WorldWideScience

Sample records for biologically tunable material

  1. Acetalated dextran is a chemically and biologically tunable material for particulate immunotherapy.

    Science.gov (United States)

    Broaders, Kyle E; Cohen, Joel A; Beaudette, Tristan T; Bachelder, Eric M; Fréchet, Jean M J

    2009-04-01

    Materials that combine facile synthesis, simple tuning of degradation rate, processability, and biocompatibility are in high demand for use in biomedical applications. We report on acetalated dextran, a biocompatible material that can be formed into microparticles with degradation rates that are tunable over 2 orders of magnitude depending on the degree and type of acetal modification. Varying the degradation rate produces particles that perform better than poly(lactic-co-glycolic acid) and iron oxide, two commonly studied materials used for particulate immunotherapy, in major histocompatibility complex class I (MHC I) and MHC II presentation assays. Modulating the material properties leads to antigen presentation on MHC I via pathways that are dependent or independent of the transporter associated with antigen processing. To the best of our knowledge, this is the only example of a material that can be tuned to operate on different immunological pathways while maximizing immunological presentation.

  2. Tunable structural color in organisms and photonic materials for design of bioinspired materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Fudouzi

    2011-01-01

    Full Text Available In this paper, the key topics of tunable structural color in biology and material science are overviewed. Color in biology is considered for selected groups of tropical fish, octopus, squid and beetle. It is caused by nanoplates in iridophores and varies with their spacing, tilting angle and refractive index. These examples may provide valuable hints for the bioinspired design of photonic materials. 1D multilayer films and 3D colloidal crystals with tunable structural color are overviewed from the viewpoint of advanced materials. The tunability of structural color by swelling and strain is demonstrated on an example of opal composites.

  3. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...

  4. Electrically tunable materials for microwave applications

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Aftab, E-mail: aahmed@anl.gov; Goldthorpe, Irene A.; Khandani, Amir K. [Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada)

    2015-03-15

    Microwave devices based on tunable materials are of vigorous current interest. Typical applications include phase shifters, antenna beam steering, filters, voltage controlled oscillators, matching networks, and tunable power splitters. The objective of this review is to assist in the material selection process for various applications in the microwave regime considering response time, required level of tunability, operating temperature, and loss tangent. The performance of a variety of material types are compared, including ferroelectric ceramics, polymers, and liquid crystals. Particular attention is given to ferroelectric materials as they are the most promising candidates when response time, dielectric loss, and tunability are important. However, polymers and liquid crystals are emerging as potential candidates for a number of new applications, offering mechanical flexibility, lower weight, and lower tuning voltages.

  5. Tunable ultrasensitivity: functional decoupling and biological insights.

    Science.gov (United States)

    Wang, Guanyu; Zhang, Mengshi

    2016-01-01

    Sensitivity has become a basic concept in biology, but much less is known about its tuning, probably because allosteric cooperativity, the best known mechanism of sensitivity, is determined by rigid conformations of interacting molecules and is thus difficult to tune. Reversible covalent modification (RCM), owing to its systems-level ingenuity, can generate concentration based, tunable sensitivity. Using a mathematical model of regulated RCM, we find sensitivity tuning can be decomposed into two orthogonal modes, which provide great insights into vital biological processes such as tissue development and cell cycle progression. We find that decoupling of the two modes of sensitivity tuning is critical to fidelity of cell fate decision; the decoupling is thus important in development. The decomposition also allows us to solve the 'wasteful degradation conundrum' in budding yeast cell cycle checkpoint, which further leads to discovery of a subtle but essential difference between positive feedback and double negative feedback. The latter guarantees revocability of stress-induced cell cycle arrest; while the former does not. By studying concentration conditions in the system, we extend applicability of ultrasensitivity and explain the ubiquity of reversible covalent modification. PMID:26847155

  6. Multiscale Biological Materials

    DEFF Research Database (Denmark)

    Frølich, Simon

    2016-01-01

    Materials formed by organisms, also known as biological materials, exhibit outstanding structural properties. The range of materials formed in nature is remarkable and their functions include support, protection, motion, sensing, storage, and maintenance of physiological homeostasis. These complex...... materials are characterized by their hierarchical and composite design, where features with sizes ranging from nanometers to centimeters provide the basis for the functionality of the material. Understanding of biological materials is, while very interesting from a basic research perspective, also valuable...... as inspiration for the development of new materials for medical and technological applications. In order to successfully mimic biological materials we must first have a thorough understanding of their design. As such, the purpose of the characterization of biological materials can be defined as the establishment...

  7. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  8. Tunable solid-state fluorescent materials for supramolecular encryption

    Science.gov (United States)

    Hou, Xisen; Ke, Chenfeng; Bruns, Carson J.; McGonigal, Paul R.; Pettman, Roger B.; Stoddart, J. Fraser

    2015-01-01

    Tunable solid-state fluorescent materials are ideal for applications in security printing technologies. A document possesses a high level of security if its encrypted information can be authenticated without being decoded, while also being resistant to counterfeiting. Herein, we describe a heterorotaxane with tunable solid-state fluorescent emissions enabled through reversible manipulation of its aggregation by supramolecular encapsulation. The dynamic nature of this fluorescent material is based on a complex set of equilibria, whose fluorescence output depends non-linearly on the chemical inputs and the composition of the paper. By applying this system in fluorescent security inks, the information encoded in polychromic images can be protected in such a way that it is close to impossible to reverse engineer, as well as being easy to verify. This system constitutes a unique application of responsive complex equilibria in the form of a cryptographic algorithm that protects valuable information printed using tunable solid-state fluorescent materials. PMID:25901677

  9. Tunable Dielectric Materials and Devices for Broadband Wireless Communications

    Science.gov (United States)

    Mueller, Carl H.; Miranda, Felix A.; Dayton, James A. (Technical Monitor)

    1998-01-01

    Wireless and satellite communications are a rapidly growing industries which are slated for explosive growth into emerging countries as well as countries with advanced economies. The dominant trend in wireless communication systems is towards broadband applications such as multimedia file transfer, video transmission and Internet access. These applications require much higher data transmission rates than those currently used for voice transmission applications. To achieve these higher data rates, substantially larger bandwidths and higher carrier frequencies are required. A key roadblock to implementing these systems at K-band (18-26.5 GHz) and Ka-band (26.5-40 GHz) is the need to develop hardware which meets the requirements for high data rate transmission in a cost effective manner. In this chapter, we report on the status of tunable dielectric thin films for devices, such as resonators, filters, phased array antennas, and tunable oscillators, which utilize nonlinear tuning in the control elements. Paraelectric materials such as Barium Strontium Titanate ((Ba, Sr)TiO3) have dielectric constants which can be tuned by varying the magnitude of the electric field across the material. Therefore, these materials can be used to control the frequency and/or phase response of various devices such as electronically steerable phased array antennas, oscillators, and filters. Currently, tunable dielectric devices are being developed for applications which require high tunability, low loss, and good RF power-handling capabilities at microwave and millimeter-wave frequencies. These properties are strongly impacted by film microstructure and device design, and considerable developmental work is still required. However, in the last several years enormous progress has occurred in this field, validating the potential of tunable dielectric technology for broadband wireless communication applications. In this chapter we summarize how film processing techniques, microwave test

  10. Flotation of Biological Materials

    Directory of Open Access Journals (Sweden)

    George Z. Kyzas

    2014-03-01

    Full Text Available Flotation constitutes a gravity separation process, which originated from the minerals processing field. However, it has, nowadays, found several other applications, as for example in the wastewater treatment field. Concerning the necessary bubble generation method, typically dispersed-air or dissolved-air flotation was mainly used. Various types of biological materials were tested and floated efficiently, such as bacteria, fungi, yeasts, activated sludge, grape stalks, etc. Innovative processes have been studied in our Laboratory, particularly for metal ions removal, involving the initial abstraction of heavy metal ions onto a sorbent (including a biosorbent: in the first, the application of a flotation stage followed for the efficient downstream separation of metal-laden particles. The ability of microorganisms to remove metal ions from dilute aqueous solutions (as most wastewaters are is a well-known property. The second separation process, also applied effectively, was a new hybrid cell of microfiltration combined with flotation. Sustainability in this field and its significance for the chemical and process industry is commented.

  11. Biologically tunable reactivity of energetic nanomaterials using protein cages.

    Science.gov (United States)

    Slocik, Joseph M; Crouse, Christopher A; Spowart, Jonathan E; Naik, Rajesh R

    2013-06-12

    The performance of aluminum nanomaterial based energetic formulations is dependent on the mass transport, diffusion distance, and stability of reactive components. Here we use a biologically inspired approach to direct the assembly of oxidizer loaded protein cages onto the surface of aluminum nanoparticles to improve reaction kinetics by reducing the diffusion distance between the reactants. Ferritin protein cages were loaded with ammonium perchlorate (AP) or iron oxide and assembled with nAl to create an oxidation-reduction based energetic reaction and the first demonstration of a nanoscale biobased thermite material. Both materials showed enhanced exothermic behavior in comparison to nanothermite mixtures of bulk free AP or synthesized iron oxide nanopowders prepared without the use of ferritin. In addition, by utilizing a layer-by-layer (LbL) process to build multiple layers of protein cages containing iron oxide and iron oxide/AP on nAl, stoichiometric conditions and energetic performance can be optimized. PMID:23713514

  12. Making Biological Materials

    Institute of Scientific and Technical Information of China (English)

    Julian F.V.Vincent

    2005-01-01

    @@ 1 Chemistry and synthesis 1.1 Production and control of materials These days there can be few people who do not know that proteins are defined by DNA. DNA is made of two strands, each of which has along it, like a string of fairy lights, side branches that meet between the strands and hold them together.

  13. Tunable states of interlayer cations in two-dimensional materials

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Numata, K. [Department of Environmental Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Dai, W. [Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071 (China); Hunger, M. [Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart (Germany)

    2014-03-31

    The local state of cations inside the Ångstrom-scale interlayer spaces is one of the controlling factors for designing sophisticated two-dimensional (2D) materials consisting of 2D nanosheets. In the present work, the molecular mechanism on how the interlayer cation states are induced by the local structures of the 2D nanosheets is highlighted. For this purpose, the local states of Na cations in inorganic 2D materials, in which the compositional fluctuations of a few percent are introduced in the tetrahedral and octahedral units of the 2D nanosheets, were systematically studied by means of {sup 23}Na magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) and {sup 23}Na multiple-quantum MAS (MQMAS) NMR spectroscopy. In contrast with an uniform distribution of Na cations expected so far, various well-defined cation states sensitive to the local structures of the 2D nanosheets were identified. The tunability of the interlayer cation states along with the local structure of the 2D nanosheets, as the smallest structural unit of the 2D material, is discussed.

  14. Artful interfaces within biological materials

    Directory of Open Access Journals (Sweden)

    John W.C. Dunlop

    2011-03-01

    Full Text Available Biological materials have a wide range of mechanical properties matching their biological function. This is achieved via complex structural hierarchies, spanning many length scales, arising from the assembly of different sized building blocks during growth. The interfaces between these building blocks can increase resistance to fracture, join materials of different character, make them deform more easily and provide motility. While they represent only a tiny fraction of the overall volume, interfaces are essential for the integrity and function of the overall tissue. Understanding their construction principles, often based on specialized molecular assemblies, may change our current thinking about composite materials.

  15. Biological materials: a materials science approach.

    Science.gov (United States)

    Meyers, Marc A; Chen, Po-Yu; Lopez, Maria I; Seki, Yasuaki; Lin, Albert Y M

    2011-07-01

    The approach used by Materials Science and Engineering is revealing new aspects in the structure and properties of biological materials. The integration of advanced characterization, mechanical testing, and modeling methods can rationalize heretofore unexplained aspects of these structures. As an illustration of the power of this methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3-PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko.

  16. Synthesis and patterning of tunable multiscale materials with engineered cells

    Science.gov (United States)

    Chen, Allen Y.; Deng, Zhengtao; Billings, Amanda N.; Seker, Urartu O. S.; Lu, Michelle Y.; Citorik, Robert J.; Zakeri, Bijan; Lu, Timothy K.

    2014-05-01

    Many natural biological systems—such as biofilms, shells and skeletal tissues—are able to assemble multifunctional and environmentally responsive multiscale assemblies of living and non-living components. Here, by using inducible genetic circuits and cellular communication circuits to regulate Escherichia coli curli amyloid production, we show that E. coli cells can organize self-assembling amyloid fibrils across multiple length scales, producing amyloid-based materials that are either externally controllable or undergo autonomous patterning. We also interfaced curli fibrils with inorganic materials, such as gold nanoparticles (AuNPs) and quantum dots (QDs), and used these capabilities to create an environmentally responsive biofilm-based electrical switch, produce gold nanowires and nanorods, co-localize AuNPs with CdTe/CdS QDs to modulate QD fluorescence lifetimes, and nucleate the formation of fluorescent ZnS QDs. This work lays a foundation for synthesizing, patterning, and controlling functional composite materials with engineered cells.

  17. Band structures tunability of bulk 2D phononic crystals made of magneto-elastic materials

    Directory of Open Access Journals (Sweden)

    J. O. Vasseur

    2011-12-01

    Full Text Available The feasibility of contactless tunability of the band structure of two-dimensional phononic crystals is demonstrated by employing magnetostrictive materials and applying an external magnetic field. The influence of the amplitude and of the orientation with respect to the inclusion axis of the applied magnetic field are studied in details. Applications to tunable selective frequency filters with switching functionnality and to reconfigurable wave-guides and demultiplexing devices are then discussed.

  18. Tunable ferroelectric meta-material phase shifter embedded inside low temperature co-fired ceramics (LTCC)

    Science.gov (United States)

    Tork, Hossam S.

    This dissertation describes electrically tunable microwave devices utilizing low temperature co-fired ceramics (LTCC) and thick film via filled with the ferroelectric materials barium strontium titanate (BST) and barium zirconate titanate (BZT). Tunable ferroelectric capacitors, zero meta-material phase shifters, and tunable meta-material phase shifters are presented. Microwave phase shifters have many applications in microwave devices. They are essential components for active and passive phased array antennas and their most common use is in scanning phased array antennas. They are used in synthetic aperture radars (SAR), low earth orbit (LEO) communication satellites, collision warning radars, and intelligent vehicle highway systems (IVHS), in addition to various other applications. Tunable ferroelectric materials have been investigated, since they offer the possibility of lowering the total cost of phased arrays. Two of the most promising ferroelectric materials in microwave applications are BST and BZT. The proposed design and implementation in this research introduce new types of tunable meta-material phase shifters embedded inside LTCC, which use BST and BZT as capacitive tunable dielectric material controlled by changing the applied voltage. This phase shifter has the advantages of meta-material structures, which produce little phase error and compensation while having the simultaneous advantage of using LTCC technology for embedding passive components that improve signal integrity (several signal lines, power planes, and ground planes) by using different processes like via filling, screen printing, laminating and firing that can be produced in compact sizes at a low cost. The via filling technique was used to build tunable BST, BZT ferroelectric material capacitors to control phase shift. Finally, The use of the proposed ferroelectric meta-material phase shifter improves phase shifter performance by reducing insertion loss in both transmitting and receiving

  19. 78 FR 16472 - Deposit of Biological Materials

    Science.gov (United States)

    2013-03-15

    ... United States Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection....'' SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part of a patent application is... use the invention as specified by 35 U.S.C. 112. The term ``biological material'' is defined by 37...

  20. 75 FR 6348 - Deposit of Biological Materials

    Science.gov (United States)

    2010-02-09

    ... Patent and Trademark Office Deposit of Biological Materials ACTION: Proposed collection; comment request....Fawcett@uspto.gov . Include ``0651-0022 Deposit of Biological Materials comment'' in the subject line of....Hanlon@uspto.gov . SUPPLEMENTARY INFORMATION: I. Abstract The deposit of biological materials as part...

  1. Electrically tunable near-field radiative heat transfer via ferroelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yi; Boriskina, Svetlana V.; Chen, Gang, E-mail: gchen2@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-12-15

    We explore ways to actively control near-field radiative heat transfer between two surfaces that relies on electrical tuning of phonon modes of ferroelectric materials. Ferroelectrics are widely used for tunable electrical devices, such as capacitors and memory devices; however, their tunable properties have not yet been examined for heat transfer applications. We show via simulations that radiative heat transfer between two ferroelectric materials can be enhanced by over two orders of magnitude over the blackbody limit in the near field, and can be tuned as much as 16.5% by modulating the coupling between surface phonon polariton modes at the two surfaces via varying external electric fields. We then discuss how to maximize the modulation contrast for tunable thermal devices using the studied mechanism.

  2. Photothermal Characterization of Thermochromic Materials for Tunable Thermal Devices

    Science.gov (United States)

    Li Voti, R.; Leahu, G. L.; Larciprete, M. C.; Sibilia, C.; Bertolotti, M.

    2015-06-01

    A detailed infrared study of the semiconductor-to-metal transition (SMT) in a vanadium dioxide film deposited on a silicon wafer is presented. The phase transition is studied in the mid-infrared (MIR) region by analyzing the transmittance and the reflectance measurements, and the calculated emissivity. The temperature behavior of the emissivity during the SMT puts into evidence the phenomenon of the anomalous absorption in which has been explained by applying the Maxwell-Garnett effective medium approximation theory, together with a strong hysteresis phenomenon, both useful to design tunable thermal devices. Photothermal radiometry has been applied in order to study the changes in the modulated emissivity induced by a laser. Experimental results show how the use of these techniques represent a good tool for a quantitative measurement of the optothermal properties of vanadium dioxide-based structures.

  3. Concepts of tunable magnets using permanent magnetic material for synchrotron radiation sources

    International Nuclear Information System (INIS)

    Novel tunable magnets using permanent magnetic materials (PMMs) are proposed for the magnetic lattice of the 3 GeV Sirius storage ring. Many essential qualitative aspects are discussed including the low and high field dipole designs using PMMs. Studies for quadrupoles and sextupoles were also performed, but as an alternative way, which depends on field requirements

  4. TUNABILITY PERFORMANCE OF REFLECTARRAYS BASED ON NON-LINEAR MATERIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    M. Y. Ismail

    2013-01-01

    Full Text Available Limited phase range and narrower bandwidth are the main performance limitations of reflectarray antennas for high gain applications which result in the performance to be restricted particularly in satellite and earth observatory systems. This study provides a thorough investigation on the tunability performance of reflectarrays designed in X-band frequency range using different non-linear dielectric substrates. An investigation of phase agility characteristics of reflectarray rectangular patch antenna printed above non-linear materials (0.17≤ Δε ≤0.45 is thoroughly presented. A detailed analytical study on dynamic phase range and frequency tunability of the reflectarrays is carried out based on the analytical investigation which is validated by Finite Integral Method (FIM. As the dielectric anisotropy of non-linear materials increases from 0.17-0.45 the frequency tunability performance of the reflectarray antenna is shown to increase from 372-796 MHz. The results show that LC-B1 with a dielectric anisotropy of 0.45 contributes a maximum dynamic phase range and frequency tunability performance of 160° and 796 MHz respectively. The dielectric non-linear properties presented in this study are shown to considerably affect the frequency and phase range performance of reflectarray antenna particularly for rapid dynamic phase change of terrestrial systems.

  5. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    Science.gov (United States)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  6. Tunable photonic crystals based on ferroelectric and ferromagnetic materials by focused ion beam

    Institute of Scientific and Technical Information of China (English)

    Ziyou Zhou; Xiaoyue Huang; Raghav Vanga; Rong Li

    2007-01-01

    By making photonic crystals in ferroelectric and ferromagnetic materials, field-provoked tunability of photonic crystals is broadening the interest in new applications of on-chip photonic devices. We report a nano-precise fabrication of various designs of photonic crystals in these non-conventional materials using the focused ion beam milling technique. Standard methods are developed and parameters for different materials are calibrated. Optical responses such as bandgaps and polarization status changing from planar film waveguide system with these patterns have been examined on ferromagnetic materials.

  7. Evaluation of the Biological Effects of Externally Tunable, Hydrogel Encapsulated Quantum Dot Nanospheres in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Somesree GhoshMitra

    2011-08-01

    Full Text Available Quantum Dots (QDs have become an interesting subject of study for labeling and drug delivery in biomedical research due to their unique responses to external stimuli. In this paper, the biological effects of a novel hydrogel based QD nano-structure on E. coli bacteria are presented. The experimental evidence reveals that cadmium telluride (CdTe QDs that are encapsulated inside biocompatible polymeric shells have reduced or negligible toxicity to this model cell system, even when exposed at higher dosages. Furthermore, a preliminary gene expression study indicates that QD-hydrogel nanospheres do not inhibit the Green Fluorescent Protein (GFP gene expression. As the biocompatible and externally tunable polymer shells possess the capability to control the QD packing density at nanometer scales, the resulting luminescence efficiency of the nanostructures, besides reducing the cytotoxic potential, may be suitable for various biomedical applications.

  8. Voltage tunability of thermal conductivity in ferroelectric materials

    Science.gov (United States)

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  9. Tunable electronic and magnetic properties of two‐dimensional materials and their one‐dimensional derivatives

    Science.gov (United States)

    Zhang, Zhuhua; Liu, Xiaofei; Yu, Jin; Hang, Yang; Li, Yao; Guo, Yufeng; Xu, Ying; Sun, Xu; Zhou, Jianxin

    2016-01-01

    Low‐dimensional materials exhibit many exceptional properties and functionalities which can be efficiently tuned by externally applied force or fields. Here we review the current status of research on tuning the electronic and magnetic properties of low‐dimensional carbon, boron nitride, metal‐dichalcogenides, phosphorene nanomaterials by applied engineering strain, external electric field and interaction with substrates, etc, with particular focus on the progress of computational methods and studies. We highlight the similarities and differences of the property modulation among one‐ and two‐dimensional nanomaterials. Recent breakthroughs in experimental demonstration of the tunable functionalities in typical nanostructures are also presented. Finally, prospective and challenges for applying the tunable properties into functional devices are discussed. WIREs Comput Mol Sci 2016, 6:324–350. doi: 10.1002/wcms.1251 For further resources related to this article, please visit the WIREs website. Conflict of interest: The authors have declared no conflicts of interest for this article.

  10. Additive manufacturing of biologically-inspired materials.

    Science.gov (United States)

    Studart, André R

    2016-01-21

    Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities. PMID:26750617

  11. Accidents with biological material in workers

    OpenAIRE

    Cleonice Andréa Alves Cavalcante; Elisângela Franco de Oliveira Cavalcante; Maria Lúcia Azevedo Ferreira de Macêdo; Eliane Cavalcante dos Santos; Soraya Maria de Medeiros

    2013-01-01

    The objective was to describe the accidents with biological material occurred among workers of Rio Grande do Norte, Brazil, between 2007 and 2009. Secondary data were collected in the National Notifiable Diseases Surveillance System by exporting data to Excel using Tabwin. Among the types of occupational accidents reported in the state, the biological accidents (no. = 1,170) accounted for 58.3% with a predominance of cases among nurses (48.6%). The percutaneous exposure was the most frequent ...

  12. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.

    2015-05-01

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  13. Recent developments in widely tunable and high peak power ultrafast laser sources and their adoption in biological imaging

    Science.gov (United States)

    Klein, J.

    2016-03-01

    Widely tunable ultrafast lasers have enabled a large number of biological imaging techniques including point scanning multiphoton excited fluorescence (MPEF), SHG/THG and stimulated Raman imaging. Tunable ultrafast lasers offer spectral agility, covering the entire relative transparency window in live tissue (700-1300nnm) and flexibility with multi-color, synchronized outputs to support sophisticated label free techniques (e.g. stimulated Raman modalities). More recently newly available high peak power lasers based on Ytterbium technology drive advances in two-photon light-sheet, 3 photon excited fluorescence and holographic patterning for optogenetics photo-stimulation. These laser platforms offer a unique blend of compactness, ease of use and cost efficiency, and ideally complement tunable platforms typically based on Ti:Sapphire and IR optical parametric oscillators (OPO). We present various types of ultrafast laser architectures, link their optical characteristics to key bio-imaging requirements, and present relevant examples and images illustrating their impact in biological science. In particular we review the use of ultrafast lasers in optogenetics for photo-stimulation of networks of neurons.

  14. Tunable ferrites as environmentally friendly materials for energy-efficient processes

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Serrano, Inmaculada; Arillo, Maria Angeles; Lopez, Maria Luisa; Veiga, Maria Luisa; Pico, Carlos [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid (Spain)

    2011-11-23

    Novel materials and methods of synthesis in the field of energy conversion and economy are reported. The main goal is to prepare and characterize Li{sub (4-x)}Mn{sub (5-2x)}Fe{sub 3x}O{sub 12} compounds. These compounds crystallize in a spinel-type structure, AB{sub 2}O{sub 4}, in which the cationic location in the A and B sublattices drives the potential application of these materials in two current prominent research fields: magnetic refrigeration and lithium batteries. This solid solution is revealed as a tunable system that nicely permits a specific response to be highlighted, depending on the composition and particle size: the magnetocaloric effect or active electrochemical behavior. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Tunable mechanical characteristics of a novel soft magnetic entangled metallic wire material

    Science.gov (United States)

    Ma, Yanhong; Hu, Wenzhong; Zhang, Dayi; Zhang, Qicheng; Hong, Jie

    2016-09-01

    This article proposes a novel soft magnetic entangled metallic wire material(SM-EMWM) for the first time, and describes the manufacturing and quasi-static tests of its samples produced from soft magnetic metal wires. The mechanical properties of three batches of SM-EMWMs with different porosity have been investigated at different maximum strains in different external magnetic fields. The result shows that its properties (tangent modulus, loss factor) can be tunable in the magnetic field rapidly and reversibly. Compared with no magnetic field condition, the tangent modulus of SM-EMWM samples in a magnetic field of 500 mT can increase 2 ∼ 7 times on the average, while the loss factor averagely raises 10% ∼ 30%. The results show that the application of SM-EMWM, as a novel magneto-sensitive smart material, is feasible and applicable.

  16. Using Raman spectroscopy to characterize biological materials.

    Science.gov (United States)

    Butler, Holly J; Ashton, Lorna; Bird, Benjamin; Cinque, Gianfelice; Curtis, Kelly; Dorney, Jennifer; Esmonde-White, Karen; Fullwood, Nigel J; Gardner, Benjamin; Martin-Hirsch, Pierre L; Walsh, Michael J; McAinsh, Martin R; Stone, Nicholas; Martin, Francis L

    2016-04-01

    Raman spectroscopy can be used to measure the chemical composition of a sample, which can in turn be used to extract biological information. Many materials have characteristic Raman spectra, which means that Raman spectroscopy has proven to be an effective analytical approach in geology, semiconductor, materials and polymer science fields. The application of Raman spectroscopy and microscopy within biology is rapidly increasing because it can provide chemical and compositional information, but it does not typically suffer from interference from water molecules. Analysis does not conventionally require extensive sample preparation; biochemical and structural information can usually be obtained without labeling. In this protocol, we aim to standardize and bring together multiple experimental approaches from key leaders in the field for obtaining Raman spectra using a microspectrometer. As examples of the range of biological samples that can be analyzed, we provide instructions for acquiring Raman spectra, maps and images for fresh plant tissue, formalin-fixed and fresh frozen mammalian tissue, fixed cells and biofluids. We explore a robust approach for sample preparation, instrumentation, acquisition parameters and data processing. By using this approach, we expect that a typical Raman experiment can be performed by a nonspecialist user to generate high-quality data for biological materials analysis. PMID:26963630

  17. Crystalline ZnMgSe:Cr2+: a new material for active elements of tunable IR-lasers

    CERN Document Server

    Zagoruiko, Yu A; Fedorenko, O A; Khristyan, V A

    2008-01-01

    Obtained is a new thermostable material for active elements of tunable IR-lasers - Zn1-xMgxSe:Cr2+ single crystals. The position of the absorption band of Cr2+ ions in wurtzite-type Zn0.8Mg0.2Se matrix is established.

  18. Nanobiotechnology: synthetic biology meets materials science.

    Science.gov (United States)

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation.

  19. Biologically relevant photoacoustic imaging phantoms with tunable optical and acoustic properties.

    Science.gov (United States)

    Vogt, William C; Jia, Congxian; Wear, Keith A; Garra, Brian S; Joshua Pfefer, T

    2016-10-01

    Established medical imaging technologies such as magnetic resonance imaging and computed tomography rely on well-validated tissue-simulating phantoms for standardized testing of device image quality. The availability of high-quality phantoms for optical-acoustic diagnostics such as photoacoustic tomography (PAT) will facilitate standardization and clinical translation of these emerging approaches. Materials used in prior PAT phantoms do not provide a suitable combination of long-term stability and realistic acoustic and optical properties. Therefore, we have investigated the use of custom polyvinyl chloride plastisol (PVCP) formulations for imaging phantoms and identified a dual-plasticizer approach that provides biologically relevant ranges of relevant properties. Speed of sound and acoustic attenuation were determined over a frequency range of 4 to 9 MHz and optical absorption and scattering over a wavelength range of 400 to 1100 nm. We present characterization of several PVCP formulations, including one designed to mimic breast tissue. This material is used to construct a phantom comprised of an array of cylindrical, hemoglobin-filled inclusions for evaluation of penetration depth. Measurements with a custom near-infrared PAT imager provide quantitative and qualitative comparisons of phantom and tissue images. Results indicate that our PVCP material is uniquely suitable for PAT system image quality evaluation and may provide a practical tool for device validation and intercomparison. PMID:26886681

  20. Solid freeform fabrication of biological materials

    Science.gov (United States)

    Wang, Jiwen

    This thesis investigates solid freeform fabrication of biological materials for dental restoration and orthopedic implant applications. The basic approach in this study for solid freeform fabrication of biological materials is micro-extrusion of single or multiple slurries for 3D components and inkjet color printing of multiple suspensions for functionally graded materials (FGMs). Common issues associated with micro-extrusion and inkjet color printing are investigated. These common issues include (i) formulation of stable slurries with a pseudoplastic property, (ii) cross-sectional geometry of the extrudate as a function of the extrusion parameters, (iii) fabrication path optimization for extrusion process, (iv) extrusion optimization for multi-layer components, (v) composition control in functionally graded materials, and (vi) sintering optimization to convert the freeform fabricated powder compact to a dense body for biological applications. The present study clearly shows that the rheological and extrusion behavior of dental porcelain slurries depend strongly on the pH value of the slurry and extrusion conditions. A slurry with pseudoplastic properties is a basic requirement for obtaining extruded lines with rectangular cross-sections. The cross-sectional geometry of the extrudate is also strongly affected by extrusion parameters including the extrusion nozzle height, nozzle moving speed, extrusion rate, and critical nozzle height. Proper combinations of these extrusion parameters are necessary in order to obtain single line extrudates with near rectangular cross-sections and 3D objects with dimensional accuracy, uniform wall thickness, good wall uprightness, and no wall slumping. Based on these understandings, single-wall, multi-wall, and solid teeth have been fabricated via micro-extrusion of the dental slurry directly from a CAD digital model in 30 min. Inkjet color printing using stable Al2O3 and ZrO 2 aqueous suspensions has been developed to fabricate

  1. Tunable M-channel filter based on Thue-Morse heterostructures containing meta materials

    Directory of Open Access Journals (Sweden)

    H Pashaei Adl

    2015-01-01

    Full Text Available In this paper the tunable M-channel filters based on Thue-Morse heterostructures consisting of single -negative materials has been studied. The results showed that the number of resonance modes inside the zero- gap increases as the number of heterogenous interface, M, increases. The number of resonance modes inside the zero- gap is equal to that of heterogenous interface M, and it can be used as M channels filter. This result provides a feasible method to adjust the channel number of multiple-channel filters. When losses are involved, the results showed that the electric fields of the resonance modes decay largely with the increase of the number of heterogenous interface and damping factors. Besides, the relationship between the quality factor of multiple-channel filters and the number of heterogenous interface M is linear, and the quality factor of multiple-channel filters decreases with the increase of the damping factor. These results provide feasible methods to adjust the quality factor of multiple-channel filters

  2. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    Science.gov (United States)

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications. PMID:25243892

  3. Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials.

    Science.gov (United States)

    Schäfer, Christian G; Lederle, Christina; Zentel, Kristina; Stühn, Bernd; Gallei, Markus

    2014-11-01

    In this work, the preparation of highly thermoresponsive and fully reversible stretch-tunable elastomeric opal films featuring switchable structural colors is reported. Novel particle architectures based on poly(diethylene glycol methylether methacrylate-co-ethyl acrylate) (PDEGMEMA-co-PEA) as shell polymer are synthesized via seeded and stepwise emulsion polymerization protocols. The use of DEGMEMA as comonomer and herein established synthetic strategies leads to monodisperse soft shell particles, which can be directly processed to opal films by using the feasible melt-shear organization technique. Subsequent UV crosslinking strategies open access to mechanically stable and homogeneous elastomeric opal films. The structural colors of the opal films feature mechano- and thermoresponsiveness, which is found to be fully reversible. Optical characterization shows that the combination of both stimuli provokes a photonic bandgap shift of more than 50 nm from 560 nm in the stretched state to 611 nm in the fully swollen state. In addition, versatile colorful patterns onto the colloidal crystal structure are produced by spatial UV-induced crosslinking by using a photomask. This facile approach enables the generation of spatially cross-linked switchable opal films with fascinating optical properties. Herein described strategies for the preparation of PDEGMEMA-containing colloidal architectures, application of the melt-shear ordering technique, and patterned crosslinking of the final opal films open access to novel stimuli-responsive colloidal crystal films, which are expected to be promising materials in the field of security and sensing applications.

  4. Entangled single-wire NiTi material: a porous metal with tunable superelastic and shape memory properties

    OpenAIRE

    Gadot, B.; Martinez, O. Riu; Roscoat, S. Rolland du; Bouvard, D.; Rodney, D.; Orgéas, L.

    2015-01-01

    NiTi porous materials with unprecedented superelasticity and shape memory were manufactured by self-entangling, compacting and heat treating NiTi wires. The versatile processing route used here allows to produce entanglements of either superelastic or ferroelastic wires with tunable mesostructures. Three dimensional (3D) X-ray microtomography shows that the entanglement mesostructure is homogeneous and isotropic. The thermomechanical compressive behavior of the entanglements was studied using...

  5. Ultrafast spectroscopy in biological and organic materials

    Science.gov (United States)

    Bai, Guang

    This thesis consists of an experimental investigation of the dynamics of the biological material, visual pigment rhodopsin, and the persistent hole burning material, octaethylpophine-doped polystyrene (OEP/PS), utilizing femtosecond laser spectroscopy. The cis-trans isomerization of the retinal chromophore in rhodopsin at ambient temperature has been studied by employing a novel three beam femtosecond transient absorption method, and a new model is proposed. Two- thirds of the excited rhodopsin molecules isomerize promptly via curve-crossing to form bathorhodopsin in ~200 femtoseconds. The remaining third will miss curve-crossing and stay in the excited state, which never isomerizes and decays to the ground state rhodopsin in ~3 picoseconds. These results are consistent with recent two-beam femtosecond transient experiments[1-6] and agree well with molecular dynamics calculations[7-8]. The three-beam pump-probe measurement is an important technical advance in the characterization of transient species in the initial step of vision, which directly measures the formation dynamics of the ground state species. Using this technique, we could drive the bathorhodopsin back into rhodopsin. This is the first experimental evidence of trans to cis formation of rhodopsin at ambient temperature. The characteristic parameters and phototransformation pathway of OEP/PS have been studied for optical storage applications. Femtosecond accumulated photon echo and time-resolved absorption spectroscopy were used. The optical dephasing time T2 for a laser bandwidth covering the whole inhomogeneous zero-phonon absorption band is 200 ± 50 ps at 1.4 K. T2 reduces significantly to 100 ps when the temperature increases to 4.2 K. This temperature dependence indicates that OEP/PS must operate at very low temperatures. The saturation dose is 6 J/cm2. The maximum number of readings is equivalent to the same amount of energy of writing. 150 fs single-shot detection of a 4-bit packet stored in an

  6. Laser interaction with biological material mathematical modeling

    CERN Document Server

    Kulikov, Kirill

    2014-01-01

    This book covers the principles of laser interaction with biological cells and tissues of varying degrees of organization. The problems of biomedical diagnostics are considered. Scattering of laser irradiation of blood cells is modeled for biological structures (dermis, epidermis, vascular plexus). An analytic theory is provided which is based on solving the wave equation for the electromagnetic field. It allows the accurate analysis of interference effects arising from the partial superposition of scattered waves. Treated topics of mathematical modeling are: optical characterization of biological tissue with large-scale and small-scale inhomogeneities in the layers, heating blood vessel under laser irradiation incident on the outer surface of the skin and thermo-chemical denaturation of biological structures at the example of human skin.

  7. Tunable plasmonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, Gregory Conrad; Shaner, Eric A.; Reno, John L.; Aizin, Gregory

    2015-08-11

    A tunable plasmonic crystal comprises several periods in a two-dimensional electron or hole gas plasmonic medium that is both extremely subwavelength (.about..lamda./100) and tunable through the application of voltages to metal electrodes. Tuning of the plasmonic crystal band edges can be realized in materials such as semiconductors and graphene to actively control the plasmonic crystal dispersion in the terahertz and infrared spectral regions. The tunable plasmonic crystal provides a useful degree of freedom for applications in slow light devices, voltage-tunable waveguides, filters, ultra-sensitive direct and heterodyne THz detectors, and THz oscillators.

  8. Biological inspiration in optics and photonics: harnessing nature's light manipulation strategies for multifunctional optical materials (Conference Presentation)

    Science.gov (United States)

    Kolle, Mathias; Sandt, Joseph D.; Nagelberg, Sara N.; Zarzar, Lauren D.; Kreysing, Moritz; Vukusic, Peter

    2016-03-01

    The precise control of light-matter interactions is crucial for the majority of known biological organisms in their struggle to survive. Many species have evolved unique methods to manipulate light in their environment using a variety of physical effects including pigment-induced, spectrally selective absorption or light interference in photonic structures that consist of micro- and nano-periodic material morphologies. In their optical performance, many of the known biological photonic systems are subject to selection criteria not unlike the requirements faced in the development of novel optical technology. For this reason, biological light manipulation strategies provide inspiration for the creation of tunable, stimuli-responsive, adaptive material platforms that will contribute to the development of multifunctional surfaces and innovative optical technology. Biomimetic and bio-inspired approaches for the manufacture of photonic systems rely on self-assembly and bottom-up growth techniques often combined with conventional top-down manufacturing. In this regard, we can benefit in several ways from highly sophisticated material solutions that have convergently evolved in various organisms. We explore design concepts found in biological photonic architectures, seek to understand the mechanisms underlying morphogenesis of bio-optical systems, aim to devise viable manufacturing strategies that can benefit from insight in biological formation processes and the use of established synthetic routines alike, and ultimately strive to realize new photonic materials with tailor-made optical properties. This talk is focused on the identification of biological role model photonic architectures, a brief discussion of recently developed bio-inspired photonic structures, including mechano-sensitive color-tunable photonic fibers and reconfigurable fluid micro-lenses. Potentially, early-stage results in studying and harnessing the structure-forming capabilities of living cells that

  9. Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction.

    Science.gov (United States)

    Vélez, Saül; Ciudad, David; Island, Joshua; Buscema, Michele; Txoperena, Oihana; Parui, Subir; Steele, Gary A; Casanova, Fèlix; van der Zant, Herre S J; Castellanos-Gomez, Andres; Hueso, Luis E

    2015-10-01

    The semiconducting p-n junction is a simple device structure with great relevance for electronic and optoelectronic applications. The successful integration of low-dimensional materials in electronic circuits has opened the way forward for producing gate-tunable p-n junctions. In that context, we present here an organic (Cu-phthalocyanine)-2D layered material (MoS2) hybrid p-n junction with both gate-tunable diode characteristics and photovoltaic effect. Our proof-of-principle devices show multifunctional properties with diode rectifying factors of up to 10(4), while under light exposure they exhibit photoresponse with a measured external quantum efficiency of ∼11%. As for their photovoltaic properties, we found open circuit voltages of up to 0.6 V and optical-to-electrical power conversion efficiency of 0.7%. The extended catalogue of known organic semiconductors and two-dimensional materials offer the prospect for tailoring the properties and the performance of the resulting devices, making organic-2D p-n junctions promising candidates for future technological applications.

  10. The acquisition of dangerous biological materials :

    Energy Technology Data Exchange (ETDEWEB)

    Aceto, Donato Gonzalo; Astuto-Gribble, Lisa M.; Gaudioso, Jennifer M.

    2007-11-01

    Numerous terrorist organizations have openly expressed interest in producing and deploying biological weapons. However, a limiting factor for many terrorists has been the acquisition of dangerous biological agents, as evidenced by the very few successful instances of biological weapons use compared to the number of documented hoaxes. Biological agents vary greatly in their ability to cause loss of life and economic damage. Some agents, if released properly, can kill many people and cause an extensive number of secondary infections; other agents will sicken only a small number of people for a short period of time. Consequently, several biological agents can potentially be used to perpetrate a bioterrorism attack but few are likely capable of causing a high consequence event. It is crucial, from a US national security perspective, to more deeply understand the likelihood that terrorist organizations can acquire the range of these agents. Few studies have attempted to comprehensively compile the technical information directly relevant to the acquisition of dangerous bacteria, viruses and toxins. In this report, technical fact sheets were assembled for 46 potentially dangerous biological agents. Much of the information was taken from various research sources which could ultimately and significantly expedite and improve bioterrorism threat assessments. By systematically examining a number of specific agent characteristics included in these fact sheets, it may be possible to detect, target, and implement measures to thwart future terrorist acquisition attempts. In addition, the information in these fact sheets may be used as a tool to help laboratories gain a rudimentary understanding of how attractive a method laboratory theft is relative to other potential acquisition modes.

  11. Tunable geometry of bacterial inclusion bodies as substrate materials for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    GarcIa-Fruitos, Elena; Seras-Franzoso, JoaquIn; Vazquez, Esther; Villaverde, Antonio [CIBER en BioingenierIa, Biomateriales y Nanomedicina, Bellaterra, 08193 Barcelona (Spain); Institut de Biotecnologia i de Biomedicina and Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, 08193 Bellaterra (Cerdanyola del Valles), Barcelona (Spain)

    2010-05-21

    A spectrum of materials for biomedical applications is produced in bacteria, and some of them, such as metals or polyhydroxyalkanoates, are straightforwardly obtained as particulate entities. We have explored the biofabrication process of bacterial inclusion bodies, particulate proteinaceous materials (ranging from 50 to 500 nm in diameter) recently recognized as suitable for surface topographical modification and tissue engineering. Inclusion bodies have been widely described as spherical or pseudo-spherical particles with only minor morphological variability, mostly restricted to their size. Here we have identified a cellular gene in Escherichia coli (clpP) that controls the in vivo fabrication process of inclusion bodies. In the absence of the encoded protease, the dynamics of protein deposition is perturbed, resulting in unusual tear-shaped particles with enhanced surface-volume ratios. This fact modifies the ability of inclusion bodies to promote mammalian cell attachment and differentiation upon surface decoration. The implications of the genetic control of inclusion body geometry are discussed in the context of their biological fabrication and regarding the biomedical potential of these protein clusters in regenerative medicine.

  12. Biological issues in materials science and engineering: Interdisciplinarity and the bio-materials paradigm

    Science.gov (United States)

    Murr, L. E.

    2006-07-01

    Biological systems and processes have had, and continue to have, important implications and applications in materials extraction, processing, and performance. This paper illustrates some interdisciplinary, biological issues in materials science and engineering. These include metal extraction involving bacterial catalysis, galvanic couples, bacterial-assisted corrosion and degradation of materials, biosorption and bioremediation of toxic and other heavy metals, metal and material implants and prostheses and related dental and medical biomaterials developments and applications, nanomaterials health benefits and toxicity issue, and biomimetics and biologically inspired materials developments. These and other examples provide compelling evidence and arguments for emphasizing biological sicences in materials science and engineering curricula and the implementation of a bio-materials paradigm to facilitate the emergence of innovative interdisciplinarity involving the biological sciences and materials sciences and engineering.

  13. Material science lesson from the biological photosystem

    Science.gov (United States)

    Kim, Younghye; Lee, Jun Ho; Ha, Heonjin; Im, Sang Won; Nam, Ki Tae

    2016-08-01

    Inspired by photosynthesis, artificial systems for a sustainable energy supply are being designed. Each sequential energy conversion process from light to biomass in natural photosynthesis is a valuable model for an energy collection, transport and conversion system. Notwithstanding the numerous lessons of nature that provide inspiration for new developments, the features of natural photosynthesis need to be reengineered to meet man's demands. This review describes recent strategies toward adapting key lessons from natural photosynthesis to artificial systems. We focus on the underlying material science in photosynthesis that combines photosystems as pivotal functional materials and a range of materials into an integrated system. Finally, a perspective on the future development of photosynthesis mimetic energy systems is proposed.

  14. Tunable parametric amplifier for mid-IR application based on highly nonlinear chalcogenide material

    Energy Technology Data Exchange (ETDEWEB)

    Maji, Partha Sona; Roy Chaudhuri, Partha [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-28

    A novel dispersion controlling technique towards attaining tunable parametric amplification based on highly nonlinear photonic crystal fibers has been investigated. Selective infiltration of the liquid into the air-holes leads to alter the zero dispersion wavelength towards a broader parametric gain in the mid-IR spectrum by only changing the temperature of the system externally. The dispersion profile specially the zero dispersion wavelengths can be well tuned around the pumping wavelength, thereby generating several hundred nanometer parametric bandwidth in near-IR to mid-IR region. The tunability of the photonic crystal fibers (PCFs) can also be useful for generating new frequencies in both the red- and blue-shifted regions far from the pumping wavelength. Our numerical calculations reveal that we could achieve very wide band fiber optic parametric amplifier both in the communication wavelength and in the IR region. Also two different types of PCFs can be used to achieve same broadband wavelength spectra however with a tradeoff between the fiber lengths and pump power.

  15. Tunable circuit for tunable capacitor devices

    Science.gov (United States)

    Rivkina, Tatiana; Ginley, David S.

    2006-09-19

    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  16. Editorial:Mechanics of biological and bio-inspired materials%Editorial: Mechanics of biological and bio-inspired materials

    Institute of Scientific and Technical Information of China (English)

    Baohua Jia

    2012-01-01

    The field of mechanics of biological and bio-inspired materials underwent an exciting development over the past several years,which made it stand at the cutting edge of both engineering mechanics and biomechanics.As an intriguing interdisciplinary research field,it aims at elucidating the fundamental principles in nature's design of strong,multi-functional and smart Materials by focusing on the assembly,deformation,stability and failure of the materials.These principles should have wide applications in not only material sciences and mechanical engineering but also biomedical engineering.For instance,the knowledge in Mechanical principles of biological materials is very helpful for addressing some major challenges in material sciences and engineering.They also have the potential to provide quantitative understanding about how forces and deformation affect human being's health,diseases and treatment at tissue,cellular and molecular levels.This special subject on "mechanics of biological and bio-inspired materials" collects a few studies on recent development by leading scientists in this field.The biological materials or systems in these studies include cell,cytoskeleton (e.g.,microtubulus,intermediate filaments),lipid molecules and composite system of lipid and nanoparticle,tissue,and biological attachment systems,etc.

  17. Materiomics: biological protein materials, from nano to macro

    Directory of Open Access Journals (Sweden)

    Steven Cranford

    2010-11-01

    Full Text Available Steven Cranford, Markus J BuehlerCenter for Materials Science and Engineering, Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USAAbstract: Materiomics is an emerging field of science that provides a basis for multiscale material system characterization, inspired in part by natural, for example, protein-based materials. Here we outline the scope and explain the motivation of the field of materiomics, as well as demonstrate the benefits of a materiomic approach in the understanding of biological and natural materials as well as in the design of de novo materials. We discuss recent studies that exemplify the impact of materiomics – discovering Nature’s complexity through a materials science approach that merges concepts of material and structure throughout all scales and incorporates feedback loops that facilitate sensing and resulting structural changes at multiple scales. The development and application of materiomics is illustrated for the specific case of protein-based materials, which constitute the building blocks of a variety of biological systems such as tendon, bone, skin, spider silk, cells, and tissue, as well as natural composite material systems (a combination of protein-based and inorganic constituents such as nacre and mollusk shells, and other natural multiscale systems such as cellulose-based plant and wood materials. An important trait of these materials is that they display distinctive hierarchical structures across multiple scales, where molecular details are exhibited in macroscale mechanical responses. Protein materials are intriguing examples of materials that balance multiple tasks, representing some of the most sustainable material solutions that integrate structure and function despite severe limitations in the quality and quantity of material building blocks. However, up until now, our attempts to analyze and

  18. Analysis and Design of Biological Materials and Structures

    CERN Document Server

    Öchsner, Andreas; Altenbach, Holm

    2012-01-01

    This collection provides researchers and scientists with advanced analyses and materials design techniques in Biomaterials and presents mechanical studies of biological structures. In 16 contributions well known experts present their research on Stress and Strain Analysis, Material Properties, Fluid and Gas mechanics and they show related problems.

  19. The host response to allogeneic and xenogeneic biological scaffold materials.

    Science.gov (United States)

    Keane, Timothy J; Badylak, Stephen F

    2015-05-01

    The clinical use of biological scaffold materials has become commonplace. Such scaffolds are composed of extracellular matrix (ECM), or components of ECM, derived from allogeneic or xenogeneic tissues. Such scaffold materials vary widely in their source tissue, processing methods and sterilization methods. The success or failure of an ECM scaffold for a given application is dependent on the host response following implantation; a response that is largely mediated by the innate immune system and which is influenced by a numerous factors, including the processing methods used in the preparation of biological scaffolds. The present paper reviews various aspects of the host response to biological scaffolds and factors that affect this response. In addition, some of the logistical, regulatory and reconstructive implications associated with the use of biological scaffolds are discussed. PMID:24668694

  20. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area. PMID:25393596

  1. Flexible Organic Electronics in Biology: Materials and Devices.

    Science.gov (United States)

    Liao, Caizhi; Zhang, Meng; Yao, Mei Yu; Hua, Tao; Li, Li; Yan, Feng

    2015-12-01

    At the convergence of organic electronics and biology, organic bioelectronics attracts great scientific interest. The potential applications of organic semiconductors to reversibly transmit biological signals or stimulate biological tissues inspires many research groups to explore the use of organic electronics in biological systems. Considering the surfaces of movable living tissues being arbitrarily curved at physiological environments, the flexibility of organic bioelectronic devices is of paramount importance in enabling stable and reliable performances by improving the contact and interaction of the devices with biological systems. Significant advances in flexible organic bio-electronics have been achieved in the areas of flexible organic thin film transistors (OTFTs), polymer electrodes, smart textiles, organic electrochemical ion pumps (OEIPs), ion bipolar junction transistors (IBJTs) and chemiresistors. This review will firstly discuss the materials used in flexible organic bioelectronics, which is followed by an overview on various types of flexible organic bioelectronic devices. The versatility of flexible organic bioelectronics promises a bright future for this emerging area.

  2. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  3. Tunable micro-optics

    CERN Document Server

    Duppé, Claudia

    2015-01-01

    Presenting state-of-the-art research into the dynamic field of tunable micro-optics, this is the first book to provide a comprehensive survey covering a varied range of topics including novel materials, actuation concepts and new imaging systems in optics. Internationally renowned researchers present a diverse range of chapters on cutting-edge materials, devices and subsystems, including soft matter, artificial muscles, tunable lenses and apertures, photonic crystals, and complete tunable imagers. Special contributions also provide in-depth treatment of micro-optical characterisation, scanners, and the use of natural eye models as inspiration for new concepts in advanced optics. With applications extending from medical diagnosis to fibre telecommunications, Tunable Micro-optics equips readers with a solid understanding of the broader technical context through its interdisciplinary approach to the realisation of new types of optical systems. This is an essential resource for engineers in industry and academia,...

  4. Near-Infrared Fluorescent Materials for Sensing of Biological Targets

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2008-05-01

    Full Text Available Near-infrared fluorescent (NIRF materials are promising labeling reagents for sensitive determination and imaging of biological targets. In the near-infrared region biological samples have low background fluorescence signals, providing high signal to noise ratio. Meanwhile, near-infrared radiation can penetrate into sample matrices deeply due to low light scattering. Thus, in vivo and in vitro imaging of biological samples can be achieved by employing the NIRF probes. To take full advantage of NIRF materials in the biological and biomedical field, one of the key issues is to develop intense and biocompatible NIRF probes. In this review, a number of NIRF materials are discussed including traditional NIRF dye molecules, newly developed NIRF quantum dots and single-walled carbon nanotubes, as well as rare earth metal compounds. The use of some NIRF materials in various nanostructures is illustrated. The enhancement of NIRF using metal nanostructures is covered as well. The fluorescence mechanism and bioapplications of each type of the NIRF materials are discussed in details.

  5. Electron Microscopy of Biological Materials at the Nanometer Scale

    Science.gov (United States)

    Kourkoutis, Lena Fitting; Plitzko, Jürgen M.; Baumeister, Wolfgang

    2012-08-01

    Electron microscopy of biological matter uses three different imaging modalities: (a) electron crystallography, (b) single-particle analysis, and (c) electron tomography. Ideally, these imaging modalities are applied to frozen-hydrated samples to ensure an optimal preservation of the structures under scrutiny. Cryo-electron microscopy of biological matter has made important advances in the past decades. It has become a research tool that further expands the scope of structural research into unique areas of cell and molecular biology, and it could augment the materials research portfolio in the study of soft and hybrid materials. This review addresses how researchers using transmission electron microscopy can derive structural information at high spatial resolution from fully hydrated specimens, despite their sensitivity to ionizing radiation, despite the adverse conditions of high vacuum for samples that have to be kept in aqueous environments, and despite their low contrast resulting from weakly scattering building blocks.

