning MCC histogenesis, epidemiology, diagnostic and prognostic markers. We analyzed the association of MCPyV with MCC and the possible new targets for therapy. We also examined English-based literature regarding MCC pathogenesis published between 2008 and 2013, which lead to a deeper understanding of the topic. Our study showed that the association of MCPyV strongly influences the course of MCC. Additionally, it has been shown that a immunological response to MCPyV may in the future give hope to identify new therapeutic strategies in treatment of this fatal malignancy. This article is part of a Directed Issue entitled: Rare Cancers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Technological advances for deciphering the complexity of psychiatric disorders: merging proteomics with cell biology.

    Science.gov (United States)

    Wesseling, Hendrik; Guest, Paul C; Lago, Santiago G; Bahn, Sabine

    2014-08-01

    Proteomic studies have increased our understanding of the molecular pathways affected in psychiatric disorders. Mass spectrometry and two-dimensional gel electrophoresis analyses of post-mortem brain samples from psychiatric patients have revealed effects on synaptic, cytoskeletal, antioxidant and mitochondrial protein networks. Multiplex immunoassay profiling studies have found alterations in hormones, growth factors, transport and inflammation-related proteins in serum and plasma from living first-onset patients. Despite these advances, there are still difficulties in translating these findings into platforms for improved treatment of patients and for discovery of new drugs with better efficacy and side effect profiles. This review describes how the next phase of proteomic investigations in psychiatry should include stringent replication studies for validation of biomarker candidates and functional follow-up studies which can be used to test the impact on physiological function. All biomarker candidates should now be tested in series with traditional and emerging cell biological approaches. This should include investigations of the effects of post-translational modifications, protein dynamics and network analyses using targeted proteomic approaches. Most importantly, there is still an urgent need for development of disease-relevant cellular models for improved translation of proteomic findings into a means of developing novel drug treatments for patients with these life-altering disorders.

  7. Reorienting Esthetic Knowing as an Appropriate "Object" of Scientific Inquiry to Advance Understanding of a Critical Pattern of Nursing Knowledge in Practice.

    Science.gov (United States)

    Bender, Miriam; Elias, Dina

    The esthetic pattern of knowing is critical for nursing practice, yet remains weakly defined and understood. This gap has arguably relegated esthetic knowing to an "ineffable" creativity that resists transparency and understanding, which is a barrier to articulating its value for nursing and its importance in producing beneficial health outcomes. Current philosophy of science developments are synthesized to argue that esthetic knowing is an appropriate "object" of scientific inquiry. Examples of empirical scholarship that can be conceived as scientific inquiry into manifestations of esthetic knowing are highlighted. A program of research is outlined to advance a science of esthetic knowing.

  8. Synergy between scientific advancement and technological innovation, illustrated by a mechanism-based model characterizing sodium-glucose cotransporter-2 inhibition.

    Science.gov (United States)

    Zhang, Liping; Ng, Chee M; List, James F; Pfister, Marc

    2010-09-01

    Advances in experimental medicine and technological innovation during the past century have brought tremendous progress in modern medicine and generated an ever-increasing amount of data from bench and bedside. The desire to extend scientific knowledge motivates effective data integration. Technological innovation makes this possible, which in turn accelerates the advancement in science. This mutually beneficial interaction is illustrated by the development of an expanded mechanism-based model for understanding a novel mechanism, sodium-glucose cotransporter-2 SGLT2 inhibition for potential treatment of type 2 diabetes mellitus.

  9. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update)

    DEFF Research Database (Denmark)

    Licht, Tine Rask; Baggesen, Dorte Lau

    EFSA is requested to assess the safety of a broad range of biological agents in the context of notifications for market authorisation as sources of food and feed additives, enzymes and plant protection products. The qualified presumption of safety (QPS) assessment was developed to provide...... a harmonised generic pre-assessment to support safety risk assessments performed by EFSA’s scientific Panels. The safety of unambiguously defined biological agents (at the highest taxonomic unit appropriate for the purpose for which an application is intended), and the completeness of the body of knowledge...... is the one in the most recently published scientific opinion. The 2013 update reviews previously assessed microorganisms including bacteria, yeasts, filamentous fungi, oomycetes and viruses used for plant protection purposes. All taxonomic units previously recommended for the QPS list had their status...

  10. Iterative Systems Biology for Medicine – time for advancing from network signature to mechanistic equations

    KAUST Repository

    Gomez-Cabrero, David; Tegner, Jesper

    2017-01-01

    The rise and growth of Systems Biology following the sequencing of the human genome has been astounding. Early on, an iterative wet-dry methodology was formulated which turned out as a successful approach in deciphering biological complexity

  11. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Reflecting on the experiences and lessons learnt from modelling on biological hazards

    DEFF Research Database (Denmark)

    Hald, Tine

    methodological uncertainties, and therefore, preferences for types of models cannot be specified. Newer approaches need to be identified and considered. Fit for purpose and simplicity are key issues when developing QMRA models. However, limits on time and resources may restrict the model selection. At the start......” should be used carefully, with scientific criteria and context clearly defined, or avoided....

  12. The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review

    Directory of Open Access Journals (Sweden)

    Michael K. Rust

    2017-10-01

    Full Text Available The cat flea Ctenocephalides felis felis (Bouché is the most important ectoparasite of domestic cats and dogs worldwide. It has been two decades since the last comprehensive review concerning the biology and ecology of C. f. felis and its management. Since then there have been major advances in our understanding of the diseases associated with C. f. felis and their implications for humans and their pets. Two rickettsial diseases, flea-borne spotted fever and murine typhus, have been identified in domestic animal populations and cat fleas. Cat fleas are the primary vector of Bartonella henselae (cat scratch fever with the spread of the bacteria when flea feces are scratched in to bites or wounds. Flea allergic dermatitis (FAD common in dogs and cats has been successfully treated and tapeworm infestations prevented with a number of new products being used to control fleas. There has been a continuous development of new products with novel chemistries that have focused on increased convenience and the control of fleas and other arthropod ectoparasites. The possibility of feral animals serving as potential reservoirs for flea infestations has taken on additional importance because of the lack of effective environmental controls in recent years. Physiological insecticide resistance in C. f. felis continues to be of concern, especially because pyrethroid resistance now appears to be more widespread. In spite of their broad use since 1994, there is little evidence that resistance has developed to many of the on-animal or oral treatments such as fipronil, imidacloprid or lufenuron. Reports of the perceived lack of performance of some of the new on-animal therapies have been attributed to compliance issues and their misuse. Consequentially, there is a continuing need for consumer awareness of products registered for cats and dogs and their safety.

  13. Biologically active filters - An advanced water treatment process for contaminants of emerging concern.

    Science.gov (United States)

    Zhang, Shuangyi; Gitungo, Stephen W; Axe, Lisa; Raczko, Robert F; Dyksen, John E

    2017-05-01

    With the increasing concern of contaminants of emerging concern (CECs) in source water, this study examines the hypothesis that existing filters in water treatment plants can be converted to biologically active filters (BAFs) to treat these compounds. Removals through bench-scale BAFs were evaluated as a function of media, granular activated carbon (GAC) and dual media, empty bed contact time (EBCT), and pre-ozonation. For GAC BAFs, greater oxygen consumption, increased pH drop, and greater dissolved organic carbon removal normalized to adenosine triphosphate (ATP) were observed indicating increased microbial activity as compared to anthracite/sand dual media BAFs. ATP concentrations in the upper portion of the BAFs were as much as four times greater than the middle and lower portions of the dual media and 1.5 times greater in GAC. Sixteen CECs were spiked in the source water. At an EBCT of 18 min (min), GAC BAFs were highly effective with overall removals greater than 80% without pre-ozonation; exceptions included tri(2-chloroethyl) phosphate and iopromide. With a 10 min EBCT, the degree of CECs removal was reduced with less than half of the compounds removed at greater than 80%. The dual media BAFs showed limited CECs removal with only four compounds removed at greater than 80%, and 10 compounds were reduced by less than 50% with either EBCT. This study demonstrated that GAC BAFs with and without pre-ozonation are an effective and advanced technology for treating emerging contaminants. On the other hand, pre-ozonation is needed for dual media BAFs to remove CECs. The most cost effective operating conditions for dual media BAFs were a 10 min EBCT with the application of pre-ozonation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Biologic lung volume reduction in advanced upper lobe emphysema: phase 2 results.

    Science.gov (United States)

    Criner, Gerard J; Pinto-Plata, Victor; Strange, Charlie; Dransfield, Mark; Gotfried, Mark; Leeds, William; McLennan, Geoffrey; Refaely, Yael; Tewari, Sanjiv; Krasna, Mark; Celli, Bartolome

    2009-05-01

    Biologic lung volume reduction (BioLVR) is a new endobronchial treatment for advanced emphysema that reduces lung volume through tissue remodeling. Assess the safety and therapeutic dose of BioLVR hydrogel in upper lobe predominant emphysema. Open-labeled, multicenter phase 2 dose-ranging studies were performed with BioLVR hydrogel administered to eight subsegmental sites (four in each upper lobe) involving: (1) low-dose treatment (n = 28) with 10 ml per site (LD); and (2) high-dose treatment (n = 22) with 20 ml per site (HD). Safety was assessed by the incidence of serious medical complications. Efficacy was assessed by change from baseline in pulmonary function tests, dyspnea score, 6-minute walk distance, and health-related quality of life. After treatment there were no deaths and four serious treatment-related complications. A reduction in residual volume to TLC ratio at 12 weeks (primary efficacy outcome) was achieved with both LD (-6.4 +/- 9.3%; P = 0.002) and HD (-5.5 +/- 9.4%; P = 0.028) treatments. Improvements in pulmonary function in HD (6 mo: DeltaFEV(1) = +15.6%; P = 0.002; DeltaFVC = +9.1%; P = 0.034) were greater than in LD patients (6 mo: DeltaFEV(1) = +6.7%; P = 0.021; DeltaFVC = +5.1%; P = 0.139). LD- and HD-treated groups both demonstrated improved symptom scores and health-related quality of life. BioLVR improves physiology and functional outcomes up to 6 months with an acceptable safety profile in upper lobe predominant emphysema. Overall improvement was greater and responses more durable with 20 ml per site than 10 ml per site dosing. Clinical trial registered with www.clinicaltrials.gov (NCT 00435253 and NCT 00515164).

  15. The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review

    Science.gov (United States)

    2017-01-01

    The cat flea Ctenocephalides felis felis (Bouché) is the most important ectoparasite of domestic cats and dogs worldwide. It has been two decades since the last comprehensive review concerning the biology and ecology of C. f. felis and its management. Since then there have been major advances in our understanding of the diseases associated with C. f. felis and their implications for humans and their pets. Two rickettsial diseases, flea-borne spotted fever and murine typhus, have been identified in domestic animal populations and cat fleas. Cat fleas are the primary vector of Bartonella henselae (cat scratch fever) with the spread of the bacteria when flea feces are scratched in to bites or wounds. Flea allergic dermatitis (FAD) common in dogs and cats has been successfully treated and tapeworm infestations prevented with a number of new products being used to control fleas. There has been a continuous development of new products with novel chemistries that have focused on increased convenience and the control of fleas and other arthropod ectoparasites. The possibility of feral animals serving as potential reservoirs for flea infestations has taken on additional importance because of the lack of effective environmental controls in recent years. Physiological insecticide resistance in C. f. felis continues to be of concern, especially because pyrethroid resistance now appears to be more widespread. In spite of their broad use since 1994, there is little evidence that resistance has developed to many of the on-animal or oral treatments such as fipronil, imidacloprid or lufenuron. Reports of the perceived lack of performance of some of the new on-animal therapies have been attributed to compliance issues and their misuse. Consequentially, there is a continuing need for consumer awareness of products registered for cats and dogs and their safety. PMID:29077073

  16. Accelerating Scientific Advancement for Pediatric Rare Lung Disease Research. Report from a National Institutes of Health-NHLBI Workshop, September 3 and 4, 2015.

    Science.gov (United States)

    Young, Lisa R; Trapnell, Bruce C; Mandl, Kenneth D; Swarr, Daniel T; Wambach, Jennifer A; Blaisdell, Carol J

    2016-12-01

    Pediatric rare lung disease (PRLD) is a term that refers to a heterogeneous group of rare disorders in children. In recent years, this field has experienced significant progress marked by scientific discoveries, multicenter and interdisciplinary collaborations, and efforts of patient advocates. Although genetic mechanisms underlie many PRLDs, pathogenesis remains uncertain for many of these disorders. Furthermore, epidemiology and natural history are insufficiently defined, and therapies are limited. To develop strategies to accelerate scientific advancement for PRLD research, the NHLBI of the National Institutes of Health convened a strategic planning workshop on September 3 and 4, 2015. The workshop brought together a group of scientific experts, intramural and extramural investigators, and advocacy groups with the following objectives: (1) to discuss the current state of PRLD research; (2) to identify scientific gaps and barriers to increasing research and improving outcomes for PRLDs; (3) to identify technologies, tools, and reagents that could be leveraged to accelerate advancement of research in this field; and (4) to develop priorities for research aimed at improving patient outcomes and quality of life. This report summarizes the workshop discussion and provides specific recommendations to guide future research in PRLD.

  17. Perspective: Adopting an Asset Bundle Model to Support and Advance Minority Students’ Careers in Academic Medicine and the Scientific Pipeline

    OpenAIRE

    Johnson, Japera; Bozeman, Barry

    2012-01-01

    The authors contend that increasing diversity in the scientific pipeline (e.g., academic medicine, science, technology, engineering and mathematics) requires a systematic approach to retain minority high school and college students. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity continge...

  18. Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    David Bousfield

    2016-02-01

    Full Text Available Data from open access biomolecular data resources, such as the European Nucleotide Archive and the Protein Data Bank are extensively reused within life science research for comparative studies, method development and to derive new scientific insights. Indicators that estimate the extent and utility of such secondary use of research data need to reflect this complex and highly variable data usage. By linking open access scientific literature, via Europe PubMedCentral, to the metadata in biological data resources we separate data citations associated with a deposition statement from citations that capture the subsequent, long-term, reuse of data in academia and industry.  We extend this analysis to begin to investigate citations of biomolecular resources in patent documents. We find citations in more than 8,000 patents from 2014, demonstrating substantial use and an important role for data resources in defining biological concepts in granted patents to both academic and industrial innovators. Combined together our results indicate that the citation patterns in biomedical literature and patents vary, not only due to citation practice but also according to the data resource cited. The results guard against the use of simple metrics such as citation counts and show that indicators of data use must not only take into account citations within the biomedical literature but also include reuse of data in industry and other parts of society by including patents and other scientific and technical documents such as guidelines, reports and grant applications.

  19. West Nile Virus: Using Adapted Primary Literature in Mathematical Biology to Teach Scientific and Mathematical Reasoning in High School

    Science.gov (United States)

    Norris, Stephen P.; Macnab, John S.; Wonham, Marjorie; de Vries, Gerda

    2009-01-01

    This paper promotes the use of adapted primary literature as a curriculum and instruction innovation for use in high school. Adapted primary literature is useful for promoting an understanding of scientific and mathematical reasoning and argument and for introducing modern science into the schools. We describe a prototype adapted from a published…

  20. To What Extent Do Biology Textbooks Contribute to Scientific Literacy? Criteria for Analysing Science-Technology-Society-Environment Issues

    Science.gov (United States)

    Calado, Florbela M.; Scharfenberg, Franz-Josef; Bogner, Franz X.

    2015-01-01

    Our article proposes a set of six criteria for analysing science-technology-society-environment (STSE) issues in regular textbooks as to how they are expected to contribute to students' scientific literacy. We chose genetics and gene technology as fields prolific in STSE issues. We derived our criteria (including 26 sub-criteria) from a literature…

  1. Teaching Evolution at A-Level: Is "Intelligent Design" a Scientific Theory That Merits Inclusion in the Biology Syllabus?

    Science.gov (United States)

    Freeland, Peter

    2013-01-01

    Charles Darwin supposed that evolution involved a process of gradual change, generated randomly, with the selection and retention over many generations of survival-promoting features. Some theists have never accepted this idea. "Intelligent design" is a relatively recent theory, supposedly based on scientific evidence, which attempts to…

  2. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    International Nuclear Information System (INIS)

    Fujiwara, Satoru

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  3. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, Satoru (ed.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  4. Dominant phase-advanced driving analysis of self-sustained oscillations in biological networks

    Science.gov (United States)

    Zheng, Zhi-gang; Qian, Yu

    2018-01-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11475022 and 11675001) and the Scientific Research Funds of Huaqiao University, China (Grant No. 15BS401).

  5. Advances in imaging and electron physics time resolved electron diffraction for chemistry, biology and material science

    CERN Document Server

    Hawkes, Peter W

    2014-01-01

    Advances in Imaging & Electron Physics merges two long-running serials-Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. Contributions from leading authorities Informs and updates on all the latest developments in the field.

  6. Graphical methods and Cold War scientific practice: the Stommel Diagram's intriguing journey from the physical to the biological environmental sciences.

    Science.gov (United States)

    Vance, Tiffany C; Doel, Ronald E

    2010-01-01

    In the last quarter of the twentieth century, an innovative three-dimensional graphical technique was introduced into biological oceanography and ecology, where it spread rapidly. Used to improve scientists' understanding of the importance of scale within oceanic ecosystems, this influential diagram addressed biological scales from phytoplankton to fish, physical scales from diurnal tides to ocean currents, and temporal scales from hours to ice ages. Yet the Stommel Diagram (named for physical oceanographer Henry Stommel, who created it in 1963) had not been devised to aid ecological investigations. Rather, Stommel intended it to help plan large-scale research programs in physical oceanography, particularly as Cold War research funding enabled a dramatic expansion of physical oceanography in the 1960s. Marine ecologists utilized the Stommel Diagram to enhance research on biological production in ocean environments, a key concern by the 1970s amid growing alarm about overfishing and ocean pollution. Before the end of the twentieth century, the diagram had become a significant tool within the discipline of ecology. Tracing the path that Stommel's graphical techniques traveled from the physical to the biological environmental sciences reveals a great deal about practices in these distinct research communities and their relative professional and institutional standings in the Cold War era. Crucial to appreciating the course of that path is an understanding of the divergent intellectual and social contexts of the physical versus the biological environmental sciences.

  7. Proceedings of the Scientific Meeting on Application of Isotopes and Radiation, Book I, Agricultural, Animal and Biology

    International Nuclear Information System (INIS)

    Suhadi, F.; Sisworo, E.L.; Maha, M.; Ismachin, M.; Hilmy, N.; Sumatra, M.; Mugiono; Wandowo; Soebianto, Y.S

    1998-01-01

    The aim of the 10 t h Meeting of the Isotope and Radiation Application is to disseminate the result of research on application of nuclear techniques on agriculture, animal, biology, chemistry, environment, radiation process and industry. The meeting was held in Jakarta, 18-19 February 1998, and there were 6 invited papers and 52 papers indexed individually. This proceeding is divided by two volumes. Volume I and volume II consists of agriculture, animal, biology and chemistry, environment, radiation process and industry, respectively.(ID)

  8. Chernobylsk 20 years later: situation, lessons, and scientific advances; Tchernobyl 20 ans apres: bilan, lecons et avancees scientifiques

    Energy Technology Data Exchange (ETDEWEB)

    Colas-Linhart, N. [Faculte X. Bichat, 75 - Paris (France); Guiraud-Vitaux, F.; Elbast, M.; Petiet, A

    2006-07-15

    The first part of this scientific day was devoted to the real consequences of the Chernobylsk accident in Ukraine, Bielorussia and also in Belgium and France. The second part of the day has been devoted to the knowledge learnt from this event and last scientific works. The Chernobylsk accident has provoked new research programmes in radiation protection, radiobiology, oncology and led a new interest for health problems such iodine deficiency. The whole of abstracts are at disposal at the mail address quoted in tag 610. (N.C.)

  9. How to Generate Understanding of the Scientific Process in Introductory Biology: A Student-Designed Laboratory Exercise on Yeast Fermentation

    Science.gov (United States)

    Collins, Linda T.; Bell, Rebekah P.

    2004-01-01

    Heavy faculty teaching loads and limited funds biology teachers designed certain objectives in order to increase the understandability of the subject matter of the laboratory exercises they write. In relation to these objectives an old "cookbook" laboratory exercise on yeast fermentation is introduced which involve students asking questions,…

  10. Open-Source Integrated Design-Analysis Environment For Nuclear Energy Advanced Modeling & Simulation Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, Patrick [Kitware, Inc., Clifton Park, NY (United States)

    2017-01-30

    The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energy advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.

  11. Advancing public participation in scientific research: A framework for leveraging public participation in environmental health and emergency response research

    Science.gov (United States)

    This research paper uses case analysis methods to understand why participants engage in this innovative approach public participation in scientific research, and what they hope that will mean for their community. The research questions that guide this analysis are: 1) what factor...

  12. Advanced imaging techniques III: a scalable and modular dome illumination system for scientific microphotography on a budget

    Science.gov (United States)

    A scalable and modular LED illumination dome for microscopic scientific photography is described and illustrated, and methods for constructing such a dome are detailed. Dome illumination for insect specimens has become standard practice across the field of insect systematics, but many dome designs ...

  13. Role of personality in scientific advancement (dedicated to the eightieth anniversary of the birth of Lev G. Gassanov

    Directory of Open Access Journals (Sweden)

    Glushechenko E. M.

    2016-05-01

    Full Text Available The article is dedicated to Lev G. Gassanov who between 1974 and 1991 headed the "Saturn" Research Institute. Lev Gassanov was an outstanding personality, a talented leader, organizer and scholar, author of many books, scientific works and inventions, he founded a national school for the creation of a broad range of micropower electronics devices and systems.

  14. Advanced Russian Mission Laplace-P to Study the Planetary System of Jupiter: Scientific Goals, Objectives, Special Features and Mission Profile

    Science.gov (United States)

    Martynov, M. B.; Merkulov, P. V.; Lomakin, I. V.; Vyatlev, P. A.; Simonov, A. V.; Leun, E. V.; Barabanov, A. A.; Nasyrov, A. F.

    2017-12-01

    The advanced Russian project Laplace-P is aimed at developing and launching two scientific spacecraft (SC)— Laplace-P1 ( LP1 SC) and Laplace-P2 ( LP2 SC)—designed for remote and in-situ studies of the system of Jupiter and its moon Ganymede. The LP1 and LP2 spacecraft carry an orbiter and a lander onboard, respectively. One of the orbiter's objectives is to map the surface of Ganymede from the artificial satellite's orbit and to acquire the data for the landing site selection. The main objective of the lander is to carry out in-situ investigations of Ganymede's surface. The paper describes the scientific goals and objectives of the mission, its special features, and the LP1 and LP2 mission profiles during all of the phases—from the launch to the landing on the surface of Ganymede.

  15. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on Composting and incineration of dead-on-farm pigs

    DEFF Research Database (Denmark)

    Hald, Tine

    of biological hazards throughout the farm environment. Major deficiencies were noted in relation to the risk containment. Moreover, a formal HACCP plan was not provided, and some deficiencies were also noted in the identification of interdependent processes. Provided that the deficiencies identified......A method for on-farm processing of Category (Cat) 2 Animal By-Products (ABP) alternative to the ones already approved in the current legislation was assessed. The materials to be treated are placentas and dead-on-farm pigs. The proposed process consists of three sequential steps, i.e. composting......, storage of mature compost and incineration of mature compost in authorized plants. The applicant identified the main biological, physical and chemical hazards that could be present in the material to be treated and in the compost substrate. Since the compost is only intended for incineration the applicant...

  16. Two-Dimensional Spectroscopy Is Being Used to Address Core Scientific Questions in Biology and Materials Science.

    Science.gov (United States)

    Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T

    2018-02-15

    Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.

  17. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  18. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2016-01-01

    Full Text Available In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a “sixth” mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  19. Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.

    Science.gov (United States)

    Khan, Suliman; Nabi, Ghulam; Ullah, Muhammad Wajid; Yousaf, Muhammad; Manan, Sehrish; Siddique, Rabeea; Hou, Hongwei

    2016-01-01

    In the recent era, due to tremendous advancement in industrialization, pollution and other anthropogenic activities have created a serious scenario for biota survival. It has been reported that present biota is entering a "sixth" mass extinction, because of chronic exposure to anthropogenic activities. Various ex situ and in situ measures have been adopted for conservation of threatened and endangered plants and animal species; however, these have been limited due to various discrepancies associated with them. Current advancement in molecular technologies, especially, genomics, is playing a very crucial role in biodiversity conservation. Advance genomics helps in identifying the segments of genome responsible for adaptation. It can also improve our understanding about microevolution through a better understanding of selection, mutation, assertive matting, and recombination. Advance genomics helps in identifying genes that are essential for fitness and ultimately for developing modern and fast monitoring tools for endangered biodiversity. This review article focuses on the applications of advanced genomics mainly demographic, adaptive genetic variations, inbreeding, hybridization and introgression, and disease susceptibilities, in the conservation of threatened biota. In short, it provides the fundamentals for novice readers and advancement in genomics for the experts working for the conservation of endangered plant and animal species.

