WorldWideScience

Sample records for biologically significant molecules

  1. Diversity in Biological Molecules

    Science.gov (United States)

    Newbury, H. John

    2010-01-01

    One of the striking characteristics of fundamental biological processes, such as genetic inheritance, development and primary metabolism, is the limited amount of variation in the molecules involved. Natural selective pressures act strongly on these core processes and individuals carrying mutations and producing slightly sub-optimal versions of…

  2. Surface functionalization of bioactive glasses with natural molecules of biological significance, part II: Grafting of polyphenols extracted from grape skin

    Science.gov (United States)

    Zhang, Xin; Ferraris, Sara; Prenesti, Enrico; Verné, Enrica

    2013-12-01

    Polyphenols, as one of the most important family of phytochemicals protective substances from grape fruit, possess various biological activities and health-promoting benefits, for example: inhibition of some degenerative diseases, cardiovascular diseases and certain types of cancers, reduction of plasma oxidative stress and slowing aging. The combination of polyphenols and biomaterials may have good potential to reach good bioavailability and controlled release, as well as to give biological signaling properties to the biomaterial surfaces. In this research, conventional solvent extraction was developed for obtaining polyphenols from dry grape skins. The Folin&Ciocalteu method was used to determine the amount of total polyphenols in the extracts. Surface functionalization of two bioactive glasses (SCNA and CEL2) was performed by grafting the extracted polyphenols on their surfaces. The effectiveness of the functionalization was tested by UV spectroscopy, which analyzes the amount of polyphenols in the uptake solution (before and after functionalization) and on solid samples, and XPS, which analyzes the presence of phenols on the material surface.

  3. Synthetic definition of biological significance

    International Nuclear Information System (INIS)

    Buffington, J.D.

    1975-01-01

    The central theme of the workshop is recounted and the views of the authors are summarized. Areas of broad agreement or disagreement, unifying principles, and research needs are identified. Authors' views are consolidated into concepts that have practical utility for the scientist making impact assessments. The need for decision-makers and managers to be cognizant of the recommendations made herein is discussed. Finally, bringing together the diverse views of the workshop participants, a conceptual definition of biological significance is synthesized

  4. Biological mechanisms, one molecule at a time

    Science.gov (United States)

    Tinoco, Ignacio; Gonzalez, Ruben L.

    2011-01-01

    The last 15 years have witnessed the development of tools that allow the observation and manipulation of single molecules. The rapidly expanding application of these technologies for investigating biological systems of ever-increasing complexity is revolutionizing our ability to probe the mechanisms of biological reactions. Here, we compare the mechanistic information available from single-molecule experiments with the information typically obtained from ensemble studies and show how these two experimental approaches interface with each other. We next present a basic overview of the toolkit for observing and manipulating biology one molecule at a time. We close by presenting a case study demonstrating the impact that single-molecule approaches have had on our understanding of one of life's most fundamental biochemical reactions: the translation of a messenger RNA into its encoded protein by the ribosome. PMID:21685361

  5. Keystone predation and molecules of keystone significance.

    Science.gov (United States)

    Zimmer, Richard K; Ferrier, Graham A; Kim, Steven J; Ogorzalek Loo, Rachel R; Zimmer, Cheryl Ann; Loo, Joseph A

    2017-06-01

    Keystone species structure ecological communities and are major determinants of biodiversity. A synthesis of research on keystone species is nonetheless missing a critical component - the sensory mechanisms for behavioral interactions that determine population- and community-wide attributes. Here, we establish the chemosensory basis for keystone predation by sea stars (Pisaster ochraceus) on mussels. This consumer-resource interaction is prototypic of top-down driven trophic cascades. Each mussel species (Mytilus californianus and M. galloprovincialis) secretes a glycoprotein orthologue (29.6 and 28.1 kDa, respectively) that acts, singularly, to evoke the sea star predatory response. The orthologues (named "KEYSTONEin") are localized in the epidermis, extrapallial fluid, and organic shell coating (periostracum) of live, intact mussels. Thus, KEYSTONEin contacts chemosensory receptors on tube feet as sea stars crawl over rocky surfaces in search of prey. The complete nucleotide sequences reveal that KEYSTONEin shares 87% (M. californianus) or 98% (M. galloprovincialis) homology with a calcium-binding protein in the shell matrix of a closely related congener, M. edulis. All three molecules cluster tightly within the Complement Component 1 Domain Containing (C1qDC) protein family; each exhibits a large globular domain, low complexity region(s), coiled coil, and at least four of five histidine-aspartic acid tandem motifs. Collective results support the hypothesis that KEYSTONEin evolved ancestrally in immunological, and later, in biomineralization roles. More recently, the substance has become exploited by sea stars as a contact cue for prey recognition. As the first identified compound to evoke keystone predation, KEYSTONEin provides valuable sensory information, promotes biodiversity, and shapes community structure and function. Without this molecule, there would be no predation by sea stars on mussels. © 2017 by the Ecological Society of America.

  6. Spectroscopic probes of vibrationally excited molecules at chemically significant energies

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, T.R. [Univ. of Rochester, NY (United States)

    1993-12-01

    This project involves the application of multiple-resonance spectroscopic techniques for investigating energy transfer and dissociation dynamics of highly vibrationally excited molecules. Two major goals of this work are: (1) to provide information on potential energy surfaces of combustion related molecules at chemically significant energies, and (2) to test theoretical modes of unimolecular dissociation rates critically via quantum-state resolved measurements.

  7. Disturb or stabilise? Effects of different molecules on biological membranes

    NARCIS (Netherlands)

    Siwko, Magdalena Elzbieta

    2008-01-01

    The properties of biological membranes are often regulated by special molecules produced by organisms. Knowledge about the mechanisms by which these molecules affect biological membranes is a key issue in understanding living organisms. The interactions between phospholipid membranes and different

  8. Chemical and Biological Significance of Naturally Occurring ...

    African Journals Online (AJOL)

    PROF HORSFALL

    Chemical and Biological Significance of Naturally Occurring Additives on. African Black Soap and its Performance. IKOTUN, A. ... attribute of the soap includes gentleness on the skin, rich lather, protection against skin disorders ... soap, the effects of its modifications with some commonly used natural products, as well as the ...

  9. Transport of biological molecules in surfactant-alginate composite hydrogels.

    Science.gov (United States)

    Stoppel, Whitney L; White, Joseph C; Horava, Sarena D; Bhatia, Surita R; Roberts, Susan C

    2011-11-01

    Obstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels, formed by both internal and external cross-linking with divalent cations. Results indicate that small molecule transport (represented by riboflavin) was not significantly hindered by F68 in homogeneously (internally) cross-linked hydrogels (up to an 11% decrease in loading capacity and 14% increase in effective diffusion coefficient, D(eff)), while protein transport in homogeneously cross-linked hydrogels (represented by BSA) was significantly affected (up to a 43% decrease in loading capacity and 40% increase in D(eff)). For inhomogeneously cross-linked hydrogels (externally cross-linked by CaCl(2) or BaCl(2)), the D(eff) increased up to 50 and 83% for small molecules and proteins, respectively. Variation in the alginate gelation method was shown to affect transport through measurable changes in swelling ratio (30% decrease) and observable changes in cross-linking structure as well as up to a 3.6- and 11.8-fold difference in D(eff) for riboflavin and BSA, respectively. Aside from the expected significant changes due to the cross-linking method utilized, protein transport properties were altered due to mesh size restrictions (10-25 nm estimated by mechanical properties) and BSA-F68 interaction (DLS). Taken as a whole, these results show that incorporation of a nonionic surfactant at concentrations above the CMC can affect device functionality by impeding the transport of large biological molecules. Copyright © 2011

  10. Interactions of electrons with biologically important molecules

    International Nuclear Information System (INIS)

    Pisklova, K.; Papp, P.; Stano, M.

    2012-01-01

    For the study of interactions of low-energy electrons with the molecules in the gas phase, the authors used electron-molecule cross-beam apparatus. The experiment is carried out in high vacuum, where molecules of the tested compound are inducted through a capillary. For purposes of this experiment the sample was electrically heated to 180 Deg C., giving a bundle of GlyGly molecules into the gas phase. The resulting signals can be evaluated in two different modes: mass spectrum - at continuous electron energy (e.g. 100 eV) they obtained the signal of intensity of the ions according to their mass to charge ratio; ionization and resonance spectra - for selected ion mass when the authors received the signal of intensity of the ions, depending on the energy of interacting electron.

  11. Raman Optical Activity of Biological Molecules

    Science.gov (United States)

    Blanch, Ewan W.; Barron, Laurence D.

    Now an incisive probe of biomolecular structure, Raman optical activity (ROA) measures a small difference in Raman scattering from chiral molecules in right- and left-circularly polarized light. As ROA spectra measure vibrational optical activity, they contain highly informative band structures sensitive to the secondary and tertiary structures of proteins, nucleic acids, viruses and carbohydrates as well as the absolute configurations of small molecules. In this review we present a survey of recent studies on biomolecular structure and dynamics using ROA and also a discussion of future applications of this powerful new technique in biomedical research.

  12. Positron interactions and transport in biologically relevant molecules

    International Nuclear Information System (INIS)

    Makochekanwa, C; Jones, A; Caradonna, P; Slaughter, D; Sullivan, J; Buckman, S; Bankovic, A; Petrovic, Z; Malovic, G; Dujko, S; Marler, J; Nixon, K; Brunger, M

    2009-01-01

    We present new, high-resolution measurements of positron scattering from biologically relevant molecules, such as water and formic acid. The measurements include absolute determinations of total scattering and positronium formation and they have enabled us to assemble a set of cross sections for these molecules which can be used in an investigation of positron transport in these systems.

  13. Single molecule force spectroscopy: methods and applications in biology

    International Nuclear Information System (INIS)

    Shen Yi; Hu Jun

    2012-01-01

    Single molecule measurements have transformed our view of biomolecules. Owing to the ability of monitoring the activity of individual molecules, we now see them as uniquely structured, fluctuating molecules that stochastically transition between frequently many substrates, as two molecules do not follow precisely the same trajectory. Indeed, it is this discovery of critical yet short-lived substrates that were often missed in ensemble measurements that has perhaps contributed most to the better understanding of biomolecular functioning resulting from single molecule experiments. In this paper, we give a review on the three major techniques of single molecule force spectroscopy, and their applications especially in biology. The single molecular study of biotin-streptavidin interactions is introduced as a successful example. The problems and prospects of the single molecule force spectroscopy are discussed, too. (authors)

  14. Perspective: Mechanochemistry of biological and synthetic molecules

    International Nuclear Information System (INIS)

    Makarov, Dmitrii E.

    2016-01-01

    Coupling of mechanical forces and chemical transformations is central to the biophysics of molecular machines, polymer chemistry, fracture mechanics, tribology, and other disciplines. As a consequence, the same physical principles and theoretical models should be applicable in all of those fields; in fact, similar models have been invoked (and often repeatedly reinvented) to describe, for example, cell adhesion, dry and wet friction, propagation of cracks, and action of molecular motors. This perspective offers a unified view of these phenomena, described in terms of chemical kinetics with rates of elementary steps that are force dependent. The central question is then to describe how the rate of a chemical transformation (and its other measurable properties such as the transition path) depends on the applied force. I will describe physical models used to answer this question and compare them with experimental measurements, which employ single-molecule force spectroscopy and which become increasingly common. Multidimensionality of the underlying molecular energy landscapes and the ensuing frequent misalignment between chemical and mechanical coordinates result in a number of distinct scenarios, each showing a nontrivial force dependence of the reaction rate. I will discuss these scenarios, their commonness (or its lack), and the prospects for their experimental validation. Finally, I will discuss open issues in the field

  15. Computational Modeling of Biological Systems From Molecules to Pathways

    CERN Document Server

    2012-01-01

    Computational modeling is emerging as a powerful new approach for studying and manipulating biological systems. Many diverse methods have been developed to model, visualize, and rationally alter these systems at various length scales, from atomic resolution to the level of cellular pathways. Processes taking place at larger time and length scales, such as molecular evolution, have also greatly benefited from new breeds of computational approaches. Computational Modeling of Biological Systems: From Molecules to Pathways provides an overview of established computational methods for the modeling of biologically and medically relevant systems. It is suitable for researchers and professionals working in the fields of biophysics, computational biology, systems biology, and molecular medicine.

  16. Cell Adhesion Molecules and Ubiquitination—Functions and Significance

    Science.gov (United States)

    Homrich, Mirka; Gotthard, Ingo; Wobst, Hilke; Diestel, Simone

    2015-01-01

    Cell adhesion molecules of the immunoglobulin (Ig) superfamily represent the biggest group of cell adhesion molecules. They have been analyzed since approximately 40 years ago and most of them have been shown to play a role in tumor progression and in the nervous system. All members of the Ig superfamily are intensively posttranslationally modified. However, many aspects of their cellular functions are not yet known. Since a few years ago it is known that some of the Ig superfamily members are modified by ubiquitin. Ubiquitination has classically been described as a proteasomal degradation signal but during the last years it became obvious that it can regulate many other processes including internalization of cell surface molecules and lysosomal sorting. The purpose of this review is to summarize the current knowledge about the ubiquitination of cell adhesion molecules of the Ig superfamily and to discuss its potential physiological roles in tumorigenesis and in the nervous system. PMID:26703751

  17. Single molecule experimentation in biological physics: exploring the living component of soft condensed matter one molecule at a time.

    Science.gov (United States)

    Harriman, O L J; Leake, M C

    2011-12-21

    The soft matter of biological systems consists of mesoscopic length scale building blocks, composed of a variety of different types of biological molecules. Most single biological molecules are so small that 1 billion would fit on the full-stop at the end of this sentence, but collectively they carry out the vital activities in living cells whose length scale is at least three orders of magnitude greater. Typically, the number of molecules involved in any given cellular process at any one time is relatively small, and so real physiological events may often be dominated by stochastics and fluctuation behaviour at levels comparable to thermal noise, and are generally heterogeneous in nature. This challenging combination of heterogeneity and stochasticity is best investigated experimentally at the level of single molecules, as opposed to more conventional bulk ensemble-average techniques. In recent years, the use of such molecular experimental approaches has become significantly more widespread in research laboratories around the world. In this review we discuss recent experimental approaches in biological physics which can be applied to investigate the living component of soft condensed matter to a precision of a single molecule. © 2011 IOP Publishing Ltd Printed in the UK & the USA

  18. Caenorhabditis elegans chemical biology: lessons from small molecules

    Science.gov (United States)

    How can we complement Caenorhabditis elegans genomics and proteomics with a comprehensive structural and functional annotation of its metabolome? Several lines of evidence indicate that small molecules of largely undetermined structure play important roles in C. elegans biology, including key pathw...

  19. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    Science.gov (United States)

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  20. Electron scattering from molecules and molecular aggregates of biological relevance

    Science.gov (United States)

    Gorfinkiel, Jimena D.; Ptasinska, Sylwia

    2017-09-01

    In this Topical Review we survey the current state of the art in the study of low energy electron collisions with biologically relevant molecules and molecular clusters. We briefly describe the methods and techniques used in the investigation of these processes and summarise the results obtained so far for DNA constituents and their model compounds, amino acids, peptides and other biomolecules. The applications of the data obtained is briefly described as well as future required developments.

  1. Concentration of biological molecules with radiation crosslinked hydrogels

    International Nuclear Information System (INIS)

    Acharya, Anjali; Sabharwal, S.

    2001-01-01

    Radiation crosslinked temperature sensitive Poly(N-isopropylacrylamide) hydrogels have been synthesised and utilised to concentrate biological molecules from dilute aqueous solutions. Both gamma radiation and electron beam radiation technique have been used to form crosslinked hydrogels. The solutes used for this study include biological macromolecules of varying molecular weights such as bovine serum albumin, chicken egg albumin, lysozyme and a-amylase. The effect of synthesis conditions of hydrogel namely radiation dose, solute concentration and pH of solution on the exclusion efficiencies of hydrogels have been investigated for these macromolecules. The reversible volume phase transition of the gels at 34 degC has been exploited for regeneration of the gels. The results show that biological macromolecules with M w > 40000 call be suitably concentrated using such hydrogels

  2. Novel nuclear magnetic resonance techniques for studying biological molecules

    International Nuclear Information System (INIS)

    Laws, David D.

    2000-01-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (φ/ψ) dihedral angles by comparing experimentally determined 13 C a , chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  3. Template Synthesis of Tubular Nanostructures for Loading Biologically Active Molecules.

    Science.gov (United States)

    Karatas, Aysegul; Algan, Aslıhan Hilal

    2017-01-01

    The template synthesis is a low cost, simple and versatile nanofabrication method to produce cylindrical/tubular nanostructures with controllable dimensions such as length, diameter and aspect ratio. This method utilizes nanoporous membranes such as anodized aluminum oxide (AAO) or polycarbonate (PC) as templates which have nanosized specific, cylindrical and uniform inner pores to be coated with the desired material. Template synthesized nanotubular structures have been produced from variety of materials including ceramics, polymers and proteins for loading biologically active molecules. Available procedures of material deposition into the template nanopores consist of several techniques like wetting (melt or solution wetting), layer-by-layer (LbL) assembly and sol-gel chemistry. Template synthesis enables not only control of the geometry of the resulting nanostructures but also provides nanovehicles having separated inner and outer surfaces which can be variously functionalized. Tubular nanostructures fabricated by this method have numerous potential applications including delivery of biologically active molecules such as drugs, gene, enzymes and proteins. In this review we aimed to present up-to-date works on the template based synthesis which has greatly facilitated the fabrication of polymer and protein tubular nanostructures, principally. The strategies regarding the synthesis and designing of these promising tubular nanostructures together with recent approaches relevant of drug delivery was also presented. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. UT ARMPA Map 2.2 Biologically Significant Units

    Data.gov (United States)

    Department of the Interior — This data set was created to depict “biologically significant units” (BSU) from the BLM Greater Sage-Grouse Land Use Planning Strategy – Utah Sub-Region. This data...