  6. Biological evaluation of dental materials, in vitro and in vivo

    International Nuclear Information System (INIS)

    In this paper, the correlation between the user of tissue culture for in vitro tests and the tissue irritability and pupal response observed in in vitro tests, will be discussed. It would produce confusion if dental materials were standardised with the unreliable parameter of the living system in dynamic balance. Biological tests, both in vitro and in vivo, should be used for pre-standards testing, without any political control to establish physicochemical standards. As a first step, corrosion tests and the dissolution dosje of toxic components from the material in the tissue culture medium and/or artificial salvia should be standardised under conditions simulating the oral environment. The CNC method and photo-pattern analysis are used for the interpretation of cytotoxicity. The need for biological testing, both in vitro and in vivo, definitely exists in order to obtain physicochemical standards, with a biological simulation depending upon the feedback obtained from the results of in vitro and in vivo tests

  7. The preparation of biological reference materials for QUASIMEME

    NARCIS (Netherlands)

    Kotterman, M.J.J.

    2011-01-01

    Biological materials, consisting of three different batches of mussels; from Den Helder harbour (POPs, TBT), Irish mussels (metals) and Wadden Sea mussels, fortified with highly contaminated mussels from Belgium (POPs), and of one batch of turbot liver (metals) have been prepared for use in QUASIMEM

  8. Structure and mechanics of interfaces in biological materials

    Science.gov (United States)

    Barthelat, Francois; Yin, Zhen; Buehler, Markus J.

    2016-04-01

    Hard biological materials — for example, seashells, bone or wood — fulfil critical structural functions and display unique and attractive combinations of stiffness, strength and toughness, owing to their intricate architectures, which are organized over several length scales. The size, shape and arrangement of the ‘building blocks’ of which these materials are made are essential for defining their properties and their exceptional performance, but there is growing evidence that their deformation and toughness are also largely governed by the interfaces that join these building blocks. These interfaces channel nonlinear deformations and deflect cracks into configurations in which propagation is more difficult. In this Review, we discuss comparatively the composition, structure and mechanics of a set of representative biological interfaces in nacre, bone and wood, and show that these interfaces possess unusual mechanical characteristics, which can encourage the development of advanced bioinspired composites. Finally, we highlight recent examples of synthetic materials inspired from the mechanics and architecture of natural interfaces.

  9. Synthetic Self-Assembled Materials in Biological Environments.

    Science.gov (United States)

    Versluis, Frank; van Esch, Jan H; Eelkema, Rienk

    2016-06-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA, proteins), until recently the self-assembly of synthetic molecules has mainly been investigated ex vivo. The past few years however, have witnessed the emergence of a research field in which synthetic, self-assembling systems are used that are capable of operating as bioactive materials in biological environments. Here, this up-and-coming field, which has the potential of becoming a key area in chemical biology and medicine, is reviewed. Two main categories of applications of self-assembly in biological environments are identified and discussed, namely therapeutic and imaging agents. Within these categories key concepts, such as triggers and molecular constraints for in vitro/in vivo self-assembly and the mode of interaction between the assemblies and the biological materials will be discussed. PMID:27042774

  10. Hexaazatrinaphthylene Derivatives: Efficient Electron-Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Zhao, Dongbing; Zhu, Zonglong; Kuo, Ming-Yu; Chueh, Chu-Chen; Jen, Alex K-Y

    2016-07-25

    Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs.

  11. Hexaazatrinaphthylene Derivatives: Efficient Electron-Transporting Materials with Tunable Energy Levels for Inverted Perovskite Solar Cells.

    Science.gov (United States)

    Zhao, Dongbing; Zhu, Zonglong; Kuo, Ming-Yu; Chueh, Chu-Chen; Jen, Alex K-Y

    2016-07-25

    Hexaazatrinaphthylene (HATNA) derivatives have been successfully shown to function as efficient electron-transporting materials (ETMs) for perovskite solar cells (PVSCs). The cells demonstrate a superior power conversion efficiency (PCE) of 17.6 % with negligible hysteresis. This study provides one of the first nonfullerene small-molecule-based ETMs for high-performance p-i-n PVSCs. PMID:27273656

  12. FDTD Simulation of Exposure of Biological Material to Electromagnetic Nanopulses

    CERN Document Server

    Simicevic, N; Simicevic, Neven; Haynie, Donald T

    2004-01-01

    Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, are of considerable interest to the communications industry and are being explored for various applications in biotechnology and medicine. The propagation of a nanopulse through biological matter has been computed in the time domain using the finite difference-time domain method (FDTD). The approach required existing Cole-Cole model-based descriptions of dielectric properties of biological matter to be re-parametrized using the Debye model, but without loss of accuracy. The approach has been applied to several tissue types. Results show that the electromagnetic field inside a biological tissue depends on incident pulse rise time and width. Rise time dominates pulse behavior inside a tissue as conductivity increases. It has also been found that the amount of energy deposited by 20 $kV/m$ nanopulses is insufficient to change the temperature of the exposed material for the pulse repetition rates of 1 $MHz$ or less.

  13. Phase-shifting by means of an electronically tunable lens: quantitative phase imaging of biological specimens with digital holographic microscopy.

    Science.gov (United States)

    Trujillo, Carlos; Doblas, Ana; Saavedra, Genaro; Martínez-Corral, Manuel; García-Sucerquia, Jorge

    2016-04-01

    The use of an electronically tunable lens (ETL) to produce controlled phase shifts in interferometric arrangements is shown. The performance of the ETL as a phase-shifting device is experimentally validated in phase-shifting digital holographic microscopy. Quantitative phase maps of a section of the thorax of a Drosophila melanogaster fly and of human red blood cells have been obtained using our proposal. The experimental results validate the possibility of using the ETL as a reliable phase-shifter device. PMID:27192250

  14. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    Directory of Open Access Journals (Sweden)

    Susy Albert

    2012-12-01

    Full Text Available Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepense culm were prepared and subjected to four different pretreatment. Daedaleopsis confragosa was found to be effective in biopulping with a supplement of Potato dextrose broth medium to the raw material.

  15. Development of methods for determining aflatoxins in biological material

    OpenAIRE

    Kussak, Anders

    1995-01-01

    In this thesis, it is shown how aflatoxins can be determined in biological material. The thesis is a summary of five papers. Aflatoxins are carcinogenic mycotoxins produced by Aspergillus moulds. Methods were developed for the determination of aflatoxins in samples of airborne dust and human urine collected at feed factories. For the dust samples from such agricultural products as copra, cotton seed and maize, methods were developed for the determination of aflatoxins B1, B2, G1 and G2. For u...

  16. CHARACTERISATION OF BIOLOGICALLY PRETREATED RAW MATERIALS FOR BIOPULPING PROCESS

    OpenAIRE

    Susy Albert; Amee Padhiar

    2012-01-01

    Biopulping, the treatment of wood chips by white rot fungi and subsequent chip refining is envisioned as a method for saving energy and making a stronger paper product. The present study aims to find suitability of two fungal isolates Phellinus pectinatus and Daedaleopsis confragosa for the process of biopulping and the characteristion of the biologically pretreated raw materials for biopulping. Two combinations of raw samples, Bamboo: wood shavings and Bamboo: wood shavings: Sorghum halepens...

  17. Tunable, Self-curing Polymers for the Forensic Collection of Latent Signatures from Within Porous Materials

    OpenAIRE

    Chipuk, Joseph; Kendall, Kirby; Mazzitelli, Carolyn; Straight, Stephen; Reaves, Melissa; Chamberlin, Sara

    2012-01-01

    This article appeared in Homeland Security Affairs (May 2012), supplement 5, article 5 "Self-curing polysiloxane polymers have been developed for the forensic collection of latent signatures of explosives, organophosphates, and chemical warfare agent (CWA) degradation products. These polymeric materials penetrate the sample substrate as viscous liquids and subsequently harden to a semi-soft solid that can be peeled away from the substrate to extract signatures via the noncovalent interacti...

  18. Giant Negative Area Compressibility Tunable in a Soft Porous Framework Material.

    Science.gov (United States)

    Cai, Weizhao; Gładysiak, Andrzej; Anioła, Michalina; Smith, Vincent J; Barbour, Leonard J; Katrusiak, Andrzej

    2015-07-29

    A soft porous material [Zn(L)2(OH)2]n·Guest (where L is 4-(1H-naphtho[2,3-d]imidazol-1-yl)benzoate, and Guest is water or methanol) exhibits the strongest ever observed negative area compressibility (NAC), an extremely rare property, as at hydrostatic pressure most materials shrink in all directions and few expand in one direction. This is the first NAC reported in metal-organic frameworks (MOFs), and its magnitude, clearly visible and by far the highest of all known materials, can be reversibly tuned by exchanging guests adsorbed from hydrostatic fluids. This counterintuitive strong NAC of [Zn(L)2(OH)2]n·Guest arises from the interplay of flexible [-Zn-O(H)-]n helices with layers of [-Zn-L-]4 quadrangular puckered rings comprising large channel voids. The compression of helices and flattening of puckered rings combine to give a giant piezo-mechanical response, applicable in ultrasensitive sensors and actuators. The extrinsic NAC response to different hydrostatic fluids is due to varied host-guest interactions affecting the mechanical strain within the range permitted by exceptionally high flexibility of the framework. PMID:25945394

  19. Diffusion theory in biology: a relic of mechanistic materialism.

    Science.gov (United States)

    Agutter, P S; Malone, P C; Wheatley, D N

    2000-01-01

    Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metalbolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.

  20. Tunable omnidirectional multichannel filters based on dual-defective photonic crystals containing negative-index materials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: kallenmail@sina.co [School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2009-04-07

    Multiple defect modes may generate in one-dimensional dual-defective photonic crystals containing negative-index materials. The interference between the two kinds of defect states of the proposed structure is avoided. Therefore, the frequency, frequency interval and number of the defect modes corresponding to different kinds of defects can be tuned independently as desired. These defect modes inside the zero n-bar gap are insensitive to the incident angle. It thus opens a promising way to fabricate omnidirectional multichannel filters with specific channels.

  1. Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties

    Directory of Open Access Journals (Sweden)

    Nathan I. Hammer

    2010-01-01

    Full Text Available Semiconductor nanocrystals hybridized with functional ligands represent an important new class of composite nanomaterials. The development of these new nanoscale building blocks has intensified over the past few years and offer significant advantages in a wide array of applications. Functional ligands allow for incorporation of nanocrystals into areas where their unique photophysics can be exploited. Energy and charge transfer between the ligands and the nanocrystal also result in enhanced physical properties that can be tuned by the choice of ligand architecture. Here, progress in the development and applications involving this new class of composite materials will be discussed.

  2. Phase-change material-based nanoantennas with tunable radiation patterns.

    Science.gov (United States)

    Alaee, R; Albooyeh, M; Tretyakov, S; Rockstuhl, C

    2016-09-01

    We suggest a novel switchable plasmonic dipole nanoantenna operating at mid-infrared frequencies that exploits phase-change materials. We show that the induced dipole moments of a nanoantenna, where a germanium antimony telluride (Ge3Sb2Te6 or GST for short) nanopatch acts as a spacer between two coupled metallic nanopatches, can be controlled in a disruptive sense. By switching GST between its crystalline and amorphous phases, the nanoantenna can exhibit either an electric or a balanced magneto-electric dipole-like radiation. While the former radiation pattern is omnidirectional, the latter is directive. Based on this property exciting switching devices can be perceived, such as a metasurface whose functionality can be switched between an absorber and a reflector. The switching between stable amorphous and crystalline phases occurs on timescales of nanoseconds and can be achieved by an electrical or optical pulse. PMID:27607982

  3. OECD Policy Recommendations on Security for Biological Materials

    International Nuclear Information System (INIS)

    Biomedical innovations derived from research on pathogenic micro-organisms promise astounding health and economic benefits. Some such biological resources employed in the RandD for diagnostic kits, vaccines and therapeutics, however, possess capacity for dual-use; they may be misused to develop biological weapons. Research facilities entrusted with possession of such dual-use materials have a responsibility to comply with biosecurity measures that are designed to prevent loss or theft and thereby reduce the probability of a bioterrorist attack. The OECD has provided a forum for its Member countries to engage in a dialogue of international co-operation with a view to produce policies that achieve a research environment fortified by biosecurity measures and capable of producing health innovations. In 2007, the OECD developed a risk assessment framework and risk management principles for Biological Resource Centres. Ongoing policy work at the OECD will look to design biosecurity guidelines appropriate to a broader range of facilities in possession of dual-use materials, such as university and industrial laboratories.(author)

  4. Tunable Bloch Wave Resonances and Bloch Gaps in Uniform Materials with Reconfigurable Boundary Profiles

    Science.gov (United States)

    Pogrebnyak, Victor A.; Furlani, Edward P.

    2016-05-01

    We study wave propagation in uniform materials with periodic boundary profiles and introduce for the first time Bloch resonances and Bloch gaps. Bloch resonances are due to transverse phase matching, i.e., the coupling of two transverse standing waves corresponding to different harmonics. These are distinct from well-known Bragg resonances that result from longitudinal phase matching. We show that Bloch gaps can be engineered over the entire first Brillouin zone up to an infinite wavelength, i.e., kx=0 , where kx is the wave number in the direction of propagation. This is in contrast to Bragg gaps that open at a fixed wavelength, twice the period of the structure. Bloch resonances and gaps can be tuned by reconfiguring the boundary profile and we derive analytical expressions that predict these phenomena when the amplitude of the profile is small. The theory is fundamental as it broadly applies to wave phenomena that span the quantum to continuum scale with applications that range from condensed matter to acoustics. We validate the theory experimentally for the electromagnetic field at GHz frequencies. We also discuss potential photonic and electronic applications of the theory such as a white-light distributed feedback laser and a two-dimensional electron gas transistor.

  5. Tunable Bloch Wave Resonances and Bloch Gaps in Uniform Materials with Reconfigurable Boundary Profiles.

    Science.gov (United States)

    Pogrebnyak, Victor A; Furlani, Edward P

    2016-05-20

    We study wave propagation in uniform materials with periodic boundary profiles and introduce for the first time Bloch resonances and Bloch gaps. Bloch resonances are due to transverse phase matching, i.e., the coupling of two transverse standing waves corresponding to different harmonics. These are distinct from well-known Bragg resonances that result from longitudinal phase matching. We show that Bloch gaps can be engineered over the entire first Brillouin zone up to an infinite wavelength, i.e., k_{x}=0, where k_{x} is the wave number in the direction of propagation. This is in contrast to Bragg gaps that open at a fixed wavelength, twice the period of the structure. Bloch resonances and gaps can be tuned by reconfiguring the boundary profile and we derive analytical expressions that predict these phenomena when the amplitude of the profile is small. The theory is fundamental as it broadly applies to wave phenomena that span the quantum to continuum scale with applications that range from condensed matter to acoustics. We validate the theory experimentally for the electromagnetic field at GHz frequencies. We also discuss potential photonic and electronic applications of the theory such as a white-light distributed feedback laser and a two-dimensional electron gas transistor. PMID:27258880

  6. Interfacing materials science and biology for drug carrier design.

    Science.gov (United States)

    Such, Georgina K; Yan, Yan; Johnston, Angus P R; Gunawan, Sylvia T; Caruso, Frank

    2015-04-01

    Over the last ten years, there has been considerable research interest in the development of polymeric carriers for biomedicine. Such delivery systems have the potential to significantly reduce side effects and increase the bioavailability of poorly soluble therapeutics. The design of carriers has relied on harnessing specific variations in biological conditions, such as pH or redox potential, and more recently, by incorporating specific peptide cleavage sites for enzymatic hydrolysis. Although much progress has been made in this field, the specificity of polymeric carriers is still limited when compared with their biological counterparts. To synthesize the next generation of carriers, it is important to consider the biological rationale for materials design. This requires a detailed understanding of the cellular microenvironments and how these can be harnessed for specific applications. In this review, several important physiological cues in the cellular microenvironments are outlined, with a focus on changes in pH, redox potential, and the types of enzymes present in specific regions. Furthermore, recent studies that use such biologically inspired triggers to design polymeric carriers are highlighted, focusing on applications in the field of therapeutic delivery.

  7. Advanced Tomography Techniques For Inorganic, Organic, and Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Friedrich, Heiner

    2016-07-01

    Three-dimensional (3D) tomography using electrons and x-rays has pushed our understanding of the micro- and nanoscale spatial organization for biological, organic and inorganic materials. While significant impact has already been realized from tomography applications, new advanced methods are quickly expanding the versatility of this approach to better link structure, composition and function of complex 3D assemblies across multiple scales. In this article we highlight several frontiers where new developments in tomography are empowering all new science across biology, chemistry and physics. The 5 articles that appear in this MRS Bulletin Issue describe in detail these latest developments in analytical electron tomography, atomic resolution electron tomography, advanced recording schemes in scanning transmission electron (STEM) tomography, cryo-STEM tomography of whole cells, and multiscale correlative tomography.

  8. Ultrafast electron microscopy in materials science, biology, and chemistry

    International Nuclear Information System (INIS)

    The use of pump-probe experiments to study complex transient events has been an area of significant interest in materials science, biology, and chemistry. While the emphasis has been on laser pump with laser probe and laser pump with x-ray probe experiments, there is a significant and growing interest in using electrons as probes. Early experiments used electrons for gas-phase diffraction of photostimulated chemical reactions. More recently, scientists are beginning to explore phenomena in the solid state such as phase transformations, twinning, solid-state chemical reactions, radiation damage, and shock propagation. This review focuses on the emerging area of ultrafast electron microscopy (UEM), which comprises ultrafast electron diffraction (UED) and dynamic transmission electron microscopy (DTEM). The topics that are treated include the following: (1) The physics of electrons as an ultrafast probe. This encompasses the propagation dynamics of the electrons (space-charge effect, Child's law, Boersch effect) and extends to relativistic effects. (2) The anatomy of UED and DTEM instruments. This includes discussions of the photoactivated electron gun (also known as photogun or photoelectron gun) at conventional energies (60-200 keV) and extends to MeV beams generated by rf guns. Another critical aspect of the systems is the electron detector. Charge-coupled device cameras and microchannel-plate-based cameras are compared and contrasted. The effect of various physical phenomena on detective quantum efficiency is discussed. (3) Practical aspects of operation. This includes determination of time zero, measurement of pulse-length, and strategies for pulse compression. (4) Current and potential applications in materials science, biology, and chemistry. UEM has the potential to make a significant impact in future science and technology. Understanding of reaction pathways of complex transient phenomena in materials science, biology, and chemistry will provide fundamental

  9. The role of material in homogeneities in biological growth

    Directory of Open Access Journals (Sweden)

    Grillo A.

    2005-01-01

    Full Text Available We investigate the influence of the material in homogeneities that are generated by an isotropic growth on the source of mass acting within a growing living tissue. In order to do that, we need to study the interaction between these material in homogeneities and the chemical agents dissolved within the tissue. For this purpose, we use some ideas and methods from Condensed Matter Physics (e.g., the Path Integral technique employed in modeling Brownian processes and apply them to the Continuum Mechanics description of volumetric Growth. We believe that this approach may provide new physical insight into the interactions between the macroscopic dynamics of living systems and the evolution of the subsystems which activate biological processes.

  10. Access and benefit sharing of Antarctica's biological material.

    Science.gov (United States)

    Puig-Marcó, Roser

    2014-10-01

    Searching and sampling of Antarctic Biological Material (ABM) is happening with no explicit regulation on access and benefit sharing requirements. Patents already exist on inventions stemming from Antarctic living organisms. The Antarctic Treaty System (ATS) provides mechanisms to ensure that scientific knowledge and data generated from the collection and use of ABM are shared, although commercialization might be a threat to this free exchange of scientific knowledge. Some of the underlying problems regarding the access and benefit sharing of ABM are that under the ATS there are gaps concerning definitions, access to specimens, benefit sharing, commercialization and reporting issues. The Antarctic Treaty Consultative Parties (ATCPs) have decided that the Antarctic Treaty Consultative Meeting (ATCM) is the competent body to discuss the matter, and the ATS is the appropriate framework for managing the collection of biological material in the Antarctic Treaty area and for considering its use. Nevertheless, opinions diverge as to the need for more specific rules on access and benefit sharing other than that already resulting from the obligation to give prior notification and share scientific results.

  11. Laser-matter structuration of optical and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Hallo, L., E-mail: hallo@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Mezel, C., E-mail: candice.mezel@cea.fr [CELIA, Universite Bordeaux 1 (France); CEA Le Ripault, 37260 Monts (France); Guillemot, F., E-mail: fabien.guillemot@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Chimier, B., E-mail: chimier@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Bourgeade, A., E-mail: antoine.bourgeade@cea.fr [CEA-CESTA, Le Barp (France); Regan, C., E-mail: regan@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Duchateau, G., E-mail: duchateau@celia.u-bordeaux1.fr [CELIA, Universite Bordeaux 1 (France); Souquet, A., E-mail: agnes.souquet@inserm.fr [UMR 577 INSERM, Universite Bordeaux 2 (France); Hebert, D., E-mail: david.hebert@cea.fr [CEA-CESTA, Le Barp (France)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer In this study we model nanomaterial structuring. Black-Right-Pointing-Pointer The laser energy deposition is discussed first. Black-Right-Pointing-Pointer Full and approximate models are discussed. Black-Right-Pointing-Pointer Dynamic material response is addressed via hydrodynamics. Black-Right-Pointing-Pointer Sild effects are accounted for - Abstract: Interaction of ultrafast laser, i.e. from the femtosecond (fs) to the nanosecond (ns) regime, with initially transparent matter may produce very high energy density hot spots in the bulk as well as at the material surface, depending on focusing conditions. In the fs regime, absorption is due to ionisation of the dielectric, which enables absorption process to begin, and then hydrodynamic to take place. In the ns regime both absorption and hydrodynamic are coupled to each other, which complexifies considerably the comprehension but matter structuration looks similar. A numerical tool including solution of 3D Maxwell equations and a rate equation for free electrons is first compared to some available simple models of laser energy absorption. Then, subsequent material deformation, i.e. structuration, is determined by solving hydrodynamic equations, including or not solid behaviour. We show that nature of the final structures strongly depends on the amount of deposited energy and on the shape of the absorption zone. Then we address some problems related to laser-matter structuration of optical and biological materials in the fs, ps and ns regimes.

  12. Microstrip antenna on tunable substrate

    Science.gov (United States)

    Jose, K. A.; Varadan, Vijay K.; Varadan, Vasundara V.; Mohanan, P.

    1995-05-01

    The tunable patch antenna configurations are becoming popular and attractive in many aspects. This was mainly due to the advent of ferrite thin film technology and tunable substrate materials. The integration of monolithic microwave circuits and antennas are becoming easy today. In the development of magnetic tuning of microstrip patch on ferrite substrate is presented by Rainville and Harackewiez. Radiation characteristics of such antennas are presented by Pozer. Band width and radiation characteristics of such tunable antennas are measured and compared. Usually the substrate losses are considered in the analysis and metallization losses are assumed to be ideal. The analysis of magnetic tunable radiator including metallization and ferrite substrate losses are presented. However, all such tuning and integration of circuits and antennas are mainly on ferrite substrate due to magnetic tuning. Recently, Varadan et al. established that the BaxSr1-xTiO3 series ferroelectric materials such as Barium Strontium Titanate (BST) are well suited for microwave phase shifter applications. It could be possible to change the dielectric constant of these materials more than 50% depending on the BST composition, by changing the applied bias voltage. Also, the porosity of BST can be controlled during processing to produce dielectric constants in the range of 15 to 1500, with some trade off in tunability. In this paper, we are presenting the possibility of designing a microstrip patch antenna on such tunable substrate. Such antennas are having the major advantage of electronic tunability and compact size.

  13. Biology Teacher and Expert Opinions about Computer Assisted Biology Instruction Materials: A Software Entitled Nucleic Acids and Protein Synthesis

    Science.gov (United States)

    Hasenekoglu, Ismet; Timucin, Melih

    2007-01-01

    The aim of this study is to collect and evaluate opinions of CAI experts and biology teachers about a high school level Computer Assisted Biology Instruction Material presenting computer-made modelling and simulations. It is a case study. A material covering "Nucleic Acids and Protein Synthesis" topic was developed as the "case". The goal of the…

  14. The High-Strain Rate Loading of Structural Biological Materials

    Science.gov (United States)

    Proud, W. G.; Nguyen, T.-T. N.; Bo, C.; Butler, B. J.; Boddy, R. L.; Williams, A.; Masouros, S.; Brown, K. A.

    2015-10-01

    The human body can be subjected to violent acceleration as a result of explosion caused by military ordinance or accident. Blast waves cause injury and blunt trauma can be produced by violent impact of objects against the human body. The long-term clinical manifestations of blast injury can be significantly different in nature and extent to those suffering less aggressive insult. Similarly, the damage seen in lower limbs from those injured in explosion incidents is in general more severe than those falling from height. These phenomena increase the need for knowledge of the short- and long-term effect of transient mechanical loading to the biological structures of the human body. This paper gives an overview of some of the results of collaborative investigation into blast injury. The requirement for time-resolved data, appropriate mechanical modeling, materials characterization and biological effects is presented. The use of a range of loading platforms, universal testing machines, drop weights, Hopkinson bars, and bespoke traumatic injury simulators are given.

  15. Millimeter wave and terahertz dielectric properties of biological materials

    Science.gov (United States)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  16. Analyze of histopathelogical for medical devices and biological material on biocompatibility evaluation

    Institute of Scientific and Technical Information of China (English)

    NIE Wei; JIANG Hua; WANG Li; GUAN Jing-fang; SHI Hong-dao

    2001-01-01

    @@ The toxicity and biocompatibility of medical devices and biological material areprominent facts in evaluation of the material. There are two major methods to evaluate the biocompatibility of biological materials . one kind is to do vivo. The materialor extracts are used to study the effect of the material on the growth, metabolismand proliferation of the histocyte.

  17. PROTECTION OF WOODEN MATERIALS AGAINST BIOLOGICAL ATTACK BY USING NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Michal Havrlik

    2015-04-01

    Full Text Available This article is focused on protection of wooden materials by using nanofibrous textiles with biocidal addition, which continues on the work of a group at the Center for Nanotechnology at the Faculty of Civil Engineering in the CTU. Timber is a natural material which is predisposed for biodegradation and therefore it is essential to study suitable and effective protection against microorganisms. Wood is a material susceptible to biological corrosion and therefore it is necessary to protect it. The study compares biocidal efficiency of polymer solution as a coating and as a layer from nanofiber textiles. We used polyvinyl alcohol (PVA as a basic polymer which was enriched by substances from commercial Lignofix E – profi, solution of CuSO4 · 5H2O and AgNO3 and finally colloidal silver as an example of nanoparticles. The final concentration of the biocidal substance was 1 (v/wt% in fiber. The nanofiber textiles are produced on the device Nanospider NS LAB 500 (Elmarco, CR on cylinder rotating electrode. The study was divided into two parts, the first being an agar plate test and the second a test on samples from timber. The mixture of mold was used as the model organism. (Alternaria tenuissima, Pochonia bulbiosa, Trichoderma viride and Acremonium sclerotigenum. Comparison of efficiency between the polymer paint and nanofiber textiles showed no difference. The best results were shown by PVA with an addition of substances from the commercial biocidal treatment Lignofix-E Profi on the agar plate. The difference of result was shown on timbre samples, finding that the best results were with treatment by PVA doped by Silver nitrate. The anticipated results were shown by treatment with non-doped PVA, which does not have any fungicidal protective effect.

  18. Imaging of nonthrombotic pulmonary embolism: biological materials, nonbiological materials, and foreign bodies.

    Science.gov (United States)

    Bach, Andreas Gunter; Restrepo, Carlos Santiago; Abbas, Jasmin; Villanueva, Alberto; Lorenzo Dus, María José; Schöpf, Reinhard; Imanaka, Hideaki; Lehmkuhl, Lukas; Tsang, Flora Hau Fung; Saad, Fathinul Fikri Ahmad; Lau, Eddie; Rubio Alvarez, Jose; Battal, Bilal; Behrmann, Curd; Spielmann, Rolf Peter; Surov, Alexey

    2013-03-01

    Nonthrombotic pulmonary embolism is defined as embolization to the pulmonary circulation caused by a wide range of substances of endogenous and exogenous biological and nonbiological origin and foreign bodies. It is an underestimated cause of acute and chronic embolism. Symptoms cover the entire spectrum from asymptomatic patients to sudden death. In addition to obstruction of the pulmonary vasculature there may be an inflammatory cascade that deteriorates vascular, pulmonary and cardiac function. In most cases the patient history and radiological imaging reveals the true nature of the patient's condition. The purpose of this article is to give the reader a survey on pathophysiology, typical clinical and radiological findings in different forms of nonthrombotic pulmonary embolism. The spectrum of forms presented here includes pulmonary embolism with biological materials (amniotic fluid, trophoblast material, endogenous tissue like bone and brain, fat, Echinococcus granulosus, septic emboli and tumor cells); nonbiological materials (cement, gas, iodinated oil, glue, metallic mercury, radiotracer, silicone, talc, cotton, and hyaluronic acid); and foreign bodies (lost intravascular objects, bullets, catheter fragments, intraoperative material, radioactive seeds, and ventriculoperitoneal shunts). PMID:23102488

  19. Tunable laser optics

    CERN Document Server

    Duarte, FJ

    2015-01-01

    This Second Edition of a bestselling book describes the optics and optical principles needed to build lasers. It also highlights the optics instrumentation necessary to characterize laser emissions and focuses on laser-based optical instrumentation. The book emphasizes practical and utilitarian aspects of relevant optics including the essential theory. This revised, expanded, and improved edition contains new material on tunable lasers and discusses relevant topics in quantum optics.

  20. Giant and universal magnetoelectric coupling in soft materials and concomitant ramifications for materials science and biology.

    Science.gov (United States)

    Liu, Liping; Sharma, Pradeep

    2013-10-01

    Magnetoelectric coupling-the ability of a material to magnetize upon application of an electric field and, conversely, to polarize under the action of a magnetic field-is rare and restricted to a rather small set of exotic hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics, among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft dielectric materials. For soft polymer foams-which, for instance, may be used in stretchable electronics-we predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological contexts (e.g., birds) most likely utilizes this very mechanism.

  1. Organization and diffusion in biological and material fabrication problems

    Science.gov (United States)

    Mangan, Niall Mari

    This thesis is composed of two problems. The first is a systems level analysis of the carbon concentrating mechanism in cyanobacteria. The second presents a theoretical analysis of femtosecond laser melting for the purpose of hyperdoping silicon with sulfur. While these systems are very distant, they are both relevant to the development of alternative energy (production of biofuels and methods for fabricating photovoltaics respectively). Both problems are approached through analysis of the underlying diffusion equations. Cyanobacteria are photosynthetic bacteria with a unique carbon concentrating mechanism (CCM) which enhances carbon fixation. A greater understanding of this mechanism would offer new insights into the basic biology and methods for bioengineering more efficient biochemical reactions. The molecular components of the CCM have been well characterized in the last decade, with genetic analysis uncovering both variation and commonalities in CCMs across cyanobacteria strains. Analysis of CCMs on a systems level, however, is based on models formulated prior to the molecular characterization. We present an updated model of the cyanobacteria CCM, and analytic solutions in terms of the various molecular components. The solutions allow us to find the parameter regime (expression levels, catalytic rates, permeability of carboxysome shell) where carbon fixation is maximized and oxygenation is minimized. Saturation of RuBisCO, maximization of the ratio of CO2 to O2, and staying below or at the saturation level for carbonic anhydrase are all needed for maximum efficacy. These constraints limit the parameter regime where the most effective carbon fixation can occur. There is an optimal non-specific carboxysome shell permeability, where trapping of CO2 is maximized, but HCO3 - is not detrimentally restricted. The shell also shields carbonic anhydrase activity and CO2 → HCO3- conversion at the thylakoid and cell membrane from one another. Co-localization of carbonic

  2. Thermoelectric needle probe for temperature measurements in biological materials.

    Science.gov (United States)

    Korn, U; Rav-Noy, Z; Shtrikman, S; Zafrir, M

    1980-04-01

    In certain biological and medical applications it is important to measure and follow temperature changes inside a body or tissue. Any probe inserted into a tissue causes damage to tissue and distortion to the initial temperature distribution. To minimize this interference, a fine probe is needed. Thus, thin film technology is advantageous and was utilized by us to produce sensitive probes for these applications. The resulting probe is a small thermocouple at the tip of a thin needle (acupuncture stainless steel needle, approximately 0.26 mm in diameter and length in the range 5-10 cm was used). The junction was produced at the needle's tip by coating the needle with thin layers of insulating and thermoelectric materials. The first layer is an insulating one and is composed of polyacrylonitrile (PAN) and polymide produced by plasma polymerization and dip-coating respectively. This layer covers all the needle except the tip. The second layer is a vacuum deposited thermoelectric thin layer of Bi-5% Sb alloy coating also the tip. The third layer is for insulation and protection and is composed of PAN and polyimide. In this arrangement the junction is at the needle's tip, the needle is one conductor, the thermoelectric layer is the other and they are isolated by the plastic layer. The probe is handy and mechanically sturdy. The sensitivity is typically 77 microV/degrees C at room temperature and is constant to within 2% up to 90 degrees C. The response is fast (less than 1 sec) the noise is small, (less than 0.05 degrees C) and because of the small dimension, damage to tissue and disturbance to the measured temperature field are minimal. PMID:7382928

  3. Three dimensional reduced graphene hydrogels with tunable pore sizes using thiourea dioxide for electrode materials in supercapacitors

    International Nuclear Information System (INIS)

    Graphical abstract: Three-dimensional porous reduced graphene hydrogels with tunable pore size distribution are prepared by using thiourea dioxide in GO suspension with ammonia. - Highlights: • Three-dimensional reduced graphene hydrogels (RGHs) were prepared. • Thiourea dioxide was used as reducing agent with ammonia. • RGHs showed tunable pore size distribution by thiourea dioxide. • RGHs exhibited relatively good electrochemical properties in supercapacitor. - Abstract: In present work, we demonstrate a rapid and easy approach to fabricate three-dimensional (3D) reduced graphene hydrogels (RGHs) by using thiourea dioxide as reducing agents in an aqueous solution of graphene oxide (GO) with ammonia. The transformation of GO suspension to the hydrogels can be confirmed by X-ray powder diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy. The hierarchical porosity, structure and surface chemical properties can be demonstrated by N2 sorption experiments, scanning electron microscopy and X-ray photoelectron spectroscopy. With adding different amounts of thiourea dioxide, the obtained RGHs behave different degree of reduction, controlled specific surface area and pore size distribution, and unlike performances in supercapacitors. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitors based on the RGHs in KOH electrolyte exhibited a high specific capacitance of 258.6, 167.3 and 198.3 F g−1 at 0.1 A g−1 for RGHs-1, RGHs-2 and RGHs-5, respectively. Furthermore, this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test

  4. Distinguishability of Biological Material Using Ultraviolet Multi-Spectral Fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.C.; Heinen, R.J.; Rigdon, L.D.; Rosenthal, S.E.; Shokair, I.R.; Siragusa, G.R.; Tisone, G.C.; Wagner, J.S.

    1998-10-14

    Recent interest in the detection and analysis of biological samples by spectroscopic methods has led to questions concerning the degree of distinguishability and biological variability of the ultraviolet (W) fluorescent spectra from such complex samples. We show that the degree of distinguishability of such spectra is readily determined numerically.

  5. Deciphering the language between biological and synthetic materials

    Directory of Open Access Journals (Sweden)

    Paolo Antonio Netti

    2014-06-01

    Full Text Available Chemical signals propagating through aqueous environment are at the basis of the language utilized by living systems to exchange information. In the last years, molecular biology has partly disclosed the grammar and the syntax of this complex language revealing the fascinating world of molecular communication that is the foundation of biological development.

  6. Graphene-based porous materials with tunable surface area and CO2 adsorption properties synthesized by fluorine displacement reaction with various diamines.

    Science.gov (United States)

    Li, Baoyin; Fan, Kun; Ma, Xin; Liu, Yang; Chen, Teng; Cheng, Zheng; Wang, Xu; Jiang, Jiaxing; Liu, Xiangyang

    2016-09-15

    A mild, operationally simple and controllable protocol for preparing graphene-based porous materials is essential to achieve a good pore-design development. In this paper, graphene-based porous materials with tunable surface area were constructed by the intercalation of fluorinated graphene (FG) based on the reaction of reactive CF bonds attached to graphene sheets with various amine-terminated molecules. In the porous materials, graphene sheets are like building blocks, and the diamines covalently grafted onto graphene framework act as pillars. Various diamines are successfully grafted onto graphene sheets, but the grafting ratio of diamines and reduction degree of FG differ greatly and depend on the chemical reactivity of diamines. Pillared diamine molecules chemically anchor at one end and are capable of undergoing a different reaction on the other end, resulting in three different conformations of graphene derivatives. Nitrogen sorption isotherms revealed that the surface area and pore distribution of the obtained porous materials depend heavily on the size and structure of diamine pillars. CO2 uptake capacity characterization showed that ethylenediamine intercalated FG achieved a high CO2 uptake density of 18.0 CO2 molecules per nm(2) at 0°C and 1.1bars, and high adsorption heat, up to 46.1kJmol(-1) at zero coverage. PMID:27280538

  7. An Experimental Evaluation of the Effectiveness of the Biological Sciences Curriculum Study Special Materials Approach to Teaching Biology to the Slow Learner.

    Science.gov (United States)

    Welford, John Mack

    Students (comparable in intelligence and ability) in slow-learning classes using either "Biological Sciences Curriculum Study (BSCS) Special Materials" or some other slow-learner biology materials, were compared on the basis of scores on the "Nelson Biology Test", the "Biological Sciences; Patterns and Processes Final Examination", and two short…

  8. Ferroelectric tunability: from characterization to telecomunication application

    OpenAIRE

    Gundel, Hartmut,; Renoud, Raphaël; Borderon, Caroline; Pavy, Sabrina; Sharaiha, Ala; Nguyen, Viet Hung; Benzerga, Ratiba; Delaveaud, Christophe

    2012-01-01

    4 International audience Advanced dielectric spectroscopy enables studying of the ferroelectric complex permittivity. Interpretation with the hyperbolic law provides a better fundamental understanding of the material's tunability: bulk contribution, domain wall vibration and displacements may be discerned. Applications, like mobile telecommunication terminals may profit for the design of miniaturized and tunable antennas. As an example, conception and realization of a notch slot antenna...

  9. Method And System For Examining Biological Materials Using Low Power Cw Excitation Raman Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Alfano, Robert R. (Bronx, NY); Wang, Wubao (Flushing, NY)

    2003-05-06

    A method and system for examining biological materials using low-power cw excitation Raman spectroscopy. A low-power continuous wave (cw) pump laser beam and a low-power cw Stokes (or anti-Stokes) probe laser beam simultaneously illuminate a biological material and traverse the biological material in collinearity. The pump beam, whose frequency is varied, is used to induce Raman emission from the biological material. The intensity of the probe beam, whose frequency is kept constant, is monitored as it leaves the biological material. When the difference between the pump and probe excitation frequencies is equal to a Raman vibrational mode frequency of the biological material, the weak probe signal becomes amplified by one or more orders of magnitude (typically up to about 10.sup.4 -10.sup.6) due to the Raman emission from the pump beam. In this manner, by monitoring the intensity of the probe beam emitted from the biological material as the pump beam is varied in frequency, one can obtain an excitation Raman spectrum for the biological material tested. The present invention may be applied to in the in vivo and/or in vitro diagnosis of diabetes, heart disease, hepatitis, cancers and other diseases by measuring the characteristic excitation Raman lines of blood glucose, cholesterol, serum glutamic oxalacetic transaminase (SGOT)/serum glutamic pyruvic transaminase (SGPT), tissues and other corresponding Raman-active body constituents, respectively.

  10. Trends in United States Biological Materials Oversight and Institutional Biosafety Committees

    Science.gov (United States)

    Jenkins, Chris

    2014-01-01

    Biological materials oversight in life sciences research in the United States is a challenging endeavor for institutions and the scientific, regulatory compliance, and federal communities. In order to assess biological materials oversight at Institutional Biosafety Committees (IBCs) registered with the United States National Institutes of Health,…

  11. Photoconversion of gasified organic materials into biologically-degradable plastics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Paul F. (Golden, CO); Maness, Pin-Ching (Golden, CO)

    1993-01-01

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer.

  12. Photoconversion of gasified organic materials into biologically-degradable plastics

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.F.; Pinching Maness.

    1993-10-05

    A process is described for converting organic materials (such as biomass wastes) into a bioplastic suitable for use as a biodegradable plastic. In a preferred embodiment the process involves thermally gasifying the organic material into primarily carbon monoxide and hydrogen, followed by photosynthetic bacterial assimilation of the gases into cell material. The process is ideally suited for waste recycling and for production of useful biodegradable plastic polymer. 3 figures.

  13. Preparation and biological evaluations of PLA/chitosan composite materials

    Institute of Scientific and Technical Information of China (English)

    ZHOU Chang-ren; LI Lihua; DING Shan

    2001-01-01

    @@ INTRODUCTION Polylactic acid (PLA) is a biodegradable material that is hontoxic and biocompatible. However, as scaffold materials, PLA has several obvious weaknesses:biodegrading too fast, acidic degradation product, and hydrophobic. When PLA isplanted in the body, the degradation takes place synchronously.

  14. 可调谐三维超材料管的研究%Study of Tunable Three-dimension Material Tube

    Institute of Scientific and Technical Information of China (English)

    胡帆华; 游昊

    2014-01-01

    This Paper introduces the principle and application of super material tunable sensor, and the formation of 3D terahertz metamaterials tube. Resonance characterization and analysis of 2D split ring resonator sensor in the rolling process of response, and introduce the application of 3D super materials in food on the sensor, verify the sensor for monitoring food maturity theory.%该文主要介绍了可调谐超材料传感器的原理和应用,以及三维太赫兹超材料管的形成。表征并分析了2D开口谐振环在卷起过程中传感器的谐振响应,并介绍3D超材料在食物传感器上的应用,验证了传感器监测食物成熟度原理的正确性。

  15. Sustainable production of biological materials for food and agricultural applications

    OpenAIRE

    Angün, Pınar

    2013-01-01

    Ankara : Materials Science and Nanotechnology Program of Graduate School of Engineering and Science of Bilkent University, 2013. Thesis (Master's) -- Bilkent University, 2013. Includes bibliographical references leaves 94-110. Angün, Pınar Master's

  16. Novel biological materials for food and environmental applications

    OpenAIRE

    Umu, Özgün Candan Onarman

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 71-86. Umu, Özgün Candan Onarman Master's

  17. Cost-effective production of biological materials for food applications

    OpenAIRE

    Han, Diren

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 67-74. Han, Diren Master's

  18. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls.

  19. Bioreceptivity evaluation of cementitious materials designed to stimulate biological growth.

    Science.gov (United States)

    Manso, Sandra; De Muynck, Willem; Segura, Ignacio; Aguado, Antonio; Steppe, Kathy; Boon, Nico; De Belie, Nele

    2014-05-15

    Ordinary Portland cement (OPC), the most used binder in construction, presents some disadvantages in terms of pollution (CO2 emissions) and visual impact. For this reason, green roofs and façades have gain considerable attention in the last decade as a way to integrate nature in cities. These systems, however, suffer from high initial and maintenance costs. An alternative strategy to obtain green facades is the direct natural colonisation of the cementitious construction materials constituting the wall, a phenomenon governed by the bioreceptivity of such material. This work aims at assessing the suitability of magnesium phosphate cement (MPC) materials to allow a rapid natural colonisation taking carbonated OPC samples as a reference material. For that, the aggregate size, the w/c ratio and the amount of cement paste of mortars made of both binders were modified. The assessment of the different bioreceptivities was conducted by means of an accelerated algal fouling test. MPC samples exhibited a faster fouling compared to OPC samples, which could be mainly attributed to the lower pH of the MPC binder. In addition to the binder, the fouling rate was governed by the roughness and the porosity of the material. MPC mortar with moderate porosity and roughness appears to be the most feasible material to be used for the development of green concrete walls. PMID:24602907

  20. New improved method for evaluation of growth by food related fungi on biologically derived materials

    DEFF Research Database (Denmark)

    Bergenholtz, Karina P.; Nielsen, Per Væggemose

    2002-01-01

    Biologically derived materials, obtained as commercial and raw materials (Polylactate (PLA), Polyhydroxybutyrate (PHB), potato, wheat and corn starch) were tested for their ability to support fungal growth using a modified ASTM G21-96 (American Society for Testing and Materials) standard as well ...

  1. Agricultural biological reference materials for analytical quality control

    Energy Technology Data Exchange (ETDEWEB)

    Ihnat, M.

    1986-01-01

    Cooperative work is under way at Agriculture Canada, US Department of Agriculture, and US National Bureau of Standards in an attempt to fill some of the gaps in the world repertoire of reference materials and to provide much needed control materials for laboratories' day to day operations. This undertaking involves the preparation and characterization of a number of agricultural and food materials for data quality control for inorganic constituents. Parameters considered in the development of these materials were material selection based on importance in commerce and analysis; techniques of preparation, processing, and packaging; physical and chemical characterization; homogeneity testing and quantitation (certification). A large number of agricultural/food products have been selected to represent a wide range of not only levels of sought-for constituents (elements) but also a wide range of matrix components such as protein, carbohydrate, dietary fiber, fat, and ash. Elements whose concentrations are being certified cover some two dozen major, minor, and trace elements of nutritional, toxicological, and environmental significance.

  2. Spatio-structural granularity of biological material entities

    Directory of Open Access Journals (Sweden)

    Vogt Lars

    2010-05-01

    Full Text Available Abstract Background With the continuously increasing demands on knowledge- and data-management that databases have to meet, ontologies and the theories of granularity they use become more and more important. Unfortunately, currently used theories and schemes of granularity unnecessarily limit the performance of ontologies due to two shortcomings: (i they do not allow the integration of multiple granularity perspectives into one granularity framework; (ii they are not applicable to cumulative-constitutively organized material entities, which cover most of the biomedical material entities. Results The above mentioned shortcomings are responsible for the major inconsistencies in currently used spatio-structural granularity schemes. By using the Basic Formal Ontology (BFO as a top-level ontology and Keet's general theory of granularity, a granularity framework is presented that is applicable to cumulative-constitutively organized material entities. It provides a scheme for granulating complex material entities into their constitutive and regional parts by integrating various compositional and spatial granularity perspectives. Within a scale dependent resolution perspective, it even allows distinguishing different types of representations of the same material entity. Within other scale dependent perspectives, which are based on specific types of measurements (e.g. weight, volume, etc., the possibility of organizing instances of material entities independent of their parthood relations and only according to increasing measures is provided as well. All granularity perspectives are connected to one another through overcrossing granularity levels, together forming an integrated whole that uses the compositional object perspective as an integrating backbone. This granularity framework allows to consistently assign structural granularity values to all different types of material entities. Conclusions The here presented framework provides a spatio

  3. Remediation of anionic surfactants and ammonium by biological materials

    OpenAIRE

    Sarıoğlu, Ömer Faruk

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2012. Thesis (Master's) -- Bilkent University, 2012. Includes bibliographical references leaves 83-97. Sarıoğlu, Ömer Faruk Master's

  4. Biomolecular coronas provide the biological identity of nanosized materials

    NARCIS (Netherlands)

    Monopoli, Marco P; Åberg, Christoffer; Salvati, Anna; Dawson, Kenneth A

    2012-01-01

    The search for understanding the interactions of nanosized materials with living organisms is leading to the rapid development of key applications, including improved drug delivery by targeting nanoparticles, and resolution of the potential threat of nanotechnological devices to organisms and the en

  5. Nanostructured materials for biological imaging and chemical sensing

    OpenAIRE

    Yıldırım, Adem

    2014-01-01

    Ankara : Materials Science and Nanotechnology Program of the Graduate School of Engineering and Science of Bilkent University, 2014. Thesis (Ph.D.) -- Bilkent University, 2014. Includes bibliographical references leaves 116-139. Yıldırım, Adem Ph. D.

  6. Fragment Produced by Nuclear Reaction of Heavy Ions Interacted with Tissue-equivalent Biological Material

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In heavy ion therapy and radiation biological effects the nuclear fragments from the heavy ion collisions may cause a significant alteration of the radiation field. Nuclear collision between beam particles and tissue nuclei along the penetration path of high-energy ions in tissue or biological-equivalent material causes a loss

  7. Multiscale modeling of emergent materials: biological and soft matter

    DEFF Research Database (Denmark)

    Murtola, Teemu; Bunker, Alex; Vattulainen, Ilpo;

    2009-01-01

    In this review, we focus on four current related issues in multiscale modeling of soft and biological matter. First, we discuss how to use structural information from detailed models (or experiments) to construct coarse-grained ones in a hierarchical and systematic way. This is discussed...... in the context of the so-called Henderson theorem and the inverse Monte Carlo method of Lyubartsev and Laaksonen. In the second part, we take a different look at coarse graining by analyzing conformations of molecules. This is done by the application of self-organizing maps, i.e., a neural network type approach....... Such an approach can be used to guide the selection of the relevant degrees of freedom. Then, we discuss technical issues related to the popular dissipative particle dynamics (DPD) method. Importantly, the potentials derived using the inverse Monte Carlo method can be used together with the DPD thermostat...

  8. Analysis of biological materials using a nuclear microprobe

    Science.gov (United States)

    Mulware, Stephen Juma

    The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe(III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world's agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta ), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices ) for the improvement of lead phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.

  9. Low cost materials of construction for biological processes: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    The workshop was held, May 1993 in conjunction with the 15th Symposium on Biotechnology for Fuels and Chemicals. The purpose of this workshop was to present information on the biomass to ethanol process in the context of materials selection and through presentation and discussion, identify promising avenues for future research. Six technical presentations were grouped into two sessions: process assessment and technology assessment. In the process assessment session, the group felt that the pretreatment area would require the most extensive materials research due the complex chemical, physical and thermal environment. Discussion centered around the possibility of metals being leached into the process stream and their effect on the fermentation mechanics. Linings were a strong option for pretreatment assuming the economics were favorable. Fermentation was considered an important area for research also, due to the unique complex of compounds and dual phases present. Erosion in feedstock handling equipment was identified as a minor concern. In the technology assessment session, methodologies in corrosion analysis were presented in addition to an overview of current coatings/linings technology. Widely practiced testing strategies, including ASTM methods, as well as novel procedures for micro-analysis of corrosion were discussed. Various coatings and linings, including polymers and ceramics, were introduced. The prevailing recommendations for testing included keeping the testing simple until the problem warranted a more detailed approach and developing standardized testing procedures to ensure the data was reproducible and applicable. The need to evaluate currently available materials such as coatings/linings, carbon/stainless steels, or fiberglass reinforced plastic was emphasized. It was agreed that economic evaluation of each material candidate must be an integral part of any research plan.

  10. Synthesis and Color-tunable Fluorescence Properties of Schiff Base Zinc (II) Complexes Used as Electroluminescent Materials

    Institute of Scientific and Technical Information of China (English)

    Yi YI; Xiao Qiang WEI; Ming Gui XIE; Zhi Yun LU

    2004-01-01

    Four kinds of bis(N-alkylsalicylaldiminato) zinc(II) complexes were synthesized, and their molecular structures were determined by FT-IR and elemental analysis. Their photoluminescence properties were determined, which indicated that they could emit strong fluorescence varying from blue to yellow to reddish orange depending on their different molecular structures. They had good thermostability, solubility and film forming capability, and can be used as organic electroluminescent materials. These new complexes may afford the feasibility to realize full-color display with materials based on similar molecular structures.

  11. Status of study on biological and toxicological effects of nanoscale materials

    Institute of Scientific and Technical Information of China (English)

    WANG Bing; FENG Weiyue; ZHAO Yuliang; XING Gengmei; CHAI Zhifang; WANG Haifang; JIA Guang

    2005-01-01

    Because the physical and chemical properties of nanosized materials mostly differ from the existing microsized materials, their potential impacts on human health and the environment will be topics under the serious discussions in press and in a number of international scientific journals. We analyze and summarize the existing data of the experimental study on the biological activities and adverse effects of nanoscale materials/particles including single wall carbon nanotubes, multi wall carbon nanotubes, titanium oxide and iron powders. Though some biological behaviors of nanoscale materials observed cannot be understood on the basis of the current knowledge, as the existing data are mostly preliminary, it is too early to make some exclusive conclusions on biological activities (or the toxicity) of any of nanoscale materials. The experimental techniques, the current topics, and the future research directions for this new research field are also discussed.

  12. Analysis of hazardous biological material by MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    KL Wahl; KH Jarman; NB Valentine; MT Kingsley; CE Petersen; ST Cebula; AJ Saenz

    2000-03-21

    Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS) has become a valuable tool for analyzing microorganisms. The speed with which data can be obtained from MALDI-MS makes this a potentially important tool for biological health hazard monitoring and forensic applications. The excitement in the mass spectrometry community in this potential field of application is evident by the expanding list of research laboratories pursuing development of MALDI-MS for bacterial identification. Numerous research groups have demonstrated the ability to obtain unique MALDI-MS spectra from intact bacterial cells and bacterial cell extracts. The ability to differentiate strains of the same species has been investigated. Reproducibility of MALDI-MS spectra from bacterial species under carefully controlled experimental conditions has also been demonstrated. Wang et al. have reported on interlaboratory reproducibility of the MALDI-MS analysis of several bacterial species. However, there are still issues that need to be addressed, including the careful control of experimental parameters for reproducible spectra and selection of optimal experimental parameters such as solvent and matrix.