  20. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  2. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David

    2017-08-23

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  3. Guidelines for Developing Successful Short Advanced Courses in Systems Medicine and Systems Biology

    KAUST Repository

    Gomez-Cabrero, David; Marabita, Francesco; Tarazona, Sonia; Cano, Isaac; Roca, Josep; Conesa, Ana; Sabatier, Philippe; Tegner, Jesper

    2017-01-01

    Summary Systems medicine and systems biology have inherent educational challenges. These have largely been addressed either by providing new masters programs or by redesigning undergraduate programs. In contrast, short courses can respond to a different need: they can provide condensed updates for professionals across academia, the clinic, and industry. These courses have received less attention. Here, we share our experiences in developing and providing such courses to current and future leaders in systems biology and systems medicine. We present guidelines for how to reproduce our courses, and we offer suggestions for how to select students who will nurture an interdisciplinary learning environment and thrive there.

  4. Biological Activation of Inert Ceramics: Recent Advances Using Tailored Self-Assembled Monolayers on Implant Ceramic Surfaces

    Science.gov (United States)

    Böke, Frederik; Schickle, Karolina; Fischer, Horst

    2014-01-01

    High-strength ceramics as materials for medical implants have a long, research-intensive history. Yet, especially on applications where the ceramic components are in direct contact with the surrounding tissue, an unresolved issue is its inherent property of biological inertness. To combat this, several strategies have been investigated over the last couple of years. One promising approach investigates the technique of Self-Assembled Monolayers (SAM) and subsequent chemical functionalization to create a biologically active tissue-facing surface layer. Implementation of this would have a beneficial impact on several fields in modern implant medicine such as hip and knee arthroplasty, dental applications and related fields. This review aims to give a summarizing overview of the latest advances in this recently emerging field, along with thorough introductions of the underlying mechanism of SAMs and surface cell attachment mechanics on the cell side. PMID:28788687

  5. 'The Relation of Biology to Astronomy' and Theology: Panspermia and Panentheism; Revolutionary Convergences Advanced by Fred Hoyle and Chandra Wickramasinghe

    Science.gov (United States)

    Walker, Theodore, Jr.

    2012-06-01

    In contrast to the Copernican revolution in astro-geometry, the Hoyle-Wickramasinghe contribution to the recent and continuing revolution in astrobiology - "cometary panspermia" - features astronomy and biology converging toward theology. They employed astro-biotic reasoning (often labeled "anthropic" reasoning) to demonstrate that life is made possible by the deliberate controlling influence of the living all-embracing "intelligent universe." This is consistent with panentheism [pan-en-theos-ism, not pantheism]. As advanced by Hoyle and Wickramasinghe, cometary panspermia is panentheistic. Also, neoclassical panentheism requires generic panspermia, and favors cometary panspermia.

  6. The superconducting high-resolution soft X-ray spectrometer at the advanced biological and environmental X-ray facility

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, S. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States)], E-mail: Friedrich1@llnl.gov; Drury, O.B. [Advanced Detector Group, Lawrence Livermore National Laboratory, 7000 East Avenue, L-188, Livermore, CA 94550 (United States); Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States); George, S.J. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Cramer, S.P. [Advanced Biological and Environmental X-ray Facility, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 6-2100, Berkeley, CA 94720 (United States); Biophysics Group, University of California, 1 Shields Avenue, EU-III, Davis, CA 95616 (United States)

    2007-11-11

    We have built a 36-pixel superconducting tunnel junction X-ray spectrometer for chemical analysis of dilute samples in the soft X-ray band. It offers an energy resolution of {approx}10-20 eV FWHM below 1 keV, a solid angle coverage of {approx}10{sup -3}, and can be operated at total rates of up to {approx}10{sup 6} counts/s. Here, we describe the spectrometer performance in speciation measurements by fluorescence-detected X-ray absorption spectroscopy at the Advanced Biological and Environmental X-ray facility at the ALS synchrotron.

  7. Advancements in mass spectrometry for biological samples: Protein chemical cross-linking and metabolite analysis of plant tissues

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Adam [Iowa State Univ., Ames, IA (United States)

    2015-01-01

    This thesis presents work on advancements and applications of methodology for the analysis of biological samples using mass spectrometry. Included in this work are improvements to chemical cross-linking mass spectrometry (CXMS) for the study of protein structures and mass spectrometry imaging and quantitative analysis to study plant metabolites. Applications include using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to further explore metabolic heterogeneity in plant tissues and chemical interactions at the interface between plants and pests. Additional work was focused on developing liquid chromatography-mass spectrometry (LC-MS) methods to investigate metabolites associated with plant-pest interactions.

  8. Advanced biological treatment of aqueous effluent from the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Pitt, W.W. Jr.; Hancher, C.W.; Patton, B.D.; Shumate, S.E. II.

    1979-01-01

    Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods are presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. However, a strong case is made for the use of biological processes for removing nitrates and heavy metals fron nuclear fuel cycle effluents. The estimated costs for these methods are as low as, or lower than, those for alternate processes. In addition, the resulting disposal products - nitrogen gas, CO 2 , and heavy metals incorporated into microorganisms - are much more ecologically desirable than the end products of other waste treatment methods

  9. Antiretroviral drug regimens to prevent mother-to-child transmission of HIV: a review of scientific, program, and policy advances for sub-Saharan Africa.

    Science.gov (United States)

    Chi, Benjamin H; Stringer, Jeffrey S A; Moodley, Dhayendre

    2013-06-01

    Considerable advances have been made in the effort to prevent mother-to-child HIV transmission (PMTCT) in sub-Saharan Africa. Clinical trials have demonstrated the efficacy of antiretroviral regimens to interrupt HIV transmission through the antenatal, intrapartum, and postnatal periods. Scientific discoveries have been rapidly translated into health policy, bolstered by substantial investment in health infrastructure capable of delivering increasingly complex services. A new scientific agenda is also emerging, one that is focused on the challenges of effective and sustainable program implementation. Finally, global campaigns to "virtually eliminate" pediatric HIV and dramatically reduce HIV-related maternal mortality have mobilized new resources and renewed political will. Each of these developments marks a major step in regional PMTCT efforts; their convergence signals a time of rapid progress in the field, characterized by an increased interdependency between clinical research, program implementation, and policy. In this review, we take stock of recent advances across each of these areas, highlighting the challenges--and opportunities--of improving health services for HIV-infected mothers and their children across the region.

  10. Microbial Dark Matter Investigations: How Microbial Studies Transform Biological Knowledge and Empirically Sketch a Logic of Scientific Discovery

    Science.gov (United States)

    Bernard, Guillaume; Pathmanathan, Jananan S; Lannes, Romain; Lopez, Philippe; Bapteste, Eric

    2018-01-01

    Abstract Microbes are the oldest and most widespread, phylogenetically and metabolically diverse life forms on Earth. However, they have been discovered only 334 years ago, and their diversity started to become seriously investigated even later. For these reasons, microbial studies that unveil novel microbial lineages and processes affecting or involving microbes deeply (and repeatedly) transform knowledge in biology. Considering the quantitative prevalence of taxonomically and functionally unassigned sequences in environmental genomics data sets, and that of uncultured microbes on the planet, we propose that unraveling the microbial dark matter should be identified as a central priority for biologists. Based on former empirical findings of microbial studies, we sketch a logic of discovery with the potential to further highlight the microbial unknowns. PMID:29420719

  11. ppropriation of scientific discourse by protestant biology students: the contribution of Bakhtin's language theory to educational research and culture

    Directory of Open Access Journals (Sweden)

    Claudia Sepulveda

    2006-03-01

    Full Text Available Studies about the relations between classroom discourse interactions and processes of teaching and learning show that science learning is related to a process structured by speech genres and ways of establishing semantic links between events, objects, and people. Accordingly, it has been emphasized that science education research needs to incorporate theories and methods developed for the interpretative analysis of discourse. This paper shows the heuristic power that an interpretative analysis of discourse based on Bakhtin’s theory of language can have in the investigation of meaning making in science education in multicultural contexts. With this purpose, we discuss here results obtained in the analysis of the discourse about “nature” or “natural world” of protestant Biology preservice teachers of a Brazilian university, produced in the context of semi-structured interviews.

  12. Perspective: adopting an asset bundles model to support and advance minority students' careers in academic medicine and the scientific pipeline.

    Science.gov (United States)

    Johnson, Japera; Bozeman, Barry

    2012-11-01

    The authors contend that increasing diversity in academic medicine, science, technology, engineering, and mathematics requires the adoption of a systematic approach to retain minority high school and college students as they navigate the scientific pipeline. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support to continue toward careers in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, socioeconomic status). The authors define "asset bundles" as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach.

  13. Perspective: Adopting an Asset Bundle Model to Support and Advance Minority Students’ Careers in Academic Medicine and the Scientific Pipeline

    Science.gov (United States)

    Johnson, Japera; Bozeman, Barry

    2012-01-01

    The authors contend that increasing diversity in the scientific pipeline (e.g., academic medicine, science, technology, engineering and mathematics) requires a systematic approach to retain minority high school and college students. Such an approach should focus on the interrelated and multilayered challenges that these students face. The authors fuse an alternative conceptualization of the scientific and technical human capital theoretical framework and the theory of social identity contingencies to offer a conceptual model for targeting the critical areas in which minority students may need additional support in order to continue toward a career in science. Their proposed asset bundles model is grounded in the central premise that making greater progress in recruiting and retaining minorities likely requires institutions to respond simultaneously to various social cues that signal devaluation of certain identities (e.g., gender, race, or socioeconomic status). The authors define “asset bundles” as the specific sets of abilities and resources individuals develop that help them succeed in educational and professional tasks, including but not limited to science and research. The model consists of five asset bundles, each of which is supported in the research literature as a factor relevant to educational achievement and, the authors contend, may lead to improved and sustained diversity: educational endowments, science socialization, network development, family expectations, and material resources. Using this framework, they suggest possible ways of thinking about the task of achieving diversity as well as guideposts for next steps. Finally, they discuss the feasibility of implementing such an approach. PMID:23018329

  14. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    Science.gov (United States)

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. WWW: The Scientific Method

    Science.gov (United States)

    Blystone, Robert V.; Blodgett, Kevin

    2006-01-01

    The scientific method is the principal methodology by which biological knowledge is gained and disseminated. As fundamental as the scientific method may be, its historical development is poorly understood, its definition is variable, and its deployment is uneven. Scientific progress may occur without the strictures imposed by the formal…

  16. Towards a scientific concept of free will as a biological trait: spontaneous actions and decision-making in invertebrates.

    Science.gov (United States)

    Brembs, Björn

    2011-03-22

    Until the advent of modern neuroscience, free will used to be a theological and a metaphysical concept, debated with little reference to brain function. Today, with ever increasing understanding of neurons, circuits and cognition, this concept has become outdated and any metaphysical account of free will is rightfully rejected. The consequence is not, however, that we become mindless automata responding predictably to external stimuli. On the contrary, accumulating evidence also from brains much smaller than ours points towards a general organization of brain function that incorporates flexible decision-making on the basis of complex computations negotiating internal and external processing. The adaptive value of such an organization consists of being unpredictable for competitors, prey or predators, as well as being able to explore the hidden resource deterministic automats would never find. At the same time, this organization allows all animals to respond efficiently with tried-and-tested behaviours to predictable and reliable stimuli. As has been the case so many times in the history of neuroscience, invertebrate model systems are spearheading these research efforts. This comparatively recent evidence indicates that one common ability of most if not all brains is to choose among different behavioural options even in the absence of differences in the environment and perform genuinely novel acts. Therefore, it seems a reasonable effort for any neurobiologist to join and support a rather illustrious list of scholars who are trying to wrestle the term 'free will' from its metaphysical ancestry. The goal is to arrive at a scientific concept of free will, starting from these recently discovered processes with a strong emphasis on the neurobiological mechanisms underlying them.

  17. Recent advances in modeling languages for pathway maps and computable biological networks.

    Science.gov (United States)

    Slater, Ted

    2014-02-01

    As our theories of systems biology grow more sophisticated, the models we use to represent them become larger and more complex. Languages necessarily have the expressivity and flexibility required to represent these models in ways that support high-resolution annotation, and provide for simulation and analysis that are sophisticated enough to allow researchers to master their data in the proper context. These languages also need to facilitate model sharing and collaboration, which is currently best done by using uniform data structures (such as graphs) and language standards. In this brief review, we discuss three of the most recent systems biology modeling languages to appear: BEL, PySB and BCML, and examine how they meet these needs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Development of biological criteria for the design of advanced hydropower turbines

    Energy Technology Data Exchange (ETDEWEB)

    Cada, Glenn F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Coutant, Charles C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Whitney, Richard R. [Leavenworth, WA (United States)

    1997-03-01

    A review of the literature related to turbine-passage injury mechanisms suggests the following biological criteria should be considered in the design of new turbines: (1) pressure; (2) cavitation; (3) shear and turbulence; and (4) mechanical injury. Based on the study’s review of fish behavior in relation to hydropower facilities, it provides a number of recommendations to guide both turbine design and additional research.

  19. Trichoderma-plant-pathogen interactions: advances in genetics of biological control.

    Science.gov (United States)

    Mukherjee, Mala; Mukherjee, Prasun K; Horwitz, Benjamin A; Zachow, Christin; Berg, Gabriele; Zeilinger, Susanne

    2012-12-01

    Trichoderma spp. are widely used in agriculture as biofungicides. Induction of plant defense and mycoparasitism (killing of one fungus by another) are considered to be the most important mechanisms of Trichoderma-mediated biological control. Understanding these mechanisms at the molecular level would help in developing strains with superior biocontrol properties. In this article, we review our current understanding of the genetics of interactions of Trichoderma with plants and plant pathogens.

  20. Assessing the application of advanced oxidation processes, and their combination with biological treatment, to effluents from pulp and paper industry.

    Science.gov (United States)

    Merayo, Noemí; Hermosilla, Daphne; Blanco, Laura; Cortijo, Luis; Blanco, Angeles

    2013-11-15

    The closure of water circuits within pulp and paper mills has resulted in a higher contamination load of the final mill effluent, which must consequently be further treated in many cases to meet the standards imposed by the legislation in force. Different treatment strategies based on advanced oxidation processes (ozonation and TiO2-photocatalysis), and their combination with biological treatment (MBR), are herein assessed for effluents of a recycled paper mill and a kraft pulp mill. Ozone treatment achieved the highest efficiency of all. The consumption of 2.4 g O3 L(-1) resulted in about a 60% COD reduction treating the effluent from the kraft pulp mill at an initial pH=7; although it only reached about a 35% COD removal for the effluent of the recycled paper mill. Otherwise, photocatalysis achieved about a 20-30% reduction of the COD for both type of effluents. In addition, the effluent from the recycled paper mill showed a higher biodegradability, so combinations of these AOPs with biological treatment were tested. As a result, photocatalysis did not report any significant COD reduction improvement whether being performed as pre- or post-treatment of the biological process; whereas the use of ozonation as post-biological treatment enhanced COD removal a further 10%, summing up a total 90% reduction of the COD for the combined treatment, as well as it also supposed an increase of the presence of volatile fatty acids, which might ultimately enable the resultant wastewater to be recirculated back to further biological treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Advances in the use of biologic agents for the treatment of systemic vasculitis

    Science.gov (United States)

    Chung, Sharon A.; Seo, Philip

    2010-01-01

    Purpose of review Due to the well-known toxicities of cyclophosphamide, substantial interest exists in finding other therapies to treat primary systemic vasculitis. Biologic agents have been proposed as an alternative to cyclophosphamide for these disorders because of their recent success in treating other rheumatic diseases. This article reviews the current state-of-the-art with regards to the use of biologic agents as a treatment for systemic vasculitis. Recent findings The greatest amount of experience with these agents for the treatment of systemic vasculitis is with anti-tumor necrosis factor agents, pooled intravenous immunoglobulin, and anti-B cell therapies such as rituximab. Intravenous immunoglobulin is already a standard therapy for Kawasaki's disease, but should also be considered for the treatment of ANCA-associated vasculitis when standard therapies are either ineffective or contraindicated. Early experience with tumor necrosis factor inhibitors indicates that they may be effective for the treatment of Takayasu's arteritis, but their role in the treatment of other forms of vasculitis remains controversial. Early experience with rituximab for the treatment of several forms of vasculitis has been quite promising, but must be confirmed by ongoing randomized clinical trials. Summary Biologic agents represent the next evolution in treatment for the primary systemic vasculitides. Greater understanding of these diseases has allowed use to move further away from non-specific, highly toxic therapies towards a more directed approach. As our experience with these agents increases, they will likely form the keystone of treatment in the near future. PMID:19077713

  2. Advancing vector biology research: a community survey for future directions, research applications and infrastructure requirements

    Science.gov (United States)

    Kohl, Alain; Pondeville, Emilie; Schnettler, Esther; Crisanti, Andrea; Supparo, Clelia; Christophides, George K.; Kersey, Paul J.; Maslen, Gareth L.; Takken, Willem; Koenraadt, Constantianus J. M.; Oliva, Clelia F.; Busquets, Núria; Abad, F. Xavier; Failloux, Anna-Bella; Levashina, Elena A.; Wilson, Anthony J.; Veronesi, Eva; Pichard, Maëlle; Arnaud Marsh, Sarah; Simard, Frédéric; Vernick, Kenneth D.

    2016-01-01

    Vector-borne pathogens impact public health, animal production, and animal welfare. Research on arthropod vectors such as mosquitoes, ticks, sandflies, and midges which transmit pathogens to humans and economically important animals is crucial for development of new control measures that target transmission by the vector. While insecticides are an important part of this arsenal, appearance of resistance mechanisms is increasingly common. Novel tools for genetic manipulation of vectors, use of Wolbachia endosymbiotic bacteria, and other biological control mechanisms to prevent pathogen transmission have led to promising new intervention strategies, adding to strong interest in vector biology and genetics as well as vector–pathogen interactions. Vector research is therefore at a crucial juncture, and strategic decisions on future research directions and research infrastructure investment should be informed by the research community. A survey initiated by the European Horizon 2020 INFRAVEC-2 consortium set out to canvass priorities in the vector biology research community and to determine key activities that are needed for researchers to efficiently study vectors, vector-pathogen interactions, as well as access the structures and services that allow such activities to be carried out. We summarize the most important findings of the survey which in particular reflect the priorities of researchers in European countries, and which will be of use to stakeholders that include researchers, government, and research organizations. PMID:27677378

  3. The Biological Function and Clinical Utilization of CD147 in Human Diseases: A Review of the Current Scientific Literature

    Science.gov (United States)

    Xiong, Lijuan; Edwards, Carl K.; Zhou, Lijun

    2014-01-01

    CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs) and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC) and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies. PMID:25268615

  4. The Biological Function and Clinical Utilization of CD147 in Human Diseases: A Review of the Current Scientific Literature

    Directory of Open Access Journals (Sweden)

    Lijuan Xiong

    2014-09-01

    Full Text Available CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies.

  5. Advancing haematopoietic stem and progenitor cell biology through single-cell profiling

    OpenAIRE

    Hamey, Fiona; Nestorowa, Sonia; Wilson, Nicola Kaye; Göttgens, Berthold

    2016-01-01

    Haematopoietic stem and progenitor cells (HSPCs) sit at the top of the haematopoietic hierarchy, and their fate choices need to be carefully controlled to ensure balanced production of all mature blood cell types. As cell fate decisions are made at the level of the individual cells, recent technological advances in measuring gene and protein expression in increasingly large numbers of single cells have been rapidly adopted to study both normal and pathological HSPC function. In this review we...

  6. Advanced models of neural networks nonlinear dynamics and stochasticity in biological neurons

    CERN Document Server

    Rigatos, Gerasimos G

    2015-01-01

    This book provides a complete study on neural structures exhibiting nonlinear and stochastic dynamics, elaborating on neural dynamics by introducing advanced models of neural networks. It overviews the main findings in the modelling of neural dynamics in terms of electrical circuits and examines their stability properties with the use of dynamical systems theory. It is suitable for researchers and postgraduate students engaged with neural networks and dynamical systems theory.

  7. Recent advances in mass spectrometry-based approaches for proteomics and biologics: Great contribution for developing therapeutic antibodies.

    Science.gov (United States)

    Iwamoto, Noriko; Shimada, Takashi

    2018-05-01

    Since the turn of the century, mass spectrometry (MS) technologies have continued to improve dramatically, and advanced strategies that were impossible a decade ago are increasingly becoming available. The basic characteristics behind these advancements are MS resolution, quantitative accuracy, and information science for appropriate data processing. The spectral data from MS contain various types of information. The benefits of improving the resolution of MS data include accurate molecular structural-derived information, and as a result, we can obtain a refined biomolecular structure determination in a sequential and large-scale manner. Moreover, in MS data, not only accurate structural information but also the generated ion amount plays an important rule. This progress has greatly contributed a research field that captures biological events as a system by comprehensively tracing the various changes in biomolecular dynamics. The sequential changes of proteome expression in biological pathways are very essential, and the amounts of the changes often directly become the targets of drug discovery or indicators of clinical efficacy. To take this proteomic approach, it is necessary to separate the individual MS spectra derived from each biomolecule in the complexed biological samples. MS itself is not so infinite to perform the all peak separation, and we should consider improving the methods for sample processing and purification to make them suitable for injection into MS. The above-described characteristics can only be achieved using MS with any analytical instrument. Moreover, MS is expected to be applied and expand into many fields, not only basic life sciences but also forensic medicine, plant sciences, materials, and natural products. In this review, we focus on the technical fundamentals and future aspects of the strategies for accurate structural identification, structure-indicated quantitation, and on the challenges for pharmacokinetics of high

  8. Gene expression-based biological test for major depressive disorder: an advanced study

    Directory of Open Access Journals (Sweden)

    Watanabe S

    2017-02-01

    Full Text Available Shin-ya Watanabe,1 Shusuke Numata,1 Jun-ichi Iga,2 Makoto Kinoshita,1 Hidehiro Umehara,1 Kazuo Ishii,3 Tetsuro Ohmori1 1Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 2Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Ehime, 3Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan Purpose: Recently, we could distinguished patients with major depressive disorder (MDD from nonpsychiatric controls with high accuracy using a panel of five gene expression markers (ARHGAP24, HDAC5, PDGFC, PRNP, and SLC6A4 in leukocyte. In the present study, we examined whether this biological test is able to discriminate patients with MDD from those without MDD, including those with schizophrenia and bipolar disorder.Patients and methods: We measured messenger ribonucleic acid expression levels of the aforementioned five genes in peripheral leukocytes in 17 patients with schizophrenia and 36 patients with bipolar disorder using quantitative real-time polymerase chain reaction (PCR, and we combined these expression data with our previous expression data of 25 patients with MDD and 25 controls. Subsequently, a linear discriminant function was developed for use in discriminating between patients with MDD and without MDD.Results: This expression panel was able to segregate patients with MDD from those without MDD with a sensitivity and specificity of 64% and 67.9%, respectively.Conclusion: Further research to identify MDD-specific markers is needed to improve the performance of this biological test. Keywords: depressive disorder, biomarker, gene expression, schizophrenia, bipolar disorder

  9. Economic Benefits of Advanced Control Strategies in Biological Nutrient Removal Systems

    DEFF Research Database (Denmark)

    Carstensen, J.; Nielsen, M.K.; Harremoës, Poul

    1994-01-01

    little regards to the variations in load and biomass activity. However, these dynamics can be evaluated on-line using grey box models to describe the most important features of the hydraulic and biological processes. Simulation studies of plants with an alternating process have shown that control...... strategies incorporating information from the grey box models are capable of reducing the total nitrogen discharge as well as energy costs. These results have a major impact on both existing and future plants. In fact, it is expected that future plants can be reduced with 10-20 per cent in size...