  5. Novel nuclear magnetic resonance techniques for studying biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    Laws, David Douglas [Univ. of California, Berkeley, CA (United States)

    2000-06-01

    Over the fifty-five year history of Nuclear Magnetic Resonance (NMR), considerable progress has been made in the development of techniques for studying the structure, function, and dynamics of biological molecules. The majority of this research has involved the development of multi-dimensional NMR experiments for studying molecules in solution, although in recent years a number of groups have begun to explore NMR methods for studying biological systems in the solid-state. Despite this new effort, a need still exists for the development of techniques that improve sensitivity, maximize information, and take advantage of all the NMR interactions available in biological molecules. In this dissertation, a variety of novel NMR techniques for studying biomolecules are discussed. A method for determining backbone (Φ/Ψ) dihedral angles by comparing experimentally determined 13Ca, chemical-shift anisotropies with theoretical calculations is presented, along with a brief description of the theory behind chemical-shift computation in proteins and peptides. The utility of the Spin-Polarization Induced Nuclear Overhauser Effect (SPINOE) to selectively enhance NMR signals in solution is examined in a variety of systems, as are methods for extracting structural information from cross-relaxation rates that can be measured in SPINOE experiments. Techniques for the production of supercritical and liquid laser-polarized xenon are discussed, as well as the prospects for using optically pumped xenon as a polarizing solvent. In addition, a detailed study of the structure of PrP 89-143 is presented. PrP 89-143 is a 54 residue fragment of the prion proteins which, upon mutation and aggregation, can induce prion diseases in transgenic mice. Whereas the structure of the wild-type PrP 89-143 is a generally unstructured mixture of α-helical and β-sheet conformers in the solid state, the aggregates formed from the PrP 89-143 mutants appear to be mostly β-sheet.

  6. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    Phenolics are low molecular compounds ubiquitous in all tissues of higher plants with great significance in plant development. Our understanding of some phenolic compounds in the last few decades has greatly improved. However, their biological, ecological and agronomical significance in the rhizosphere of most ...

  7. Saxitoxin and the Ochre Sea Star: Molecule of Keystone Significance and a Classic Keystone Species.

    Science.gov (United States)

    Ferrer, Ryan P; Lunsford, Elias T; Candido, Camillo M; Strawn, Madison L; Pierce, Karisa M

    2015-09-01

    Saxitoxins (STXs) are paralytic alkaloids produced by marine dinoflagellates in response to biotic and abiotic stressors yielding harmful algal blooms. Because STX impacts coastal, near-shore communities to a greater extent than would be predicted by its relative abundance, it has been referred to as a "molecule of keystone significance" in reference to Robert Paine's Keystone Species Concept. Pisaster ochraceus, the predator upon which Paine's concept was founded, inhabits waters regularly plagued by harmful algal blooms, but the effects of STX on Pisaster have not yet been investigated. Here, we used laboratory and field experiments to examine the potential consequences of exposure to STX on sea stars' feeding, attachment to the substrate, and success in fertilization. Pisaster exhibited similar feeding behaviors when offered non-toxic prey, STX-containing prey, or a combination of the two. Although feeding behavior is unaffected, consumption of STX poses a physiological tradeoff. Sea stars in the laboratory and field had significantly lower thresholds of the force needed to detach them from their substrates after either being exposed to, or consuming, STX. High pressure (or high performance) liquid chromatography analysis indicated an accumulation of STX (and structural analogues) in sea stars' viscera, likely due to trophic transfer from toxic prey. Incidence of fertilization tended to decrease when gametes were exposed to high, yet ecologically relevant, STX concentrations of STX. These findings suggest that the molecule of keystone significance, STX, produced during harmful algal blooms extends its impacts to rocky intertidal communities by way of the keystone predator P. ochraceus. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  8. Synthetic biology and the moral significance of artificial life

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    2016-01-01

    I discuss the moral significance of artificial life within synthetic biology via a discussion of Douglas, Powell and Savulescu's paper 'Is the creation of artificial life morally significant’. I argue that the definitions of 'artificial life’ and of 'moral significance’ are too narrow. Douglas, P...

  9. Adaptive Significance of Circadian Rhythms-Biological Clocks and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Adaptive Significance of Circadian Rhythms - Biological Clocks and Darwinian Fitness in Cyanobacteria. V Sheeba Vijay Kumar Sharma Amitabh Joshi. Research News Volume 4 Issue 1 January 1999 pp 73-75 ...

  10. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  11. Self assembly and magnetism of living biological molecules

    Directory of Open Access Journals (Sweden)

    Sutiman Bambang Sumitro

    2013-03-01

    Full Text Available Biological molecules are essentially nano size structure. All of them are complex structure with specifi c function dedicated to perform normal ordered organizational system. The forces for their work are non-covalent interactions; include spontaneous folding of proteins, DNA, RNA and other bio-macromolecules, ligand-receptors interactions, assembly-disassembly of macromolecule, and transportation or movement of many other nano size sub cellular components. The non-covalent interactions are weak bonds system that is low energetic chemical and physical forces. The energetic forces are mainly atomic forces such as electromagnetic force emergence from electron spinning and transitions at every atom of the complex macromolecular structure. The energy will work along with different level of energy, and atomic positioning within macromolecules. This paper review and discuss the role of magnetism on molecular working process as part of thermodynamically open systems to develop order, which is constantly receiving, transforming and dissipating energy, can and do continually exhibit self assembly and organization, along with the self repairing, and perpetuation.

  12. Developing powerful tritide technique: Organic and biological molecule labeling

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Complex hydrides are very important reagents in organic synthesis due to the range of reducing powers and selectivities available from different agents. Unfortunately, the availability of these compounds for radiosynthesis has been extremely limited due to the difficulty of making them with adequate levels of tritium. Investigators at the Lawrence Berkeley Laboratory (LBL) National Tritium Labeling Facility have developed a new addition to the repertoire of the tritium-labeling chemist. The new method allows site-specific incorporation of tritium into organic and biological molecules by efficient reduction processes. Exceptionally reactive and selective reducing agents are prepared and used for labeling in a on-pot process. Three new tritide reagents - supertritide (lithium triethyl borotritide), LiAlT 4 (lithium aluminum tritide), and L-Selectride (sterically hindered lithium tri-sec-butyl borotritide) - have been synthesized at carrier-free levels, and have been demonstrated to be fully reactive. The availability of these versatile and reactive reagents gives the tritium radiochemist great control over chemoselectivity and stereoselectivity. The LBL tritide reagents can drive numerous conventional chemical reactions, and have been used to reduce p-toluene sulfonates, amides, lactones, esters, and aldehydes. These reactions produce good yields and result in products with maximum specific activities. The reagents clearly exhibit superior reactivity and may be used in many more synthetic processes than sodium borohydride, which is the currently used reagent. In addition, tritide reagents such as L-selectride have been shown to give greater control over stereochemistry and selectivity than sodium borohydride

  13. Single molecule tools for enzymology, structural biology, systems biology and nanotechnology: an update

    Science.gov (United States)

    Widom, Julia R.; Dhakal, Soma; Heinicke, Laurie A.; Walter, Nils G.

    2015-01-01

    Toxicology is the highly interdisciplinary field studying the adverse effects of chemicals on living organisms. It requires sensitive tools to detect such effects. After their initial implementation during the 1990s, single-molecule fluorescence detection tools were quickly recognized for their potential to contribute greatly to many different areas of scientific inquiry. In the intervening time, technical advances in the field have generated ever-improving spatial and temporal resolution, and have enabled the application of single-molecule fluorescence to increasingly complex systems, such as live cells. In this review, we give an overview of the optical components necessary to implement the most common versions of single-molecule fluorescence detection. We then discuss current applications to enzymology and structural studies, systems biology, and nanotechnology, presenting the technical considerations that are unique to each area of study, along with noteworthy recent results. We also highlight future directions that have the potential to revolutionize these areas of study by further exploiting the capabilities of single-molecule fluorescence microscopy. PMID:25212907

  14. Sustainable production of biologically active molecules of marine based origin.

    Science.gov (United States)

    Murray, Patrick M; Moane, Siobhan; Collins, Catherine; Beletskaya, Tanya; Thomas, Olivier P; Duarte, Alysson W F; Nobre, Fernando S; Owoyemi, Ifeloju O; Pagnocca, Fernando C; Sette, L D; McHugh, Edward; Causse, Eric; Pérez-López, Paula; Feijoo, Gumersindo; Moreira, Ma T; Rubiolo, Juan; Leirós, Marta; Botana, Luis M; Pinteus, Susete; Alves, Celso; Horta, André; Pedrosa, Rui; Jeffryes, Clayton; Agathos, Spiros N; Allewaert, Celine; Verween, Annick; Vyverman, Wim; Laptev, Ivan; Sineoky, Sergei; Bisio, Angela; Manconi, Renata; Ledda, Fabio; Marchi, Mario; Pronzato, Roberto; Walsh, Daniel J

    2013-09-25

    The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes.

    Science.gov (United States)

    Smith, Weston J; Tran, Huy; Griffin, James I; Jones, Jessica; Vu, Vivian P; Nilewski, Lizanne; Gianneschi, Nathan; Simberg, Dmitri

    2018-04-01

    Decoration of cell membranes with biomolecules, targeting ligands and imaging agents is an emerging strategy to improve functionality of cell-based therapies. Compared to covalent chemistry or genetic expression on the cell surface, lipid painting (i.e., incorporation of lipid-conjugated molecules into the cell bilayer) is a fast, non-damaging and less expensive approach. Previous studies demonstrated excellent incorporation and retention of distearyl indocarbocyanine dye DiI in membranes of cells in vitro and in vivo. In order to exploit the membrane stability of DiI, we synthesized an amino-DiI derivative, to which we subsequently conjugated an antibody (cetuximab), an enzyme (superoxide dismutase), and a small molecule (DyLight 800). Red blood cells have long been used as drug delivery vehicles so they were utilized as a model to study the incorporation of DiI conjugates in the plasma membrane. All the DiI constructs demonstrated fast and efficient ex vivo incorporation in the membrane of mouse RBCs, resulting in millions of exogenous molecules per RBC. Following an intravenous injection into mice, the molecules were detected on circulating RBCs for several days. DiI anchored molecules showed longer residence time in blood and significantly higher area under the curve (AUC) compared to free non-conjugated molecules. Thus, cetuximab, SOD and DyLight painted on RBC showed 5.5-fold, 6.5-fold and 78-fold increase in the AUC, respectively, compared to the non-modified molecules. Lipophilic indocarbocyanine anchors are a promising technology for incorporation of biomolecules and small molecules into biological membranes for in vivo applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Transport and Stability of Biological Molecules in Surfactant-Alginate Composite Hydrogels

    Science.gov (United States)

    Stoppel, Whitney L.; White, Joseph C.; Horava, Sarena D.; Bhatia, Surita R.; Roberts, Susan C.

    2013-01-01

    Obstructed transport of biological molecules can result in improper release of pharmaceuticals or biologics from biomedical devices. Recent studies have shown that nonionic surfactants, such as Pluronic® F68 (F68), positively alter biomaterial properties, such as mesh size and microcapsule diameter. To further understand the effect of F68 (incorporated at concentrations well above the critical micelle concentration (CMC)) in traditional biomaterials, the transport properties of BSA and riboflavin were investigated in F68-alginate composite hydrogels. Results indicate that small molecule transport (represented by riboflavin) was not significantly hindered by F68 in homogeneously crosslinked hydrogels (up to an 11% decrease in loading capacity and 14% increase in effective diffusion coefficient, Deff), while protein transport in homogeneously crosslinked hydrogels (represented by BSA) was significantly affected (up to a 43% decrease in loading capacity and 40% increase in Deff). For inhomogeneously crosslinked hydrogels (CaCl2 or BaCl2 gelation), the Deff increased up to 50% and 83% for small molecule and proteins, respectively. Variation in the alginate gelation method was shown to affect transport through measurable changes in swelling ratio (30% decrease) and observable changes in crosslinking structure as well as up to a 3.6 and 11.8-fold difference in Deff for riboflavin and BSA, respectively. The change in protein transport properties is a product of mesh size restrictions (10–25 nm estimated by mechanical properties) and BSA-F68 interaction (DLS). Taken as a whole, these results show that incorporation of a nonionic surfactant at concentrations above the CMC can affect device functionality by impeding the transport of large biological molecules. PMID:21798381

  17. Single Molecule Spectroscopy in Chemistry, Physics and Biology Nobel Symposium

    CERN Document Server

    Gräslund, Astrid; Widengren, Jerker

    2010-01-01

    Written by the leading experts in the field, this book describes the development and current state-of-the-art in single molecule spectroscopy. The application of this technique, which started 1989, in physics, chemistry and biosciences is displayed.

  18. Splitting the BLOSUM Score into Numbers of Biological Significance

    Directory of Open Access Journals (Sweden)

    Tossi Alessandro

    2007-01-01

    Full Text Available Mathematical tools developed in the context of Shannon information theory were used to analyze the meaning of the BLOSUM score, which was split into three components termed as the BLOSUM spectrum (or BLOSpectrum. These relate respectively to the sequence convergence (the stochastic similarity of the two protein sequences, to the background frequency divergence (typicality of the amino acid probability distribution in each sequence, and to the target frequency divergence (compliance of the amino acid variations between the two sequences to the protein model implicit in the BLOCKS database. This treatment sharpens the protein sequence comparison, providing a rationale for the biological significance of the obtained score, and helps to identify weakly related sequences. Moreover, the BLOSpectrum can guide the choice of the most appropriate scoring matrix, tailoring it to the evolutionary divergence associated with the two sequences, or indicate if a compositionally adjusted matrix could perform better.

  19. Selenium: environmental significance, pollution, and biological treatment technologies.

    Science.gov (United States)

    Tan, Lea Chua; Nancharaiah, Yarlagadda V; van Hullebusch, Eric D; Lens, Piet N L

    2016-01-01

    Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent

  20. Single-Molecule Study of Proteins by Biological Nanopore Sensors

    Science.gov (United States)

    Wu, Dongmei; Bi, Sheng; Zhang, Liyu; Yang, Jun

    2014-01-01

    Nanopore technology has been developed for detecting properties of proteins through monitoring of ionic current modulations as protein passes via a nanosize pore. As a real-time, sensitive, selective and stable technology, biological nanopores are of widespread concern. Here, we introduce the background of nanopore researches in the area of α-hemolysin (α-HL) nanopores in protein conformation detections and protein–ligand interactions. Moreover, several original biological nanopores are also introduced with various features and functions. PMID:25268917

  1. Single-Molecule Study of Proteins by Biological Nanopore Sensors

    Directory of Open Access Journals (Sweden)

    Dongmei Wu

    2014-09-01

    Full Text Available Nanopore technology has been developed for detecting properties of proteins through monitoring of ionic current modulations as protein passes via a nanosize pore. As a real-time, sensitive, selective and stable technology, biological nanopores are of widespread concern. Here, we introduce the background of nanopore researches in the area of α-hemolysin (α-HL nanopores in protein conformation detections and protein–ligand interactions. Moreover, several original biological nanopores are also introduced with various features and functions.

  2. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques

    International Nuclear Information System (INIS)

    Lourenco, V.

    2007-07-01

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of europium (analogue of trivalent actinides) and uranium (VI) (actinide) with biological molecules of interest: phyto-chelatins. Their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better understand their reactivity, we extended our studies to lower entities which constitute them (amino acids and glutathione). We determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation of these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS). The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log 10 K 1 < 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. In addition to studies undertaken on synthetic solutions reproducing the 'biological' conditions (pH close to neutrality, ionic strength 0.1 mol/L, etc), tests of cellular contamination were realized. The quantification of integrated europium showed that those are able to

  3. Experimental and computational characterization of biological liquid crystals: a review of single-molecule bioassays.

    Science.gov (United States)

    Eom, Kilho; Yang, Jaemoon; Park, Jinsung; Yoon, Gwonchan; Soo Sohn, Young; Park, Shinsuk; Yoon, Dae Sung; Na, Sungsoo; Kwon, Taeyun

    2009-09-10

    Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM) have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  4. The Design of a Molecular Assembly Line Based on Biological Molecules

    Science.gov (United States)

    2003-06-01

    the biological molecules polyketide synthase and kinesin, and in some embodiments, may employ biomolecules like DNA as components of the system. The...and will demonstrate how one can construct a purely synthetic analogue of a polyketide synthase . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...scaffold in programmed assembly and molecular electronics. It is based on the principles of the biological molecules polyketide synthase and kinesin, and in

  5. Neutron scattering studies of biological molecules suggest that ...

    Indian Academy of Sciences (India)

    E-mail: zaccai@ill.fr. Abstract. The short review concentrates on recent work performed at the neutrons in biology laboratories of the Institut Laue Langevin and Institut de Biologie Structurale in Grenoble. Extremophile organisms have been discovered that require extreme condi- tions of temperature, pressure or solvent ...

  6. Isoprenoid-derived plant signaling molecules: biosynthesis and biological importance

    Czech Academy of Sciences Publication Activity Database

    Tarkowská, Danuše; Strnad, Miroslav

    2018-01-01

    Roč. 247, č. 5 (2018), s. 1051-1066 ISSN 0032-0935 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Dimethylallyl diphosphate * Isopentenyl diphosphate * Isoprenoids * Phytoecdysteroids * Plant hormones * Terpenoids Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.361, year: 2016

  7. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques

    International Nuclear Information System (INIS)

    Lourenco, V.