  13. Preparation of Biologically Active Materials by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to form the apatite nuclei on a surface of the substrate,the substrate was placed on or in CaO,SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly equal to those of human blood plasma,and to make the apatite nuclei grow on the substrate in situ,the substrate was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution.The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60 ℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No.400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly bioactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues, but also as highly biocompatible soft tissue-repairing materials with ductility.

  14. Tunable resistive pulse sensing: potential applications in nanomedicine.

    Science.gov (United States)

    Sivakumaran, Muttuswamy; Platt, Mark

    2016-08-01

    An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics. PMID:27480794

  15. Mesoporous silicon/carbon hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    In-situ magnesiothermic reduction reaction route was developed to synthesize mesoporous Si/C (silicon/carbon) hybrids with ordered pore channel retention and tunable carbon incorporated content as high performance anode materials for LIBs (lithium ion batteries). The effect of carbon incorporation on the microstructures and electrochemical performance of the Si/C hybrid LIBs anodes is investigated. The incorporation of carbon in the Si/C hybrids not only prevents the ordered structure of mesoporous silicon from collapsing, but also increases the electrical conductivity of the synthesized Si/C hybrids. The as-prepared Si/C hybrid LIBs anode with an optimal carbon content of 7.05 wt%, displays improved electrochemical performance with a high reversible specific capacity, rate capability and excellent cyclic performance, showing a higher specific capacity of up to 1452 mAh g−1 at a current density of 200 mA g−1 after 100 cycles and a high coulombic efficiency of up to 99.2%. The great improvement of the electrochemical performance of the ordered mesoporous Si/C hybrid LIBs anodes can be attributed to the unique ordered structure, large surface area, the homogeneously incorporated carbon in the Si/C hybrids. The synthesized ordered mesoporous Si/C hybrids are promising for potential applications as LIB anode materials with enhanced electrochemical performance. - Highlights: • Ordered mesoporous Si/C hybrids are synthesized by chemically reducing silica. • The pre-impregnated carbon source prevents the ordered structure from collapsing. • Mesoporous Si/C hybrids exhibit excellent Li+ storage capacity and cyclic stability

  16. Detection of Biological Materials Using Ion Mobility Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rodacy, P.J.; Sterling, J.P.; Butler, M.A.

    1999-03-01

    Traditionally, Ion Mobility Spectroscopy has been used to examine ions of relatively low molecular weight and high ion mobility. In recent years, however, biomolecules such as bradykinin, cytochrome c, bovine pancreatic trypsin inhibitor (BPTI), apomyoglobin, and lysozyme, have been successfully analyzed, but studies of whole bio-organisms have not been performed. In this study an attempt was made to detect and measure the mobility of two bacteriophages, {lambda}-phage and MS2 using electrospray methods to inject the viruses into the ion mobility spectrometer. Using data from Yeh, et al., which makes a comparison between the diameter of non-biologic particles and the specific particle mobility, the particle mobility for the MS2 virus was estimated to be 10{sup {minus}2} cm{sup 2}/volt-sec. From this mobility the drift time of these particles in our spectrometer was calculated to be approximately 65 msec. The particle mobility for the {lambda}-phage virus was estimated to be 10{sup {minus}3} cm{sup 2}/volt-sec. which would result in a drift time of 0.7 sec. Spectra showing the presence of a viral peak at the expected drift time were not observed. However, changes in the reactant ion peak that could be directly attributed to the presence of the viruses were observed. Virus clustering, excessive collisions, and the electrospray injection method limited the performance of this IMS. However, we believe that an instrument specifically designed to analyze such bioagents and utilizing other injection and ionization methods will succeed in directly detecting viruses and bacteria.

  17. Model of heterogeneous material dissolution in simulated biological fluid

    Science.gov (United States)

    Knyazeva, A. G.; Gutmanas, E. Y.

    2015-11-01

    In orthopedic research, increasing attention is being paid to bioresorbable/biodegradable implants as an alternative to permanent metallic bone healing devices. Biodegradable metal based implants possessing high strength and ductility potentially can be used in load bearing sites. Biodegradable Mg and Fe are ductile and Fe possess high strength, but Mg degrades too fast and Fe degrades too slow, Ag is a noble metal and should cause galvanic corrosion of the more active metallic iron - thus, corrosion of Fe can be increased. Nanostructuring should results in higher strength and can result in higher rate of dissolution/degradation from grain boundaries. In this work, a simple dissolution model of heterogeneous three phase nanocomposite material is considered - two phases being metal Fe and Ag and the third - nanopores. Analytical solution for the model is presented. Calculations demonstrate that the changes in the relative amount of each phase depend on mass exchange and diffusion coefficients. Theoretical results agree with preliminary experimental results.

  18. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ashrafuzzaman, Md [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Lampson, M A [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States); Greathouse, D V [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); II, R E Koeppe [Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701 (United States); Andersen, O S [Department of Physiology and Biophysics, Weill Medical College of University of Cornell, New York, NY 10021 (United States)

    2006-07-19

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)-Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly-alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  19. Preparation of two biological reference materials for QUASIMEME inter-laboratory testing

    NARCIS (Netherlands)

    Lohman, M.; Korytar, P.

    2007-01-01

    Two biological materials have been prepared for the Institute for Environmental Studies (IVM), Free University, Amsterdam to be used in QUASIMEME interlaboratory studies. The materials prepared are: 300 tins of homogenized blue mussels from the Waddenzee (QO07-1) and 300 tins of homogenized shrimps

  20. Preparation of three biological reference material for QUASIMEME inter-laboratory testing

    NARCIS (Netherlands)

    Lohman, M.; Korytar, P.

    2006-01-01

    Three biological materials have been prepared for IVM, Free University, Amsterdam to be used in QUASIMEME interlaboratory studies. The materials prepared are: 300 glass jars of homogenized Mediterranean mussels (QM06-1), 280 tins of homogenized blue mussels from German Bight (QM06-3) and 300 tins of

  1. Sampling and sample preparation methods for the analysis of trace elements in biological material

    International Nuclear Information System (INIS)

    The authors attempt to give a most systamtic possible treatment of the sample taking and sample preparation of biological material (particularly in human medicine) for trace analysis (e.g. neutron activation analysis, atomic absorption spectrometry). Contamination and loss problems are discussed as well as the manifold problems of the different consistency of solid and liquid biological materials, as well as the stabilization of the sample material. The process of dry and wet ashing is particularly dealt with, where new methods are also described. (RB)

  2. Nano-FTIR chemical mapping of minerals in biological materials

    Directory of Open Access Journals (Sweden)

    Sergiu Amarie

    2012-04-01

    Full Text Available Methods for imaging of nanocomposites based on X-ray, electron, tunneling or force microscopy provide information about the shapes of nanoparticles; however, all of these methods fail on chemical recognition. Neither do they allow local identification of mineral type. We demonstrate that infrared near-field microscopy solves these requirements at 20 nm spatial resolution, highlighting, in its first application to natural nanostructures, the mineral particles in shell and bone. "Nano-FTIR" spectral images result from Fourier-transform infrared (FTIR spectroscopy combined with scattering scanning near-field optical microscopy (s-SNOM. On polished sections of Mytilus edulis shells we observe a reproducible vibrational (phonon resonance within all biocalcite microcrystals, and distinctly different spectra on bioaragonite. Surprisingly, we discover sparse, previously unknown, 20 nm thin nanoparticles with distinctly different spectra that are characteristic of crystalline phosphate. Multicomponent phosphate bands are observed on human tooth sections. These spectra vary characteristically near tubuli in dentin, proving a chemical or structural variation of the apatite nanocrystals. The infrared band strength correlates with the mineral density determined by electron microscopy. Since nano-FTIR sensitively responds to structural disorder it is well suited for the study of biomineral formation and aging. Generally, nano-FTIR is suitable for the analysis and identification of composite materials in any discipline, from testing during nanofabrication to even the clinical investigation of osteopathies.

  3. Elemental analysis of biological materials. Current problems and techniques with special reference to trace elements

    International Nuclear Information System (INIS)

    Selected techniques were reviewed for the assay of trace and minor elements in biological materials. Other relevant information is also presented on the need for such analyses, sampling, sample preparation and analytical quality control. In order to evaluate and compare the applicability of the various analytical techniques on a meaningful and objective basis, the materials chosen for consideration were intended to be typical of a wide range of biological matrics of different elemental compositions, namely Bowen's kale, representing a plant material, and NBS bovine liver, IAEA animal muscle, and blood serum, representing animal tissues. The subject is reviewed under the following headings: on the need for trace element analyses in the life sciences (4 papers); sampling and sample preparation for trace element analysis (2 papers); analytical techniques for trace and minor elements in biological materials (7 papers); analytical quality control (2 papers)

  4. Ultrafast Spectroscopy in Conjugated Organic and Biological Materials

    Science.gov (United States)

    Yan, Ming

    The dynamics of two kinds of conjugated materials, the visual pigment rhodopsin and the organic polymer poly(p -phenylene vinylene), have been studied utilizing femtosecond spectroscopy. The 11-cis to all-trans torsional isomerization of the retinal chromophore in rhodopsin for both protonated and deuterated aqueous environments have been studied by time-resolved absorption measurements at room temperature. The kinetic results are well modeled by rate equations based on the scheme which involves the isomerization along the torsional coordinate of the 11-cis bond of the retinal chromophore. A metastable intermediate 90 degree twisted state is formed within 200 fs on the excited state surface by rotation around the C_{11} -C_{12} double bond, and it takes 3 ps to form the fully isomerized all -trans photoproduct known as bathorhodopsin and to repopulate the ground state rhodopsin. These results agree well with the semiempirical energy level and molecular dynamics calculations. The observed dynamics are insensitive to deuteration of the exchangeable protons which suggest that proton translocation is unimportant at physiological temperatures. The conjugated polymer, Poly(p-phenylene vinylene) (PPV) in a stretch oriented film, has been studied using polarized time-resolved absorption with subpicosecond resolution and transient luminescence measurements. Excitations are generated by photoexcitation near the band edge (500nm -540nm) with a 200 fs pulse and the resulting spectral changes are probed with a white light pulse. Lattice stabilized (singlet) self-trapped excitons are formed within 200 fs which are observed by measuring the stimulated gain in their emission band which decay at 10 ps. The agreement of the photoinduced exciton gain spectrum (luminescence spectrum (10 ps) and the steady state luminescence spectrum suggest that the singlet excitons are not further trapped after 200fs of their formation time. Excitation wavelength dependence measurements suggest that

  5. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments.

  6. Chemical analysis and biological testing of materials from the EDS coal liquefaction process: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Pelroy, R.A.; Wilson, B.W.

    1984-05-01

    Representative process materials were obtained from the EDS pilot plant for chemical and biological analyses. These materials were characterized for biological activity and chemical composition using a microbial mutagenicity assay and chromatographic and mass spectrometric analytical techniques. The two highest boiling distillation cuts, as well as process solvent (PS) obtained from the bottoms recycle mode operation, were tested for initiation of mouse skin tumorigenicity. All three materials were active; the crude 800/sup 0 +/F cut was substantially more potent than the crude bottoms recycle PS or 750 to 800/sup 0/F distillate cut. Results from chemical analyses showed the EDS materials, in general, to be more highly alkylated and have higher hydroaromatic content than analogous SRC II process materials (no in-line process hydrogenation) used for comparison. In the microbial mutagenicity assays the N-PAC fractions showed greater activity than did the aliphatic hydrocarbon, hydroxy-PAH, or PAH fractions, although mutagenicity was detected in certain PAH fractions by a modified version of the standard microbial mutagenicity assay. Mutagenic activities for the EDS materials were lower, overall, than those for the corresponding materials from the SRC II process. The EDS materials produced under different operational modes had distinguishable differences in both their chemical constituency and biological activity. The primary differences between the EDS materials studied here and their SRC II counterparts used for comparison are most likely attributable to the incorporation of catalytic hydrogenation in the EDS process. 27 references, 28 figures, 27 tables.

  7. Finite element simulation for the mechanical characterization of soft biological materials by atomic force microscopy.

    Science.gov (United States)

    Valero, C; Navarro, B; Navajas, D; García-Aznar, J M

    2016-09-01

    The characterization of the mechanical properties of soft materials has been traditionally performed through uniaxial tensile tests. Nevertheless, this method cannot be applied to certain extremely soft materials, such as biological tissues or cells that cannot be properly subjected to these tests. Alternative non-destructive tests have been designed in recent years to determine the mechanical properties of soft biological tissues. One of these techniques is based on the use of atomic force microscopy (AFM) to perform nanoindentation tests. In this work, we investigated the mechanical response of soft biological materials to nanoindentation with spherical indenters using finite element simulations. We studied the responses of three different material constitutive laws (elastic, isotropic hyperelastic and anisotropic hyperelastic) under the same process and analyzed the differences thereof. Whereas linear elastic and isotropic hyperelastic materials can be studied using an axisymmetric simplification, anisotropic hyperelastic materials require three-dimensional analyses. Moreover, we established the limiting sample size required to determine the mechanical properties of soft materials while avoiding boundary effects. Finally, we compared the results obtained by simulation with an estimate obtained from Hertz theory. Hertz theory does not distinguish between the different material constitutive laws, and thus, we proposed corrections to improve the quantitative measurement of specific material properties by nanoindentation experiments. PMID:27214690

  8. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user.

  9. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  10. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J; Degnan, Bernard M

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  11. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  12. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials

    Science.gov (United States)

    McDougall, Carmel; Woodcroft, Ben J.

    2016-01-01

    In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs) identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the construction of

  13. Evaluation of Botanical Reference Materials for the Determination of Vanadium in Biological Samples

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1982-01-01

    Three botanical reference materials prepared by the National Bureau of Standards have been studied by neutron activation analysis to evaluate their suitability with respect to the determination of vanadium in biological samples. Various decomposition methods were applied in connection with chemic....... A reference value of 1.15 mg/kg of this material is recommended, based on results from 3 different methods. All three materials are preferable to SRM 1571 Orchard Leaves, while Bowen's Kale remains the material of choice because of its lower concentration....

  14. ZnO nanocomposites modified by hydrophobic and hydrophilic silanes with dramatically enhanced tunable fluorescence and aqueous ultrastability toward biological imaging applications.

    Science.gov (United States)

    Li, Shuying; Sun, Zongzhao; Li, Rui; Dong, Minmin; Zhang, Liyan; Qi, Wei; Zhang, Xuelin; Wang, Hua

    2015-01-01

    Multicolor ZnO quantum dots (QDs) were synthesized and further modified with hydrophobic hexadecyltrimethoxysilane (HDS) and then hydrophilic aminopropyltriethoxysilane (APS) bilayers, resulting in amine-functionalized ZnO@HDS@APS nanocomposites with tunable fluorescence from blue to green yellow. Systematic investigations verify that the resulting ZnO@HDS@APS could display extremely high stability in aqueous media and unexpectedly, dramatically-enhanced fluorescence intensities, which are about 10-fold higher than those of bare ZnO QDs. The feasibility of the as-prepared ZnO nanocomposites for blood, cell, and tissue imaging was preliminarily demonstrated, promising the wide bio-applications for cell or tissue imaging, proteome analysis, drug delivery, and molecular labeling.

  15. Biological and environmental reference materials for trace elements, nuclides and organic microcontaminants

    International Nuclear Information System (INIS)

    This report has been produced from a database on analytical reference materials of biological and environmental origin, which is maintained at the International Atomic Energy Agency. It is an updated version of an earlier report, published in 1985, which focussed mainly on reference materials for trace elements. In the present version of the report, reference materials for trace elements still constitute the major part of the data; however, information is also now included on a number of other selected analytes of relevance to IAEA programmes, i.e. radionuclides, stable isotopes and organic microcontaminants. The database presently contains 2,694 analyte values for 117 analytes in 116 biological and 77 environmental (non-biological) reference materials produced by 20 different suppliers. Additional information on the cost of the material, the unit size supplied, (weight or volume), and the minimum weight of material recommended for analysis is also provided (if available to the authors). It is expected that this report will help analysts to select the reference material that matches as closely as possible, with respect to matrix type and concentrations of the analytes of interest, the ''real'' samples that are to be analysed. Refs, 12 tabs

  16. Membrane materials for storing biological samples intended for comparative nanotoxicological testing

    Science.gov (United States)

    Metelkin, A.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    The study is aimed at identifying the samples of most promising membrane materials for storing dry specimens of biological fluids (Dried Blood Spots, DBS technology). Existing sampling systems using cellulose fiber filter paper have a number of drawbacks such as uneven distribution of the sample spot, dependence of the spot spreading area on the individual biosample properties, incomplete washing-off of the sample due to partially inconvertible sorption of blood components on cellulose fibers, etc. Samples of membrane materials based on cellulose, polymers and glass fiber with applied biosamples were studied using methods of scanning electron microscopy, FT-IR spectroscopy and surface-wetting measurement. It was discovered that cellulose-based membrane materials sorb components of biological fluids inside their structure, while membranes based on glass fiber display almost no interaction with the samples and biological fluid components dry to films in the membrane pores between the structural fibers. This characteristic, together with the fact that membrane materials based on glass fiber possess sufficient strength, high wetting properties and good storage capacity, attests them as promising material for dry samples of biological fluids storage systems.

  17. Current studies of biological materials using instrumental and radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Instrumental neutron activation analysis still remains the preferred option when analysing the trace element distribution in a wide rage of materials by neutron activation analysis. However, when lower limits of detection are required or major interferences reduce the effectiveness of this technique, radiochemical neutron activation analysis is applied. This paper examines the current use of both methods and the development of rapid radiochemical techniques for analysis of the biological materials, hair, cow's milk, human's milk, milk powder, blood and blood serum

  18. Tunable laser applications

    CERN Document Server

    Duarte, FJ

    2008-01-01

    Introduction F. J. Duarte Spectroscopic Applications of Tunable Optical Parametric Oscillators B. J. Orr, R. T. White, and Y. He Solid-State Dye Lasers Costela, I. García-Moreno, and R. Sastre Tunable Lasers Based on Dye-Doped Polymer Gain Media Incorporating Homogeneous Distributions of Functional Nanoparticles F. J. Duarte and R. O. James Broadly Tunable External-Cavity Semiconductor Lasers F. J. Duarte Tunable Fiber Lasers T. M. Shay and F. J. Duarte Fiber Laser Overview and Medical Applications

  19. Measuring the complex permittivity tensor of uniaxial biological materials with coplanar waveguide transmission line

    Science.gov (United States)

    A simple and accurate technique is described for measuring the uniaxial permittivity tensor of biological materials with a coplanar waveguide transmission-line configuration. Permittivity tensor results are presented for several chicken and beef fresh meat samples at 2.45 GHz....

  20. Evaluation of precision and accuracy of selenium measurements in biological materials using neutron activation analysis

    International Nuclear Information System (INIS)

    In recent years, the accurate determination of selenium in biological materials has become increasingly important in view of the essential nature of this element for human nutrition and its possible role as a protective agent against cancer. Unfortunately, the accurate determination of selenium in biological materials is often difficult for most analytical techniques for a variety of reasons, including interferences, complicated selenium chemistry due to the presence of this element in multiple oxidation states and in a variety of different organic species, stability and resistance to destruction of some of these organo-selenium species during acid dissolution, volatility of some selenium compounds, and potential for contamination. Neutron activation analysis (NAA) can be one of the best analytical techniques for selenium determinations in biological materials for a number of reasons. Currently, precision at the 1% level (1s) and overall accuracy at the 1 to 2% level (95% confidence interval) can be attained at the U.S. National Bureau of Standards (NBS) for selenium determinations in biological materials when counting statistics are not limiting (using the 75Se isotope). An example of this level of precision and accuracy is summarized. Achieving this level of accuracy, however, requires strict attention to all sources of systematic error. Precise and accurate results can also be obtained after radiochemical separations

  1. X-ray spectrometric determination of thorium in bone and other biological materials

    International Nuclear Information System (INIS)

    An x-ray spectrometric method has been developed for the determination of thorium in bone and other biological materials. The limit of detection at the 95% confidence level is 20 ng. This corresponds to a concentration of 2 ppb in a 10-g sample of bone ash

  2. Selenium determination in biological material by atomic absorption spectrophotometry in graphite furnace and using vapor generation

    International Nuclear Information System (INIS)

    The applicability of the atomic absorption spectrophotometry to the determination of selenium in biological material using vapor generation and electrothermal atomization in the graphite furnace was investigated. Instrumental parameters and the analytical conditions of the methods were studied. Decomposition methods for the samples were tested, and the combustion in the Wickbold apparatus was chosen. (author)

  3. New materials and biologically active preparations on the basis of (organilthio) chloroacetylene

    Institute of Scientific and Technical Information of China (English)

    D'yachkova; S.; G.

    2005-01-01

    (Organylthio)chloroacetylenes [RSC≡CCl, 1], the object of our systematic research, provide a promising source of new classes of polyfunctional compounds of acetylenic and polyheterocyclic seriesamong which biologically active substances, monomers and precursors for the preparation of new materials possessing a whole complex of valuable properties have been recognized.……

  4. New materials and biologically active preparations on the basis of (organilthio) chloroacetylene

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ (Organylthio)chloroacetylenes [RSC≡CCl, 1], the object of our systematic research, provide a promising source of new classes of polyfunctional compounds of acetylenic and polyheterocyclic seriesamong which biologically active substances, monomers and precursors for the preparation of new materials possessing a whole complex of valuable properties have been recognized.

  5. Simultaneous Determination of Arsenic, Manganese, and Selenium in Biological Materials by Neutron-Activation Analysis

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else

    1973-01-01

    A new method was developed for the simultaneous determination of arsenic, manganese, and selenium in biological material by thermal-neutron activation analysis. The use of 81 mSe as indicator for selenium permitted a reduction of activation time to 1 hr for a 1 g sample, and the possibility of loss...

  6. Occupational accidents with exposure to biological material: Description of cases in Bahia

    Directory of Open Access Journals (Sweden)

    Técia Maria Santos Carneiro e Cordeiro

    2016-04-01

    Full Text Available Background and Objective: This study is included in the field of public health in Brazil, in particular occupational health, by the occupational accidents with exposure to biological material consists of a preventable injury. Thus, the objective was to describe risk factors the of occupational accidents with exposure to biological material and the conduct postexposure adopted notified of cases in Notifiable Diseases Information System (SINAN in the State of Bahia in 2012. Methods: This is a descriptive epidemiological study realized with data from the injuries of notifications SINAN in February 2013, the analysis was realized using descriptive statistics in absolute frequencies and relative. Results: The results indicate a higher occurrence of occupational accidents involving exposure to biological materials in Bahia in the female population (78.1% and aged between 30-49 years (51.5%; the blood was fluid larger contact in accidents 75.2% by percutaneous (71.5%; post-exposure procedures were adopted in accordance recommended by the Ministry of Health; divers information were not fulfilled in the notifications and only 23.8% of Occupational Accidents Comunication (CAT were issued. Conclusion: It is considered necessary to draw up strategies on occupational health and safety, consciousness of workers about the relevance of the measures adopted after occupational accidents with exposure to biological material and the training of professionals for case notification and research to fill all the fields of the notification form and also the issuance of CAT.

  7. Environmental impacts of post-consumer material managements: recycling, biological treatments, incineration.

    Science.gov (United States)

    Valerio, F

    2010-11-01

    The environmental impacts of recycling, mechanical biological treatments (MBT) and waste-to-energy incineration, the main management strategies to respond to the increasing production of post-consumer materials are reviewed and compared. Several studies carried out according to life-cycle assessment (LCA) confirm that the lowest environmental impact, on a global scale, is obtained by recycling and by biological treatments (composting and anaerobic fermentations) if compost is used in agriculture. The available air emission factors suggest that, on a local scale, mechanical biological treatments with energy recovery of biogas, may be intrinsically safer than waste-to-energy incinerators. Several studies confirm the capability of biological treatments to degrade many toxic xenobiotic contaminating urban wastes such as dioxins and polycyclic aromatic hydrocarbons, an important property to be improved, for safe agricultural use of compost. Further LCA studies to compare the environmental impact of MBTs and of waste-to-energy incinerators are recommended.

  8. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  9. Biological reference materials from the National Institute for Environmental Studies (Japan)

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Kensaku

    1988-12-01

    The National Institute for Environmental Studies has recently undertaken the development of two new biological reference materials, Sargasso and Rice Flour-Unpolished, for trace element analysis. The sargasso seaweed (Sargassum felvellum) reference material contains high levels of alkali, alkaline earth elements and As, together with low concentrations of heavy metals. The rice flour-unpolished reference material was prepared from unpolished rice collected from three different locations in Japan. This reference material consists of three samples, each containing different levels (low, medium, high) of Cd. This paper presents the preparation and elemental composition of NIES Sargasso and Rice Flour-Unpolished reference materials, following a brief description of each of the currently available NIES certified reference materials.

  10. Immobilized Biofilm in Thermophilic Biohydrogen Production using Synthetic versus Biological Materials

    Directory of Open Access Journals (Sweden)

    Jaruwan Wongthanate

    2015-02-01

    Full Text Available Biohydrogen production was studied from the vermicelli processing wastewater using synthetic and biological materials as immobilizing substrate employing a mixed culture in a batch reactor operated at the initial pH 6.0 and thermophilic condition (55 ± 1ºC. Maximum cumulative hydrogen production (1,210 mL H2/L wastewater was observed at 5% (v/v addition of ring-shaped synthetic material, which was the ring-shaped hydrophobic acrylic. Regarding 5% (v/v addition of synthetic and biological materials, the maximum cumulative hydrogen production using immobilizing synthetic material of ball-shaped hydrophobic polyethylene (HBPE (1,256.5 mL H2/L wastewater was a two-fold increase of cumulative hydrogen production when compared to its production using immobilizing biological material of rope-shaped hydrophilic ramie (609.8 mL H2/L wastewater. SEM observation of immobilized biofilm on a ball-shaped HBPE or a rope-shaped hydrophilic ramie was the rod shape and gathered into group.

  11. HRI catalytic two-stage liquefaction (CTSL) process materials: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Later, D.W.

    1985-12-01

    This report presents data from the chemical analysis and biological testing of coal liquefaction materials obtained from the Hydrocarbon Research, Incorporated (HRI) catalytic two-stage liquefaction (CTSL) process. Materials from both an experimental run and a 25-day demonstration run were analyzed. Chemical methods of analysis included adsorption column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, low-voltage probe-inlet mass spectrometry, and proton nuclear magnetic resonance spectroscopy. The biological activity was evaluated using the standard microbial mutagenicity assay and an initiation/promotion assay for mouse-skin tumorigenicity. Where applicable, the results obtained from the analyses of the CTSL materials have been compared to those obtained from the integrated and nonintegrated two-stage coal liquefaction processes. 18 refs., 26 figs., 22 tabs.

  12. Thermo-fluidic devices and materials inspired from mass and energy transport phenomena in biological system

    Institute of Scientific and Technical Information of China (English)

    Jian XIAO; Jing LIU

    2009-01-01

    Mass and energy transport consists of one of the most significant physiological processes in nature, which guarantees many amazing biological phenomena and activ-ities. Borrowing such idea, many state-of-the-art thermo-fluidic devices and materials such as artificial kidneys, carrier erythrocyte, blood substitutes and so on have been successfully invented. Besides, new emerging technologies are still being developed. This paper is dedicated to present-ing a relatively complete review of the typical devices and materials in clinical use inspired by biological mass and energy transport mechanisms. Particularly, these artificial thermo-fluidic devices and materials will be categorized into organ transplantation, drug delivery, nutrient transport, micro operation, and power supply. Potential approaches for innovating conventional technologies were discussed, corresponding biological phenomena and physical mechan-isms were interpreted, future promising mass-and-energy-transport-based bionic devices were suggested, and prospects along this direction were pointed out. It is expected that many artificial devices based on biological mass and energy transport principle will appear to better improve vari-ous fields related to human life in the near future.

  13. Evaluation of a fungal collection as certified reference material producer and as a biological resource center.

    Science.gov (United States)

    Forti, Tatiana; Souto, Aline da S S; do Nascimento, Carlos Roberto S; Nishikawa, Marilia M; Hubner, Marise T W; Sabagh, Fernanda P; Temporal, Rosane Maria; Rodrigues, Janaína M; da Silva, Manuela

    2016-01-01

    Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC). For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061. PMID:26991280

  14. Evaluation of a fungal collection as certified reference material producer and as a biological resource center

    Directory of Open Access Journals (Sweden)

    Tatiana Forti

    2016-06-01

    Full Text Available Abstract Considering the absence of standards for culture collections and more specifically for biological resource centers in the world, in addition to the absence of certified biological material in Brazil, this study aimed to evaluate a Fungal Collection from Fiocruz, as a producer of certified reference material and as Biological Resource Center (BRC. For this evaluation, a checklist based on the requirements of ABNT ISO GUIA34:2012 correlated with the ABNT NBR ISO/IEC17025:2005, was designed and applied. Complementing the implementation of the checklist, an internal audit was performed. An evaluation of this Collection as a BRC was also conducted following the requirements of the NIT-DICLA-061, the Brazilian internal standard from Inmetro, based on ABNT NBR ISO/IEC 17025:2005, ABNT ISO GUIA 34:2012 and OECD Best Practice Guidelines for BRCs. This was the first time that the NIT DICLA-061 was applied in a culture collection during an internal audit. The assessments enabled the proposal for the adequacy of this Collection to assure the implementation of the management system for their future accreditation by Inmetro as a certified reference material producer as well as its future accreditation as a Biological Resource Center according to the NIT-DICLA-061.

  15. MEMS Tunable Antennas

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Morris, Art; Pedersen, Gert Frølund

    2014-01-01

    Addressing low frequency bands is challenging on small platforms. Tunability is a promising solution to cover the bandwidth required for 4G mobile communication. The work presents two designs and shows that for comparable efficiency and bandwidth, the tunable antenna occupies half the volume...... required by the wide-band antenna....

  16. Novel microwave near-field sensors for material characterization, biology, and nanotechnology

    CERN Document Server

    Joffe, R; Shavit, R

    2015-01-01

    The wide range of interesting electromagnetic behavior of contemporary materials requires that experimentalists working in this field master many diverse measurement techniques and have a broad understanding of condensed matter physics and biophysics. Measurement of the electromagnetic response of materials at microwave frequencies is important for both fundamental and practical reasons. In this paper, we propose a novel near-field microwave sensor with application to material characterization, biology, and nanotechnology. The sensor is based on a subwavelength ferrite-disk resonator with magnetic-dipolar-mode (MDM) oscillations. Strong energy concentration and unique topological structures of the near fields originated from the MDM resonators allow effective measuring material parameters in microwaves, both for ordinary structures and objects with chiral properties.

  17. Clinical treatment adherence of health care workers and students exposed to potentially infectious biological material

    Directory of Open Access Journals (Sweden)

    Maria Cristina Mendes de Almeida

    2015-04-01

    Full Text Available OBJECTIVE To assess adherence to clinical appointments by health care workers (HCW and students who suffered accidents with potentially infectious biological material. METHOD A retrospective cross-sectional study that assessed clinical records of accidents involving biological material between 2005 and 2010 in a specialized unit. RESULTS A total of 461 individuals exposed to biological material were treated, of which 389 (84.4% were HCWs and 72 (15.6% students. Of the 461 exposed individuals, 307 (66.6% attended a follow-up appointment. Individuals who had suffered an accident with a known source patient were 29 times more likely to show up to their scheduled follow-up appointments (OR: 29.98; CI95%: 16.09-55.83. CONCLUSION The predictor in both univariate and multivariate analyses for adherence to clinical follow-up appointment was having a known source patient with nonreactive serology for the human immunodeficiency virus and/or hepatitis B and C.

  18. Development and Applications Of Photosensitive Device Systems To Studies Of Biological And Organic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol

    2012-01-20

    The primary focus of the grant is the development of new x-ray detectors for biological and materials work at synchrotron sources, especially Pixel Array Detectors (PADs), and the training of students via research applications to problems in biophysics and materials science using novel x-ray methods. This Final Progress Report provides a high-level overview of the most important accomplishments. These major areas of accomplishment include: (1) Development and application of x-ray Pixel Array Detectors; (2) Development and application of methods of high pressure x-ray crystallography as applied to proteins; (3) Studies on the synthesis and structure of novel mesophase materials derived from block co-polymers.

  19. Enhanced Removal of Lead by Chemically and Biologically Treated Carbonaceous Materials

    Directory of Open Access Journals (Sweden)

    Mohamed E. Mahmoud

    2012-01-01

    Full Text Available Hybrid sorbents and biosorbents were synthesized via chemical and biological treatment of active carbon by simple and direct redox reaction followed by surface loading of baker’s yeast. Surface functionality and morphology of chemically and biologically modified sorbents and biosorbents were studied by Fourier Transform Infrared analysis and scanning electron microscope imaging. Hybrid carbonaceous sorbents and biosorbents were characterized by excellent efficiency and superiority toward lead(II sorption compared to blank active carbon providing a maximum sorption capacity of lead(II ion as 500 μmol g−1. Sorption processes of lead(II by these hybrid materials were investigated under the influence of several controlling parameters such as pH, contact time, mass of sorbent and biosorbent, lead(II concentration, and foreign ions. Lead(II sorption mechanisms were found to obey the Langmuir and BET isotherm models. The potential applications of chemically and biologically modified-active carbonaceous materials for removal and extraction of lead from real water matrices were also studied via a double-stage microcolumn technique. The results of this study were found to denote to superior recovery values of lead (95.0–99.0±3.0–5.0% by various carbonaceous-modified-bakers yeast biosorbents.

  20. Marketing the use of the space environment for the processing of biological and pharmaceutical materials

    Science.gov (United States)

    1984-01-01

    The perceptions of U.S. biotechnology and pharmaceutical companies concerning the potential use of the space environment for the processing of biological substances was examined. Physical phenomena that may be important in space-base processing of biological materials are identified and discussed in the context of past and current experiment programs. The capabilities of NASA to support future research and development, and to engage in cooperative risk sharing programs with industry are discussed. Meetings were held with several biotechnology and pharmaceutical companies to provide data for an analysis of the attitudes and perceptions of these industries toward the use of the space environment. Recommendations are made for actions that might be taken by NASA to facilitate the marketing of the use of the space environment, and in particular the Space Shuttle, to the biotechnology and pharmaceutical industries.

  1. Damage-free vibrational spectroscopy of biological materials in the electron microscope

    Science.gov (United States)

    Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai

    2016-03-01

    Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an `aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10 nm, simultaneously combined with imaging in the electron microscope.

  2. Possibilities of nondestructive determination of fluorine in coal and biological materials by IPAA

    International Nuclear Information System (INIS)

    The possibilities of nondestructive determination of fluorine in coal and biological materials by instrumental photon activation analysis (IPAA) were studied. The determination was based on counting the non-specific 511 keV annihilation gamma rays of 18F, a pure positron emitter which is the product of the photonuclear reaction 19F(γ, n)18F. The simultaneous formation of some additional positron emitters, particularly 45Ti and 34mCl, is an interfering factor. When using correction standards for Ti and Cl and optimization of the beam energy and irradiation-decay-counting times, fluorine could be determined by IPAA in selected coal and biological samples at the ten ppm level. The feasibility of additional optimization for further improvements of the proposed IPAA procedure are discussed

  3. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  4. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  5. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  6. "Rinse and trickle": a protocol for TEM preparation and investigation of inorganic fibers from biological material.

    Science.gov (United States)

    Vigliaturo, Ruggero; Capella, Silvana; Rinaudo, Caterina; Belluso, Elena

    2016-07-01

    The purpose of this work is to define a sample preparation protocol that allows inorganic fibers and particulate matter extracted from different biological samples to be characterized morphologically, crystallographically and chemically by transmission electron microscopy-energy dispersive spectroscopy (TEM-EDS). The method does not damage or create artifacts through chemical attacks of the target material. A fairly rapid specimen preparation is applied with the aim of performing as few steps as possible to transfer the withdrawn inorganic matter onto the TEM grid. The biological sample is previously digested chemically by NaClO. The salt is then removed through a series of centrifugation and rinse cycles in deionized water, thus drastically reducing the digestive power of the NaClO and concentrating the fibers for TEM analysis. The concept of equivalent hydrodynamic diameter is introduced to calculate the settling velocity during the centrifugation cycles. This technique is applicable to lung tissues and can be extended to a wide range of organic materials. The procedure does not appear to cause morphological damage to the fibers or modify their chemistry or degree of crystallinity. The extrapolated data can be used in interdisciplinary studies to understand the pathological effects caused by inorganic materials. PMID:27151190

  7. Biomolecular Interactions and Biological Responses of Emerging Two-Dimensional Materials and Aromatic Amino Acid Complexes.

    Science.gov (United States)

    Mallineni, Sai Sunil Kumar; Shannahan, Jonathan; Raghavendra, Achyut J; Rao, Apparao M; Brown, Jared M; Podila, Ramakrishna

    2016-07-01

    The present work experimentally investigates the interaction of aromatic amino acids viz., tyrosine, tryptophan, and phenylalnine with novel two-dimensional (2D) materials including graphene, graphene oxide (GO), and boron nitride (BN). Photoluminescence, micro-Raman spectroscopy, and cyclic voltammetry were employed to investigate the nature of interactions and possible charge transfer between 2D materials and amino acids. Graphene and GO were found to interact strongly with aromatic amino acids through π-π stacking, charge transfer, and H-bonding. Particularly, it was observed that both physi and chemisorption are prominent in the interactions of GO/graphene with phenylalanine and tryptophan while tyrosine exhibited strong chemisorption on graphene and GO. In contrast, BN exhibited little or no interactions, which could be attributed to localized π-electron clouds around N atoms in BN lattice. Lastly, the adsorption of amino acids on 2D materials was observed to considerably change their biological response in terms of reactive oxygen species generation. More importantly, these changes in the biological response followed the same trends observed in the physi and chemisorption measurements. PMID:27281436

  8. Interpreting atomic force microscopy nanoindentation of hierarchical biological materials using multi-regime analysis.

    Science.gov (United States)

    Bonilla, M R; Stokes, J R; Gidley, M J; Yakubov, G E

    2015-02-01

    We present a novel Multi-Regime Analysis (MRA) routine for interpreting force indentation measurements of soft materials using atomic force microscopy. The MRA approach combines both well established and semi-empirical theories of contact mechanics within a single framework to deconvolute highly complex and non-linear force-indentation curves. The fundamental assumption in the present form of the model is that each structural contribution to the mechanical response acts in series with other 'mechanical resistors'. This simplification enables interpretation of the micromechanical properties of materials with hierarchical structures and it allows automated processing of large data sets, which is particularly indispensable for biological systems. We validate the algorithm by demonstrating for the first time that the elastic modulus of polydimethylsiloxane (PDMS) films is accurately predicted from both approach and retraction branches of force-indentation curves. For biological systems with complex hierarchical structures, we show the unique capability of MRA to map the micromechanics of live plant cells, revealing an intricate sequence of mechanical deformations resolved with precision that is unattainable using conventional methods of analysis. We recommend the routine use of MRA to interpret AFM force-indentation measurements for other complex soft materials including mammalian cells, bacteria and nanomaterials. PMID:25569139

  9. Tunable permeability of magnetic wires at microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Panina, L.V., E-mail: lpanina@plymouth.ac.uk [National University of Science and Technology, MISiS, Moscow (Russian Federation); Institute for Design Problems in Microelectronics, RAN, Moscow (Russian Federation); Makhnovskiy, D.P. [School of Computing and Mathematics, University of Plymouth (United Kingdom); Morchenko, A.T.; Kostishin, V.G. [National University of Science and Technology, MISiS, Moscow (Russian Federation)

    2015-06-01

    This paper presents the analysis into microwave magnetic properties of magnetic microwires and their composites in the context of applications in wireless sensors and tunable microwave materials. It is demonstrated that the intrinsic permeability of wires has a wide frequency dispersion with relatively large values in the GHz band. In the case of a specific magnetic anisotropy this results in a tunable microwave impedance which could be used for distributed wireless sensing networks in functional composites. The other range of applications is related with developing the artificial magnetic dielectrics with large and tunable permeability. The composites with magnetic wires with a circumferential anisotropy have the effective permeability which differs substantially from unity for a relatively low concentration (less than 10%). This can make it possible to design the wire media with a negative and tunable index of refraction utilising natural magnetic properties of wires. - Highlights: • Applications of magnetic microwires for functional composites and distributed sensor networks are proposed. • Diluted composites with magnetic microwires can demonstrate tunable left-handed properties. • Large microwave permeability combined with a specific magnetic structure lead to a large and sensitive microwave magnetoimpedance. • Microwave magnetoimpedance highly sensitive to temperature is demonstrated.

  10. Analytical methods for determination of terbinafine hydrochloride in pharmaceuticals and biological materials$

    Institute of Scientific and Technical Information of China (English)

    Basavaiah Kanakapura n; Vamsi Krishna Penmatsa

    2016-01-01

    Terbinafine is a new powerful antifungal agent indicated for both oral and topical treatment of myco-sessince. It is highly effective in the treatment of determatomycoses. The chemical and pharmaceutical analysis of the drug requires effective analytical methods for quality control and pharmacodynamic and pharmacokinetic studies. Ever since it was introduced as an effective antifungal agent, many methods have been developed and validated for its assay in pharmaceuticals and biological materials. This article reviews the various methods reported during the last 25 years.

  11. Imaging material properties of biological samples with a Force Feedback Microscope

    CERN Document Server

    Costa, Luca; Newman, Emily; Zubieta, Chloe; Chevrier, Joel; Comin, Fabio

    2013-01-01

    Mechanical properties of biological samples have been imaged with a force feedback microscope. The force, force gradient and the dissipation are simultaneously measured quantitatively from solely the knowledge of the spring constant. The results are preliminary but demonstrate that the method can be used to measure material properties, it is robust and produce quantitative high force resolution measurements of interaction characteristics. The small stiffness and oscillation of the cantilever results in an vibrational energy much smaller than the thermal energy, reducing the interaction to a minimum. Because the lever is over-damped, the excitation frequency can be chosen arbitrarily.

  12. Continuously tunable optical multidimensional Fourier-transform spectrometer.

    Science.gov (United States)

    Dey, P; Paul, J; Bylsma, J; Deminico, S; Karaiskaj, D

    2013-02-01

    A multidimensional optical nonlinear spectrometer (MONSTR) is a robust, ultrastable platform consisting of nested and folded Michelson interferometers that can be actively phase stabilized. The MONSTR provides output pulses for nonlinear excitation of materials and phase-stabilized reference pulses for heterodyne detection of the induced signal. This platform generates a square of identical laser pulses that can be adjusted to have arbitrary time delays between them while maintaining phase stability. This arrangement is ideal for performing coherent optical experiments, such as multidimensional Fourier-transform spectroscopy. The present work reports on overcoming some important limitations on the original design of the MONSTR apparatus. One important advantage of the MONSTR is the fact that it is a closed platform, which provides the high stability. Once the optical alignment is performed, it is desirable to maintain the alignment over long periods of time. The previous design of the MONSTR was limited to a narrow spectral range defined by the optical coating of the beam splitters. In order to achieve tunability over a broad spectral range the internal optics needed to be changed. By using broadband coated and wedged beam splitters and compensator plates, combined with modifications of the beam paths, continuous tunability can be achieved from 520 nm to 1100 nm without changing any optics or performing alignment of the internal components of the MONSTR. Furthermore, in order to achieve continuous tunability in the spectral region between 520 nm and 720 nm, crucially important for studies on numerous biological molecules, a single longitudinal mode laser at 488.5 nm was identified and used as a metrology laser. The shorter wavelength of the metrology laser as compared to the usual HeNe laser has also increased the phase stability of the system. Finally, in order to perform experiments in the reflection geometry, a simple method to achieve active phase stabilization

  13. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  14. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    Science.gov (United States)

    Rodríguez-Fernández, Luis

    2010-09-01

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  15. Particle Accelerator Applications: Ion and Electron Irradiation in Materials Science, Biology and Medicine

    International Nuclear Information System (INIS)

    Although the developments of particle accelerators are devoted to basic study of matter constituents, since the beginning these machines have been applied with different purposes in many areas also. Today particle accelerators are essential instruments for science and technology. This work presents an overview of the main application for direct particle irradiation with accelerator in material science, biology and medicine. They are used for material synthesis by ion implantation and charged particle irradiation; to make coatings and micromachining; to characterize broad kind of samples by ion beam analysis techniques; as mass spectrometers for atomic isotopes determination. In biomedicine the accelerators are applied for the study of effects by charged particles on cells. In medicine the radiotherapy by electron irradiation is widely used, while hadrontherapy is still under development. Also, they are necessary for short life radioisotopes production required in radiodiagnostic.

  16. Biological availability of energy related effluent material in the coastal ecosystem

    International Nuclear Information System (INIS)

    In order to make the predictions necessary to forecast the ecological consequences of an energy-related technology, there must be an understanding of: the biogeochemical processes involved in the natural system; the manner in which an energy technology affects these processes and how, in turn, this affects the ecosystem as a whole. Direct biological effects such as lethality, behavioral changes, and physiological changes, are being studied under the program previously discussed. The biological availability and impact studies are investigating: the chemical, physical, and biological processes that occur in the natural marine ecosystem; how energy effluents affect these processes; and the factors involved in regulating the bioavailability of effluent material. This past year's effort has centered on defining the quantities and forms of metals and radioisotopes in nuclear power plant effluent streams, the chemical forms present in bioassay systems, the chemical and microbial processes controlling the forms of metals available from the sediments, and the uptake and control of copper in shrimp. In addition, several sites in Sequim Bay have been monitored for potential use in field verification studies

  17. Freely-tunable broadband polarization rotator for terahertz waves

    Science.gov (United States)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  18. New Method for Monitoring the Process of Freeze Drying of Biological Materials.

    Science.gov (United States)

    Alkeev, Nikolay; Averin, Stanislav; von Gratowski, Svetlana

    2015-12-01

    A capacitive sensor was proposed and tested for the monitoring and control of a freeze drying process of a vaccine against the Newcastle disease of birds. The residual moisture of the vaccine was measured by the thermogravimetric method. The vaccine activity was determined by titration in chicken embryos. It was shown that, at the stages of freezing and primary drying, a capacitive sensor measured the fraction of unfrozen liquid phase in a material and allowed one to control the sublimation stage of drying in an optimal way. This prevented the foaming of the material and shortened the total drying time approximately twice. The control range at the sublimation stage of drying expanded up to -70°C. It was found at the final stage of drying that the signal of a capacitive sensor passed through a maximum value. We supposed that this maximum corresponds to the minimum of intramolecular mobility of biological macromolecules and hence to the optimal residual moisture of the material, which ensures long-term preservation of its activity. We also suppose that using the capacitive sensor at the final stage of drying allows one to more precisely detect the time when the residual moisture of dried material reaches the optimal value. PMID:26022547

  19. Analytic determination of the activation of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    A neutron activation-analysis technique for the multielement determination in biological material was developed. The individual steps of this procedure comprise radiochemical and also instrumental analytic techniques. After radiochemical separation 34 elements can be determined, after only instrumental procedures 26 elements can be detected in biological material. The radiochemical analysis of 34 elements lasts 4 days. Tracer investigations on the radionuclide retention of the anorganic separators HAP, TiP and ZP in 9N aqueous HNO3 solution indicated that apart from Na-24, K-42 and P-32 the radionuclides Cs-134, Rb-86 and Se-75 are almost quantitatively adsorbed at the separators. For the remaining investigated radionuclides different but well-reproducible retention values resulted. The pH-value only slightly influences the extent of the radionuclide retention. Kinetic investigations on the radiochemical precipitation of some radionuclides on Cu and Cu(Hg)sub(x) were carried out. The depositing of the radionuclides Ag-110m, Hg-203 and Se-75 at 00C and room temperature on Cu(Hg)sub(x) and Cu foil is a first order reaction. The half-life periods and the velocity constants of the depositing on Cu and Cu(Hg)sub(x) were determined for the investigated radionuclides in dependency of the temperature. The technique was examined by means of international biological multielement standards of known element combinations. The realisation of ring tests for the multielement determination in potatoe and milk powder showed that this method provides precise results. The applicability of the radiochemical method was confirmed by the simultaneous determination of 25 elements in overall nutrition samples. The instrumental technique was applied for the multielement determination in human hair (of the head) and in river water. (orig./MG)

  20. Assembling new technologies at the interface of materials science and biology

    Science.gov (United States)

    Stendahl, John C.

    Molecular self-assembly can be used to construct advanced materials by taking cues from nature and harnessing noncovalent interactions. This bottom-up approach affords molecular level precision that can cultivate pathways to improved materials function. The graduate research presented in this thesis integrates molecular self-assembly with traditional concepts in chemistry and materials science, with the ultimate goal of developing innovative solutions in technology and medicine. In the field of polymer engineering, self-assembly was used to create supramolecular nanoribbons that, when incorporated into polystyrene, modify its microstructure and significantly enhance its toughness and ductility. In medicine, self-assembly was used to create ordered, chemically functional materials to improve interactions with cells and other constituents of the biological environment. One system that was investigated is based on a triblock molecule in which cholesterol is connected to a lysine dendron by a flexible oligo-(L-lactic acid) spacer. These molecules self-assemble into polar surface coatings on fibrous poly(L-lactic acid) scaffolds that improve the scaffold's wettability and increase its retention of cells during seeding. Another self-assembling system that was investigated for biomedical applications is a family of molecules referred to as peptide amphiphiles (PA's). PA's consist of hydrophobic alkyl tails connected to short, hydrophilic peptides that incorporate biological signaling epitopes. These molecules spontaneously assemble into networks of well-defined nanofibers in aqueous environments, with the signaling epitopes presented in high density on the nanofiber exteriors. Nanofiber assembly is triggered by charge screening on the peptides and is able to produce self-supporting gels in concentrations of less than 1.0 wt.-%. The assembly process and mechanical properties of PA gels was investigated in detail with vibrational spectroscopy and oscillatory rheology. PA

  1. Dielectrophoretically tunable optofluidic devices

    Science.gov (United States)

    Xu, Su; Ren, Hongwen; Wu, Shin-Tson

    2013-12-01

    Tunable optofluidic devices exhibit some unique characteristics that are not achievable in conventional solid-state photonic devices. They provide exciting opportunities for emerging applications in imaging, information processing, sensing, optical communication, lab-on-a-chip and biomedical engineering. A dielectrophoresis effect is an important physical mechanism to realize tunable optofluidic devices. Via balancing the voltage-induced dielectric force and interfacial tension, the liquid interface can be dynamically manipulated and the optical output reconfigured or adaptively tuned in real time. Dielectrophoretically tunable optofluidic devices offer several attractive features, such as rapid prototyping, miniaturization, easy integration and low power consumption. In this review paper, we first explain the underlying operation principles and then review some recent progress in this field, covering the topics of adaptive lens, beam steering, iris, grating, optical switch/attenuator and single pixel display. Finally, the future perspectives are discussed.

  2. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  3. Tunable Nanodielectric Composites

    Directory of Open Access Journals (Sweden)

    Daniel Qi Tan

    2014-01-01

    Full Text Available This paper presents a progress update with the development of nanodielectric composites with electric field tunability for various high energy, high power electrical applications. It is demonstrated that nonlinear electrical/dielectric properties can be achieved via the nanostructure and interface engineering. A high level summary was given on the progress achieved as well as challenges remaining in nanodielectric engineering towards high energy density capacitors for energy storage and conversion, nonlinear dielectrics for tunable device, and high voltage varistor for surge suppression.

  4. Tunable terahertz fishnet metamaterial

    Science.gov (United States)

    Chang, Cheng-Ling; Wang, Wei-Chih; Lin, Hong-Ren; Ju Hsieh, Feng; Pun, Yue-Bun; Chan, Chi-Hou

    2013-04-01

    This paper describes and demonstrates a terahertz (THz) frequency tunable fishnet metamaterial (TFMM) using an electrically controlled polymer dispersed liquid crystal (PDLC) matrix. In contrast to other PDLC-based devices, the TFMM employs a novel method for encapsulating PDLC using a thin (1.5 μm) polyimide "skin layer" to form a uniform surface for metal electrodes while minimizing the Fabry-Perot effect of the skin layer on the TFMM measurements. The tunability was verified by measuring the frequency shift in the reflection coefficient (0.01 THz), with an observed minimum negative refractive index of -15 at 0.55 THz.

  5. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter;

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  6. [Use of aluminum foil baths for embedding biological materials in epoxide resins].

    Science.gov (United States)

    Agaev, Iu M; Merkulov, V A

    1975-11-01

    The baths intended for embedding the biological material into epoxide resins are made of aluminium foil, 0.1 mm thick, cut in the form of rectangles (13 X 18 mm). The rectangular foil plates are placed on a soft microporous rubber separator 30--40 mm thick and by means of a form with the base equal to 5 X 10 mm the baths are pressed down by 4 mm deep. The baths are stuck to the paper stripes by rubber cement to ensure easy handling and numeration. In the process of embedding and polymerization the paper stripes having the baths are placed in the exsiccator with P2O5 and thermostate on special aluminium stands. PMID:775710

  7. Why should we respect the privacy of donors of biological material?

    Science.gov (United States)

    Tännsjö, Torbjörn

    2011-02-01

    Why should we respect the privacy of donors of biological material? The question is answered in the present article in general philosophical terms from the point of view of an ethics of honour, a libertarian theory of rights, a view of respect for privacy based on the idea that autonomy is of value in itself, and utilitarianism respectively. For different reasons the ethics of honour and the idea of the value of autonomy are set to one side. It surfaces that the moral rights theory and utilitarianism present conflicting answers to the question. The main thrust of the argument is that there is no way of finding an overlapping consensus, so politicians have to take decisions that are bound to be controversial in that they can be questioned on reasonable philosophical grounds.