  10. The laminated layer: Recent advances and insights into Echinococcus biology and evolution.

    Science.gov (United States)

    Díaz, Álvaro; Fernández, Cecilia; Pittini, Álvaro; Seoane, Paula I; Allen, Judith E; Casaravilla, Cecilia

    2015-11-01

    The laminated layer is the unique mucin-based extracellular matrix that protects Echinococcus larvae, and thus to an important extent, shapes host-parasite relationships in the larval echinococcoses. In 2011, we published twin reviews summarizing what was known about this structure. Since then, important advances have been made. Complete genomes and some RNAseq data are now available for E. multilocularis and E. granulosus, leading to the inference that the E. multilocularis LL is probably formed by a single type of mucin backbone, while a second apomucin subfamily additionally contributes to the E. granulosus LL. Previously suspected differences between E. granulosus and E. multilocularis in mucin glycan size have been confirmed and pinned down to the virtual absence of Galβ1-3 chains in E. multilocularis. The LL carbohydrates from both species have been found to interact selectively with the Kupffer cell receptor expressed in rodent liver macrophages, highlighting the ancestral adaptations to rodents as intermediate hosts and to the liver as infection site. Finally, LL particles have been shown to possess carbohydrate-independent mechanisms profoundly conditioning non-liver-specific dendritic cells and macrophages. These advances are discussed in an integrated way, and in the context of the newly determined phylogeny of Echinococcus and its taenid relatives. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  12. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  13. Final LDRD report : development of advanced UV light emitters and biological agent detection strategies.

    Energy Technology Data Exchange (ETDEWEB)

    Figiel, Jeffrey James; Crawford, Mary Hagerott; Banas, Michael Anthony; Farrow, Darcie; Armstrong, Andrew M.; Serkland, Darwin Keith; Allerman, Andrew Alan; Schmitt, Randal L.

    2007-12-01

    We present the results of a three year LDRD project which has focused on the development of novel, compact, ultraviolet solid-state sources and fluorescence-based sensing platforms that apply such devices to the sensing of biological and nuclear materials. We describe our development of 270-280 nm AlGaN-based semiconductor UV LEDs with performance suitable for evaluation in biosensor platforms as well as our development efforts towards the realization of a 340 nm AlGaN-based laser diode technology. We further review our sensor development efforts, including evaluation of the efficacy of using modulated LED excitation and phase sensitive detection techniques for fluorescence detection of bio molecules and uranyl-containing compounds.

  14. An Advanced Environment for Hybrid Modeling of Biological Systems Based on Modelica

    Directory of Open Access Journals (Sweden)

    Proß Sabrina

    2011-03-01

    Full Text Available Biological systems are often very complex so that an appropriate formalism is needed for modeling their behavior. Hybrid Petri Nets, consisting of time-discrete Petri Net elements as well as continuous ones, have proven to be ideal for this task. Therefore, a new Petri Net library was implemented based on the object-oriented modeling language Modelica which allows the modeling of discrete, stochastic and continuous Petri Net elements by differential, algebraic and discrete equations. An appropriate Modelica-tool performs the hybrid simulation with discrete events and the solution of continuous differential equations. A special sub-library contains so-called wrappers for specific reactions to simplify the modeling process.

  15. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  16. Protein Science by DNA Sequencing: How Advances in Molecular Biology Are Accelerating Biochemistry.

    Science.gov (United States)

    Higgins, Sean A; Savage, David F

    2018-01-09

    A fundamental goal of protein biochemistry is to determine the sequence-function relationship, but the vastness of sequence space makes comprehensive evaluation of this landscape difficult. However, advances in DNA synthesis and sequencing now allow researchers to assess the functional impact of every single mutation in many proteins, but challenges remain in library construction and the development of general assays applicable to a diverse range of protein functions. This Perspective briefly outlines the technical innovations in DNA manipulation that allow massively parallel protein biochemistry and then summarizes the methods currently available for library construction and the functional assays of protein variants. Areas in need of future innovation are highlighted with a particular focus on assay development and the use of computational analysis with machine learning to effectively traverse the sequence-function landscape. Finally, applications in the fundamentals of protein biochemistry, disease prediction, and protein engineering are presented.

  17. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology.

    Science.gov (United States)

    Bindocci, Erika; Savtchouk, Iaroslav; Liaudet, Nicolas; Becker, Denise; Carriero, Giovanni; Volterra, Andrea

    2017-05-19

    Astrocyte communication is typically studied by two-dimensional calcium ion (Ca 2+ ) imaging, but this method has not yielded conclusive data on the role of astrocytes in synaptic and vascular function. We developed a three-dimensional two-photon imaging approach and studied Ca 2+ dynamics in entire astrocyte volumes, including during axon-astrocyte interactions. In both awake mice and brain slices, we found that Ca 2+ activity in an individual astrocyte is scattered throughout the cell, largely compartmented between regions, preponderantly local within regions, and heterogeneously distributed regionally and locally. Processes and endfeet displayed frequent fast activity, whereas the soma was infrequently active. In awake mice, activity was higher than in brain slices, particularly in endfeet and processes, and displayed occasional multifocal cellwide events. Astrocytes responded locally to minimal axonal firing with time-correlated Ca 2+ spots. Copyright © 2017, American Association for the Advancement of Science.

  18. New concepts in anaerobic digestion processes: recent advances and biological aspects.

    Science.gov (United States)

    Castellano-Hinojosa, Antonio; Armato, Caterina; Pozo, Clementina; González-Martínez, Alejandro; González-López, Jesús

    2018-06-01

    Waste treatment and the simultaneous production of energy have gained great interest in the world. In the last decades, scientific efforts have focused largely on improving and developing sustainable bioprocess solutions for energy recovery from challenging waste. Anaerobic digestion (AD) has been developed as a low-cost organic waste treatment technology with a simple setup and relatively limited investment and operating costs. Different technologies such as one-stage and two-stage AD have been developed. The viability and performance of these technologies have been extensively reported, showing the supremacy of two-stage AD in terms of overall energy recovery from biomass under different substrates, temperatures, and pH conditions. However, a comprehensive review of the advantages and disadvantages of these technologies is still lacking. Since microbial ecology is critical to developing successful AD, many studies have shown the structure and dynamics of archaeal and bacterial communities in this type of system. However, the role of Eukarya groups remains largely unknown to date. In this review, we provide a comprehensive review of the role, abundance, dynamics, and structure of archaeal, bacterial, and eukaryal communities during the AD process. The information provided could help researchers to select the adequate operational parameters to obtain the best performance and biogas production results.

  19. Hereditary effects of radiation: new advances from the Scientific annex of UNSCEAR 2001 Report to the General Assembly

    International Nuclear Information System (INIS)

    Dubner, Diana L.

    2001-01-01

    The paper presents an overview of the advances in the estimation of the genetic risks of exposure to ionizing radiation. Insights gained into the molecular aspects of naturally occurring human genetic diseases, used together with mouse-data on radiation-induced mutations are allowing the framework for risk estimation to be restructured. The five important changes that are introduced include: revision of the baseline frequency of Mendelian diseases; the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for Doubling Dose (DD) calculation; the development of the Mutation Component (MC) concept for predicting the impact of an increase in mutation rate on disease frequency for the different classes of genetic diseases; the introduction in the risk equation of the Potential Recoverability Correction Factor ( PRCF ) to bridge the gap between the rates of induced mutations determined in mouse studies and the risks of inducible genetic diseases in human live birth; the introduction of the concept that radiation-induced genetic damage in humans is more likely to be manifest as multisystem developmental abnormalities rather than a single-gene diseases in the progeny of irradiated parents. (author)

  20. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  1. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI.

    Science.gov (United States)

    Parekh, Vishwa S; Jacobs, Michael A

    2017-01-01

    Radiomics deals with the high throughput extraction of quantitative textural information from radiological images that not visually perceivable by radiologists. However, the biological correlation between radiomic features and different tissues of interest has not been established. To that end, we present the radiomic feature mapping framework to generate radiomic MRI texture image representations called the radiomic feature maps (RFM) and correlate the RFMs with quantitative texture values, breast tissue biology using quantitative MRI and classify benign from malignant tumors. We tested our radiomic feature mapping framework on a retrospective cohort of 124 patients (26 benign and 98 malignant) who underwent multiparametric breast MR imaging at 3 T. The MRI parameters used were T1-weighted imaging, T2-weighted imaging, dynamic contrast enhanced MRI (DCE-MRI) and diffusion weighted imaging (DWI). The RFMs were computed by convolving MRI images with statistical filters based on first order statistics and gray level co-occurrence matrix features. Malignant lesions demonstrated significantly higher entropy on both post contrast DCE-MRI (Benign-DCE entropy: 5.72 ± 0.12, Malignant-DCE entropy: 6.29 ± 0.06, p  = 0.0002) and apparent diffusion coefficient (ADC) maps as compared to benign lesions (Benign-ADC entropy: 5.65 ± 0.15, Malignant ADC entropy: 6.20 ± 0.07, p  = 0.002). There was no significant difference between glandular tissue entropy values in the two groups. Furthermore, the RFMs from DCE-MRI and DWI demonstrated significantly different RFM curves for benign and malignant lesions indicating their correlation to tumor vascular and cellular heterogeneity respectively. There were significant differences in the quantitative MRI metrics of ADC and perfusion. The multiview IsoSVM model classified benign and malignant breast tumors with sensitivity and specificity of 93 and 85%, respectively, with an AUC of 0.91.

  2. Monitoring the biological activity of micropollutants during advanced wastewater treatment with ozonation and activated carbon filtration.

    Science.gov (United States)

    Macova, M; Escher, B I; Reungoat, J; Carswell, S; Chue, K Lee; Keller, J; Mueller, J F

    2010-01-01

    A bioanalytical test battery was used to monitor the removal efficiency of organic micropollutants during advanced wastewater treatment in the South Caboolture Water Reclamation Plant, Queensland, Australia. This plant treats effluent from a conventional sewage treatment plant for industrial water reuse. The aqueous samples were enriched using solid-phase extraction to separate some organic micropollutants of interest from metals, nutrients and matrix components. The bioassays were chosen to provide information on groups of chemicals with a common mode of toxic action. Therefore they can be considered as sum indicators to detect certain relevant groups of chemicals, not as the most ecologically or human health relevant endpoints. The baseline toxicity was quantified with the bioluminescence inhibition test using the marine bacterium Vibrio fischeri. The specific modes of toxic action that were targeted with five additional bioassays included aspects of estrogenicity, dioxin-like activity, genotoxicity, neurotoxicity, and phytotoxicity. While the accompanying publication discusses the treatment steps in more detail by drawing from the results of chemical analysis as well as the bioanalytical results, here we focus on the applicability and limitations of using bioassays for the purpose of determining the treatment efficacy of advanced water treatment and for water quality assessment in general. Results are reported in toxic equivalent concentrations (TEQ), that is, the concentration of a reference compound required to elicit the same response as the unknown and unidentified mixture of micropollutants actually present. TEQ proved to be useful and easily communicable despite some limitations and uncertainties in their derivation based on the mixture toxicity theory. The results obtained were reproducible, robust and sensitive. The TEQ in the influent ranged in the same order of magnitude as typically seen in effluents of conventional sewage treatment plants. In the

  3. Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties

    Science.gov (United States)

    Secchi, Valeria; Guizzardi, Roberto; Russo, Laura; Pastori, Valentina; Lecchi, Marzia; Franchi, Stefano; Iucci, Giovanna; Battocchio, Chiara; Cipolla, Laura

    2018-05-01

    The emerging trends in regenerative medicine rely among others on biomaterial-based therapies, with the use of biomaterials as a central delivery system for biochemical and physical cues to manipulate transplanted or ingrowth cells and to orchestrate tissue regeneration. Cell adhesion properties of a biomaterial strongly depend on its surface characteristics. Among others poly(ε-caprolactone) (PCL) is a biocompatible and biodegradable material with low cytotoxicity that is widely adopted as synthetic polymer in several applications. However, it is hydrophobic, which limits its use in tissue engineering. In order to improve its hydrophilicity and cellular compatibility, PCL surface was grafted with maltose through a two-step procedure in which controlled aminolysis of PCL ester bonds by hexanediamine was followed by reductive amination with the carbohydrate reducing end. The modified PCL surface was then characterized in detail by x-ray Photoelectron Spectroscopy (XPS) and Near Edge x-ray Absorption Fine Structure (NEXAFS) spectroscopies. In addition, the biocompatibility of the proposed biomaterial was investigated in preliminary biological assays.

  4. Recent advances in understanding the biology, epidemiology and control of chlamydial infections in koalas.

    Science.gov (United States)

    Polkinghorne, Adam; Hanger, Jon; Timms, Peter

    2013-08-30

    The koala (Phascolarctos cinereus) is recognised as a threatened wildlife species in various parts of Australia. A major contributing factor to the decline and long-term viability of affected populations is disease caused by the obligate intracellular bacteria, Chlamydia. Two chlamydial species infect the koala, Chlamydia pecorum and Chlamydia pneumoniae, and have been reported in nearly all mainland koala populations. Chlamydial infections of koalas are associated with ocular infections leading to blindness and genital tract infections linked to infertility, among other serious clinical manifestations. Diagnosis can be based on clinical presentation alone, however, it is complicated by the observation that many koala chlamydial infections occur with no overt signs of clinical disease. Instead, accurate diagnosis requires detailed clinical assessment and confirmatory testing by a range of PCR-based assays. Antibiotic treatment for koala chlamydial infection is possible, however, results on its success are mixed. A more practical solution for the protection of diseased populations is the application of a koala Chlamydia vaccine, with recent trials indicating promising results. Interestingly, molecular epidemiology studies of koala C. pecorum infections and recent comparative genomic analyses of koala C. pneumoniae have revealed potential differences in their origin that will have wider ramifications for our understanding of human chlamydial infections and host adaptation of the chlamydiae. This review summarises changes to the taxonomy of koala chlamydial infections and recent advances in our understanding of the epidemiology, diagnosis, treatment, control and evolution of Chlamydia infections in this iconic wildlife species. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Recent scientific advances in leiomyoma (uterine fibroids research facilitates better understanding and management [v1; ref status: indexed, http://f1000r.es/54a

    Directory of Open Access Journals (Sweden)

    Darlene K. Taylor

    2015-07-01

    Full Text Available Uterine leiomyomas (fibroids are the most prevalent medical problem of the female reproductive tract, but there are few non-surgical treatment options. Although many advances in the understanding of the molecular components of these tumors have occurred over the past five years, an effective pharmaceutical approach remains elusive. Further, there is currently no clinical method to distinguish a benign uterine leiomyoma from a malignant leiomyosarcoma prior to treatment, a pressing need given concerns about the use of the power morcellator for minimally invasive surgery. This paper reviews current studies regarding the molecular biology of uterine fibroids, discusses non-surgical approaches and suggests new cutting-edge therapeutic and diagnostic approaches.

  6. Cornelia de Lange syndrome: further delineation of phenotype, cohesin biology and educational focus, 5th Biennial Scientific and Educational Symposium abstracts.

    Science.gov (United States)

    Kline, Antonie D; Calof, Anne L; Schaaf, Cheri A; Krantz, Ian D; Jyonouchi, Soma; Yokomori, Kyoko; Gauze, Maria; Carrico, Cheri S; Woodman, Julie; Gerton, Jennifer L; Vega, Hugo; Levin, Alex V; Shirahige, Katsuhiko; Champion, Michele; Goodban, Marjorie T; O'Connor, Julia T; Pipan, Mary; Horsfield, Julia; Deardorff, Matthew A; Ishman, Stacey L; Dorsett, Dale

    2014-06-01

    Cornelia de Lange syndrome (CdLS) is the prototype for the cohesinopathy disorders that have mutations in genes associated with the cohesin subunit in all cells. Roberts syndrome is the next most common cohesinopathy. In addition to the developmental implications of cohesin biology, there is much translational and basic research, with progress towards potential treatment for these conditions. Clinically, there are many issues in CdLS faced by the individual, parents and caretakers, professionals, and schools. The following abstracts are presentations from the 5th Cornelia de Lange Syndrome Scientific and Educational Symposium on June 20-21, 2012, in conjunction with the Cornelia de Lange Syndrome Foundation National Meeting, Lincolnshire, IL. The research committee of the CdLS Foundation organizes the meeting, reviews and accepts abstracts and subsequently disseminates the information to the families. In addition to the basic science and clinical discussions, there were educationally-focused talks related to practical aspects of management at home and in school. AMA CME credits were provided by Greater Baltimore Medical Center, Baltimore, MD. © 2014 Wiley Periodicals, Inc.

  7. Organization of the 17th Advanced Accelerator Concepts (AAC16) Workshop by the IEEE. Final Scientific/Technical Report On AWARD NO. DE-SC0015635

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, David F. [Inst. of Electrical and Electronics Engineers Inc., Piscataway, NJ (United States)

    2017-07-15

    The 2016 Workshop on Advanced Accelerator Concepts (AAC) was held at the Gaylord Hotel and Conference Center, National Harbor, Maryland, from July 31 through August 5, 2016. This workshop was the seventeenth in a biennial series that began at Los Alamos National Laboratory in 1982 with a workshop on laser acceleration of particles (see AIP Conf. Proc. 91). AAC16 was organized under the sponsorship of the IEEE Council on Superconductivity with financial support from the U. S. Department of Energy Office of High Energy Physics and the National Science Foundation. The scope of the AAC Workshop has grown since 1982 to encompass a broad range of topics related to advancing accelerator science and technology beyond its current scientific and technical limits and is now an internationally acknowledged forum for interdisciplinary discussions on advanced accelerator and beam physics/technology concepts covering the widest possible range of applications. The Workshop continued the trend of growing worldwide participation, attracting world wide participation. The Workshop had a total of 256 attendees comprising (including the U.S.) representatives from 11 countries representing 65 different institutions. Each day’s schedule began with plenary sessions covering broad, cross disciplinary interests or general tutorial topics as selected by the Program Committee, followed by a break out into more narrowly focused working groups. The Workshop was organized into eight Working Groups each with a published statement of topical focus, scope of discussion and goals. A summary of the Working Group activities and conclusions is included in the American Institute of Physics’ (AIP) Conference Proceedings now available as an on line open source document. It has been a long tradition of the AAC workshops to encourage strong student participation. This is accomplished in part by subsidizing student attendance, done for this work shop by using funds from the DOE and National Science

  8. A Qualitative Study Examining the Exclusive Use of Primary Literature in a Special Topics Biology Course: Improving Conceptions about the Nature of Science and Boosting Confidence in Approaching Original Scientific Research

    Science.gov (United States)

    Carter, B. Elijah; Wiles, Jason R.

    2017-01-01

    This qualitative study explores the experiences of six students enrolled in a special topics biology class that exclusively used primary literature as course material. Nature of science (NOS) conceptions have been linked to students' attitudes toward scientific subjects, but there has been little research specifically exploring the effects of…

  9. Identifying Strategic Scientific Opportunities

    Science.gov (United States)

    As NCI's central scientific strategy office, CRS collaborates with the institute's divisions, offices, and centers to identify research opportunities to advance NCI's vision for the future of cancer research.

  10. Synthetic Biology and Ethics: Past, Present, and Future.

    Science.gov (United States)

    Häyry, Matti

    2017-04-01

    This article explores the ethical issues that have been identified in emerging technologies, from early genetic engineering to synthetic biology. The scientific advances in the field form a continuum, and some ethical considerations can be raised time and again when new developments occur. An underlying concern is the cumulative effect of scientific advances and ensuing technological innovation that can change our understanding of life and humanity.

  11. Scientific rigor through videogames.

    Science.gov (United States)

    Treuille, Adrien; Das, Rhiju

    2014-11-01

    Hypothesis-driven experimentation - the scientific method - can be subverted by fraud, irreproducibility, and lack of rigorous predictive tests. A robust solution to these problems may be the 'massive open laboratory' model, recently embodied in the internet-scale videogame EteRNA. Deploying similar platforms throughout biology could enforce the scientific method more broadly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Molecular image-guided radiation treatment planing using biological target volume (BTV)for advanced esophageal cancer

    International Nuclear Information System (INIS)

    Tamamura, Hiroyasu; Sasaki, Makoto; Bou, Sayuri; Satou, Yoshitaka; Minami, Hiroki; Saga, Yusuke; Aoyama, Masashi; Yamamoto, Kazutaka; Kawamura, Mariko

    2016-01-01

    As the biological mechanisms of cancer cell proliferation become clear at molecular level, 'precision therapy' is attracting a great attention, in which the irradiation dose and area are determined in consideration of these molecular mechanism. For this sophisticated radiotherapy, it is essential to evaluate the tumor morphology and proliferation/activation of cancer cells before radiation treatment planning. Generally, cancer cells start to proliferate when their activity levels increase, and subsequently primary tumor or metastatic tumor that can De recognized by CT scan or MRI start to develop. Thus, when proliferation of cancer cells occurs and tumor start to develop, a vast amount of energy is required for proliferation and cancer cells obtain a part of this energy from glucose in the body. Therefore, we can get the information on the status of metabolism and density of cancer cells by PET using F-18-FDG, which is structurally similar to glucose. It is a general belief that, when conducting evaluation using F18-FDG-PET, evaluation of proliferation of cancer cells before tumor formation might be possible at the cell level by evaluating and visualizing glucose metabolism in cancer cells that proliferate in a manner that they cannot be visualized morphologically by using CT scan or MRI. Therefore, when performing sophisticated precision radiotherapy, it is important to implement radiation treatment plan including information obtained from FDG-PET imaging. Many studies have reported usefulness of FDG-PET imaging for esophagus cancer so far, indicating the efficacy of using FDG-PET imaging for radiation treatment plan of esophagus cancer as well. However, few studies have described how to use FDG-PET imaging for radiation treatment plan for esophagus cancer. In this review, therefore, we will outline the usefulness of molecular image-guided radiation treatment plan, in which biological target volume (BTV) and the actual radiation treatment plan using FDG

  13. From technological advances to biological understanding: The main steps toward high-precision RT in breast cancer.

    Science.gov (United States)

    Leonardi, Maria Cristina; Ricotti, Rosalinda; Dicuonzo, Samantha; Cattani, Federica; Morra, Anna; Dell'Acqua, Veronica; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-10-01

    Radiotherapy improves local control in breast cancer (BC) patients which increases overall survival in the long term. Improvements in treatment planning and delivery and a greater understanding of BC behaviour have laid the groundwork for high-precision radiotherapy, which is bound to further improve the therapeutic index. Precise identification of target volumes, better coverage and dose homogeneity have had a positive impact on toxicity and local control. The conformity of treatment dose due to three-dimensional radiotherapy and new techniques such as intensity modulated radiotherapy makes it possible to spare surrounding normal tissue. The widespread use of dose-volume constraints and histograms have increased awareness of toxicity. Real time image guidance has improved geometric precision and accuracy, together with the implementation of quality assurance programs. Advances in the precision of radiotherapy is also based on the choice of the appropriate fractionation and approach. Adaptive radiotherapy is not only a technical concept, but is also a biological concept based on the knowledge that different types of BC have distinctive patterns of locoregional spread. A greater understanding of cancer biology helps in choosing the treatment best suited to a particular situation. Biomarkers predictive of response play a crucial role. The combination of radiotherapy with molecular targeted therapies may enhance radiosensitivity, thus increasing the cytotoxic effects and improving treatment response. The appropriateness of an alternative fractionation, partial breast irradiation, dose escalating/de-escalating approaches, the extent of nodal irradiation have been examined for all the BC subtypes. The broadened concept of adaptive radiotherapy is vital to high-precision treatments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Adapting to large-scale changes in Advanced Placement Biology, Chemistry, and Physics: the impact of online teacher communities

    Science.gov (United States)

    Frumin, Kim; Dede, Chris; Fischer, Christian; Foster, Brandon; Lawrenz, Frances; Eisenkraft, Arthur; Fishman, Barry; Jurist Levy, Abigail; McCoy, Ayana

    2018-03-01

    Over the past decade, the field of teacher professional learning has coalesced around core characteristics of high quality professional development experiences (e.g. Borko, Jacobs, & Koellner, 2010. Contemporary approaches to teacher professional development. In P. L. Peterson, E. Baker, & B. McGaw (Eds.), International encyclopedia of education (Vol. 7, pp. 548-556). Oxford: Elsevier.; Darling-Hammond, Hyler, & Gardner, 2017. Effective teacher professional development. Palo Alto, CA: Learning Policy Institute). Many countries have found these advances of great interest because of a desire to build teacher capacity in science education and across the full curriculum. This paper continues this progress by examining the role and impact of an online professional development community within the top-down, large-scale curriculum and assessment revision of Advanced Placement (AP) Biology, Chemistry, and Physics. This paper is part of a five-year, longitudinal, U.S. National Science Foundation-funded project to study the relative effectiveness of various types of professional development in enabling teachers to adapt to the revised AP course goals and exams. Of the many forms of professional development our research has examined, preliminary analyses indicated that participation in the College Board's online AP Teacher Community (APTC) - where teachers can discuss teaching strategies, share resources, and connect with each other - had positive, direct, and statistically significant association with teacher self-reported shifts in practice and with gains in student AP scores (Fishman et al., 2014). This study explored how usage of the online APTC might be useful to teachers and examined a more robust estimate of these effects. Findings from the experience of AP teachers may be valuable in supporting other large-scale curriculum changes, such as the U.S. Next Generation Science Standards or Common Core Standards, as well as parallel curricular shifts in other countries.