    2007-07-01

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of these cations with biological molecules of interest. We chose to focus on an actinide: uranium (VI) as well as europium as an analogue of trivalent actinides. The selected biological molecules are the phyto-chelatins: their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better include/understand their reactivity, we extended our studies to lower entities which constitute them (amino acid: glycine, glutamic acid and cysteine; polypeptides: glutathione reduced and oxidized forms). In particular, we determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation with these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray-Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS).The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log 10 K 1 ≤ 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. The interaction of europium with metallothioneins is, on the contrary, lower than

  8. Peptide length significantly influences in vitro affinity for MHC class II molecules

    Science.gov (United States)

    O'Brien, Cathal; Flower, Darren R; Feighery, Conleth

    2008-01-01

    Background Class II Major Histocompatibility Complex (MHC) molecules have an open-ended binding groove which can accommodate peptides of varying lengths. Several studies have demonstrated that peptide flanking residues (PFRs) which lie outside the core binding groove can influence peptide binding and T cell recognition. By using data from the AntiJen database we were able to characterise systematically the influence of PFRs on peptide affinity for MHC class II molecules. Results By analysing 1279 peptide elongation events covering 19 distinct HLA alleles it was observed that, in general, peptide elongation resulted in increased MHC class II molecule affinity. It was also possible to determine an optimal peptide length for MHC class II affinity of approximately 18–20 amino acids; elongation of peptides beyond this length resulted in a null or negative effect on affinity. Conclusion The observed relationship between peptide length and MHC class II affinity has significant implications for the design of vaccines and the study of the epitopic basis of immunological disease. PMID:19036163

  9. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules.

    Science.gov (United States)

    Seghal Kiran, G; Ramasamy, Pasiyappazham; Sekar, Sivasankari; Ramu, Meenatchi; Hassan, Saqib; Ninawe, A S; Selvin, Joseph

    2018-06-01

    The discovery of genes responsible for the production of bioactive metabolites via metabolic pathways combined with the advances in synthetic biology tools, has allowed the establishment of numerous microbial cell factories, for instance the yeast cell factories, for the manufacture of highly useful metabolites from renewable biomass. Genome mining and metagenomics are two platforms provide base-line data for reconstruction of genomes and metabolomes which is based in the development of synthetic/semi-synthetic genomes for marine natural products discovery. Engineered biofilms are being innovated on synthetic biology platform using genetic circuits and cell signalling systems as represillators controlling biofilm formation. Recombineering is a process of homologous recombination mediated genetic engineering, includes insertion, deletion or modification of any sequence specifically. Although this discipline considered new to the scientific domain, this field has now developed as promising endeavor on the accomplishment of sustainable exploitation of marine natural products. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. SINGLE MOLECULE APPROACHES TO BIOLOGY, 2010 GORDON RESEARCH CONFERENCE, JUNE 27-JULY 2, 2010, ITALY

    Energy Technology Data Exchange (ETDEWEB)

    Professor William Moerner

    2010-07-09

    The 2010 Gordon Conference on Single-Molecule Approaches to Biology focuses on cutting-edge research in single-molecule science. Tremendous technical developments have made it possible to detect, identify, track, and manipulate single biomolecules in an ambient environment or even in a live cell. Single-molecule approaches have changed the way many biological problems are addressed, and new knowledge derived from these approaches continues to emerge. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of biomolecular machines: what they do, how they work individually, how they work together, and finally, how they work inside live cells. The burgeoning use of single-molecule methods to elucidate biological problems is a highly multidisciplinary pursuit, involving both force- and fluorescence-based methods, the most up-to-date advances in microscopy, innovative biological and chemical approaches, and nanotechnology tools. This conference seeks to bring together top experts in molecular and cell biology with innovators in the measurement and manipulation of single molecules, and will provide opportunities for junior scientists and graduate students to present their work in poster format and to exchange ideas with leaders in the field. A number of excellent poster presenters will be selected for short oral talks. Topics as diverse as single-molecule sequencing, DNA/RNA/protein interactions, folding machines, cellular biophysics, synthetic biology and bioengineering, force spectroscopy, new method developments, superresolution imaging in cells, and novel probes for single-molecule imaging will be on the program. Additionally, the collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings in the beauty of the Il Ciocco site in

  11. Nano- and micro-fabrication for single-molecule biological studies

    NARCIS (Netherlands)

    Huang, Z.

    2012-01-01

    Heterogeneity is a general feature in biological system. In order to avoid possible misleading effects of ensemble averaging, and to ensure a correct understanding of the biological system, it is very important to look into individuals, such as a single bio-molecule or a single cell, for details.

  12. Clinical significance of circulating vascular cell adhesion molecule-1 to white matter disintegrity in Alzheimer's dementia.

    Science.gov (United States)

    Huang, Chi-Wei; Tsai, Meng-Han; Chen, Nai-Ching; Chen, Wei-Hsi; Lu, Yan-Ting; Lui, Chun-Chung; Chang, Ya-Ting; Chang, Wen-Neng; Chang, Alice Y W; Chang, Chiung-Chih

    2015-11-25

    Endothelial dysfunction leads to worse cognitive performance in Alzheimer's dementia (AD). While both cerebrovascular risk factors and endothelial dysfunction lead to activation of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and E-selectin, it is not known whether these biomarkers extend the diagnostic repertoire in reflecting intracerebral structural damage or cognitive performance. A total of 110 AD patients and 50 age-matched controls were enrolled. Plasma levels of VCAM-1, ICAM-1 and E-selectin were measured and correlated with the cognitive performance, white matter macro-structural changes, and major tract-specific fractional anisotropy quantification. The AD patients were further stratified by clinical dementia rating score (mild dementia, n=60; moderate-to-severe dementia, n=50). Compared with the controls, plasma levels of VCAM-1 (p< 0.001), ICAM-1 (p=0.028) and E-selectin (p=0.016) were significantly higher in the patients, but only VCAM-1 levels significantly reflected the severity of dementia (p< 0.001). In addition, only VCAM-1 levels showed an association with macro- and micro- white matter changes especially in the superior longitudinal fasciculus (p< 0.001), posterior thalamic radiation (p=0.002), stria terminalis (p=0.002) and corpus callosum (p=0.009), and were independent of, age and cortical volume. These tracts show significant association with MMSE, short term memory and visuospatial function. Meanwhile, while VCAM-1 level correlated significantly with short-term memory (p=0.026) and drawing (p=0.025) scores in the AD patients after adjusting for age and education, the significance disappeared after adjusting for global FA. Endothelial activation, especially VCAM-1, was of clinical significance in AD that reflects macro- and micro-structural changes and poor short term memory and visuospatial function.

  13. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    International Nuclear Information System (INIS)

    Burham, Norhafizah; Hamzah, Azrul Azlan; Yunas, Jumril; Majlis, Burhanuddin Yeop

    2017-01-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3"™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney. (paper)

  14. Electrochemically etched nanoporous silicon membrane for separation of biological molecules in mixture

    Science.gov (United States)

    Burham, Norhafizah; Azlan Hamzah, Azrul; Yunas, Jumril; Yeop Majlis, Burhanuddin

    2017-07-01

    This paper presents a technique for separating biological molecules in mixture using nanoporous silicon membrane. Nanopores were formed using electrochemical etching process (ECE) by etching a prefabricated silicon membrane in hydrofluoric acid (HF) and ethanol, and then directly bonding it with PDMS to form a complete filtration system for separating biological molecules. Tygon S3™ tubings were used as fluid interconnection between PDMS molds and silicon membrane during testing. Electrochemical etching parameters were manipulated to control pore structure and size. In this work, nanopores with sizes of less than 50 nm, embedded on top of columnar structures have been fabricated using high current densities and variable HF concentrations. Zinc oxide was diluted with deionized (DI) water and mixed with biological molecules and non-biological particles, namely protein standard, serum albumin and sodium chloride. Zinc oxide particles were trapped on the nanoporous silicon surface, while biological molecules of sizes up to 12 nm penetrated the nanoporous silicon membrane. The filtered particles were inspected using a Zetasizer Nano SP for particle size measurement and count. The Zetasizer Nano SP results revealed that more than 95% of the biological molecules in the mixture were filtered out by the nanoporous silicon membrane. The nanoporous silicon membrane fabricated in this work is integratable into bio-MEMS and Lab-on-Chip components to separate two or more types of biomolecules at once. The membrane is especially useful for the development of artificial kidney.

  15. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    Science.gov (United States)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  16. Connecting synthetic chemistry decisions to cell and genome biology using small-molecule phenotypic profiling.

    Science.gov (United States)

    Wagner, Bridget K; Clemons, Paul A

    2009-12-01

    Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe-discovery and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of 'virtual' profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe-discovery and drug-discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections.

  17. Posttranslational modifications of proopiomelanocortin in vertebrates and their biological significance

    Directory of Open Access Journals (Sweden)

    Akiyoshi eTakahashi

    2013-10-01

    Full Text Available Proopiomelanocortin (POMC is the precursor of several peptide hormones generated in the pituitary gland. After biosynthesis, POMC undergoes several posttranslational modifications, including proteolytic cleavage, acetylation, amidation, phosphorylation, glycosylation, and disulfide linkage formation, which generate mature POMC-derived peptides. Therefore, POMC is a useful model for the investigation of posttranslational modifications. These processes have been extensively investigated in mammals, primarily in rodents. In addition, over the last decade, much information has been obtained about the posttranslational processing of POMC in non-mammalian animals such as fish, amphibians, reptiles, and birds through sequencing and peptide identification by mass spectrometry. One POMC modification, acetylation, is known to modulate the biological activities of POMC-derived alpha-melanocyte-stimulating hormone (alpha-MSH having an acetyl group at N-terminal through potentiation or inhibition. This bidirectional regulation depends on its intrinsic roles in the tissue or cell; for example, alpha-MSH, as well as desacety-alpha-MSH, stimulates pigment dispersion in the xanthophores of a flounder. In contrast, alpha-MSH does not stimulate pigment dispersion in the melanophores of the same species, whereas desacetyl-alpha-MSH does. Regulation of pigment-dispersing activities may be associated with the subtle balance in the expression of receptor genes. In this review, we consider the posttranslational modifications of POMC in vertebrates from an evolutionary aspect, with a focus on the relationship between acetylation and the biological activities of alpha-MSH as an important consequence of posttranslational modification.

  18. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  19. 2012 Gordon Research Conference, Single molecule approaches to biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Julio M. [Columbia Univ., New York, NY (United States)

    2012-04-20

    Single molecule techniques are rapidly occupying a central role in biological research at all levels. This transition was made possible by the availability and dissemination of robust techniques that use fluorescence and force probes to track the conformation of molecules one at a time, in vitro as well as in live cells. Single-molecule approaches have changed the way many biological problems are studied. These novel techniques provide previously unobtainable data on fundamental biochemical processes that are essential for all forms of life. The ability of single-molecule approaches to avoid ensemble averaging and to capture transient intermediates and heterogeneous behavior renders them particularly powerful in elucidating mechanisms of the molecular systems that underpin the functioning of living cells. Hence, our conference seeks to disseminate the implementation and use of single molecule techniques in the pursuit of new biological knowledge. Topics covered include: Molecular Motors on the Move; Origin And Fate Of Proteins; Physical Principles Of Life; Molecules and Super-resolution Microscopy; Nanoswitches In Action; Active Motion Or Random Diffusion?; Building Blocks Of Living Cells; From Molecular Mechanics To Physiology; Tug-of-war: Force Spectroscopy Of Single Proteins.

  20. Biological response of HeLa cells to gold nanoparticles coated with organic molecules.

    Science.gov (United States)

    Cardoso Avila, P E; Rangel Mendoza, A; Pichardo Molina, J L; Flores Villavicencio, L L; Castruita Dominguez, J P; Chilakapati, M K; Sabanero Lopez, M

    2017-08-01

    In this work, gold nanospheres functionalized with low weight organic molecules (4-aminothiphenol and cysteamine) were synthesized in a one-step method for their in vitro cytotoxic evaluation on HeLa cells. To enhance the biocompatibility of the cysteamine-capped GNPs, BSA was used due to its broad PH stability and high binding affinity to gold nanoparticles. Besides, the widely reported silica coated gold nanorods were tested here to contrast their toxic response against our nanoparticles coated with organic molecules. Our results shown, the viability measured at 1.9×10 -5 M did not show significant differences against negative controls for all the samples; however, the metabolic activity of HeLa cells dropped when they were exposed to silica gold nanorods in the range of concentrations from 2.9×10 -7 M to 3.0×10 -4 M, while in the cases of gold nanospheres, we found that only at concentrations below 1.9×10 -5 M metabolic activity was normal. Our preliminary results did not indicate any perceivable harmful toxicity to cell membrane, cytoskeleton or nucleus due to our nanospheres at 1.9×10 -5 M. Additional test should be conducted in order to ensure a safe use of them for biological applications, and to determine the extent of possible damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Reverse pharmacognosy: identifying biological properties for plants by means of their molecule constituents: application to meranzin.

    Science.gov (United States)

    Do, Quoc-Tuan; Lamy, Cécile; Renimel, Isabelle; Sauvan, Nancy; André, Patrice; Himbert, Franck; Morin-Allory, Luc; Bernard, Philippe

    2007-10-01

    Reverse pharmacognosy aims at finding biological targets for natural compounds by virtual or real screening and identifying natural resources that contain the active molecules. We report herein a study focused on the identification of biological properties of meranzin, a major component isolated from Limnocitrus littoralis (Miq.) Swingle. Selnergy, an IN SILICO biological profiling software, was used to identify putative binding targets of meranzin. Among the 400 screened proteins, 3 targets were selected: COX1, COX2 and PPARgamma. Binding tests were realised for these 3 protein candidates, as well as two negative controls. The predictions made by Selnergy were consistent with the experimental results, meaning that these 3 targets can be modulated by an extract containing this compound in a suitable concentration. These results demonstrate that reverse pharmacognosy and its inverse docking component is a powerful tool to identify biological properties for natural molecules and hence for plants containing these compounds.

  2. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging.

    Science.gov (United States)

    Paltsev, Michael A; Polyakova, Victoria O; Kvetnoy, Igor M; Anderson, George; Kvetnaia, Tatiana V; Linkova, Natalia S; Paltseva, Ekaterina M; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-03-15

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin А); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland. A further similarity is the increased MMPs levels evident over age in both glands. Significant differences are evident in cell renovation processes, which deteriorate more quickly in the aged thymus versus the pineal gland. Decreases in the number of pineal B-cells and thymic T-cells were also observed over aging. Collected data indicate that cellular involution of the pineal gland and thymus show many commonalities, but also significant changes in aging-associated proteins. It is proposed that such ageing-associated alterations in these two glands provide novel pharmaceutical targets for the wide array of medical conditions that are more likely to emerge over the course of ageing.

  3. Significance and Biological Importance of Pyrimidine in the Microbial World

    Directory of Open Access Journals (Sweden)

    Vinita Sharma

    2014-01-01

    Full Text Available Microbes are unique creatures that adapt to varying lifestyles and environment resistance in extreme or adverse conditions. The genetic architecture of microbe may bear a significant signature not only in the sequences position, but also in the lifestyle to which it is adapted. It becomes a challenge for the society to find new chemical entities which can treat microbial infections. The present review aims to focus on account of important chemical moiety, that is, pyrimidine and its various derivatives as antimicrobial agents. In the current studies we represent more than 200 pyrimidines as antimicrobial agents with different mono-, di-, tri-, and tetrasubstituted classes along with in vitro antimicrobial activities of pyrimidines derivatives which can facilitate the development of more potent and effective antimicrobial agents.

  4. Experimental and Computational Characterization of Biological Liquid Crystals: A Review of Single-Molecule Bioassays

    Directory of Open Access Journals (Sweden)

    Sungsoo Na

    2009-09-01

    Full Text Available Quantitative understanding of the mechanical behavior of biological liquid crystals such as proteins is essential for gaining insight into their biological functions, since some proteins perform notable mechanical functions. Recently, single-molecule experiments have allowed not only the quantitative characterization of the mechanical behavior of proteins such as protein unfolding mechanics, but also the exploration of the free energy landscape for protein folding. In this work, we have reviewed the current state-of-art in single-molecule bioassays that enable quantitative studies on protein unfolding mechanics and/or various molecular interactions. Specifically, single-molecule pulling experiments based on atomic force microscopy (AFM have been overviewed. In addition, the computational simulations on single-molecule pulling experiments have been reviewed. We have also reviewed the AFM cantilever-based bioassay that provides insight into various molecular interactions. Our review highlights the AFM-based single-molecule bioassay for quantitative characterization of biological liquid crystals such as proteins.

  5. Assigned and unassigned distance geometry: applications to biological molecules and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Billinge, Simon J. L. [Columbia Univ., New York, NY (United States). Applied Physics and Applied Mathematics; Brookhaven National Lab. (BNL), Upton, NY (United States). X-ray Scattering Group; Duxbury, Phillip M. [Michigan State Univ., East Lansing, MI (United States). Dept. of Physics and Astronomy; Gonçalves, Douglas S. [Univ. Federal de Santa Catarina,; Lavor, Carlile [Univ. of Campinas (UNICAMP), Sao Paulo (Brazil). Dept. of Applied Mathematics (IMECC-UNICAMP); Mucherino, Antonio [Univ. de Rennes, Rennes (France). Institut de Recherche en Informatique et Systemes Aleatoires

    2016-04-04

    Here, considering geometry based on the concept of distance, the results found by Menger and Blumenthal originated a body of knowledge called distance geometry. This survey covers some recent developments for assigned and unassigned distance geometry and focuses on two main applications: determination of three-dimensional conformations of biological molecules and nanostructures.

  6. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer

    Directory of Open Access Journals (Sweden)

    Chen Hairu

    2010-10-01

    Full Text Available Abstract Background Activated leukocyte cell adhesion molecule (ALCAM is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. Results A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. Conclusion Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.

  7. Using Thermogenic Beige Cells to Identify Biologically Active Small Molecules and Peptides.

    Science.gov (United States)

    Wu, Ling; Xu, Bin

    2017-01-01

    Incorporating molecular libraries in chemical biology screenings in cultured cells has been successfully used for gene discovery in many cellular processes. It has the unique potential to uncover novel mechanisms of complex cellular biology through the screening of small molecules and protein biologics in relevant cell-based assays. Recent development in the understanding and generation of thermogenic adipocytes provides opportunities for potential anti-obesity therapeutics discovery. In this chapter, we describe screening methods using thermogenic beige cells to identify novel compounds and peptides that activate adipocyte thermogenesis.