  8. Activation analytical determination of essential and toxic trace elements in biological material

    International Nuclear Information System (INIS)

    In order to determine the essential trace elements Hg, Ag, Cu and Se in food (potatoes, milk powder) and biological standard materials (fruit tree leaves), simple, fast radiochemical separation methods are worked out. Following oxidative decomposition and destillation of Hg, the elements silver, copper and selenium are found in the destillation residue and can be electrochemically enriched on an amalgamated Cu foil (determination of Ag and Se in the concentration range of 10-9 to 10-8g, of Cu in the range of 10-12 to 10-10 g), whilst the matrix elements Na, K, P are adsorbed on a column with 3 different inorganic ion exchangers. The eluate of the ion exchanger can be added directly to the multielement gamma spectroscopy. The possiblity of working purely instrumentally is demonstrated by 2 examples: multielement analysis of human hair and river water. (RB)

  9. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  10. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications.

    Science.gov (United States)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N; Fang, Zhiqiang; Zhu, J Y; Henriksson, Gunnar; Himmel, Michael E; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy. PMID:27459699

  11. Wood-Derived Materials for Green Electronics, Biological Devices, and Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hongli; Luo, Wei; Ciesielski, Peter N.; Fang, Zhiqiang; Zhu, J. Y.; Henriksson, Gunnar; Himmel, Michael E.; Hu, Liangbing

    2016-08-24

    goal of this study is to review the fundamental structures and chemistries of wood and wood-derived materials, which are essential for a wide range of existing and new enabling technologies. The scope of the review covers multiscale materials and assemblies of cellulose, hemicellulose, and lignin as well as other biomaterials derived from wood, in regard to their major emerging applications. Structure-properties-application relationships will be investigated in detail. Understanding the fundamental properties of these structures is crucial for designing and manufacturing products for emerging applications. Today, a more holistic understanding of the interplay between the structure, chemistry, and performance of wood and wood-derived materials is advancing historical applications of these materials. This new level of understanding also enables a myriad of new and exciting applications, which motivate this review. There are excellent reviews already on the classical topic of woody materials, and some recent reviews also cover new understanding of these materials as well as potential applications. This review will focus on the uniqueness of woody materials for three critical applications: green electronics, biological devices, and energy storage and bioenergy.

  12. Determination of zinc stable isotopes in biological materials using isotope dilution inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    A method is described for using isotope dilution to determine both the amount of natural zinc and enriched isotopes of zinc in biological samples. Isotope dilution inductively coupled plasma mass spectrometry offers a way to quantify not only the natural zinc found in a sample but also the enriched isotope tracers of zinc. Accurate values for the enriched isotopes and natural zinc are obtained by adjusting the mass count rate data for measurable instrumental biases. Analytical interferences from the matrix are avoided by extracting the zinc from the sample matrix using diethylammonium diethyldithiocarbamate. The extraction technique separates the zinc from elements which form interfering molecular ions at the same nominal masses as the zinc isotopes. Accuracy of the method is verified using standard reference materials. The detection limit is 0.06 μg Zn per sample. Precision of the abundance ratios range from 0.3-0.8%. R.S.D. for natural zinc concentrations is about 200-600 μg g-1. The accuracy and precision of the measurements make it possible to follow enriched isotopic tracers of zinc in biological samples in metabolic tracer studies. (author). 19 refs.; 1 fig., 4 tabs

  13. Evaluation of analytical methods for fluorine in biological and related materials.

    Science.gov (United States)

    Venkateswarlu, P

    1990-02-01

    During the past two decades, some major pitfalls in fluorine analysis have been recognized and overcome. Therefore, it is important that facts be separated from fallacies in published literature on levels and forms of fluorine (ionic, bound, covalent, etc.) in biological materials, in order that correct perceptions of physiological, biochemical, and toxicological aspects of inorganic as well as organic fluorine compounds can be formed. Trace amounts of inorganic fluoride in biological samples can now be accurately determined with the fluoride electrode either directly or following diffusion, adsorption, or reverse extraction of fluoride (when necessary). The aluminum monofluoride molecular absorption technique provides an excellent rapid method for determination of trace amounts of inorganic fluoride (in the absence of organic fluorine). Fluorine in most organic fluorine compounds is not available for distillation, diffusion, or reverse-extraction. The sample needs to be ashed (open ashing) or combusted (oxygen flask, oxygen bomb, pyrohydrolysis) for covalently bound fluorine to be converted to fluoride ions. This can now be readily accomplished at room temperature by the reductive cleavage of the C-F bond with the sodium biphenyl reagent. Some recommendations for future research have been made. PMID:2179310

  14. Tunability enhanced electromagnetic wiggler

    Science.gov (United States)

    Schlueter, Ross D.; Deis, Gary A.

    1992-01-01

    The invention discloses a wiggler used in synchrotron radiation sources and free electron lasers, where each pole is surrounded by at least two electromagnetic coils. The electromagnetic coils are energized with different amounts of current to provide a wide tunable range of the on-axis magnetic flux density, while preventing magnetic saturation of the poles.

  15. Measuring spatially- and directionally-varying light scattering from biological material.

    Science.gov (United States)

    Harvey, Todd Alan; Bostwick, Kimberly S; Marschner, Steve

    2013-01-01

    Light interacts with an organism's integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism's body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons. In order to study the directional patterns of light scattering from feathers, and their relationship to the bird's milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple

  16. Biological material (DNA and RNA) bank of nuclear production workers and residents of nearby territories

    International Nuclear Information System (INIS)

    Seversk Biophysical Research Centre (SBRC) has been engaged in creating DNA and biological material bank of workers of nuclear production (Siberian Group of Chemical Enterprises - SGCE) and residents of nearby areas (the town of Seversk) since 2002. Following the developed methodology, for each person this bank includes three units of storage: DNA sample extracted by standard method using proteinase K (the main sample), DNA sample isolated by means of 'quick' extraction method (work sample), and 1.5 ml blood sample (spare sample). For each DNA donor there have been obtained cytogenetic agents to estimate frequency and spectrum of chromosome aberrations. There has been completed DNA bank of SGCE workers (healthy individuals, cancer patients and those who survived acute myocardial infarction) as well as Seversk children aged 9-11 examined within SBRC special screening programme to diagnose thyroid diseases. At present, this DNA and biological material bank includes 5,988 units of storage (DNA samples extracted by means of standard method, DNA work samples isolated by quick extraction method, and spare blood samples). For every donor there has been obtained an informed consent. Storage conditions comply with technical regulations and provide for long-term (for decades) safety of the material. Personal information on DNA donors (age, internal and external doses, length of service, occupational data and case history) is contained in the Regional Medicodosimetric Register. Currently work is underway to create RNA bank identical to the existing DNA bank. For each person this bank contains two units of storage: the main high quality RNA sample isolated by hot phenol extraction; a work sample - of single stranded cDNA, extracted on RNA matrix through reverse transcription reaction. RNA bank will allow complex study of radiation effects in low dose range on the transcript of nuclear production workers and people living nearby. Thus, SBNC DNA and biological material bank

  17. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Science.gov (United States)

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic

  18. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials.

    Science.gov (United States)

    Płotka, Justyna; Narkowicz, Sylwia; Polkowska, Zaneta; Biziuk, Marek; Namieśnik, Jacek

    2014-01-01

    The use of addictive substances during pregnancy is a serious social problem, not only because of effects on the health of the woman and child, but also because drug or alcohol dependency detracts from child care and enhances the prospect of child neglect and family breakdown. Developing additive substance abuse treatment programs for pregnant women is socially important and can help ensure the health of babies, prevent subsequent developmental and behavioral problems (i.e., from intake of alcohol or other additive substances such as methamphetamine, cocaine,or heroine) and can reduce addiction costs to society. Because women of childbearing age often abuse controlled substances during their pregnancy, it is important to undertake biomonitoring of these substances in biological samples taken from the pregnant or nursing mother (e.g., blood, urine,hair, breast milk, sweat, oral fluids, etc.), from the fetus and newborn (e.g., meconium,cord blood, neonatal hair and urine) and from both the mother and fetus (i.e.,amniotic fluids and placenta). The choice of specimens to be analyzed is determined by many factors; however, the most important is knowledge of the chemical and physical characteristics of a substance and the route of it administration. Maternal and neonatal biological materials reflect exposures that occur over a specific time period, and each of these biological specimens has different advantages and disadvantages,in terms of accuracy, time window of exposure and cost/benefit ratio.Sampling the placenta may be the most important biomonitoring choice for assessing in utero exposure to addictive substances. The use of the placenta in scientific research causes a minimum of ethical problems, partly because its sampling is noninvasive, causes no harm to mother or child, and partly because, in any case,placentas are discarded and incinerated after birth. Such samples, when properly analyzed, may provide key essential information about fetal exposure to toxic

  19. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials.

    Science.gov (United States)

    Andryieuski, Andrei; Kuznetsova, Svetlana M; Zhukovsky, Sergei V; Kivshar, Yuri S; Lavrinenko, Andrei V

    2015-08-27

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment.

  20. Water: Promising Opportunities For Tunable All-dielectric Electromagnetic Metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Kuznetsova, Svetlana M.; Zhukovsky, Sergei;

    2015-01-01

    We reveal an outstanding potential of water as an inexpensive, abundant and bio-friendly high-refractive-index material for creating tunable all-dielectric photonic structures and metamaterials. Specifically, we demonstrate thermal, mechanical and gravitational tunability of magnetic and electric...... resonances in a metamaterial consisting of periodically positioned water-filled reservoirs. The proposed water-based metamaterials can find applications not only as cheap and ecological microwave devices, but also in optical and terahertz metamaterials prototyping and educational lab equipment....

  1. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    Science.gov (United States)

    Latinovic, Z.; Sreckovic, M.; Janicijevic, M.; Ilic, J.; Radovanovic, J.

    2014-09-01

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode.

  2. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    International Nuclear Information System (INIS)

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to its particular embodiment in Paramecium caudatum), and we investigate the contribution of its main features to the swimming performance, through a three-dimensional finite-elements model, in order to develop a simplified, yet effective artificial design. We propose a bioinspired propulsion mechanism for a swimming microrobot based on a continuous cylindrical electroactive surface exhibiting perpendicular wave deformations travelling longitudinally along its main axis. The simplified propulsion mechanism is conceived specifically for microrobots that embed a micro-actuation system capable of executing the bioinspired propulsion (self-propelled microrobots). Among the available electroactive polymers, we select polypyrrole as the possible actuation material and we assess it for this particular embodiment. The results are used to appoint target performance specifications for the development of improved or new electroactive materials to attain metachronal-waves-like propulsion. (paper)

  3. Biological reference materials for quality control of elemental composition analytical data

    International Nuclear Information System (INIS)

    Twelve biological-matrix, agricultural/food reference materials, Corn Stalk (Zea Mays) (NIST RM 8412), Corn Kernel (Zea Mays) (NIST RM 8413), Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415), Microcrystalline Cellulose (NIST RM 8416), Wheat Gluten (NIST RM 8418), Corn Starch (NIST RM 8432), Corn Bran (NIST RM 8433), Whole Milk Powder (NIST RM 8435), Durum Wheat Flour (NIST RM 8436), Hard Red Spring Wheat Flour (NIST RM 8437) and Soft Winter Wheat Flour (NIST RM 8438) were developed. They were characterized with respect to elemental composition via two extensive international interlaboratory characterization campaigns providing 303 reference and informational concentration values for 34 elements (Al, As, B, Ba, Br, Ca, Cd, Cl, Co, Cr, Cs, Cu, F, Fe, Hg, I, K, Mg, Mn, Mo, N, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Ti, V, W, Zn) of nutritional, toxicological, and environmental significance. These products are available to the analytical community, for quality control of elemental composition analytical data, from the Standard Reference Materials Program, National Institute of Standards and Technology, Gaithersburg, MD, USA. (author)

  4. Numerical modelling of thermal effects on biological tissue during laser-material interaction

    International Nuclear Information System (INIS)

    Among numerous methods of the modelling of laser interaction with the material equivalent of biological tissue (including macroscopic and microscopic cell interaction), the case of pathogenic prostates is chosen to be studied. The principal difference between the inorganic and tissue equivalent material is the term which includes blood flow. Thermal modelling is chosen for interaction mechanisms, i.e. bio-heat equation. It was noticed that the principal problems are in selecting appropriate numerical methods, available mathematical program packages and finding all exact parameters for performing the needed calculations. As principal parameters, among them density, heat conduction, and specific heat, there are many other parameters which depend on the chosen approach (there could be up to 20 parameters, among them coefficient of time scaling, arterial blood temperature, metabolic heat source, etc). The laser type, including its wavelength which defines the quantity of absorbed energy and dynamic of irradiation, presents the term which could be modulated for the chosen problem. In this study, the program Comsol Multiphysics 3.5 is used in the simulation of prostate exposed to Nd3+:YAG laser in its fundamental mode. (paper)

  5. Environmental routes for platinum group elements to biological materials--a review.

    Science.gov (United States)

    Ek, Kristine H; Morrison, Gregory M; Rauch, Sebastien

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust. The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  6. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  7. Near-infrared spectroscopy and hyperspectral imaging: non-destructive analysis of biological materials.

    Science.gov (United States)

    Manley, Marena

    2014-12-21

    Near-infrared (NIR) spectroscopy has come of age and is now prominent among major analytical technologies after the NIR region was discovered in 1800, revived and developed in the early 1950s and put into practice in the 1970s. Since its first use in the cereal industry, it has become the quality control method of choice for many more applications due to the advancement in instrumentation, computing power and multivariate data analysis. NIR spectroscopy is also increasingly used during basic research performed to better understand complex biological systems, e.g. by means of studying characteristic water absorption bands. The shorter NIR wavelengths (800-2500 nm), compared to those in the mid-infrared (MIR) range (2500-15 000 nm) enable increased penetration depth and subsequent non-destructive, non-invasive, chemical-free, rapid analysis possibilities for a wide range of biological materials. A disadvantage of NIR spectroscopy is its reliance on reference methods and model development using chemometrics. NIR measurements and predictions are, however, considered more reproducible than the usually more accurate and precise reference methods. The advantages of NIR spectroscopy contribute to it now often being favoured over other spectroscopic (colourimetry and MIR) and analytical methods, using chemicals and producing chemical waste, such as gas chromatography (GC) and high performance liquid chromatography (HPLC). This tutorial review intends to provide a brief overview of the basic theoretical principles and most investigated applications of NIR spectroscopy. In addition, it considers the recent development, principles and applications of NIR hyperspectral imaging. NIR hyperspectral imaging provides NIR spectral data as a set of images, each representing a narrow wavelength range or spectral band. The advantage compared to NIR spectroscopy is that, due to the additional spatial dimension provided by this technology, the images can be analysed and visualised as

  8. Tip-enhanced Raman spectroscopy and related techniques in studies of biological materials

    Science.gov (United States)

    Schmid, Thomas; Sebesta, Aleksandar; Stadler, Johannes; Opilik, Lothar; Balabin, Roman M.; Zenobi, Renato

    2010-02-01

    Biological materials can be highly heterogeneous at the nanometer scale. The investigation of nanostructures is often hampered by the low spatial resolution (e.g. spectroscopic techniques) or very little chemical information (e.g. atomic force microscopy (AFM), scanning tunneling microscopy (STM)) provided by analytical techniques. Our research focuses on combined instruments, which allow the analysis of the exactly same area of a sample by complementary techniques, such as AFM and Raman spectroscopy. Tip-enhanced Raman spectroscopy (TERS) combines the high spatial resolution of AFM or STM with the chemical information provided by Raman spectroscopy. The technique is based on enhancement effects known from surface-enhanced Raman scattering (SERS). In TERS the enhancing metallic nanostructure is brought to the sample by an AFM or STM tip. With a TERS-active tip, enhanced Raman signals can be generated from a sample area as small as 10-50 nm in diameter. AFM analysis of bacterial biofilms has demonstrated their heterogeneity at the nanometer scale, revealing a variety of nanostructures such as pili, flagella, and extracelullar polymers. TERS measurements of the biopolymers alginate and cytochrome c have yielded spectroscopic fingerprints even of such weak Raman scatterers, which in future can allow their localization in complex matrices. Furthermore, biofilms of the bacterium Halomonas meridiana were studied, which was found to be involved in the generation of the mineral dolomite. Only combined AFM-Raman analysis was able to identify the nanoglobules found in laboratory cultures of H. meridiana as dolomite nanoparticles. Our combined setups are and will be applied to the investigation of biofilms, fish spermatozoa as well as biological membranes.

  9. Spectrally tunable pixel sensors

    Science.gov (United States)

    Langfelder, G.; Buffa, C.; Longoni, A. F.; Zaraga, F.

    2013-01-01

    They are here reported the developments and experimental results of fully operating matrices of spectrally tunable pixels based on the Transverse Field Detector (TFD). Unlike several digital imaging sensors based on color filter arrays or layered junctions, the TFD has the peculiar feature of having electrically tunable spectral sensitivities. In this way the sensor color space is not fixed a priori but can be real-time adjusted, e.g. for a better adaptation to the scene content or for multispectral capture. These advantages come at the cost of an increased complexity both for the photosensitive elements and for the readout electronics. The challenges in the realization of a matrix of TFD pixels are analyzed in this work. First experimental results on an 8x8 (x 3 colors) and on a 64x64 (x 3 colors) matrix will be presented and analyzed in terms of colorimetric and noise performance, and compared to simulation predictions.

  10. The Elemental Analysis of Biological and Environmental Materials Using a 2MEV Proton Beam

    Science.gov (United States)

    Arshed, Waheed

    Available from UMI in association with The British Library. A programme has been developed to simulate the proton induced x-ray emission (PIXE) spectra and its uses have been described. The PIXE technique has been applied to the analysis of new biological reference materials which consist of IAEA human diet samples and NIST leaf samples. Homogeneity of these and two existing reference materials, IAEA soil -7 and Bowen's kale, has also been determined at the mug scale. A subsample representative of a material is ascertained by determination of sampling factors for the elements detected in the material. Proton induced gamma-ray emission (PIGE) analysis in conjunction with PIXE has been employed to investigate F and other elemental concentrations found in human teeth samples. The mean F concentration in enamel and dentine parts of teeth followed an age dependent model. Concentrations of Ca and P were found to be higher in the enamel than in the dentine. Analysis of blood and its components in the study of elemental models in sickle cell disease in Nigerians has been carried out. Comparisons revealed that Cl, Ca and Cu were at higher levels whereas K, Fe, Zn and Rb were at lower levels in the whole blood of the sicklers compared to controls. Similar results were obtained for the erythrocytes except that Br was found at higher concentration in erythrocytes of the sicklers. Higher concentrations of Cl, K, Fe and Cu were also observed in plasma of the sicklers compared to controls. PIXE and scanning electron microscopy (SEM) were used in the characterization of the Harmattan dust particulates collected at Kano and Ife. Most of the elements were found to be at higher concentrations as compared to those found in Recife (Brazil) and Toronto (Canada). The value of total suspended particulate was above the relevant national air quality standards. PIXE in conjunction with Rutherford backscattering spectrometry and instrumental neutron activation analysis was employed in the

  11. Tunable Nanodielectric Composites

    OpenAIRE

    Daniel Qi Tan; Yang Cao; Xiaomei Fang; Patricia C. Irwin

    2014-01-01

    This paper presents a progress update with the development of nanodielectric composites with electric field tunability for various high energy, high power electrical applications. It is demonstrated that nonlinear electrical/dielectric properties can be achieved via the nanostructure and interface engineering. A high level summary was given on the progress achieved as well as challenges remaining in nanodielectric engineering towards high energy density capacitors for energy storage and conve...

  12. Chemical modifiers in arsenic determination in biological materials by tungsten coil electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Bruhn, C.G.; Huerta, V.N.; Neira, J.Y. [Departamento de Analisis Instrumental, Facultad de Farmacia, Universidad de Concepcion, P.O. Box 237, Concepcion (Chile)

    2004-01-01

    Palladium, iridium, and rhodium are evaluated as possible chemical modifiers in the determination of As in digest solutions of biological materials (human hair and clam) by tungsten coil electrothermal atomic absorption spectrophotometry (TCA-AAS). The modifier in solution was applied onto the coil and thermally pre-reduced; the pre-reduction conditions, the amount of modifier, and the thermal program were optimized. Palladium was not satisfactory, whereas Ir and Rh were effective modifiers and rendered better relative sensitivity for As by a factor of 1.4 and 1.9, respectively compared to the case without modifier. Upon optimization of thermal conditions for As in pre-reduced Ir (2.0 {mu}g) and Rh (2.0 {mu}g) modifiers and in the digest solutions of the study matrices, Rh (2.0 {mu}g) was more effective modifier and was selected as such. The mean within-day repeatability was 2.8% in consecutive measurements (25-100 {mu}g L{sup -1}) (3 cycles, each of n=6) and confirmed good short-term stability of the absorbance measurements. The mean reproducibility was 4.4% (n=20 in a 3-day period) and the detection limit (3{sigma}{sub blank}/slope) was 29 pg (n=15). The useful coil lifetime in Rh modifier was extended to 300-400 firings. Validation was by determination of As in the certified reference material (CRM) of ''Oyster tissue'' solution with a percentage relative error (E{sub rel}%) of 2% and percentage relative standard deviation (RSD%) of 3% (n=4), and by analytical recovery of As spiked in CRM of human hair [94{+-}8% (n=4)]. The methodology is simple, fast (sample readout frequency 21 h{sup -1}), reliable, of low cost, and was applied to the determination of As in hair samples of exposed and unexposed workers. (orig.)

  13. 3-d Brownian dynamics simulations of the smallest units of an active biological material

    Science.gov (United States)

    Luettmer-Strathmann, Jutta; Paudyal, Nabina; Adeli Koudehi, Maral

    Motor proteins generate stress in a cytoskeletal network by walking on one strand of the network while being attached to another one. A protein walker in contact with two elements of the network may be considered the smallest unit of an active biological material. In vitro experiments, mathematical modeling and computer simulations have provided important insights into active matter on large and on very small length and time scales. However, it is still difficult to model the effects of local environment and interactions at intermediate scales. Recently, we developed a coarse-grained, three-dimensional model for a motor protein transporting cargo by walking on a substrate. In this work, we simulate a tethered motor protein pulling a substrate with elastic response. As the walker progresses, the retarding force due to the substrate tension increases until contact fails. We present simulation results for the effect of motor-protein activity on the tension in the substrate and the effect of the retarding force on the processivity of the molecular motor.

  14. Sample sizing of biological materials analyzed by energy dispersion X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Jose D.S.; Franca, Elvis J.; Magalhaes, Marcelo R.L.; Almeida, Marcio E.S.; Hazin, Clovis A., E-mail: dan-paiva@hotmail.com, E-mail: ejfranca@cnen.gov.br, E-mail: marcelo_rlm@hotmail.com, E-mail: maensoal@yahoo.com.br, E-mail: chazin@cnen.gov.b [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2013-07-01

    Analytical portions used in chemical analyses are usually less than 1g. Errors resulting from the sampling are barely evaluated, since this type of study is a time-consuming procedure, with high costs for the chemical analysis of large number of samples. The energy dispersion X-ray fluorescence - EDXRF is a non-destructive and fast analytical technique with the possibility of determining several chemical elements. Therefore, the aim of this study was to provide information on the minimum analytical portion for quantification of chemical elements in biological matrices using EDXRF. Three species were sampled in mangroves from the Pernambuco, Brazil. Tree leaves were washed with distilled water, oven-dried at 60 deg C and milled until 0.5 mm particle size. Ten test-portions of approximately 500 mg for each species were transferred to vials sealed with polypropylene film. The quality of the analytical procedure was evaluated from the reference materials IAEA V10 Hay Powder, SRM 2976 Apple Leaves. After energy calibration, all samples were analyzed under vacuum for 100 seconds for each group of chemical elements. The voltage used was 15 kV and 50 kV for chemical elements of atomic number lower than 22 and the others, respectively. For the best analytical conditions, EDXRF was capable of estimating the sample size uncertainty for further determination of chemical elements in leaves. (author)

  15. Lightweight Tunable Infrared Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Michigan Aerospace Corporation has developed spaceflight qualified compact tunable Fabry-Perot interferometers for a number of applications, from ranging direct...

  16. Collaborative Research. Fundamental Science of Low Temperature Plasma-Biological Material Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David Barry [Univ. California, Berkeley, CA (United States); Oehrlein, Gottlieb [Univ. of Maryland, College Park, MD (United States)

    2014-09-01

    atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.

  17. Micro-processing of polymers and biological materials using high repetition rate femtosecond laser pulses

    Science.gov (United States)

    Ding, Li

    has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.

  18. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States)

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage. To help address this need, we developed a new, bio-inspired catalytic synthesis method that is low-cost, operating at low temperature and without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications. We first combined molecular genetics and materials science to elucidate the molecular mechanism by which a novel family of proteins that we discovered. We showed that these “silicatein” proteins and their biomimetic analogs can be used to simultaneously catalyze and structurally direct the synthesis, at low temperature, of silica, silicone polymers, and a wide variety of crystalline metal oxide semiconductors – materials with which biology had never built structures before. We successfully translated the biomolecular mechanism of synthesis that we discovered to a robust new methodology, without the use of organic molecules, capable of producing nanostructurally controlled metal oxide and related semiconductors for improved efficiency of energy generation, transduction and storage. The method we developed uses vapor diffusion of a catalyst through a gas-liquid interface to provide vectorially controlled catalysis, at low temperature, of synthesis from molecular precursors that require hydrolysis. The result is a novel low-temperature and environmentally benign method for the nanofabrication of a wide range of metal oxide, metal hydroxide and metal phosphate semiconductors, in unique and potentially useful crystal morphologies - some of which could never have been made before - with significantly enhanced electronic performance. The novelty

  19. Survey of currently available reference materials for use in connection with the determination of trace elements in biological and environmental materials

    International Nuclear Information System (INIS)

    This report focuses on analytical reference materials which have been developed for use in connection with the determination of toxic and essential trace elements in biomedical and health-related environmental samples. Data are reported on 60 biological and 40 environmental (non-biological) reference materials from 11 suppliers. Certified concentration values (or their equivalents) and non-certified concentration values (or information values) are presented in various tables which are intended to help the user select a reference material that matches as closely as possible (i.e. with respect to matrix type and concentration of the element of interest) the ''real'' samples that are to be analysed. These tables have been generated from a database characterized by the following parameters: total number of reference materials=100; total number of elements recorded=69; total number of concentration values recorded=1771. Also included in the report is information (where available) on the cost of each material, the unit weight or volume supplied, and the minimum weight of material recommended for analysis. (author)

  20. Indium arsenide as a material for biological applications: Assessment of surface modifications, toxicity, and biocompatibility

    Science.gov (United States)

    Jewett, Scott A.

    III-V semiconductors such as InAs have recently been employed in a variety of applications where the electronic and optical characteristics of traditional, silicon-based materials are inadequate. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it very attractive for high performance transistors, optical applications, and chemical sensing. However, InAs forms an unstable surface oxide layer in ambient conditions, which can corrode over time and leach toxic indium and arsenic components. Current research has gone into making InAs more attractive for biological applications through passivation of the surface by adlayer adsorption. In particular, wet-chemical methods are current routes of exploration due to their simplicity, low cost, and flexibility in the type of passivating molecule. This dissertation focuses on surface modifications of InAs using wet-chemical methods in order to further its use in biological applications. First, the adsorption of collagen binding peptides and mixed peptide/thiol adlayers onto InAs was assessed. X-ray photoelectron spectroscopy (XPS) along with atomic force microscopy (AFM) data suggested that the peptides successfully adsorbed onto InAs, but were only able to block oxide regrowth to a relatively low extent. This low passivation ability is due to the lack of covalent bonds of the peptide to InAs, which are necessary to effectively block oxide regrowth. The addition of a thiol, in the form of mixed peptide/thiol adlayers greatly enhanced passivation of InAs while maintaining peptide presence on the surface. Thiols form tight, covalent bonds with InAs, which prevents oxide regrowth. The presence of the collagen-binding peptide on the surface opens the door to subsequent modification with collagen or polyelectrolyte-based adlayers. Next, the stability and toxicity of modified InAs substrates were determined using inductively coupled plasma mass spectrometry (ICP-MS) and zebrafish

  1. Optically pumped 1550nm wavelength tunable MEMS VCSEL

    DEFF Research Database (Denmark)

    Sahoo, Hitesh Kumar; Ansbæk, Thor; Ottaviano, Luisa;

    2016-01-01

    The paper presents the design and fabrication of an optically pumped 1550nm tunable MEMS VCSEL with anenclosed MEMS. The MEMS is defined in SOI and the active material, an InP wafer with quantum wells arebonded to the SOI and the last mirror is made from the deposition of dielectric materials...

  2. Enhancement in biological response of Ag-nano composite polymer membranes using plasma treatment for fabrication of efficient bio materials

    Science.gov (United States)

    Agrawal, Narendra Kumar; Sharma, Tamanna Kumari; Chauhan, Manish; Agarwal, Ravi; Vijay, Y. K.; Swami, K. C.

    2016-05-01

    Biomaterials are nonviable material used in medical devices, intended to interact with biological systems, which are becoming necessary for the development of artificial material for biological systems such as artificial skin diaphragm, valves for heart and kidney, lenses for eye etc. Polymers having novel properties like antibacterial, antimicrobial, high adhesion, blood compatibility and wettability are most suitable for synthesis of biomaterial, but all of these properties does not exist in any natural or artificial polymeric material. Nano particles and plasma treatment can offer these properties to the polymers. Hence a new nano-biomaterial has been developed by modifying the surface and chemical properties of Ag nanocomposite polymer membranes (NCPM) by Argon ion plasma treatment. These membranes were characterized using different techniques for surface and chemical modifications occurred. Bacterial adhesion and wettability were also tested for these membranes, to show direct use of this new class of nano-biomaterial for biomedical applications.

  3. Removal of Exogenous Materials from the Outer Portion of Frozen Cores to Investigate the Ancient Biological Communities Harbored Inside.

    Science.gov (United States)

    Barbato, Robyn A; Garcia-Reyero, Natàlia; Foley, Karen; Jones, Robert; Courville, Zoe; Douglas, Thomas; Perkins, Edward; Reynolds, Charles M

    2016-01-01

    The cryosphere offers access to preserved organisms that persisted under past environmental conditions. In fact, these frozen materials could reflect conditions over vast time periods and investigation of biological materials harbored inside could provide insight of ancient environments. To appropriately analyze these ecosystems and extract meaningful biological information from frozen soils and ice, proper collection and processing of the frozen samples is necessary. This is especially critical for microbial and DNA analyses since the communities present may be so uniquely different from modern ones. Here, a protocol is presented to successfully collect and decontaminate frozen cores. Both the absence of the colonies used to dope the outer surface and exogenous DNA suggest that we successfully decontaminated the frozen cores and that the microorganisms detected were from the material, rather than contamination from drilling or processing the cores. PMID:27403572

  4. Updated Lagrangian finite element formulations of various biological soft tissue non-linear material models: a comprehensive procedure and review.

    Science.gov (United States)

    Townsend, Molly T; Sarigul-Klijn, Nesrin

    2016-01-01

    Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications. PMID:26611112

  5. Comprehensive investigation of optical and electronic properties of tunable InAs QDs optically active at O-band telecommunication window with (In)GaAs surrounding material

    International Nuclear Information System (INIS)

    In this paper, we report on the impact of InAs quantum dots' (QDs) position within InGaAs strain reducing layer on their structural and optical properties. Morphological investigation revealed that the QD' size and density are strongly dependent on the InGaAs underlying layer's thickness. Additionally, comprehensive spectroscopic study by room temperature photoreflectance spectroscopy (PR) and temperature dependent photoluminescence (PL) showed that indium segregation and strain driven alloy phase separation alter both the QDs and their surrounding materials. Embedding or covering the InAs QDs by InGaAs has been found to improve their overall properties including an extended emission wavelength up to 1.3 μm. However a pronounced degradation has been observed when growing them on the top of the strain reducing layer, resulting in a broadened size distribution and atypical temperature dependent emission energy and linewidth. -- Highlights: • InAs quantum dots on different Ga(In)As surrounding material were grown by molecular beam epitaxy. • Optical investigation was used to study the impact of InAs QDs' position within InGaAs strain reducing layer with lower indium concentration. • Atomic force microscope images have been employed for the analyses of the optical results. • Indium segregation and strain driven alloy phase separation have been observed to affect both the QDs and their surrounding material. • QDs' emission wavelengths in the International Telecommunication Union O-band at room temperature have been obtained

  6. Tunable X-ray source

    Science.gov (United States)

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  7. Tunable multiwalled nanotube resonator

    Science.gov (United States)

    Zettl, Alex K.; Jensen, Kenneth J.; Girit, Caglar; Mickelson, William E.; Grossman, Jeffrey C.

    2011-03-29

    A tunable nanoscale resonator has potential applications in precise mass, force, position, and frequency measurement. One embodiment of this device consists of a specially prepared multiwalled carbon nanotube (MWNT) suspended between a metal electrode and a mobile, piezoelectrically controlled contact. By harnessing a unique telescoping ability of MWNTs, one may controllably slide an inner nanotube core from its outer nanotube casing, effectively changing its length and thereby changing the tuning of its resonance frequency. Resonant energy transfer may be used with a nanoresonator to detect molecules at a specific target oscillation frequency, without the use of a chemical label, to provide label-free chemical species detection.

  8. Tunable nonlinear graphene metasurfaces

    CERN Document Server

    Smirnova, Daria A; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We introduce the concept of nonlinear graphene metasurfaces employing the controllable interaction between a graphene layer and a planar metamaterial. Such hybrid metasurfaces support two types of subradiant resonant modes, asymmetric modes of structured metamaterial elements ("metamolecules") and graphene plasmons exhibiting strong mutual coupling and avoided dispersion crossing. High tunability of graphene plasmons facilitates strong interaction between the subradiant modes, modifying the spectral position and lifetime of the associated Fano resonances. We demonstrate that strong resonant interaction, combined with the subwavelength localization of plasmons, leads to the enhanced nonlinear response and high efficiency of the second-harmonic generation.

  9. Quantification of ultraviolet photon emission from interaction of charged particles in materials of interest in radiation biology research

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Syed Bilal, E-mail: ahmadsb@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Department of Physics and Applied Mathematics, Pakistan Institute of Engineering and Applied Sciences, Islamabad (Pakistan); McNeill, Fiona E., E-mail: fmcneill@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Prestwich, William V., E-mail: prestwic@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Byun, Soo Hyun, E-mail: soohyun@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Seymour, Colin, E-mail: seymouc@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada); Mothersill, Carmel E., E-mail: mothers@mcmaster.ca [Department of Medical Physics and Applied Radiation Sciences, University of McMaster, Hamilton, ON (Canada)

    2014-01-15

    In radiation biology experiments often cells are irradiated using charged particles with the intention that only a specified number of cells are hit by the primary ion track. However, in doing so several other materials such as the cell container and the growth media etc. are also irradiated, and UV radiation emitted from these materials can potentially interact with the cells. We have hypothesized that some “bystander effects” that are thought to be chemically mediated, may be, in fact, a physical effect, where UV is interacting with non-targeted cells. Based upon our hypothesis we quantified the emission of UV from Polypropylene, Mylar, Teflon, and Cellophane which are all commonly used materials in radiation biology experiments. Additionally we measured the NIST standard materials of Oyster tissue and Citrus leaves as these powdered materials are derived from living cells. Protons accelerated up to an energy of 2.2 MeV, in a 3 MV Van de Graff accelerator, were used for irradiation. Beam current was kept to 10 nA, which corresponds to a proton fluence rate of 2.7 × 10{sup 10} protons mm{sup −2} s{sup −1}. All the materials were found to emit light at UV frequencies and intensities that were significant enough to conduct a further investigation for their biological consequences. Mylar and polypropylene are commonly used in radiation induced bystander effect studies and are considered to be non-fluorescent. However our study showed that this is not the case. Significant luminescence observed from the irradiated NIST standard reference materials for Oyster tissue and Citrus leaves verified that the luminescence emission is not restricted only to the polymeric materials that are used to contain cells. It can also occur from ion interactions within the cells as well.

  10. FULLERENE POLYMERS WITH TUNABLE OPTICAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    PENG Han; LEUNG Shukmei; TANG Benzhong

    1997-01-01

    Light transmission spectra of THF solutions of poly (C60-co-methyl methacrylate)s and poly(C60-co-styrene)s continuously red-shift with increasing concentration. Formation of fullerene nanoclusters may be responsible for the unusual spectral shift with concentration.It has long been scientists' dream to "tune" material's properties by simple means, and the C60-containing polymers represent such a group of novel materials whose optical properties are predictably and reversibly tunable by a simple change in concentration.

  11. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we c

  12. Radioprotection, biological effects of the radiations and security in the handling of radioactive material

    CERN Document Server

    Teran, M

    2000-01-01

    The development of the philosophy of the radioprotection is dependent on the understanding of the effects of the radiation in the man. Behind the fact that the radiation is able to produce biological damages there are certain factors with regard to the biological effects of the radiations that determine the boarding of the radioprotection topics.

  13. Tunable soft structure in charged fluids confined by dielectric interfaces.

    Science.gov (United States)

    Zwanikken, Jos W; Olvera de la Cruz, Monica

    2013-04-01

    Fluids of charged particles act as the supporting medium for chemical reactions and physical, dynamical, and biological processes. The local structure in an electrolytic background is deformed by micro- and nanoscopic polarizable objects. Vice versa, the forces between the objects are regulated by the cohesive properties of the background. We study here the range and strength of these forces and the microscopic origin from which they emerge. We find the forces to be sensitively dependent on the material properties of the charged fluid and the immersed solutes. The induced interactions can be varied over decades, offering high tunability and aided by accurate theory, control in experiments and applications. To distinguish correlational effects from simple ionic screening, we describe electrolyte-induced forces between neutral objects. The interplay of thermal motion, short-range repulsions, and electrostatic forces is responsible for a soft structure in the fluid. This structure changes near polarizable interfaces and causes diverse attractions between confining walls that seem well-exploited by microbiological systems. For parameters that correspond to monovalent electrolytes in biologically and technologically relevant aqueous environments, we find induced forces between nanoscopic areas of the order of piconewtons over a few nanometers. PMID:23487798

  14. EDITORIAL: Nanotechnology at the interface of cell biology, materials science and medicine Nanotechnology at the interface of cell biology, materials science and medicine

    Science.gov (United States)

    Engel, Andreas; Miles, Mervyn

    2008-09-01

    The atomic force microscope (AFM) and related scanning probe microscopes have become resourceful tools to study cells, supramolecular assemblies and single biomolecules, because they allow investigations of such structures in native environments. Quantitative information has been gathered about the surface structure of membrane proteins to lateral and vertical resolutions of 0.5 nm and 0.1 nm, respectively, about the forces that keep protein-protein and protein-nucleic acid assemblies together as well as single proteins in their native conformation, and about the nanomechanical properties of cells in health and disease. Such progress has been achieved mainly because of constant development of AFM instrumentation and sample preparation methods. This special issue of Nanotechnology presents papers from leading laboratories in the field of nanobiology, covering a wide range of topics in the form of original and novel scientific contributions. It addresses achievements in instrumentation, sample preparation, automation and in biological applications. These papers document the creativity and persistence of researchers pursuing the goal to unravel the structure and dynamics of cells, supramolecuar structures and single biomolecules at work. Improved cantilever sensors, novel optical probes, and quantitative data on supports for electrochemical experiments open new avenues for characterizing biological nanomachines down to the single molecule. Comparative measurements of healthy and metastatic cells promise new methods for early detection of tumors, and possible assessments of drug efficacy. High-speed AFMs document possibilities to monitor crystal growth and to observe large structures at video rate. A wealth of information on amyloid-type fibers as well as on membrane proteins has been gathered by single molecule force spectroscopy—a technology now being automated for large-scale data collection. With the progress of basic research and a strong industry supporting

  15. Optimal design of tunable phononic bandgap plates under equibiaxial stretch

    Science.gov (United States)

    Hedayatrasa, Saeid; Abhary, Kazem; Uddin, M. S.; Guest, James K.

    2016-05-01

    Design and application of phononic crystal (PhCr) acoustic metamaterials has been a topic with tremendous growth of interest in the last decade due to their promising capabilities to manipulate acoustic and elastodynamic waves. Phononic controllability of waves through a particular PhCr is limited only to the spectrums located within its fixed bandgap frequency. Hence the ability to tune a PhCr is desired to add functionality over its variable bandgap frequency or for switchability. Deformation induced bandgap tunability of elastomeric PhCr solids and plates with prescribed topology have been studied by other researchers. Principally the internal stress state and distorted geometry of a deformed phononic crystal plate (PhP) changes its effective stiffness and leads to deformation induced tunability of resultant modal band structure. Thus the microstructural topology of a PhP can be altered so that specific tunability features are met through prescribed deformation. In the present study novel tunable PhPs of this kind with optimized bandgap efficiency-tunability of guided waves are computationally explored and evaluated. Low loss transmission of guided waves throughout thin walled structures makes them ideal for fabrication of low loss ultrasound devices and structural health monitoring purposes. Various tunability targets are defined to enhance or degrade complete bandgaps of plate waves through macroscopic tensile deformation. Elastomeric hyperelastic material is considered which enables recoverable micromechanical deformation under tuning finite stretch. Phononic tunability through stable deformation of phononic lattice is specifically required and so any topology showing buckling instability under assumed deformation is disregarded. Nondominated sorting genetic algorithm (GA) NSGA-II is adopted for evolutionary multiobjective topology optimization of hypothesized tunable PhP with square symmetric unit-cell and relevant topologies are analyzed through finite

  16. Enhanced surface functionality via plasma modification and plasma deposition techniques to create more biologically relevant materials

    Science.gov (United States)

    Shearer, Jeffrey C.

    Functionalizing nanoparticles and other unusually shaped substrates to create more biologically relevant materials has become central to a wide range of research programs. One of the primary challenges in this field is creating highly functionalized surfaces without modifying the underlying bulk material. Traditional wet chemistry techniques utilize thin film depositions to functionalize nanomaterials with oxygen and nitrogen containing functional groups, such as --OH and --NHx. These functional groups can serve to create surfaces that are amenable to cell adhesion or can act as reactive groups for further attachment of larger structures, such as macromolecules or antiviral agents. Additional layers, such as SiO2, are often added between the nanomaterial and the functionalized coating to act as a barrier films, adhesion layers, and to increase overall hydrophilicity. However, some wet chemistry techniques can damage the bulk material during processing. This dissertation examines the use of plasma processing as an alternative method for producing these highly functionalized surfaces on nanoparticles and polymeric scaffolds through the use of plasma modification and plasma enhanced chemical vapor deposition techniques. Specifically, this dissertation will focus on (1) plasma deposition of SiO2 barrier films on nanoparticle substrates; (2) surface functionalization of amine and alcohol groups through (a) plasma co-polymerization and (b) plasma modification; and (3) the design and construction of plasma hardware to facilitate plasma processing of nanoparticles and polymeric scaffolds. The body of work presented herein first examines the fabrication of composite nanoparticles by plasma processing. SiOxC y and hexylamine films were coated onto TiO2 nanoparticles to demonstrate enhanced water dispersion properties. Continuous wave and pulsed allyl alcohol plasmas were used to produce highly functionalized Fe2 O3 supported nanoparticles. Specifically, film composition was

  17. Tunable Topological Phononic Crystals

    KAUST Repository

    Chen, Ze-Guo

    2016-05-27

    Topological insulators first observed in electronic systems have inspired many analogues in photonic and phononic crystals in which remarkable one-way propagation edge states are supported by topologically nontrivial band gaps. Such band gaps can be achieved by breaking the time-reversal symmetry to lift the degeneracy associated with Dirac cones at the corners of the Brillouin zone. Here, we report on our construction of a phononic crystal exhibiting a Dirac-like cone in the Brillouin zone center. We demonstrate that simultaneously breaking the time-reversal symmetry and altering the geometric size of the unit cell result in a topological transition that we verify by the Chern number calculation and edge-mode analysis. We develop a complete model based on the tight binding to uncover the physical mechanisms of the topological transition. Both the model and numerical simulations show that the topology of the band gap is tunable by varying both the velocity field and the geometric size; such tunability may dramatically enrich the design and use of acoustic topological insulators.

  18. A common basis for facilitated legitimate exchange of biological materials proposed by the European Culture Collections' Organisation

    Directory of Open Access Journals (Sweden)

    Dagmar Fritze

    2009-12-01

    Full Text Available Being charged with the task of accessioning and supplying of living microbiological material, microbial culture collections are institutions that play a central role between the interests of a variety of user communities. On the one side are the providers of living microbiological material, such as individual scientists, institutions and countries of origin and on the other side are the various kinds of recipients/users of cultures of microorganisms from academia and industry. Thus, providing access to high quality biological material and scientific services while at the same time observing donor countries' rights, intellectual property rights, biosafety and biosecurity aspects poses demanding challenges. E.g. donor countries rights relate to Article 15 of the Convention on Biological Diversity: "Contracting parties …. recognize the sovereign rights of states over their natural resources …. shall facilitate access to resources … and not impose restrictions that run counter to the aims of the Convention. Access to natural resources shall be by mutually agreed terms and subject to prior informed consent ..." The use of a proposed standard contract by culture collections is discussed as a way of contractually safeguarding the existing research commons, while observing the new rights established in the Convention on Biological Diversity as well as other existing and new legislation impacting on the accessibility of living microbial material.

  19. Separation Scheme for the Determination of Nine Elements in Biological Material

    International Nuclear Information System (INIS)

    A separation scheme is presented for the determination of nine trace elements in biological samples that give rise to long-lived gamma-emitting isotopes by neutron irradiation, namely silver, molybdenum, mercury, gold, chromium, cobalt, selenium, iron and zinc. The organic material is destroyed by combustion with oxygen in a flask according to Schöniger in the presence of 100 μg of carrier of each element. The ignition is electrical and provides an easy and safe method for burning the samples and avoiding losses of volatile elements. The combustion products are collected in HNO3-H2O2 - solution. Carrier yields of at least 98% were obtained in tracer experiments, except for gold and silver. At high temperatures these elements apparently form an Au-Pt and Ag-Pt alloy with the platinum combustion catalyst. Boiling the platinum sample holder with a few millilitres of aqua regia results in a quantitative recovery of both elements. The HNO3-H2O2 solution is evaporated to dryness and re dissolved in 2N HF. A number of trace elements are adsorbed on a Dowex 1-X8 column and eluted successively with 9N HCl, 1.2N HCl, 8N HNO3 + 4N NH4NO3 and 10% thiourea. A quantitative séparation is thus obtained of Ag, Mo, Hg and Au. Cr, Co, Se, Fe and Zn are not absorbed in 2N HF. This eluate is adsorbed on a second Dowex 1-X8 column in ION HCl and eluated successively with ION HCl, 3N HCl, 0.4N HCl and H2O. Fractions of Cr, Co + Se, Fe and Zn are obtained. A quantitative separation of Co from Se can be achieved on Dowex 50W-X4 in HCl. The volumes in which the individual elements are quantitatively collected are smaller than 30 ml. Consequently a relatively high counting efficiency can be achieved in a 25-ml well-type crystal. Quantitative recovery for all elements is obtained except for mercury and gold. Mercury losses occur on evaporating the HNO3-H2O2 mixture. As a suitable method for the determination of the mercury yield, dithizone titration was chosen. The yield of gold is

  20. Generation of a tunable environment for electrical oscillator systems.

    Science.gov (United States)

    León-Montiel, R de J; Svozilík, J; Torres, Juan P

    2014-07-01

    Many physical, chemical, and biological systems can be modeled by means of random-frequency harmonic oscillator systems. Even though the noise-free evolution of harmonic oscillator systems can be easily implemented, the way to experimentally introduce, and control, noise effects due to a surrounding environment remains a subject of lively interest. Here, we experimentally demonstrate a setup that provides a unique tool to generate a fully tunable environment for classical electrical oscillator systems. We illustrate the operation of the setup by implementing the case of a damped random-frequency harmonic oscillator. The high degree of tunability and control of our scheme is demonstrated by gradually modifying the statistics of the oscillator's frequency fluctuations. This tunable system can readily be used to experimentally study interesting noise effects, such as noise-induced transitions in systems driven by multiplicative noise, and noise-induced transport, a phenomenon that takes place in quantum and classical coupled oscillator networks.

  1. Novel synthesis of covalently linked silicon quantum dot–polystyrene hybrid materials: Silicon quantum dot–polystyrene polymers of tunable refractive index

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin-Kyu; Dung, Mai Xuan; Jeong, Hyun-Dam, E-mail: hdjeong@chonnam.ac.kr

    2014-11-14

    We present a new material design concept, silicon quantum dot (Si QD) polymers, for which surface-functionalized Si QDs can be regarded as a large monomer in the polymers. As a prototypical example, vinyl-functionalized Si QDs, i.e., divinylbenzene-capped Si QDs (DVB-Si QDs) synthesized by adopting divinylbenzene (DVB) capping molecule to the hydride-terminated Si QD (H-Si QD) via Pt-catalyzed hydrosilylation was introduced and polymerized with a styrene monomer to yield Si QD–polystyrene (Si QD–PS) polymers. To demonstrate controllability of the content of Si QDs in the polymers as in conventional polymers, three Si QD content varied Si QD–PS polymers were systematically prepared, named as Si QD–PS-A, Si QD–PS-B, and Si QD–PS-C. It has been demonstrated that the content of the Si QDs in the Si QD–PS polymers was well controlled by the amount of the DVB-Si QD used, as found to be 3.8 wt% (Si QD–PS-A), 10.0 wt% (Si QD–PS-B), 20.0 wt% (Si QD–PS-A), and 37.4 wt% (DVB-Si QD), which was deduced from TGA results. Thin films of the Si QD–PS polymers and the freestanding DVB-Si QDs were successfully fabricated by a spin-coating method and it was found that the refractive index of the thin films dried at 40 °C was linearly increased as the content of the Si QD in the polymers was increased from 1.586 (0 wt%), to 1.590 (3.8 wt%), to 1.592 (10.0 wt%), to 1.592 (20.0 wt%), and to 1.614 (37.4 wt%). - Highlights: • A new material design concept, Si QD polymer, is presented. • Freestanding vinyl-functionalized Si QD was synthesized as a monomer for polymer. • Si QD–PS polymers were synthesized by polymerization of styrene with vinyl-Si QD. • Concentration of Si QD in the polymer was well controlled by amount of Si QD used. • Refractive index of polymer thin films linearly increased with concentration of Si QD.

  2. BIOFILM FORMATION ON THE SURFACE OF MATERIALS AND MEDICAL PRODUCTS BY NOSOCOMIAL STRAINS ISOLATED FROM THE BIOLOGICAL SUBSTRATES OF PATIENTS

    Directory of Open Access Journals (Sweden)

    E. A. Nemets

    2013-01-01

    Full Text Available Aim. To study the ability of hospital-associated strains isolated from the biological substrates of patients oper- ated on under extracorporeal circulation, to form biofilms on the surface of medical materials and products. Materials and methods. The formation of biofilms of strains of Staphylococcus aureus, Serratia liquefaciens, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. isolated from the biological substrates of patients operated on under extracorporeal circulation, on different surfaces (politetraftorotilen, medical poly- ethylene, Polyoxybutirate-to-valerate, silicone, polyvinyl chloride, was studied by a modified method for the surface of the medical materials and products. Results. The influence of the material nature, as well as hydrophi- lization of the surface, on the ability of hospital-associated strains, isolated from the biological substrates of pa- tients operated on under extracorporeal circulation, to form biofilms is studied. It is shown that that certain strains exhibit an increased tendency to biofilm formation on more hydrophobic surfaces, e. g., Acinetobacter spp. At the same time the activity of Staphylococcus aureus on silicon surface (hydrophobic surface is minimal. Other strains almost equally form biofilms on hydrophilic and hydrophobic surfaces e.g. Serratia liquefaciens. It was also shown that the surface hydrophilization of PEG to 50% for all the studied strains leads to dramatic reduc- tion of biofilm formation. Conclusion. The tendency to form biofilms of a particular hospital-associated strain is individual and depends on the nature of the medical material and physical-chemical characteristics of its surface. Hydrophilization of the surface of the medical material is accompanied by a lowered risk of biofilm formation. 

  3. The Review of Nuclear Microscopy Techniques: An Approach for Nondestructive Trace Elemental Analysis and Mapping of Biological Materials

    Directory of Open Access Journals (Sweden)

    Stephen Juma Mulware

    2015-01-01

    Full Text Available The properties of many biological materials often depend on the spatial distribution and concentration of the trace elements present in a matrix. Scientists have over the years tried various techniques including classical physical and chemical analyzing techniques each with relative level of accuracy. However, with the development of spatially sensitive submicron beams, the nuclear microprobe techniques using focused proton beams for the elemental analysis of biological materials have yielded significant success. In this paper, the basic principles of the commonly used microprobe techniques of STIM, RBS, and PIXE for trace elemental analysis are discussed. The details for sample preparation, the detection, and data collection and analysis are discussed. Finally, an application of the techniques to analysis of corn roots for elemental distribution and concentration is presented.