  15. Integration of Information and Scientific Literacy: Promoting Literacy in Undergraduates

    Science.gov (United States)

    Wolbach, Kevin C.; Purzycki, Catherine B.; Bowman, Leslie A.; Agbada, Eva; Mostrom, Alison M.

    2010-01-01

    The Association of College and Research Libraries recommends incorporating information literacy (IL) skills across university and college curricula, for the goal of developing information literate graduates. Congruent with this goal, the Departments of Biological Sciences and Information Science developed an integrated IL and scientific literacy (SL) exercise for use in a first-year biology course. Students were provided the opportunity to access, retrieve, analyze, and evaluate primary scientific literature. By the completion of this project, student responses improved concerning knowledge and relevance of IL and SL skills. This project exposes students to IL and SL early in their undergraduate experience, preparing them for future academic advancement. PMID:21123700

  16. Scientific Medical Journal: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  17. Advancing Marine Biological Observations and Data Requirements of the Complementary Essential Ocean Variables (EOVs and Essential Biodiversity Variables (EBVs Frameworks

    Directory of Open Access Journals (Sweden)

    Frank E. Muller-Karger

    2018-06-01

    Full Text Available Measurements of the status and trends of key indicators for the ocean and marine life are required to inform policy and management in the context of growing human uses of marine resources, coastal development, and climate change. Two synergistic efforts identify specific priority variables for monitoring: Essential Ocean Variables (EOVs through the Global Ocean Observing System (GOOS, and Essential Biodiversity Variables (EBVs from the Group on Earth Observations Biodiversity Observation Network (GEO BON (see Data Sheet 1 in Supplementary Materials for a glossary of acronyms. Both systems support reporting against internationally agreed conventions and treaties. GOOS, established under the auspices of the Intergovernmental Oceanographic Commission (IOC, plays a leading role in coordinating global monitoring of the ocean and in the definition of EOVs. GEO BON is a global biodiversity observation network that coordinates observations to enhance management of the world's biodiversity and promote both the awareness and accounting of ecosystem services. Convergence and agreement between these two efforts are required to streamline existing and new marine observation programs to advance scientific knowledge effectively and to support the sustainable use and management of ocean spaces and resources. In this context, the Marine Biodiversity Observation Network (MBON, a thematic component of GEO BON, is collaborating with GOOS, the Ocean Biogeographic Information System (OBIS, and the Integrated Marine Biosphere Research (IMBeR project to ensure that EBVs and EOVs are complementary, representing alternative uses of a common set of scientific measurements. This work is informed by the Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM, an intergovernmental body of technical experts that helps international coordination on best practices for observing, data management and services, combined with capacity development expertise

  18. NATO Advanced Study Institute on Mixed-Valence Compounds : Theory and Applications in Chemistry, Physics, Geology, and Biology

    CERN Document Server

    1980-01-01

    It has been a decade since two seminal reviews demonstrated that mixed-valence compounds share many unique and fascinating features. The insight pro­ vided by those early works has promoted a great deal of both experimental and theoretical study. As a result of extensive efforts, our understanding of the bonding and properties of mixed-valence compounds has advanced substantially. There has been no compre­ hensive treatment of mixed-valence compounds since 1967, and the meeting convened at Oxford in September, 1979, provided a unique opportunity to examine the subject and its many ramifications. Mixed-valence compounds play an important role in many fields. Although the major impact of the subject has been in chemistry, its importance has become increasingly clear in solid state physics, geology, and biology. Extensive interest and effort in the field of molecular metals has demonstrated that mixed-valency is a prerequisite for high elec­ trical conductivity. The intense colors of many minerals have been s...

  19. 5th International Conference on High Performance Scientific Computing

    CERN Document Server

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  20. Effect of residual H2O2 from advanced oxidation processes on subsequent biological water treatment: A laboratory batch study.

    Science.gov (United States)

    Wang, Feifei; van Halem, Doris; Liu, Gang; Lekkerkerker-Teunissen, Karin; van der Hoek, Jan Peter

    2017-10-01

    H 2 O 2 residuals from advanced oxidation processes (AOPs) may have critical impacts on the microbial ecology and performance of subsequent biological treatment processes, but little is known. The objective of this study was to evaluate how H 2 O 2 residuals influence sand systems with an emphasis on dissolved organic carbon (DOC) removal, microbial activity change and bacterial community evolution. The results from laboratory batch studies showed that 0.25 mg/L H 2 O 2 lowered DOC removal by 10% while higher H 2 O 2 concentrations at 3 and 5 mg/L promoted DOC removal by 8% and 28%. A H 2 O 2 dosage of 0.25 mg/L did not impact microbial activity (as measured by ATP) while high H 2 O 2 dosages, 1, 3 and 5 mg/L, resulted in reduced microbial activity of 23%, 37% and 37% respectively. Therefore, DOC removal was promoted by the increase of H 2 O 2 dosage while microbial activity was reduced. The pyrosequencing results illustrated that bacterial communities were dominated by Proteobacteria. The presence of H 2 O 2 showed clear influence on the diversity and composition of bacterial communities, which became more diverse under 0.25 mg/L H 2 O 2 but conversely less diverse when the dosage increased to 5 mg/L H 2 O 2 . Anaerobic bacteria were found to be most sensitive to H 2 O 2 as their growth in batch reactors was limited by both 0.25 and 5 mg/L H 2 O 2 (17-88% reduction). In conclusion, special attention should be given to effects of AOPs residuals on microbial ecology before introducing AOPs as a pre-treatment to biological (sand) processes. Additionally, the guideline on the maximum allowable H 2 O 2 concentration should be properly evaluated. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Advanced Ceramics

    International Nuclear Information System (INIS)

    1989-01-01

    The First Florida-Brazil Seminar on Materials and the Second State Meeting about new materials in Rio de Janeiro State show the specific technical contribution in advanced ceramic sector. The others main topics discussed for the development of the country are the advanced ceramic programs the market, the national technic-scientific capacitation, the advanced ceramic patents, etc. (C.G.C.) [pt

  2. In Search of Scientific Inspiration.

    Science.gov (United States)

    2017-01-12

    In the ever-expanding sea of scientific advances, how do you find inspiration for your own study? Cell editor Jiaying Tan talked with Mark Lemmon and Joseph (Yossi) Schlessinger about the importance of fueling your research creativity with the conceptual excitement and technical advance from the broad scientific field. An excerpt of the conversation appears below. Copyright © 2017. Published by Elsevier Inc.

  3. Gastric cancer: a primer on the epidemiology and biology of the disease and an overview of the medical management of advanced disease.

    Science.gov (United States)

    Shah, Manish A; Kelsen, David P

    2010-04-01

    Gastric cancer is a cause of significant morbidity and cancer-related mortality worldwide. Despite recent advances in targeted therapy and understanding of the biology and development of the malignancy, progress in the treatment of gastric cancer has been limited. Most newly diagnosed patients will present with incurable disease, and have a median survival of less than 1 year. Although the disease has widespread ethnic and epidemiologic differences, medical management of gastric cancer does not distinguish among the various disease subtypes. The recent report of the ToGA phase III study has validated Her2 as a molecular target in this disease, supporting the concept that a greater understanding of the biology of gastric cancer subsets may improve treatment selection and overall outcome of individual patients. This article summarizes the epidemiology and ethnic variation of this disease to crystalize subtypes of gastric cancer in the context of current and future medical management of advanced disease.

  4. Minería de textos: la nueva generación de análisis de literatura científica en biología molecular y genómica Text-mining: the new generation of scientific literature analysis in molecular biology and genomics

    Directory of Open Access Journals (Sweden)

    Carmen Gálvez

    2008-01-01

    Full Text Available Una vez descifrado la secuencia del genoma humano, el paradigma de investigación ha cambiado dando paso a la descripción de las funciones de los genes y a futuros avances en la lucha contra enfermedades. Este nuevo contexto ha despertado el interés de la Bioinformática, que combina métodos de las Ciencias de la Vida con las Ciencias de la Información haciendo posible el acceso a la gran cantidad de información biológica almacenada en las bases de datos, y de la Genómica, dedicada al estudio de las interacciones de los genes y su influencia en el desarrollo de enfermedades. En este contexto, la minería de textos surge como un instrumento emergente para el análisis de la literatura científica. Una tarea habitual de la minería de textos en Biología Molecular y Genómica es el reconocimiento de entidades biológicas, tales como genes, proteínas y enfermedades. El paso siguiente en el proceso de minería lo constituye la dentificación entre entidades biológicas, tales como el tipo de interacción entre gen-gen, gen-enfermedad, gen-proteína, para interpretar funciones biológicas, o formular hipótesis de investigación. El objetivo de este trabajo es examinar el auge y las limitaciones la nueva generación de herramientas de análisis de la información en lenguaje natural, almacenada en bases de datos bibliográficas, como PubMed o MEDLINE.Since human genome sequences were first decoded, the paradigm of investigation has changed leading to the description of the functions of the genes and to future advances in the fight against diseases. This new context has awoke the interest of the Bioinformatics, that combines methods of the Life Science with the Information Sciences, making the access to the great quantity of biological information stored in the databases, and of the Genomics, dedicated to the study of the interactions of the genes and its influence in the development of diseases. In this context, the text mining arises like an

  5. A proposal to establish an international network in molecular microbiology and genetic engineering for scientific cooperation and prevention of misuse of biological sciences in the framework of science for peace

    International Nuclear Information System (INIS)

    Becker, Y.

    1998-01-01

    The conference on 'Science and Technology for Construction of Peace' which was organized by the Landau Network Coordination Center and A. Volta Center for Scientific Culture dealt with conversion of military and technological capacities into sustainable civilian application. The ideas regarding the conversion of nuclear warheads into nuclear energy for civilian-use led to the idea that the extension of this trend of thought to molecular biology and genetic engineering, will be a useful contribution to Science for Peace. This idea of developing a Cooperation Network in Molecular Biology and Genetic Engineering that will function parallel to and with the Landau Network Coordination in the 'A. Volta' Center was discussed in the Second International Symposium on Science for Peace, Jerusalem, January 1997. It is the reason for the inclusion of the biological aspects in the deliberations of our Forum. It is hoped that the establishment of an international network in molecular biology and genetic engineering, similar to the Landau Network in physics, will support and achieve the decommissioning of biological weapons. Such a network in microbiology and genetic engineering will contribute to the elimination of biological weapons and to contributions to Science for Peace and to Culture of Peace activities of UNESCO. (author)

  6. The Use of Textbooks for Advanced-Level GCE Courses in Physics, Chemistry and Biology by Sixth-Form Students.

    Science.gov (United States)

    Newton, D. P.

    1984-01-01

    A survey of sixth-form students to determine the level of A-level textbook use in physics, chemistry, and biology in English schools found that texts are used primarily after the lesson, at the student's discretion, and with great variations between students. Biology texts were used most, and physics texts used least. (MBR)

  7. Space Biology Model Organism Research on the Deep Space Gateway to Pioneer Discovery and Advance Human Space Exploration

    Science.gov (United States)

    Sato, K. Y.; Tomko, D. L.; Levine, H. G.; Quincy, C. D.; Rayl, N. A.; Sowa, M. B.; Taylor, E. M.; Sun, S. C.; Kundrot, C. E.

    2018-02-01

    Model organisms are foundational for conducting physiological and systems biology research to define how life responds to the deep space environment. The organisms, areas of research, and Deep Space Gateway capabilities needed will be presented.

  8. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Atomic Force Microscopy - A Tool to Unveil the Mystery of Biological Systems ... Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560 ...

  9. The role of differentiation and standards-based grading in the science learning of struggling and advanced learners in a detracked high school honors biology classroom

    Science.gov (United States)

    MacDonald, Michelina Ruth Carter

    The accountability movement in education resulting from the passage of The No Child Left Behind Act of 2001 has brought to light the disparities that exist in student achievement in the United States which play out along racial and socioeconomic lines. Three educational practices hold promise for reducing this achievement gap: differentiated instruction, standards-based assessment, and elimination of academic tracking. The purpose of this practitioner research study was to examine the ways that differentiation and standards-based assessment can support struggling learners and challenge advanced learners in a detracked, honors biology classroom. To gain insight into the role that differentiation and standards-based assessment played in supporting struggling and advanced learners, I used practitioner research to examine the development and implementation of a differentiated, standards-based instructional unit around the conceptual topic of protein synthesis. I collected multiple data pieces for 10 students in the study: two advanced learners, four struggling learners, and four strong learners who struggled in biology. Data analyzed included formative, self-, and summative assessment results; student artifacts; informal and formal student interviews; and, a practitioner reflection journal chronicling critical incidents and actions taken during the development and implementation of this unit and notes from peer debriefing during and following the unit's implementation. As I analyzed the data collected, my four findings fell into two overarching categories related to student grouping. My first three findings reflect what I learned about homogeneous grouping: (1) Pre-assessment based on unit outcomes is not useful for determining groups for tiered instruction; (2) Decisions about differentiation and grouping for differentiation must be made in the act of teaching using formative assessment results; and, (3) Flexible grouping structures are effective for both struggling

  10. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals)

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    for the farm-to-chilled carcass continuum using a risk-based approach was proposed. Key elements of the system are risk-categorisation of slaughter animals for high-priority biological hazards based on improved food chain information, as well as risk-categorisation of slaughterhouses according......A risk ranking process identified Salmonella spp. and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as current high-priority biological hazards for meat inspection of bovine animals. As these hazards are not detected by traditional meat inspection, a meat safety assurance system...... to their capability to control those hazards. Omission of palpation and incision during post-mortem inspection for animals subjected to routine slaughter may decrease spreading and cross-contamination with the high-priority biological hazards. For chemical hazards, dioxins and dioxin-like polychlorinated biphenyls...

  11. The "Molecular and cell Biology" program of the Presidium of the Russian Academyof sciences as an effective format for the support of promising scientific research groups

    OpenAIRE

    Sychev, V.

    2010-01-01

    There are various ways to finance science in Russia, both governmental and private. Financial support can range from tens of thousands of rubles up to several million in stipends and grants. One of the questions most often addressed to the heads of agencies or funds is about the level of transparency and objectivity when selecting groups which receive financial support. Few well-known financing organizations have avoided criticism regarding this issue. Nevertheless, there is one scientific fi...

  12. 3rd International Conference on High Performance Scientific Computing

    CERN Document Server

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  13. Loosening the shackles of scientific disciplines with network science. Reply to comments on "Network science of biological systems at different scales: A review"

    Science.gov (United States)

    Gosak, Marko; Markovič, Rene; Dolenšek, Jurij; Rupnik, Marjan Slak; Marhl, Marko; Stožer, Andraž; Perc, Matjaž

    2018-03-01

    We would like to thank all the experts for their insightful and very interesting comments that have been submitted in response to our review "Network science of biological systems at different scales" [1]. We are delighted with the number of comments that have been written, and even more so with the positive opinions that these comments communicate to the wider audience [2-9]. Although methods of network science have long proven their value in relevantly addressing various challenges in the biological sciences, such interdisciplinary research often still struggles for funding and recognition at many academic levels.

  14. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-01-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in…

  15. A Comparative Study of a Research-Oriented High School Advanced Biology Class and a Conventional Textbook-Centered Class.

    Science.gov (United States)

    Smith, Alva Nelson

    Two instructional methods were identified and compared to determine if any significant differences could be noted on three criterion measures. Measurements were conducted in the areas of achievement in biology, science attitudes, and critical thinking ability. Student ability was measured using pre-tests and the Scholastic Aptitude Test. Students…

  16. Recent advances, and unresolved issues, in the application of computational modelling to the prediction of the biological effects of nanomaterials

    International Nuclear Information System (INIS)

    Winkler, David A.

    2016-01-01

    Nanomaterials research is one of the fastest growing contemporary research areas. The unprecedented properties of these materials have meant that they are being incorporated into products very quickly. Regulatory agencies are concerned they cannot assess the potential hazards of these materials adequately, as data on the biological properties of nanomaterials are still relatively limited and expensive to acquire. Computational modelling methods have much to offer in helping understand the mechanisms by which toxicity may occur, and in predicting the likelihood of adverse biological impacts of materials not yet tested experimentally. This paper reviews the progress these methods, particularly those QSAR-based, have made in understanding and predicting potentially adverse biological effects of nanomaterials, and also the limitations and pitfalls of these methods. - Highlights: • Nanomaterials regulators need good information to make good decisions. • Nanomaterials and their interactions with biology are very complex. • Computational methods use existing data to predict properties of new nanomaterials. • Statistical, data driven modelling methods have been successfully applied to this task. • Much more must be learnt before robust toolkits will be widely usable by regulators.

  17. Some Misconceptions in Meiosis Shown by Students Responding to an Advanced Level Practical Examination Question in Biology.

    Science.gov (United States)

    Brown, C. R.

    1990-01-01

    Discussed are problems revealed in student responses to a practical task which formed part of an advanced level examination. The frequencies with which some misconceptions about cell reproduction and genetics occurred are presented. The nature of these misconceptions is analyzed and their implications discussed. (CW)

  18. Biological control agent for mosquito larvae: Review on the killifish ...

    African Journals Online (AJOL)

    This review attempts to give an account on the recent advances on the killifish Aphanius dispar dispar as a biological control agent for mosquito larvae. Thirty six (36) articles of literature (scientific papers, technical and workshop reports) on this subject covering the period between 1980 and 2009 were reviewed.

  19. Transactions of the Zimbabwe Scientific Association

    African Journals Online (AJOL)

    The Zimbabwe Scientific Association was founded in Bulawayo in 1899 (called the Rhodesia Scientific Assocation at the time) to promote the study and advancement of science in Zimbabwe and to facilitate the acquisition and dissemination of scientific knowledge. Its journal, Transactions of the Zimbabwe Scientific ...

  20. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat from farmed game

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    ranked as medium or lower potential concern. More effective control of biological hazards could be achieved using an integrated farm to chilled carcass approach, including improved food chain information (FCI) and risk-based controls. Further studies are required on Salmonella spp. in farmed wild boar...... and T. gondii in farmed wild boar and farmed deer. If new information confirms a high risk to public health from meat from these species, setting targets at carcass level should be considered. Palpation and incision should be omitted, as it will not detect biological hazards considered to be a high......Salmonella spp. in farmed wild boar and Toxoplasma gondii in farmed deer and farmed wild boar were ranked as a high priority for meat inspection. Trichinella spp. in wild boar was ranked as low priority due to current controls, which should be continued. For chemical hazards, all substances were...

  1. NATO Advanced Research Workshop on Boron Rich Solids Sensors for Biological and Chemical Detection, Ultra High Temperature Ceramics, Thermoelectrics, Armor

    CERN Document Server

    Orlovskaya, Nina

    2011-01-01

    The objective of this book is to discuss the current status of research and development of boron-rich solids as sensors, ultra-high temperature ceramics, thermoelectrics, and armor. Novel biological and chemical sensors made of stiff and light-weight boron-rich solids are very exciting and efficient for applications in medical diagnoses, environmental surveillance and the detection of pathogen and biological/chemical terrorism agents. Ultra-high temperature ceramic composites exhibit excellent oxidation and corrosion resistance for hypersonic vehicle applications. Boron-rich solids are also promising candidates for high-temperature thermoelectric conversion. Armor is another very important application of boron-rich solids, since most of them exhibit very high hardness, which makes them perfect candidates with high resistance to ballistic impact. The following topical areas are presented: •boron-rich solids: science and technology; •synthesis and sintering strategies of boron rich solids; •microcantileve...

  2. Scientific Letter: Monosymptomatic Hypochondriacal Psychosis ...

    African Journals Online (AJOL)

    Scientific Letter: Monosymptomatic Hypochondriacal Psychosis (somatic delusional disorder): A report of two cases. ... African Journal of Psychiatry. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives.

  3. Proceedings of the Scientific Meeting on Application of Isotopes and Radiation, Book I, Agricultural, Animal and Biology; Risalah Pertemuan Ilmiah Penelitian Dan Pengembangan Aplikasi Isotop Dan Radiasi. Buku 1, Pertanian, Peternakan dan Biologi

    Energy Technology Data Exchange (ETDEWEB)

    Suhadi, F; Sisworo, E L; Maha, M; Ismachin, M; Hilmy, N; Sumatra, M; Mugiono,; Wandowo,; Soebianto, Y S [Center for Application of Isotopes and Radiation, National Atomic Energy Agency, Serpong (Indonesia)

    1998-07-01

    The aim of the 10{sup t}h Meeting of the Isotope and Radiation Application is to disseminate the result of research on application of nuclear techniques on agriculture, animal, biology, chemistry, environment, radiation process and industry. The meeting was held in Jakarta, 18-19 February 1998, and there were 6 invited papers and 52 papers indexed individually. This proceeding is divided by two volumes. Volume I and volume II consists of agriculture, animal, biology and chemistry, environment, radiation process and industry, respectively.(ID)

  4. Advancing Cancer Systems Biology: Introducing the Center for the Development of a Virtual Tumor, CViT

    Directory of Open Access Journals (Sweden)

    Sean Martin

    2007-01-01

    Full Text Available Integrative cancer biology research relies on a variety of data-driven computational modeling and simulation methods and techniques geared towards gaining new insights into the complexity of biological processes that are of critical importance for cancer research. These include the dynamics of gene-protein interaction networks, the percolation of subcellular perturbations across scales and the impact they may have on tumorigenesis in both experiments and clinics. Such innovative ‘systems’ research will greatly benefi t from enabling Information Technology that is currently under development, including an online collaborative environment, a Semantic Web based computing platform that hosts data and model repositories as well as high-performance computing access. Here, we present one of the National Cancer Institute’s recently established Integrative Cancer Biology Programs, i.e. the Center for the Development of a Virtual Tumor, CViT, which is charged with building a cancer modeling community, developing the aforementioned enabling technologies and fostering multi-scale cancer modeling and simulation.

  5. TP Atlas: integration and dissemination of advances in Targeted Proteins Research Program (TPRP)-structural biology project phase II in Japan.

    Science.gov (United States)

    Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki

    2012-09-01

    The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .

  6. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the risk of transmission of classical scrapie via in vivo derived embryo transfer in ovine animals

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    . Under natural exposure conditions, animals that are heterozygous or homozygous A136R154R171 display respectively a low or negligible risk of being infected. The genetic control of the susceptibility to classical scrapie is also likely to impact on the risk of transmitting the disease via embryo transfer......The risk of transmission of classical scrapie via the transfer of in vivo derived embryo in ovines was assessed, taking into account the scientific information made available since the last EFSA opinion on this topic (2010) (see http://www.efsa.europa.eu/en/efsajournal/pub/1429.htm). The potential...... impact of PrP genotype of the embryo and/or of the ram and donor ewe on this risk was also assessed. The new data made available over the last three years further reinforce the view that classical scrapie could be vertically transmitted in sheep. Since the possibility of such vertical transmission...

  7. Scientific Misconduct.

    Science.gov (United States)

    Goodstein, David

    2002-01-01

    Explores scientific fraud, asserting that while few scientists actually falsify results, the field has become so competitive that many are misbehaving in other ways; an example would be unreasonable criticism by anonymous peer reviewers. (EV)

  8. A Glimpse of Membrane Transport through Structures-Advances in the Structural Biology of the GLUT Glucose Transporters.

    Science.gov (United States)

    Yan, Nieng

    2017-08-18

    The cellular uptake of glucose is an essential physiological process, and movement of glucose across biological membranes requires specialized transporters. The major facilitator superfamily glucose transporters GLUTs, encoded by the SLC2A genes, have been a paradigm for functional, mechanistic, and structural understanding of solute transport in the past century. This review starts with a glimpse into the structural biology of membrane proteins and particularly membrane transport proteins, enumerating the landmark structures in the past 25years. The recent breakthrough in the structural elucidation of GLUTs is then elaborated following a brief overview of the research history of these archetypal transporters, their functional specificity, and physiological and pathophysiological significances. Structures of GLUT1, GLUT3, and GLUT5 in distinct transport and/or ligand-binding states reveal detailed mechanisms of the alternating access transport cycle and substrate recognition, and thus illuminate a path by which structure-based drug design may be applied to help discover novel therapeutics against several debilitating human diseases associated with GLUT malfunction and/or misregulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Recent advances in the understanding of brown spider venoms: From the biology of spiders to the molecular mechanisms of toxins.