  8. Single-Molecule Sensing with Nanopore Confinement: from Chemical Reactions to Biological Interactions.

    Science.gov (United States)

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing which help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this concept, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of molecules of biological interest labelled with high specific activity tritium

    International Nuclear Information System (INIS)

    Petillot, Yves

    1975-01-01

    Labelled molecules are artificial organic compounds possessing one or several radioactive or steady isotopic atoms. Using tritium to label molecules presents several benefits: a raw material easy to obtain with a high purity and at reasonable cost; synthesised labelled molecules displaying high specific activities very interesting in molecular biology; high resolution of radiographies; relatively simple and quick introduction of tritium atoms in complex molecules. Thus, this report for graduation in organic chemistry addresses the synthesis and study of new labelled molecules which belong to families of organic compounds which have fundamental activities in biology: uridine 3 H-5,6 and thymidine 3 H-methyl which are nucleotides which intervene under the form of phosphates in the synthesis of nucleic acids, oestradiol 3 H-2,4,6,7 which is a powerful estrogenic hormone which naturally secreted by the ovary; and noradrenaline 3 H-1,1' and dopamine 3 H-1,2 which are usually secreted by adrenal medulla and have multiple actions on the nervous system

  10. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  11. The corrosion inhibition of iron and aluminum by various naturally occurring biological molecules

    Energy Technology Data Exchange (ETDEWEB)

    McCafferty, E.; Hansen, D.C. [Naval Research Lab., Washington, DC (United States)

    1995-12-31

    Biological polymers that exhibit a strong affinity for metal surfaces are increasingly becoming the focus of research toward the development of environmentally friendly corrosion inhibitors. This paper deals with the use of various naturally occurring organic molecules as corrosion inhibitors for iron or aluminum. Among the organic molecules considered are catecholate and hydroxamate siderophores isolated from bacteria, the adhesive protein from the blue mussel Mytilus edulis L, and caffeic acid and chlorogenic acid. FTIR analysis, anodic polarization curves, and AC impedance measurements were used to determine the adsorption and effectiveness of the various organic molecules as corrosion inhibitors. Parabactin, a catecholate siderophore, was effective in inhibiting both the corrosion of iron in hydrochloric acid and the pitting of aluminum in 0.1 M sodium chloride. The adhesive protein from the blue mussel was also effective in inhibiting the pitting of aluminum.

  12. An Overall Comparison of Small Molecules and Large Biologics in ADME Testing

    Directory of Open Access Journals (Sweden)

    Hong Wan

    2016-03-01

    Full Text Available Biologics mainly monoclonal antibodies (mAbs and antibody-drug conjugates (ADCs as new therapeutics are becoming increasingly important biotherapeutics. This review is intended to provide an overall comparison between small molecules (SMs and biologics or large molecules (LMs concerning drug metabolism and pharmacokinetic (DMPK or associated with absorption, distribution, metabolism and elimination (ADME testing from pharmaceutical industry drug discovery and development points of view, which will help design and conduct relevant ADME testing for biologics such as mAbs and ADCs. Recent advancements in the ADME for testing biologics and related bioanalytical methods are discussed with an emphasis on ADC drug development as an example to understand its complexity and challenges from extensive in vitro characterization to in vivo animal PK studies. General non-clinical safety evaluations of biologics in particular for ADC drugs are outlined including drug-drug interaction (DDI and metabolite/catabolite assessments. Regulatory guidance on the ADME testing and safety evaluations including immunogenicity as well as bioanalytical considerations are addressed for LMs. In addition, the preclinical and human PK data of two marked ADC drugs (ADCETRIS, SGN-35 and KADCYLA, T-DM1 as examples are briefly discussed with regard to PK considerations and PK/PD perspectives.

  13. Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems

    Directory of Open Access Journals (Sweden)

    Daniel A. Dias

    2016-12-01

    Full Text Available Although significant advances have been made in recent years, the structural elucidation of small molecules continues to remain a challenging issue for metabolite profiling. Many metabolomic studies feature unknown compounds; sometimes even in the list of features identified as “statistically significant” in the study. Such metabolic “dark matter” means that much of the potential information collected by metabolomics studies is lost. Accurate structure elucidation allows researchers to identify these compounds. This in turn, facilitates downstream metabolite pathway analysis, and a better understanding of the underlying biology of the system under investigation. This review covers a range of methods for the structural elucidation of individual compounds, including those based on gas and liquid chromatography hyphenated to mass spectrometry, single and multi-dimensional nuclear magnetic resonance spectroscopy, and high-resolution mass spectrometry and includes discussion of data standardization. Future perspectives in structure elucidation are also discussed; with a focus on the potential development of instruments and techniques, in both nuclear magnetic resonance spectroscopy and mass spectrometry that, may help solve some of the current issues that are hampering the complete identification of metabolite structure and function.

  14. Morphofunctional and signaling molecules overlap of the pineal gland and thymus: role and significance in aging

    OpenAIRE

    Paltsev, Michael A.; Polyakova, Victoria O.; Kvetnoy, Igor M.; Anderson, George; Kvetnaia, Tatiana V.; Linkova, Natalia S.; Paltseva, Ekaterina M.; Rubino, Rosa; De Cosmo, Salvatore; De Cata, Angelo; Mazzoccoli, Gianluigi

    2016-01-01

    Deficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin A); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2,...

  15. Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy

    International Nuclear Information System (INIS)

    Nair, R. R.; Anissimova, S.; Novoselov, K. S.; Blake, P.; Blake, J. R.; Geim, A. K.; Zan, R.; Bangert, U.; Golovanov, A. P.; Morozov, S. V.; Latychevskaia, T.

    2010-01-01

    We demonstrate the application of graphene as a support for imaging individual biological molecules in transmission electron microscope (TEM). A simple procedure to produce free-standing graphene membranes has been designed. Such membranes are extremely robust and can support practically any submicrometer object. Tobacco mosaic virus has been deposited on graphene samples and observed in a TEM. High contrast has been achieved even though no staining has been applied.

  16. Structure-property relationship of quinuclidinium surfactants--Towards multifunctional biologically active molecules.

    Science.gov (United States)

    Skočibušić, Mirjana; Odžak, Renata; Štefanić, Zoran; Križić, Ivana; Krišto, Lucija; Jović, Ozren; Hrenar, Tomica; Primožič, Ines; Jurašin, Darija

    2016-04-01

    Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical

  17. Pragmatic turn in biology: From biological molecules to genetic content operators.

    Science.gov (United States)

    Witzany, Guenther

    2014-08-26

    Erwin Schrödinger's question "What is life?" received the answer for decades of "physics + chemistry". The concepts of Alain Turing and John von Neumann introduced a third term: "information". This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings "sequence space". Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract "sequence space" concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry.

  18. Phospholipids in Milk Fat: Composition, Biological and Technological Significance, and Analytical Strategies

    Directory of Open Access Journals (Sweden)

    Giovanna Contarini

    2013-01-01

    Full Text Available Glycerophospholipids and sphingolipids are quantitatively the most important phospholipids (PLs in milk. They are located on the milk fat globule membrane (MFGM and in other membranous material of the skim milk phase. They include principally phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine, while sphingomyelin is the dominant species of sphingolipids There is considerable evidence that PLs have beneficial health effects, such as regulation of the inflammatory reactions, chemopreventive and chemotherapeutic activity on some types of cancer, and inhibition of the cholesterol absorption. PLs show good emulsifying properties and can be used as a delivery system for liposoluble constituents. Due to the amphiphilic characteristics of these molecules, their extraction, separation and detection are critical points in the analytical approach. The extraction by using chloroform and methanol, followed by the determination by high pressure liquid chromatography (HPLC, coupled with evaporative light scattering (ELSD or mass detector (MS, are the most applied procedures for the PL evaluation. More recently, nuclear magnetic resonance spectrometry (NMR was also used, but despite it demonstrating high sensitivity, it requires more studies to obtain accurate results. This review is focused on milk fat phospholipids; their composition, biological activity, technological properties, and significance in the structure of milk fat. Different analytical methodologies are also discussed.

  19. The endoplasmic reticulum-mitochondria coupling in health and disease: Molecules, functions and significance.

    Science.gov (United States)

    Filadi, Riccardo; Theurey, Pierre; Pizzo, Paola

    2017-03-01

    The close apposition between endoplasmic reticulum (ER) and mitochondria represents a key platform, capable to regulate different fundamental cellular pathways. Among these, Ca 2+ signaling and lipid homeostasis have been demonstrated over the last years to be deeply modulated by ER-mitochondria cross-talk. Given its importance in cell life/death decisions, increasing evidence suggests that alterations of the ER-mitochondria axis could be responsible for the onset and progression of several diseases, including neurodegeneration, cancer and obesity. However, the molecular identity of the proteins controlling this inter-organelle apposition is still debated. In this review, we summarize the main cellular pathways controlled by ER-mitochondria appositions, focusing on the principal molecules reported to be involved in this interplay and on those diseases for which alterations in organelles communication have been reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Science.gov (United States)

    Tien, Shin-Ming; Hsu, Chih-Yuan; Chen, Bor-Sen

    2016-01-01

    Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  1. Engineering Bacteria to Search for Specific Concentrations of Molecules by a Systematic Synthetic Biology Design Method.

    Directory of Open Access Journals (Sweden)

    Shin-Ming Tien

    Full Text Available Bacteria navigate environments full of various chemicals to seek favorable places for survival by controlling the flagella's rotation using a complicated signal transduction pathway. By influencing the pathway, bacteria can be engineered to search for specific molecules, which has great potential for application to biomedicine and bioremediation. In this study, genetic circuits were constructed to make bacteria search for a specific molecule at particular concentrations in their environment through a synthetic biology method. In addition, by replacing the "brake component" in the synthetic circuit with some specific sensitivities, the bacteria can be engineered to locate areas containing specific concentrations of the molecule. Measured by the swarm assay qualitatively and microfluidic techniques quantitatively, the characteristics of each "brake component" were identified and represented by a mathematical model. Furthermore, we established another mathematical model to anticipate the characteristics of the "brake component". Based on this model, an abundant component library can be established to provide adequate component selection for different searching conditions without identifying all components individually. Finally, a systematic design procedure was proposed. Following this systematic procedure, one can design a genetic circuit for bacteria to rapidly search for and locate different concentrations of particular molecules by selecting the most adequate "brake component" in the library. Moreover, following simple procedures, one can also establish an exclusive component library suitable for other cultivated environments, promoter systems, or bacterial strains.

  2. Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E.; Zhang, Xing; Weitz, Karl K.; Monroe, Matthew E.; Ibrahim, Yehia M.; Moore, Ronald J.; Cha, Jeeyeon; Sun, Xiaofei; Lovelace, Erica S.; Wagoner, Jessica; Polyak, Steve; Metz, Thomas O.; Dey, Sudhansu K.; Smith, Richard D.; Burnum-Johnson, Kristin E.; Baker, Erin Shammel

    2016-01-01

    Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Liquid chromatography and mass spectrometry (LC-MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids’ biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are unresolvable using present LC-MS approaches. Here we show that combining structurally-based ion mobility spectrometry (IMS) with LC-MS measurements distinguishes lipid isomers and allows insight into biological and disease processes.

  3. Ab Initio Calculations of the Electronic Structures and Biological Functions of Protein Molecules

    Science.gov (United States)

    Zheng, Haoping

    2003-04-01

    The self-consistent cluster-embedding (SCCE) calculation method reduces the computational effort from M3 to about M1 (M is the number of atoms in the system) with unchanged calculation precision. So the ab initio, all-electron calculation of the electronic structure and biological function of protein molecule becomes a reality, which will promote new proteomics considerably. The calculated results of two real protein molecules, the trypsin inhibitor from the seeds of squash Cucurbita maxima (CMTI-I, 436 atoms) and the Ascaris trypsin inhibitor (912 atoms, two three-dimensional structures), are presented. The reactive sites of the inhibitors are determined and explained. The precision of structure determination of inhibitors are tested theoretically.

  4. Inferring biological structures from super-resolution single molecule images using generative models.

    Directory of Open Access Journals (Sweden)

    Suvrajit Maji

    Full Text Available Localization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods. Using a feature extraction technique called the Hough Transform simple biological structures are identified from both simulated and real localization data. We demonstrate that these generative models can efficiently infer biological structures in the data from far fewer localizations than are required for complete spatial sampling. Analysis at partial data densities revealed efficient recovery of clathrin vesicle size distributions and microtubule orientation angles with as little as 10% of the localization data. This approach significantly increases the temporal resolution for dynamic imaging and provides quantitatively useful biological information.

  5. Neutron and x-ray small angle scattering of biological molecules

    International Nuclear Information System (INIS)

    Borso, C.S.; Danyluk, S.S.; Williamson, F.S.; Holmblad, G.L.; DeJong, S.; Pohl, J.

    1981-01-01

    The objectives of this project are to develop instrumentation for small angle x-ray and neutron scattering, and to utilize small angle techniques for study of the structures of the intracellular molecules interacting with the secondary messengers involved in cellular regulation. A unique self-scanning photodiode array has been developed as a linear position sensitive detector for studies of biological structures. A time-of-flight (TOF) small angle neutron instrument was developed and successfully tested at the prototype pulsed neutron facility, ZING-P'. Considerable hardware and software developments were necessary to successfully demonstrate the prototype small angle neutron scattering instrument. A dedicated data acquisition system based on a microprocessor was developed and tested within the short period of approximately 6 months and was interfaced to a biological sample changer and environmental controller. The resolution of the tapered collimation system proved to be adequate

  6. Exploring matter through photons and neutrons: from biological molecules to designer materials

    International Nuclear Information System (INIS)

    Chidambaram, R.; Hosur, M.V.; Ramanadham, M.; Godwal, B.K.

    2000-01-01

    Understanding structure-property relationships of naturally occurring materials has been the aim of scientific research for centuries. The discovery of short wavelength x-rays and neutrons in the 20th century provided a means of studying molecular structure. The methodology of x-ray and neutron diffraction has been successfully applied to determine structures of molecules across disciplines of physics, chemistry, biology, biochemistry and medicine. Typical applications in physics include study of phase transformations, elasticity measurements, magnetic structure, surface scattering etc. In chemistry, the applications have ranged from routine structure determinations of reaction intermediates or natural products to refinement of quantum chemical parameters of atomic and molecular charge densities. The science of crystallography has had a profound effect on the disciplines of biology and medicine. A whole new discipline and industry was created when the structure of DNA was discovered through x-ray diffraction

  7. Surface functionalization of bioactive glasses with natural molecules of biological significance

    OpenAIRE

    Zhang, Xin

    2014-01-01

    Natural or artificial materials used for replacement or supplement the functions of living tissues, termed as biomaterials, may be bioinert (i.e. alumina and zorconia,) resorbable (i.e. tricalcium phosphate), bioactive (i.e. hydroxyapatite, bioactive glasses, and glass-ceramics) or porous for tissue ingrowth (i.e. hydroxyapatite-coated metals). Among all the biomaterials, bioactive glass and glass-ceramics are widely used in orthopedic and dental applications and are being developed for tissu...

  8. Application of Fourier transform infrared ellipsometry to assess the concentration of biological molecules

    Science.gov (United States)

    Garcia-Caurel, Enric; Drevillon, Bernard; De Martino, Antonello; Schwartz, Laurent

    2002-12-01

    Spectroscopic ellipsometry is a noninvasive optical characterization technique mainly used in the semiconductor field to characterize bare substrates and thin films. In particular, it allows the gathering of information concerning the physical structure of the sample, such as roughness and film thickness, as well as its optical response. In the mid-infrared (IR) range each molecule exhibits a characteristic absorption fingerprint, which makes this technique chemically selective. Phase-modulated IR ellipsometry does not require a baseline correction procedure or suppression of atmospheric CO2 and water-vapor absorption bands, thus greatly reducing the subjectivity in data analysis. We have found that ellipsometric measurements of thin films, such as the solid residuals left on a plane surface after evaporation of a liquid drop containing a given compound in solution, are particularly favorable for dosing purposes because the intensity of IR absorptions shows a linear behavior along a wide range of solution concentrations of the given compound. Our aim is to illustrate with a concrete example and to justify theoretically the linearity experimentally found between radiation absorption and molecule concentration. For the example, we prepared aqueous solutions of glycogen, a molecule of huge biological importance currently tested in biochemical analyses, at concentrations ranging from 1 mg/l to 1 g/l, which correspond to those found in physiological conditions. The results of this example are promising for the application of ellipsometry for dosing purposes in biochemistry and biomedicine.

  9. A Synthetic Biology Project - Developing a single-molecule device for screening drug-target interactions.

    Science.gov (United States)

    Firman, Keith; Evans, Luke; Youell, James

    2012-07-16

    This review describes a European-funded project in the area of Synthetic Biology. The project seeks to demonstrate the application of engineering techniques and methodologies to the design and construction of a biosensor for detecting drug-target interactions at the single-molecule level. Production of the proteins required for the system followed the principle of previously described "bioparts" concepts (a system where a database of biological parts - promoters, genes, terminators, linking tags and cleavage sequences - is used to construct novel gene assemblies) and cassette-type assembly of gene expression systems (the concept of linking different "bioparts" to produce functional "cassettes"), but problems were quickly identified with these approaches. DNA substrates for the device were also constructed using a cassette-system. Finally, micro-engineering was used to build a magnetoresistive Magnetic Tweezer device for detection of single molecule DNA modifying enzymes (motors), while the possibility of constructing a Hall Effect version of this device was explored. The device is currently being used to study helicases from Plasmodium as potential targets for anti-malarial drugs, but we also suggest other potential uses for the device. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Retinal toxicities of cancer therapy drugs: biologics, small molecule inhibitors, and chemotherapies.