  4. Report on intercomparison run SNR-1 for the determination of trace elements in synthetic resin simulating biological material

    International Nuclear Information System (INIS)

    A synthetic resin, SNR-1, simulating biological material and containing homogeneously distributed trace amounts of As, Au, Br, Cr, Cs, Hg, La, Mn, Rb, Sb, Se and Sr, was made available to 16 laboratories in the form of 50 mg - pellets. Various methods for the quantitative determination of these elements (and, in some cases, also of impurities) including neutron activation analysis, and neutron activation analysis with radio-chemical analysis were used in an interlaboratory comparative study. The results are tabulated

  5. Effect of weight fraction of different constituent elements on the total mass attenuation coefficients of biological materials

    Indian Academy of Sciences (India)

    Karamjit Singh; Charanjeet Singh; Parjit S Singh; Gurmel S Mudahar

    2002-07-01

    The mass attenuation coefficients, m, of biological materials have been studied as a function of weight fraction of constituent elements (hydrogen, carbon, oxygen and nitrogen). A considerable change in m is seen only in low energy region whereas no change is observed with the increasing percentage of constituent elements in high energy region up to 10 MeV. The results have been presented in graphical form.

  6. Determination of selenium in biological materials by flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS)

    OpenAIRE

    Galgan, Vera

    2007-01-01

    The selenium (Se) poor environment in the Scandinavian countries focused the interest on the development of an analytical method with high capacity, sensitivity, low limit of detection, including automated wet digestion, automated analysis and computer aided calculation. To facilitate the choice of an appropriate analytical method, procedures for determination in biological materials were discussed. The most frequently used sample-preparation procedures and various analytical techniques were ...

  7. Mid-infrared tunable metamaterials

    Science.gov (United States)

    Brener, Igal; Miao, Xiaoyu; Shaner, Eric A; Passmore, Brandon Scott; Jun, Young Chul

    2015-04-28

    A mid-infrared tunable metamaterial comprises an array of resonators on a semiconductor substrate having a large dependence of dielectric function on carrier concentration and a semiconductor plasma resonance that lies below the operating range, such as indium antimonide. Voltage biasing of the substrate generates a resonance shift in the metamaterial response that is tunable over a broad operating range. The mid-infrared tunable metamaterials have the potential to become the building blocks of chip based active optical devices in mid-infrared ranges, which can be used for many applications, such as thermal imaging, remote sensing, and environmental monitoring.

  8. Development of New Didactic Materials for Teaching Science and Biology: The Importance of the New Education Practices

    Directory of Open Access Journals (Sweden)

    Camila O. Arent

    2009-01-01

    Full Text Available Problem statement: The creativity of teachers in the planning process of their classes for teaching science and biology may be an instigator to promote and stimulate learning. The science should be something that awakens curiosity in students to make learning pleasurable and increase their interest. The aim this research was to develop didactic materials for to help the teaching-learning process in the content of science and biology. Especially, those content about systematic that can not be very exciting and bring some difficulty for the involvement of students. Approach: Inspired in the Atlantic forest, which extends along the Brazilian coast and offers a diverse ecosystem, were created some materials that enable the interaction of teacher with students, which were: "memory of the Atlantic forest", "unmasking the Atlantic forest” and a “set of transparencies”. The first is composed of 25 cards each containing an image of a species of fauna or flora of the Atlantic forest, popular and scientific name. Complete the material, 25 letters with specific characteristics of each species. The second is a panel with the illustration of the incompleteness of the Atlantic forest ecosystem, featuring 10 pictures of animals that are hidden between the two sides of the panel and asked for 10 letters, which were answered to complete the ecosystem. The third is a set of transparencies containing information on the Atlantic, maps and data on the fauna and flora. The latter should be used to perform a preliminary discussion on the biodiversity of the Atlantic. Results: Results showed that these materials facilitate learning, as well as linking images of known species with their respective characteristics, makes the class interesting by providing the effective interaction of the group. Conclusion/Recommendation: These materials were used and well accepted by students of the course of biological science in the

  9. Photonic MEMS tunable laser sources

    Institute of Scientific and Technical Information of China (English)

    LIU Ai-qun

    2009-01-01

    This article covers laser configurations, design and experiments of photonic microelectromechanical systems (MEMS) tunable laser sources. Three different types of MEMS tunable lasers such as MEMS coupled-cavity lasers, injection-locked laser systems and dual-wavelength tunable lasers are demonstrated as examples of natural synergy of MEMS with photonics. The expansion and penetration of the MEMS technology to silicon optoelectronic creates on-chip optical systems at an unprecedented scale of integration. While producing better integration with robustness and compactness, MEMS improves the functionalities and specifications of laser chips. Additionally, MEMS tunable lasers are featured with small size, high tuning speed, wide tuning range and CMOS compatible integration, which broaden their applications to many fields.

  10. Tunable femtosecond Cherenkov fiber laser

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Svane, Ask Sebastian; Lægsgaard, Jesper;

    2014-01-01

    We demonstrate electrically-tunable femtosecond Cherenkov fiber laser output at the visible range. Using an all-fiber, self-starting femtosecond Yb-doped fiber laser as the pump source and nonlinear photonic crystal fiber link as the wave-conversion medium, ultrafast, milliwatt-level, tunable...... and spectral isolated Cherenkov radiation at visible wavelengths are reported. Such a femtosecond Cherenkov laser source is promising for practical biophotonics applications....

  11. Novel hydrophobically associative polyacrylamide with tunable viscosity

    Institute of Scientific and Technical Information of China (English)

    Xu Feng Zhang; Wen Hui Wu

    2009-01-01

    Hydrophobically associative polyacrylamide (HAPAM) were prepared in aqueous solution by radical copolymerization of novel cationic surface-active monomer, dimethylhexadecyl(3-acrylamidopropyl)ammonium bromide (DMHAB), with acrylarnide (AM) in the presence of DMHAB/CTAB mixed micelles. The length of hydrophobic microblock (N_H) in HAPAM is controlled by the molar fraction of DMHAB in mixed micelles, which can be mediated by the ratio of CTAB to DMHAB. The results of steady-state fluorescence probe and viscometry experiments showed the ability of HAPAM association was determined by the length of the hydrophobic microblock. HAPAM with tunable association ability are promising materials for thickening agent.

  12. Tunable optical absorption in silicene molecules

    KAUST Repository

    Mokkath, Junais Habeeb

    2016-07-13

    Two-dimensional materials with a tunable band gap that covers a wide range of the solar spectrum hold great promise for sunlight harvesting. For this reason, we investigate the structural, electronic, and optical properties of silicene molecules using time dependent density functional theory. We address the influence of the molecular size, buckling, and charge state as well as that of a dielectric environment. Unlike planar graphene molecules, silicene molecules prefer to form low-buckled structures with strong visible to ultraviolet optical response. We also identify molecular plasmons.

  13. Differential scanning calorimetry of superelastic Nitinol for tunable cymbal transducers

    OpenAIRE

    Feeney, Andrew; Lucas, Margaret

    2015-01-01

    Recent research has shown that estimations of the transformation temperatures of superelastic Nitinol using differential scanning calorimetry can be inaccurate, in part, due to the residual stress in the material. Superelastic Nitinol is selected as the end-cap material in a tunable cymbal transducer. The differential scanning calorimetry accuracy is initially probed by comparing transformation temperature measurements of cold-worked superelastic Nitinol with the same material after an anneal...

  14. Potential of the PIGE method in the analysis of biological and mineral materials

    International Nuclear Information System (INIS)

    A possible application of the PIGE method for the analysis of the biological and mineral samples has been tested using a 3.5 MeV Van de Graaff accelerator. The limits of detection of 4 mg/kg for fluorine, 10 mg/kg for aluminium and 200 mg/kg for phosphorus were achieved with a 3.15 MeV proton beam (8 mm in diameter, 20 nA current and 1000 s irradiation time). The PIGE method was found to be a suitable method for the determination of fluorine in the samples analyzed. With this technique, total fluorine in the sample can be quantitated without any chemical treatment. In the analysis of the phosphorus in thick biological samples, PIGE can compete with PIXE and is probably less sensitive to matrix effects and spectra fitting, which may bring about a higher accuracy of the results

  15. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications

    OpenAIRE

    Palagi, Stefano; Jager, Edwin; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    The quest for swimming microrobots originates from possible applications in medicine, especially involving navigation in bodily fluids. Swimming microorganisms have become a source of inspiration because their propulsion mechanisms are effective in the low-Reynolds number regime. In this study, we address a propulsion mechanism inspired by metachronal waves, i.e. the spontaneous coordination of cilia leading to the fast swimming of ciliates. We analyse the biological mechanism (referring to i...

  16. Matrix Assisted Ionization Vacuum (MAIV), a New Ionization Method for Biological Materials Analysis Using Mass Spectrometry*

    OpenAIRE

    Inutan, Ellen D.; Trimpin, Sarah

    2012-01-01

    The introduction of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) for the mass spectrometric analysis of peptides and proteins had a dramatic impact on biological science. We now report that a wide variety of compounds, including peptides, proteins, and protein complexes, are transported directly from a solid-state small molecule matrix to gas-phase ions when placed into the vacuum of a mass spectrometer without the use of high voltage, a laser, or adde...

  17. Microcantilever technology for law enforcement and anti-terrorism applications: chemical, biological, and explosive material detection

    Science.gov (United States)

    Adams, J. D.; Rogers, B.; Whitten, R.

    2005-05-01

    The remarkable sensitivity, compactness, low cost, low power-consumption, scalability, and versatility of microcantilever sensors make this technology among the most promising solutions for detection of chemical and biological agents, as well as explosives. The University of Nevada, Reno, and Nevada Nanotech Systems, Inc (NNTS) are currently developing a microcantilever-based detection system that will measure trace concentrations of explosives, toxic chemicals, and biological agents in air. A baseline sensor unit design that includes the sensor array, electronics, power supply and air handling has been created and preliminary demonstrations of the microcantilever platform have been conducted. The envisioned device would measure about two cubic inches, run on a small watch battery and cost a few hundred dollars. The device could be operated by untrained law enforcement personnel. Microcantilever-based devices could be used to "sniff out" illegal and/or hazardous chemical and biological agents in high traffic public areas, or be packaged as a compact, low-power system used to monitor cargo in shipping containers. Among the best detectors for such applications at present is the dog, an animal which is expensive, requires significant training and can only be made to work for limited time periods. The public is already accustomed to explosives and metal detection systems in airports and other public venues, making the integration of the proposed device into such security protocols straightforward.

  18. EFFECT OF MIXING CONDITIONS ON FLOCCULATION KINETICS OF WASTEWATERS CONTAINING PROTEINS AND OTHER BIOLOGICAL COMPOUNDS USING FIBROUS MATERIALS AND POLYELECTROLYTES

    Directory of Open Access Journals (Sweden)

    L.A. CHEN

    1998-12-01

    Full Text Available The application of a combined system of a polyelectrolyte, carboxymethyl cellulose (CMC, and highly fibrillated fibrous materials, cellulose triacetate fibrets (CTF, for the recovery of proteins and other biological compounds from model and actual biological systems has been demonstrated . In the present work, reaction batches were scaled-up to a one-liter agitated vessel, with a standard configuration. The effect of mixing conditions on the adsorption and flocculation process was studied. It was observed that flocculation time was very fast, occurring within the period of polymer addition. Long term shearing did not result in floc breakage and the values of percentage light transmission and protein concentration of the final filtrate remained the same during the incubation period. Increasing the shear rate resulted in improved process efficiency, up to an optimum value, above which performance was poorer. Perikinetic and orthokinetic rate parameters were calculated and results analyzed in view of these parameters.

  19. Determination and Certification of Multielements in 6 Biological Reference Materials by NAA

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Food safety has been a problem of global concern. The insufficient availability of certificated reference materials (CRM) used for food analysis has resulted in a lack of internal quality control in food

  20. Bioinspired solid-liquid mixed tunable lens with multilayered structure

    Science.gov (United States)

    Liang, Dan; Wang, Xuan-Yin; Du, Jia-Wei

    2015-06-01

    A solid-liquid mixed tunable lens with multilayered structure is proposed. The designed lens utilizes a solid-state elastic polymer, optical liquid, and glass as the optical medium, and adjusts the focus by changing the surface curvature of the elastic polymer. The integrated structure of the tunable lens is presented, as well as detailed descriptions of the lens materials, fabrication, and assembling process. Images captured through the tunable lens under different displacement loads are presented, and the relationship among the displacement load, curvature radius, and effective focal length is analyzed. Additionally, the optical property of the tunable lens is simulated using the ZEMAX software. A change in focal length from 14.8 mm to 30 mm is demonstrated within the tiny 0.12 mm variation of the displacement load. Numerical analyses show that the lens distortion is less than 2%, and the modulation transfer function reaches 67 line pairs per mm. The solid-liquid mixed tunable lens shows the potential for developing a compact, low-aberration, and stable optical system.

  1. A New Class of Electrically Tunable Metamaterial Terahertz Modulators

    CERN Document Server

    Yan, Rusen; Liu, Lei; Jena, Debdeep; Xing, Huili Grace

    2012-01-01

    Switchable metamaterials offer unique solutions for efficiently manipulating electromagnetic waves, particularly for terahertz waves, which has been difficult since naturally occurring materials rarely respond to terahertz frequencies controllably. However, few terahertz modulators demonstrated to date exhibit simultaneously low attenuation and high modulation depth. In this letter we propose a new class of electrically-tunable terahertz metamaterial modulators employing metallic frequency-selective-surfaces (FSS) in conjunction with capacitively-tunable layers of electrons, promising near 100% modulation depth and < 15% attenuation. The fundamental departure in our design from the prior art is tuning enabled by self-gated electron layers that is independent from the metallic FSS. Our proposal is applicable to all possible electrically tunable elements including graphene, Si, MoS2, oxides etc, thus opening up myriad opportunities for realizing high performance switchable metamaterials over an ultra-wide te...

  2. Advances in polyelectrolyte multilayer nanofilms as tunable drug delivery systems

    Directory of Open Access Journals (Sweden)

    Bingbing Jiang

    2009-08-01

    Full Text Available Bingbing Jiang1, John B Barnett2,3, Bingyun Li1,4,5#1Biomaterials, Bioengineering and Nanotechnology Laboratory, Department of Orthopaedics, School of Medicine, 2Department of Microbiology, Immunology, and Cell Biology, 3Center for Immunopathology and Microbial Pathogenesis, School of Medicine, 5Department of Chemical Engineering, College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV, USA; 4WVNano Initiative, Morgantown, WV, USA; #Aided by a grant from Osteosynthesis and Trauma Care (OTC FoundationAbstract: There has been considerable interest in polyelectrolyte multilayer nanofilms, which have a variety of applications ranging from optical and electrochemical materials to biomedical devices. Polyelectrolyte multilayer nanofilms are constructed from aqueous solutions using electrostatic layer-by-layer self-assembly of oppositely-charged polyelectrolytes on a solid substrate. Multifunctional polyelectrolyte multilayer nanofilms have been studied using charged dyes, metal and inorganic nanoparticles, DNA, proteins, and viruses. In the past few years, there has been increasing attention to developing polyelectrolyte multilayer nanofilms as drug delivery vehicles. In this mini-review, we present recent developments in polyelectrolyte multilayer nanofilms with tunable drug delivery properties, with particular emphasis on the strategies in tuning the loading and release of drugs in polyelectrolyte multilayer nanofilms as well as their applications.Keywords: nanofilm, polyelectrolyte multilayer, drug delivery, electrostatic layer-by-layer self-assembly, biomedical device, surface modification

  3. Neutrons, deuteration and synchrotron X-rays for the study of biology and advanced materials: A match made in atoms..

    International Nuclear Information System (INIS)

    Together, the Australian Synchrotron in Melbourne and the OPAL research reactor, at the Bragg Institute in Sydney represent Australia's largest ever investment in scientific infrastructure. Both facilities commenced operation in 2007, have passed through their infancy and adolescence to take their place amongst the rank of top-flight international user facilities. Far from middle-aged, these two vibrant landmark facilities (each with 10 operational beamlines) and along with the National Deuteration Facility at ANSTO have provided transformational research capabilities for the Australian scientific community. Although modest in size compared to the well-established international competition, both institutions are producing excellent amounts of high-quality research with the Bragg Institute and the Australian Synchrotron generating more than 200 and 450 peer-reviewed publications per annum respectively. At first glance both synchrotron and neutron sources show similar scientific profiles, encompassing an extremely wide range of disciplines: materials, chemistry, biology, condensed matter physics, nanotechnology, engineering, geosciences, archaeology and studies relating to cultural heritage. Common to both are advanced capabilities for the study of atomic and molecular structure, as well as operational studies of functional materials under a diverse range of extreme environments. A more forensic examination however reveals fundamental differences in their DNA. While the biological, pharmaceutical and medical research communities drive substantial capability development and research outcomes at the Australian Synchrotron, neutron scattering and molecular deuteration at the Bragg Institute provides a focus for studies in soft condensed matter, physical and inorganic chemistry, solid state physics and crystallography. Although their respective probes are generated from different parts of the atom and interact with matter in fundamentally different ways, my

  4. Accidental exposure to biological material in healthcare workers at a university hospital: Evaluation and follow-up of 404 cases.

    Science.gov (United States)

    Gutierrez, Eliana Battaggia; Lopes, Marta Heloísa; Yasuda, Maria Aparecida Shikanai

    2005-01-01

    The care and follow-up provided to healthcare workers (HCWs) from a large teaching hospital who were exposed to biological material between 1 August 1998 and 31 January 2002 is described here. After exposure, the HCW is evaluated by a nurse and doctor in an emergency consultation and receives follow-up counselling. The collection of 10 ml of blood sample from each HCW and its source patient, when known, is made for immunoenzymatic testing for HIV, HBV and HCV. Evaluation and follow-up of 404 cases revealed that the exposures were concentrated in only a few areas of the hospital; 83% of the HCWs exposed were seen by a doctor responsible for the prophylaxis up to 3 h after exposure. Blood was involved in 76.7% (309) of the exposures. The patient source of the biological material was known in 80.7% (326) of the exposed individuals studied; 80 (24.5%) sources had serological evidence of infection with 1 or more agents: 16.2% were anti-HCV positive, 3.8% were HAgBs positive and 10.9% were anti-HIV positive. 67% (273) of the study population completed the proposed follow-up. No confirmed seroconversion occurred. In conclusion, the observed adherence to the follow-up was quite low, and measures to improve it must be taken. Surprisingly, no difference in adherence to the follow-up was observed among those exposed HCW at risk, i.e. those with an infected or unknown source patient. Analysis of post-exposure management revealed excess prescription of antiretroviral drugs, vaccine and immunoglobulin. Infection by HCV is the most important risk of concern, in our hospital, in accidents with biological material. PMID:15804666

  5. MAK and BAT values list 2014. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2014. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2014 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  6. MAK and BAT values list 2015. Maximum permissible concentrations at the place of work and biological tolerance values for working materials; MAK- und BAT-Werte-Liste 2015. Maximale Arbeitsplatzkonzentrationen und Biologische Arbeitsstofftoleranzwerte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-11-01

    The book on the MAK (maximum permissible concentrations at the place of work) and BAT (biological tolerance values for working materials) value list 2015 includes the following chapters: (a) Maximum permissible concentrations at the place of work: definition, application and determination of MAT values, list of materials; carcinogenic working materials, sensibilizing working materials, aerosols, limiting the exposition peaks, skin resorption, MAK values during pregnancy, germ cell mutagens, specific working materials; (b) Biological tolerance values for working materials: definition and application of BAT values, list of materials, carcinogenic working materials, biological guide values, biological working material reference values.

  7. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-01-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  8. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg(2+) Ions.

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E; Dhawale, Dattatray S; Subramaniam, Vishnu P; Strounina, Ekaterina; Sathish, Clastinrusselraj I; Yamaura, Kazunari; Cooper-White, Justin J; Vinu, Ajayan

    2016-01-01

    We introduce "sense, track and separate" approach for the removal of Hg(2+) ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg(2+) ions with a high precision but also adsorb and separate a significant amount of Hg(2+) ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg(2+) ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery. PMID:26911660

  9. Fluorescent and Magnetic Mesoporous Hybrid Material: A Chemical and Biological Nanosensor for Hg2+ Ions

    Science.gov (United States)

    Suresh, Moorthy; Anand, Chokkalingam; Frith, Jessica E.; Dhawale, Dattatray S.; Subramaniam, Vishnu P.; Strounina, Ekaterina; Sathish, Clastinrusselraj I.; Yamaura, Kazunari; Cooper-White, Justin J.; Vinu, Ajayan

    2016-02-01

    We introduce “sense, track and separate” approach for the removal of Hg2+ ion from aqueous media using highly ordered and magnetic mesoporous ferrosilicate nanocages functionalised with rhodamine fluorophore derivative. These functionalised materials offer both fluorescent and magnetic properties in a single system which help not only to selectively sense the Hg2+ ions with a high precision but also adsorb and separate a significant amount of Hg2+ ion in aqueous media. We demonstrate that the magnetic affinity of these materials, generated from the ultrafine γ-Fe2O3 nanoparticles present inside the nanochannels of the support, can efficiently be used as a fluorescent tag to sense the Hg2+ ions present in NIH3T3 fibroblasts live cells and to track the movement of the cells by external magnetic field monitored using confocal fluorescence microscopy. This simple approach of introducing multiple functions in the magnetic mesoporous materials raise the prospect of creating new advanced functional materials by fusing organic, inorganic and biomolecules to create advanced hybrid nanoporous materials which have a potential use not only for sensing and the separation of toxic metal ions but also for cell tracking in bio-separation and the drug delivery.

  10. Biological induced corrosion of materials II: New test methods and experiences from mir station

    Science.gov (United States)

    Klintworth, R.; Reher, H. J.; Viktorov, A. N.; Bohle, D.

    1999-09-01

    During previous long-term manned missions, more than 100 species of microorganisms have been identified on surfaces of materials (bacteria and fungi). Among them were potentially pathogenic ones (saprophytes) which are capable of active growth on artificial substrates, as well as technophilic bacteria and fungi causing damages (destruction and degradation) to various materials (metals and polymers), resulting in failures and disruptions in the functioning of equipment and hardware. Aboard a space vehicle some microclimatic parameters are optimal for microorganism growth: the atmospheric fluid condensate with its specific composition, chemical and/or antropogenic contaminants (human metobolic products, etc.) all are stimulating factors for the development of bacteria and mould fungi on materials of the interior and equipment of an orbital station during its operational phase(s). Especially Russian long-term missions (SALJUT, MIR) have demonstrated that uncontrolled interactions of microorganisms with materials will ultimately lead to the appearence of technological and medical risks, significantly influencing safety and reliability characteristics of individual as well as whole systems and/ or subsystems. For a first conclusion, it could be summarized, that countermeasures and anti-strategies focussing on Microbial Contamination Management (MCM) for the International Space Station (ISS, next long-term manned mission) at least require a new materials test approach. Our respective concept includes a combined age-ing/biocorrosion test sequence. It is represented here, as well as current status of MCM program, e.g. continuous monitoring (microbiological analyses), long-term disinfection, frequent cleaning methods, mathematical modeling of ISS, etc.

  11. Microbiological titration of proteins and of single amino acid content in biological materials without purification and hydrolysis.

    Science.gov (United States)

    Puppo, S; Morpurgo, G; Nardi, S; Conti, G

    1978-04-01

    A method is described for the microbiological determination of the protein content of biological materials. This method can also be adopted to titrate the concentration of a single amino acid in the protein and has the following advantages: (1) titration can be done without purification and hydrolysis of proteins; (2) the titration graph is a straight line between 25 and 800 microgram/ml; (3) protein values agree with those obtained using the Kjeldhal method; and (4) each mutant requiring one amino acid may be used to titrate the concentration of a single amino acid of the protein. The leucine content of various kinds of flour was measured with this system.

  12. Effect of some botanical materials on certain biological aspects of the house fly, Musca domestica L

    Directory of Open Access Journals (Sweden)

    Nabawy A. I. Elkattan, Khalafalla S. Ahmed, Saadya M. Elbermawy and Rabab

    2011-04-01

    Full Text Available The effects of Lantana camara (leaves, Pelargonium zonale (leaves, Cupressus macrocarpa (leaves, Cyperus rotundus (whole plant and Acacia nilotica (seeds powders on some biological aspects of house fly, M. domestica L. were tested. The effects of three lethal concentrations LC25, LC50 and LC75 on the larval duration, pupation percent, pupal weight, pupal duration, adult emergence percent, sex ratio, adult longevity, and fecundity were determined. The induced malformed larvae, pupae and adults were recorded and photographed. The powders of the five plants were found to have promising effects in controlling this insect.

  13. The use of a single technique for the separation and determination of actinides in biological materials

    International Nuclear Information System (INIS)

    For the radiotoxicological survey of workers exposed to different types of alpha-emitting contaminants, a procedure was developed which permits the estimate of Th, Pa, U, Np, Pu, Am and Cm in biological samples with a single technique. The radionuclides are extracted on a column by tri-n-octylphosphine oxide and separated by elution at different pH values. Afterwards, the quantitative determinations are done by physical methods (alpha counting or spectrometry). In the case of an accident it is possible to use a simplification of the procedure (extraction in a beaker) for checks. A procedure for the rapid determination of actinides in faeces and in nasal secretions is described

  14. The use of Compton suppression spectrometers for trace element studies in biological materials.

    Science.gov (United States)

    Rossbach, M; Zeisler, R; Woittiez, J R

    1990-01-01

    A straightforward method for demonstrating the powerful background reduction of Compton suppression spectrometers for neutron activation purposes is presented. The shorter acquisition time needed in Anti-Compton mode (A/C on) for peaks of appropriate counting statistics, compared to normal gamma counting (A/C off), allows a much higher sample throughput, thus compensating for the higher cost of the instrument. Two examples of artificial mixtures of radionuclides demonstrate the drastic time saving for measurement of monoenergetic decaying isotopes. The comparison of results from three different instruments proves the general usefulness of Compton suppression spectrometers for Neutron Activation Analysis of biological samples. PMID:1704771

  15. Novel Aspects of Materials Processing by Ultrafast Lasers: From Electronic to Biological and Cultural Heritage Applications

    International Nuclear Information System (INIS)

    Materials processing by ultrafast lasers offers several distinct possibilities for micro/nano scale applications. This is due to the unique characteristics of the laser-matter interactions involved, when sub-picosecond pulses are employed. Prospects arising will be discussed in the context of surface and in bulk laser induced modifications. In particular, examples of diverse applications including the development and functionalization of laser engineered surfaces, the laser transfer of biomolecules and the functionalization of 3D structures constructed by three-photon stereolithography will be presented. Furthermore, the removal of molecular substrates by ultrafast laser ablation will be discussed with emphasis placed on assessing the photochemical changes induced in the remaining bulk material. The results indicate that in femtosecond laser processing of organic materials, besides the well acknowledged morphological advantages, a second fundamental factor responsible for its success pertains to the selective chemical effects. This is crucial for the laser cleaning of sensitive painted artworks

  16. Biological impact tests on complex hydrides used as hydrogen storage materials

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, H.; Kiyobayashi, T.; Kuriyama, N. [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan); Tokoyoda, K. [R and D Center, Taiheiyo Cement Corporation, 2-4-2 Osaku, Sakura, Chiba 285-8655 (Japan); Matsumoto, M. [Materials Department, Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2010-10-15

    The mutagenicity of a series of the light element hydrides (containing NaAlH{sub 4}, Mg(NH{sub 2}){sub 2}, LiBH{sub 4}, etc.) was examined by evaluating the frequency of mutation in bacterial DNAs. Although some materials were suspected to be slightly mutagenic, their effect was much less malignant than that of well-known potent mutagens. The hydrides exhibited high cytotoxicity, rather than mutagenicity. A Mg(NH{sub 2}){sub 2}-related material was also subjected to a series of toxicity tests on aqueous organisms, i.e., algae, water fleas and fish. The result suggests that the material is as toxic as alkaline metal hydroxides, such as NaOH and KOH. (author)

  17. Silver nanoparticles with tunable work functions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp [Education Center for Global Leaders in Molecular Systems for Devices, Kyushu University, Fukuoka 819-0395 (Japan); Tanaka, Daisuke [Department of Electrical and Electronic Engineering, National Institute of Technology, Oita College, Oita 870-0152 (Japan); Ryuzaki, Sou; Araki, Shohei; Okamoto, Koichi; Tamada, Kaoru [Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka 819-0395 (Japan)

    2015-10-12

    To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probe force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.

  18. Graphene: One Material, Many Possibilities—Application Difficulties in Biological Systems

    Directory of Open Access Journals (Sweden)

    Marta Skoda

    2014-01-01

    Full Text Available Energetic technologies, nanoelectronics, biomedicine including gene therapy, cell imaging or tissue engineering are only few from all possible applications for graphene, the thinnest known carbon configuration and a basic element for other more complicated, better discovered and widely used nanostructures such as graphite, fullerenes and carbon nanotubes. The number of researches concerning graphene applications is rising every day which proves the great interest in its unique structure and properties. Ideal pristine graphene sheet presents a flat membrane of unlimited size with no imperfections while in practice we get different flakes with irregular edges and structural defects which influence the reactivity. Nanomaterials from graphene family differ in size, shape, layer number, lateral dimension, surface chemistry and defect density causing the existence of graphene samples with various influence on biological systems. Whether graphene induces cellular stress and activates apoptosis, or on the contrary facilitates growth and differentiation of the cells depends on its structure, chemical modifications and the growth process. A certain number of in vitro studies has indicated cytotoxic effects of graphene while the other show that it is safe. The diversity of the samples and methods of the production make it impossible to establish clearly the biological impact of graphene.

  19. 2012 best practices for repositories collection, storage, retrieval, and distribution of biological materials for research international society for biological and environmental repositories.

    Science.gov (United States)

    2012-04-01

    Third Edition [Formula: see text] [Box: see text] Printed with permission from the International Society for Biological and Environmental Repositories (ISBER) © 2011 ISBER All Rights Reserved Editor-in-Chief Lori D. Campbell, PhD Associate Editors Fay Betsou, PhD Debra Leiolani Garcia, MPA Judith G. Giri, PhD Karen E. Pitt, PhD Rebecca S. Pugh, MS Katherine C. Sexton, MBA Amy P.N. Skubitz, PhD Stella B. Somiari, PhD Individual Contributors to the Third Edition Jonas Astrin, Susan Baker, Thomas J. Barr, Erica Benson, Mark Cada, Lori Campbell, Antonio Hugo Jose Froes Marques Campos, David Carpentieri, Omoshile Clement, Domenico Coppola, Yvonne De Souza, Paul Fearn, Kelly Feil, Debra Garcia, Judith Giri, William E. Grizzle, Kathleen Groover, Keith Harding, Edward Kaercher, Joseph Kessler, Sarah Loud, Hannah Maynor, Kevin McCluskey, Kevin Meagher, Cheryl Michels, Lisa Miranda, Judy Muller-Cohn, Rolf Muller, James O'Sullivan, Karen Pitt, Rebecca Pugh, Rivka Ravid, Katherine Sexton, Ricardo Luis A. Silva, Frank Simione, Amy Skubitz, Stella Somiari, Frans van der Horst, Gavin Welch, Andy Zaayenga 2012 Best Practices for Repositories: Collection, Storage, Retrieval and Distribution of Biological Materials for Research INTERNATIONAL SOCIETY FOR BIOLOGICAL AND ENVIRONMENTAL REPOSITORIES (ISBER) INTRODUCTION T he availability of high quality biological and environmental specimens for research purposes requires the development of standardized methods for collection, long-term storage, retrieval and distribution of specimens that will enable their future use. Sharing successful strategies for accomplishing this goal is one of the driving forces for the International Society for Biological and Environmental Repositories (ISBER). For more information about ISBER see www.isber.org . ISBER's Best Practices for Repositories (Best Practices) reflect the collective experience of its members and has received broad input from other repository professionals. Throughout this document

  20. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Directory of Open Access Journals (Sweden)

    Rachelle N Palchesko

    Full Text Available Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line and C2C12 (muscle cell line were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  1. Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve.

    Science.gov (United States)

    Palchesko, Rachelle N; Zhang, Ling; Sun, Yan; Feinberg, Adam W

    2012-01-01

    Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation.

  2. Biological testing and chemical analysis of process materials from an integrated two stage coal liquefaction: a status report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B.W.; Buhl, P.; Moroni, E.C.

    1983-07-01

    Samples for chemical characterization and biological testing were obtained from ITSL runs 3LCF7, 3LCF8 and 3LCF9. Chemical analysis of these materials showed that SCT products were composed of fewer compounds than analogous materials from Solvent Refined Coal (SRC) processes. Major components in the SCT materials were three-, four-, five- and six-ring neutral polycyclic aromatic hydrocarbons (PAH). Methyl(C/sub 1/) and C/sub 2/ homologs of these compounds were present in relatively low concentrations, compared to their non-alkylated homologs. Organic nitrogen was primarily in the form of tertiary polycyclic aromatic nitrogen heterocycles and carbazoles. Little or no amino PAH (APAH) or cyano PAH were detected in samples taken during normal PDU operations, however, mutagenic APAH were produced during off-normal operation. Microbial mutagenicity appeared to be due mainly to the presence of APAH which were probably formed in the LC finer due to failure of the catalyst to promote deamination following carbon-nitrogen bond scission of nitrogen-containing hydroaromatics. This failure was observed for the off-normal runs where it was likely that the catalyst had been deactivated. Carcinogenic activity of ITSL materials as assessed by (tumors per animal) in the initiation/promotion mouse skin painting assay was slightly reduced for materials produced with good catalyst under normal operation compared to those collected during recycle of the LC Finer feed. Initiation activity of the latter samples did not appear to be significantly different from that of other coal derived materials with comparable boiling ranges. The observed initiation activity was not unexpected, considering analytical data which showed the presence of four-, five- and six-ring PAH in ITSL materials.

  3. Synthesis of Precision for the Certification of Phosphorus in Biological Materials by INAA

    DEFF Research Database (Denmark)

    Damsgaard, E.; Heydorn, K.

    1987-01-01

    The β-emitter32P was used to determine total phosphorus by INAA in Skim Milk Powder RM 63, a material now certified by the EEC Bureau of Reference (BCR). Samples and comparator were irradiated in the Danish reactor DR 3. One month later the samples were dissolved in water and aliquots counted...

  4. Compilation of elemental concentration data for NBS Biological and Environmental Standard Reference Materials

    International Nuclear Information System (INIS)

    Concentration data on up to 76 elementals in 19 NBS Standard Reference Materials have been collected from 325 journal articles and technical reports. These data are summarized into mean +- one standard deviation values and compared with available data from NBS and other review articles. Data are presented on the analytical procedures employed and all raw data are presented in appendixes

  5. Transition from Bioinert to Bioactive Material by Tailoring the Biological Cell Response to Carboxylated Nanocellulose.

    Science.gov (United States)

    Hua, Kai; Rocha, Igor; Zhang, Peng; Gustafsson, Simon; Ning, Yi; Strømme, Maria; Mihranyan, Albert; Ferraz, Natalia

    2016-03-14

    This work presents an insight into the relationship between cell response and physicochemical properties of Cladophora cellulose (CC) by investigating the effect of CC functional group density on the response of model cell lines. CC was carboxylated by electrochemical TEMPO-mediated oxidation. By varying the amount of charge passed through the electrolysis setup, CC materials with different degrees of oxidation were obtained. The effect of carboxyl group density on the material's physicochemical properties was investigated together with the response of human dermal fibroblasts (hDF) and human osteoblastic cells (Saos-2) to the carboxylated CC films. The introduction of carboxyl groups resulted in CC films with decreased specific surface area and smaller total pore volume compared with the unmodified CC (u-CC). While u-CC films presented a porous network of randomly oriented fibers, a compact and aligned fiber pattern was depicted for the carboxylated-CC films. The decrease in surface area and total pore volume, and the orientation and aggregation of the fibers tended to augment parallel to the increase in the carboxyl group density. hDF and Saos-2 cells presented poor cell adhesion and spreading on u-CC, which gradually increased for the carboxylated CC as the degree of oxidation increased. It was found that a threshold value in carboxyl group density needs be reached to obtain a carboxylated-CC film with cytocompatibility comparable to commercial tissue culture material. Hence, this study demonstrates that a normally bioinert nanomaterial can be rendered bioactive by carefully tuning the density of charged groups on the material surface, a finding that not only may contribute to the fundamental understanding of biointerface phenomena, but also to the development of bioinert/bioactive materials. PMID:26886265

  6. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon

    2008-05-15

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  7. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  8. Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper.

    Science.gov (United States)

    Jordaan, Donrich W

    2016-06-17

    Social justice in the context of research using human biological material is an important contemporary legal-ethical issue. A question at the heart of this issue is the following: Is it fair to expect a research participant (a person who participates in such research by, among others, making available biological material from his or her body) to participate on an altruistic basis, while the researchers and the investors in the research can gain commercially from the research? In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research via a proposed new statutory right to the intellectual property emanating from such research. In order to stimulate debate on this important issue of social justice, this article responds to the position of Mahomed et al. by focusing on two main points: Firstly, I contend that Mahomed et al. fail to make a convincing argument in favour of shifting away from altruism; secondly, I caution against framing the debate in terms of the binary poles of altruism v. profitsharing, and suggest that should healthcare public policy ever move away from altruism, various non-monetary forms of benefit-sharing by research participants should be considered.

  9. Social justice and research using human biological material: A response to Mahomed, Nöthling-Slabbert and Pepper.

    Science.gov (United States)

    Jordaan, Donrich W

    2016-07-01

    Social justice in the context of research using human biological material is an important contemporary legal-ethical issue. A question at the heart of this issue is the following: Is it fair to expect a research participant (a person who participates in such research by, among others, making available biological material from his or her body) to participate on an altruistic basis, while the researchers and the investors in the research can gain commercially from the research? In a recent article, Mahomed, Nöthling-Slabbert and Pepper proposed that research participants should be entitled to share in the profits emanating from such research via a proposed new statutory right to the intellectual property emanating from such research. In order to stimulate debate on this important issue of social justice, this article responds to the position of Mahomed et al. by focusing on two main points: Firstly, I contend that Mahomed et al. fail to make a convincing argument in favour of shifting away from altruism; secondly, I caution against framing the debate in terms of the binary poles of altruism v. profitsharing, and suggest that should healthcare public policy ever move away from altruism, various non-monetary forms of benefit-sharing by research participants should be considered. PMID:27384358

  10. Homogeneity study on biological candidate reference materials: the role of neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniel P.; Moreira, Edson G., E-mail: dsilva.pereira@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Instrumental Neutron activation Analysis (INAA) is a mature nuclear analytical technique able to accurately determine chemical elements without the need of sample digestion and, hence, without the associated problems of analyte loss or contamination. This feature, along with its potentiality use as a primary method of analysis, makes it an important tool for the characterization of new references materials and in the assessment of their homogeneity status. In this study, the ability of the comparative method of INAA for the within-bottle homogeneity of K, Mg, Mn and V in a mussel reference material was investigated. Method parameters, such as irradiation time, sample decay time and distance from sample to the detector were varied in order to allow element determination in subsamples of different sample masses in duplicate. Sample masses were in the range of 1 to 250 mg and the limitations of the detection limit for small sample masses and dead time distortions for large sample masses were investigated. (author)

  11. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  12. Ecological evaluation of proposed dredged material from the John F. Baldwin Ship Channel: Phase 3 -- biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Kohn, N.P.; Karle, L.M.; Pinza, M.R.; Mayhew, H.L.; White, P.J.; Gruendell, B.D.; Word, J.Q. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

    1993-10-01

    The John F. Baldwin Ship Channel is a 28-mile-long portion of the San Francisco Bay to Stockton Ship Channel, the primary shipping lane through San Francisco Bay and Delta. The San Francisco District of the US Army Corps of Engineers (USACE) is responsible for construction of the John F. Baldwin Ship Channel, which is authorized to be deepened to a project depth of {minus}45 ft relative to mean lower low water (MLLW). Approximately 8.5 million cubic yards (mcy) of sediment will be removed from the channel to reach this project depth. The USACE requested Battelle/Marine Sciences Laboratory (MSL) to conduct testing for ocean disposal under the guidelines in Evaluation of Dredged Material Proposed for Ocean Disposal-Testing Manual (EPA/USACE 1991). This testing manual contains a tiered evaluation approach developed specifically for ocean disposal of dredged material at a selected site. In this study, John F. Baldwin Ship Channel sediments were evaluated under the Tier III (biological) testing guidance, which is considered to be highly stringent and protective of the environment. The Tier III guidance for ocean disposal testing requires tests of water column effects, (following dredged material disposal), deposited sediment toxicity, and bioaccumulation of contaminants from deposited sediment (dredged material).

  13. Large-scale photonic neural networks with biology-like processing elements: the role of electron-trapping materials

    Science.gov (United States)

    Farhat, Nabil H.; Wen, Zhimin

    1995-08-01

    Neural networks employing pulsating biology-oriented integrate-and-fire (IF) model neurons, that can exhibit synchronicity (phase-locking), bifurcation, and chaos, have features that make them potentially useful for learning and recognition of spatio-temporal patterns, generation of complex motor control, emulating higher-level cortical functions like feature binding, separation of object from background, cognition and other higher-level functions; all of which are beyond the ready reach of nonpulsating sigmoidal neuron networks. The spiking nature of biology-oriented neural networks makes their study in digital hardware impractical. Prange and Klar convincingly argued that the best way of realizing such networks is through analog CMOS technology rather than digital hardware. They showed, however, that the number of neurons one can accommodate on a VLSI chip limited to a hundred or so, even when submicron CMOS technology is used, because of the relatively large size of the neuron/dendrite cell. One way of reducing the size of neuron/dendrite cell is to reduce the structural complexity of the cell by realizing some of the processes needed in the cell's operation externally to the chip and by coupling these processes to the cell optically. Two such processes are the relaxation mechanism of the IF neuron and dendritic-tree processing. We have shown, by examining the blue light impulse response of electron trapping materials (ETMs) used under simultaneous infrared and blue light bias, that these materials offer features that can be used in realizing both the optical relaxation and synapto-dendritic response mechanisms. Experimental results demonstrating the potential of this approach in realizing dense arrays of biology-oriented neuron/dendrite cells will be presented, focusing on the concept and design of ETM-based image intensifier as new enabling technology.

  14. Conjugation of nano and quantum materials with bovine serum albumin (BSA) to study their biological potential

    International Nuclear Information System (INIS)

    Conjugates of gold nanoparticles (AuNPs) and semiconductor quantum dots (CdS/T) have been synthesized with bovine serum albumin (BSA) using wet chemistry. The optical properties of nano and quantum materials and their BSA conjugate have been studied using UV–Visible and Fluorescence spectroscopy. UV–Visible spectrum of pure BSA showed an absorption maximum at 278 nm, which showed blue shift after its conjugation with nano and quantum materials. Increased concentration of AuNPs during conjugation resulted in broadening of BSA peak (278 nm), which can be related to the formation of ground state complex formation, caused by the partial adsorption of BSA on the surface of NPs. However, increased concentrations of BSA resulted in decrease in SPR intensity of gold nanoparticles (528 nm) and absorbance peak of BSA started diminishing. AuNPs acted as quencher for BSA fluorescence intensity, when excited at 280 nm. The binding constant (K) and the number of binding sites (n) between AuNPs and BSA have been found to be 1.97×102 LM−1 and 0.6 respectively. With quantum dots, conjugation resulted in enhancement of fluorescence emission of quantum dots when excited at 300 nm, which might be due to the stabilizing effect of BSA on QDs or due to energy transfer from tryptophan moieties of albumin to quantum dots. -- Highlights: • Synthesis of nanoparticles (AuNPs) and quantum dots (CdS). • Conjugation of these materials with bovine serum albumin. • Optical behavioral studies

  15. Diretrizes nacionais para biorrepositório e biobanco de material biológico humano Brazilian guidelines for biorepositories and biobanks of human biological material

    Directory of Open Access Journals (Sweden)

    Gabriela Marodin

    2013-02-01

    Full Text Available OBJETIVO: Caracterizar a construção participativa e democrática das Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa, baseada nos princípios éticos da dignidade humana, da autonomia, da beneficência, da justiça e da precaução. MÉTODOS: Para a elaboração do documento formou-se um grupo de trabalho interdisciplinar Bioética considerando os seguintes critérios: experiência na operacionalização de biobancos, Biobancos representatividade regional, tipo de material biológico acondicionado e especialistas em Biorrepositório bioética. Participaram, também, membros da Agência Nacional de Vigilância Sanitária Diretrizes - Anvisa, pela competência regulatória e da Comissão Nacional de Ética em Pesquisa - Conep, enquanto controle social. RESULTADOS: O documento, baseado nos preceitos éticos, legais e técnicos, apresenta os conceitos, as atividades, finalidades e diferenças entre biorrepositórios e biobancos, as formas de consentimento do sujeito, além de outros aspectos permeados pela preocupação do uso adequado da informação. As Diretrizes Nacionais para Biorrepositório e Biobanco de Material Biológico Humano com Finalidade de Pesquisa contém 39 artigos, dispostos em cinco capítulos. CONCLUSÃO: A importância de uma regulamentação surge da reflexão ética, considerando a moral, e tendo como norteador os aspectos legais, os quais se traduzem em um documento que não se esgota em si mesmo. A dinamicidade da ciência sempre nos remete à mudança de paradigmas, que podem ir além das legislações existentes.OBJECTIVE: To characterize the participatory and democratic creation of the Brazilian guidelines for biorepositories and biobanks of human biological material with the purpose of research based on the ethical principles of human dignity, autonomy, beneficence, justice, and precaution. METHODS: An interdisciplinary work group was constituted to

  16. Lorentz contact resonance spectroscopy for nanoscale characterisation of structural and mechanical properties of biological, dental and pharmaceutical materials.

    Science.gov (United States)

    Khanal, Dipesh; Dillon, Eoghan; Hau, Herman; Fu, Dong; Ramzan, Iqbal; Chrzanowski, Wojciech

    2015-12-01

    Scanning probe microscopy has been widely used to obtain topographical information and to quantify nanostructural properties of different materials. Qualitative and quantitative imaging is of particular interest to study material-material interactions and map surface properties on a nanoscale (i.e. stiffness and viscoelastic properties). These data are essential for the development of new biomedical materials. Currently, there are limited options to map viscoelastic properties of materials at nanoscale and at high resolutions. Lorentz contact resonance (LCR) is an emerging technique, which allows mapping viscoelasticity of samples with stiffness ranging from a few hundred Pa up to several GPa. Here we demonstrate the applicability of LCR to probe and map the viscoelasticity and stiffness of 'soft' (biological sample: cell treated with nanodiamond), 'medium hard' (pharmaceutical sample: pMDI canister) and 'hard' (human teeth enamel) specimens. The results allowed the identification of nanodiamond on the cells and the qualitative assessment of its distribution based on its nanomechanical properties. It also enabled mapping of the mechanical properties of the cell to demonstrate variability of these characteristics in a single cell. Qualitative imaging of an enamel sample demonstrated variations of stiffness across the specimen and precise identification of enamel prisms (higher stiffness) and enamel interrods (lower stiffness). Similarly, mapping of the pMDI canister wall showed that drug particles were adsorbed to the wall. These particles showed differences in stiffness at nanoscale, which suggested variations in surface composition-multiphasic material. LCR technique emerges as a valuable tool for probing viscoelasticity of samples of varying stiffness's. PMID:26518012

  17. Biological properties of a thermally crosslinked gelatin film as a novel anti-adhesive material: Relationship between the biological properties and the extent of thermal crosslinking.

    Science.gov (United States)

    Tsujimoto, Hiroyuki; Tanzawa, Ayumi; Miyamoto, Hiroe; Horii, Tsunehito; Tsuji, Misaki; Kawasumi, Akari; Tamura, Atsushi; Wang, Zhen; Abe, Rie; Tanaka, Shota; Yamanaka, Kouki; Matoba, Mari; Torii, Hiroko; Ozamoto, Yuki; Takamori, Hideki; Suzuki, Shuko; Morita, Shinichiro; Ikada, Yoshito; Hagiwara, Akeo

    2015-10-01

    In order to prevent postoperative adhesion and the related complications, a thermally crosslinked gelatin (TCG) film was developed and the basic biological properties were examined, paying special attention to the relationship between these properties and the extent of crosslinking of the film. The gelatin films crosslinked thermally for five different time periods (0, 1, 3, 8, and 14 hours) were developed and the following tests were performed. Regarding the material characterization of the films, the water content, the water solubility, and the enzymatic degradation for collagenase were found to be closely related to the duration of thermal crosslinking. In an in vitro study conducted to examine the cell growth of fibroblasts cultured on the films, the degree of cell growth, except no crosslinked film, was less than that observed in the control group, thus suggesting that such effects of the films on fibroblast cell growth may be related with their anti-adhesive effects. In in vivo tests, the films crosslinked for longer time periods (3, 8, and 14 hours) were retained for longer after being implanted into the abdominal cavity in rats and showed a significant anti-adhesive effect in the rat cecum adhesion models, indicating that the biodegradability and anti-adhesive effects of the TCG films depend on the duration of thermal crosslinking. In order to develop useful and effective anti-adhesive gelatin film, it is very important to optimize duration of the thermal crosslinking. PMID:25449656

  18. Pneumatically tunable optofluidic dye laser

    Science.gov (United States)

    Song, Wuzhou; Psaltis, Demetri

    2010-02-01

    We presented a tunable optofluidic dye laser with integrated elastomeric air-gap etalon controlled by air pressure. The chip was fabricated with polydimethylsiloxane (PDMS) via replica molding. It comprises a liquid waveguide and microscale air-gap mirrors providing the feedback. The lasing wavelength is chosen by the interference between two parallel PDMS-air interfaces inside the internal tunable air-gap etalon, of which pneumatic tuning can be realized by inflating the air-gap etalon with compressed air. This dye laser exhibits a pumping threshold of 1.6 μJ/pulse, a lasing linewidth of 3 nm, and a tuning range of 14 nm.

  19. Bioprospecting finds the toughest biological material: extraordinary silk from a giant riverine orb spider.

    Directory of Open Access Journals (Sweden)

    Ingi Agnarsson

    Full Text Available BACKGROUND: Combining high strength and elasticity, spider silks are exceptionally tough, i.e., able to absorb massive kinetic energy before breaking. Spider silk is therefore a model polymer for development of high performance biomimetic fibers. There are over 41,000 described species of spiders, most spinning multiple types of silk. Thus we have available some 200,000+ unique silks that may cover an amazing breadth of material properties. To date, however, silks from only a few tens of species have been characterized, most chosen haphazardly as model organisms (Nephila or simply from researchers' backyards. Are we limited to 'blindly fishing' in efforts to discover extraordinary silks? Or, could scientists use ecology to predict which species are likely to spin silks exhibiting exceptional performance properties? METHODOLOGY: We examined the biomechanical properties of silk produced by the remarkable Malagasy 'Darwin's bark spider' (Caerostris darwini, which we predicted would produce exceptional silk based upon its amazing web. The spider constructs its giant orb web (up to 2.8 m(2 suspended above streams, rivers, and lakes. It attaches the web to substrates on each riverbank by anchor threads as long as 25 meters. Dragline silk from both Caerostris webs and forcibly pulled silk, exhibits an extraordinary combination of high tensile strength and elasticity previously unknown for spider silk. The toughness of forcibly silked fibers averages 350 MJ/m(3, with some samples reaching 520 MJ/m(3. Thus, C. darwini silk is more than twice tougher than any previously described silk, and over 10 times better than Kevlar®. Caerostris capture spiral silk is similarly exceptionally tough. CONCLUSIONS: Caerostris darwini produces the toughest known biomaterial. We hypothesize that this extraordinary toughness coevolved with the unusual ecology and web architecture of these spiders, decreasing the likelihood of bridgelines breaking and collapsing the web

  20. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. PMID:27211507

  1. Coexistence of magneto-resistance and -capacitance tunability in Sm2Ga2Fe2O9

    OpenAIRE

    Wu, Ye

    2016-01-01

    We propose that charge gradient resulting in the coexisting magneto-resistance and-capacitance tunability in material systems. We have experimentally observed coexisting of tunable magneto-resistance and -capacitance in Sm2Ga2Fe2O9. Our model fits well with the experimental result.

  2. Optical standing-wave artifacts in reflection-absorption FTIR microspectroscopy of biological materials

    International Nuclear Information System (INIS)

    Reflection-absorption spectra obtained with an infrared microscope should yield the same absorption coefficients as direct micro-transmission measurements as long as the correct effective sample thickness is used, but in practice, severe optical artifacts can complicate the spectra. Using deposited protein gel fdms as a homogenous model for biological cell-like samples, we demonstrate the effect of standing-wave interference of the IR beam at the reflective substrate surface which dramatically and systematically alters the absorbance intensity across the spectrum as a function of sample thickness. To explain the observed spectral artifacts, we simulate the optical standing-wave for the focussed IR beam, and insert the parameters into an existing standing-wave absorption theory. By introducing an additional term to the theory representing a component of the standing-wave resonant with the film thickness, the data are accurately reproduced, and the relative band intensities can be corrected to the direct transmission values. This approach may be generally applicable in reflection-absorption experiments to obtain reliable absorbance spectra of homogenous samples even when the sample thickness is larger than the IR wavelength.