    Science.gov (United States)

    Gremski, Luiza Helena; Trevisan-Silva, Dilza; Ferrer, Valéria Pereira; Matsubara, Fernando Hitomi; Meissner, Gabriel Otto; Wille, Ana Carolina Martins; Vuitika, Larissa; Dias-Lopes, Camila; Ullah, Anwar; de Moraes, Fábio Rogério; Chávez-Olórtegui, Carlos; Barbaro, Katia Cristina; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy; Senff-Ribeiro, Andrea; Chaim, Olga Meiri; Veiga, Silvio Sanches

    2014-06-01

    The Loxosceles genus spiders (the brown spiders) are encountered in all the continents, and the clinical manifestations following spider bites include skin necrosis with gravitational lesion spreading and occasional systemic manifestations, such as intravascular hemolysis, thrombocytopenia and acute renal failure. Brown spider venoms are complex mixtures of toxins especially enriched in three molecular families: the phospholipases D, astacin-like metalloproteases and Inhibitor Cystine Knot (ICK) peptides. Other toxins with low level of expression also present in the venom include the serine proteases, serine protease inhibitors, hyaluronidases, allergen factors and translationally controlled tumor protein (TCTP). The mechanisms by which the Loxosceles venoms act and exert their noxious effects are not fully understood. Except for the brown spider venom phospholipase D, which causes dermonecrosis, hemolysis, thrombocytopenia and renal failure, the pathological activities of the other venom toxins remain unclear. The objective of the present review is to provide insights into the brown spider venoms and loxoscelism based on recent results. These insights include the biology of brown spiders, the clinical features of loxoscelism and the diagnosis and therapy of brown spider bites. Regarding the brown spider venom, this review includes a description of the novel toxins revealed by molecular biology and proteomics techniques, the data regarding three-dimensional toxin structures, and the mechanism of action of these molecules. Finally, the biotechnological applications of the venom components, especially for those toxins reported as recombinant molecules, and the challenges for future study are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards, 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat from sheep and goats

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    A risk ranking process identified Toxoplasma gondii and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as the most relevant biological hazards for meat inspection of sheep and goats. As these are not detected by traditional meat inspection, a meat safety assurance system using risk......-based interventions was proposed. Further studies are required on T. gondii and pathogenic VTEC. If new information confirms these hazards as a high risk to public health from meat from sheep or goats, setting targets at carcass level should be considered. Other elements of the system are risk...... the extensive production systems used, and the ranking of chemical substances, which should be regularly updated and include new hazards. Control programmes across the food chain, national residue control plans, feed control and monitoring of environmental contaminants should be better integrated. Meat...

  11. Proceedings of DAE-BRNS life sciences symposium 2011 on advances in molecular and cell biology of stress response

    International Nuclear Information System (INIS)

    2011-01-01

    This series of symposia in life sciences was initiated for the purpose of facilitating strong interactions among the national research fraternity working in the areas of bio-medical and agricultural sciences of relevance and interest for the Department of Atomic Energy, Government of India. Dedicated research efforts in the Bhabha Atomic Research Centre and other DAE institutions for nearly four decades have not only resulted in the development of technologies and products to improve the quality of human life, but have made impactful contributions in several contemporary areas in basic biological sciences. It is natural that keep visiting certain themes more than once. Biology of stress response is one such theme. The first symposium in the series was devoted to this field. And six years is long enough a time for catching up with the new developments. Stress to a system at equilibrium induces homeostatic mechanisms that ameliorate the stress. Entire living world, from microbes to man, have evolved such response mechanisms. Often a given battery of responsive genes may take care of more than one stresses and there may also be some redundancy in signalling or effector pathways to a response. Oxidative stress in one of the most common stresses that most living systems have to endure. Such a stress could be induced by a wide variety of insults including ionizing radiation, visible light, antibiotics, xenobiotics, metal ions, environmental pollutants, carcinogens, infectious agents etc. It may contribute to some inflammatory and autoimmune diseases. It also plays an important role in killing of intracellular pathogens. In recent years mechanistic details of body's antioxidant defences are being increasingly revealed. Even more interesting are the new findings that suggest that prooxidants may induce an adaptive response to help cells survive against death induced by higher levels of reactive oxygen species (ROS). The role of prosurvival transcription factors like NRF-2

  12. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  13. Recent advances in the determination of tocopherols in biological fluids: from sample pretreatment and liquid chromatography to clinical studies.

    Science.gov (United States)

    Cervinkova, Barbora; Krcmova, Lenka Kujovska; Solichova, Dagmar; Melichar, Bohuslav; Solich, Petr

    2016-04-01

    Vitamin E comprises eight related compounds: α-, β-, γ-, δ-tocopherols and α-, β-, γ-, δ-tocotrienols. In the past, α-tocopherol has been the isomer that was studied most, and its anti-inflammatory and anti-proliferative effects have been described. Therefore, many prevention trials have investigated the effect of α-tocopherol on human health. Current research studies have also defined the important roles of other tocopherols, such as anti-inflammatory, anti-proliferative and cancer preventative effects. Knowledge of the individual tocopherols could help to understand their roles in various metabolic pathways. This review summarizes the recent trends in sample pretreatment, liquid chromatography and selected applications of the determination of tocopherols in various biological materials. The relationship between tocopherol isomers and serious diseases is also described. Graphical Abstract Article structure.

  14. Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.

    Science.gov (United States)

    Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A

    2014-11-01

    Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.

  15. Scientific Technological Report 2002

    International Nuclear Information System (INIS)

    Gayoso C, C.; Cuya G, T.; Robles N, A.; Prado C, A.

    2003-07-01

    This annual scientific-technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2002. This report includes 58 papers divided in 10 subject matters: physics and nuclear chemistry, nuclear engineering, materials, industrial applications, biological applications, medical applications, environmental applications, protection and radiological safety, nuclear safety, and management aspects

  16. Scientific communication

    Directory of Open Access Journals (Sweden)

    Aleksander Kobylarek

    2017-09-01

    Full Text Available The article tackles the problem of models of communication in science. The formal division of communication processes into oral and written does not resolve the problem of attitude. The author defines successful communication as a win-win game, based on the respect and equality of the partners, regardless of their position in the world of science. The core characteristics of the process of scientific communication are indicated , such as openness, fairness, support, and creation. The task of creating the right atmosphere for science communication belongs to moderators, who should not allow privilege and differentiation of position to affect scientific communication processes.

  17. Scientific millenarianism

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1997-01-01

    Today, for the first time, scientific concerns are seriously being addressed that span future times--hundreds, even thousands, or more years in the future. One is witnessing what the author calls scientific millenarianism. Are such concerns for the distant future exercises in futility, or are they real issues that, to the everlasting gratitude of future generations, this generation has identified, warned about and even suggested how to cope with in the distant future? Can the four potential catastrophes--bolide impact, CO 2 warming, radioactive wastes and thermonuclear war--be avoided by technical fixes, institutional responses, religion, or by doing nothing? These are the questions addressed in this paper

  18. Scientific meetings

    International Nuclear Information System (INIS)

    1973-01-01

    One of the main aims of the IAEA is to foster the exchange of scientific and technical information and one of the main ways of doing this is to convene international scientific meetings. They range from large international conferences bringing together several hundred scientists, smaller symposia attended by an average of 150 to 250 participants and seminars designed to instruct rather than inform, to smaller panels and study groups of 10 to 30 experts brought together to advise on a particular programme or to develop a set of regulations. The topics of these meetings cover every part of the Agency's activities and form a backbone of many of its programmes. (author)

  19. Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework.

    Science.gov (United States)

    Carvalho, Marta; Sepodes, Bruno; Martins, Ana Paula

    2017-01-01

    Advanced therapy medicinal products (ATMPs) have a massive potential to address existing unmet medical needs. Specifically, gene therapy medicinal products (GTMPs) may potentially provide cure for several genetic diseases. In Europe, the ATMP regulation was fully implemented in 2009 and, at this point, the Committee for Advanced Therapies was created as a dedicated group of specialists to evaluate medicinal products requiring specific expertise in this area. To date, there are three authorized GTMPs, and the first one was approved in 2012. Broad research has been conducted in this field over the last few decades and different clinical applications are being investigated worldwide, using different strategies that range from direct gene replacement or addition to more complex pathways such as specific gene editing or RNA targeting. Important safety risks, limited efficacy, manufacturing hurdles, or ethical conflicts may represent challenges in the success of a candidate GTMP. During the development process, it is fundamental to take such aspects into account and establish overcoming strategies. This article reviews the current European legal framework of ATMPs, provides an overview of the clinical applications for approved and investigational GTMPs, and discusses critical challenges in the development of GTMPs.

  20. Regulatory and Scientific Advancements in Gene Therapy: State-of-the-Art of Clinical Applications and of the Supporting European Regulatory Framework

    Directory of Open Access Journals (Sweden)

    Marta Carvalho

    2017-10-01

    Full Text Available Advanced therapy medicinal products (ATMPs have a massive potential to address existing unmet medical needs. Specifically, gene therapy medicinal products (GTMPs may potentially provide cure for several genetic diseases. In Europe, the ATMP regulation was fully implemented in 2009 and, at this point, the Committee for Advanced Therapies was created as a dedicated group of specialists to evaluate medicinal products requiring specific expertise in this area. To date, there are three authorized GTMPs, and the first one was approved in 2012. Broad research has been conducted in this field over the last few decades and different clinical applications are being investigated worldwide, using different strategies that range from direct gene replacement or addition to more complex pathways such as specific gene editing or RNA targeting. Important safety risks, limited efficacy, manufacturing hurdles, or ethical conflicts may represent challenges in the success of a candidate GTMP. During the development process, it is fundamental to take such aspects into account and establish overcoming strategies. This article reviews the current European legal framework of ATMPs, provides an overview of the clinical applications for approved and investigational GTMPs, and discusses critical challenges in the development of GTMPs.

  1. Combination of ozonation, activated carbon, and biological aerated filter for advanced treatment of dyeing wastewater for reuse.

    Science.gov (United States)

    Zou, Xiao-Ling

    2015-06-01

    Laboratorial scale experiments were performed to investigate and evaluate the performance and removal characteristics of organics, color, and genotoxicity by an integrated process including ozonation, activated carbon (AC), and biological aerated filter (BAF) for recycling biotreated dyeing wastewater (BTDW) collected from a cotton textile factory. Influent chemical oxygen demand (COD) in the range of 156 - 252 mg/L, 5-day biochemical oxygen demand (BOD5) of 13.5 - 21.7 mg/L, and color of 58 - 76° were observed during the 20-day continuous operation. Outflows with average COD of 43 mg/L, BOD5 of 6.6 mg/L, and color of 5.6° were obtained after being decontaminated by the hybrid system with ozone dosage of 0.25 mg O3applied/mg COD0, 40 min ozonation contact time, 30 min hydraulic retention time (HRT) for AC treatment, and 2.5 h HRT for BAF treatment. More than 82 % of the genotoxicity of BTDW was eliminated in the ozonation unit. The genotoxicity of the BAF effluent was less than 1.33 μg 4-nitroquinoline-N-oxide/L. Ozonation could change the organics molecular structures, destroy chromophores, increase the biodegradability, and obviously reduce the genotoxicity of BTDW. Results showed that the combined process could guarantee water reuse with high quality.

  2. Advanced image processing methods as a tool to map and quantify different types of biological soil crust

    Science.gov (United States)

    Rodríguez-Caballero, Emilio; Escribano, Paula; Cantón, Yolanda

    2014-04-01

    Biological soil crusts (BSCs) modify numerous soil surface properties and affect many key ecosystem processes. As BSCs are considered one of the most important components of semiarid ecosystems, accurate characterisation of their spatial distribution is increasingly in demand. This paper describes a novel methodology for identifying the areas dominated by different types of BSCs and quantifying their relative cover at subpixel scale in a semiarid ecosystem of SE Spain. The approach consists of two consecutive steps: (i) First, Support Vector Machine (SVM) classification to identify the main ground units, dominated by homogenous surface cover (bare soil, cyanobacteria BSC, lichen BSC, green and dry vegetation), which are of strong ecological relevance. (ii) Spectral mixture analysis (SMA) of the ground units to quantify the proportion of each type of surface cover within each pixel, to correctly characterize the complex spatial heterogeneity inherent to semiarid ecosystems. SVM classification showed very good results with a Kappa coefficient of 0.93%, discriminating among areas dominated by bare soil, cyanobacteria BSC, lichen BSC, green and dry vegetation. Subpixel relative abundance images achieved relatively high accuracy for both types of BSCs (about 80%), whereas general overestimation of vegetation was observed. Our results open the possibility of introducing the effect of presence and of relative cover of BSCs in spatially distributed hydrological and ecological models, and assessment and monitoring aimed at reducing degradation in these areas.

  3. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, C., E-mail: christian.koehler@tudor.lu [Public Research Centre Henri Tudor/Resource Centre for Environmental Technologies, 66 rue de Luxembourg, BP 144, L-4002 Esch-sur-Alzette (Luxembourg); Venditti, S.; Igos, E.; Klepiszewski, K.; Benetto, E.; Cornelissen, A. [Public Research Centre Henri Tudor/Resource Centre for Environmental Technologies, 66 rue de Luxembourg, BP 144, L-4002 Esch-sur-Alzette (Luxembourg)

    2012-11-15

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H{sub 2}O{sub 2} to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H{sub 2}O{sub 2} as AOP. The 'conventional' cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process.

  4. Advanced computational biology methods identify molecular switches for malignancy in an EGF mouse model of liver cancer.

    Directory of Open Access Journals (Sweden)

    Philip Stegmaier

    Full Text Available The molecular causes by which the epidermal growth factor receptor tyrosine kinase induces malignant transformation are largely unknown. To better understand EGFs' transforming capacity whole genome scans were applied to a transgenic mouse model of liver cancer and subjected to advanced methods of computational analysis to construct de novo gene regulatory networks based on a combination of sequence analysis and entrained graph-topological algorithms. Here we identified transcription factors, processes, key nodes and molecules to connect as yet unknown interacting partners at the level of protein-DNA interaction. Many of those could be confirmed by electromobility band shift assay at recognition sites of gene specific promoters and by western blotting of nuclear proteins. A novel cellular regulatory circuitry could therefore be proposed that connects cell cycle regulated genes with components of the EGF signaling pathway. Promoter analysis of differentially expressed genes suggested the majority of regulated transcription factors to display specificity to either the pre-tumor or the tumor state. Subsequent search for signal transduction key nodes upstream of the identified transcription factors and their targets suggested the insulin-like growth factor pathway to render the tumor cells independent of EGF receptor activity. Notably, expression of IGF2 in addition to many components of this pathway was highly upregulated in tumors. Together, we propose a switch in autocrine signaling to foster tumor growth that was initially triggered by EGF and demonstrate the knowledge gain form promoter analysis combined with upstream key node identification.

  5. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: A comparative assessment

    International Nuclear Information System (INIS)

    Köhler, C.; Venditti, S.; Igos, E.; Klepiszewski, K.; Benetto, E.; Cornelissen, A.

    2012-01-01

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H 2 O 2 to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC–MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H 2 O 2 as AOP. The “conventional” cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process.

  6. Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment.

    Science.gov (United States)

    Köhler, C; Venditti, S; Igos, E; Klepiszewski, K; Benetto, E; Cornelissen, A

    2012-11-15

    UV irradiation technology as a membrane bioreactor (MBR) post-treatment was investigated and assessed. Both UV low pressure (LP) and medium pressure (MP) lamps were examined. The technology was installed in a pilot plant treating hospital wastewater to provide the study with adequate field data. The effect of the UV irradiation was enhanced with varying dosages of H2O2 to establish an advanced oxidation process (AOP). The efficiency of the pharmaceutical removal process was assessed by examining 14 micropollutants (antibiotics, analgesics, anticonvulsants, beta-blockers, cytostatics and X-ray contrast media) which are typically released by hospitals and detected with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS). While the MBR treatment generally showed only a low degradation capacity for persistent pharmaceuticals, much better degradation was obtained by applying UV irradiation and H2O2 as AOP. The "conventional" cost-benefit analysis of the different technology options taking into account both electrical energy consumption and pharmaceutical removal efficiency, revealed clearly better performance of low pressure UV lamps as AOP. However, a holistic comparison between the different scenarios was carried out by evaluating their environmental impacts using the life cycle assessment (LCA) methodology. Decisive advantages were highlighted to include this approach in the decision making process. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Strategies for application of scientific findings in prevention.

    Science.gov (United States)

    Wei, S H

    1995-07-01

    Dental research in the last 50 years has accomplished numerous significant advances in preventive dentistry, particularly in the area of research in fluorides, periodontal diseases, restorative dentistry, and dental materials, as well as craniofacial development and molecular biology. The transfer of scientific knowledge to clinical practitioners requires additional effort. It is the responsibility of the scientific communities to transfer the fruits of their findings to society through publications, conferences, media, and the press. Specific programs that the International Association for Dental Research (IADR) has developed to transmit science to the profession and the public have included science transfer seminars, the Visiting Lecture Program, and hands-on workshops. The IADR Strategic Plan also has a major outreach goal. In addition, the Federation Dentaire Internationale (FDI) and the World Health Organization (WHO) have initiated plans to celebrate World Health Day and the Year of Oral Health in 1994. These are important strategies for the application of scientific findings in prevention.

  8. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  9. Integrated biological and advanced oxidation based treatment of hexamine bearing wastewater: Effect of cow-dung as a co-substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Mandeep Kumar; Mittal, Atul K., E-mail: akmittal@civil.iitd.ac.in

    2016-05-05

    Highlights: • Treatment by biological process and Fenton’s reagent. • Cow dung as co-substrate. • Hydrolysis of wastewater improved treatment. - Abstract: This work examines the treatment of hexamethylenetetramine (HMT) bearing effluent from N, N-dinitroso pentamethylene tetra-mine producing industrial plants in India. Chemical treatment using Fenton’s reagent and aerobic treatment using batch reactors with co-substrate were investigated. Aerobic batch reactors integrated with advanced oxidation process of Fenton’s reagent provides effective treatment of HMT effluents. Influence of Fenton’s reagent dose reaction/contact and effect of varying co-substrate with effluent initial concentration was observed. Higher dose 100 mL of Fenton’s reagent with higher reaction time 20 h resulted better degradation (34.88%) of wastewater. HMT hydrolyzes in acidic environment to ammonia and formaldehyde. Formaldehyde under normal conditions is toxic for biological treatment processes. When hydrolysis and acidification in the reactors are accompanied by low pH, aerobic batch reactors with use of co-substrates glucose, sucrose, and cow-dung extract separately in different proportion to wastewater ranging from 0.67 to 4.00, degraded wastewater effectively. Higher proportion of co-substrate to wastewater resulted better degradation. The relationships between nitrate, pH, turbidity and COD are discussed.

  10. Advanced organic and biological analysis of dual media filtration used as a pretreatment in a full-scale seawater desalination plant

    KAUST Repository

    Jeong, Sanghyun; Vollprecht, Robert; Cho, Kyungjin; Leiknes, TorOve; Vigneswaran, Saravanamuthu; Bae, Hyokwan; Lee, Seockheon

    2016-01-01

    Dual media filter (DMF) is being used as a primary pretreatment to remove particulate foulants at seawater desalination plants. However, many plants experience organic and biological fouling. The first part of this paper focuses on the monitoring of organic and biological foulants using advanced analytical techniques to optimize functioning of DMF at Perth Seawater Desalination Plant (PSDP) in Western Australia. In addition, microbial community analysis in DMF filtered seawater, and on DMF media (DMF-M) and cartridge filter (CF) was conducted using terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing. In the full-scale DMF system, the bacterial community structure was clustered along with the filtration time and sampling positions. For the DMF effluent samples, the bacterial community structure significantly shifted after 4 h of filtration time, which corresponded with the permeability reduction trend. The dominant bacterial communities in the DMF effluent were OTU 13 (Phaeobacter) and OTU 19 (Oceaniserpentilla). The different biofilm-forming bacteria communities were found in the biofilm samples on DMF-M and CF. In the second part of the study, semi-pilot scale DMF columns were operated on-site under same operating conditions used in PSDP. It demonstrated the advantage of operating DMF at the biofiltration mode for improving the reduction of biofoulants. © 2016 Elsevier B.V.

  11. Advanced organic and biological analysis of dual media filtration used as a pretreatment in a full-scale seawater desalination plant

    KAUST Repository

    Jeong, Sanghyun

    2016-02-19

    Dual media filter (DMF) is being used as a primary pretreatment to remove particulate foulants at seawater desalination plants. However, many plants experience organic and biological fouling. The first part of this paper focuses on the monitoring of organic and biological foulants using advanced analytical techniques to optimize functioning of DMF at Perth Seawater Desalination Plant (PSDP) in Western Australia. In addition, microbial community analysis in DMF filtered seawater, and on DMF media (DMF-M) and cartridge filter (CF) was conducted using terminal restriction fragment length polymorphism (T-RFLP) and 454-pyrosequencing. In the full-scale DMF system, the bacterial community structure was clustered along with the filtration time and sampling positions. For the DMF effluent samples, the bacterial community structure significantly shifted after 4 h of filtration time, which corresponded with the permeability reduction trend. The dominant bacterial communities in the DMF effluent were OTU 13 (Phaeobacter) and OTU 19 (Oceaniserpentilla). The different biofilm-forming bacteria communities were found in the biofilm samples on DMF-M and CF. In the second part of the study, semi-pilot scale DMF columns were operated on-site under same operating conditions used in PSDP. It demonstrated the advantage of operating DMF at the biofiltration mode for improving the reduction of biofoulants. © 2016 Elsevier B.V.

  12. Integrated biological and advanced oxidation based treatment of hexamine bearing wastewater: Effect of cow-dung as a co-substrate

    International Nuclear Information System (INIS)

    Gupta, Mandeep Kumar; Mittal, Atul K.

    2016-01-01

    Highlights: • Treatment by biological process and Fenton’s reagent. • Cow dung as co-substrate. • Hydrolysis of wastewater improved treatment. - Abstract: This work examines the treatment of hexamethylenetetramine (HMT) bearing effluent from N, N-dinitroso pentamethylene tetra-mine producing industrial plants in India. Chemical treatment using Fenton’s reagent and aerobic treatment using batch reactors with co-substrate were investigated. Aerobic batch reactors integrated with advanced oxidation process of Fenton’s reagent provides effective treatment of HMT effluents. Influence of Fenton’s reagent dose reaction/contact and effect of varying co-substrate with effluent initial concentration was observed. Higher dose 100 mL of Fenton’s reagent with higher reaction time 20 h resulted better degradation (34.88%) of wastewater. HMT hydrolyzes in acidic environment to ammonia and formaldehyde. Formaldehyde under normal conditions is toxic for biological treatment processes. When hydrolysis and acidification in the reactors are accompanied by low pH, aerobic batch reactors with use of co-substrates glucose, sucrose, and cow-dung extract separately in different proportion to wastewater ranging from 0.67 to 4.00, degraded wastewater effectively. Higher proportion of co-substrate to wastewater resulted better degradation. The relationships between nitrate, pH, turbidity and COD are discussed.