    Science.gov (United States)

    Liu, Catherine Y; Francis, Jasmine H; Brodie, Scott E; Marr, Brian; Pulido, Jose S; Marmor, Michael F; Abramson, David H

    2014-07-01

    To review reported retinal side effects from current cancer therapy drugs. Retinal toxicities from ophthalmologic or oncologic case reports, case series, and clinical trials were identified by a systematic literature search using Lexicomp and PubMed. Four biologics, 8 small molecule inhibitors, and 17 traditional chemotherapy agents had reported retinal side effects. For biologics, interferon alpha 2b was associated with retinopathy, denileukin diftitiox with pigmentary retinopathy, ipilimumab with a Vogt-Koyanagi-Harada-like syndrome, and trastuzumab with retinal ischemia. For small molecule inhibitors, v-raf murine sarcoma viral oncogene homolog B (BRAF) inhibitors were associated with uveitis, mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitors with pigment epithelium detachments, and tyrosine kinase inhibitors with macular edema. Steroid antagonists were associated with crystalline retinopathy and macular edema. Nitrosoureas, platinum analogs, and cytosine arabinoside were associated with retinal vascular occlusions. Antimicrotubular agents were associated with cystoid macular edema but without fluorescein leakage. Retinoic acid derivatives were associated with impaired night vision, and mitotane was associated with a pigmentary retinopathy and papilledema. Certain agents used in the treatment of systemic cancer are associated with ocular complications. Awareness of these complications will allow early detections and maybe reversal of some of the ocular problems.

  11. Significance of TNF-α and the Adhesion Molecules: L-Selectin and VCAM-1 in Papillary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Toral P. Kobawala

    2016-01-01

    Full Text Available Circulating levels of TNF-α and the adhesion molecules L-Selectin and VCAM-1 as well as their expression in the primary tumors of patients with benign thyroid diseases and papillary thyroid carcinoma (PTC have been determined in this study. The serum levels of TNF-α, L-Selectin, and VCAM-1 were significantly higher in patients with both benign thyroid diseases and PTC as compared to the healthy individuals. However, the levels of only TNF-α and L-Selectin, and not VCAM-1, were significantly higher in patients with PTC in comparison to those observed in patients with benign thyroid diseases. Further the expression of TNF-α and L-Selectin was also significantly higher in the primary tumors of PTC patients, relative to the benign thyroid diseases. The expression of L-Selectin and VCAM-1 significantly correlated with aggressive tumor behavior. In PTC patients, the circulating TNF-α levels significantly positively correlated with the levels of L-Selectin, while TNF-α immunoreactivity was significantly associated with VCAM-1 expression. Serum TNF-α was found to be a significant prognosticator for OS in PTC patients. Overall the results signify that the interaction between TNF-α and the adhesion molecules may have a role in thyroid carcinogenesis and understanding this complexity may offer potential therapeutic targets for better management of thyroid cancer.

  12. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Directory of Open Access Journals (Sweden)

    Jing Zhou

    2016-03-01

    Full Text Available To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  13. The significant role of covalency in determining the ground state of cobalt phthalocyanines molecule

    Science.gov (United States)

    Zhou, Jing; Zhang, Linjuan; Hu, Zhiwei; Kuo, Changyang; Liu, Hengjie; Lin, Xiao; Wang, Yu; Pi, Tun-Wen; Wang, Jianqiang; Zhang, Shuo

    2016-03-01

    To shed some light on the metal 3d ground state configuration of cobalt phthalocyanines system, so far in debate, we present an investigation by X-ray absorption spectroscopy (XAS) at Co L2,3 edge and theoretical calculation. The density functional theory calculations reveal highly anisotropic covalent bond between central cobalt ion and nitrogen ligands, with the dominant σ donor accompanied by weak π-back acceptor interaction. Our combined experimental and theoretical study on the Co-L2,3 XAS spectra demonstrate a robust ground state of 2A1g symmetry that is built from 73% 3d7 character and 27% 3 d 8 L ¯ ( L ¯ denotes a ligand hole) components, as the first excited-state with 2Eg symmetry lies about 158 meV higher in energy. The effect of anisotropic and isotropic covalency on the ground state was also calculated and the results indicate that the ground state with 2A1g symmetry is robust in a large range of anisotropic covalent strength while a transition of ground state from 2A1g to 2Eg configuration when isotropic covalent strength increases to a certain extent. Here, we address a significant anisotropic covalent effect of short Co(II)-N bond on the ground state and suggest that it should be taken into account in determining the ground state of analogous cobalt complexes.

  14. High-throughput platform for real-time monitoring of biological processes by multicolor single-molecule fluorescence

    Science.gov (United States)

    Chen, Jin; Dalal, Ravindra V.; Petrov, Alexey N.; Tsai, Albert; O’Leary, Seán E.; Chapin, Karen; Cheng, Janice; Ewan, Mark; Hsiung, Pei-Lin; Lundquist, Paul; Turner, Stephen W.; Hsu, David R.; Puglisi, Joseph D.

    2014-01-01

    Zero-mode waveguides provide a powerful technology for studying single-molecule real-time dynamics of biological systems at physiological ligand concentrations. We customized a commercial zero-mode waveguide-based DNA sequencer for use as a versatile instrument for single-molecule fluorescence detection and showed that the system provides long fluorophore lifetimes with good signal to noise and low spectral cross-talk. We then used a ribosomal translation assay to show real-time fluidic delivery during data acquisition, showing it is possible to follow the conformation and composition of thousands of single biomolecules simultaneously through four spectral channels. This instrument allows high-throughput multiplexed dynamics of single-molecule biological processes over long timescales. The instrumentation presented here has broad applications to single-molecule studies of biological systems and is easily accessible to the biophysical community. PMID:24379388

  15. Clinical Significance of Serum Soluble CD Molecules to Assess Disease Activity in Vitiligo.

    Science.gov (United States)

    Speeckaert, Reinhart; Lambert, Jo; van Geel, Nanja

    2016-11-01

    It is difficult to determine disease activity in vitiligo owing to the absence of inflammatory signs, such as erythema or scaling. A biomarker that could confirm active disease and indicate likely future disease progression would therefore be of considerable value. To investigate whether soluble CD27 (sCD27), sCD25, or sCD40L could be valuable biomarkers to determine disease activity in vitiligo and indicate likely future progression. A combined cross-sectional and prospective study was conducted at the department of dermatology at Ghent University Hospital between February 24, 2012, and December 12, 2015. Ninety-three patients with vitiligo were enrolled, including 83 individuals with nonsegmental vitiligo and 10 with segmental vitiligo. Blood sampling was performed, and sCD25, sCD27, and sCD40L were measured in serum. The associations between sCD levels, disease activity, and future progression were investigated. Of the 93 patients included in the study, 51 were women (55%); median (interquartile range) age was 36.5 (26.0-49.8) years. Both sCD27 (21.5 ng/mL [16.1-30.0 ng/mL] vs 18.4 ng/mL [12.5-22.1 ng/mL]; P = .006) and sCD25 (2.6 ng/mL [2.1-3.4 ng/mL] vs 2.2 ng/mL [1.7-2.4 ng/mL]; P = .002) levels were associated with active disease. Moreover, a statistically significant link with disease progression after 3 to 6 months was found for sCD27 (21.7 [17.0-29.1] vs 16.6 [13.5-23.7]; P = .02) but not for sCD25 (2.8 ng/mL [2.2-3.4 ng/mL] vs 2.3 [1.9-2.8 ng/mL]; P = .053). Further in vitro experiments showed a correlation between sCD25 and interferon γ (r = 0.562, P = .005), interleukin 10 (r = 0.453, P = .03), and sCD27 secretion (r = 0.549, P = .007). No associations were found for sCD40L levels. This study demonstrates increased levels of sCD27 and sCD25 in patients with active vitiligo. Moreover, these results provide the first evidence that these markers have a capacity to indicate the probability of future disease

  16. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2008-01-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2 + ) revealed local secondary ion signal enhancements correlated with the water image signals of 19 (H 3 O) + . A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  17. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Science.gov (United States)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  18. The synthesis and biological evaluation of integrin receptor targeting molecules as potential radiopharmaceuticals

    Science.gov (United States)

    Pellegrini, Paul

    This thesis reports on the synthesis, characterisation and biological evaluation of a number of metal complexes designed to interact with the alphavbeta3 integrin receptor, an important biological target that is heavily involved in angiogenesis, and thus cancer related processes. Two approaches were used to synthesise the integrin-avid targets. The first was to attach a variety of bifunctional chelators (BFC's) for the incorporation of different metal centres to a known integrin antagonist, L-748,415, developed by Merck. The BFC's used were the hydrazinonicotinamide (HYNIC) and monoamine monoamide dithiol (MAMA) systems for coordination to Tc-99m and rhenium of which was used as a characterization surrogate for the unstable Tc core. The 1,4,7,10-tetraazacyclotridecanetetraacetic acid (TRITA) BFC was attached for the inclusion of copper and lutetium. This 'conjugate' approach was designed to yield information on how the BFC and the linker length would affect the affinity for the integrin receptor. The second approach was an 'integrated' method where the chelation moiety was integral to the biologically relevant part of the molecule, which in the case of the alphavbeta3 integrin receptor, is the arginine-glycine-aspartic acid (RGD) mimicking sequence. Two complexes were created with a modified MAMA derivative placed between a benzimidazole moiety (arginine mimick) and the aspartic acid mimicking terminal carboxylic acid to see how it would affect binding while keeping the molecular weight relatively low. The molecules were tested in vitro against purified human alphavbeta3 integrin receptor protein in a solid phase receptor binding assay to evaluate their inhibition constants against a molecule of known high affinity and selectivity in [I125]L-775,219, the I125 labelled alphavbeta3 integrin antagonist. The radiolabelled analogues were also tested in vivo against the A375 human melanoma cell line transplanted into balb/c nude mice as well as Fischer rats implanted

  19. Biophysics of DNA-Protein Interactions From Single Molecules to Biological Systems

    CERN Document Server

    Williams, Mark C

    2011-01-01

    This book presents a concise overview of current research on the biophysics of DNA-protein interactions. A wide range of new and classical methods are presented by authors investigating physical mechanisms by which proteins interact with DNA. For example, several chapters address the mechanisms by which proteins search for and recognize specific binding sites on DNA, a process critical for cellular function. Single molecule methods such as force spectroscopy as well as fluorescence imaging and tracking are described in these chapters as well as other parts of the book that address the dynamics of protein-DNA interactions. Other important topics include the mechanisms by which proteins engage DNA sequences and/or alter DNA structure. These simple but important model interactions are then placed in the broader biological context with discussion of larger protein-DNA complexes . Topics include replication forks, recombination complexes, DNA repair interactions, and ultimately, methods to understand the chromatin...

  20. Application of magnetic iron oxide nanoparticles in stabilization process of biological molecules

    Directory of Open Access Journals (Sweden)

    Mohammad Hossien Salmani

    2017-07-01

    Conclusion: Co-precipitation method is an easy way to prepare magnetic nanoparticles of iron with a large surface and small particle size, which increases the ability of these particles to act as a suitable carrier for enzyme stabilization. Adequate modification of the surface of these nanoparticles enhances their ability to bind to biological molecules. The immobilized protein or enzyme on magnetic nanoparticles are more stable against structural changes, temperature and pH in comparison with un-stabilized structures, and it is widely used in various sciences, including protein isolation and purification, pharmaceutical science, and food analysis. Stabilization based on the covalent bonds and physical absorption is nonspecific, which greatly limits their functionality. The process of stabilization through bio-mediums provide a new method to overcome the selectivity problem.

  1. Documenting and harnessing the biological potential of molecules in Distributed Drug Discovery (D3) virtual catalogs.

    Science.gov (United States)

    Abraham, Milata M; Denton, Ryan E; Harper, Richard W; Scott, William L; O'Donnell, Martin J; Durrant, Jacob D

    2017-11-01

    Virtual molecular catalogs have limited utility if member compounds are (i) difficult to synthesize or (ii) unlikely to have biological activity. The Distributed Drug Discovery (D3) program addresses the synthesis challenge by providing scientists with a free virtual D3 catalog of 73,024 easy-to-synthesize N-acyl unnatural α-amino acids, their methyl esters, and primary amides. The remaining challenge is to document and exploit the bioactivity potential of these compounds. In the current work, a search process is described that retrospectively identifies all virtual D3 compounds classified as bioactive hits in PubChem-cataloged experimental assays. The results provide insight into the broad range of drug-target classes amenable to inhibition and/or agonism by D3-accessible molecules. To encourage computer-aided drug discovery centered on these compounds, a publicly available virtual database of D3 molecules prepared for use with popular computer docking programs is also presented. © 2017 John Wiley & Sons A/S.

  2. Semiexperimental equilibrium structures for building blocks of organic and biological molecules: the B2PLYP route.

    Science.gov (United States)

    Penocchio, Emanuele; Piccardo, Matteo; Barone, Vincenzo

    2015-10-13

    The B2PLYP double hybrid functional, coupled with the correlation-consistent triple-ζ cc-pVTZ (VTZ) basis set, has been validated in the framework of the semiexperimental (SE) approach for deriving accurate equilibrium structures of molecules containing up to 15 atoms. A systematic comparison between new B2PLYP/VTZ results and several equilibrium SE structures previously determined at other levels, in particular B3LYP/SNSD and CCSD(T) with various basis sets, has put in evidence the accuracy and the remarkable stability of such model chemistry for both equilibrium structures and vibrational corrections. New SE equilibrium structures for phenylacetylene, pyruvic acid, peroxyformic acid, and phenyl radical are discussed and compared with literature data. Particular attention has been devoted to the discussion of systems for which lack of sufficient experimental data prevents a complete SE determination. In order to obtain an accurate equilibrium SE structure for these situations, the so-called templating molecule approach is discussed and generalized with respect to our previous work. Important applications are those involving biological building blocks, like uracil and thiouracil. In addition, for more general situations the linear regression approach has been proposed and validated.

  3. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  4. Periodic Table Target: A Game that Introduces the Biological Significance of Chemical Element Periodicity

    Science.gov (United States)

    Sevcik, Richard S.; McGinty, Ragan L.; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    Periodic Table Target, a game for middle school or high school students, familiarizes students with the form of the periodic table and the biological significance of different elements. The Periodic Table Target game board is constructed as a class project, and the game is played to reinforce the content. Students are assigned several elements…

  5. Biological significance of sperm whale responses to sonar: Comparison with anti-predator responses

    NARCIS (Netherlands)

    Curé, C.; Isojunno, S.; Visser, F.; Wensveen, P.J.; Sivle, L.D.; Kvadsheim, P.H.; Lam, F.A.; Miller, P.J.O.

    2016-01-01

    A key issue when investigating effects of anthropogenic noise on cetacean behavior is to identify the biological significance of the responses. Predator presence can be considered a natural high-level disturbance stimulus to which prey animals have evolved adaptive response strategies to reduce

  6. Biological significance of facilitated diffusion in protein-DNA interactions. Applications to T4 endonuclease V-initiated DNA repair

    International Nuclear Information System (INIS)

    Dowd, D.R.; Lloyd, R.S.

    1990-01-01

    Facilitated diffusion along nontarget DNA is employed by numerous DNA-interactive proteins to locate specific targets. Until now, the biological significance of DNA scanning has remained elusive. T4 endonuclease V is a DNA repair enzyme which scans nontarget DNA and processively incises DNA at the site of pyrimidine dimers which are produced by exposure to ultraviolet (UV) light. In this study we tested the hypothesis that there exists a direct correlation between the degree of processivity of wild type and mutant endonuclease V molecules and the degree of enhanced UV resistance which is conferred to repair-deficient Eshcerichia coli. This was accomplished by first creating a series of endonuclease V mutants whose in vitro catalytic activities were shown to be very similar to that of the wild type enzyme. However, when the mechanisms by which these enzymes search nontarget DNA for its substrate were analyzed in vitro and in vivo, the mutants displayed varying degrees of nontarget DNA scanning ranging from being nearly as processive as wild type to randomly incising dimers within the DNA population. The ability of these altered endonuclease V molecules to enhance UV survival in DNA repair-deficient E. coli then was assessed. The degree of enhanced UV survival was directly correlated with the level of facilitated diffusion. This is the first conclusive evidence directly relating a reduction of in vivo facilitated diffusion with a change in an observed phenotype. These results support the assertion that the mechanisms which DNA-interactive proteins employ in locating their target sites are of biological significance

  7. X-ray structure analyses of biological molecules and particles in Japan. A brief history and future prospect

    International Nuclear Information System (INIS)

    Nakasako, Masayoshi; Yamamoto, Masaki

    2015-01-01

    In Japan, X-ray structure analyses of molecules and particles from biology started in the 1970s. The structure analysis methods have been developed through the innovation of various techniques in advance, and have contributed for understanding the elementary and microscopic processes in life. Here we summarize briefly the history of X-ray structure analyses for structural biology in Japan and think about the prospect. (author)

  8. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria.

    Science.gov (United States)

    Shiraishi, Tsukasa; Yokota, Shinichi; Fukiya, Satoru; Yokota, Atsushi

    2016-01-01

    Bacterial cell surface molecules are at the forefront of host-bacterium interactions. Teichoic acids are observed only in Gram-positive bacteria, and they are one of the main cell surface components. Teichoic acids play important physiological roles and contribute to the bacterial interaction with their host. In particular, lipoteichoic acid (LTA) anchored to the cell membrane has attracted attention as a host immunomodulator. Chemical and biological characteristics of LTA from various bacteria have been described. However, most of the information concerns pathogenic bacteria, and information on beneficial bacteria, including probiotic lactic acid bacteria, is insufficient. LTA is structurally diverse. Strain-level structural diversity of LTA is suggested to underpin its immunomodulatory activities. Thus, the structural information on LTA in probiotics, in particular strain-associated diversity, is important for understanding its beneficial roles associated with the modulation of immune response. Continued accumulation of structural information is necessary to elucidate the detailed physiological roles and significance of LTA. In this review article, we summarize the current state of knowledge on LTA structure, in particular the structure of LTA from lactic acid bacteria. We also describe the significance of structural diversity and biological roles of LTA.