  3. Determination of copper, molybdenum and selenium in biological reference materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    In a contribution to the elemental characterization of 10 new reference materials, Bovine Muscle Powder (136), Corn Starch (162), Hard Red Spring Wheat Flour (165), Soft Winter Wheat Flour (166), Whole Milk Powder (183), Wheat Gluten (184), Corn Bran (186). Durum Wheat Flour (187), Whole Egg Powder (188) and Microcrystalline Cellulose (189), the total concentrations of Cu, Mo and Se were determined by the application of an analytical method based on isotope dilution inductively coupled plasma mass spectrometry. Cu and Mo contents were quantified by measurement of 65Cu/63Cu and 97Mo/100Mo isotopic ratios following spiking with 65Cu and 97Mo and digestion with nitric acid. Selenium was separated as hydrogen selenide from the matrix using sodium borohydride after spiking with 82Se and acid digestion-dry ashing and quantified by measurement of the 82Se/78Se isotopic ratio. Comparison of these results with those from a variety of other methods and assessment of the procedures using certified reference materials indicated that the determinations of Cu, Mo and Se were performed without analytical bias. (orig.)

  4. Physico-chemical characterization and biological evaluation of two fibroin materials.

    Science.gov (United States)

    Motta, Antonella; Segnana, Paola; Verin, Lucia; La Monica, Silvia; Fumarola, Claudia; Bucci, Giovanna; Gussago, Francesca; Cantoni, Anna Maria; Ampollini, Luca; Migliaresi, Claudio

    2014-11-01

    Silk fibroin fibres from two different sources, Bombyx mori pure-breed silkworms and polyhybrid cross-bred silkworm cocoons, were treated with formic acid under planar stirring conditions to prepare non-woven nets. The treatment partially dissolved the fibres, which bound together and formed a non-woven micrometric net with fibres coated by a thin layer of low molecular weight fibroin matrix. The starting fibres, net materials and fibroin coating layer were characterized in terms of amino acid composition, molecular weight and calorimetric properties. In vitro cell culture tests with rat fibroblasts were performed to investigate cell proliferation, morphology and spreading. Moreover, host-rat fibroblasts were preseeded on the afore-mentioned nets and implanted in the thorax of rats for histological analysis. In spite of the chemical differences between the two starting fibroins, the response of the said materials in vitro and in vivo were very similar. These results suggest that the outcome is likely correlated with the modification of the processing technique; that during the formation of the net, a thin gel layer of similar amino acid composition was formed on the fibroin fibres.

  5. Fractional derivatives in the transport of drugs across biological materials and human skin

    Science.gov (United States)

    Caputo, Michele; Cametti, Cesare

    2016-11-01

    The diffusion of drugs across a composite structure such as a biological membrane is a rather complex phenomenon, because of its inhomogeneous nature, yielding a diffusion rate and a drug solubility strongly dependent on the local position across the membrane itself. These problems are particularly strengthened in composite structures of a considerable thickness like, for example, the human skin, where the high heterogeneity provokes the transport through different simultaneous pathways. In this note, we propose a generalization of the diffusion model based on Fick's 2nd equation by substituting a diffusion constant by means of the memory formalism approach (diffusion with memory). In particular, we employ two different definitions of the fractional derivative, i.e., the usual Caputo fractional derivative and a new definition recently proposed by Caputo and Fabrizio. The model predictions have been compared to experimental results concerning the permeation of two different compounds through human skin in vivo, such as piroxicam, an anti-inflammatory drug, and 4-cyanophenol, a test chemical model compound. Moreover, we have also considered water penetration across human stratum corneum and the diffusion of an antiviral agent employed as model drugs across the skin of male hairless rats. In all cases, a satisfactory good agreement based on the diffusion with memory has been found. However, the model based on the new definition of fractional derivative gives a better description of the experimental data, on the basis of the residuals analysis. The use of the new definition widens the applicability of the fractional derivative to diffusion processes in highly heterogeneous systems.

  6. Tunable Antireflection Layers for Planar Bolometer Arrays

    Science.gov (United States)

    Brown, Ari-David; Chuss, David; Woolack, Edward; Chervenak, James; Henry, Ross; Wray, James

    2007-01-01

    It remains a challenge to obtain high-efficiency coupling of far-infrared through millimeter radiation to large-format detector arrays. The conventional approach of increasing detector coupling is to use reflective backshorts. However, this approach often results in excessive systematic errors resulting from reflections off the backshort edge. An alternate approach to both increasing quantum efficiency and reducing systematics associated with stray light is to place an antireflective coating near the front surface of the array. When incorporated with a resistive layer and placed behind the detector focal plane, the AR coating can serve to prevent optical ghosting by capturing radiation transmitted through the detector. By etching a hexagonal pattern in silicon, in which the sizes of the hexes are smaller than the wavelength of incident radiation, it is possible to fabricate a material that has a controllable dielectric constant, thereby allowing for simple tunable optical device fabrication. To this end, we have fabricated and tested tunable silicon "honeycomb" AR layers and AR/resistive layer devices. These devices were fabricated entirely out of silicon in order to eliminate problems associated with differential contraction upon detector cooling.

  7. Biologically-Induced Micropitting of Alloy 22, a Candidate Nuclear Waste Packaging Material

    International Nuclear Information System (INIS)

    The effects of potential microbiologically influenced corrosion (MIC) on candidate packaging materials for nuclear waste containment are being assessed. Coupons of Alloy 22, the outer barrier candidate for waste packaging, were exposed to a simulated, saturated repository environment (or microcosm) consisting of crushed rock (tuff) from the Yucca Mountain repository site and a continual flow of simulated groundwater for periods up to five years at room temperature and 30 C. Coupons were incubated with YM tuff under both sterile and non-sterile conditions. Surfacial analysis by scanning electron microscopy of the biotically-incubated coupons show development of both submicron-sized pinholes and pores; these features were not present on either sterile or untreated control coupons. Room temperature, biotically-incubated coupons show a wide distribution of pores covering the coupon surface, while coupons incubated at 30 C show the pores restricted to polishing ridges

  8. Tunable on chip optofluidic laser

    DEFF Research Database (Denmark)

    Bakal, Avraham; Vannahme, Christoph; Kristensen, Anders;

    2015-01-01

    A chip scale tunable laser in the visible spectral band is realized by generating a periodic droplet array inside a microfluidic channel. Combined with a gain medium within the droplets, the periodic structure provides the optical feedback of the laser. By controlling the pressure applied to two...

  9. Isotope ratio analysis of lead in biological materials by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Inductively coupled plasma mass spectrometry (ICP-MS) allowed 0.2-0.3% imprecision (1 sigma) in 204Pb/206Pb 207Pb/'206Pb, and 208Pb/206Pb measurements at the 20-100 ppb level, which was precise enough to detect some of the isotopic variations observed in nature. Mass discrimination could be corrected within ±0.5% of the true value by periodical analysis of standard reference material of known lead isotopic composition. As a separation method for lead in human bone, which contains enormous amounts of calcium and phosphorus, anion exchange of the Pb-Br complex was found to be effective. Lead isotope ratios in bone, measured by ICP-MS after separation, were consistent with those measured by thermal ionization mass spectrometry. Hair matrix did not have any influence on the accuracy and precision of the analysis; a digested sample could be directly analyzed and this offered rapid sample throughput. Preliminary data on lead isotope ratios in bone and hair from prehistoric and contemporary Japanese are presented. (author)

  10. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Berry, D.L.

    1979-01-01

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days.

  11. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material.

    Science.gov (United States)

    Mulopo, Jean; Schaefer, L

    2015-01-01

    This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3+ are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous iron oxidation and may probably affect the oxidation rate. In this study, the effect of nutrients and trace minerals on ferrous iron oxidation have been investigated and the results showed that the presence of nutrients and trace minerals affects the efficiency of bacterial Fe2+oxidation. The scanning electron microscopy analysis of the geotextile support material was also conducted and the results showed that the iron precipitate deposits appear to play a direct role on the bacterial biofilm formation. PMID:26038932

  12. Aspects of accuracy and precision in the determination of As and Sb in biological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Aspects of accuracy and precision on the analysis of As and Sb in biological materials using neutron activation with post-irradiation separation are discussed. The separation technique is based on hydride generation. The average yield is over 98% for As and over 95% for Sb, but differences between samples necessitate a yield determination for each sample. Both radiotracers and reactivation have been applied and their practical use for yield correction is discussed. Under optimised conditions, As in NBS SRM 1577A has been analysed to be 45.5 ± 0.7 μg/kg (N = 4), while the Sb-content points to 2.3 ± 1.0 μg/kg (N = 11). 3 figs.; 20 refs.; 5 tabs

  13. Evaluation of some procedures relevant to the determination of trace elemental components in biological materials by destructive neutron activation analysis

    International Nuclear Information System (INIS)

    The development of a simplified procedure for the analysis of biological materials by destructive neutron activation analysis (DNAA) is described. The sample manipulations preceding gamma ray assay were investigated as five specific stages of processing: (1) pre-irradiation treatment; (2) sample irradiation; (3) removal of the organic matrix; (4) removal of interfering radioactivities; and (5) concentration and separation of analyte activities. Each stage was evaluated with respect to susceptibility to sample contamination, loss of trace elemental components, and compatibility with other operations in the overall DNAA procedures. A complete DNAA procedure was proposed and evaluated for the analysis of standard bovine liver and blood samples. The DNAA system was effective for the determination of As, Cu, Fe, Hg, Mo, Rb, Sb, Se, and Zn without yield determinations and with a minimum turn-around time of approximately 3 days

  14. Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks.

    Science.gov (United States)

    Wei, Yanhui; Dong, Haiyun; Wei, Cong; Zhang, Wei; Yan, Yongli; Zhao, Yong Sheng

    2016-09-01

    A wavelength-tunable microlaser is realized based on the controlled intramolecular charge transfer (ICT) process in dye-encapsulated metal-organic framework (MOF) material. The confinement effect of the MOFs is beneficial for low-threshold lasing. By effectively controlling the polarity of the MOF pores, the population distribution between the locally excited and ICT states is continuously modulated, thus achieving broadband tunable MOF-based microlasers. PMID:27314453

  15. Wavelength-Tunable Microlasers Based on the Encapsulation of Organic Dye in Metal-Organic Frameworks.

    Science.gov (United States)

    Wei, Yanhui; Dong, Haiyun; Wei, Cong; Zhang, Wei; Yan, Yongli; Zhao, Yong Sheng

    2016-09-01

    A wavelength-tunable microlaser is realized based on the controlled intramolecular charge transfer (ICT) process in dye-encapsulated metal-organic framework (MOF) material. The confinement effect of the MOFs is beneficial for low-threshold lasing. By effectively controlling the polarity of the MOF pores, the population distribution between the locally excited and ICT states is continuously modulated, thus achieving broadband tunable MOF-based microlasers.

  16. Comparison between liquid and solid tunable focus lenses

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Alvarado, A; Cruz-Martinez, V M [Universidad Tecnologica de la Mixteca, Carre. Acatlima Km 2.5 Huajuapan de Leon Oaxaca (Mexico); Vazquez-Montiel, S; Munoz-Lopez, J; Diaz-Gonzalez, G [Instituto Nacional de Astrofisica, Optica y Electronica Luis Enrique Erro 1, Tonantzintla Puebla (Mexico); Campos-Garcia, M, E-mail: santiago@mixteco.utm.mx [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-186, 04510, D.F. Mexico (Mexico)

    2011-01-01

    Nowadays more reports in the use of tunable lenses are reported, it is due to the benefits they offer in optical systems design. A tunable lens is an optical system that can focus on a range of positions by changing dynamically one of its geometric parameters. There are several types of tunable lenses, the most known types are the liquid, the solid elastic, with variable refractive index, and lenses that use a dielectric medium. This paper presents the analysis and opto-mechanical design of two tunable lenses, a liquid lens and another Solid Elastic Lens (SEL). Both lenses are made in mounting aluminium and polydimethylsiloxane (PDMS) as refractor medium, the liquid lens use two elastic membranes containing a liquid medium between them while the SEL only use PDMS material as body of the lens (medium refractor). We describe the opto-mechanical performance of both types of lens highlighting the main features of each. Finally, results of a opto-functional comparison between these prototypes are showed.

  17. Visible tunable source

    International Nuclear Information System (INIS)

    We planned four tasks for the second phase of this project; these are: study the effect of different grating materials; study the effect of different grating shapes; study the effect of anisotropic conductivity, and optimize the resonator configuration. Because the measurement techniques involved in the first two tasks are similar, the studies on different grating materials and shapes are discussed together. We are conducting two more experiments which were not originally planned. An experiment with a high current pulsed e-beam generator is presented and a measurement of radiation as a function of beam thickness is reported

  18. Biological regeneration of carrier material for the adsorption of halogen hydrocarbons in plants for cleaning up contaminated groundwater. Final report

    International Nuclear Information System (INIS)

    Halogen hydrocarbons and above all chlorinated hydrocarbons are widespread harmful substances in soils and in groundwater. When cleaning up groundwater contamination, the contaminants are brought into the gas phase by strip processes. From the gas phase, the contaminants can be adsorbed on different carrier materials, mostly active carbon. One was searching for ways to regenerate this adsorption material. The mixed culture from a sea sediment most suitable for the decomposition of chlorinated hydrocarbons was optimized regarding its decomposition performance and was later used on the technical scale. In the decomposition experiments on the large technical scale, the cultures were lodged on filling bodies which has a much higher amount of gaps. In this case, an optimum supply of the micro-organisms with oxygen and methane is guaranteed, which is used as co-substrate. No intermediate product was found in a gas chromatography examination. The biologically occupied stage is situated between a desorption column and the active carbon filters, and reduces the load of harmful substances which can no longer be brought into the gas phase by stripping out. This has the advantage that it can be integrated in existing plants and can be adapted to any case of contamination by lodging adapted micro-organisms on it. The basis for each application must be separately researched. (orig.)

  19. Electro-optical tunable birefringent filter

    Energy Technology Data Exchange (ETDEWEB)

    Levinton, Fred M. (Princeton, NJ)

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  20. Tunable Magnetic Resonance in Microwave Spintronics Devices

    Science.gov (United States)

    Chen, Yunpeng; Fan, Xin; Xie, Yunsong; Zhou, Yang; Wang, Tao; Wilson, Jeffrey D.; Simons, Rainee N.; Chui, Sui-Tat; Xiao, John Q.

    2015-01-01

    Magnetic resonance is one of the key properties of magnetic materials for the application of microwave spintronics devices. The conventional method for tuning magnetic resonance is to use an electromagnet, which provides very limited tuning range. Hence, the quest for enhancing the magnetic resonance tuning range without using an electromagnet has attracted tremendous attention. In this paper, we exploit the huge exchange coupling field between magnetic interlayers, which is on the order of 4000 Oe and also the high frequency modes of coupled oscillators to enhance the tuning range. Furthermore, we demonstrate a new scheme to control the magnetic resonance frequency. Moreover, we report a shift in the magnetic resonance frequency as high as 20 GHz in CoFe based tunable microwave spintronics devices, which is 10X higher than conventional methods.

  1. Hybrid interlayer excitons with tunable dispersion relation

    Science.gov (United States)

    Skinner, Brian

    When two semiconducting materials are layered on top of each other, interlayer excitons can be formed by the Coulomb attraction of an electron in one layer to a hole in the opposite layer. The resulting exciton is a composite boson with a dispersion relation that is a hybrid between the dispersion relations of the electron and the hole separately. In this talk I show how such hybridization is particularly interesting when one layer has a ``Mexican hat''-shaped dispersion relation and the other has a conventional parabolic dispersion. In this case the interlayer exciton can have a range of qualitatively different dispersion relations, which can be continuously altered by an external field. This tunability in principle allows one to continuously tune a collection of interlayer excitons between different quantum many-body phases, including Bose-Einstein condensate, Wigner crystal, and fermion-like ``moat band'' phases.

  2. Highly stable piezoelectrically tunable optical cavities

    CERN Document Server

    Möhle, Katharina; Döringshoff, Klaus; Nagel, Moritz; Peters, Achim

    2013-01-01

    We have implemented highly stable and tunable frequency references using optical high finesse cavities which incorporate a piezo actuator. As piezo material we used ceramic PZT, crystalline quartz, or PZN-PT single crystals. Lasers locked to these cavities show a relative frequency stability better than 1 x 10^{-14}, which is most likely not limited by the piezo actuators. The piezo cavities can be electrically tuned over more than one free spectral range (> 1.5 GHz) with only a minor decrease in frequency stability. Furthermore, we present a novel cavity design, where the piezo actuator is prestressed between the cavity spacer components. This design features a hermetically sealable intra cavity volume suitable for, e.g., cavity enhanced spectroscopy.

  3. Nanostructured electrocatalysts with tunable activity and selectivity

    Science.gov (United States)

    Mistry, Hemma; Varela, Ana Sofia; Kühl, Stefanie; Strasser, Peter; Cuenya, Beatriz Roldan

    2016-04-01

    The field of electrocatalysis has undergone tremendous advancement in the past few decades, in part owing to improvements in catalyst design at the nanoscale. These developments have been crucial for the realization of and improvement in alternative energy technologies based on electrochemical reactions such as fuel cells. Through the development of novel synthesis methods, characterization techniques and theoretical methods, rationally designed nanoscale electrocatalysts with tunable activity and selectivity have been achieved. This Review explores how nanostructures can be used to control electrochemical reactivity, focusing on three model reactions: O2 electroreduction, CO2 electroreduction and ethanol electrooxidation. The mechanisms behind nanoscale control of reactivity are discussed, such as the presence of low-coordinated sites or facets, strain, ligand effects and bifunctional effects in multimetallic materials. In particular, studies of how particle size, shape and composition in nanostructures can be used to tune reactivity are highlighted.

  4. Tunable plasmonic lattices of silver nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2008-02-18

    Silver nanocrystals are ideal building blocks for plasmonicmaterials that exhibit a wide range of unique and potentially usefuloptical phenomena. Individual nanocrystals display distinct opticalscattering spectra and can be assembled into hierarchical structures thatcouple strongly to external electromagnetic fields. This coupling, whichis mediated by surface plasmons, depends on their shape and arrangement.Here we demonstrate the bottom-up assembly of polyhedral silvernanocrystals into macroscopic two-dimensional superlattices using theLangmuir-Blodgett technique. Our ability to control interparticlespacing, density, and packing symmetry allows for tunability of theoptical response over the entire visible range. This assembly strategyoffers a new, practical approach to making novel plasmonic materials forapplication in spectroscopic sensors, sub-wavelength optics, andintegrated devices that utilize field enhancement effects.

  5. Applications - Some Influences of Engineering Ideas on Biology Being the fifth in a series of essays on the materials of nature

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent

    2006-01-01

    Ideas from engineering have helped the understanding of biological organisms for thousands of years. However, the mechanical aspects of biological materials and structures can, if properly interpreted and analysed, lead to a deeper understanding of the biology of organisms. Such an approach, although always current in some form, is nevertheless subject to the vagaries of fashion and the availability of analytical techniques. At present we are in a period of upturn. Areas of interest are deployable structures (applications in aerospace), palaeontology (how little do we need to know in order to create a credible biosphere) and food science (we need a rational approach to the mechanics of food).

  6. Tunable elastin-mimetic multiblock hybrid copolymers for biomedical applications

    Science.gov (United States)

    Grieshaber, Sarah Elizabeth

    Elastin-mimetic hybrid polymers (EMHPs) have been developed to capture the multiblock molecular architecture of tropoelastin, allowing tunability in chemical, structural, biological, and mechanical properties. Multiblock EMHPs containing flexible synthetic segments were first synthesized via step growth polymerization of diazido-poly(ethylene glycol) (PEG) and alkyne-terminated AKA3KA (K = lysine, A = alanine) (AK2) peptide employing copper (I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC, or orthogonal click chemistry). Covalent crosslinking of the EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residues in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 +/- 0.018 MPa when hydrated. xEMHPs exhibited minimal cytotoxicity to primary porcine vocal fold fibroblasts. The modular nature of the synthesis allowed facile adjustment of the peptide sequence to modulate the structural and the biological properties of EMHPs. Thus, EMHPs containing integrin-binding peptides were constructed using di-azido-PEG and an alkyne-terminated AK2 peptide with a terminal, integrin-binding GRGDSP domain via the step growth click coupling reaction. Hydrogels formed by covalent crosslinking of the RGD-containing EMHPs had a compressive modulus of 1.06 +/- 0.1MPa when hydrated. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h, and to spread and develop F-actin filaments 24 h post seeding. NHDF proliferation was only observed on hydrogels containing RGD domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. The tunability of the EMHP system was further investigated by development of self-assembling, pH-responsive multiblock polymers composed of alternating domains of poly(acrylic acid) (PAA) and a peptide derived from the hydrophobic domains of elastin with the sequence (VPGVG)2 (VG2). The

  7. Carbon Stable Isotope Analysis of Methylmercury Toxin in Biological Materials by Gas Chromatography Isotope Ratio Mass Spectrometry.

    Science.gov (United States)

    Masbou, Jeremy; Point, David; Guillou, Gaël; Sonke, Jeroen E; Lebreton, Benoit; Richard, Pierre

    2015-12-01

    A critical component of the biogeochemical cycle of mercury (Hg) is the transformation of inorganic Hg to neurotoxic monomethylmercury (CH3Hg). Humans are exposed to CH3Hg by consuming marine fish, yet the origin of CH3Hg in fish is a topic of debate. The carbon stable isotopic composition (δ(13)C) embedded in the methyl group of CH3Hg remains unexplored. This new isotopic information at the molecular level is thought to represent a new proxy to trace the carbon source at the origin of CH3Hg. Here, we present a compound-specific stable isotope analysis (CSIA) technique for the determination of the δ(13)C value of CH3Hg in biological samples by gas chromatography combustion isotope ratio mass spectrometry analysis (GC-C-IRMS). The method consists first of calibrating a CH3Hg standard solution for δ(13)C CSIA. This was achieved by comparing three independent approaches consisting of the derivatization and halogenation of the CH3Hg standard solution. The determination of δ(13)C(CH3Hg) values on natural biological samples was performed by combining a CH3Hg selective extraction, purification, and halogenation followed by GC-C-IRMS analysis. Reference δ(13)C values were established for a tuna fish certified material (ERM-CE464) originating from the Adriatic Sea (δ(13)C(CH3Hg) = -22.1 ± 1.5‰, ± 2 SD). This value is similar to the δ(13)C value of marine algal-derived particulate organic carbon (δ(13)CPOC = -21‰).

  8. Focusing Mirror with Tunable Eccentricity

    CERN Document Server

    Stürmer, Moritz; Brunne, Jens; Wallrabe, Ulrike

    2013-01-01

    We present a new kind of varifocal mirror with independently adjustable curvatures in the major directions. For actuation we use two stacked piezo bending actuators with crossed in-plane polarization. This mirror can be used for example as an off-axis focusing device with tunable focal length and compensation for a variable angle of incidence or for coma correction. We demonstrate the prototype of such a mirror and characterize the mechanical deflection, as well as the focusing capabilities.

  9. Utilization of liquid human wastes and introduction into the material cycling in biological life-support systems

    Science.gov (United States)

    Kovaleva, N. P.>; Ushakova, S. A.; Gribovskaya, I. V.; Kudenko, U. A.

    The possibilities of step-by-step utilization of liquid human wastes in biological life-support systems on long-functioning space stations have been considered in this work. Utilization involves "wet" urine incineration with hydrogen peroxide at normal pressure and 90 - 95°C temperature, urease-enzymic decomposition of urine and biological desalination in the higher plant link. The soybean flour was used as a source of urease. Growing soya plants as a component of the higher plant link would give a steady source of urease to the system. To decompose urea (9-15g) contained in 1l of incinerated urine we used 0.5 - 1 g of soy flour. The duration of hydrolysis of daily urea excreted by a human is 70 - 95 hours. It is supposed that ammonia excreted in the reaction of urea decomposition will be processed by nitrifying bacteria. The concentration of total nitrogen in urine after urea hydrolysis and removal of ammonia formed during the reaction constituted 0.6 - 1.2 g/l. Further biological desalination was carried out in the higher plant link, for that the edible salt-accumulating halophytes Salicornia europaea were used. To grow this plant under the aqueous culture conditions, the urine was additionally mineralized at 180 °C after incineration and decomposition of urea. The process of additional mineralization was related to the necessity of removal of organic materials and nitrogen residues, which higher concentration under the aqueous culture conditions has negative effect on plants. The volume of the nutrient solution for growing 6 plants of Salicornia europaea was 1.5 l (daily norm of urine excreted by human), the planting area was 0.032 m2. By the end of vegetation the productivity and mineral composition of Salicornia europaea plants were analyzed. The productivity of plants grown on liquid human wastes (the experiment) practically was not different from the productivity of plants grown on the mineral solution with sodium chloride (checkout). In experimental

  10. Heterogeneously grown tunable group-IV laser on silicon

    Science.gov (United States)

    Hudait, Mantu; Clavel, M.; Lester, L.; Saladukha, D.; Ochalski, T.; Murphy-Armando, F.

    2016-02-01

    Tunable tensile-strained germanium (epsilon-Ge) thin films on GaAs and heterogeneously integrated on silicon (Si) have been demonstrated using graded III-V buffer architectures grown by molecular beam epitaxy (MBE). epsilon-Ge epilayers with tunable strain from 0% to 1.95% on GaAs and 0% to 1.11% on Si were realized utilizing MBE. The detailed structural, morphological, band alignment and optical properties of these highly tensile-strained Ge materials were characterized to establish a pathway for wavelength-tunable laser emission from 1.55 μm to 2.1 μm. High-resolution X-ray analysis confirmed pseudomorphic epsilon-Ge epitaxy in which the amount of strain varied linearly as a function of indium alloy composition in the InxGa1-xAs buffer. Cross-sectional transmission electron microscopic analysis demonstrated a sharp heterointerface between the epsilon-Ge and the InxGa1-xAs layer and confirmed the strain state of the epsilon-Ge epilayer. Lowtemperature micro-photoluminescence measurements confirmed both direct and indirect bandgap radiative recombination between the Γ and L valleys of Ge to the light-hole valence band, with L-lh bandgaps of 0.68 eV and 0.65 eV demonstrated for the 0.82% and 1.11% epsilon-Ge on Si, respectively. The highly epsilon-Ge exhibited a direct bandgap, and wavelength-tunable emission was observed for all samples on both GaAs and Si. Successful heterogeneous integration of tunable epsilon-Ge quantum wells on Si paves the way for the implementation of monolithic heterogeneous devices on Si.

  11. Molecularly Tunable Fluorescent Quantum Defects.

    Science.gov (United States)

    Kwon, Hyejin; Furmanchuk, Al'ona; Kim, Mijin; Meany, Brendan; Guo, Yong; Schatz, George C; Wang, YuHuang

    2016-06-01

    We describe the chemical creation of molecularly tunable fluorescent quantum defects in semiconducting carbon nanotubes through covalently bonded surface functional groups that are themselves nonemitting. By variation of the surface functional groups, the same carbon nanotube crystal is chemically converted to create more than 30 distinct fluorescent nanostructures with unique near-infrared photoluminescence that is molecularly specific, systematically tunable, and significantly brighter than that of the parent semiconductor. This novel exciton-tailoring chemistry readily occurs in aqueous solution and creates functional defects on the sp(2) carbon lattice with highly predictable C-C bonding from virtually any iodine-containing hydrocarbon precursor. Our new ability to control nanostructure excitons through a single surface functional group opens up exciting possibilities for postsynthesis chemical engineering of carbon nanomaterials and suggests that the rational design and creation of a large variety of molecularly tunable quantum emitters-for applications ranging from in vivo bioimaging and chemical sensing to room-temperature single-photon sources-can now be anticipated. PMID:27159413

  12. Tunable Liquid Dielectric Antenna

    Directory of Open Access Journals (Sweden)

    Kamal Raj Singh Rajoriya

    2012-06-01

    Full Text Available This paper presents on modified the dielectric properties of liquid with varying salinity that was based on monopole structure. Dielectric resonator antennas (DRAs can be made with a wide range of materials and allow many excitation methods [2]. Pure water does not work at high frequency (> 1 GHz but increase in the salinity of water modifies the dielectric properties of water. Here proposed antenna shows that when the salinity increases in form of molar solution, the antenna was tuned at different frequency with increases return loss.

  13. Experimental Study of Integrated Tunable Transformer

    OpenAIRE

    Shima, Hideki; Matsuoka, Toshimasa; Taniguchi, Kenji

    2005-01-01

    A new tunable integrated transformer topology together with its tuning method is presented. The proposed tunable topology consists of a conventional tapped transformer and a coupled inductor. The phase shift between the input power into the primary winding and that into the coupled inductor was used to control the electrical characteristics such as maximum stable gain, input impedance and quality factor. The new tunable transformer achieved about 3dB higher maximum stable gain and 2.8 times h...

  14. Application of X ray fluorescence techniques for the determination of hazardous and essential trace elements in environmental and biological materials

    International Nuclear Information System (INIS)

    Full text: The utilization of X ray fluorescence (XRF) technique for the determination of trace element concentrations in environmental and biological samples is presented. The analytical methods used include energy dispersive X ray fluorescence (EDXRF), total reflection X ray fluorescence (TXRF), micro-beam X ray fluorescence and direct in situ X-ray fluorescence analysis. The measurements have been performed with X ray tube- and radioisotope-based energy dispersive X ray fluorescence spectrometers. Both liquid nitrogen- and thermo electrically-cooled silicon detectors were utilized in the analysis. Samples analysed include soil, water, plant material, and airborne particulate matter collected on filters. Depending on the technique and the investigated elements, the above-mentioned samples were analysed either directly or indirectly (after decomposing the sample in a mineralization process or/and chemical preconcentration procedure). The achieved detection limits for different techniques, established by measuring appropriate reference standards, are presented. The utilization of the micro-beam XRF technique for studying element distribution in heterogeneous samples and investigating the 3D- and 2D-morphology of minute samples by means of computerized X ray absorption and X ray fluorescence tomography is described. The different X ray techniques have their unique advantages. The micro-beam X ray fluorescence set-up has an advantage of producing very well collimated primary X ray beam (by means of X ray capillary optics the beam is collimated down to about 15 μm in diameter), in front of which the analysed sample can be precisely positioned, providing local information about the sample composition. TXRF technique has its leading edge in analysis of liquid samples, and as a reference method for a conventional bulk EDXRF analysis of heterogeneous materials such as air particulates collected on filter where the particle size effects can seriously influence the

  15. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  16. Creating biological nanomaterials using synthetic biology

    Directory of Open Access Journals (Sweden)

    MaryJoe K Rice

    2014-01-01

    Full Text Available Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  17. 纤维素生物活性材料的种类及应用%The types and application of cellulosic Materials with biological activity

    Institute of Scientific and Technical Information of China (English)

    柳春; 宁玉娟; 史磊; 蓝丽; 陈专; 吕旷

    2013-01-01

    纤维素的功能化一直是人们研究的热点,近年来又涌现出一批以纤维素为基准的具有生物性的活性材料。文章主要论述了以纤维素为基准的细菌纤维素、复合材料、纤维素硫酸钠材料等具有生物活性材料的种类与应用。%Cellulose functional materials has been a challenge for researchers, this year has emerged a group of cellulose as the biological function of the substrate material. This paper summarizes the types and application of the bacterial cellulose, cellulose-based, composite materials, and sodium cellulose with biological materials.

  18. [Simultaneous determination of tributyltin and its metabolites, dibutyltin and monobutyltin, in biological materials by capillary gas chromatography].

    Science.gov (United States)

    Ohhira, S; Matsui, H

    1989-05-01

    Determination of tributyltin and its metabolites, dibutyltin and monobutyltin, in biological materials was made by capillary gas chromatography (C-GC) using a flame photometric detector (FPD). Butyltin compounds (BuTC) were extracted (as bromides) from tissue homogenates with hydrobromic acid and ethyl acetate. These compounds were converted to pentyl derivatives with pentyl Grignard reagent and then analysed by C-GC. The recoveries of each BuTC added to tissues were 96-99% for monobutyltin, 87-93% for dibutyltin and 90-93% for tributyltin. The detection limit of BuTC was 4-5 pg as tin. This method was applied to the analysis of BuTC in the liver and kidney of rats orally administered tributyltin chloride. Time course of three BuTC showed that the maximum value appeared 24 h after administration of the tin compound, which was followed by a rapid decrease. The order of the concentration of BuTC in both organs was dibutyltin greater than tributyltin greater than monobutyltin. The rate of dealkylation was more rapid in liver than in kidney. PMID:2795985

  19. Tunable TiN or NbTiN resonators and couplers using nonlinear kinetic inductance for superconducting qubits

    Science.gov (United States)

    Vissers, Michael; Gao, Jiansong; Bockstiegel, Clint; Sandberg, Martin; Pappas, David

    2014-03-01

    Nitride superconductors such as TiN and NbTiN have a nonlinear kinetic inductance when driven at high current. Using this current-tunable reactance, we have designed superconducting devices that are tunable with a DC current without using Josephson junctions. We show that when the DC current is directly coupled to a lumped element resonator, the resonant frequency can be tuned by >4% without inducing loss. In other circuits, we can use a DC current to independently tune the coupling of a long microwave transmission line to a standard superconducting resonator from zero to maximum coupling. In addition to characterizing the non-linear current response of these materials, these tunable devices could be used as a tunable coupler in transmon qubits, by adjusting the strength of the cavity's Purcell effect to the qubit as needed. They also have potential to be used as tunable filters or parametric amplifiers in superconducting circuits.

  20. Mass-spectrometric identification of primary biological particle markers: indication for low abundance of primary biological material in the pristine submicron aerosol of Amazonia

    Directory of Open Access Journals (Sweden)

    J. Schneider

    2011-07-01

    Full Text Available The abundance of marker compounds for primary biological particles in submicron aerosol was investigated by means of aerosol mass spectrometry. Mass spectra of amino acids, carbohydrates, small peptides, and proteins, all of which are key building blocks of biological particles, were recorded in laboratory experiments. Several characteristic marker peaks were identified. The identified marker peaks were compared with mass spectra recorded during AMAZE-08, a field campaign conducted in the pristine rainforest of the Central Amazon Basin, Brazil, during the wet season of February and March 2008. The low abundance of identified marker peaks places upper limits of 7.5 % for amino acids and 5.6 % for carbohydrates on the contribution of primary biological aerosol particles (PBAPs to the submicron organic aerosol mass concentration during this time period. Upper limits for the absolute submicron concentrations for both compound classes range from 0.01 to 0.1 μg m−3. Carbohydrates and protein amino acids make up for about two thirds of the dry mass of a biological cell. Thus, our findings suggest an upper limit for the PBAPs mass fraction of about 20 % to the submicron organic aerosol.

  1. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Wang Yuxia; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.cn [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2012-02-15

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 {mu}g/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 {mu}g/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  2. Two-stage coal liquefaction process materials from the Wilsonville Facility operated in the nonintegrated and integrated modes: chemical analyses and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.

    1985-01-01

    This document reports the results from chemical analyses and biological testing of process materials sampled during operation of the Wilsonville Advanced Coal Liquefaction Research and Development Facility (Wilsonville, Alabama) in both the noncoupled or nonintegrated (NTSL Run 241) and coupled or integrated (ITSL Run 242) two-stage liquefaction operating modes. Mutagenicity and carcinogenicity assays were conducted in conjunction with chromatographic and mass spectrometric analyses to provide detailed, comparative chemical and biological assessments of several NTSL and ITSL process materials. In general, the NTSL process materials were biologically more active and chemically more refractory than analogous ITSL process materials. To provide perspective, the NTSL and ITSL results are compared with those from similar testing and analyses of other direct coal liquefaction materials from the solvent refined coal (SRC) I, SRC II and EDS processes. Comparisons are also made between two-stage coal liquefaction materials from the Wilsonville pilot plant and the C.E. Lummus PDU-ITSL Facility in an effort to assess scale-up effects in these two similar processes. 36 references, 26 figures, 37 tables.

  3. Tunable nanostructured coating for the capture and selective release of viable circulating tumor cells.

    Science.gov (United States)

    Reátegui, Eduardo; Aceto, Nicola; Lim, Eugene J; Sullivan, James P; Jensen, Anne E; Zeinali, Mahnaz; Martel, Joseph M; Aranyosi, Alexander J; Li, Wei; Castleberry, Steven; Bardia, Aditya; Sequist, Lecia V; Haber, Daniel A; Maheswaran, Shyamala; Hammond, Paula T; Toner, Mehmet; Stott, Shannon L

    2015-03-01

    A layer-by-layer gelatin nanocoating is presented for use as a tunable, dual response biomaterial for the capture and release of circulating tumor cells (CTCs) from cancer patient blood. The entire nanocoating can be dissolved from the surface of microfluidic devices through biologically compatible temperature shifts. Alternatively, individual CTCs can be released through locally applied mechanical stress. PMID:25640006

  4. The Development of Biology Teaching Material Based on the Local Wisdom of Timorese to Improve Students Knowledge and Attitude of Environment in Caring the Preservation of Environment

    Science.gov (United States)

    Ardan, Andam S.

    2016-01-01

    The purposes of this study were (1) to describe the biology learning such as lesson plans, teaching materials, media and worksheets for the tenth grade of High School on the topic of Biodiversity and Basic Classification, Ecosystems and Environment Issues based on local wisdom of Timorese; (2) to analyze the improvement of the environmental…

  5. A spectrally tunable plasmonic photosensor with an ultrathin semiconductor region

    CERN Document Server

    Xiao, Shuyuan; Jiang, Xiaoyun; Wang, Boyun; Xu, Chen

    2016-01-01

    Surface plasmon resonance (SPR) has been widely utilized to improve the absorption performance in the photosensors. Graphene has emerged as a promising plasmonic material, which supports tunable SPR and shows significant flexibility over metals. In this letter, a hybrid photosensor based on the integration of periodic cross-shaped graphene arrays with an ultrathin light-absorbing semiconductor is proposed. A tenfold absorption enhancement over a large range of the incidence angle for both light polarizations as well as a considerably high photogeneration rate ($\\sim10^{37}$) is demonstrated at the resonance. Compared with traditional metal-based plasmon-enhanced photosensors, the absorption enhancement here can be expediently tuned with manipulating the Fermi energy of graphene. The proposed photosensor can amplify the photoresponse to the incidence light at the selected wavelength and thus be utilized in photosensing with high efficiency and tunable spectral selectivity in the mid-infrared (mid-IR) and terah...

  6. Tunable photonic bandgap fiber based devices for optical networks

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Rottwitt, Karsten;

    2005-01-01

    In future all optical networks one of the enabling technologies is tunable elements including reconfigurable routers, switches etc. Thus, the development of a technology platform that allows construction of tuning components is critical. Lately, microstructured optical fibers, filled with liquid...... crystals, have proven to be a candidate for such a platform. Microstructured optical fibers offer unique wave-guiding properties that are strongly related to the design of the air holes in the cladding of the fiber. These wave-guiding properties may be altered by filling the air holes with a material, for...... example a liquid crystal that changes optical properties when subjected to, for example, an optical or an electrical field. The utilization of these two basic properties allows design of tunable optical devices for optical networks. In this work, we focus on applications of such devices and discuss recent...

  7. Dynamic Processes in Biology, Chemistry, and Materials Science: Opportunities for UltraFast Transmission Electron Microscopy - Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabius, Bernd C.; Browning, Nigel D.; Thevuthasan, Suntharampillai; Diehl, Barbara L.; Stach, Eric A.

    2012-07-25

    mission. This workshop built on previous workshops and included three breakout sessions identifying scientific challenges in biology, biogeochemistry, catalysis, and materials science frontier areas of fundamental science that underpin energy and environmental science that would significantly benefit from ultrafast transmission electron microscopy (UTEM). In addition, the current status of time-resolved electron microscopy was examined, and the technologies that will enable future advances in spatio-temporal resolution were identified in a fourth breakout session.

  8. Cellulose nanocrystal and poly[di(ethylene glycol) adipate] blend for tunable lens

    Science.gov (United States)

    Ko, Hyun-U.; Kim, Hyun Chan; Li, Yaguang; Kim, Sang Youn; Kim, Jaehwan

    2016-04-01

    In these days, consumer electronics and medical device for optical diagnosis are minimalized and mobilized. The focusing part is one of crucial parts of optical diagnosis systems to reduce the size and weight. Thus, demand for tunable lens that change the focus itself is increased. To meet the demand, many tunable lens has been studied by utilizing smart materials that responded under mechanical, magnetic, optical, thermal, chemical, electrical or electrochemical stimuli. This paper reports a cellulose nanocrystal (CNC) and poly[di(ethylene glycol) adipate] (PDEGA) blend that is able to respond under electromechanical stimulus. The preparation of CNC/PDEGA and its characterization are illustrated and its actuation behavior is tested . Because the material has high dielectric constant and high reflection index, it is good candidate material for tunable lens.

  9. Narrow-linewidth and tunable fiber lasers

    OpenAIRE

    Morkel, P.R.

    1993-01-01

    1. Introduction 2. Line-narrowed fiber laser devices Integral fiber reflective Bragg grating lasers Intra-cavity etalon laser 3. Tunable, line narrowed fiber laser devices Ring lasers using wavelength selective couplers Tunable lasers using bulk-optic components a) Mechanical tuning b) Electronic tuning 4. Single frequency fiber lasers Integral fiber reflective Bragg grating laser Interferometric cavity laser Injection locked laser Travellin...

  10. Tunable Fiber Gratings and Their Applications

    Institute of Scientific and Technical Information of China (English)

    Z.; Fang; L.; Zhao; L.; Li; K.; Gao; Y.; Zhou; J.; Geng; R.; Qu; G.; Chen

    2003-01-01

    Some practical research topics on tunable fiber gratings in author's group are presented, including tuning speed, tuning range, tuning characteristics of gratings in HB fiber, and the tunability of the line-width. The applications of fiber gratings in communication and sensing are also discussed.

  11. X-ray lithography and small-angle X-ray scattering: a combination of techniques merging biology and materials science.

    Science.gov (United States)

    Marmiroli, B; Amenitsch, H

    2012-10-01

    The advent of micro/nanotechnology has blurred the border between biology and materials science. Miniaturization of chemical and biological assays, performed by use of micro/nanofluidics, requires both careful selection of the methods of fabrication and the development of materials designed for specific applications. This, in turn, increases the need for interdisciplinary combination of suitable microfabrication and characterisation techniques. In this review, the advantages of combining X-ray lithography, as fabrication technique, with small-angle X-ray scattering measurements will be discussed. X-ray lithography enables the limitations of small-angle X-ray scattering, specifically time resolution and sample environment, to be overcome. Small-angle X-ray scattering, on the other hand, enables investigation and, consequently, adjustment of the nanostructural morphology of microstructures and materials fabricated by X-ray lithography. Moreover, the effect of X-ray irradiation on novel materials can be determined by use of small-angle X-ray scattering. The combination of top-down and bottom-up methods to develop new functional materials and structures with potential in biology will be reported.

  12. Automated extraction of DNA from reference samples from various types of biological materials on the Qiagen BioRobot EZ1 Workstation

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Jørgensen, Mads; Hansen, Anders Johannes;

    2009-01-01

    We have validated and implemented a protocol for DNA extraction from various types of biological materials using a Qiagen BioRobot EZ1 Workstation. The sample materials included whole blood, blood from deceased, buccal cells on Omni swabs and FTA Cards, blood on FTA Cards and cotton swabs......, and muscle biopsies. The DNA extraction was validated according to EN/ISO 17025 for the STR kits AmpFlSTR« Identifiler« and AmpFlSTR« Yfiler« (Applied Biosystems). Of 298 samples extracted, 11 (4%) did not yield acceptable results. In conclusion, we have demonstrated that extraction of DNA from various types...... of biological material can be performed quickly and without the use of hazardous chemicals, and that the DNA may be successfully STR typed according to the requirements of forensic genetic investigations accredited according to EN/ISO 17025...

  13. The prevalence of new psychoactive substances in biological material - a three-year review of casework in Poland.

    Science.gov (United States)

    Adamowicz, Piotr; Gieroń, Joanna; Gil, Dominika; Lechowicz, Wojciech; Skulska, Agnieszka; Tokarczyk, Bogdan

    2016-01-01

    New psychoactive substances (NPS) pose a challenge for forensic and clinical toxicologists, as well as for legislators. We present our findings from cases where NPS have been detected in biological material. During the three-year period 2012-2014 we found NPS in 112 cases (out of 1058 analyzed), with 75 cases in 2014 alone. The prevalence of all NPS (15.1-17.6%) was similar to amphetamine alone that was detected in 15.1-16.5% of cases. The new drugs found belonged to the following classes: cathinones (88%), synthetic cannabinoids (5%), phenethylamines (3%), piperazines and piperidines (3%), arylalkylamines (1%) and other (1%). The drugs detected were (in the order of decreased frequency): 3-MMC (50), α-pyrrolidinopentiophenone (α-PVP) (23), pentedrone (16), 3',4'-methylenedioxy-α-pyrrolidinobutyrophenone (MDPBP) (12), synthetic cannabinoid UR-144 (7), ethcathinone (5), mephedrone (5), methylenedioxypyrovalerone (MDPV) (4), 4-methylethcathinone (4-MEC) (3), buphedrone (3), desoxypipradrol (2-DPMP) (3), methylone (2) and 2C-B (2). In single cases, 2-methylmethcathinone (2-MMC), 2C-P, eutylone, 25I-NBOMe, meta-chlorophenylpiperazine (mCPP), ephedrone, methiopropamine (MPA), and 5-(2-aminopropyl)benzofuran (5-APB) were found. One NPS was the sole agent in 35% of all cases, and two or more NPS were present in 19% of cases. NPS (one or more) with other conventional drugs (like amphetamines, cannabinoids, cocaine, and benzodiazepines) were detected in most (65%) of the cases. NPS were very often detected in the blood of drivers which was a challenge for toxicologists due to a lack of data on their influence on psychomotor performance. A review of concentrations showed a wide range of values in different types of cases, especially driving under the influence of drugs (DUID) and intoxication.

  14. Preparation of biological samples for transmission X-ray microanalysis: a review of alternative procedures to the use of sectioned material

    International Nuclear Information System (INIS)

    Although transmission X-ray microanalysis of biological material has traditionally been carried out mainly on sectioned preparations, a number of alternative procedures exist. These are considered under three major headings - whole cell preparations, analysis of cell homogenates and biological fluids, and applications of the technique to microsamples of purified biochemicals. These three aspects provide a continuous range of investigative level - from the cellular to the molecular. The use of X-ray microanalysis with whole cell preparations is considered in reference to eukaryote (animal) cells and prokaryotes - where it has particular potential in environmental studies on bacteria. In the case of cell homogenates and biological fluids, the technique has been used mainly with microdroplets of animal material. The use of X-ray microanalysis with purified biochemicals is considered in relation to both particulate and non-particulate samples. In the latter category, the application of this technique for analysis of thin films of metalloprotein is particularly emphasised. It is concluded that wider use could be made of the range of preparative techniques available - both within a particular investigation, and in diverse fields of study. Transmission X-ray microanalysis has implications for environmental, physiological and molecular biology as well as cell biology

  15. Program biotechnology 2000. Annual report 1990. Biological process engineering, enzyme technology, cell biology, genetic research, plant-breeding, renewable raw materials. Programm Biotechnologie 2000. Jahresbericht 1990. Bioverfahrenstechnik, Enzymtechnologie, Zellbiologie, Genforschung, Pflanzenzuechtung, Nachwachsende Rohstoffe

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    A brief summary of the results of the Federal Government's program biotechnology 2000 and the system of promoting appropriate activities is followed by a detailed survey of funded projects. The main part contains descriptions of the various projects under defined areas of promotion. The material is subdivided into indexes: project number index, syndicate project index, index with names of firms. The publication closes with an organizational chart of the PT BEO (project-administering organization biology, energy, ecology). (UA).

  16. Informed consent should be obtained from patients to use products (skin substitutes) and dressings containing biological material

    OpenAIRE

    Enoch, S; Shaaban, H; Dunn, K.

    2005-01-01

    Background: Biological products (tissue engineered skin, allograft and xenograft, and biological dressings) are widely used in the treatment of burns, chronic wounds, and other forms of acute injury. However, the religious and ethical issues, including consent, arising from their use have never been addressed in the medical literature.

  17. Tunable magnetocaloric effect in transition metal alloys

    Science.gov (United States)

    Belyea, Dustin D.; Lucas, M. S.; Michel, E.; Horwath, J.; Miller, Casey W.

    2015-10-01

    The unpredictability of geopolitical tensions and resulting supply chain and pricing instabilities make it imperative to explore rare earth free magnetic materials. As such, we have investigated fully transition metal based “high entropy alloys” in the context of the magnetocaloric effect. We find the NiFeCoCrPdx family exhibits a second order magnetic phase transition whose critical temperature is tunable from 100 K to well above room temperature. The system notably displays changes in the functionality of the magnetic entropy change depending on x, which leads to nearly 40% enhancement of the refrigerant capacity. A detailed statistical analysis of the universal scaling behavior provides direct evidence that heat treatment and Pd additions reduce the distribution of exchange energies in the system, leading to a more magnetically homogeneous alloy. The general implications of this work are that the parent NiFeCoCr compound can be tuned dramatically with FCC metal additives. Together with their relatively lower cost, their superior mechanical properties that aid manufacturability and their relative chemical inertness that aids product longevity, NiFeCoCr-based materials could ultimately lead to commercially viable magnetic refrigerants.

  18. A porous silicon thermally tunable optical filter

    Science.gov (United States)

    Song, Da; Tokranova, Natalya; Gracias, Alison; Castracane, James

    2008-02-01

    Porous silicon (PSi) is a promising material for the creation of optical components for chip-to-chip interconnects because of its unique optical properties, flexible fabrication methods and integration with conventional CMOS material sets. In this paper, we present a novel active optical filter made of PSi to select desired optical wavelengths. The tunable membrane type optical filter is based on a Fabry-Perot interferometer employing two Bragg reflectors separated by an adjustable air gap, which can be thermally controlled. The Bragg reflectors contain alternating layers of high and low porosities. These layers were created by electrochemical etching of p+ type silicon wafers by varying the applied current during etching process. Micro bimorph actuators are designed to control the movement of the top DBR mirror, which changes the cavity thickness. By varying the applied current, the proposed filter can tune the transmitted wavelength of the optical signal. Various geometrical shapes and sizes ranging from 100μm to 1mm of the active filtering region have been realized for specific applications. The MOEMS technology-based device fabrication is fully compatible with the existing IC mass fabrication processes, and can be integrated with a variety of active and passive optical components to realize inter-chip or intra-chip communication at the system level at a relatively low cost.

  19. Tunable Achromats and CLIC Applications

    CERN Document Server

    D'Amico, T E

    2000-01-01

    It is imperative for linear colliders that the bunch length be adjustable. In most cases bunch compression is required, but recently, in the design of the Compact LInear Collider (CLIC) RF Power Source, it was shown that bunch stretching may also be necessary. In some situations, both modes may be needed, which implies the need for tunable magnetic insertions. This is even more essential in a test facility, to span a wide experimental range. In addition, flexible tuning provides a better control of the stability of an isochronous insertion. To start a numerical search for a tunable insertion from scratch is very uncertain because the related phase space is very uneven. However, a starting point obtained with an analytical approximation is often sufficient to ensure convergence. Another advantage of the analytical treatment described in this paper is that it sheds light on the shape of the entire phase space. To achieve this the isochronous achromat developed previously has been given tuning capabilities by ex...

  20. Progress of (Sr, Ba) TiO3 ferroelectric thin film and tunability

    Indian Academy of Sciences (India)

    Fu Xinghua; Shan Lianwei; Ding Biyan; Hou Wenping; Fang Zhou; Fu Zhengyi

    2004-10-01

    The fabrication method, technology route and structure performances of (Sr, Ba) TiO3 (SBT) ferroelectric thin film have been summarized in this paper. The tunability of dielectric constant, dielectric loss and leakage current are the basic parameters of tunable microwave devices. The thin films of SBT with high properties could be fabricated by means of RF magnetron sputtering and sol–gel processing. The electrical performances of thin film material can be improved largely by dopants. Some problems are put forward to pay attention to this material research process.

  1. Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors

    Directory of Open Access Journals (Sweden)

    Chun-Feng Lai

    2016-05-01

    Full Text Available Polystyrene (PS colloidal photonic crystals (CPhCs containing silver nanoparticles (AgNPs present tunable structural colors. PS CPhC color films containing a high concentration of AgNPs were prepared using self-assembly process through gravitational sedimentation method. High-concentration AgNPs were deposited on the bottom of the substrate and acted as black materials to absorb background and scattering light. Brilliant structural colors were enhanced because of the absorption of incoherent scattering light, and color saturation was increased by the distribution AgNPs on the PS CPhC surfaces. The vivid iridescent structural colors of AgNPs/PS hybrid CPhC films were based on Bragg diffraction and backward scattering absorption using AgNPs. The photonic stop band of PS CPhCs and AgNPs/PS hybrid CPhCs were measured by UV–visible reflection spectrometry and calculated based on the Bragg–Snell law. In addition, the tunable structural colors of AgNPs/PS hybrid CPhC films were evaluated using color measurements according to the Commission International d’Eclairage standard colorimetric system. This paper presents a simple and inexpensive method to produce tunable structural colors for numerous applications, such as textile fabrics, bionic colors, catalysis, and paints.

  2. Small-Angle Neutron Scattering (SANS) Facility at BATAN for Nanostructure Studies in Materials Science and Biology

    Science.gov (United States)

    Putra, E. Giri Rachman

    2010-01-01

    structure of n-dodecyl-β-D-maltoside (β-DMS) core-shell micelle has been revealed by applying a contrast variation, H2O/D2O mixture. Preliminary investigation of globular protein on folding-unfolding, protein denaturation and protein self-assembly studies is being performed. It can be concluded that SMARTer, a 36 m SANS BATAN spectrometer becomes a major tool for structural investigations in the effective length scale of 1-100 nm in materials science and biology.