  13. Mechanical, Biological and Electrochemical Investigations of Advanced Micro/Nano Materials for Tissue Engineering and Energy Storage

    Science.gov (United States)

    Pu, Juan

    Various micro/nano materials have been extensively studied for applications in tissue engineering and energy storage. Tissue engineering seeks to repair or replace damaged tissue by integrating approaches from cellular/molecular biology and material chemistry/engineering. A major challenge is the consistent design of three-dimensional (3D) scaffolds that mimic the structure and biological functions of extracellular matrix (ECM), guide cell migration, provide mechanical support, and regulate cell activity. Electrospun micro/nanofibers have been investigated as promising tissue engineering scaffolds because they resemble native ECM and possess tunable surface morphologies. Supercapacitors, one of the energy storage devices, bridge the performance gap between rechargeable batteries and conventional capacitors. Active electrode materials of supercapacitors must possess high specific surface area, high conductivity, and good electrochemical properties. Carbon-based micro/nano-particles, such as graphene, activated carbon (AC), and carbon nanotubes, are commonly used as active electrode materials for storing charge in supercapacitors by the electrical double layer mechanism due to their high specific surface area and excellent conductivity. In this thesis, the mechanical properties of electrospun bilayer microfibrous membranes were investigated for potential applications in tissue engineering. Bilayer microfibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning using a parallel-disk mandrel configuration, which resulted in the sequential deposition of a layer with aligned fibers (AFL) across the two parallel disks and a layer with random fibers (RFL), both deposited by a single process step. The membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, the bilayer membranes exhibited higher porosity than the

  14. Quality in Online Courses: Technical Production Regarding Clinical Biochemistry Online Course Performed by Students in Advanced Learning in Scientific Education Discipline

    Directory of Open Access Journals (Sweden)

    W.B. Maia

    2011-04-01

    Full Text Available It is important to consider quality and efficacy concerning online courses. This study was accomplished with Master’s students in order to promote technical production regardingClinical Biochemistry online course. In web, www.bioq.educacao.biz, it was accessible strategic and organizational management training in distance learning course. Enrolled students(7, monitors (3 and the manager (1 have made use of thevirtual environment asa channel of communication as well as to construct the extension course (80 hours. Some strategies were discussed and planned for the purpose of a significant apprenticeship. In all, there were 173 standard contents available, which were 4 audiovisual presentations, 13 debating forums, 1 chat, 10 classes,77 scientific articles, 30 tests, 3 glossaries, 1 mini-library, 18 links, 3 texts and 13 folders. Although the managerwas not responsible for the construction ofthe contents, system reports have shown that the manager’s attendance and permanence online were three times superior to other users. It once more revealed that new Information and Communication Technologies(ICTs requires from the manager to plan an efficient pedagogical orientation.

  15. Nuclear Physics Exascale Requirements Review: An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Nuclear Physics, June 15 - 17, 2016, Gaithersburg, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Savage, Martin J. [Univ. of Washington, Seattle, WA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Energy Sciences Network (ESnet), Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Energy Sciences Network (ESnet), Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS); Rotman, Lauren [Energy Sciences Network (ESnet), Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Avakian, Harut [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ayyad, Yassid [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy. National Superconducting Cyclotron Lab.; Bass, Steffen A. [Duke Univ., Durham, NC (United States); Bazin, Daniel [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy. National Superconducting Cyclotron Lab.; Boehnlein, Amber [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Bollen, Georg [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams; Broussard, Leah J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Calder, Alan [Stony Brook Univ., NY (United States); Couch, Sean [Michigan State Univ., East Lansing, MI (United States); Couture, Aaron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cromaz, Mario [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Detwiler, Jason [Univ. of Washington, Seattle, WA (United States); Duan, Huaiyu [Univ. of New Mexico, Albuquerque, NM (United States); Edwards, Robert [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Engel, Jonathan [Univ. of North Carolina, Chapel Hill, NC (United States); Fryer, Chris [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fuller, George M. [Univ. of California, San Diego, CA (United States); Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gavalian, Gagik [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Georgobiani, Dali [Michigan State Univ., East Lansing, MI (United States); Gupta, Rajan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyurjyan, Vardan [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hausmann, Marc [Michigan State Univ., East Lansing, MI (United States); Heyes, Graham [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hix, W. Ralph [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); ito, Mark [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Jansen, Gustav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jones, Richard [Univ. of Connecticut, Storrs, CT (United States); Joo, Balint [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Kaczmarek, Olaf [Bielefeld Univ. (Germany); Kasen, Dan [Univ. of California, Berkeley, CA (United States); Kostin, Mikhail [Michigan State Univ., East Lansing, MI (United States); Kurth, Thorsten [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center; Lauret, Jerome [Brookhaven National Lab. (BNL), Upton, NY (United States); Lawrence, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Michigan State Univ., East Lansing, MI (United States); Lin, Meifeng [Brookhaven National Lab. (BNL), Upton, NY (United States); Mantica, Paul [Michigan State Univ., East Lansing, MI (United States); Maris, Peter [Iowa State Univ., Ames, IA (United States); Messer, Bronson [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mittig, Wolfgang [Michigan State Univ., East Lansing, MI (United States); Mosby, Shea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukherjee, Swagato [Brookhaven National Lab. (BNL), Upton, NY (United States); Nam, Hai Ah [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); navratil, Petr [Tri-Univ. Meson Facility (TRIUMF), Vancouver, BC (Canada); Nazarewicz, Witek [Michigan State Univ., East Lansing, MI (United States); Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); O' Donnell, Tommy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Pellemoine, Frederique [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams; Petreczky, Peter [Brookhaven National Lab. (BNL), Upton, NY (United States); Pieper, Steven C. [Argonne National Lab. (ANL), Argonne, IL (United States); Pinkenburg, Christopher H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Plaster, Brad [Univ. of Kent,Canterbury (United Kingdom); Porter, R. Jefferson [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Portillo, Mauricio [Michigan State Univ., East Lansing, MI (United States). Facility for Rare Isotope Beams; Pratt, Scott [Michigan State Univ., East Lansing, MI (United States); Purschke, Martin L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Qiang, Ji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Quaglioni, Sofia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Richards, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Yves [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Schenke, Bjorn [Brookhaven National Lab. (BNL), Upton, NY (United States); Schiavilla, Rocco [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Schlichting, Soren [Brookhaven National Lab. (BNL), Upton, NY (United States); Schunck, Nicolas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Steinbrecher, Patrick [Brookhaven National Lab. (BNL), Upton, NY (United States); Strickland, Michael [Kent State Univ., Kent, OH (United States); Syritsyn, Sergey [Stony Brook Univ., NY (United States); Terzic, Balsa [Old Dominion Univ., Norfolk, VA (United States); Varner, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Wild, Stefan [Argonne National Lab. (ANL), Argonne, IL (United States); Winter, Frank [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zegers, Remco [Michigan State Univ., East Lansing, MI (United States); Zhang, He [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Ziegler, Veronique [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zingale, Michael [Stony Brook Univ., NY (United States)

    2017-02-28

    Imagine being able to predict — with unprecedented accuracy and precision — the structure of the proton and neutron, and the forces between them, directly from the dynamics of quarks and gluons, and then using this information in calculations of the structure and reactions of atomic nuclei and of the properties of dense neutron stars (NSs). Also imagine discovering new and exotic states of matter, and new laws of nature, by being able to collect more experimental data than we dream possible today, analyzing it in real time to feed back into an experiment, and curating the data with full tracking capabilities and with fully distributed data mining capabilities. Making this vision a reality would improve basic scientific understanding, enabling us to precisely calculate, for example, the spectrum of gravity waves emitted during NS coalescence, and would have important societal applications in nuclear energy research, stockpile stewardship, and other areas. This review presents the components and characteristics of the exascale computing ecosystems necessary to realize this vision.

  16. Nuclear Physics Exascale Requirements Review: An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Nuclear Physics, June 15 - 17, 2016, Gaithersburg, Maryland

    International Nuclear Information System (INIS)

    Carlson, Joseph; Savage, Martin J.; Gerber, Richard; Antypas, Katie; Bard, Deborah; Coffey, Richard; Dart, Eli; Dosanjh, Sudip; Hack, James; Monga, Inder; Papka, Michael E.; Riley, Katherine; Rotman, Lauren; Straatsma, Tjerk; Wells, Jack; Avakian, Harut; Ayyad, Yassid; Bazin, Daniel; Bollen, Georg; Calder, Alan; Couch, Sean; Couture, Aaron; Cromaz, Mario; Detmold, William; Detwiler, Jason; Duan, Huaiyu; Edwards, Robert; Engel, Jonathan; Fryer, Chris; Fuller, George M.; Gandolfi, Stefano; Gavalian, Gagik; Georgobiani, Dali; Gupta, Rajan; Gyurjyan, Vardan; Hausmann, Marc; Heyes, Graham; Hix, W. Ralph; Ito, Mark; Jansen, Gustav; Jones, Richard; Joo, Balint; Kaczmarek, Olaf; Kasen, Dan; Kostin, Mikhail; Kurth, Thorsten; Lawrence, David; Lin, Huey-Wen; Lin, Meifeng; Mantica, Paul; Maris, Peter; Messer, Bronson; Mittig, Wolfgang; Mosby, Shea; Mukherjee, Swagato; Nam, Hai Ah; Navratil, Petr; Nazarewicz, Witek; Ng, Esmond; O'Donnell, Tommy; Orginos, Konstantinos; Pellemoine, Frederique; Pieper, Steven C.; Pinkenburg, Christopher H.; Plaster, Brad; Porter, R. Jefferson; Portillo, Mauricio; Purschke, Martin L.; Qiang, Ji; Quaglioni, Sofia; Richards, David; Roblin, Yves; Schenke, Bjorn; Schiavilla, Rocco; Schlichting, Soren; Schunck, Nicolas; Steinbrecher, Patrick; Strickland, Michael; Syritsyn, Sergey; Terzic, Balsa; Varner, Robert; Vary, James; Wild, Stefan; Winter, Frank; Zegers, Remco; Zhang, He; Ziegler, Veronique; Zingale, Michael

    2017-01-01

    Imagine being able to predict - with unprecedented accuracy and precision - the structure of the proton and neutron, and the forces between them, directly from the dynamics of quarks and gluons, and then using this information in calculations of the structure and reactions of atomic nuclei and of the properties of dense neutron stars (NSs). Also imagine discovering new and exotic states of matter, and new laws of nature, by being able to collect more experimental data than we dream possible today, analyzing it in real time to feed back into an experiment, and curating the data with full tracking capabilities and with fully distributed data mining capabilities. Making this vision a reality would improve basic scientific understanding, enabling us to precisely calculate, for example, the spectrum of gravity waves emitted during NS coalescence, and would have important societal applications in nuclear energy research, stockpile stewardship, and other areas. This review presents the components and characteristics of the exascale computing ecosystems necessary to realize this vision.

  17. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. II. Scientific program and experimental instrumentation

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, S.; Eng., P.J.; Jaski, Y.R.; Lazaraz, N.; Pluth, J.; Murray, P.; Rarback, H.; Rivers, M. [CARS, 5640 S. Ellis Avenue, University of Chicago, Chicago, IL (United States)

    1996-09-01

    The GSECARS (APS sector 13) scientific program will provide fundamental new information on the deep structure and composition of the Earth and other planets, the formation of economic mineral deposits, the cycles and fate of toxic metals in the environment, and the mechanisms of nutrient uptake and disease in plants. In the four experimental stations (2 per beamline), scientists will have access to three main x-ray techniques: diffraction (microcrystal, powder, diamond anvil cell, and large volume press), fluorescence microprobe, and spectroscopy (conventional, microbeam, liquid and solid surfaces). The high pressure facilities will be capable of x-ray crystallography at P{approx_gt}360 GPa and T{approximately}6000 K with the diamond anvil cell and P{approximately}25 GPa and T{approximately}2500{degree}C with the large volume press. Diffractometers will allow study of 1 micrometer crystals and micro-powders. The microprobe (1 micrometer focused beam) will be capable of chemical analyses in the sub-ppm range using wavelength and energy dispersive detectors. Spectroscopy instrumentation will be available for XANES and EXAFS with microbeams as well as high sensitivity conventional XAS and studies of liquid and solid interfaces. Visiting scientists will be able to setup, calibrate, and test experiments in off-line laboratories with equipment such as micromanipulators, optical microscopes, clean bench, glove boxes, high powered optical and Raman spectrometers. {copyright} {ital 1996 American Institute of Physics.}

  18. Differential Equations Models in Biology, Epidemiology and Ecology

    CERN Document Server

    Martelli, Mario

    1991-01-01

    The past forty years have been the stage for the maturation of mathematical biolo~ as a scientific field. The foundations laid by the pioneers of the field during the first half of this century have been combined with advances in ap­ plied mathematics and the computational sciences to create a vibrant area of scientific research with established research journals, professional societies, deep subspecialty areas, and graduate education programs. Mathematical biology is by its very nature cross-disciplinary, and research papers appear in mathemat­ ics, biology and other scientific journals, as well as in the specialty journals devoted to mathematical and theoretical biology. Multiple author papers are common, and so are collaborations between individuals who have academic bases in different traditional departments. Those who seek to keep abreast of current trends and problems need to interact with research workers from a much broader spectrum of fields than is common in the traditional mono-culture discipline...

  19. Advanced oxidation protein products and malondialdehyde - the new biological markers of oxidative stress - are elevated in postmenopausal women.

    Science.gov (United States)

    Cakir, Tansel; Goktas, Bulent; Mutlu, Mehmet F; Mutlu, Ilknur; Bilgihan, Ayse; Erdem, Mehmet; Erdem, Ahmet

    2016-01-01

    The aim of the study was to measure advanced oxidation protein products (AOPPs) as markers for oxidative stress to evaluate cardiovascular risk in pre- and postmenopausal women and to compare the results with malondialde-hyde (MDA) levels. Twenty premenopausal women and 84 naturally postmenopausal patients were enrolled in the study. AOPP and MDA plasma levels were measured. The postmenopausal group was further subdivided into two groups: postmenopausal age of 40-49 and of 50-59 years. AOPP and MDA levels were compared between premenopausal, 40-49 and 50-59 year old menopausal women. Plasma AOPP and MDA levels in postmenopausal women were increased when compared with their premeno-pausal peers (123.83 ± 55.51 μmol/L vs. 61.59 ± 16.42 μmol/L and 6.50 ± 1.05 μmol/L vs. 5.98 ± 0.77 μmol/L; respectively). Mean plasma AOPP levels in the two menopausal age groups were both significantly higher from the premenopausal group (118.64 ± 59.1 μmol/L vs. 61.59 ± 16.42 μmol/L and 132.31 ± 48.97 μmol/L vs. 61.59 ± 16.42 μmol/L; respectively). No significant difference was found in mean AOPP levels between postmenopausal subjects of 40-49 and 50-59 years age (118.64 ± 59.12 μmol/L vs. 132.31 ± 48.97 μmol/L). Mean plasma MDA levels of each of two postmenopausal age groups were both significantly higher from the premenopausal group (6.50 ± 1.04 μmol/L vs. 5.98 ± 0.77 μmol/L and 6.50 ± 1.10 μmol/L vs. 5.98 ± 0.77 μmol/L; respectively). However, no statistically significant difference between the two postmenopausal age groups (6.50 ± 1.04 μmol/L vs. 6.50 ± 1.10 μmol/L) was found. AOPP and MDA levels are elevated in postmenopausal women as compared to their premenopausal peers, suggesting they can be used as markers for cardiovascular risk in postmenopausal women.

  20. California Earthquake Clearinghouse: Advocating for, and Advancing, Collaboration and Technology Interoperability, Between the Scientific and Emergency Response Communities, to Produce Actionable Intelligence for Situational Awareness, and Decision Support

    Science.gov (United States)

    Rosinski, A.; Beilin, P.; Colwell, J.; Hornick, M.; Glasscoe, M. T.; Morentz, J.; Smorodinsky, S.; Millington, A.; Hudnut, K. W.; Penn, P.; Ortiz, M.; Kennedy, M.; Long, K.; Miller, K.; Stromberg, M.

    2015-12-01

    The Clearinghouse provides emergency management and response professionals, scientific and engineering communities with prompt information on ground failure, structural damage, and other consequences from significant seismic events such as earthquakes or tsunamis. Clearinghouse activations include participation from Federal, State and local government, law enforcement, fire, EMS, emergency management, public health, environmental protection, the military, public and non-governmental organizations, and private sector. For the August 24, 2014 S. Napa earthquake, over 100 people from 40 different organizations participated during the 3-day Clearinghouse activation. Every organization has its own role and responsibility in disaster response; however all require authoritative data about the disaster for rapid hazard assessment and situational awareness. The Clearinghouse has been proactive in fostering collaboration and sharing Essential Elements of Information across disciplines. The Clearinghouse-led collaborative promotes the use of standard formats and protocols to allow existing technology to transform data into meaningful incident-related content and to enable data to be used by the largest number of participating Clearinghouse partners, thus providing responding personnel with enhanced real-time situational awareness, rapid hazard assessment, and more informed decision-making in support of response and recovery. The Clearinghouse efforts address national priorities outlined in USGS Circular 1242, Plan to Coordinate NEHRP post-earthquake investigations and S. 740-Geospatial Data Act of 2015, Sen. Orrin Hatch (R-UT), to streamline and coordinate geospatial data infrastructure, maximizing geospatial data in support of the Robert T. Stafford Act. Finally, the US Dept. of Homeland Security, Geospatial Management Office, recognized Clearinghouse's data sharing efforts as a Best Practice to be included in the forthcoming 2015 HLS Geospatial Concept of Operations.

  1. An advanced educational program for nuclear professionals with social scientific literacy. A collaborative initiative by UC Berkeley and Univ. of Tokyo on the Fukushima accident

    International Nuclear Information System (INIS)

    Juraku, Kohta; Nagasaki, Shinya; Ahn, Joonhong; Carson, Cathryn; Jensen, Mikael

    2011-01-01

    The authors have collaborated for over three years in developing an advanced educational program to cultivate leading engineers who can productively interact with other stakeholders. The program is organized under a partnership between the Nuclear Engineering Department of University of California, Berkeley (UCBNE) and the Global COE Program 'Nuclear Education and Research Initiative' (GoNERI) of the University of Tokyo, and is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology), Japan. We conducted two 'summer schools' in 2009 and 2010 as trial cases of the educational program. This year, in response to the Fukushima Daiichi nuclear accident, we decided to make our third summer school a venue for preliminary, yet multi-dimensional learning from that event. This school was held in Berkeley, CA, in the first week of August, with 12 lecturers and 18 students from various fields and countries. In this paper, we will explain the concept, aim, and design of our program; do a preliminary assessment of its effectiveness; introduce a couple of intriguing discussions held by participants; and discuss the program's implications for the post-Fukushima nuclear context. (author)

  2. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  3. The categorization of the impacts of the results of scientific and technological innovation in the Agency of Nuclear energy and advanced technologies (AENTA)

    International Nuclear Information System (INIS)

    Rodriguez Cardona, R.; Cobas Aranda, M.

    2010-01-01

    Science and technology are essential to the development of contemporary societies, however, there are different concepts and methodologies internationally to assess the economic and social impact of science and technology. In our country he has worked intensely with this aim and has established a national nomenclature of impact of science, technology and innovation. The Agency of Nuclear energy and advanced technologies (AEN-TA) is intended to improve the management of the programmes and projects management system framed within the system of science and technological innovation of the Republic of Cuba (SCIT) and one of the aspects of your special attention is the proper selection and follow-up (ex - before and during) projects to ensure that they contribute to improving the level of economic and social of our country one of his fundamental premises. This work has aims to show how the bases of the categorization of the impacts of the projects were established in the AEN-Mt management programs, as a management tool for the selection and monitoring of them, and which are characterized by a flexibility that keeping their identity do not differ from the established in the country. (author)

  4. The European Medicines Agency review of Tegafur/Gimeracil/Oteracil (Teysuno™) for the treatment of advanced gastric cancer when given in combination with cisplatin: summary of the Scientific Assessment of the Committee for medicinal products for human use (CHMP).

    Science.gov (United States)

    Matt, Petra; van Zwieten-Boot, Barbara; Calvo Rojas, Gonzalo; Ter Hofstede, Hadewych; Garcia-Carbonero, Rocio; Camarero, Jorge; Abadie, Eric; Pignatti, Francesco

    2011-01-01

    The product Teysuno™ (S-1) contains tegafur, a prodrug of 5-fluorouracil (5-FU), and two modulators of 5-FU metabolism, gimeracil and oteracil. The main clinical study in this application was a randomized controlled study comparing S-1 plus cisplatin with 5-FU plus cisplatin. In this study, median overall survival times of 8.6 months and 7.9 months for S-1 plus cisplatin and 5-FU plus cisplatin, respectively, were observed (hazard ratio, 0.92; 95% confidence interval, 0.80-1.05). The Committee for Medicinal Products for Human Use of the European Medicines Agency concluded that S-1 in combination with cisplatin (75 mg/m²) was noninferior to 5-FU plus cisplatin (100 mg/m²) in patients with advanced gastric cancer and adopted a positive opinion recommending the marketing authorization for this product for the treatment of advanced gastric cancer when given in combination with cisplatin. The recommended dose of S-1 is 25 mg/m² (expressed as tegafur content) twice a day, for 21 consecutive days followed by 7 days rest (one treatment cycle), in combination with 75 mg/m² cisplatin i.v. administered on day 1. This treatment cycle is repeated every 4 weeks. The most common side effects reported in the pivotal study were anemia, neutropenia, vomiting, diarrhea, abdominal pain, weight decrease, anorexia, and fatigue. The objective of this paper is to summarize the scientific review of the application leading to approval in the EU. The full scientific assessment report and the summary of product characteristics are available on the European Medicines Agency website (http://www.ema.europa.eu).

  5. Space Synthetic Biology (SSB)

    Data.gov (United States)

    National Aeronautics and Space Administration — This project focused on employing advanced biological engineering and bioelectrochemical reactor systems to increase life support loop closure and in situ resource...

  6. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  7. Scientific and Technological Report 2010

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Santiago Contreras, Julio; Solis Veliz, Jose; Lopez Moreno, Edith

    2011-10-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2010. This report includes 41 papers divided in 8 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, scientific instrumentation and management aspects. It also includes annexes. (APC)

  8. Scientific and Technological Report 2011

    International Nuclear Information System (INIS)

    Lopez Milla, Alcides; Prado Cuba, Antonio; Agapito Panta, Juan; Montoya Rossi, Eduardo

    2013-01-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2011. This report includes 30 papers divided in 8 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, scientific instrumentation and management aspects. It also includes annexes. (APC)

  9. Computational biology and bioinformatics in Nigeria.

    Science.gov (United States)

    Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-04-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  10. Computational biology and bioinformatics in Nigeria.

    Directory of Open Access Journals (Sweden)

    Segun A Fatumo

    2014-04-01

    Full Text Available Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  11. Establishing a Scientific Basis for Optimizing Compositions, Process Paths and Fabrication Methods for Nanostructured Ferritic Alloys for Use in Advanced Fission Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Odette, G Robert; Cunningham, Nicholas J., Wu, Yuan; Etienne, Auriane; Stergar, Erich; Yamamoto, Takuya

    2012-02-21

    lowest Y2O3 concentration of 0.2 wt.%. An APT characterization of MA957 joined by friction stir welding (FSW) showed that this solid sate joining procedure had only a modest effect on the NF number density (N) and average diameter () compared to an as extruded sample. FSW appears to rearrange the NFs, which become highly aligned with sub-boundary and dislocation structures to an extent that are not observed in the as extruded case. The aligned NF structures are less apparent, but seem to persist after post weld annealing at 1150ºC for 3 h following which reduces N, consistent with a significant reduction in hardness. Lastly, several NFA materials, including MA957 and various 14YWT alloys, have been included in irradiation experiments performed at the Advanced Test Reactor, the JOYO sodium cooled fast reactor, the High Flux Isotope Reactor, and the SINQ spallation neut

  12. Advanced treatment of biologically pretreated coal chemical industry wastewater using the catalytic ozonation process combined with a gas-liquid-solid internal circulating fluidized bed reactor.

    Science.gov (United States)

    Li, Zhipeng; Liu, Feng; You, Hong; Ding, Yi; Yao, Jie; Jin, Chao

    2018-04-01

    This paper investigated the performance of the combined system of catalytic ozonation and the gas-liquid-solid internal circulating fluidized bed reactor for the advanced treatment of biologically pretreated coal chemical industry wastewater (CCIW). The results indicated that with ozonation alone for 60min, the removal efficiency of chemical oxygen demand (COD) could reach 34%. The introduction of activated carbon, pumice, γ-Al 2 O 3 carriers improved the removal performance of COD, and the removal efficiency was increased by 8.6%, 4.2%, 2%, respectively. Supported with Mn, the catalytic performance of activated carbon and γ-Al 2 O 3 were improved significantly with COD removal efficiencies of 46.5% and 41.3%, respectively; however, the promotion effect of pumice supported with Mn was insignificant. Activated carbon supported with Mn had the best catalytic performance. The catalytic ozonation combined system of MnO X /activated carbon could keep ozone concentration at a lower level in the liquid phase, and promote the transfer of ozone from the gas phase to the liquid phase to improve ozonation efficiency.

  13. Effect of advanced oxidation on N-nitrosodimethylamine (NDMA) formation and microbial ecology during pilot-scale biological activated carbon filtration.