  9. Hubs of knowledge: using the functional link structure in Biozon to mine for biologically significant entities

    Directory of Open Access Journals (Sweden)

    Isganitis Timothy

    2006-02-01

    Full Text Available Abstract Background Existing biological databases support a variety of queries such as keyword or definition search. However, they do not provide any measure of relevance for the instances reported, and result sets are usually sorted arbitrarily. Results We describe a system that builds upon the complex infrastructure of the Biozon database and applies methods similar to those of Google to rank documents that match queries. We explore different prominence models and study the spectral properties of the corresponding data graphs. We evaluate the information content of principal and non-principal eigenspaces, and test various scoring functions which combine contributions from multiple eigenspaces. We also test the effect of similarity data and other variations which are unique to the biological knowledge domain on the quality of the results. Query result sets are assessed using a probabilistic approach that measures the significance of coherence between directly connected nodes in the data graph. This model allows us, for the first time, to compare different prominence models quantitatively and effectively and to observe unique trends. Conclusion Our tests show that the ranked query results outperform unsorted results with respect to our significance measure and the top ranked entities are typically linked to many other biological entities. Our study resulted in a working ranking system of biological entities that was integrated into Biozon at http://biozon.org.

  10. Biokinetic data of various radioactive cationic molecules. An attempt at evaluation of significant chemical properties of myotropic agents

    International Nuclear Information System (INIS)

    Munze, R.; Kretzschmar, M.; Syhre, R.; Kampf, G.; Klotzer, D.; Guthert, I.; Bergmann, R.

    1986-01-01

    Research on lipophilic cationic radiopharmaceuticals has been established as an important field of modern radiopharmacology and experimental nuclear medicine. The present state is best demonstrated by scintigrams obtained with Tc-TBI (TBI = tertiary butylisocyanide). These images clearly reveal the advantage of these compounds, namely high information density, which resulted in an excellent delineation of activity accumulations, as well as the lasting drawback represented by partial overlapping of the right lobe of the liver in a certain region of the inferior wall of the heart. Current research is mainly focused on overcoming this disadvantage by synthesizing appropriate compounds with higher heart/liver uptake in man. A more sophisticated rationale than cationic charge and lipophilicity would be much appreciated. This paper deals with possible correlations between the biodistribution and biokinetics of such compounds, though not exclusively for technetium cations, and their important chemical properties such as composition, size, and polar regions within the lipophilic molecule, which are considered significant parameters

  11. From Molecules to Life: Quantifying the Complexity of Chemical and Biological Systems in the Universe.

    Science.gov (United States)

    Böttcher, Thomas

    2018-01-01

    Life is a complex phenomenon and much research has been devoted to both understanding its origins from prebiotic chemistry and discovering life beyond Earth. Yet, it has remained elusive how to quantify this complexity and how to compare chemical and biological units on one common scale. Here, a mathematical description of molecular complexity was applied allowing to quantitatively assess complexity of chemical structures. This in combination with the orthogonal measure of information complexity resulted in a two-dimensional complexity space ranging over the entire spectrum from molecules to organisms. Entities with a certain level of information complexity directly require a functionally complex mechanism for their production or replication and are hence indicative for life-like systems. In order to describe entities combining molecular and information complexity, the term biogenic unit was introduced. Exemplified biogenic unit complexities were calculated for ribozymes, protein enzymes, multimeric protein complexes, and even an entire virus particle. Complexities of prokaryotic and eukaryotic cells, as well as multicellular organisms, were estimated. Thereby distinct evolutionary stages in complexity space were identified. The here developed approach to compare the complexity of biogenic units allows for the first time to address the gradual characteristics of prebiotic and life-like systems without the need for a definition of life. This operational concept may guide our search for life in the Universe, and it may direct the investigations of prebiotic trajectories that lead towards the evolution of complexity at the origins of life.

  12. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions.

    Science.gov (United States)

    Mallick, Pankajini; Taneja, Guncha; Moorthy, Bhagavatula; Ghose, Romi

    2017-06-01

    Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.

  13. From Molecules to Living Organisms : an Interplay between Biology and Physics : Lecture Notes of the Les Houches School of Physics

    CERN Document Server

    Nury, Hughes; Parcy, François; Ruigrok, Rob W H; Ziegler, Christine; Cugliandolo, Leticia F; Session CII

    2016-01-01

    The aim of this book is to provide new ideas for studying living matter by a simultaneous understanding of behavior from molecules to the cell, to the whole organism in the light of physical concepts. Indeed, forces guide most biological phenomena. In some cases these forces can be well-described and thus used to model a particular biological phenomenon. This is exemplified here by the study of membranes, where their shapes and curvatures can be modeled using a limited number of parameters that are measured experimentally. The growth of plants is another example where the combination of physics, biology and mathematics leads to a predictive model. The laws of thermodynamics are essential, as they dictate the behavior of proteins, or more generally biological molecules, in an aqueous environment. Integrated studies from the molecule to a larger scale need a combination of cutting-edge approaches, such as the use of new X-ray sources, in-cell NMR, cryo-electron microscopy or single-molecule microscopy. Some are...

  14. Introducing Bond-Line Organic Structures in High School Biology: An Activity that Incorporates Pleasant-Smelling Molecules

    Science.gov (United States)

    Rios, Andro C.; French, Gerald

    2011-01-01

    Chemical education occurs in settings other than just the chemistry classroom. High school biology courses are frequently where students are introduced to organic molecules and their importance to cellular chemistry. However, structural representations are often intimidating because students have not been introduced to the language. As part of a…

  15. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: biological insights and early treatment strategies.

    Science.gov (United States)

    Landgren, Ola

    2013-01-01

    After decades of virtually no progress, multiple myeloma survival has improved significantly in the past 10 years. Indeed, multiple myeloma has perhaps seen more remarkable progress in treatment and patient outcomes than any other cancer during the last decade. Recent data show that multiple myeloma is consistently preceded by a precursor state (monoclonal gammopathy of undetermined significance [MGUS]/smoldering multiple myeloma [SMM]). This observation provides a framework for prospective studies focusing on transformation from precursor disease to multiple myeloma and for the development of treatment strategies targeting "early myeloma." This review discusses current biological insights in MGUS/SMM, provides an update on clinical management, and discusses how the integration of novel biological markers, molecular imaging, and clinical monitoring of MGUS/SMM could facilitate the development of early treatment strategies for high-risk SMM (early myeloma) patients in the future.

  16. Orbitofrontal lesions eliminate signalling of biological significance in cue-responsive ventral striatal neurons.

    Science.gov (United States)

    Cooch, Nisha K; Stalnaker, Thomas A; Wied, Heather M; Bali-Chaudhary, Sheena; McDannald, Michael A; Liu, Tzu-Lan; Schoenbaum, Geoffrey

    2015-05-21

    The ventral striatum has long been proposed as an integrator of biologically significant associative information to drive actions. Although inputs from the amygdala and hippocampus have been much studied, the role of prominent inputs from orbitofrontal cortex (OFC) are less well understood. Here, we recorded single-unit activity from ventral striatum core in rats with sham or ipsilateral neurotoxic lesions of lateral OFC, as they performed an odour-guided spatial choice task. Consistent with prior reports, we found that spiking activity recorded in sham rats during cue sampling was related to both reward magnitude and reward identity, with higher firing rates observed for cues that predicted more reward. Lesioned rats also showed differential activity to the cues, but this activity was unbiased towards larger rewards. These data support a role for OFC in shaping activity in the ventral striatum to represent the biological significance of associative information in the environment.

  17. Theoretical Investigation of Optical Detection and Recognition of Single Biological Molecules Using Coherent Dynamics of Exciton-Plasmon Coupling.

    Science.gov (United States)

    Sadeghi, S M; Hood, B; Patty, K D; Mao, C-B

    2013-08-20

    We use quantum coherence in a system consisting of one metallic nanorod and one semi-conductor quantum dot to investigate a plasmonic nanosensor capable of digital optical detection and recognition of single biological molecules. In such a sensor the adsorption of a specific molecule to the nanorod turns off the emission of the system when it interacts with an optical pulse having a certain intensity and temporal width. The proposed quantum sensors can count the number of molecules of the same type or differentiate between molecule types with digital optical signals that can be measured with high certainty. We show that these sensors are based on the ultrafast upheaval of coherent dynamics of the system and the removal of coherent blockage of energy transfer from the quantum dot to the nanorod once the adsorption process has occurred.

  18. The Reactive Species Interactome: Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine.

    Science.gov (United States)

    Cortese-Krott, Miriam M; Koning, Anne; Kuhnle, Gunter G C; Nagy, Peter; Bianco, Christopher L; Pasch, Andreas; Wink, David A; Fukuto, Jon M; Jackson, Alan A; van Goor, Harry; Olson, Kenneth R; Feelisch, Martin

    2017-10-01

    Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent Advances: Similar to reactive oxygen species and reactive nitrogen species, reactive sulfur species are now emerging as important signaling molecules, targeting regulatory cysteine redox switches in proteins, affecting gene regulation, ion transport, intermediary metabolism, and mitochondrial function. To rationalize the complexity of chemical interactions of reactive species with themselves and their targets and help define their role in systemic metabolic control, we here introduce a novel integrative concept defined as the reactive species interactome (RSI). The RSI is a primeval multilevel redox regulatory system whose architecture, together with the physicochemical characteristics of its constituents, allows efficient sensing and rapid adaptation to environmental changes and various other stressors to enhance fitness and resilience at the local and whole-organism level. To better characterize the RSI-related processes that determine fluxes through specific pathways and enable integration, it is necessary to disentangle the chemical biology and activity of reactive species (including precursors and reaction products), their targets, communication systems, and effects on cellular, organ, and whole-organism bioenergetics using system-level/network analyses. Understanding the mechanisms through which the RSI operates will enable a better appreciation of the possibilities to modulate the entire biological system; moreover, unveiling molecular signatures that characterize specific environmental challenges or other forms of stress will provide new prevention/intervention opportunities for personalized medicine. Antioxid. Redox Signal. 00, 000-000.

  19. Biological significance of urolithins, the gut microbial ellagic Acid-derived metabolites: the evidence so far.

    Science.gov (United States)

    Espín, Juan Carlos; Larrosa, Mar; García-Conesa, María Teresa; Tomás-Barberán, Francisco

    2013-01-01

    The health benefits attributed to pomegranate have been associated with its high content in polyphenols, particularly ellagitannins. This is also the case for other ellagitannin-containing fruits and nuts including strawberry, raspberry, blackberry, walnuts, and muscadine grapes. The bioavailability of ellagitannins and ellagic acid is however very low. These molecules suffer extensive metabolism by the gut microbiota to produce urolithins that are much better absorbed. Urolithins circulate in plasma as glucuronide and sulfate conjugates at concentrations in the range of 0.2-20  μ M. It is therefore conceivable that the health effects of ellagitannin-containing products can be associated with these gut-produced urolithins, and thus the evaluation of the biological effects of these metabolites is essential. Recent research, mostly based on in vitro testing, has shown preliminary evidence of the anti-inflammatory, anticarcinogenic, antiglycative, antioxidant, and antimicrobial effects of urolithins, supporting their potential contribution to the health effects attributed to pomegranate and ellagitannin-rich foods. The number of in vivo studies is still limited, but they show preventive effects of urolithins on gut and systemic inflammation that encourage further research. Both in vivo and mechanistic studies are necessary to clarify the health effects of these metabolites. Attention should be paid when designing these mechanistic studies in order to use the physiologically relevant metabolites (urolithins in gut models and their conjugated derivatives in systemic models) at concentrations that can be reached in vivo.

  20. Biological Significance of Urolithins, the Gut Microbial Ellagic Acid-Derived Metabolites: The Evidence So Far

    Directory of Open Access Journals (Sweden)

    Juan Carlos Espín

    2013-01-01

    Full Text Available The health benefits attributed to pomegranate have been associated with its high content in polyphenols, particularly ellagitannins. This is also the case for other ellagitannin-containing fruits and nuts including strawberry, raspberry, blackberry, walnuts, and muscadine grapes. The bioavailability of ellagitannins and ellagic acid is however very low. These molecules suffer extensive metabolism by the gut microbiota to produce urolithins that are much better absorbed. Urolithins circulate in plasma as glucuronide and sulfate conjugates at concentrations in the range of 0.2–20 μM. It is therefore conceivable that the health effects of ellagitannin-containing products can be associated with these gut-produced urolithins, and thus the evaluation of the biological effects of these metabolites is essential. Recent research, mostly based on in vitro testing, has shown preliminary evidence of the anti-inflammatory, anticarcinogenic, antiglycative, antioxidant, and antimicrobial effects of urolithins, supporting their potential contribution to the health effects attributed to pomegranate and ellagitannin-rich foods. The number of in vivo studies is still limited, but they show preventive effects of urolithins on gut and systemic inflammation that encourage further research. Both in vivo and mechanistic studies are necessary to clarify the health effects of these metabolites. Attention should be paid when designing these mechanistic studies in order to use the physiologically relevant metabolites (urolithins in gut models and their conjugated derivatives in systemic models at concentrations that can be reached in vivo.

  1. Laser desorption/ionization mass spectrometry for direct profiling and imaging of small molecules from raw biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Sangwon [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Matrix-assisted laser desorption/ionization(MALDI) mass spectrometry(MS) has been widely used for analysis of biological molecules, especially macromolecules such as proteins. However, MALDI MS has a problem in small molecule (less than 1 kDa) analysis because of the signal saturation by organic matrixes in the low mass region. In imaging MS (IMS), inhomogeneous surface formation due to the co-crystallization process by organic MALDI matrixes limits the spatial resolution of the mass spectral image. Therefore, to make laser desorption/ionization (LDI) MS more suitable for mass spectral profiling and imaging of small molecules directly from raw biological tissues, LDI MS protocols with various alternative assisting materials were developed and applied to many biological systems of interest. Colloidal graphite was used as a matrix for IMS of small molecules for the first time and methodologies for analyses of small metabolites in rat brain tissues, fruits, and plant tissues were developed. With rat brain tissues, the signal enhancement for cerebroside species by colloidal graphite was observed and images of cerebrosides were successfully generated by IMS. In addition, separation of isobaric lipid ions was performed by imaging tandem MS. Directly from Arabidopsis flowers, flavonoids were successfully profiled and heterogeneous distribution of flavonoids in petals was observed for the first time by graphite-assisted LDI(GALDI) IMS.

  2. Biology of the immunomodulatory molecule HLA-G in human liver diseases.

    Science.gov (United States)

    Amiot, Laurence; Vu, Nicolas; Samson, Michel

    2015-06-01

    The non-classical human leukocyte antigen-G (HLA-G), plays an important role in inducing tolerance, through its immunosuppressive effects on all types of immune cells. Immune tolerance is a key issue in the liver, both in liver homeostasis and in the response to liver injury or cancer. It would therefore appear likely that HLA-G plays an important role in liver diseases. Indeed, this molecule was recently shown to be produced by mast cells in the livers of patients infected with hepatitis C virus (HCV). Furthermore, the number of HLA-G-positive mast cells was significantly associated with fibrosis progression. The generation of immune tolerance is a role common to both HLA-G, as a molecule, and the liver, as an organ. This review provides a summary of the evidence implicating HLA-G in liver diseases. In the normal liver, HLA-G transcripts can be detected, but there is no HLA-G protein. However, HLA-G protein is detectable in the liver tissues and/or plasma of patients suffering from hepatocellular carcinoma, hepatitis B or C, or visceral leishmaniasis and in liver transplant recipients. The cells responsible for producing HLA-G differ between diseases. HLA-G expression is probably induced by microenvironmental factors, such as cytokines. The expression of HLA-G receptors, such as ILT2, ILT4, and KIRD2L4, on liver cells has yet to be investigated, but these receptors have been detected on all types of immune cells, and such cells are present in liver. The tolerogenic properties of HLA-G explain its deleterious effects in cancers and its beneficial effects in transplantation. Given the key role of HLA-G in immune tolerance, new therapeutic agents targeting HLA-G could be tested for the treatment of these diseases in the future. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. Poly-(amidoamine) dendrimers with a precisely core positioned sulforhodamine B molecule for comparative biological tracing and profiling

    DEFF Research Database (Denmark)

    Wu, Lin-Ping; Ficker, Mario; Mejlsøe, Søren Leth

    2017-01-01

    We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum of the fluo......We report on a simple robust procedure for synthesis of generation-4 poly-(amidoamine) (PAMAM) dendrimers with a precisely core positioned single sulforhodamine B molecule. The labelled dendrimers exhibited high fluorescent quantum yields where the absorbance and fluorescence spectrum...... of its coupling efficiency). Our dendrimer core-labelling approach could provide a new conceptual basis for improved understanding of dendrimer performance within biological settings...

  4. Electrons, Photons, and Force: Quantitative Single-Molecule Measurements from Physics to Biology

    Science.gov (United States)

    2011-01-01

    Single-molecule measurement techniques have illuminated unprecedented details of chemical behavior, including observations of the motion of a single molecule on a surface, and even the vibration of a single bond within a molecule. Such measurements are critical to our understanding of entities ranging from single atoms to the most complex protein assemblies. We provide an overview of the strikingly diverse classes of measurements that can be used to quantify single-molecule properties, including those of single macromolecules and single molecular assemblies, and discuss the quantitative insights they provide. Examples are drawn from across the single-molecule literature, ranging from ultrahigh vacuum scanning tunneling microscopy studies of adsorbate diffusion on surfaces to fluorescence studies of protein conformational changes in solution. PMID:21338175

  5. Conformational, spectroscopic and nonlinear optical properties of biologically active N,N-dimethyltryptamine molecule: a theoretical study.