  3. Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Ekaterina Y. Lukianova-Hleb, Alexander O. Oginsky, Adam P. Samaniego, Derek L. Shenefelt, Daniel S. Wagner, Jason H. Hafner, Mary C. Farach-Carson, Dmitri O. Lapotko

    2011-01-01

    Full Text Available Theranostic applications require coupling of diagnosis and therapy, a high degree of specificity and adaptability to delivery methods compatible with clinical practice. The tunable physical and biological effects of selective targeting and activation of plasmonic nanobubbles (PNB were studied in a heterogeneous biological microenvironment of prostate cancer and stromal cells. All cells were targeted with conjugates of gold nanoparticles (NPs through an antibody-receptor-endocytosis-nanocluster mechanism that produced NP clusters. The simultaneous pulsed optical activation of intracellular NP clusters at several wavelengths resulted in higher optical contrast and therapeutic selectivity of PNBs compared with those of gold NPs alone. The developed mechanism was termed “rainbow plasmonic nanobubbles.” The cellular effect of rainbow PNBs was tuned in situ in target cells, thus supporting a theranostic algorithm of prostate cancer cell detection and follow-up guided destruction without damage to collateral cells. The specificity and tunability of PNBs is promising for theranostic applications and we discuss a fiber optic platform that will capitalize on these features to bring theranostic tools to the clinic.

  4. Tunable plasmonic nanoprobes for theranostics of prostate cancer.

    Science.gov (United States)

    Lukianova-Hleb, Ekaterina Y; Oginsky, Alexander O; Samaniego, Adam P; Shenefelt, Derek L; Wagner, Daniel S; Hafner, Jason H; Farach-Carson, Mary C; Lapotko, Dmitri O

    2011-01-01

    Theranostic applications require coupling of diagnosis and therapy, a high degree of specificity and adaptability to delivery methods compatible with clinical practice. The tunable physical and biological effects of selective targeting and activation of plasmonic nanobubbles (PNB) were studied in a heterogeneous biological microenvironment of prostate cancer and stromal cells. All cells were targeted with conjugates of gold nanoparticles (NPs) through an antibody-receptor-endocytosis-nanocluster mechanism that produced NP clusters. The simultaneous pulsed optical activation of intracellular NP clusters at several wavelengths resulted in higher optical contrast and therapeutic selectivity of PNBs compared with those of gold NPs alone. The developed mechanism was termed "rainbow plasmonic nanobubbles." The cellular effect of rainbow PNBs was tuned in situ in target cells, thus supporting a theranostic algorithm of prostate cancer cell detection and follow-up guided destruction without damage to collateral cells. The specificity and tunability of PNBs is promising for theranostic applications and we discuss a fiber optic platform that will capitalize on these features to bring theranostic tools to the clinic. PMID:21547151

  5. Escalation of terrorism? On the risk of attacks with chemical, biological, radiological and nuclear weapons or materials; Eskalation des Terrors? Ueber das Anschlagsrisiko mit chemischen, biologischen, radiologischen und nuklearen Waffen oder Stoffen

    Energy Technology Data Exchange (ETDEWEB)

    Nass, Jens

    2010-07-01

    The report on the risk of attacks with chemical, biological, radiological and nuclear weapons or materials covers the following topics: the variety of terrorism: ethnic-nationalistic, politically motivated, social revolutionary, political extremism, religious fanaticism, governmental terrorism; CBRN (chemical, biological, radiological, nuclear) weapons and materials: their availability and effectiveness in case of use; potential actor groups; prevention and counter measures, emergency and mitigating measures.

  6. Tunable surface plasmon wave plates.

    Science.gov (United States)

    Djalalian-Assl, Amir; Cadusch, Jasper J; Balaur, Eugeniu; Aramesh, Morteza

    2016-07-01

    The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light. PMID:27367123

  7. Pakistan's national legislation entitled: 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'

    International Nuclear Information System (INIS)

    The Director General has received a letter from the Permanent Mission of Pakistan, dated 4 November 2004, concerning Pakistan's national legislation entitled 'Export Control on Goods, Technologies, Material and Equipment related to Nuclear and Biological Weapons and their Delivery Systems Act, 2004'. As requested by the Permanent Mission of Pakistan, the letter and the Export Control Act of 2004, are reproduced herein for the information of the Member States

  8. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos de Gois, Jefferson; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); Welz, Bernhard [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil); Borges, Daniel L.G., E-mail: daniel.borges@ufsc.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-970 Florianópolis, SC (Brazil); INCT de Energia e Ambiente do CNPq (Brazil)

    2015-03-01

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min{sup −1}, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g{sup −1} under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample.

  9. Application of direct solid sample analysis for the determination of chlorine in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    This work describes a methodology developed to carry out Cl determination in biological materials using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis. The solid samples were directly weighed into graphite ‘cups’ and inserted into the graphite furnace. The RF power and the carrier gas flow rate were optimized at 1300 W and 0.7 L min−1, respectively. Calibration could be carried out using aqueous standard solutions with pre-dried modifiers (Pd + Nd or Pd + Ca) or using solid certified reference materials with the same pre-dried modifiers or without the use of modifiers. The limit of quantification was determined as 5 μg g−1 under optimized conditions and the Cl concentration was determined in five certified reference materials with certified concentrations for Cl, in addition to three certified reference materials, for which certified values for Cl were unavailable; in the latter case, the results were compared with those obtained using high-resolution continuum source molecular absorption spectrometry. Good agreement at a 95% statistical confidence level was achieved between determined and certified or reference values. - Highlights: • Direct determination of chlorine in solid biological materials is described for the first time using ICP-MS. • Calibration against aqueous standards is feasible. • The method is accurate and sensitive, regardless of the composition of the solid sample

  10. 生物质电厂电气主接线的选择%Electrical Main Wiring Selection in Biological Material Power Plant

    Institute of Scientific and Technical Information of China (English)

    张彦昌; 石巍; 张超

    2012-01-01

    Due to the distribution and transportation cost limit in biological material power plant, the capacity is generally not too large, its internal electrical main wiring type is flexible and various. Introduction was made to the plan of the power plant connect-in system, the selection measures of generator voltage and high-voltage used by plant, and the setting principle of generator outlet circuit breakers. Two kinds of electrical main wiring in biological material power plant were compared and analyzed from the reliability and economy aspects, thus the optimized plan was obtained to provide reference for design and study in biological material power plant.%生物质发电厂容量由于受燃料分布及运输成本限制,容量一般不大,其内部电气主接线型式灵活多变。介绍了电厂接入系统的方案、发电机电压及高压厂用电压的选择措施,以及发电机出口断路器的设置原则。从可靠性和经济性两方面对生物质电厂的两种电气主接线进行对比分析,进而得出优选方案,供生物质电厂设计与研究参考。

  11. Engineering the cell-semiconductor interface: a materials modification approach using II-VI and III-V semiconductor materials.

    Science.gov (United States)

    Bain, Lauren E; Ivanisevic, Albena

    2015-02-18

    Developing functional biomedical devices based on semiconductor materials requires an understanding of interactions taking place at the material-biosystem interface. Cell behavior is dependent on the local physicochemical environment. While standard routes of material preparation involve chemical functionalization of the active surface, this review emphasizes both biocompatibility of unmodified surfaces as well as use of topographic features in manipulating cell-material interactions. Initially, the review discusses experiments involving unmodified II-VI and III-V semiconductors - a starting point for assessing cytotoxicity and biocompatibility - followed by specific surface modification, including the generation of submicron roughness or the potential effect of quantum dot structures. Finally, the discussion turns to more recent work in coupling topography and specific chemistry, enhancing the tunability of the cell-semiconductor interface. With this broadened materials approach, researchers' ability to tune the interactions between semiconductors and biological environments continues to improve, reaching new heights in device function.

  12. Shape-tunable core-shell microparticles.

    Science.gov (United States)

    Klein, Matthias K; Saenger, Nicolai R; Schuetter, Stefan; Pfleiderer, Patrick; Zumbusch, Andreas

    2014-10-28

    Colloidal polymer particles are an important class of materials finding use in both everyday and basic research applications. Tailoring their composition, shape, and functionality is of key importance. In this article, we describe a new class of shape-tunable core-shell microparticles. They are composed of a cross-linked polystyrene (PS) core and a poly(methyl methacrylate) (PMMA) shell of varying thickness. In the first step, we prepared highly cross-linked PS cores, which are subsequently transferred into a nonpolar dispersant. They serve as the seed dispersion for a nonaqueous dispersion polymerization to generate the PMMA shell. The shape of the particles can subsequently be manipulated. After the shell growth stage, the spherical PS/PMMA core-shell colloids exhibit an uneven and wrinkled surface. An additional tempering procedure allows for smoothing the surface of the core-shell colloids. This results in polymer core-shell particles with a perfectly spherical shape. In addition to this thermal smoothing of the PMMA shell, we generated a selection of shape-anisotropic core-shell particles using a thermomechanical stretching procedure. Because of the unique constitution, we can selectively interrogate molecular vibrations in the PS core or the PMMA shell of the colloids using nonlinear optical microscopy techniques. This is of great interest because no photobleaching occurs, such that the particles can be tracked in real space over long times.

  13. Preparation and Properties of Rare Earth Element Doped Calcium Carbonate/Polypropylene Luminescence-tunable Materials%稀土掺杂碳酸钙/聚丙烯可调色复合材料的制备及性能

    Institute of Scientific and Technical Information of China (English)

    李荣秋; 孙蓉; 康明; 程淇俊; 张丽; 牟永仁; 王峰; 刘敏; 魏世林; 张平

    2016-01-01

    CaCO3:RE3+(RE=Eu, Tb, Ce) phosphors were synthesized via a microwave co-precipitation method. The luminescence-tunable composite of CaCO3:RE3+/PP (polypropylene) was prepared by a melt blending method. The photoluminescence and mechanical properties of the composites were characterized by photoluminescence excitation and emission spectroscopy, chromaticity coordinates, scanning electronic microscopy and X-ray powder diffraction, respectively. The results show that the phosphors have a good compatibility with PP. When 5% (in mass fraction) CaCO3:RE3+ is incorporated into PP, the mechanical and photoluminescence properties of composite are preferable. In addition, CaCO3:Eu3+/PP emits a red color, CaCO3:Tb3+/PP emits a green color and CaCO3:Ce3+/PP emits a purple color under the ultraviolet light, and the emitting color of composites can be shifted among red, green and purple region by altering the ratio of phosphors or excitation wavelength.%采用微波辅助共沉淀法合成 CaCO3:RE3+(RE=Eu, Tb, Ce)荧光粉,然后与聚丙烯(PP)密炼制备成 CaCO3:RE3+/PP 可调色复合材料。通过光致发光光谱和激发光谱、色坐标、X 射线衍射仪、扫描电子显微镜,研究了不同荧光粉的添加对复合材料力学性能和发光性能的影响。结果表明:荧光粉能均匀分布在 PP 中,且荧光粉含量(质量分数)为5%时,复合材料的综合力学性能和发光性能最佳;CaCO3:Eu3+/PP、CaCO3:Tb3+/PP 和 CaCO3:Ce3+/PP 在紫外灯照射下分别发出红色、绿色和紫色光;通过改变不同荧光粉的含量能够有效调节复合材料发光颜色;改变激发波长同样能达到对复合材料调色的目的。

  14. Recent development of infrared tunable filter

    Science.gov (United States)

    Liu, Dafu; Xu, Qinfei; Mo, Defeng

    2015-04-01

    Researchers are engaging on tunable infrared (IR) filters, miniature Fabry-Perot optical devices, to operate IR detector like a spectrometer. This kind of devices was used in astronomical detection field in the 1950s. To meet the miniature, lightweight requirements of the optical detection system, researchers began to make small, lightweight, and cheap tunable IR filters. Nowadays researchers have applied a variety of different structures and the IR filter, and are attempting to integrate them with IR detectors directly. Tunable filter thin film mechanical and thermal properties, and working conditions will affect the tunable filter optical performance. In this article we give two main influencing factors, interface roughness and curvature effect. we also present and discuss the current development of FPF in different groups around the world.

  15. Arbitrarily tunable orbital angular momentum of photons.

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  16. Arbitrarily tunable orbital angular momentum of photons

    Science.gov (United States)

    Pan, Yue; Gao, Xu-Zhen; Ren, Zhi-Cheng; Wang, Xi-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2016-01-01

    Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM. PMID:27378234

  17. Tunable beam steering enabled by graphene metamaterials.

    Science.gov (United States)

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  18. Electro-Optic Tunable Laser Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will develop a compact, rugged, rapidly and widely tunable laser based on a quantum cascade diode laser at...

  19. Tunable spectral enhancement of fiber supercontinuum

    Science.gov (United States)

    Yeom, Dong-Il; Bolger, Jeremy A.; Marshall, Graham D.; Austin, Dane R.; Kuhlmey, Boris T.; Withford, Michael J.; de Sterke, C. Martijn; Eggleton, Benjamin J.

    2007-06-01

    We demonstrate tunable spectral enhancement of the supercontinuum generated in a microstructured fiber with a fiber long-period grating. The long-period grating leads to phase distortion and loss that, with subsequent high-intensity propagation in uniform fiber, evolves into an enhancement around the grating's resonant wavelengths. Wavelength tunability is achieved by varying the temperature or the ambient refractive index, and the spectral peak can be extinguished by immersing the grating in index-matching oil.

  20. Tunable Beam Diffraction in Infiltrated Microstructured Fibers

    DEFF Research Database (Denmark)

    Rosberg, Christian Romer; Bennet, Francis H.; Neshev, Dragomir N.;

    We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites.......We experimentally study beam propagation in two dimensional photonic lattices in microstructured optical fibers infiltrated with high index liquids. We demonstrate strongly tunable beam diffraction by dynamically varying the coupling between individual lattice sites....

  1. Quantum rainbow scattering at tunable velocities

    CERN Document Server

    Strebel, M; Ruff, B; Stienkemeier, F; Mudrich, M

    2012-01-01

    Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances.

  2. Liquid crystal tunable photonic crystal dye laser

    DEFF Research Database (Denmark)

    Buss, Thomas; Christiansen, Mads Brøkner; Smith, Cameron;

    2010-01-01

    We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium.......We present a dye-doped liquid crystal laser using a photonic crystal cavity. An applied electric field to the liquid crystal provides wavelength tunability. The photonic crystal enhances resonant interaction with the gain medium....

  3. Resonantly pumped tunable Ho:YAG laser

    International Nuclear Information System (INIS)

    The efficient tunable Ho:YAG laser pumped by Tm:fiber laser of 20 W output power at 1908 nm was developed. For tuning the Lyot filter consisting of a quartz plate of 2.1 mm thickness was applied. The output power of 1.13 W for 3 W of absorbed pump power was reached at the wavelength 2132.8 nm. The tunability between 2075 – 2135 nm wavelength range was demonstrated

  4. Electrically Tunable Plasmonic Resonances with Graphene

    DEFF Research Database (Denmark)

    Emani, Naresh K.; Chung, Ting-Fung; Ni, Xingjie;

    2012-01-01

    Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance.......Real time switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy and sensing. We take advantage of electrically tunable interband transitions in graphene to control the strength of the plasmonic resonance....

  5. 合成生物学与微生物遗传物质的重构%Synthetic biology and rearrangements of microbial genetic material

    Institute of Scientific and Technical Information of China (English)

    梁泉峰; 王倩; 祁庆生

    2011-01-01

    作为一门新兴学科的合成生物学已经展现出巨大的科学价值和应用前景.近年来已经发表了多篇综述文章,从不同角度对合成生物学进行了总结和论述.文章首次对合成生物学和微生物遗传学之间的关系进行了阐述,同时介绍了合成生物学在微生物遗传物质的重构方面最近的研究进展,包括微生物遗传物质的合成、设计和精简,遗传元件的标准化和遗传线路的模块化.也探讨了合成生物学与微生物遗传工程的关系.%As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  6. Underwater tunable organ-pipe sound source.

    Science.gov (United States)

    Morozov, Andrey K; Webb, Douglas C

    2007-08-01

    A highly efficient frequency-controlled sound source based on a tunable high-Q underwater acoustic resonator is described. The required spectrum width was achieved by transmitting a linear frequency-modulated signal and simultaneously tuning the resonance frequency, keeping the sound source in resonance at the instantaneous frequency of the signal transmitted. Such sound sources have applications in ocean-acoustic tomography and deep-penetration seismic tomography. Mathematical analysis and numerical simulation show the Helmholtz resonator's ability for instant resonant frequency switching and quick adjustment of its resonant frequency to the instantaneous frequency signal. The concept of a quick frequency adjustment filter is considered. The discussion includes the simplest lumped resonant source as well as the complicated distributed system of a tunable organ pipe. A numerical model of the tunable organ pipe is shown to have a form similar to a transmission line segment. This provides a general form for the principal results, which can be applied to tunable resonators of a different physical nature. The numerical simulation shows that the "state-switched" concept also works in the high-Q tunable organ pipe, and the speed of frequency sweeping in a high-Q tunable organ pipe is analyzed. The simulation results were applied to a projector design for ocean-acoustic tomography. PMID:17672628

  7. Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission

    NARCIS (Netherlands)

    Dohnalova, K.; Poddubny, A.N.; Prokofiev, A.A.; Boer, W.D.A.M.; Umesh, C.; Paulusse, J.M.J.; Zuilhof, H.; Gregorkiewicz, T.

    2013-01-01

    Colloidal semiconductor quantum dots (QDs) constitute a perfect material for ink-jet printable large area displays, photovoltaics, light-emitting diode, bio-imaging luminescent markers and many other applications. For this purpose, efficient light emission/absorption and spectral tunability are nece

  8. Creating biological nanomaterials using synthetic biology

    OpenAIRE

    MaryJoe K Rice; Ruder, Warren C.

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic bi...

  9. Investigating Teacher Learning Supports in High School Biology Curricular Programs to Inform the Design of Educative Curriculum Materials

    Science.gov (United States)

    Beyer, Carrie J.; Delgado, Cesar; Davis, Elizabeth A.; Krajcik, Joseph

    2009-01-01

    Reform efforts have emphasized the need to support teachers' learning about reform-oriented practices. Educative curriculum materials are one potential vehicle for promoting teacher learning about these practices. Educative curriculum materials include supports that are intended to promote both student "and" teacher learning. However, little is…

  10. Development of a candidate reference material for adventitious virus detection in vaccine and biologicals manufacturing by deep sequencing

    OpenAIRE

    Edward T Mee; Preston, Mark D.; Minor, Philip D.; ,; Huang, Xuening; Nguyen, Jenny; Wall, David; Hargrove, Stacey; Fu, Thomas; Xu, George; Li, Li; Cote, Colette; Delwart, Eric; Li, Linlin; Hewlett, Indira

    2016-01-01

    Background Unbiased deep sequencing offers the potential for improved adventitious virus screening in vaccines and biotherapeutics. Successful implementation of such assays will require appropriate control materials to confirm assay performance and sensitivity. Methods A common reference material containing 25 target viruses was produced and 16 laboratories were invited to process it using their preferred adventitious virus detection assay. Results Fifteen laboratories returned results, obtai...

  11. Color tunable LED spot lighting

    Science.gov (United States)

    Hoelen, C.; Ansems, J.; Deurenberg, P.; van Duijneveldt, W.; Peeters, M.; Steenbruggen, G.; Treurniet, T.; Valster, A.; ter Weeme, J. W.

    2006-08-01

    A new trend in illumination is to use dynamic light to set or dynamically vary the ambience of a room or office. For this we need color tunable spots that can reliably vary over at least a wide range of color temperatures, and preferably also more saturated colors. LEDs are in principle ideally suited for this application thanks to their nature of emitting light in a relatively narrow band. For color tunable spot lighting based on the concept of mixing RGB LED colors, the key results have been presented before. Limitations of these 3-intrinsic-color mixing systems with high color rendering properties are found in a limited operating temperature range due to wavelength shifts, a limited color temperature range, and a low maximum operating temperature due to a strong flux decrease with increasing temperature. To overcome these limitations, a 3-color R pcGB system with phosphor-converted red (R pc) and a 4-color RAGB system have been investigated. With both systems, a CRI of at least 80 can be maintained over the relevant color temperature range of approximately 2700 K to 6500 K. In this paper we compare these concepts on overall system aspects and report on the performance of prototype spot lamps. The main features of the RAGB and R pcGB spot lamp concepts can be summarized as: 1) The RAGB spot overcomes CRI and gamut shortcomings of RGB light sources and gives much freedom in wavelength selection, but suffers from temperature sensitivity and complex controls; 2) The R pcGB spot overcomes shortcomings concerning CRI and thermal dependence of RGB sources and enables relatively simple controls, but needs an improved overall red efficacy. With both color concepts, prototype spot lamps have been built. The amber to red emitting nitridosilicate-based phosphors can be wavelength-tuned for optimal performance, which is found at a peak emission around 610 nm for high color quality systems. This results in a simple and very robust system with good color consistency. For the

  12. Tunable strain gauges based on two-dimensional silver nanowire networks.

    Science.gov (United States)

    Ho, Xinning; Cheng, Chek Kweng; Tey, Ju Nie; Wei, Jun

    2015-05-15

    Strain gauges are used in various applications such as wearable strain gauges and strain gauges in airplanes or structural health monitoring. Sensitivity of the strain gauge required varies, depending on the application of the strain gauge. This paper reports a tunable strain gauge based on a two-dimensional percolative network of silver nanowires. By varying the surface coverage of the nanowire network and the waviness of the nanowires in the network, the sensitivity of the strain gauge can be controlled. Hence, a tunable strain gauge can be engineered, based on demands of the application. A few applications are demonstrated. The strain gauge can be adhered to the human neck to detect throat movements and a glove integrated with such a strain gauge can detect the bending of the forefinger. Other classes of two-dimensional percolative networks of one-dimensional materials are also expected to exhibit similar tunable properties. PMID:25902896

  13. Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability.

    Science.gov (United States)

    Zhao, Lingyu; Zhao, Jun; Liu, Yayun; Guo, Yufeng; Zhang, Liangpei; Chen, Zhuo; Zhang, Hui; Zhang, Zhong

    2016-06-01

    Designing smart surfaces with tunable wettability has drawn much attention in recent years for academic research and practical applications. Most of the previous methods to achieve such surfaces demand some particular materials that inherently have special features or complicated structures which are usually not easy to obtain. A novel strategy to achieve such smart surfaces is proposed by using the surface patterned shape memory polymers of chemically crosslinked polycyclooctene which shows a giant deformability of up to ≈730% strain. The smart surfaces possess the ability to continuously tune the wettability by controlling the recovery temperature and/or time. Coating the modified titanium dioxide nanoparticles onto such surfaces renders the surface superhydrophobicity and expands the tunable range of contact angles (CAs). Theoretical calculations of the CAs at different strains via modified Cassie model well explain the tunable wettability behaviors of such smart surfaces. PMID:27167599

  14. Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching.

    Science.gov (United States)

    Zografopoulos, Dimitrios C; Beccherelli, Romeo

    2015-08-14

    The electrically tunable properties of liquid-crystal fishnet metamaterials are theoretically investigated in the terahertz spectrum. A nematic liquid crystal layer is introduced between two fishnet metallic structures, forming a voltage-controlled metamaterial cavity. Tuning of the nematic molecular orientation is shown to shift the magnetic resonance frequency of the metamaterial and its overall electromagnetic response. A shift higher than 150 GHz is predicted for common dielectric and liquid crystalline materials used in terahertz technology and for low applied voltage values. Owing to the few micron-thick liquid crystal cell, the response speed of the tunable metamaterial is calculated as orders of magnitude faster than in demonstrated liquid-crystal based non-resonant terahertz components. Such tunable metamaterial elements are proposed for the advanced control of electromagnetic wave propagation in terahertz applications.

  15. Tunable dual-band light trapping and absorption enhancement with graphene concentric ring arrays

    CERN Document Server

    Xiao, Shuyuan; Liu, Yuebo; Han, Xu; Yan, Xicheng

    2016-01-01

    Surface plasmon resonance (SPR) has been intensively studied and widely employed for light trapping and absorption enhancement. In the mid-infrared and terahertz (THz) regime, graphene supports the tunable SPR via manipulating its Fermi energy and enhances light-matter interaction at the selective wavelength. In this paper, a pair of graphene concentric rings has been proposed to introduce tunable dual-band light trapping with good angle polarization tolerance and enhance the absorption in the low light-absorbing efficiency materials nearby to more than one order. Moreover, the design principle here could be set as a template to achieve multi-band plasmonic absorption enhancement by introducing more graphene concentric rings into each unit cell. This work not only opens up new ways of employing graphene SPR, but also leads to practical applications in high-performance simultaneous multi-color photodetection with high efficiency and tunable spectral selectivity.

  16. Continuously Tunable Wettability by Using Surface Patterned Shape Memory Polymers with Giant Deformability.

    Science.gov (United States)

    Zhao, Lingyu; Zhao, Jun; Liu, Yayun; Guo, Yufeng; Zhang, Liangpei; Chen, Zhuo; Zhang, Hui; Zhang, Zhong

    2016-06-01

    Designing smart surfaces with tunable wettability has drawn much attention in recent years for academic research and practical applications. Most of the previous methods to achieve such surfaces demand some particular materials that inherently have special features or complicated structures which are usually not easy to obtain. A novel strategy to achieve such smart surfaces is proposed by using the surface patterned shape memory polymers of chemically crosslinked polycyclooctene which shows a giant deformability of up to ≈730% strain. The smart surfaces possess the ability to continuously tune the wettability by controlling the recovery temperature and/or time. Coating the modified titanium dioxide nanoparticles onto such surfaces renders the surface superhydrophobicity and expands the tunable range of contact angles (CAs). Theoretical calculations of the CAs at different strains via modified Cassie model well explain the tunable wettability behaviors of such smart surfaces.

  17. Highly tunable piezocaloric effect in antiferroelectric PbZrO3

    Science.gov (United States)

    Lisenkov, S.; Mani, B. K.; Cuozzo, J.; Ponomareva, I.

    2016-02-01

    A first-principles-based effective Hamiltonian approach is used to predict the existence of a highly tunable piezocaloric effect in antiferroelectric PbZrO3. The high tunability originates from a strong dependence of both the magnitude and sign of the piezocaloric temperature change on the initial temperature and the nature of the stress. The linearity of the temperature response to the applied stress allows for the doubling of the efficiency of the basic solid state refrigeration cycle. The large values and high tunability of the piezocaloric effect in antiferroelectrics is traced to the strong coupling between the multiple order parameters that coexist in such materials. An experimental setup for the demonstration of such an unusual effect is proposed.

  18. Mesoporous Silicas with Tunable Morphology for the Immobilization of Laccase

    Directory of Open Access Journals (Sweden)

    Victoria Gascón

    2014-05-01

    Full Text Available Siliceous ordered mesoporous materials (OMM are gaining interest as supports for enzyme immobilization due to their uniform pore size, large surface area, tunable pore network and the introduction of organic components to mesoporous structure. We used SBA-15 type silica materials, which exhibit a regular 2D hexagonal packing of cylindrical mesopores of uniform size, for non-covalent immobilization of laccase. Synthesis conditions were adjusted in order to obtain supports with different particle shape, where those with shorter channels had higher loading capacity. Despite the similar isoelectric points of silica and laccase and the close match between the size of laccase and the pore dimensions of these SBA-15 materials, immobilization was achieved with very low leaching. Surface modification of macro-/mesoporous amorphous silica by grafting of amine moieties was proved to significantly increase the isoelectric point of this support and improve the immobilization yield.

  19. Genetic relationship of organic bases of the quinoline and isoquinoline series from lignite semicoking tars with the initial biological material

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, V.V.; Proskuryakov, V.A.; Podshibyakin, S.I.; Domogatskii, V.V.; Shvykin, A.Y.; Shavyrina, O.A.; Chilachava, K.B. [Leo Tolstoy State Pedagog University, Tula (Russian Federation)

    2002-07-01

    The genetic relationship of quinoline and isoquinoline compounds present in semicoking tars of Kimovsk lignites (near-Moscow fields) with the initial vegetable material is discussed. Transformation pathways of the native compounds in the course of lignite formation are suggested.

  20. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis.

    Directory of Open Access Journals (Sweden)

    Anne Golding

    Full Text Available In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies.

  1. Tunable, all-optical quasi-monochromatic Thomson X-ray source

    CERN Document Server

    Khrennikov, K; Buck, A; Xu, J; Heigoldt, M; Veisz, L; Karsch, S

    2014-01-01

    Brilliant X-ray sources are of great interest for many research fields from biology via medicine to material research. The quest for a cost-effective, brilliant source with unprecedented temporal resolution has led to the recent realization of various high-intensity-laser-driven X-ray beam sources. Here we demonstrate the first all-laser-driven, energy-tunable and quasi-monochromatic X-ray source based on Thomson backscattering. This is a decisive step beyond previous results, where the emitted radiation exhibited an uncontrolled broad energy distribution. In the experiment, one part of the laser beam was used to drive a few-fs bunch of quasi-monoenergetic electrons from a Laser-Wakefield Accelerator (LWFA), while the remainder was scattered off the bunch in a near-counter-propagating geometry. When the electron energy was tuned from 10-50 MeV, narrow-bandwidth X-ray spectra peaking at 5-35keV were directly measured, limited in photon energy by the sensitivity curve of our X-ray detector. Due to the ultrashor...

  2. Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices.

    Science.gov (United States)

    Lai, May L; Tay, Timothy Y S; Sadhanala, Aditya; Dutton, Siân E; Li, Guangru; Friend, Richard H; Tan, Zhi-Kuang

    2016-07-21

    Infrared emitters are reasonably rare in solution-processed materials. Recently, research into hybrid organo-lead halide perovskite, originally popular in photovoltaics,1-3 has gained traction in light-emitting diodes (LED) due to their low-cost solution processing and good performance.4-9 The lead-based electroluminescent materials show strong colorful emission in the visible region, but lack emissive variants further in the infrared. The concerns with the toxicity of lead may, additionally, limit their wide-scale applications. Here, we demonstrate tunable near-infrared electroluminescence from a lead-free organo-tin halide perovskite, using an ITO/PEDOT:PSS/CH3NH3Sn(Br1-xIx)3/F8/Ca/Ag device architecture. In our tin iodide (CH3NH3SnI3) LEDs, we achieved a 945 nm near-infrared emission with a radiance of 3.4 W sr(-1) m(-2) and a maximum external quantum efficiency of 0.72%, comparable with earlier lead-based devices. Increasing the bromide content in these tin perovskite devices widens the semiconductor bandgap and leads to shorter wavelength emissions, tunable down to 667 nm. These near-infrared LEDs could find useful applications in a range of optical communication, sensing and medical device applications. PMID:27336412

  3. Preliminary chemical analysis and biological testing of materials from the HRI catalytic two-stage liquefaction (CTSL) process. [Aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Later, D.W.; Wilson, B.W.

    1985-01-01

    Coal-derived materials from experimental runs of Hydrocarbon Research Incorporated's (HRI) catalytic two-stage liquefaction (CTSL) process were chemically characterized and screened for microbial mutagenicity. This process differs from two-stage coal liquefaction processes in that catalyst is used in both stages. Samples from both the first and second stages were class-fractionated by alumina adsorption chromatography. The fractions were analyzed by capillary column gas chromatography; gas chromatography/mass spectrometry; direct probe, low voltage mass spectrometry; and proton nuclear magnetic resonance spectrometry. Mutagenicity assays were performed with the crude and class fractions in Salmonella typhimurium, TA98. Preliminary results of chemical analyses indicate that >80% CTSL materials from both process stages were aliphatic hydrocarbon and polynuclear aromatic hydrocarbon (PAH) compounds. Furthermore, the gross and specific chemical composition of process materials from the first stage were very similar to those of the second stage. In general, the unfractionated materials were only slightly active in the TA98 mutagenicity assay. Like other coal liquefaction materials investigated in this laboratory, the nitrogen-containing polycyclic aromatic compound (N-PAC) class fractions were responsible for the bulk of the mutagenic activity of the crudes. Finally, it was shown that this activity correlated with the presence of amino-PAH. 20 figures, 9 tables.

  4. On the Rule of Mixtures for Predicting Stress-Softening and Residual Strain Effects in Biological Tissues and Biocompatible Materials

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2014-01-01

    Full Text Available In this work, we use the rule of mixtures to develop an equivalent material model in which the total strain energy density is split into the isotropic part related to the matrix component and the anisotropic energy contribution related to the fiber effects. For the isotropic energy part, we select the amended non-Gaussian strain energy density model, while the energy fiber effects are added by considering the equivalent anisotropic volumetric fraction contribution, as well as the isotropized representation form of the eight-chain energy model that accounts for the material anisotropic effects. Furthermore, our proposed material model uses a phenomenological non-monotonous softening function that predicts stress softening effects and has an energy term, derived from the pseudo-elasticity theory, that accounts for residual strain deformations. The model’s theoretical predictions are compared with experimental data collected from human vaginal tissues, mice skin, poly(glycolide-co-caprolactone (PGC25 3-0 and polypropylene suture materials and tracheal and brain human tissues. In all cases examined here, our equivalent material model closely follows stress-softening and residual strain effects exhibited by experimental data.

  5. Radiochemical method for the simultaneous determination of 233U, 236U, 237Np, 236Pu, 238Pu, and 239Pu in biological materials

    International Nuclear Information System (INIS)

    A radiochemical method has been developed for the determination of multiple isotopes of uranium, neptunium, and plutonium in biological materials. The elements are separated from the other sample constituents and from each other by anion exchange in halide media. Their recoveries are monitored by isotopic diluents. The amounts of the analyte and diluent isotopes of each element are measured alpha spectrometrically. The interelemental separation factors are generally greater than 102, and the recovery of each element ranges from 60% to 90%. 4 references, 1 table

  6. CMOS-controlled rapidly tunable photodetectors

    Science.gov (United States)

    Chen, Ray

    With rapidly increasing data bandwidth demands, wavelength-division-multiplexing (WDM) optical access networks seem unavoidable in the near future. To operate WDM optical networks in an efficient scheme, wavelength reconfigurability and scalability of the network are crucial. Unfortunately, most of the existing wavelength tunable technologies are neither rapidly tunable nor spectrally programmable. This dissertation presents a tunable photodetector that is designed for dynamic-wavelength allocation WDM network environments. The wavelength tuning mechanism is completely different from existing technologies. The spectrum of this detector is programmable through low-voltage digital patterns. Since the wavelength selection is achieved by electronic means, the device wavelength reconfiguration time is as fast as the electronic switching time. In this dissertation work, we have demonstrated a tunable detector that is hybridly integrated with its customized CMOS driver and receiver with nanosecond wavelength reconfiguration time. In addition to its nanosecond wavelength reconfiguration time, the spectrum of this detector is digitally programmable, which means that it can adapt to system changes without re-fabrication. We have theoretically developed and experimentally demonstrated two device operating algorithms based on the same orthogonal device-optics basis. Both the rapid wavelength tuning time and the scalability make this novel device very viable for new reconfigurable WDM networks. By taking advantage of CMOS circuit design, this detector concept can be further extended for simultaneous multiple wavelength detection. We have developed one possible chip architecture and have designed a CMOS tunable optical demux for simultaneous controllable two-wavelength detection.

  7. Infrared frequency-tunable coherent thermal sources

    Science.gov (United States)

    Wang, Hao; Yang, Yue; Wang, Liping

    2015-04-01

    In this work, we numerically demonstrate an infrared (IR) frequency-tunable selective thermal emitter made of graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-coherent emission peaks associated with magnetic polariton (MP), whose resonance frequency can be dynamically tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analytical inductor-capacitor circuit model is introduced to quantitatively predict the resonance frequency and further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parameters, such as grating height, groove width and grating period, on the selective emission peak are explored. The direction-independent behavior of MP and associated coherent emission are also demonstrated. Moreover, by depositing four layers of graphene sheets onto the SiC gratings, a large tunability of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency range from 820 to 890 cm-1. The novel tunable metamaterial could pave the way to a new class of tunable thermal sources in the IR region.

  8. Gate-Tunable Conducting Oxide Metasurfaces.

    Science.gov (United States)

    Huang, Yao-Wei; Lee, Ho Wai Howard; Sokhoyan, Ruzan; Pala, Ragip A; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2016-09-14

    Metasurfaces composed of planar arrays of subwavelength artificial structures show promise for extraordinary light manipulation. They have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces, and orbital angular momentum manipulation and detection over a broad range of the electromagnetic spectrum. However, the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after their fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in reflectarray geometry. We measure a phase shift of 180° and ∼30% change in the reflectance by applying 2.5 V gate bias. Additionally, we demonstrate modulation at frequencies exceeding 10 MHz and electrical switching of ±1 order diffracted beams by electrical control over subgroups of metasurface elements, a basic requirement for electrically tunable beam-steering phased array metasurfaces. In principle, electrically gated phase and amplitude control allows for electrical addressability of individual metasurface elements and opens the path to applications in ultrathin optical components for imaging and sensing technologies, such as reconfigurable beam steering devices, dynamic holograms, tunable ultrathin lenses, nanoprojectors, and nanoscale spatial light modulators. PMID:27564012

  9. Rigid, non-porous and tunable hybrid p-aminobenzoate/TiO2 materials: Toward a fine structural determination of the immobilized RhCl(Ph3)3 complex

    KAUST Repository

    Espinas, Jeff

    2015-05-01

    By exchange of ligands, Wilkinson complex RhCl(PPh3)3 are immobilized on p-aminobenzoate/TiO2 with different organic loading (6, 11 and 16%). This new hybrid material exhibit a linear correlation between the ligand content of the starting TiO2 and the rhodium loading, showing the accessibility of all surfaces amines fonctions on the non-porous parent materials. 1H, 13C, and 1D, 2D INAQUEDATE refocused and J-resolved 31P solid-state NMR confirm the well-defined structure [(≡TiO)2(n{right tail}2-O2C-C6H4-NH2)RhCl-cis-(PPh3)2]. New immobilized catalysts show interesting activity in cyclohexene hydroformylation.

  10. Magnetic-Field-Tunable Superconducting Rectifier

    Science.gov (United States)

    Sadleir, John E.

    2009-01-01

    Superconducting electronic components have been developed that provide current rectification that is tunable by design and with an externally applied magnetic field to the circuit component. The superconducting material used in the device is relatively free of pinning sites with its critical current determined by a geometric energy barrier to vortex entry. The ability of the vortices to move freely inside the device means this innovation does not suffer from magnetic hysteresis effects changing the state of the superconductor. The invention requires a superconductor geometry with opposite edges along the direction of current flow. In order for the critical current asymmetry effect to occur, the device must have different vortex nucleation conditions at opposite edges. Alternative embodiments producing the necessary conditions include edges being held at different temperatures, at different local magnetic fields, with different current-injection geometries, and structural differences between opposite edges causing changes in the size of the geometric energy barrier. An edge fabricated with indentations of the order of the coherence length will significantly lower the geometric energy barrier to vortex entry, meaning vortex passage across the device at lower currents causing resistive dissipation. The existing prototype is a two-terminal device consisting of a thin-film su - perconducting strip operating at a temperature below its superconducting transition temperature (Tc). Opposite ends of the strip are connected to electrical leads made of a higher Tc superconductor. The thin-film lithographic process provides an easy means to alter edge-structures, current-injection geo - metries, and magnetic-field conditions at the edges. The edge-field conditions can be altered by using local field(s) generated from dedicated higher Tc leads or even using the device s own higher Tc superconducting leads.

  11. Biology Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  12. Biology Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  13. Tunable silicon CROW delay lines

    Science.gov (United States)

    Morichetti, Francesco; Canciamilla, Antonio; Torregiani, Matteo; Ferrari, Carlo; Melloni, Andrea; Martinelli, Mario

    2010-05-01

    Tunable coupled resonator optical waveguides (CROWs) are powerful and versatile devices that can be used to dynamically control the delay of optical data streams on chip. In this contribution we show that CROW delay lines fabricated on a silicon on insulator (SOI) platform are suitable for applications in the emerging scenario of optical systems at 100 Gbit/s. Issues concerning technology, design, limits and applications of SOI CROWs are discussed. The performances of silicon CROW delay lines activated by thermal tuning are compared to those of glass CROW in terms of power consumption, thermal crosstalk and reconfiguration speed. The continuous delay of 10-ps long optical pulses by 8 bit length is demonstrated by using a silicon CROW with a bandwidth of 87 GHz and made of 12 RRs. At 100 Gbit/s this structure provides comparable figures of merit (fractional delay of 0.75 bit/RR and fractional loss of 0.7 dB per bit-delay) of state-of-the art glass CROW operating at 10 Gbit/s, yet the area of the latter being three order of magnitude larger. The compatibility of silicon CROW with the emerging 100 Gbit/s systems is demonstrated by showing error-free phase-preserving propagation of a 100 Gbit/s return-to-zero (RZ) polarization-division-multiplexing (PolDM) differential quaternary phase shit keying (DQPSK) signal dynamically delayed by the CROW. It is also demonstrated that a silicon CROW can be used in a PolDM system to introduce a polarization selective delay in order to optimize the time interleaving of the two orthogonally polarized data streams.

  14. Organizational influence on the occurrence of work accidents involving exposure to biological material La influencia de la organización en la ocurrencia de accidentes de trabajo con exposición a material biológico Influência organizacional na ocorrência de acidentes de trabalho com exposição a material biológico

    OpenAIRE

    Maria Helena Palucci Marziale; Fernanda Ludmilla Rossi Rocha; Maria Lúcia do Carmo Cruz Robazzi; Camila Maria Cenzi; Heloisa Ehmke Cardoso dos Santos; Marli Elisa Mendes Trovó

    2013-01-01

    OBJECTIVES: to analyze work accidents involving exposure to biological materials which took place among personnel working in nursing and to evaluate the influence of the organizational culture on the occurrence of these accidents. METHOD: a retrospective, analytical study, carried out in two stages in a hospital that was part of the Network for the Prevention of Work Accidents. The first stage involved the analysis of the characteristics of the work accidents involving exposure to biological ...

  15. Adaptive Tunable Laser Spectrometer for Space Applications

    Science.gov (United States)

    Flesch, Gregory; Keymeulen, Didier

    2010-01-01

    An architecture and process for the rapid prototyping and subsequent development of an adaptive tunable laser absorption spectrometer (TLS) are described. Our digital hardware/firmware/software platform is both reconfigurable at design time as well as autonomously adaptive in real-time for both post-integration and post-launch situations. The design expands the range of viable target environments and enhances tunable laser spectrometer performance in extreme and even unpredictable environments. Through rapid prototyping with a commercial RTOS/FPGA platform, we have implemented a fully operational tunable laser spectrometer (using a highly sensitive second harmonic technique). With this prototype, we have demonstrated autonomous real-time adaptivity in the lab with simulated extreme environments.

  16. Gate-tunable conducting oxide metasurfaces

    CERN Document Server

    Huang, Yao-Wei; Sokhoyan, Ruzan; Pala, Ragip; Thyagarajan, Krishnan; Han, Seunghoon; Tsai, Din Ping; Atwater, Harry A

    2015-01-01

    Metasurfaces composed of planar arrays of sub-wavelength artificial structures show promise for extraordinary light manipulation; they have yielded novel ultrathin optical components such as flat lenses, wave plates, holographic surfaces and orbital angular momentum manipulation and detection over a broad range of electromagnetic spectrum. However the optical properties of metasurfaces developed to date do not allow for versatile tunability of reflected or transmitted wave amplitude and phase after fabrication, thus limiting their use in a wide range of applications. Here, we experimentally demonstrate a gate-tunable metasurface that enables dynamic electrical control of the phase and amplitude of the plane wave reflected from the metasurface. Tunability arises from field-effect modulation of the complex refractive index of conducting oxide layers incorporated into metasurface antenna elements which are configured in a reflectarray geometry. We measure a phase shift of {\\pi} and ~ 30% change in the reflectanc...

  17. Highly tunable elastic dielectric metasurface lenses

    CERN Document Server

    Kamali, Seyedeh Mahsa; Arbabi, Amir; Horie, Yu; Faraon, Andrei

    2016-01-01

    Dielectric metasurfaces are two-dimensional structures composed of nano-scatterers that manipulate phase and polarization of optical waves with subwavelength spatial resolution, enabling ultra-thin components for free-space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have a fixed functionality. Here we demonstrate highly tunable metasurface devices based on subwavelength thick silicon nano-posts encapsulated in a thin transparent elastic polymer. As proof of concept, we demonstrate a metasurface microlens operating at 915 nm, with focal distance tuning from 600 $\\mu$m to 1400 $\\mu$m through radial strain, while maintaining a diffraction limited focus and a focusing efficiency above 50$\\%$. The demonstrated tunable metasurface concept is highly versatile for developing ultra-slim, multi-functional and tunable optical devices with widespread applications ranging f...

  18. Three-dimensional broadband tunable terahertz metamaterials

    DEFF Research Database (Denmark)

    Fan, Kebin; Strikwerda, Andrew; Zhang, Xin;

    2013-01-01

    We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon on sapph......We present optically tunable magnetic three-dimensional (3D) metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon...... as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers....

  19. Rational design of functional and tunable oscillating enzymatic networks

    Science.gov (United States)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  20. Matrix separation by chelation to prepare biological materials for isotopic zinc analysis by inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Following an evaluation of three chelating resins [Chelex-100, poly(dithiocarbamate) (PDTC) and carboxymethylated poly(ethyleneimine)-poly(methylenepolyphenylene) isocyanate (CPPI)], a procedure was established with the last of these for the separation of Zn from biological matrix elements prior to 70Zn:68Zn isotopic analysis by inductively coupled plasma mass spectrometry (ICP-MS). The method was verified by establishing Zn recoveries and by determining its effectiveness in removing Cl and Na from buffered test solutions. Calcium, Na, and Zn concentration data were determined by inductively coupled plasma atomic emission spectrometry. Chlorine was measured by electrothermal vaporization ICP-MS. The efficacy of the technique was demonstrated by the determination of zinc isotope ratios in bovine milk and human urine. (Author)

  1. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting.

    Science.gov (United States)

    Dai, Qi; Shan, Qifeng; Lam, Hien; Hao, Luoxi; Lin, Yi; Cui, Zhe

    2016-09-01

    Optimization of solid-state lighting spectra is performed to achieve beneficial and tunable circadian effects. First, the minimum spectral circadian action factor (CAF) of 2700 K white light-emitting diodes (LEDs) is studied for applications where biologically active illumination is undesirable. It is found that white-LEDs based on (i) RGB chips, (ii) blue & red chips plus green phosphor, and (iii) blue chip plus green & red phosphors are the corresponding minimum-CAF solutions at color-rendering index (CRI) requirements of 80, 90, and 95, respectively. Second, maximum CAF tunability of LED clusters is studied for dynamic daylighting applications. A dichromatic phosphor-converted blue-centered LED, a dichromatic phosphor-converted green-centered LED, and a monochromatic red LED are grouped to obtain white spectra between 2700 K and 6500 K. A maximum CAF tunability of 3.25 times is achieved with CRI above 90 and luminous efficacy of radiation of 313 - 373 lm/W. We show that our approaches have advantages over previously reported solutions on system simplicity, minimum achievable CAF value, CAF tunability range, and light source efficacy.

  2. Circadian-effect engineering of solid-state lighting spectra for beneficial and tunable lighting.

    Science.gov (United States)

    Dai, Qi; Shan, Qifeng; Lam, Hien; Hao, Luoxi; Lin, Yi; Cui, Zhe

    2016-09-01

    Optimization of solid-state lighting spectra is performed to achieve beneficial and tunable circadian effects. First, the minimum spectral circadian action factor (CAF) of 2700 K white light-emitting diodes (LEDs) is studied for applications where biologically active illumination is undesirable. It is found that white-LEDs based on (i) RGB chips, (ii) blue & red chips plus green phosphor, and (iii) blue chip plus green & red phosphors are the corresponding minimum-CAF solutions at color-rendering index (CRI) requirements of 80, 90, and 95, respectively. Second, maximum CAF tunability of LED clusters is studied for dynamic daylighting applications. A dichromatic phosphor-converted blue-centered LED, a dichromatic phosphor-converted green-centered LED, and a monochromatic red LED are grouped to obtain white spectra between 2700 K and 6500 K. A maximum CAF tunability of 3.25 times is achieved with CRI above 90 and luminous efficacy of radiation of 313 - 373 lm/W. We show that our approaches have advantages over previously reported solutions on system simplicity, minimum achievable CAF value, CAF tunability range, and light source efficacy. PMID:27607613

  3. Investigation of the cyclic techniques in neutron activation analysis on Da Lat research reactor for determination of short-lived radionuclides in biological materials

    International Nuclear Information System (INIS)

    The ability of the sensitivity and precision of Cyclic, Pseudocyclic and Cumulative (Replicate) techniques in neutron activation analysis (NAA) on Dalat research reactor were investigated for the determination of short-lived radionuclides. This research focused on determination of 77mSe (T1/2 = 17.4 seconds) in biological materials as a case in point. The result shows that an improvement of detection limits of approximately 2 times in the 3rd cycle to 4th cycle was obtained by using Cyclic NAA, Pseudocyclic NAA and Cumulative NAA in comparison with conventional NAA. The lower detection limits of approximately 3 times can be obtained by a combination of 3 subsamples in Cumulative NAA and 3 cycles in PCNAA. The precision of the techniques is typically within 2-5% from 2nd to 3rd cycles and afterward. In general, the precision and confidence in representative of the analysis result of Cumulative NAA are better than others. However, the utilization of Cyclic NAA is the most useful as regards analysis time. With reference to analytical sensitivity, Cumulative NAA in combination with CNAA or PCNAA will provide a lowest detection limit, and thereby suiting for determining short-lived radionuclides in biological materials with very low concentration levels. (author)

  4. Fabrication of Optical Tunable Helical Thin Films

    Institute of Scientific and Technical Information of China (English)

    Linxin Hu; Peng Wang; Xingyang Wan; Shaoji Jiang

    2012-01-01

    Circular polarization selection of light is an important property of helical micro-nanostructure. The helical thin films fabricated by glancing angle deposition can provide both circular polarization selection and wavelength tuning in this work. Their selective transmissions were depicted in calculations and experiments. The wave- length tuning mechanism was revealed as the relationship between peak wavelength and deposition parameters. Therefore, tunable circular polarization components can be designed according to the mechanism mentioned above and fabricated by glancing angle deposition techniques. Potential applications include tunable optical filters, optical pulse-shapers, biosensors etc.

  5. Tunable reflector with active magnetic metamaterials.

    Science.gov (United States)

    Deng, Tianwei; Huang, Ruifeng; Tang, Ming-Chun; Tan, Peng Khiang

    2014-03-24

    We placed active magnetic metamaterials on metallic surface to implement a tunable reflector with excellent agile performance. By incorporating active elements into the unit cells of the magnetic metamaterial, this active magnetic metamaterial can be tuned to switch function of the reflector among a perfect absorber, a perfect reflector and a gain reflector. This brings about DC control lines to electrically tune the active magnetic metamaterial with positive loss, zero loss and even negative loss. The design, analytical and numerical simulation methods, and experimental results of the tunable reflector are presented. PMID:24663977

  6. Bioconductive 3D nano-composite constructs with tunable elasticity to initiate stem cell growth and induce bone mineralization.

    Science.gov (United States)

    Sagar, Nitin; Khanna, Kunal; Sardesai, Varda S; Singh, Atul K; Temgire, Mayur; Kalita, Mridula Phukan; Kadam, Sachin S; Soni, Vivek P; Bhartiya, Deepa; Bellare, Jayesh R

    2016-12-01

    Bioactive 3D composites play an important role in advanced biomaterial design to provide molecular coupling and improve integrity with the cellular environment of the native bone. In the present study, a hybrid lyophilized polymer composite blend of anionic charged sodium salt of carboxymethyl chitin and gelatin (CMChNa-GEL) reinforced with nano-rod agglomerated hydroxyapatite (nHA) has been developed with enhanced biocompatibility and tunable elasticity. The scaffolds have an open, uniform and interconnected porous structure with an average pore diameter of 157±30μm and 89.47+0.03% with four dimensional X-ray. The aspect ratio of ellipsoidal pores decrease from 4.4 to 1.2 with increase in gelatin concentration; and from 2.14 to 1.93 with decrease in gelling temperature. The samples were resilient with elastic stain at 1.2MPa of stress also decreased from 0.33 to 0.23 with increase in gelatin concentration. The crosslinker HMDI (hexamethylene diisocyanate) yielded more resilient samples at 1.2MPa in comparison to glutaraldehyde. Increased crosslinking time from 2 to 4h in continuous compression cycle show no improvement in maximum elastic stain of 1.2MPa stress. This surface elasticity of the scaffold enables the capacity of these materials for adherent self renewal and cultivation of the NTERA-2 cL.D1 (NT2/D1), pluripotent embryonal carcinoma cell with biomechanical surface, as is shown here. Proliferation with MG-63, ALP activity and Alizarin red mineralization assay on optimized scaffold demonstrated ***psize defect. Therefore, this nHA-CMChNa-GEL scaffold composite exhibits inherent and efficient physicochemical, mechanical and biological characteristics based on gel concentrations, gelatin mixing and gelling temperature thus points to creating bioactive 3D scaffolds with tunable elasticity for orthopedic applications. PMID:27612764

  7. Comparative evaluation of the biological properties of bone bioimplants Tutoplast® and bioactive ceramic material "Syntekost" when implanted in the middle ear in the experiment

    Directory of Open Access Journals (Sweden)

    Kravchenko S.V.