    Science.gov (United States)

    Li, Dong; Stanford, Ben; Dickenson, Eric; Khunjar, Wendell O; Homme, Carissa L; Rosenfeldt, Erik J; Sharp, Jonathan O

    2017-04-15

    Water treatment combining advanced oxidative processes with subsequent exposure to biological activated carbon (BAC) holds promise for the attenuation of recalcitrant pollutants. Here we contrast oxidation and subsequent biofiltration of treated wastewater effluent employing either ozone or UV/H 2 O 2 followed by BAC during pilot-scale implementation. Both treatment trains largely met target water quality goals by facilitating the removal of a suite of trace organics and bulk water parameters. N-nitrosodimethylamine (NDMA) formation was observed in ozone fed BAC columns during biofiltration and to a lesser extent in UV/H 2 O 2 fed columns and was most pronounced at 20 min of empty bed contact time (EBCT) when compared to shorter EBCTs evaluated. While microbial populations were highly similar in the upper reaches, deeper samples revealed a divergence within and between BAC filtration systems where EBCT was identified to be a significant environmental predictor for shifts in microbial populations. The abundance of Nitrospira in the top samples of both columns provides an explanation for the oxidation of nitrite and corresponding increases in nitrate concentrations during BAC transit and support interplay between nitrogen cycling with nitrosamine formation. The results of this study demonstrate that pretreatments using ozone versus UV/H 2 O 2 impart modest differences to the overall BAC microbial population structural and functional attributes, and further highlight the need to evaluate NDMA formation prior to full-scale implementation of BAC in potable reuse applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. experimental biology group: summaries of scientific papers

    African Journals Online (AJOL)

    F. E. WARD, PH.D., AND H. F. SEIGLER, M.D., Division of Immunology, Duke University, V.A. Hospital, Durham, North. Carolina ... system have been elucidated. A multi-enzyme ... interaction with acidic serum proteins, gammaglobulin from.

  15. Scientific evaluation at the CEA

    International Nuclear Information System (INIS)

    1999-01-01

    This report presents a statement of the scientific and technical activity of the French atomic energy commission (CEA) for the year 1998. This evaluation is made by external and independent experts and requires some specific dispositions for the nuclear protection and safety institute (IPSN) and for the direction of military applications (DAM). The report is divided into 5 parts dealing successively with: part 1 - the CEA, a public research organization (civil nuclear research, technology research and transfers, defence activities); the scientific and technical evaluation at the CEA (general framework, evaluation of the IPSN and DAM); part 2 - the scientific and technical councils (directions of fuel cycle, of nuclear reactors, and of advanced technologies); part 3 - the scientific councils (directions of matter and of life sciences); the nuclear protection and safety institute; the direction of military applications; part 4 - the corresponding members of the evaluation; part 5 - the list of scientific and technical councils and members. (J.S.)

  16. History and conceptual developments in vascular biology and angiogenesis research: a personal view.

    Science.gov (United States)

    Bikfalvi, Andreas

    2017-11-01

    Vascular biology is an important scientific domain that has gradually penetrated many medical and scientific fields. Scientists are most often focused on present problems in their daily scientific work and lack awareness regarding the evolution of their domain throughout history and of how philosophical issues are related to their research field. In this article, I provide a personal view with an attempt to conceptualize vascular development research that articulates lessons taken from history, philosophy, biology and medicine. I discuss selected aspects related to the history and the philosophy of sciences that can be extracted from the study of vascular development and how conceptual progress in this research field has been made. I will analyze paradigm shifts, cross-fertilization of different fields, technological advances and its impact on angiogenesis and discuss issues related to evolutionary biology, proximity of different molecular systems and scientific methodologies. Finally, I discuss briefly my views where the field is heading in the future.

  17. Tropical Freshwater Biology: Advanced Search

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  18. Scientific computing

    CERN Document Server

    Trangenstein, John A

    2017-01-01

    This is the third of three volumes providing a comprehensive presentation of the fundamentals of scientific computing. This volume discusses topics that depend more on calculus than linear algebra, in order to prepare the reader for solving differential equations. This book and its companions show how to determine the quality of computational results, and how to measure the relative efficiency of competing methods. Readers learn how to determine the maximum attainable accuracy of algorithms, and how to select the best method for computing problems. This book also discusses programming in several languages, including C++, Fortran and MATLAB. There are 90 examples, 200 exercises, 36 algorithms, 40 interactive JavaScript programs, 91 references to software programs and 1 case study. Topics are introduced with goals, literature references and links to public software. There are descriptions of the current algorithms in GSLIB and MATLAB. This book could be used for a second course in numerical methods, for either ...

  19. SCIENTIFIC BASIS OF DENTISTRY

    Directory of Open Access Journals (Sweden)

    Yegane GÜVEN

    2017-10-01

    Full Text Available Technological and scientific innovations have increased exponentially over the past years in the dentistry profession. In this article, these developments are evaluated both in terms of clinical practice and their place in the educational program. The effect of the biologic and digital revolutions on dental education and daily clinical practice are also reviewed. Biomimetics, personalized dental medicine regenerative dentistry, nanotechnology, high-end simulations providing virtual reality, genomic information, and stem cell studies will gain more importance in the coming years, moving dentistry to a different dimension.

  20. Scientific activities 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The scientific activities and achievements of the Nuclear Research Center Democritus for the year 1979 are presented in the form of a list of 78 projects giving title, objectives, commencement year, responsible of each project, developed activities and the pertaining lists of publications. The 15 chapters of this work cover the activities of the main Divisions of the Democritus NRC: Electronics, Biology, Physics, Chemistry, Health Physics, Reactor, Radioisotopes, Environmental Radioactivity, Soil Science, Computer Center, Uranium Exploration, Medical Service, Technological Applications and Training. (T.A.)

  1. Mathematical models in biological discovery

    CERN Document Server

    Walter, Charles

    1977-01-01

    When I was asked to help organize an American Association for the Advancement of Science symposium about how mathematical models have con­ tributed to biology, I agreed immediately. The subject is of immense importance and wide-spread interest. However, too often it is discussed in biologically sterile environments by "mutual admiration society" groups of "theoreticians", many of whom have never seen, and most of whom have never done, an original scientific experiment with the biolog­ ical materials they attempt to describe in abstract (and often prejudiced) terms. The opportunity to address the topic during an annual meeting of the AAAS was irresistable. In order to try to maintain the integrity ;,f the original intent of the symposium, it was entitled, "Contributions of Mathematical Models to Biological Discovery". This symposium was organized by Daniel Solomon and myself, held during the 141st annual meeting of the AAAS in New York during January, 1975, sponsored by sections G and N (Biological and Medic...

  2. Practical scientific computing

    CERN Document Server

    Muhammad, A

    2011-01-01

    Scientific computing is about developing mathematical models, numerical methods and computer implementations to study and solve real problems in science, engineering, business and even social sciences. Mathematical modelling requires deep understanding of classical numerical methods. This essential guide provides the reader with sufficient foundations in these areas to venture into more advanced texts. The first section of the book presents numEclipse, an open source tool for numerical computing based on the notion of MATLAB®. numEclipse is implemented as a plug-in for Eclipse, a leading integ

  3. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Salman [Argonne National Lab. (ANL), Argonne, IL (United States); Roser, Robert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dart, Eli [Esnet, Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Esnet, Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Esnet, Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Williams, Tim [Argonne National Lab. (ANL), Argonne, IL (United States); Almgren, A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Amundson, J. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bailey, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bard, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bloom, Ken [Univ. of Nebraska, Lincoln, NE (United States); Bockelman, Brian [Univ. of Nebraska, Lincoln, NE (United States); Borgland, Anders [SLAC National Accelerator Lab., Menlo Park, CA (United States); Borrill, Julian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Boughezal, Radja [Argonne National Lab. (ANL), Argonne, IL (United States); Brower, Richard [Boston Univ., MA (United States); Cowan, Benjamin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Finkel, Hal [Argonne National Lab. (ANL), Argonne, IL (United States); Frontiere, Nicholas [Argonne National Lab. (ANL), Argonne, IL (United States); Fuess, Stuart [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ge, Lixin [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gnedin, Nick [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Gottlieb, Steven [Indiana Univ., Bloomington, IN (United States); Gutsche, Oliver [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Han, T. [Indiana Univ., Bloomington, IN (United States); Heitmann, Katrin [Argonne National Lab. (ANL), Argonne, IL (United States); Hoeche, Stefan [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ko, Kwok [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kononenko, Oleksiy [SLAC National Accelerator Lab., Menlo Park, CA (United States); LeCompte, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Li, Zheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lukic, Zarija [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mori, Warren [Univ. of California, Los Angeles, CA (United States); Ng, Cho-Kuen [SLAC National Accelerator Lab., Menlo Park, CA (United States); Nugent, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Oleynik, Gene [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); O’Shea, Brian [Michigan State Univ., East Lansing, MI (United States); Padmanabhan, Nikhil [Yale Univ., New Haven, CT (United States); Petravick, Donald [Univ. of Illinois, Urbana, IL (United States). National Center for Supercomputing Applications; Petriello, Frank J. [Argonne National Lab. (ANL), Argonne, IL (United States); Pope, Adrian [Argonne National Lab. (ANL), Argonne, IL (United States); Power, John [Argonne National Lab. (ANL), Argonne, IL (United States); Qiang, Ji [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reina, Laura [Florida State Univ., Tallahassee, FL (United States); Rizzo, Thomas Gerard [SLAC National Accelerator Lab., Menlo Park, CA (United States); Ryne, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schram, Malachi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spentzouris, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Toussaint, Doug [Univ. of Arizona, Tucson, AZ (United States); Vay, Jean Luc [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Viren, B. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wuerthwein, Frank [Univ. of California, San Diego, CA (United States); Xiao, Liling [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-29

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greater — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR

  4. American Institute of Biological Sciences

    Science.gov (United States)

    ... Staff Issues AIBS Position Statements Funding for the Biological Sciences Supporting Scientific Collections Advocating for Research Policy ... Public Policy Leadership Award Graduate students in the biological sciences who have demonstrated initiative and leadership in ...

  5. Carbon Nanomaterials in Biological Studies and Biomedicine.

    Science.gov (United States)

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  7. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women.

  8. Approaches for advancing scientific understanding of macrosystems

    Science.gov (United States)

    Levy, Ofir; Ball, Becky A.; Bond-Lamberty, Ben; Cheruvelil, Kendra S.; Finley, Andrew O.; Lottig, Noah R.; Surangi W. Punyasena,; Xiao, Jingfeng; Zhou, Jizhong; Buckley, Lauren B.; Filstrup, Christopher T.; Keitt, Tim H.; Kellner, James R.; Knapp, Alan K.; Richardson, Andrew D.; Tcheng, David; Toomey, Michael; Vargas, Rodrigo; Voordeckers, James W.; Wagner, Tyler; Williams, John W.

    2014-01-01

    The emergence of macrosystems ecology (MSE), which focuses on regional- to continental-scale ecological patterns and processes, builds upon a history of long-term and broad-scale studies in ecology. Scientists face the difficulty of integrating the many elements that make up macrosystems, which consist of hierarchical processes at interacting spatial and temporal scales. Researchers must also identify the most relevant scales and variables to be considered, the required data resources, and the appropriate study design to provide the proper inferences. The large volumes of multi-thematic data often associated with macrosystem studies typically require validation, standardization, and assimilation. Finally, analytical approaches need to describe how cross-scale and hierarchical dynamics and interactions relate to macroscale phenomena. Here, we elaborate on some key methodological challenges of MSE research and discuss existing and novel approaches to meet them.

  9. Transactions of the Zimbabwe Scientific Association: Advanced ...

    African Journals Online (AJOL)

    Search tips: Search terms are case-insensitive; Common words are ignored; By default only articles containing all terms in the query are returned (i.e., AND is implied); Combine multiple words with OR to find articles containing either term; e.g., education OR research; Use parentheses to create more complex queries; e.g., ...

  10. Scientific and Technological Report 2004

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Robles Nique, Anita; Solis Veliz, Jose; Rodriguez R, Juan

    2005-08-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2004. This report includes 48 papers divided in 6 subject matters, such as: materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects

  11. Treatment of an actual slaughterhouse wastewater by integration of biological and advanced oxidation processes: Modeling, optimization, and cost-effectiveness analysis.

    Science.gov (United States)

    Bustillo-Lecompte, Ciro Fernando; Mehrvar, Mehrab

    2016-11-01

    Biological and advanced oxidation processes are combined to treat an actual slaughterhouse wastewater (SWW) by a sequence of an anaerobic baffled reactor, an aerobic activated sludge reactor, and a UV/H2O2 photoreactor with recycle in continuous mode at laboratory scale. In the first part of this study, quadratic modeling along with response surface methodology are used for the statistical analysis and optimization of the combined process. The effects of the influent total organic carbon (TOC) concentration, the flow rate, the pH, the inlet H2O2 concentration, and their interaction on the overall treatment efficiency, CH4 yield, and H2O2 residual in the effluent of the photoreactor are investigated. The models are validated at different operating conditions using experimental data. Maximum TOC and total nitrogen (TN) removals of 91.29 and 86.05%, respectively, maximum CH4 yield of 55.72%, and minimum H2O2 residual of 1.45% in the photoreactor effluent were found at optimal operating conditions. In the second part of this study, continuous distribution kinetics is applied to establish a mathematical model for the degradation of SWW as a function of time. The agreement between model predictions and experimental values indicates that the proposed model could describe the performance of the combined anaerobic-aerobic-UV/H2O2 processes for the treatment of SWW. In the final part of the study, the optimized combined anaerobic-aerobic-UV/H2O2 processes with recycle were evaluated using a cost-effectiveness analysis to minimize the retention time, the electrical energy consumption, and the overall incurred treatment costs required for the efficient treatment of slaughterhouse wastewater effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Communication; A Scientific American Book.

    Science.gov (United States)

    Scientific American, Inc., New York, NY.

    With present advances in communication technology, profound and qualitative changes in our civilization are taking place--in business and politics, in education, in entertainment, interpersonal relations, and the organization of society itself. In honor of the significance of such developments, an entire issue of "Scientific American" magazine…

  13. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  14. About the scientific names of paraphyletic taxa

    OpenAIRE

    TIMM, Tarmo

    2012-01-01

    The 'naturality' of monophyletic taxa in comparison with that of paraphyletic ones is discussed, with examples from Clitellata. Regular scientific names for paraphyletic taxa are inevitable in a workable biological classification.

  15. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  16. CORRECTION OF CROOKED NOSE | Zaher | Scientific Medical ...

    African Journals Online (AJOL)

    Scientific Medical Journal. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 12, No 2 (2000) >. Log in or Register to get access to full text downloads.

  17. Tropical Freshwater Biology

    African Journals Online (AJOL)

    Tropical Freshwater Biology promotes the publication of scientific contributions in the field of freshwater biology in the tropical and subtropical regions of the world. One issue is published annually but this number may be increased. Original research papers and short communications on any aspect of tropical freshwater ...

  18. Health Psychology Bulletin : Improving Publication Practices to Accelerate Scientific Progress

    NARCIS (Netherlands)

    Peters, Gjalt-jorn Ygram; Kok, Gerjo; Crutzen, Rik; Sanderman, Robbert

    2017-01-01

    The instrument of scientific publishing, originally a necessary tool to enable development of a global science, has evolved relatively little in response to technological advances. Current scientific publishing practices incentivize a number of harmful approaches to research. Health Psychology

  19. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Theresa [Ames Lab., Ames, IA (United States); Banda, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Devereaux, Thomas [SLAC National Accelerator Lab., Menlo Park, CA (United States); White, Julia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Energy Sciences Network (ESNet), Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Energy Sciences Network (ESNet), Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Energy Sciences Network (ESNet), Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baruah, Tunna [Univ. of Texas, El Paso, TX (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Borland, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carter, Emily [Princeton Univ., NJ (United States); Ceperley, David [Univ. of Illinois, Urbana-Champaign, IL (United States); Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States); Chelikowsky, James [Univ. of Texas, Austin, TX (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States); Clark, Aurora [Washington State Univ., Pullman, WA (United States); Darancet, Pierre [Argonne National Lab. (ANL), Argonne, IL (United States); DeJong, Wibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dixon, David [Univ. of Alabama, Tuscaloosa, AL (United States); Donatelli, Jeffrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunning, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez-Serra, Marivi [Stony Brook Univ., NY (United States); Freericks, James [Georgetown Univ., Washington, DC (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Galli, Giulia [Univ. of Chicago, IL (United States); Garrett, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glezakou, Vassiliki-Alexandra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gray, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Gull, Emanuel [Univ. of Michigan, Ann Arbor, MI (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Hexemer, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Isborn, Christine [Univ. of California, Merced, CA (United States); Jarrell, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Kalia, Rajiv K. [Univ. of Southern California, Los Angeles, CA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klippenstein, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnamurthy, Hulikal [Indian Inst. of Science, Bangalore (India); Kumar, Dinesh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lena, Charles [Univ. of Texas, Austin, TX (United States); Li, Xiaosong [Univ. of Washington, Seattle, WA (United States); Maier, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markland, Thomas [Stanford Univ., CA (United States); McNulty, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Millis, Andrew [Columbia Univ., New York, NY (United States); Mundy, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nakano, Aiichiro [Univ. of Southern California, Los Angeles, CA (United States); Niklasson, A.M.N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Pandolfi, Ron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parkinson, Dula [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perazzo, Amedeo [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rehr, John [Univ. of Washington, Seattle, WA (United States); Rousseau, Roger [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sankaranarayanan, Subramanian [Argonne National Lab. (ANL), Argonne, IL (United States); Schenter, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Selloni, Annabella [Princeton Univ., NJ (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Slipchenko, Lyudmila [Purdue Univ., West Lafayette, IN (United States); Sternberg, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Summers, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sushko, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thayer, Jana [SLAC National Accelerator Lab., Menlo Park, CA (United States); Toby, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valeev, Edward [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Venkatakrishnan, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zwart, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-03

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. We could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy

  20. Advances in Numerical Methods

    CERN Document Server

    Mastorakis, Nikos E

    2009-01-01

    Features contributions that are focused on significant aspects of current numerical methods and computational mathematics. This book carries chapters that advanced methods and various variations on known techniques that can solve difficult scientific problems efficiently.

  1. Pre-Service Elementary Teachers’ Scientific Literacy and Self-Efficacy in Teaching Science

    Directory of Open Access Journals (Sweden)

    Adam Al Sultan

    2018-02-01

    Full Text Available Many educators and educational institutions worldwide have agreed that the main goal of science education is to produce a scientifically literate community. Science teachers are key to the achievement of scientific literacy at all levels of education because of the essential role they play in preparing scientifically literate individuals. Studies show that pre-service elementary teachers need to build more confidence in teaching science and scientific literacy during their teacher education programs in order for them to successfully teach science knowledge to their students. Therefore, the purpose of this study is threefold. First, pre-service elementary teachers' scientific literacy levels were examined. Second, pre-service teachers' self-efficacy beliefs were measured by distinguishing between their personal and subject-specific self-efficacy beliefs. Third, the extent to which pre-service elementary teachers' scientific literacy levels and self-efficacy levels are related was investigated. Participants were 49 pre-service elementary teachers registered in two science methods courses (introductory and advanced at a mid-sized university in the United States. Quantitative data were collected using the Test of Basic Scientific Literacy, the Science Teaching Efficacy Belief Instrument-Preservice, and Beliefs about Teaching. Results showed that participants had a satisfactory level of scientific literacy. However, pre-service teachers had borderline scores on the Nature of Science scale. Regarding self-efficacy, findings showed that both groups had the highest self-efficacy in teaching biology and the lowest in teaching physics. Participants in the advanced science methods course exhibited a moderate preexisting positive relationship between scientific literacy and subject-specific self-efficacy in teaching science.

  2. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  3. Scientific developments ISFD3

    Science.gov (United States)

    Schropp, M.H.I.; Soong, T.W.

    2006-01-01

    Highlights, trends, and consensus from the 63 papers submitted to the Scientific Developments theme of the Third International Symposium on Flood Defence (ISFD) are presented. Realizing that absolute protection against flooding can never be guaranteed, trends in flood management have shifted: (1) from flood protection to flood-risk management, (2) from reinforcing structural protection to lowering flood levels, and (3) to sustainable management through integrated problem solving. Improved understanding of watershed responses, climate changes, applications of GIS and remote-sensing technologies, and advanced analytical tools appeared to be the driving forces for renewing flood-risk management strategies. Technical competence in integrating analytical tools to form the basin wide management systems are demonstrated by several large, transnation models. However, analyses from social-economic-environmental points of view are found lag in general. ?? 2006 Taylor & Francis Group.

  4. PSI Scientific report 2009

    International Nuclear Information System (INIS)

    Piwnicki, P.

    2010-04-01

    This annual report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at work done at the institute in the year 2009. In particular, the SwissFEL X-ray Laser facility that will allow novel investigations of femtosecond molecular dynamics in chemical, biochemical and condensed-matter systems and permit coherent diffraction imaging of individual nanostructures is commented on. Potential scientific applications of the SwissFEL are noted. Further, the institute's research focus and its findings are commented on. Synchrotron light is looked at and results obtained using neutron scattering and muon spin resonance are reported on. Work done in the micro and nano-technology, biomolecular research and radiopharmacy areas is also reported on Work performed in the biology, general energy and environmental sciences area is also reported on. The institute's comprehensive research facilities are reviewed and the facilities provided for users from the national and international scientific community, in particular regarding condensed matter, materials science and biology research are noted. In addition to the user facilities at the accelerators, other PSI laboratories are also open to external users, e.g. the Hot Laboratory operated by the Nuclear Energy and Safety Department that allows experiments to be performed on highly radioactive samples. The Technology Transfer Office at PSI is also reported on. This department assists representatives from industry in their search for opportunities and sources of innovation at the PSI. Further, an overview is presented of the people who work at the PSI, how the institute is organised and how the money it receives is distributed and used. Finally, a comprehensive list of publications completes the report

  5. Metadata in Scientific Dialects

    Science.gov (United States)

    Habermann, T.

    2011-12-01

    Discussions of standards in the scientific community have been compared to religious wars for many years. The only things scientists agree on in these battles are either "standards are not useful" or "everyone can benefit from using my standard". Instead of achieving the goal of facilitating interoperable communities, in many cases the standards have served to build yet another barrier between communities. Some important progress towards diminishing these obstacles has been made in the data layer with the merger of the NetCDF and HDF scientific data formats. The universal adoption of XML as the standard for representing metadata and the recent adoption of ISO metadata standards by many groups around the world suggests that similar convergence is underway in the metadata layer. At the same time, scientists and tools will likely need support for native tongues for some time. I will describe an approach that combines re-usable metadata "components" and restful web services that provide those components in many dialects. This approach uses advanced XML concepts of referencing and linking to construct complete records that include reusable components and builds on the ISO Standards as the "unabridged dictionary" that encompasses the content of many other dialects.

  6. Drilling for scientific purpose

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shoichi

    1987-09-01

    Drilling for scientific purpose is a process of conducting geophysical exploration at deep underground and drilling for collecting crust samples directly. This is because earth science has advanced to get a good understanding about the top of the crust and has shifted its main interest to the lower layer of the crust in land regions. The on-land drilling plan in Japan has just started, and the planned drilling spots are areas around the Minami River, Hidaka Mts., kinds of the Mesozoic and Cenozoic granite in outside zone, the extension of Japan Sea, Ogasawara Is., Minami-Tori Is., and active volcanos. The paper also outlines the present situation of on-land drilling in the world, focusing on the SG-3rd super-deep well SG-3 on the Kola Peninsula, USSR, Satori SG-1st well SG-1 in Azerbaidzhan S.S.R, V.S.S.R, Sweden's wells, Cyprus' wells, Bayearn well Plan in West Germany, and Salton Sea Scientific Drilling Program in the U.S. At its end, the paper explains the present situation and the future theme of the Japanese drilling technique and points out the necessity of developing equipment, and techniques. (14 figs, 5 tabs, 26 refs)

  7. International Journal of Biological and Chemical Sciences ...

    African Journals Online (AJOL)

    International Journal of Biological and Chemical Sciences: Advanced Search. Journal Home > International Journal of Biological and Chemical Sciences: Advanced Search. Log in or Register to get access to full text downloads.

  8. The Biology of REM Sleep

    Science.gov (United States)

    Peever, John; Fuller, Patrick M.

    2018-01-01

    Considerable advances in our understanding of the mechanisms and functions of rapid-eye-movement (REM) sleep have occurred over the past decade. Much of this progress can be attributed to the development of new neuroscience tools that have enabled high-precision interrogation of brain circuitry linked with REM sleep control, in turn revealing how REM sleep mechanisms themselves impact processes such as sensorimotor function. This review is intended to update the general scientific community about the recent mechanistic, functional and conceptual developments in our current understanding of REM sleep biology and pathobiology. Specifically, this review outlines the historical origins of the discovery of REM sleep, the diversity of REM sleep expression across and within species, the potential functions of REM sleep (e.g., memory consolidation), the neural circuits that control REM sleep, and how dysfunction of REM sleep mechanisms underlie debilitating sleep disorders such as REM sleep behaviour disorder and narcolepsy. PMID:26766231

  9. Searching the literature for proteins facilitates the identification of biological processes, if advanced methods of analysis are linked: a case study on microgravity-caused changes in cells.