    Science.gov (United States)

    Öner, Nazmiye; Tamer, Ömer; Avcı, Davut; Atalay, Yusuf

    2014-12-10

    The effective psychoactive properties of N,N-dimethyltryptamine (DMT) known as the near-death molecule have encouraged the imagination of many research disciplines for several decades. Although there is no theoretical study, a number of paper composed by experimental techniques have been reported for DMT molecule. In this study, the molecular modeling of DMT was carried out using B3LYP and HSEh1PBE levels of density functional theory (DFT). Our calculations showed that the energy gap between HOMO and LUMO is low, demonstrating that DMT is a biologically active molecule. Large hyperconjugation interaction energies imply that molecular charge transfer occurs in DMT. Moreover, NLO analysis indicates that DMT can be used an effective NLO material. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research

    Directory of Open Access Journals (Sweden)

    Toshitsugu Fujita

    2015-09-01

    Full Text Available Engineered DNA-binding molecules such as transcription activator-like effector (TAL or TALE proteins and the clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated proteins (Cas (CRISPR/Cas system have been used extensively for genome editing in cells of various types and species. The sequence-specific DNA-binding activities of these engineered DNA-binding molecules can also be utilized for other purposes, such as transcriptional activation, transcriptional repression, chromatin modification, visualization of genomic regions, and isolation of chromatin in a locus-specific manner. In this review, we describe applications of these engineered DNA-binding molecules for biological purposes other than genome editing.

  7. 76 FR 42675 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-07-19

    ... Significant Impact for a Biological Control Agent for Hemlock Woolly Adelgid AGENCY: Animal and Plant Health... biological control agent to reduce the severity of hemlock woolly adelgid (Adelges tsugae, HWA) infestations... release of this biological control agent into the continental United States. \\1\\ To view the notice, EA...

  8. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  9. Biological Function and Medicinal Research Significance of G-Quadruplex Interactive Proteins.

    Science.gov (United States)

    Qiu, Jun; Wang, Mingxue; Zhang, Yan; Zeng, Ping; Ou, Tian-Miao; Tan, Jia-Heng; Huang, Shi-Liang; An, Lin-Kun; Wang, Honggen; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2015-01-01

    G-quadruplexes are four-stranded DNA structures formed from G-rich sequences that are built around tetrads of hydrogen-bonded guanine bases. Accumulating studies have revealed that G-quadruplex structures are formed in vivo and play important roles in biological processes such as DNA replication, transcription, recombination, epigenetic regulation, meiosis, antigenic variation, and maintenance of telomeres stability. Mounting evidence indicates that a variety of proteins are capable of binding selectively and tightly to G-quadruplex and play essential roles in G-quadruplex-mediated regulation processes. Some of these proteins promote the formation or/and stabilization of G-quadruplex, while some other proteins act to unwind G-quadruplex preferentially. From a drug discovery perspective, many of these G-quadruplex binding proteins and/or their complexes with G-quadruplexes are potential drug targets. Here, we present a general summary of reported G-quadruplex binding proteins and their biological functions, with focus on those of medicinal research significance. We elaborated the possibility for some of these G-quadruplex binding proteins and their complexes with G-quadruplexes as potential drug targets.

  10. Human Permanent Ectoparasites; Recent Advances on Biology and Clinical Significance of Demodex Mites: Narrative Review Article

    Directory of Open Access Journals (Sweden)

    Dorota LITWIN

    2017-02-01

    Full Text Available Background: Demodex is a genus of mites living predominantly in mammalian pilosebaceous units. They are commonly detected in the skin of face, with increasing numbers in inflammatory lesions. Causation between Demodex mites and inflammatory diseases, such as rosacea, blepharitis, perioral and seborrhoeic dermatitis or chalazion, is controversially discussed. Clinical observations indicate a primary form of human Demodex infection. The aim of this review was to highlight the biological aspects of Demodex infestation and point out directions for the future research.Methods: We conducted a broad review based on the electronic database sources such as MEDLINE, PubMed and Scopus with regard to the characteristics of the Demodex species, methods of examination and worldwide epidemiology, molecular studies and its role in the complex human ecosystem.Results: Demodex mites are organisms with a worldwide importance as they act in indicating several dermatoses, under certain conditions. However, correlations between Demodex and other parasites or microorganisms occupying one host, as well as interactions between these arachnids and its symbiotic bacteria should be considered. There are few methods of human mites' examination depending on purpose of the study. Nevertheless, paying attention must be needed as polymorphism of Demodex species has been reported.Conclusion: Overall, the present review will focus on different aspects of Demodex mites’ biology and significance of these arachnids in human’s health.

  11. Clinical Significance and Biological Role of HuR in Head and Neck Carcinomas

    Directory of Open Access Journals (Sweden)

    Georgia Levidou

    2018-01-01

    Full Text Available Background. Hu-antigen R (HuR is a posttranscriptional regulator of several target mRNAs, implicated in carcinogenesis. This review aims to present the current evidence regarding the biological role and potential clinical significance of HuR in head and neck carcinomas. Methods. The existing literature concerning HuR expression and function in head and neck carcinomas is critically presented and summarised. Results. HuR is expressed in the majority of the examined samples, showing higher cytoplasmic levels in malignant or premalignant cases. Moreover, HuR modulates several genes implicated in biological processes important for malignant transformation, growth, and invasiveness. HuR seems to be an adverse prognosticator in patients with OSCCs, whereas a correlation with a more aggressive phenotype is reported in several types of carcinomas. Conclusions. A consistent role of HuR in the carcinogenesis and progression of head and neck carcinomas is suggested; nevertheless, further studies are warranted to expand the present information.

  12. Messina: a novel analysis tool to identify biologically relevant molecules in disease.

    Directory of Open Access Journals (Sweden)

    Mark Pinese

    Full Text Available BACKGROUND: Morphologically similar cancers display heterogeneous patterns of molecular aberrations and follow substantially different clinical courses. This diversity has become the basis for the definition of molecular phenotypes, with significant implications for therapy. Microarray or proteomic expression profiling is conventionally employed to identify disease-associated genes, however, traditional approaches for the analysis of profiling experiments may miss molecular aberrations which define biologically relevant subtypes. METHODOLOGY/PRINCIPAL FINDINGS: Here we present Messina, a method that can identify those genes that only sometimes show aberrant expression in cancer. We demonstrate with simulated data that Messina is highly sensitive and specific when used to identify genes which are aberrantly expressed in only a proportion of cancers, and compare Messina to contemporary analysis techniques. We illustrate Messina by using it to detect the aberrant expression of a gene that may play an important role in pancreatic cancer. CONCLUSIONS/SIGNIFICANCE: Messina allows the detection of genes with profiles typical of markers of molecular subtype, and complements existing methods to assist the identification of such markers. Messina is applicable to any global expression profiling data, and to allow its easy application has been packaged into a freely-available stand-alone software package.

  13. The biological significance of differences in cows and sows colostrum and milk composition

    Directory of Open Access Journals (Sweden)

    Kirovski Danijela

    2014-01-01

    Full Text Available The objective of this work was to compare the composition of colostrum and milk of cows and sows (content of dry matter, protein, milk fat and lactose, concentration of IGF-I and insulin in samples taken on the first, second, third and seventh day after parturition, and then based on the differences in composition to determine a biological significance of nutrition of newborn during the earliest stages of their life. The investigation inluded 14 cows of Holstein breed and 14 sows of Landrace breed. The content of dry matter and the concentration of proteins in both colostrum and milk samples were statistically significantly higher in regard to sows mammary glands secretion, taken on the first day after the parturition (p<0,01 and p<0,001, individually, but their decrease in mammary glands secretion was more pronounced in the cows than the sows, during the first seven days. The concentration IGF-I was statistically significantly higher in the cows colostrum and milk in regard to the sows during the whole investigation period, while the concentration of insulin was significantly higher in the sows in regard to the cows during the same period. The concentrations of milk fat and lactose in cows milk samples were significantly lower in regard to the sows in all period of the study. On the basis of the obtained results, it can be concluded that there are significant differences in the composition of milk and colostrum of both the investigated animal species. The differences are probably the result of evolutionary adaptation of mammal gland function to nutrition, energy and protection requirements of these young animals in their early postnatal life. [Projekat Ministarstva nauke Republike Srbije, br. III 46002

  14. The prognostic significance of apoptosis-related biological markers in Chinese gastric cancer patients.

    Directory of Open Access Journals (Sweden)

    Xiaowen Liu

    Full Text Available BACKGROUND AND OBJECTIVE: The prognosis varied among the patients with the same stage, therefore there was a need for new prognostic and predictive factors. The aim of this study was to evaluate the relationship of apoptosis-related biological markers such as p53, bcl-2, bax, and c-myc, and clinicopathological features and their prognostic value. METHODS: From 1996 to 2007, 4426 patients had undergone curative D2 gastrectomy for gastric cancer at Fudan University Shanghai Cancer Center. Among 501 patients, the expression levels of p53, bcl-2, bax, and c-myc were examined by immunohistochemistry. The prognostic value of biological markers and the correlation between biological markers and other clinicopathological factors were investigated. RESULTS: There were 339 males and 162 females with a mean age of 57. The percentages of positive expression of p53, bcl-2, bax, and c-myc were 65%, 22%, 43%, and 58%, respectively. There was a strong correlation between p53, bax, and c-myc expression (P=0.00. There was significant association between bcl-2, and bax expression (P<0.05. p53 expression correlated with histological grade (P=0.01; bcl-2 expression with pathological stage (P=0.00; bax expression with male (P=0.02, histological grade (P=0.01, Borrmann type (P=0.01, tumor location (P=0.00, lymph node metastasis (P=0.03, and pathological stage (P=0.03; c-myc expression with Borrmann type (P=0.00. bcl-2 expression was related with good survival in univariate analysis (P=0.01. Multivariate analysis showed that bcl-2 expression and pathological stage were defined as independent prognostic factors. There were significant differences of overall 5-year survival rates according to bcl-2 expression or not in stage IIB (P=0.03. CONCLUSION: The expression of bcl-2 was an independent prognostic factor for patients with gastric cancer; it might be a candidate for the gastric cancer staging system.

  15. Clinicopathologic significance of HLA-G and HLA-E molecules in Tunisian patients with ovarian carcinoma.

    Science.gov (United States)

    Babay, Wafa; Ben Yahia, Hamza; Boujelbene, Nadia; Zidi, Nour; Laaribi, Ahmed Baligh; Kacem, Dhikra; Ben Ghorbel, Radhia; Boudabous, Abdellatif; Ouzari, Hadda-Imene; Rizzo, Roberta; Rebmann, Vera; Mrad, Karima; Zidi, Inès

    2018-03-02

    The human leukocyte antigen (HLA)-G and HLA-E, non classical HLA class I molecules, have been highly implicated in immune tolerance. HLA-G and HLA-E molecules were proposed as putative markers of several advanced cancers. As a step towards a better understanding of ovarian carcinoma, we evaluated the expression of both HLA-G and HLA-E molecules and explored their prognostic implication. HLA-G and HLA-E expression were studied by immunohistochemistry on ovarian carcinoma tissues. This expression was semi-quantitatively scored into four expression groups and correlated to clinicopathological parameters and patients' survival. HLA-G and HLA-E have been found to be highly expressed in ovarian carcinoma tissues (Respectively, 72.4% and 96.8%). They are frequently co-expressed. Univariate and multivariate analysis revealed that a positive HLA-G expression status in tumor tissue is a promising candidate parameter to predict disease recurrence in addition to the disease status in Tunisian patients with ovarian carcinoma. Moreover, the elevated HLA-E expression was associated with serous ovarian carcinoma subtype as well as with advanced stages of ovarian carcinoma. HLA-G and HLA-E are highly represented in ovarian carcinoma suggesting a potential association with progressive disease mechanism. HLA-G and HLA-E molecules might be new candidates' markers for ovarian carcinoma progression. Copyright © 2018 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  16. Elementary electron-molecule interactions and negative ion resonances at subexcitation energies and their significance in gaseous dielectrics

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1977-01-01

    Recent knowledge on low-energy (mostly approximately less than 10 eV) electron-molecule interaction processes in dilute and in dense gases is synthesized, discussed, and related to the breakdown strength of gaseous dielectrics. Optimal design of multicomponent gaseous insulators can be made on the basis of such knowledge

  17. Study of radionuclides speciation with biological molecules of interest by spectrometric techniques; Etude de la speciation des radionucleides avec les molecules d'interet biologique par approche spectrometrique

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, V

    2007-07-15

    Mechanisms of complexation and accumulation of the radionuclides at the cellular and molecular level are complex and poorly known because the studies on these subjects are scarce. Within the framework of this thesis, we studied the interactions of these cations with biological molecules of interest. We chose to focus on an actinide: uranium (VI) as well as europium as an analogue of trivalent actinides. The selected biological molecules are the phyto-chelatins: their role is to protect cells against intrusions from nonessential heavy metals (thus toxic). These proteins are likely to be implied in the mechanisms of sequestration of radionuclides in living organisms. However, their structure is complex, this is why, in order to better include/understand their reactivity, we extended our studies to lower entities which constitute them (amino acid: glycine, glutamic acid and cysteine; polypeptides: glutathione reduced and oxidized forms). In particular, we determined solution speciation (stoichiometry, structure) as well as the complexing constants associated with the formation with these species. These studies were undertaken by Time Resolved Laser induced Fluorescence (TRLIF), Electro-Spray-Mass Spectrometry (ES-MS), Nuclear Magnetic Resonance (NMR), Fourier Transform Infra-Rouge spectroscopy (FTIR) and Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS).The determination of the complexation constants enabled us to conclude that the complexing capacity of these molecules with respect to radionuclides was moderate (log{sub 10}K{sub 1} {<=} 3, pH 3 or 6), the formed species are mononuclear with only one ligand molecule (1:1). The interaction is performed via oxygenated (hard) groups. The direct complexation of europium with phyto-chelatins at acidic pH was studied jointly by TRLIF and ES-MS. The complexing capacity of these molecules is much higher than that of GSH from which they result. The interaction of europium with metallothioneins is, on the contrary

  18. Interfacial water molecules at biological membranes: Structural features and role for lateral proton diffusion.

    Science.gov (United States)

    Nguyen, Trung Hai; Zhang, Chao; Weichselbaum, Ewald; Knyazev, Denis G; Pohl, Peter; Carloni, Paolo

    2018-01-01

    Proton transport at water/membrane interfaces plays a fundamental role for a myriad of bioenergetic processes. Here we have performed ab initio molecular dynamics simulations of proton transfer along two phosphatidylcholine bilayers. As found in previous theoretical studies, the excess proton is preferably located at the water/membrane interface. Further, our simulations indicate that it interacts not only with phosphate head groups, but also with water molecules at the interfaces. Interfacial water molecules turn out to be oriented relative to the lipid bilayers, consistently with experimental evidence. Hence, the specific water-proton interaction may help explain the proton mobility experimentally observed at the membrane interface.

  19. Biological significance of HLA locus matching in unrelated donor bone marrow transplantation

    Science.gov (United States)

    Kashiwase, Koichi; Matsuo, Keitaro; Azuma, Fumihiro; Morishima, Satoko; Onizuka, Makoto; Yabe, Toshio; Murata, Makoto; Doki, Noriko; Eto, Tetsuya; Mori, Takehiko; Miyamura, Koichi; Sao, Hiroshi; Ichinohe, Tatsuo; Saji, Hiroo; Kato, Shunichi; Atsuta, Yoshiko; Kawa, Keisei; Kodera, Yoshihisa; Sasazuki, Takehiko

    2015-01-01

    We hypothesized that the compatibility of each HLA loci between donor and patient induced divergent transplant-related immunologic responses, which attributed to the individualized manifestation of clinical outcomes. Here, we analyzed 7898 Japanese pairs transplanted with T-cell–replete marrow from an unrelated donor with complete HLA allele typing data. Multivariable competing risk regression analyses were conducted to evaluate the relative risk (RR) of clinical outcomes after transplantation. A significant RR of HLA allele mismatch compared with match was seen with HLA-A, -B, -C, and -DPB1 for grade III-IV acute graft-versus-host disease (GVHD), and HLA-C for chronic GVHD. Of note, only HLA-C and HLA-DPB1 mismatch reduced leukemia relapse, and this graft-versus-leukemia effect of HLA-DPB1 was independent of chronic GVHD. HLA-DRB1 and HLA-DQB1 double (DRB1_DQB1) mismatch was revealed to be a significant RR for acute GVHD and mortality, whereas single mismatch was not. Thus, the number of HLA-A, -B, -C, -DPB1, and DRB1_DQB1 mismatches showed a clear-cut risk difference for acute GVHD, whereas the number of mismatches for HLA-A, -B, -C, and DRB1_DQB1 showed the same for mortality. In conclusion, we determined the biological response to HLA locus mismatch in transplant-related immunologic events, and provide a rationale for use of a personalized algorithm for unrelated donor selection. PMID:25519752

  20. Melatonin Distribution Reveals Clues to Its Biological Significance in Basal Metazoans

    Science.gov (United States)

    Roopin, Modi; Levy, Oren

    2012-01-01

    Although nearly ubiquitous in nature, the precise biological significance of endogenous melatonin is poorly understood in phylogenetically basal taxa. In the present work, we describe insights into the functional role of melatonin at the most “basal” level of metazoan evolution. Hitherto unknown morphological determinants of melatonin distribution were evaluated in Nematostella vectensis by detecting melatonin immunoreactivity and examining the spatial gene expression patterns of putative melatonin biosynthetic and receptor elements that are located at opposing ends of the melatonin signaling pathway. Immuno-melatonin profiling indicated an elaborate interaction with reproductive tissues, reinforcing previous conjectures of a melatonin-responsive component in anthozoan reproduction. In situ hybridization (ISH) to putative melatonin receptor elements highlighted the possibility that the bioregulatory effects of melatonin in anthozoan reproduction may be mediated by interactions with membrane receptors, as in higher vertebrates. Another intriguing finding of the present study pertains to the prevalence of melatonin in centralized nervous structures. This pattern may be of great significance given that it 1) identifies an ancestral association between melatonin and key neuronal components and 2) potentially implies that certain effects of melatonin in basal species may be spread widely by regionalized nerve centers. PMID:23300630

  1. A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein.

    Science.gov (United States)

    Du, Z Q; Wang, J Y

    2015-10-27

    Brucella, an intracellular parasite that infects some livestock and humans, can damage or destroy the reproductive system of livestock. The syndrome is referred to as brucellosis and often occurs in pastoral areas; it is contagious from livestock to humans. In this study, the intact Brucella suis outer membrane protein 31 (omp31) gene was cloned, recombinantly expressed, and examined as a subunit vaccine candidate. The intact Brucella lumazine synthase (bls) gene was cloned and recombinantly expressed to study polymerization function in vitro. Non-reducing gel electrophoresis showed that rBs-BLS existed in different forms in vitro, including as a dimer and a pentamer. An enzyme-linked immunosorbent assay result showed that rOmp31 protein could induce production of an antibody in rabbits. However, the rOmp31-BLS fusion protein could elicit a much higher antibody titer in rabbits; this construct involved fusion of the Omp31 molecule with the BLS molecule. Our results indicate that Omp31 is involved in immune stimulation, while BLS has a polymerizing function based on rOmp31-BLS fusion protein immunogenicity. These data suggest that Omp31 is an ideal subunit vaccine candidate and that the BLS molecule is a favorable transport vector for antigenic proteins.