    2014-09-01

    were formed. In none of the experimental cases after implanting of this material into the tympanic bullae of guinea pigs inflammation was observed which may have led to suppuration or ototoxic effects on the structures of the inner ear. Conclusion. The experimental studies showed that the transformation of bone implant Tutoplast® occurred more actively and to a greater extent than that of bioactive ceramic material "Sintekost". In none of the experimental cases after implanting this material into the tympanic bullae of guinea pigs inflammation was observed. Citation: Kravchenko SV, Zaporoschenko AYu, Savitskaya IM. [Comparative evaluation of the biological properties of bone bioimplants Tutoplast® and bioactive ceramic material "Syntekost" when implanted in the middle ear in the experiment]. Morphologia. 2014;8(3:35-41. Russian.

  8. Electrically Tunable Bandgaps in Bilayer MoS₂.

    Science.gov (United States)

    Chu, Tao; Ilatikhameneh, Hesameddin; Klimeck, Gerhard; Rahman, Rajib; Chen, Zhihong

    2015-12-01

    Artificial semiconductors with manufactured band structures have opened up many new applications in the field of optoelectronics. The emerging two-dimensional (2D) semiconductor materials, transition metal dichalcogenides (TMDs), cover a large range of bandgaps and have shown potential in high performance device applications. Interestingly, the ultrathin body and anisotropic material properties of the layered TMDs allow a wide range modification of their band structures by electric field, which is obviously desirable for many nanoelectronic and nanophotonic applications. Here, we demonstrate a continuous bandgap tuning in bilayer MoS2 using a dual-gated field-effect transistor (FET) and photoluminescence (PL) spectroscopy. Density functional theory (DFT) is employed to calculate the field dependent band structures, attributing the widely tunable bandgap to an interlayer direct bandgap transition. This unique electric field controlled spontaneous bandgap modulation approaching the limit of semiconductor-to-metal transition can open up a new field of not yet existing applications. PMID:26560813

  9. Tunable unconventional Kondo effect on topological insulator surfaces

    Science.gov (United States)

    Isaev, L.; Ortiz, G.; Vekhter, I.

    2015-11-01

    We study Kondo physics of a spin-1/2 impurity in electronic matter with strong spin-orbit interaction, which can be realized by depositing magnetic adatoms on the surface of a three-dimensional topological insulator. We show that magnetic properties of topological surface states and the very existence of Kondo screening strongly depend on details of the bulk material, and specifics of surface preparation encoded in time-reversal preserving boundary conditions for electronic wavefunctions. When this tunable Kondo effect occurs, the impurity spin is screened by purely orbital motion of surface electrons. This mechanism gives rise to a transverse magnetic response of the surface metal, and to spin textures that can be used to experimentally probe signatures of a Kondo resonance. Our predictions are particularly relevant for STM measurements in Pb Te -class crystalline topological insulators, but we also discuss implications for other classes of topological materials.

  10. Generation and excitation of different orbital angular momentum states in a tunable microstructure optical fiber.

    Science.gov (United States)

    Huang, Wei; Liu, Yan-ge; Wang, Zhi; Zhang, Wanchen; Luo, Mingming; Liu, Xiaoqi; Guo, Junqi; Liu, Bo; Lin, Lie

    2015-12-28

    A tunable microstructure optical fiber for different orbital angular momentum states generation is proposed and investigated by simulation. The microstructure optical fiber is composed of a high refractive index ring and a hollow core surrounded by four small air holes. The background material of the microstructure fiber is pure silica. The hollow core and the surrounded four small air holes are infiltrated by optical functional material whose refractive index can be modulated via physical parameters, leading to the conversion between circular polarized fundamental mode and different orbital angular momentum states at tunable operating wavelengths. A theoretical model is established and the coupling mechanism is systematically analyzed and investigated based on coupled mode theory. The fiber length can be designed specifically to reach the maximum coupling efficiency for every OAM mode respectively, and can also be fixed at a certain value for several OAM modes generation under tunable refractive index conditions. The proposed fiber coupler is flexible and compact, making it a good candidate for tunable OAM generation and sensing systems.

  11. Tunable microwave bandpass filter integrated power divider based on the high anisotropy electro-optic nematic liquid crystal

    Science.gov (United States)

    Liu, Yupeng; Liu, Yang; Li, Haiyan; Jiang, Di; Cao, Weiping; Chen, Hui; Xia, Lei; Xu, Ruimin

    2016-07-01

    A novel, compact microwave tunable bandpass filter integrated power divider, based on the high anisotropy electro-optic nematic liquid crystal, is proposed in this letter. Liquid crystal, as the electro-optic material, is placed between top inverted microstrip line and the metal plate. The proposed structure can realize continuous tunable bandpass response and miniaturization. The proposed design concept is validated by the good performance of simulation results and experimental results. The electro-optic material has shown great potential for microwave application.

  12. Experimental study on the adhesion, migration and three-dimensional growth of Schwann cells on absorbable biological materials

    Institute of Scientific and Technical Information of China (English)

    王光林; 林卫; 杨志明; 裴福兴; 刘雷

    2003-01-01

    Objective: To study the adhesion, migration and three-dimentional growth of Schwann cells on PLA (polylactic acid) nonspinning fibre cloth and polyglycolic/polylactic acid (PLGA) fibres.Methods: Schwann cells/ECM gel solution and PLA nonspinning fibre cloth and PLGA fibres pretreated by collagen, polylysine and ECM were co-cultured. Then the migration and three-dimensional growth of Schwann cells on the fibres were observed under phase contrast microscope and laser scanning confocal microscope.Conclusions: ECM gel can facilitate the adhesion, growth and migration of Schwann cells on the seteroframe. It is a good integrating material for tissue engineering bioartificial nerve.

  13. Plans for production of undulator X-rays on AR and its applications to material and biological sciences

    International Nuclear Information System (INIS)

    This report carries 19 studies. The first two describe 'Hope for Andulator X-Rays' and 'A Plan for Application of AR Synchrotron Radiation Beam'. Three studies on undulator X-rays are presented, which are entitled 'Development of X-Ray Undulator', 'AR-BL-NE Triple Beamline' and 'Fluctuations of Synchrotron Radiation Beam Position and Development of a Beam Position Feedback System for a Beamline of the TRISTAN Accumulation Ring'. Two studies on application to Moessbauer X-rays are contained, which are entitled 'Nuclear Resonant Scattering of Synchrotron Radiation X-Rays' and 'Biological Action of Moessbauer Effect -- Feasibility of Application to Treatment of Cancer'. Two studies on application to research on surface and interface are addressed, which are entitled 'Application to Research on Surface and Interface; Research by Diffraction' and 'How Can Compton Scattering Serve for Study on Surface Layer?'. Five studies on the application to research on submicron crystal structure' are presented, which are entitled Application to Research on Submicron Crystal Structure; Inorganic and Mineral Substances', 'Comments on Application to Research on Submicron Crystal Structure', etc. The report also contains two studies on abnormal scattering and three studies on microbeam X-rays. (N.K.)

  14. Tunable luminescence from Ce-doped aluminoborosilicate glasses

    Institute of Scientific and Technical Information of China (English)

    E Malchukova; B Boizot

    2014-01-01

    A series of aluminoborosilicate glasses were prepared using the melt-quenching technique for mixture of stoichiometric amounts of SiO2, Al2O3, H3BO3, Na2CO3, and ZrO2 with adding of different amounts of CeO2. The samples were investigated by means of luminescence spectroscopy. Tunable luminescence from violet to blue/green was observed from these glasses with different Xe-lamp excitation wavelengths ranging from 370 to 480 nm as well as with laser excitation of 266 and 355 nm. Moreover it was found that the possibility of tuning the light by changing of excitation wavelength was not unique. The same effect was observed by adjusting conditions for luminescence measurements as well as under exposure toβ-irradiation. The obtained phenomena could be explained taking into account structural characteristics of this glass and it could be concluded that tunable luminescence results from the presence of different Ce-sites the glass matrix. Thus the results suggest that Ce-doped glasses could be considered as conversion materials for blue light-emitting diode chips to generate white light-emitting diodes.

  15. Bandgap tunability at single-layer molybdenum disulphide grain boundaries

    KAUST Repository

    Huang, Yu Li

    2015-02-17

    Two-dimensional transition metal dichalcogenides have emerged as a new class of semiconductor materials with novel electronic and optical properties of interest to future nanoelectronics technology. Single-layer molybdenum disulphide, which represents a prototype two-dimensional transition metal dichalcogenide, has an electronic bandgap that increases with decreasing layer thickness. Using high-resolution scanning tunnelling microscopy and spectroscopy, we measure the apparent quasiparticle energy gap to be 2.40±0.05 eV for single-layer, 2.10±0.05 eV for bilayer and 1.75±0.05 eV for trilayer molybdenum disulphide, which were directly grown on a graphite substrate by chemical vapour deposition method. More interestingly, we report an unexpected bandgap tunability (as large as 0.85±0.05 eV) with distance from the grain boundary in single-layer molybdenum disulphide, which also depends on the grain misorientation angle. This work opens up new possibilities for flexible electronic and optoelectronic devices with tunable bandgaps that utilize both the control of two-dimensional layer thickness and the grain boundary engineering.

  16. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds.

    Science.gov (United States)

    Sengupta, Debanti; Heilshorn, Sarah C

    2010-06-01

    A common goal in tissue engineering is to attain the ability to tailor specific cell-scaffold interactions and thereby gain control over cell behavior. The tunable nature of protein-engineered biomaterials enables independent tailoring of a range of biomaterial properties, creating an attractive alternative to synthetic polymeric scaffolds or harvested natural scaffolds. Protein-engineered biomaterials are comprised of modular peptide domains with various functionalities that are encoded into a DNA plasmid, transfected into an organism of choice, and expressed and purified to yield a biopolymer with exact molecular-level sequence specification. Because of the modular design strategy of protein-engineered biomaterials, these scaffolds can be easily modified to enable optimization for specific tissue engineering applications. By including multiple peptide domains with different functionalities in a single, modular biomaterial, the scaffolds can be designed to mimic the diverse properties of the natural extracellular matrix, including cell adhesion, cell signaling, elasticity, and biodegradability. Recently, the field of protein-engineered biomaterials has expanded to include functional modules that are not normally present in the extracellular matrix, thus expanding the scope and functionality of these materials. For example, these modules can include noncanonical amino acids, inorganic-binding domains, and DNA-binding sequences. The modularity, tunability, and sequence specificity of protein-engineered biomaterials make them attractive candidates for use as substrates for a variety of tissue engineering applications. PMID:20141386

  17. Artificial materials for repair of sports injuries: Biological properties of these materials%人工材料修复运动性骨损伤:材料的生物学特性

    Institute of Scientific and Technical Information of China (English)

    王鑫

    2012-01-01

    背景 传统复位和外固定技术对骨裂、规则性骨折等轻伤性骨折能起到较好的治疗效果,而对关节等部位的复杂骨折治疗效果不理想,目前人工生物材料在骨损伤治疗中逐步成熟与多样化.目的 对骨损伤治疗的材料学措施进行综述,并对相关材料的性质尤其生物相容性对人体的免疫反应进行分类与分析.方法 应用计算机检索PubMed、维普和万方数据库中1990/2011 关于损伤性骨折治疗及其材料学方面的文章,在标题和摘要中以"骨,生物材料,生物学特性"或"bone,biological materials,biological properties"为检索词进行检索.选择文章内容与骨损伤治疗措施及材料学相关,同一领域文献则选择近期发表或发表在权威杂志文章.初检得到194 篇文献,根据纳入标准选择24 篇文章进行综述.结果 与结论 骨科疾病中,受暴力运动冲击造成的损伤性骨折是致病的主要因素,骨修复及骨移植材料的研制经历了漫长的过程,运用材料学手段进行治疗的措施日趋成熟.从内固定材料、金属假体材料以及骨组织工程支架材料的选择研制和临床应用来看,良好的生物相容性是骨修复人工生物材料必备的的特征和运用的基础,也是各种材料在实践运用工程中必须面临和克服的难题.%BACKGROUND: Traditional reduction and external fixation techniques have a better therapeutic effect on bone crack andregulated fractures, while they are not satisfactory in the treatment of complex fractures. The current biomaterials for bone injuriesbecome gradually mature and diversified.OBJECTIVE: To review the material measures for treatment of bone injuries, and to classify and analyze the properties of relevantmaterials, especially their biocompatibility to human immune responses.METHODS: A computer-based search of PubMed, VIP and Wanfang databases (1990/2011) was performed for artificial materialsfor treatment of traumatic

  18. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Nada F., E-mail: Nada_fah1@yahoo.com [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt); Hamed, Maher M.; Abdel-Mageed, Ali M. [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt)

    2010-05-14

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  19. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas

    2015-01-13

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  20. Synthesis and Characterization of PEDOT Derivative with Carboxyl Group and Its Chemo/Bio Sensing Application as Nanocomposite, Immobilized Biological and Enhanced Optical Materials

    International Nuclear Information System (INIS)

    Graphical abstract: Electropolymerization of C4-EDOT-COOH and corresponding polymer's sensing application for environmental, pharmaceutical, biology and food. -- Highlights: •C4-EDOT-COOH monomer with good solubility in water was synthesized by an efficient five-step route. •That acidic conditions were favorable for the electropolymerization of C4-EDOT-COOH. •The resulting high-quality polymer film can be employed for the fabrication of chemo/bio-sensors and optical sensors. •These as-prepared sensors can be applied to the simple, fast and sensitive detection of different analytes. -- Abstract: Various electrochemical chemo/bio-sensors and optical sensors are facilely explored for the sensitive determination of biomolecules, drug molecules, environmental pollutants, and metal ions using a carboxylic-functionalized poly(3,4-ethylenedioxythiophene) derivative (PC4), which is easily obtained by the direct electropolymerization of a water-soluble 4-((2,3-dihydrothieno[3,4-b][1,4] dioxin-2-yl) methoxy)-4-oxobutanoic acid (C4-EDOT-COOH) monomer in a microemulsion system. The effect of different pH values on the electropolymerization of C4-EDOT-COOH monomer is investigated, and the as-prepared PC4 film is characterized by electrochemical method, infrared spectrum, and scanning electron microscope. The resulting high-quality PC4 film as a sensing material not only can combine with various biologically active species via covalent linkage and inorganic materials via layer-by-layer self-assembly for the construction of electrochemical chemo/bio-sensors, but also excellent optical performance of PC4 can be employed for the fabrication of optical sensors. These as-prepared chemo/bio-sensors can be applied to the simple, fast and sensitive detection of environmental pollutants, pharmaceuticals, hazardous substances, and biological active substance and nutrients present in food by means of electrochemistry, ultraviolet and fluorescence spectroscopy. Satisfactory results

  1. FOB-SH: Fragment orbital-based surface hopping for charge carrier transport in organic and biological molecules and materials

    Science.gov (United States)

    Spencer, J.; Gajdos, F.; Blumberger, J.

    2016-08-01

    We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.

  2. Multilayered phantoms with tunable optical properties for a better understanding of light/tissue interactions

    Science.gov (United States)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Vignoud, Séverine; Lavaud, Jonathan; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Light/tissue interactions, like diffuse reflectance, endogenous fluorescence and Raman scattering, are a powerful means for providing skin diagnosis. Instrument calibration is an important step. We thus developed multilayered phantoms for calibration of optical systems. These phantoms mimic the optical properties of biological tissues such as skin. Our final objective is to better understand light/tissue interactions especially in the case of confocal Raman spectroscopy. The phantom preparation procedure is described, including the employed method to obtain a stratified object. PDMS was chosen as the bulk material. TiO2 was used as light scattering agent. Dye and ink were adopted to mimic, respectively, oxy-hemoglobin and melanin absorption spectra. By varying the amount of the incorporated components, we created a material with tunable optical properties. Monolayer and multilayered phantoms were designed to allow several characterization methods. Among them, we can name: X-ray tomography for structural information; Diffuse Reflectance Spectroscopy (DRS) with a homemade fibered bundle system for optical characterization; and Raman depth profiling with a commercial confocal Raman microscope for structural information and for our final objective. For each technique, the obtained results are presented and correlated when possible. A few words are said on our final objective. Raman depth profiles of the multilayered phantoms are distorted by elastic scattering. The signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties, obtained here with DRS, is crucial to properly correct Raman depth profiles. Thus, it would be permitted to consider quantitative studies on skin for drug permeation follow-up or hydration assessment, for instance.

  3. The role of silicon on the bioactivity of Skelite(TM) bioceramic: A material and biological characterization of silicon alpha-tricalcium phosphate based ceramics

    Science.gov (United States)

    Pietak, Alexis Mari

    Skelite(TM) bioceramics are novel synthetic skeletal replacement materials that participate in the full remodeling process of bone. Skelite contains a high fraction of Silicon Stabilized alpha-Tricalcium Phosphate (Si-TCP), a novel phase to which the unique bioactive properties of Skelite have been attributed. The role of Si in the development of the microporous, interconnected microstructure and mixed phase composition of Skelite was investigated using crystallization kinetics and defect characterization studies. The kinetics of the phase transformation to Si-TCP were studied using rapid thermal processing of thin films on quartz substrates. The results, interpreted using a novel Avrami model, show that Si acts as a nucleation agent for Si-TCP, and also that Si pins the microstructure of the films at higher concentrations. Characterization of defects induced by Si substitution into the phases of Skelite material utilized electron spin resonance (ESR) and thermoluminescence (TL) techniques. These results identify two unique paramagnetic defect centers associated with Si substitution in the hydroxyapatite lattice. Quantification of the relative level of these centers supports a novel chemical model that describes the development of the mixed phase system of Skelite as a function of silica addition. The significance of the Si-TCP phase, sample morphology, and surface chemistry on the activity of osteoclast and osteoblast cells was investigated using cell culture and protein functionalized atomic force microscopy techniques. The biological characterization identifies three interaction mechanisms between Skelite and the biological system. Skelite releases a soluble molecular complex containing Si to the extracellular media, which has a significant bioactive effect on osteoclast and osteoblast growth and activity. Using protein functionalized atomic force microscopy the surface chemistry and reactivity of samples is shown to influence osteopontin affinity for Skelite

  4. Dynamically-Tunable Smart Composites Featuring Electro-Rheological Fluids

    Science.gov (United States)

    Gandhi, Mukesh V.; Thompson, Brian S.

    1990-02-01

    A new generation of revolutionary multi-functional, dynamically-tunable, intelligent, ultra-advanced composite materials featuring electro-rheological fluids is proposed herein for the active continuum vibrational-control of structural systems. This paper reports on pioneering proof-of-concept experimental investigations focused on evaluating the elastodynamic transient and also the forced response characteristics of beams fabricated in this new class of materials. The results of these investigations clearly demonstrate the ability to dramatically change the vibrational characteristics of beam-like specimens fabricated in ultra-advanced composite materials by changing the electrical field imposed on the fluid domains. In addition, experimental results are presented which characterize the elastodynamic response of a connecting rod of a slider-crank mechanism fabricated in these ultra-advanced composite materials. Again, the combined forced and parametric responses are controlled by the voltage imposed on the electro-rheological fluid domain in the structure. The capability of these materials to interface with modern solid-state electronics can be exploited by extending the fundamental phenomenological work presented herein through the successful incorporation of intelligent sensor technologies and modern control strategies in order to significantly accelerate the evolution of these novel composite materials for the military and aerospace industries.

  5. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    Science.gov (United States)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun; Jo, Cheorun; Woo Byun, Myung; Jeun An, Bong

    2007-11-01

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.

  6. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    International Nuclear Information System (INIS)

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry

  7. Verification of biological activity of irradiated Sopoongsan, an oriental medicinal prescription, for industrial application of functional cosmetic material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin-Young; Park, Tae-Soon; Ho Son, Jun [Department of Cosmeceutical Science, Daegu Haany University, Kyungsan 712-715 (Korea, Republic of); Jo, Cheorun [Department of Animal Science and Biotechnology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Woo Byun, Myung [Radiation Food Science and Biotechnology Team, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Jeun An, Bong [Department of Cosmeceutical Science, Daegu Haany University, Kyungsan 712-715 (Korea, Republic of)], E-mail: anbj@dhu.ac.kr

    2007-11-15

    Sopoongsan is an oriental medicinal prescription including 12 medicinal herbs. Sopoongsan is known to have anti-inflammatory, anti-microbial, anti-allergic, and anti-cancer effects on human skin. To use Sopoongsan extract for functional cosmetic composition, its dark color should be brighter for seeking consumer demand, clear products, without any adverse change in its function. Irradiation with doses 0, 5, 10, and 20 kGy was applied to improve color of ethanol- or water-extracted Sopoongsan and also superoxide dismutase (SOD), xanthine oxidase (XO), melanoma cell growth inhibition, and anti-microbial activity was investigated. Generally, ethanol extract was better than water extract in function and irradiation up to 20 kGy did not change any functional effect. Especially, the inhibition of melanin deposition on skin measured by inhibition of B16F10 (melanoma) cell growth was as high as arbutin, commercially available product, when the ethanol-extracted Sopoongsan was irradiated for 20 kGy. Results showed that when irradiation technology is used, the limitation of addition amount of natural materials for food or cosmetic composition caused by color problem can be decreased significantly with time saving and cost benefit compared to conventional color removal process. Therefore, irradiation would be one of the good methods to pose an additional value for related industry.

  8. Simultaneous determination of C2-C22 non-esterified fatty acids and other metabolically relevant carboxylic acids in biological material by gas chromatography of their benzyl esters.

    Science.gov (United States)

    Schatowitz, B; Gercken, G

    1988-03-18

    A method for the simultaneous determination of non-esterified short-, medium- and long-chain fatty acids and other types of metabolically relevant carboxylic acids such as hydroxy, keto, aromatic and dicarboxylic acids in biological material by capillary gas chromatography of benzyl ester derivatives is described. Sample preparation avoiding incomplete isolation of carboxylic acids consisted of deproteinization and extraction with ethanol, fixation of carboxylic acids as carboxylates, removal of interfering compounds such as neutral lipids by hexane extraction and amino acids, acyl carnitines and other cations by cation-exchange chromatography, derivatization of keto groups of ketocarboxylic acids into O-methyl oximes and benzyl ester formation by reaction of the potassium carboxylates with benzyl bromide via crown ether catalysis. The sample preparation conditions were investigated, showing the usefulness of this method for quantitative determinations. Chromatograms obtained from human serum, human urine and rat heart ventricle and concentrations of carboxylic acids in these specimens are presented. PMID:3372640

  9. Engineering Silver Nanoparticles: Towards a Tunable Antimicrobial

    Science.gov (United States)

    Puppala, Hema Lakshmi

    Overwhelming production of commercially available products containing silver nanoparticles (AgNPs) underscores the studies determining their fate in the environment. In order to regulate the use, assess the environmental impact and develop eco-responsible silver products, models that can predict AgNP toxicity based on physicochemical properties are vital. With that vision, this thesis developed well-characterized model libraries of uniform AgNPs stabilized with oleate in the range of 2-45 nm diameter with variable surface coating and investigated the dissolution properties that link AgNP structure to antimicrobial activity. High temperature organic synthesis allowed controlled growth of AgNPs (sigmaOECD medium), thereby increasing the shelf life. In addition, size, surface coating, pH of the medium and grafting density of the polymer mediated the dissolution of AgNPs. For instance, the rate of dissolution was decreased by 40% when the polymer coating possessed a mushroom conformation and increased with reducing core size. Analogous to dissolution, physicochemical properties also influenced the antimicrobial activity which were studied by minimum inhibitory concentration (MIC) and bactericidal efficacy assays. For example, surface passivation with mPEGSH prevented the oxidation of active silver atoms on the surface, and resulted in reduced toxicity against E. coli. Moreover citrate stabilized AgNPs when surface modified with mPEGSH had reduced toxicity, which was correlated with residual Ag+ in AgNP solution. Therefore this study demonstrates that processes in the environment that increase stability of AgNPs could make them more persistent due to low dissolution. Furthermore, the size and surface chemistry effects of AgNPs studied here make the intrinsic antimicrobial property of silver tunable and hence more versatile. This work also served as a material support for research on investigating toxicity of AgNPs to C. elegans, Daphnia Magna, Populus and Arabidopsis

  10. Preparation of Epichlorohydrin Using Biological Glycerol as Raw Material%以生物甘油为原料制备环氧氯丙烷的研究

    Institute of Scientific and Technical Information of China (English)

    刘蕾; 权静; 徐琳; 陆青山

    2012-01-01

    Epichlorohydrin was prepared with chlorination and cyclization using biological glycerol as raw material in this paper. Firstly, dichloropropanol(DCP) with chlorination yield of 90. 09% was prepared by using biological glycerol as raw material,HC1 gas as chlorination agent,adipic acid as catalyst,eliminated water four times using Na2SO4,then,epichlorohydrin with cyclization yield of 88. 2% was prepared with DCP and NaOH at following optimal conditions:the reaction time 30 min,the molar ratio of NaOH to DCP 1. 15 s l,the reaction temperature 95℃.%以生物甘油为原料,经氯化反应和环化反应制备了环氧氯丙烷.首先以生物甘油为原料、以氯化氢气体为氯化剂、以己二酸为催化剂,采用无水Na2 SO4除水4次,制得二氯丙醇(DCP),氯化收率达90.09%;再以二氯丙醇和氢氧化钠反应制得环氧氯丙烷,通过单因素实验,得到环化反应的最佳工艺条件为:反应时间30 min、氢氧化钠与二氯丙醇摩尔比1.15∶1、反应温度95℃,在此条件下的环化收率为88.2%.

  11. Determination iodine in biological materials using instrumental neutron activation and anti-coincidence gamma-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.H.; Chatt, A. [Dalhousie University, Halifax, Nova Scotia (Canada). Radiochemistry Research Laboratory

    1997-10-01

    Iodine is an element of interest in nutritional research. Its lower limit of safe and adequate daily dietary intake for adults varies between 150 and 200 micrograms per day. In the present study, an epithermal instrumental neutron activation analysis (EINAA) method in conjunction with anti-coincidence counting has been developed for the determination of ppb levels of iodine in individual food items. Typically 200-300 mg of a sample are irradiated for 10 or 20 minutes at the Dalhousie University SLOWPOKE-2 reactor in an epithermal flux of 1x10{sup 11} n cm{sup -2} s{sup -1}, followed by 1 min decay and then counting for 30 min. The 443-keV gamma-ray of {sup 128}I is used for measuring iodine content by anti-coincidence counting. The anti-coincidence spectrometer consists of a 25% HPGe detector surrounded by a 10``x10`` NaI(TI) annulus and a 3``x3`` NaI(TI) plug. This system has a peak-to-Compton ratio of about 650 to 1 for the 661.6-keV photopeak of {sup 137}Cs. The Compton background resulting from the scattering of many gamma-rays of energies higher than 443 keV can be reduced by a factor of about 4 using anti-coincidence counting compared to conventional counting. The detection limit for iodine can be improved by a factor of 2 to 5 depending on the sample matrix, dead time, position of the annulus and counting geometry among several other factors.The lowest detection limit of 5 ppb can be achieved for low-salt foods. This limit is comparable to that obtained by a preconcentration NAA (PNAA) method. However, a detection limit of 20 ppb is more realistic for samples containing high amounts of Na, Cl and Al. The results obtained for many reference materials are in good agreement with the certified values and those reported by the PNAA method. Details of the methods and results will be reported 6 refs., 2 tabs.

  12. Determination iodine in biological materials using instrumental neutron activation and anti-coincidence gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Iodine is an element of interest in nutritional research. Its lower limit of safe and adequate daily dietary intake for adults varies between 150 and 200 micrograms per day. In the present study, an epithermal instrumental neutron activation analysis (EINAA) method in conjunction with anti-coincidence counting has been developed for the determination of ppb levels of iodine in individual food items. Typically 200-300 mg of a sample are irradiated for 10 or 20 minutes at the Dalhousie University SLOWPOKE-2 reactor in an epithermal flux of 1x1011 n cm-2 s-1, followed by 1 min decay and then counting for 30 min. The 443-keV gamma-ray of 128I is used for measuring iodine content by anti-coincidence counting. The anti-coincidence spectrometer consists of a 25% HPGe detector surrounded by a 10''x10'' NaI(TI) annulus and a 3''x3'' NaI(TI) plug. This system has a peak-to-Compton ratio of about 650 to 1 for the 661.6-keV photopeak of 137Cs. The Compton background resulting from the scattering of many gamma-rays of energies higher than 443 keV can be reduced by a factor of about 4 using anti-coincidence counting compared to conventional counting. The detection limit for iodine can be improved by a factor of 2 to 5 depending on the sample matrix, dead time, position of the annulus and counting geometry among several other factors.The lowest detection limit of 5 ppb can be achieved for low-salt foods. This limit is comparable to that obtained by a preconcentration NAA (PNAA) method. However, a detection limit of 20 ppb is more realistic for samples containing high amounts of Na, Cl and Al. The results obtained for many reference materials are in good agreement with the certified values and those reported by the PNAA method. Details of the methods and results will be reported

  13. Structure and reaction studies of biological organic and inorganic composite materials: Abalone shells, diatoms, and a unique birch bark

    Science.gov (United States)

    Zaremba, Charlotte Marie

    Biopolymer/calcium carbonate composites grown on inorganic abiotic substrates implanted between the shell and the shell-secreting epithelium of live red abalones (Haliotis rufescens) results in an unusual highly (104)-oriented aggregate of microcrystalline calcite that precedes nacre deposition. Calcite of this orientation has never before been observed in nature. Also with this method, nacre deposition is found to correct for calcite surface roughness and chemically anomalous surfaces. Pole figure X-ray diffraction studies of these "flat pearls" provide comparisons of preferred orientation of the various mineral components of the abalone shell. Complete conversion of the aragonite in abalone nacre to hydroxyapatite in hydrothermal phosphate solution results in an oriented polycrystalline aggregate with ultrastructure preservation and an unexpected preferred orientation different from that of other biominerals and abiogenic CaCO3 samples subjected to this reaction. The new orientation, which increases with reaction time, may result from the organization of the organic matrix in the nacre, which directs the hydrothermal solution through the material. This orientation suggests strongly that the conversion proceeds via a dissolution-recrystallization mechanism, rather than by topotaxy, which was previously proposed. In addition to cellulose I, a highly oriented cellulose-II-like polymer was found in the bark of Prunus serrula, an exceptionally strong, tough, and extensible composite film. The cellulose II polymorph, which has not previously been found in nature, may be accordion-folded in the plane of the bark thickness and contribute to the strength and unusual behavior with plasticization of this natural film. The silica frustule of the diatom Skeletonema costatum has a surface area of 135 mm2/g and contains 1.5--2 wt % occluded organic. This organic includes a water-insoluble scaffolding. When treated with organic oxidizers, the chitin secreted by the diatom

  14. Topological insulators are tunable waveguides for hyperbolic polaritons

    Science.gov (United States)

    Wu, Jhih-Sheng; Basov, Dimitri; Fogler, Michael

    We present a theoretical analysis showing that layered topological insulators, for example, Bi2Se3 are optically hyperbolic materials in a range of THz frequencies. As such, these topological insulators possess deeply subdiffractional, highly directional collective modes: hyperbolic phonon-polaritons. We predict that in thin crystals the dispersion of these modes is split into discrete subbands and is strongly influenced by electron surface states. If the surface states are doped, then hybrid collective modes result from coupling of the phonon-polaritons with surface plasmons. The strength of the hybridization can be controlled by an external gate that varies the chemical potential of the surface states. We also show that momentum-dependence of the plasmon-phonon coupling leads to a polaritonic analog of the Goos-Hänchen effect. Directionality of the polaritonic rays and their tunable Goos-Hänchen shift are observable via THz nanoimaging.

  15. Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor

    Science.gov (United States)

    Wang, Yu-Jiao; Zhou, Kai-Ge; Yu, Geliang; Zhong, Xing; Zhang, Hao-Li

    2016-01-01

    Arsenene, as a member of the Group V elemental two-dimensional materials appears on the horizon, has shown great prospects. However, its indirect bandgap limits the applications in optoelectronics. In this theoretical work, we reported that partial oxidation can tune the indirect bandgap of arsenene into the direct one. Attributed to the enthalpy decreasing linear to the oxygen ratio, partial oxidized arsenene can be controllably produced by the progressive oxidation under low temperature. Importantly, by increasing the oxygen content from 1O/18As to 18O/18As, the oxidation can narrow the direct bandgap of oxidized arsenene from 1.29 to 0.02 eV. The bandgap of partial oxidized arsenene is proportional to the oxygen content. Consequently, the partial oxidized arsenene with tunable direct bandgap has great potentials in the high efficient infra light emitter and photo-voltaic devices. PMID:27114052

  16. Partial Oxidized Arsenene: Emerging Tunable Direct Bandgap Semiconductor

    Science.gov (United States)

    Wang, Yu-Jiao; Zhou, Kai-Ge; Yu, Geliang; Zhong, Xing; Zhang, Hao-Li

    2016-04-01

    Arsenene, as a member of the Group V elemental two-dimensional materials appears on the horizon, has shown great prospects. However, its indirect bandgap limits the applications in optoelectronics. In this theoretical work, we reported that partial oxidation can tune the indirect bandgap of arsenene into the direct one. Attributed to the enthalpy decreasing linear to the oxygen ratio, partial oxidized arsenene can be controllably produced by the progressive oxidation under low temperature. Importantly, by increasing the oxygen content from 1O/18As to 18O/18As, the oxidation can narrow the direct bandgap of oxidized arsenene from 1.29 to 0.02 eV. The bandgap of partial oxidized arsenene is proportional to the oxygen content. Consequently, the partial oxidized arsenene with tunable direct bandgap has great potentials in the high efficient infra light emitter and photo-voltaic devices.

  17. Tunable multiband ferroelectric devices for reconfigurable RF-frontends

    CERN Document Server

    Zheng, Yuliang

    2013-01-01

    Reconfigurable RF-frontends aim to cope with the continuous pursuit of wider frequency coverage, higher efficiency, further compactness and lower cost of ownership. They are expected to lay the foundations of future software defined or cognitive radios. As a potential enabling technology for the frontends, the tunable ferroelectric devices have shown not only enhanced performance but also new functionalities. This book explores the recent developments in the field. It provides a cross-sectional perspective on the interdisciplinary research. With attention to the devices based on ceramic thick-films and crystal thin-films, the book reviews the adapted technologies of material synthesis, film deposition and multilayer circuitry. Next, it highlights the original classes of thin-film ferroelectric devices, including stratified metal-insulator-metal varactors with suppression of acoustic resonance and programmable bi-stable high frequency capacitors. At the end the book analyzes how the frontends can be reformed b...

  18. Tunable multi-channel terahertz wave power splitter

    Science.gov (United States)

    Jiu-Sheng, Li; Han, Liu; Le, Zhang

    2015-12-01

    The combination of terahertz technology and photonic crystal provides a new approach to realize compact terahertz wave devices. Relying on a conventional photonic crystal waveguide and photonic crystal surface-mode waveguides, a tunable multi-channel terahertz-wave power splitter is proposed. The mechanism of such a power splitter is further theoretically analyzed and numerically investigated with the aid of the plane-wave-expansion method and the finite-difference time-domain method. With an appropriate design, the proposed device can split the input terahertz wave energy equally into six output ports at the frequency of 0.6 THz. When changing the external magnetic field, the input terahertz wave can be equally divided into four output ports with the aid of a magnetic-sensitive material. Furthermore, the present device is very compact and the total size is of 4.4×6.0 mm2.

  19. Tunable surface plasmon polaritons in metal-strip waveguides with magnetized semiconductor substrates in Voigt configuration

    Science.gov (United States)

    Mathew, Gishamol; Mathew, Vincent

    2012-05-01

    The properties of surface plasmon polaritons (SPPs) in a magnetically tunable strip waveguide geometry comprising of a metal film of finite width deposited on a magnetized semiconductor and covered by an isotropic dielectric material were studied in Voigt configuration. The method of lines was used to compute the dispersion relation of fundamental modes, and the dependence of the propagation constant on metal film dimensions, material parameters and biasing magnetic field was considered. The bounded SPPs are nonreciprocal with respect to the direction of the biasing magnetic field, producing a nonreciprocal phase shift of the order of 2-18 rad mm-1 at a wavelength of excitation 1.55 μm. Moreover, controlled propagation of SPP modes and their effective tuning are possible in this strip geometry, which enables the design and development of tunable optoelectronic devices.

  20. Cis-Antisense Transcription Gives Rise to Tunable Genetic Switch Behavior: A Mathematical Modeling Approach.

    Science.gov (United States)

    Bordoy, Antoni E; Chatterjee, Anushree

    2015-01-01

    Antisense transcription has been extensively recognized as a regulatory mechanism for gene expression across all kingdoms of life. Despite the broad importance and extensive experimental determination of cis-antisense transcription, relatively little is known about its role in controlling cellular switching responses. Growing evidence suggests the presence of non-coding cis-antisense RNAs that regulate gene expression via antisense interaction. Recent studies also indicate the role of transcriptional interference in regulating expression of neighboring genes due to traffic of RNA polymerases from adjacent promoter regions. Previous models investigate these mechanisms independently, however, little is understood about how cells utilize coupling of these mechanisms in advantageous ways that could also be used to design novel synthetic genetic devices. Here, we present a mathematical modeling framework for antisense transcription that combines the effects of both transcriptional interference and cis-antisense regulation. We demonstrate the tunability of transcriptional interference through various parameters, and that coupling of transcriptional interference with cis-antisense RNA interaction gives rise to hypersensitive switches in expression of both antisense genes. When implementing additional positive and negative feed-back loops from proteins encoded by these genes, the system response acquires a bistable behavior. Our model shows that combining these multiple-levels of regulation allows fine-tuning of system parameters to give rise to a highly tunable output, ranging from a simple-first order response to biologically complex higher-order response such as tunable bistable switch. We identify important parameters affecting the cellular switch response in order to provide the design principles for tunable gene expression using antisense transcription. This presents an important insight into functional role of antisense transcription and its importance towards

  1. Three-year summary report of biological monitoring at the Southwest Ocean dredged-material disposal site and additional locations off Grays Harbor, Washington, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antrim, L.D.; Shreffler, D.K.; Pearson, W.H.; Cullinan, V.I. (Battelle Marine Research Lab., Sequim, WA (United States))

    1992-12-01

    The Grays Harbor Navigation Improvement Project was initiated to improve navigation by widening and deepening the federal channel at Grays Harbor. Dredged-material disposal sites were selected after an extensive review process that included inter-agency agreements, biological surveys, other laboratory and field studies, and preparation of environmental impact statements The Southwest Site, was designated to receive materials dredged during annual maintenance dredging as well as the initial construction phase of the project. The Southwest Site was located, and the disposal operations designed, primarily to avoid impacts to Dungeness crab. The Final Environmental Impact Statement Supplement for the project incorporated a Site Monitoring Plan in which a tiered approach to disposal site monitoring was recommended. Under Tier I of the Site Monitoring Plan, Dungeness crab densities are monitored to confirm that large aggregations of newly settled Dungeness crab have not moved onto the Southwest Site. Tier 2 entails an increased sampling effort to determine whether a change in disposal operations is needed. Four epibenthic surveys using beam trawls were conducted in 1990, 1991, and 1992 at the Southwest Site and North Reference area, where high crab concentrations were found in the spring of 1985. Survey results during these three years prompted no Tier 2 activities. Epibenthic surveys were also conducted at two nearshore sites where construction of sediment berms has been proposed. This work is summarized in an appendix to this report.

  2. A Tunable Carbon Nanotube Oscillator

    Science.gov (United States)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  3. Válvula mecânica em carbono, de disco basculante, com revestimento de material biológico: princípios e desenvolvimento Pivoting disc carbon mechanical valve covered with biological material: principles and development

    Directory of Open Access Journals (Sweden)

    Hélio Pereira de Magalhães

    1995-12-01

    . RESULTADOS INICIAIS: como o número de pacientes é pequeno, destacam-se apenas algumas observações iniciais: ausência de tromboembolismo, ausência de disfunção mecânica primária, ocorrência de dois acidentes hemorrágicos maiores e um episódio de trombose em paciente com dois meses de evolução, por anticoagulação inadequada, com reoperação e mantendo a mesma prótese com achado de depósito difuso de fibrina e boa evolução após dez meses. CONCLUSÕES: os resultados dos testes mecânicos do material e da válvula e os aspectos clínicos iniciais são favoráveis, devendo-se ampliar a casuística, com proteção anticoagulante mais efetiva e uniforme nos três primeiros meses. Após três meses, a presença do material biológico e as baixas doses de anticoagulante parecem ser eficientes no controle das complicações pós-operatórias da válvula mecânica, contra a trombose, o tromboembolismo e os acidentes hemorrágicos.INTRODUCTION: a hybrid valve was developed for improving a durable mechanic disc valve with good biocompatibility, by promoting easy healing around the ring valve and making the maximum isolation of the synthetic material in the blood stream. Lining the mechanical valve with porcine biologic tissue (pericardium and vein is a tentative to reduce the morbidity and mortality on respect of thrombosis, thromboembolism, reoperations and minor use of anticoagulants to reduce the hemorrhagic events. Some principles were established on hybrid valve: durable mechanical system, points of contact without biologic material, use of biological material with minor organic reaction, movable parts without biologic material outside its perimeter, preferential closing system with superposition on a track seat and loose joints for accept biologic material limited growth. MATERIAL AND METHOD: the valve is the type of perforated tilting disc and all made of Carbolite (hardened polymeric carbon. The prosthesis is all covered except the central pivot, the disc

  4. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke;

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  5. Tunable Hydrogel-Microsphere Composites that Modulate Local Inflammation and Collagen Bulking

    OpenAIRE

    Tous, Elena; Weber, Heather M.; Lee, Myung Han; Koomalsingh, Kevin J.; Shuto, Takashi; Kondo, Norihiro; Gorman, Joseph H.; Lee, Daeyeon; Gorman, Robert C; Burdick, Jason A.

    2012-01-01

    Injectable biomaterials alone may alter local tissue responses, including inflammatory cascades and matrix production (e.g., stimulatory dermal fillers are used as volumizing agents that induce collagen production). To expand upon the available material compositions and timing of presentation, a tunable hyaluronic acid (HA) and poly(lactide-co-glycolide) (PLGA) microsphere composite system was formulated and assessed in subcutaneous and cardiac tissues. HA functionalized with hydroxyethyl met...

  6. Sum-Frequency-Generation-Based Laser Sidebands for Tunable Femtosecond Raman Spectroscopy in the Ultraviolet

    OpenAIRE

    Liangdong Zhu; Weimin Liu; Yanli Wang; Chong Fang

    2015-01-01

    Femtosecond stimulated Raman spectroscopy (FSRS) is an emerging molecular structural dynamics technique for functional materials characterization typically in the visible to near-IR range. To expand its applications we have developed a versatile FSRS setup in the ultraviolet region. We use the combination of a narrowband, ~400 nm Raman pump from a home-built second harmonic bandwidth compressor and a tunable broadband probe pulse from sum-frequency-generation-based cascaded four-wave mixing (...

  7. Computer control of pulsed tunable dye lasers

    International Nuclear Information System (INIS)

    Pulsed tunable dye lasers are being used extensively for spectroscopic and photo-chemical experiments, and a system for acquisition and spectral analysis of a volume of data generated will be quite useful. The development of a system for wavelength tuning and control of tunable dye lasers and an acquisition system for spectral data generated in experiments with these lasers are described. With this system, it is possible to control the tuning of three lasers, and acquire data in four channels, simultaneously. It is possible to arrive at the desired dye laser wavelength with a reproducibility of ± 0.012 cm-1, which is within the absorption width (atomic interaction) caused by pulsed dye lasers of linewidth 0.08 cm-1. The spectroscopic data generated can be analyzed for spectral identification within absolute accuracy ± 0.012 cm-1. (author). 6 refs., 11 figs

  8. Three Dimensional Broadband Tunable Terahertz Metamaterials

    CERN Document Server

    Fan, Kebin; Zhang, Xin; Averitt, Richard D

    2013-01-01

    We present optically tunable magnetic 3D metamaterials at terahertz (THz) frequencies which exhibit a tuning range of ~30% of the resonance frequency. This is accomplished by fabricating 3D array structures consisting of double-split-ring resonators (DSRRs) on silicon-on-sapphire, fabricated using multilayer electroplating. Photoexcitation of free carriers in the silicon within the capacitive region of the DSRR results in a red-shift of the resonant frequency from 1.74 THz to 1.16 THz. The observed frequency shift leads to a transition from a magnetic-to-bianisotropic response as verified through electromagnetic simulations and parameter retrieval. Our approach extends dynamic metamaterial tuning to magnetic control, and may find applications in switching and modulation, polarization control, or tunable perfect absorbers.

  9. 130-nm tunable grating-mirror VCSEL

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2014-01-01

    We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity configurat......We have reported that a combination of the high-index-contrast grating (HCG) mirror as movable mirror and the extended cavity configuration with an antireflection layer can provide a tuning wavelength range of 100 nm for tunable VCSELs. Here, we report that using the air-coupled cavity...... configuration instead of the extended cavity configuration can bring 130-nm tuning range around 1330-nm wavelength. The air-coupled cavity is known to reduce the quantum confinement factor in VCSELs, increasing threshold. In our air-coupled cavity HCG VCSEL case, the very short power penetration length...

  10. Tunable Sparse Network Coding for Multicast Networks

    DEFF Research Database (Denmark)

    Feizi, Soheil; Roetter, Daniel Enrique Lucani; Sørensen, Chres Wiant;

    2014-01-01

    This paper shows the potential and key enabling mechanisms for tunable sparse network coding, a scheme in which the density of network coded packets varies during a transmission session. At the beginning of a transmission session, sparsely coded packets are transmitted, which benefits decoding...... complexity. At the end of a transmission, when receivers have accumulated degrees of freedom, coding density is increased. We propose a family of tunable sparse network codes (TSNCs) for multicast erasure networks with a controllable trade-off between completion time performance to decoding complexity....... Coding density tuning can be performed by designing time-dependent coding matrices. In multicast networks, this tuning can be performed within the network by designing time-dependent pre- coding and network coding matrices with mild conditions on the network structure for specific densities. We present a...

  11. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  12. Dangers resulting from DNA profiling of biological materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) with regard to forensic genetic analysis.

    Science.gov (United States)

    Jacewicz, R; Lewandowski, K; Rupa-Matysek, J; Jędrzejczyk, M; Berent, J

    2015-01-01

    The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient's blood was identical with the donor's in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal) material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient's profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells - similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases. PMID:27543957

  13. Dangers resulting from DNA profiling of biological materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT with regard to forensic genetic analysis

    Directory of Open Access Journals (Sweden)

    Renata Jacewicz

    2016-07-01

    Full Text Available The study documents the risk that comes with DNA analysis of materials derived from patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT in forensic genetics. DNA chimerism was studied in 30 patients after allo-HSCT, based on techniques applied in contemporary forensic genetics, i.e. real-time PCR and multiplex PCR-STR with the use of autosomal DNA as well as Y-DNA markers. The results revealed that the DNA profile of the recipient’s blood was identical with the donor’s in the majority of cases. Therefore, blood analysis can lead to false conclusions in personal identification as well as kinship analysis. An investigation of buccal swabs revealed a mixture of DNA in the majority of recipients. Consequently, personal identification on the basis of stain analysis of the same origin may be impossible. The safest (but not ideal material turned out to be the hair root. Its analysis based on autosomal DNA revealed 100% of the recipient’s profile. However, an analysis based on Y-chromosome markers performed in female allo-HSCT recipients with male donors demonstrated the presence of donor DNA in hair cells – similarly to the blood and buccal swabs. In the light of potential risks arising from DNA profiling of biological materials derived from persons after allotransplantation in judicial aspects, certain procedures were proposed to eliminate such dangers. The basic procedures include abandoning the approach based exclusively on blood collection, both for kinship analysis and personal identification; asking persons who are to be tested about their history of allo-HSCT before sample collection and profile entry in the DNA database, and verification of DNA profiling based on hair follicles in uncertain cases.

  14. Two dimensional tunable photonic crystals and n doped semiconductor materials

    International Nuclear Information System (INIS)

    In this paper, we theoretically investigate the effect of the doping concentration on the properties of two dimensional semiconductor photonic band structures. We consider two structures; type I(II) that is composed of n doped semiconductor (air) rods arranged into a square lattice of air (n doped semiconductor). We consider three different shapes of rods. Our numerical method is based on the frequency dependent plane wave expansion method. The numerical results show that the photonic band gaps in type II are more sensitive to the changes in the doping concentration than those of type I. In addition, the width of the gap of type II is less sensitive to the shape of the rods than that of type I. Moreover, the cutoff frequency can be strongly tuned by the doping concentrations. Our structures could be of technical use in optical electronics for semiconductor applications

  15. Self-Assembly in Biosilicification and Biotemplated Silica Materials

    Directory of Open Access Journals (Sweden)

    Francisco M. Fernandes

    2014-09-01

    Full Text Available During evolution, living organisms have learned to design biomolecules exhibiting self-assembly properties to build-up materials with complex organizations. This is particularly evidenced by the delicate siliceous structures of diatoms and sponges. These structures have been considered as inspiration sources for the preparation of nanoscale and nanostructured silica-based materials templated by the self-assembled natural or biomimetic molecules. These templates range from short peptides to large viruses, leading to biohybrid objects with a wide variety of dimensions, shapes and organization. A more recent strategy based on the integration of biological self-assembly as the driving force of silica nanoparticles organization offers new perspectives to elaborate highly-tunable, biofunctional nanocomposites.

  16. Highly tunable elastic dielectric metasurface lenses

    OpenAIRE

    Kamali, Seyedeh Mahsa; Arbabi, Ehsan; Arbabi, Amir; Horie, Yu; Faraon, Andrei

    2016-01-01

    Dielectric metasurfaces are two-dimensional structures composed of nano-scatterers that manipulate phase and polarization of optical waves with subwavelength spatial resolution, enabling ultra-thin components for free-space optics. While high performance devices with various functionalities, including some that are difficult to achieve using conventional optical setups have been shown, most demonstrated components have a fixed functionality. Here we demonstrate highly tunable metasurface devi...

  17. Tunable filters for JWST Fine Guidance Sensor

    Science.gov (United States)

    Rowlands, Neil; Evans, Clinton; Greenberg, Elliot; Gregory, Phil; Scott, Alan; Thibault, Simon; Poirier, Michel; Doyon, Rene; Hutchings, John B.; Alexander, Russ

    2004-10-01

    The Canadian contribution to the James Webb Space Telescope (JWST) mission will be the Fine Guidance Sensor (FGS), incorporating a science-observing mode using tunable filters. We describe here the requirements, the opto-mechanical design concept and bread-board test results for the JWST FGS tunable filters. The FGS requires two continuously tunable filters over the wavelength ranges 1.2 - 2.4 microns and 2.4 - 4.8 microns each having a spectral resolution in the range of R~70 to 200. The selected implementation uses dielectric coated Fabry-Perot etalon plates with a small air gaps. The design finesse is ~30 and the filters are used in 3rd order. The operating temperature is ~35K. Current coating designs provide implementations that require only five blocking filters in each wavelength range to suppress unwanted orders. The filters will be scanned via the use of low voltage piezo-electric transducers. We present results from cryogenic tests of coating samples, PZT actuators and a structural model. The PZT actuators were found have a displacement of ~3.3 microns at 30K with an applied voltage of 125V, more than sufficient for the required scan of the Fabry-Perot plate spacing. The prototype etalon coating was found to be very stable cryogenically, having a measured change of transmission of only ~1% at 77K. The same coating on a 12.7 mm thick substrate, similar to that planned for the filter, was found to have a 18 nm peak-to-valley surface figure change when cooled to 30K. These results demonstrate that the development of tunable filters for the JWST FGS is on track to meet the technology readiness requirements of the program.

  18. Tunable skewed edges in puckered structures

    OpenAIRE

    Grujić, Marko M.; Ezawa, Motohiko; Tadić, Milan Ž.; Peeters, Françios M.

    2015-01-01

    We propose a new type of edges, arising due to the anisotropy inherent in the puckered structure of a honeycomb system such as in phosphorene. Skewed-zigzag and skewed-armchair nanoribbons are semiconducting and metallic, respectively, in contrast to their normal edge counterparts. Their band structures are tunable, and a metal-insulator transition is induced by an electric field. We predict a field-effect transistor based on the edge states in skewed-armchair nanoribbons, where the edge stat...

  19. Tunable narrow band filter for CARS microscopy

    International Nuclear Information System (INIS)

    In this letter we present an approach to CARS microscopy, which compromises between fast acquisition rates and the amount of chemical information obtained. By using a light modulator as tunable filter in concert with narrowband pump and broadband Stokes pulses, we demonstrate an experimental arrangement, which allows for fast electronic switching between CARS images recorded at different Raman resonances without the need for any optical adjustment

  20. Tunable Focusing by a Flexible Metasurface

    CERN Document Server

    Zárate, Yair; Powell, David A

    2016-01-01

    An efficient reflective elastic metasurface with tunable focusing point is proposed. The metasurface is based on electric resonators embedded in a stretchable elastic substrate. The focal length is controlled by mean of the stretching applied applied to the sample. The results predicted by theory and numerical simulations are experimentally verified. Our proposal shows that smart engineering elastic metamaterials are an effective platform for new functional devices based on metamaterials.