    Science.gov (United States)

    Bauer, Johann; Bussen, Markus; Wise, Petra; Wehland, Markus; Schneider, Sabine; Grimm, Daniela

    2016-07-01

    More than one hundred reports were published about the characterization of cells from malignant and healthy tissues, as well as of endothelial cells and stem cells exposed to microgravity conditions. We retrieved publications about microgravity related studies on each type of cells, extracted the proteins mentioned therein and analyzed them aiming to identify biological processes affected by microgravity culture conditions. The analysis revealed 66 different biological processes, 19 of them were always detected when papers about the four types of cells were analyzed. Since a response to the removal of gravity is common to the different cell types, some of the 19 biological processes could play a role in cellular adaption to microgravity. Applying computer programs, to extract and analyze proteins and genes mentioned in publications becomes essential for scientists interested to get an overview of the rapidly growing fields of gravitational biology and space medicine.

  10. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Regional summary, textbook, handbook and scientific monograph. Review to the book V. L. Bulakhov, V. Y. Gasso, A. Y. Pakhomov «Biological Diversity of Ukraine. The Dnipropetrovsk region. Amphibians and Reptiles (Amphibia et Reptilia / A. Y. Pakhomov (ed.

    Directory of Open Access Journals (Sweden)

    D. A. Shabanov

    2008-09-01

    Full Text Available The review on the monograph of specialists of the Dnipropetrovs’k National University describes main scientific and methodical achievements of the authors and initiates discussion on some moot points, which are presented in the monograph.

  12. Learning scientific programming with Python

    CERN Document Server

    Hill, Christian

    2015-01-01

    Learn to master basic programming tasks from scratch with real-life scientifically relevant examples and solutions drawn from both science and engineering. Students and researchers at all levels are increasingly turning to the powerful Python programming language as an alternative to commercial packages and this fast-paced introduction moves from the basics to advanced concepts in one complete volume, enabling readers to quickly gain proficiency. Beginning with general programming concepts such as loops and functions within the core Python 3 language, and moving onto the NumPy, SciPy and Matplotlib libraries for numerical programming and data visualisation, this textbook also discusses the use of IPython notebooks to build rich-media, shareable documents for scientific analysis. Including a final chapter introducing challenging topics such as floating-point precision and algorithm stability, and with extensive online resources to support advanced study, this textbook represents a targeted package for students...

  13. La costra biológica del suelo: Avances recientes en el conocimiento de su estructura y función ecológica Biological soil crusts: Recent advances in our knowledge of their structure and ecological function

    Directory of Open Access Journals (Sweden)

    ANDREA P CASTILLO-MONROY

    2011-03-01

    estructura y funcionamiento de los ecosistemas en los que se encuentran.Biological soil crusts (BSCs result from an intimate association between soil particles and cyanobacteria, algae, microfungi, lichens, and bryophytes. These crusts are widespread in many type of soils and in almost all plant communities where sunlight can reach the soil surface. However, BSCs are particulary dominant in environments with low productivity such as arid, semi-arid, alpine and polar areas. Biological soil crusts affect soil nutrient cycling, influence the local hidrological cycle, increase soil stability, and affect the establisment and performance of vascular plants. The knowledge on the biology, ecology and physiology of BSCs has substantially increased in recent years. However, there are important gaps in our knowledge concerning the influence of BSCs on biogeochemical cycles, particularly of phosphorus and carbon, as well as on many aspects related to biotic interactions among BSC components, and between these components and microorganisms, vascular plants and invertebrates. It is necessary to expand current research efforts to other parts of the world, as most studies have been conducted mainly in arid and semi-arid areas of USA, Israel, Australia and China. Of particular concern is the lack of studies from Central and South America, despite BSCs must be a key biotic component in countries such as Chile, Argentina, Peru and Mexico. With the aim of increasing the interest of the scientific community of Spanish-speaking countries about this important group of organisms, in this review we illustrate recent advances on the importance of BSCs to maintain the structure and functioning of those ecosystems in which they are present. We also highlight the main gaps in our knowledge on the ecology of these organisms, and discuss key areas for future research.

  14. Scientific and Technological Report 2005

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Robles Nique, Anita; Rodriguez R, Juan; Solis Veliz, Jose

    2006-07-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2005. This report includes 38 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects

  15. Scientific and Technological Report 2009

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Santiago Contreras, Julio; Lopez Milla, Alcides; Ramos Trujillo, Bertha

    2010-11-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2009. This report includes 46 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. It also includes annexes. (APC)

  16. Scientific and Technological Report 2006

    International Nuclear Information System (INIS)

    Prado Cuba, Antonio; Robles Nique, Anita; Solis Veliz, Jose; Osores Rebaza, Jose

    2007-08-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2006. This report includes 54 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. (APC)

  17. Scientific and Technological Report 2008

    International Nuclear Information System (INIS)

    Prado Cuba, A.; Santiago Contreras, J.; Rojas Tapia, J.; Ramos Trujillo, B.; Vela Mora, M.; Castro Gamero, E.

    2010-04-01

    This annual scientific and technological report provides an overview of research and development activities at Peruvian Institute of Nuclear Energy (IPEN) during the period from 1 january to 31 december, 2008. This report includes 60 papers divided in 7 subject matters, such as: physics and chemistry, materials science, nuclear engineering, mining industrial and environmental applications, medical and biological applications, radiation protection and nuclear safety, and management aspects. It also includes annexes. (APC)

  18. 3-D Imaging In Virtual Environment: A Scientific Clinical and Teaching Tool

    Science.gov (United States)

    Ross, Muriel D.; DeVincenzi, Donald L. (Technical Monitor)

    1996-01-01

    The advent of powerful graphics workstations and computers has led to the advancement of scientific knowledge through three-dimensional (3-D) reconstruction and imaging of biological cells and tissues. The Biocomputation Center at NASA Ames Research Center pioneered the effort to produce an entirely computerized method for reconstruction of objects from serial sections studied in a transmission electron microscope (TEM). The software developed, ROSS (Reconstruction of Serial Sections), is now being distributed to users across the United States through Space Act Agreements. The software is in widely disparate fields such as geology, botany, biology and medicine. In the Biocomputation Center, ROSS serves as the basis for development of virtual environment technologies for scientific and medical use. This report will describe the Virtual Surgery Workstation Project that is ongoing with clinicians at Stanford University Medical Center, and the role of the Visible Human data in the project.

  19. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Scientific Data Management Center for Enabling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  1. Scientific instruments, scientific progress and the cyclotron

    International Nuclear Information System (INIS)

    Baird, David; Faust, Thomas

    1990-01-01

    Philosophers speak of science in terms of theory and experiment, yet when they speak of the progress of scientific knowledge they speak in terms of theory alone. In this article it is claimed that scientific knowledge consists of, among other things, scientific instruments and instrumental techniques and not simply of some kind of justified beliefs. It is argued that one aspect of scientific progress can be characterized relatively straightforwardly - the accumulation of new scientific instruments. The development of the cyclotron is taken to illustrate this point. Eight different activities which promoted the successful completion of the cyclotron are recognised. The importance is in the machine rather than the experiments which could be run on it and the focus is on how the cyclotron came into being, not how it was subsequently used. The completed instrument is seen as a useful unit of scientific progress in its own right. (UK)

  2. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  3. Bioenergy research advances and applications

    CERN Document Server

    Gupta, Vijai G; Kubicek, Christian P; Saddler, Jack; Xu, Feng

    2014-01-01

    Bioenergy Research: Advances and Applications brings biology and engineering together to address the challenges of future energy needs. The book consolidates the most recent research on current technologies, concepts, and commercial developments in various types of widely used biofuels and integrated biorefineries, across the disciplines of biochemistry, biotechnology, phytology, and microbiology. All the chapters in the book are derived from international scientific experts in their respective research areas. They provide you with clear and concise information on both standard and more recent bioenergy production methods, including hydrolysis and microbial fermentation. Chapters are also designed to facilitate early stage researchers, and enables you to easily grasp the concepts, methodologies and application of bioenergy technologies. Each chapter in the book describes the merits and drawbacks of each technology as well as its usefulness. The book provides information on recent approaches to graduates, post...

  4. Recent advances in Chinese palaeontology.

    Science.gov (United States)

    Xu, Xing; Luo, Zhe-Xi; Rong, Jia-Yu

    2010-01-22

    Discoveries are a driving force for progress in palaeontology. Palaeontology as a discipline of scientific inquiry has gained many fresh insights into the history of life, from the discoveries of many new fossils in China in the last 20 years, and from the new ideas derived from these fossils. This special issue of Proceedings of Royal Society B entitled Recent Advances in Chinese Palaeontology selects some of the very latest studies aimed at resolving the current problems of palaeontology and evolutionary biology based on new fossils from China. These fossils and their studies help to clarify some historical debates about a particular fossil group, or to raise new questions about history of life, or to pose a new challenge in our pursuit of science. These works on new Chinese fossils have covered the whole range of the diversity through the entire Phanerozoic fossil record.

  5. Continuous EEG monitoring in the intensive care unit: beta scientific and management scientific aspects

    NARCIS (Netherlands)

    Sanders, P.M.H.; van Putten, Michel Johannes Antonius Maria; Jarm, T.; Kramar, P.; Zupanic, A.

    2007-01-01

    Due to various technological advances, it is now possible to continuously monitor critically ill patients using EEG, including the extraction of various quantitative features. In this study, several beta scientific and management scientific aspects of the implementation and use of cEEg on the ICU

  6. ADVANCES AND CHALLENGES IN SUGARCANE BIOTECHNOLOY AND PLANT PATHOLOGY: A REVIEW OF THE IX PLANT PATHOLOGY WORKSHOP AND VI MOLECULAR BIOLOGY WORKSHOP

    Science.gov (United States)

    The IX Pathology Workshop and VI Molecular Biology Workshop of the International Society of Sugar Cane Technologists (ISSCT) were organised jointly and hosted by the Colombian Sugarcane Research Centre (CENICAÑA) from 23-27 June 2008 at the Radisson Royal Hotel in Cali, Colombia. The Workshop was we...

  7. ‘Antarctic biology in the 21st century - Advances in, and beyond the international polar year 2007-2008’

    Science.gov (United States)

    Stoddart, Michael

    2010-08-01

    The International Polar Year 2007-2008 (IPY) has provided an opportunity for biology to show itself as an important part of Antarctic science in a manner in which it was not seen during earlier Polar Years. Of the 15 endorsed biological projects in Antarctica, 7 included more than 20 scientists and could be deemed truly international. Four were conducted in the marine environment, and one each in the fields of biological invasions, microbial ecology, and terrestrial ecology, and one was SCAR’s over-arching ‘Evolution and Biodiversity in the Antarctic’. The marine projects have left a robust legacy of data for future research into the consequences of environmental change, and into future decisions about marine protected areas. Studies on introductions of exotic organisms reveal an ever-present threat to the warmer parts of the high-latitude Southern Ocean, or parts which might become warmer with climate change. Studies on microbial ecology reveal great complexity of ecosystems with high numbers of unknown species. Terrestrial research has shown how vulnerable the Antarctic is to accidental introductions, and how productive the soils can be under changed climate conditions. Antarctic biology has come-of-age during IPY 2007-2008 and the campaign has set the scene for future research.

  8. A review on bis-hydrazonoyl halides: Recent advances in their synthesis and their diverse synthetic applications leading to bis-heterocycles of biological interest

    Directory of Open Access Journals (Sweden)

    Ahmad Sami Shawali

    2016-11-01

    Full Text Available This review covers a summary of the literature data published on the chemistry of bis-hydrazonoyl halides over the last four decades. The biological activities of some of the bis-heterocyclic compounds obtained from these bis-hydrazonoyl halides are also reviewed and discussed.

  9. SALTON SEA SCIENTIFIC DRILLING PROJECT: SCIENTIFIC PROGRAM.

    Science.gov (United States)

    Sass, J.H.; Elders, W.A.

    1986-01-01

    The Salton Sea Scientific Drilling Project, was spudded on 24 October 1985, and reached a total depth of 10,564 ft. (3. 2 km) on 17 March 1986. There followed a period of logging, a flow test, and downhole scientific measurements. The scientific goals were integrated smoothly with the engineering and economic objectives of the program and the ideal of 'science driving the drill' in continental scientific drilling projects was achieved in large measure. The principal scientific goals of the project were to study the physical and chemical processes involved in an active, magmatically driven hydrothermal system. To facilitate these studies, high priority was attached to four areas of sample and data collection, namely: (1) core and cuttings, (2) formation fluids, (3) geophysical logging, and (4) downhole physical measurements, particularly temperatures and pressures.

  10. MSL: Facilitating automatic and physical analysis of published scientific literature in PDF format.

    Science.gov (United States)

    Ahmed, Zeeshan; Dandekar, Thomas

    2015-01-01

    Published scientific literature contains millions of figures, including information about the results obtained from different scientific experiments e.g. PCR-ELISA data, microarray analysis, gel electrophoresis, mass spectrometry data, DNA/RNA sequencing, diagnostic imaging (CT/MRI and ultrasound scans), and medicinal imaging like electroencephalography (EEG), magnetoencephalography (MEG), echocardiography  (ECG), positron-emission tomography (PET) images. The importance of biomedical figures has been widely recognized in scientific and medicine communities, as they play a vital role in providing major original data, experimental and computational results in concise form. One major challenge for implementing a system for scientific literature analysis is extracting and analyzing text and figures from published PDF files by physical and logical document analysis. Here we present a product line architecture based bioinformatics tool 'Mining Scientific Literature (MSL)', which supports the extraction of text and images by interpreting all kinds of published PDF files using advanced data mining and image processing techniques. It provides modules for the marginalization of extracted text based on different coordinates and keywords, visualization of extracted figures and extraction of embedded text from all kinds of biological and biomedical figures using applied Optimal Character Recognition (OCR). Moreover, for further analysis and usage, it generates the system's output in different formats including text, PDF, XML and images files. Hence, MSL is an easy to install and use analysis tool to interpret published scientific literature in PDF format.

  11. Founding editorial--forensics and TheScientificWorld.

    Science.gov (United States)

    Rowe, W

    2001-10-30

    At the beginning of a new millennium it seems a good idea to stop for a moment and take stock of the current state of forensic science. As a field of scientific research and scientific application, forensic science is a little more than a century old. Forensic science may be said to have begun in 1887 with the simultaneous publication of A. Conan Doyle's A Study in Scarlet and Hans Gross's Handbuch f1/4r Untersuchungsrichter. Conan Doyle's novel introduced to the world the character of Sherlock Holmes, whose literary career would popularize the use of physical evidence in criminal investigations. Gross's manual for examining magistrates suggests ways in which the expertise of chemists, biologists, geologists, and other natural scientists could contribute to investigations. Gross's book was translated into a number of languages and went through various updated editions during the course of the century. The intervening century saw the development and application of fingerprinting, firearm and tool mark identification, forensic chemistry, forensic biology, forensic toxicology, forensic odontology, forensic pathology, and forensic engineering. Increasingly, the judicial systems of the industrial nations of the world have come to rely upon the expertise of scientists in a variety of disciplines. In most advanced countries, virtually all criminal prosecutions now involve the presentation of scientific testimony. This has had the beneficial effect of diminishing the reliance of courts on eyewitness testimony and defendant confessions.

  12. Founding Editorial – Forensics and TheScientificWorld

    Directory of Open Access Journals (Sweden)

    Walter Rowe

    2001-01-01

    Full Text Available At the beginning of a new millennium it seems a good idea to stop for a moment and take stock of the current state of forensic science. As a field of scientific research and scientific application, forensic science is a little more than a century old. Forensic science may be said to have begun in 1887 with the simultaneous publication of A. Conan Doyle’s A Study in Scarlet and Hans Gross’s Handbuch für Untersuchungsrichter. Conan Doyle’s novel introduced to the world the character of Sherlock Holmes, whose literary career would popularize the use of physical evidence in criminal investigations. Gross’s manual for examining magistrates suggests ways in which the expertise of chemists, biologists, geologists, and other natural scientists could contribute to investigations. Gross’s book was translated into a number of languages and went through various updated editions during the course of the century. The intervening century saw the development and application of fingerprinting, firearm and tool mark identification, forensic chemistry, forensic biology, forensic toxicology, forensic odontology, forensic pathology, and forensic engineering. Increasingly, the judicial systems of the industrial nations of the world have come to rely upon the expertise of scientists in a variety of disciplines. In most advanced countries, virtually all criminal prosecutions now involve the presentation of scientific testimony. This has had the beneficial effect of diminishing the reliance of courts on eyewitness testimony and defendant confessions.

  13. Sources and basic threats of biological safety

    International Nuclear Information System (INIS)

    Nazarova, O.D.

    2010-01-01

    Full text: Biological safety of any state is connected with development of its public protection against biological weapons and opportunity to prevent bio terrorist attacks. That's why in modern social-economic and geo-political conditions, the problem of biological safety strengthening become significant, which is connected with migration process globalization, development of bio-technology and dramatically increased risk of pathogenic germ infections proliferation, which can be used as biological weapon. Despite of undertaken efforts by world community on full prohibition of biological weapon, its proliferation in the world still takes place. Biology revolution during second and third millennium lead to development not only biotechnology but new achievements in medicine, agriculture and other fields of economy, but also created scientific and research preconditions for development of advanced biological means of mass destruction, that make it more attractive for achieving superiority and assigned targets: low developments costs, opportunity to create it by one small laboratory with two-three high qualified specialists bio technologists; tremendous impact effect: one substance gram can contain from one till one hundreds quintillions (10"1"8 - 10"2"0) active pathogen molecules and in case if they belong to amplificated RNA and DNA, each molecule getting to organism, will multiply and contaminate environment (the last one is its principal difference from chemical weapon); bypass of organism immunological barriers and specific vaccinations; unusual clinic finding, hard diagnosis; weakness of traditional medications and treatment methods; lack of material destruction; opportunity of tight-lipped developments; opportunity of tight-lipped application; opportunity of delayed effect; opportunity of selective influence on specific population (by use of genetic, climatic and cultural specifications of race, nations and nationalities). Above mentioned specifications create

  14. Forces, Growth and Form in Soft Condensed Matter: At the Interface between Physics and Biology NATO Advanced Study Institute, Geilo, Norway, 24 March - 3 April 2003

    Energy Technology Data Exchange (ETDEWEB)

    Helgesen, G. ed.

    2003-05-01

    The goal of this ASI was to bring together a group of disparate sciences to discuss areas of research related to competition between interactions of different ranges, for it is this that creates local structure on which complexity depends in soft condensed matter, biological systems and their synthetic models. The starting point, and the underlying theme throughout the ASI, was thus a thorough discussion of the relative role of the various fundamental interactions in such systems (electrostatic, hydrophobic, steric, conformational, van der Waals, etc.). The next focus was on how these competing interactions influence the form and topology of soft and biological matter, like polymers and proteins, leading to hierarchical structures in self-assembling systems and folding patterns sometimes described in terms of chirality, braids and knots. Finally, focus was on how the competing interactions influence various bio processes like genetic regulation and biological evolution taking place in systems like biopolymers, macromolecules and cell membranes. The report includes the abstracts of the posters presented, two of which are given in this database: (1) Precise characterisation of nano channels in track etched membranes by SAXS and SANS, and (2) Cisplatin binding to DNA: Structure, bonding and NMR properties from CarParrinello/Classical MD simulations.

  15. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  16. Advanced oxidation protein products — biological marker of oxidative stress = Zaawansowane produkty utleniania białek – biologiczne markery stresu oksydacyjnego

    Directory of Open Access Journals (Sweden)

    Anna Cwynar

    2016-09-01

      ABSTRACT Advanced oxidation protein products (AOPPs are mostly derivatives of oxidatively modified albumin. The results of many experimental studies confirm intensification of oxidative modifications of proteins and an increase in concentration of advanced oxidation protein products (AOPPs in different pathological conditions, particularly those with well documented involvement of oxidative stress in their etiopathogenesis, but also those where its role is not yet well understood. Currently intensive research is carried out on the possibility of using AOPPs as useful indicators for diagnosing, prognosis and monitoring of diseases.   Keywords: advanced oxidation protein products, autoimmune disease, oxidative stress   STRESZCZENIE Zaawansowane produkty utleniania białek (AOPPs, to najczęściej pochodne zmodyfikowanej oksydacyjnie albuminy. Wyniki licznych badań doświadczalnych potwierdzają nasilenie oksydacyjnych modyfikacji białek i wzrost stężenia zaawansowanych produktów utleniania białek (AOPPs w różnych stanach patologicznych, szczególnie tych o dobrze udokumentowanym udziale stresu oksydacyjnego w ich etiopatogenezie, ale także takich, w których jego rola nie jest jeszcze dobrze poznana.. Obecnie trwają intensywne badania nad możliwością wykorzystania AOPPs, jako użytecznych wskaźników do diagnozowania, prognozowania oraz monitorowania chorób.   Słowa kluczowe: zaawansowane produkty utleniania białek, choroby autoimmunologiczne, stres oksydacyjny

  17. Scientific integrity in Brazil.

    Science.gov (United States)

    Lins, Liliane; Carvalho, Fernando Martins

    2014-09-01

    This article focuses on scientific integrity and the identification of predisposing factors to scientific misconduct in Brazil. Brazilian scientific production has increased in the last ten years, but the quality of the articles has decreased. Pressure on researchers and students for increasing scientific production may contribute to scientific misconduct. Cases of misconduct in science have been recently denounced in the country. Brazil has important institutions for controlling ethical and safety aspects of human research, but there is a lack of specific offices to investigate suspected cases of misconduct and policies to deal with scientific dishonesty.

  18. SDM center technologies for accelerating scientific discoveries

    International Nuclear Information System (INIS)

    Shoshani, Arie; Altintas, Ilkay; Choudhary, Alok; Critchlow, Terence; Kamath, Chandrika; Ludaescher, Bertram; Nieplocha, Jarek; Parker, Steve; Ross, Rob; Samatova, Nagiza; Vouk, Mladen

    2007-01-01

    With the increasing volume and complexity of data produced by ultra-scale simulations and high-throughput experiments, understanding the science is largely hampered by the lack of comprehensive, end-to-end data management solutions ranging from initial data acquisition to final analysis and visualization. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced data management technologies to DOE application scientists in astrophysics, climate, fusion, and biology. Equally important, it established collaborations with these scientists to better understand their science as well as their forthcoming data management and data analytics challenges. Our future focus is on improving the SDM framework to address the needs of ultra-scale science during SciDAC-2. Specifically, we are enhancing and extending our existing tools to allow for more interactivity and fault tolerance when managing scientists' workflows, for better parallelism and feature extraction capabilities in their data analytics operations, and for greater efficiency and functionality in users' interactions with local parallel file systems, active storage, and access to remote storage. These improvements are necessary for the scalability and complexity challenges presented by hardware and applications at ultra scale, and are complemented by continued efforts to work with application scientists in various domains

  19. Novel opportunities for computational biology and sociology in drug discovery☆

    Science.gov (United States)

    Yao, Lixia; Evans, James A.; Rzhetsky, Andrey

    2013-01-01

    Current drug discovery is impossible without sophisticated modeling and computation. In this review we outline previous advances in computational biology and, by tracing the steps involved in pharmaceutical development, explore a range of novel, high-value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy–industry links for scientific and human benefit. Attention to these opportunities could promise punctuated advance and will complement the well-established computational work on which drug discovery currently relies. PMID:20349528

  20. Novel opportunities for computational biology and sociology in drug discovery

    Science.gov (United States)

    Yao, Lixia

    2009-01-01

    Drug discovery today is impossible without sophisticated modeling and computation. In this review we touch on previous advances in computational biology and by tracing the steps involved in pharmaceutical development, we explore a range of novel, high value opportunities for computational innovation in modeling the biological process of disease and the social process of drug discovery. These opportunities include text mining for new drug leads, modeling molecular pathways and predicting the efficacy of drug cocktails, analyzing genetic overlap between diseases and predicting alternative drug use. Computation can also be used to model research teams and innovative regions and to estimate the value of academy-industry ties for scientific and human benefit. Attention to these opportunities could promise punctuated advance, and will complement the well-established computational work on which drug discovery currently relies. PMID:19674801