  2. Unequal Activities of Enantiomers via Biological Receptors: Examples of Chiral Drug, Pesticide, and Fragrance Molecules

    Science.gov (United States)

    Mannschreck, Albrecht; Kiesswetter, Roland; von Angerer, Erwin

    2007-01-01

    A molecule coming from outside an organism can form a ligand-receptor complex. Upon its formation, a message is transmitted, for example, to certain cells. In this way, two enantiomers can emit messages that differ, either quantitatively or qualitatively. In the present article, these facts are taken as a common basis for the actions of chiral…

  3. New basis set for the prediction of the specific rotation in flexible biological molecules

    DEFF Research Database (Denmark)

    Baranowska-Łaczkowska, Angelika; Z. Łaczkowski, Krzysztof Z. Łaczkowski; Henriksen, Christian

    2016-01-01

    Using a novel method based on increasingly accurate calculations, we obtain the main conformers of a set of flexible molecules. We then employ the recently developed ORP basis set for calculating the specific rotation of the found set carried out at the TD-DFT level of theory. The results are com...

  4. Space radiation-induced bystander effect: kinetics of biologic responses, mechanisms, and significance of secondary radiations

    International Nuclear Information System (INIS)

    Gonon, Geraldine

    2011-01-01

    Widespread evidence indicates that exposure of cell cultures to a particles results in significant biological changes in both the irradiated and non-irradiated bystander cells in the population. The induction of non-targeted biological responses in cell cultures exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation and to radiotherapy. Here, we investigated the mechanisms underlying the induction of stressful effects in confluent normal human fibroblast cultures exposed to low fluences of 1000 MeV/u iron ions (linear energy transfer (LET) 151 keV/μm), 600 MeV/u silicon ions (LET 50 keV/μm) or 290 MeV/u carbon ions (LET 13 keV/μm). We compared the results with those obtained in cell cultures exposed, in parallel, to low fluences of 0.92 MeV/u a particles (LET 109 keV/μm). Induction of DNA damage, changes in gene expression, protein carbonylation and lipid peroxidation during 24 h after exposure of confluent cultures to mean doses as low as 0.2 cGy of iron or silicon ions strongly supported the propagation of stressful effects from irradiated to bystander cells. At a mean dose of 0.2 cGy, only 1 and 3 % of the cells would be targeted through the nucleus by an iron or silicon ion, respectively. Within 24 h post-irradiation, immunoblot analyses revealed significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (also known as CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation. The magnitude of the responses suggested participation of non-targeted cells in the response. Furthermore, when the irradiated cell populations were subcultured in fresh medium shortly after irradiation, greater than expected increases in the levels of these markers were also observed during 24 h. Together, the results imply a rapidly propagated and persistent bystander effect. In situ analyses in confluent cultures showed 53BP1 foci formation, a marker of DNA damage, in

  5. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2018-03-01

    Full Text Available In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric–heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1 the structural characteristics of oenothein B and related dimers; (2 the oxidative metabolites of oenothein B up to heptameric oligomers; (3 the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4 the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.

  6. Hydrolysis of androgen receptor by cathepsin D: its biological significance in human prostate cancer.

    Science.gov (United States)

    Mordente, J A; Choudhury, M S; Tazaki, H; Mallouh, C; Konno, S

    1998-09-01

    To elicit the biological role of a lysosomal protease, cathepsin D (CatD) in prostate cancer, by investigating its regulatory effect on the androgen receptor (AR) using human prostate cancer LNCaP cells and prostate tissue specimens. Cell extracts were prepared from LNCaP or prostate specimens by cell lysis and tissue homogenization. Proteolytic assays were performed by incubating these extracts in acidic buffer (pH 3-4) at 37 degrees C. The resulting effects on AR and CatD were then analysed using Western immunoblots. The Western blots showed that AR was virtually hydrolysed with acid treatment, because endogenous CatD was activated; this activation only occurred at pH 3.2-3.5, but no specific acid appeared to be required. Further analyses suggested that CatD activation could be attributed to acid-induced autoproteolysis of mature CatD. Similar assays were also performed on prostate tissues, including normal and malignant specimens. These studies revealed that CatD-mediated AR hydrolysis was observed only in cancer specimens, while no such hydrolysis occurred in normal specimens. Endogenous CatD can hydrolyse AR, thereby possibly modulating AR function/metabolism in LNCaP cells, and in cancer specimens. CatD activity also appears to differ significantly between normal and malignant tissue. Thus, CatD may play a pivotal role as a growth modulator in androgen-dependent prostate cancer.

  7. Normal Mode Flexible Fitting of High-Resolution Structures of Biological Molecules Toward SAXS Data

    Directory of Open Access Journals (Sweden)

    Christian Gorba

    2010-06-01

    Full Text Available We present a method to reconstruct a three-dimensional protein structure from an atomic pair distribution function derived from the scattering intensity profile from SAXS data by flexibly fitting known x-ray structures. This method uses a linear combination of low-frequency normal modes from an elastic network description of the molecule in an iterative manner to deform the structure to conform optimally to the target pair distribution function derived from SAXS data. For computational efficiency, the protein and water molecules included in the protein first hydration shell are coarse-grained. In this paper, we demonstrate the validity of our coarse- graining approach to study SAXS data. Illustrative results of our flexible fitting studies on simulated SAXS data from five different proteins are presented.

  8. Isolation of a significant fraction of non-phototroph diversity from a desert Biological Soil Crust

    Directory of Open Access Journals (Sweden)

    Ulisses eNunes da Rocha

    2015-04-01

    Full Text Available Biological Soil Crusts (BSCs are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light and isolation strategies (media with varying nutrient availability and protection from oxidative stress we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology, 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.

  9. Mass spectrometry imaging of small molecules in biological tissues using graphene oxide as a matrix.

    Science.gov (United States)

    Zhou, Dan; Guo, Shuai; Zhang, Mo; Liu, Yujie; Chen, Tianjing; Li, Zhili

    2017-04-15

    With the development of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI), molecular interrogation of tissue sections over a wide mass range has become feasible, but small molecule analysis is still far from being fully reached due to the limited sensitivity and matrix interference. Herein, graphene oxide (GO) is used as a MALDI matrix to image small molecules in tissues in negative ion mode. Finally, 212 of molecules including 190 of lipids and 22 of low molecular weight metabolites were detected and spatially visualized in mouse brain tissue sections without the interference of matrix ions/clusters, and the structures of 69 of the lipids were confirmed by using in situ tandem mass spectrometry. A further application of GO matrix could reveal distinct spatio-molecular signatures in viable and necrotic tumor regions derived from a mouse breast cancer tissue. In addition, GO as a MALDI matrix has exhibited a better performance in MSI of lipids relative to N-(1-naphthyl) ethylenediamine dihydrochloride and 9-aminoacridine. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of Co-Existing Biologically Relevant Molecules and Ions on DNA Photocleavage Caused by Pyrene and its Derivatives

    Directory of Open Access Journals (Sweden)

    Hongtao Yu

    2005-04-01

    Full Text Available Inorganic ions, coenzymes, amino acids, and saccharides could co-exist with toxic environmental chemicals, such as polycyclic aromatic hydrocarbons (PAHs, in the cell. The presence of these co-existing chemicals can modulate the toxicity of the PAHs. One of the genotoxic effects by PAHs is light-induced cleavage, or photocleavage, of DNA. The effect of inorganic ions I-, Na+, Ca2+, Mg2+, Fe3+, Mn2+, Cu2+, and Zn2+ and biological molecules riboflavin, histidine, mannitol, nicotinamide adenine dinucleotide (NAD, glutathione, and glutamic acid on the DNA photocleavage by pyrene, 1-hydroxypyrene (1-HP, and 1-aminopyrene (1-AP, is studied. The non-transition metal ions Na+, Ca2+, and Mg2+, usually have very little inhibitory effects, while the transition metal ions Fe3+, Cu2+, and Zn2+ enhance, Mn2+ inhibits the DNA photocleavage. The effect by biological molecules is complex, depending on the photochemical reaction mechanisms of the compounds tested (1-AP, 1-HP and pyrene and on the chemical nature of the added biological molecules. Riboflavin, histidine, and mannitol enhance DNA photocleavage by all three compounds, except that mannitol has no effect on the photocleavage of DNA by pyrene. Glutathione inhibits the DNA photocleavage by 1-AP and 1-HP, but has no effect on that by pyrene. NAD enhances the DNA photocleavage by 1-AP, but has no effect on that by 1-HP and pyrene. Glutamic acid enhances the DNA photocleavage by 1-AP and pyrene, but inhibits that by 1-HP. These results show that the co-existing chemicals may have a profound effect on the toxicity of PAHs, or possibly on the toxicity of many other chemicals. Therefore, if one studies the toxic effects of PAHs or other toxic chemicals, the effect of the co-existing chemicals or ions needs to be considered.

  11. Skeletal types: key to unraveling the mystery of facial beauty and its biologic significance.

    Science.gov (United States)

    Jefferson, Y

    1996-06-01

    In random studies, some faces will deviate toward Type II skeletal and some toward Type III. Some will deviate toward a skeletally short vertical while some toward long. In their study, Langlois and Roggman digitized individual faces through a computer. As more and more faces were entered, the composite of these faces became more and more attractive. From this, they concluded that attractive faces are only average. The "average" face may very well conform to the divine proportion. However, some faces are strikingly beautiful, and Alley and Cunningham in their study attempted to explain these attributes. Individuals who are blessed with attractive features are treated differently in our society. Ackerman states, "Attractive people do better: in school, where they receive more help, better grades and less punishment; at work, where they are rewarded with higher pay, more prestigious jobs and faster promotions; in finding mates, where they tend to be in control of the relationship and make most of the decisions; and among strangers, who assume them to be more interesting, honest, virtuous and successful." Many would find this special treatment objectionable and unfair. The irony is that beautiful individuals make up a very small percentage of the population; they have very little power to dictate how society should act and behave. Various disciplines have studied the nature of facial beauty. Individually, they provide partial answers; however, when viewed together, they begin to weave provocative insights as to its biologic significance. It is intricately related to divine proportion, and all living creatures have the genetic potential to develop toward it. The appreciation for this proportion is primitive and inborn; it is a biologic mechanism by which all living creatures are attracted to potential mates who conform to this strict proportion because they are biologically strong, healthy, and fertile. To date, there is no other profession other than ours that has the

  12. Use of biological molecules in the treatment of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Seidelin, J B; Munck, Lars Kristian

    2011-01-01

    The introduction of biological agents (i.e. antitumour necrosis factor-a and anti-integrin treatments) for the treatment of inflammatory bowel disease (IBD) [i.e. Crohn's disease (CD) and ulcerative colitis] has led to a substantial change in the treatment algorithms and guidelines, especially...... of biologicals; therefore, in this review, we focus on considerations that might lead to a more rational strategy for antitumour necrosis factor-a agents in IBD, emphasizing the situations in which the risks may outweigh the benefits. Finally, the need for an appropriate strategy for stopping biological...... might maximize the clinical benefit for those in most need of an effective therapy to avoid disabling disease whilst also minimizing the complications associated with therapy. Further, the 'trough-level strategy' may help clinicians to optimize therapy and to avoid loss of response and/or immunogenicity...

  13. Use of biological molecules in the treatment of inflammatory bowel disease

    DEFF Research Database (Denmark)

    Nielsen, O H; Seidelin, J B; Munck, L K

    2011-01-01

    The introduction of biological agents (i.e. antitumour necrosis factor-α and anti-integrin treatments) for the treatment of inflammatory bowel disease (IBD) [i.e. Crohn's disease (CD) and ulcerative colitis] has led to a substantial change in the treatment algorithms and guidelines, especially...... of biologicals; therefore, in this review, we focus on considerations that might lead to a more rational strategy for antitumour necrosis factor-α agents in IBD, emphasizing the situations in which the risks may outweigh the benefits. Finally, the need for an appropriate strategy for stopping biological...... might maximize the clinical benefit for those in most need of an effective therapy to avoid disabling disease whilst also minimizing the complications associated with therapy. Further, the 'trough-level strategy' may help clinicians to optimize therapy and to avoid loss of response and/or immunogenicity...

  14. Radiation damage and repair in cells and cell components. Part 2. Physical radiations and biological significance. Final report

    International Nuclear Information System (INIS)

    Fluke, D.J.

    1984-08-01

    The report comprises a teaching text, encompassing all physical radiations likely to be of biological interest, and the relevant biological effects and their significance. Topics include human radiobiology, delayed effects, radiation absorption in organisms, aqueous radiation chemistry, cell radiobiology, mutagenesis, and photobiology

  15. About the significance of biological factors affecting pregnancy a married couple

    Directory of Open Access Journals (Sweden)

    V. V. Yarman

    2014-11-01

    Full Text Available A brief review of the literature analysis of the importance and interdependence of the main factors influencing the occurrence of pregnancy as a pair in the treatment of infertility, such as the woman's age, ovarian reserve, the semen of a man and the duration of infertility. The review also presents the data concerning the practical implications of sexual constitution and sexual maturation in men and women in the pubertal period. When evaluating male fertility invariably significant factor in the prediction of pregnancy are, impregnating ability to ejaculate. Infertility is more common in males with delayed development in the pubertal period with a weak type of sexual constitution. Results of treatment of male infertility, the dynamics of the semen and pregnancy of the couple on the background of pathogenetic therapy correlates with the type of sexual constitution. Widely deployed discussion about the existence of the male equivalent of female menopause mainly concerns the problems of men's sexual health. Of exceptional importance for the prediction of treatment of infertility has ovarian reserve, which is closely associated with age women. Formation of menstrual function occurs in the pubertal period of sexual development, in this age of menarche is the leading symptom of type of sexual constitution of women that do not change throughout the life hereafter. The presence of menstrual function and even ovulation does not reflect the reproductive capacity of women. Insufficient information content of the chronological age of a woman, as an indicator of the reproductive capacity of ovarian dictates the necessity of the development of tests that determine individual biological age of a woman, perhaps connected with the type of sexual constitution. In this regard, the study of sexual constitution partners is of great scientific and practical interest.

  16. About the significance of biological factors affecting pregnancy a married couple

    Directory of Open Access Journals (Sweden)

    V. V. Yarman

    2013-01-01

    Full Text Available A brief review of the literature analysis of the importance and interdependence of the main factors influencing the occurrence of pregnancy as a pair in the treatment of infertility, such as the woman's age, ovarian reserve, the semen of a man and the duration of infertility. The review also presents the data concerning the practical implications of sexual constitution and sexual maturation in men and women in the pubertal period. When evaluating male fertility invariably significant factor in the prediction of pregnancy are, impregnating ability to ejaculate. Infertility is more common in males with delayed development in the pubertal period with a weak type of sexual constitution. Results of treatment of male infertility, the dynamics of the semen and pregnancy of the couple on the background of pathogenetic therapy correlates with the type of sexual constitution. Widely deployed discussion about the existence of the male equivalent of female menopause mainly concerns the problems of men's sexual health. Of exceptional importance for the prediction of treatment of infertility has ovarian reserve, which is closely associated with age women. Formation of menstrual function occurs in the pubertal period of sexual development, in this age of menarche is the leading symptom of type of sexual constitution of women that do not change throughout the life hereafter. The presence of menstrual function and even ovulation does not reflect the reproductive capacity of women. Insufficient information content of the chronological age of a woman, as an indicator of the reproductive capacity of ovarian dictates the necessity of the development of tests that determine individual biological age of a woman, perhaps connected with the type of sexual constitution. In this regard, the study of sexual constitution partners is of great scientific and practical interest.

  17. The significance and scope of evolutionary developmental biology: a vision for the 21st century.

    Science.gov (United States)

    Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G

    2015-01-01

    Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. © 2015 Wiley Periodicals, Inc.

  18. The RCSB PDB "Molecule of the Month": Inspiring a Molecular View of Biology.

    Science.gov (United States)

    Goodsell, David S; Dutta, Shuchismita; Zardecki, Christine; Voigt, Maria; Berman, Helen M; Burley, Stephen K

    2015-05-01

    The Research Collaboratory for Structural Bioinformatics (RCSB) Molecule of the Month series provides a curated introduction to the 3-D biomolecular structures available in the Protein Data Bank archive and the tools that are available at the RCSB website for accessing and exploring them. A variety of educational materials, such as articles, videos, posters, hands-on activities, lesson plans, and curricula, build on this series for use in a variety of educational settings as a general introduction to key topics, such as enzyme action, protein synthesis, and viruses. The series and associated educational materials are freely available at www.rcsb.org.

  19. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape.

    Science.gov (United States)

    Mattmann, Margrith E; Stoops, Sydney L; Lindsley, Craig W

    2011-09-01

    Akt plays a pivotal role in cell survival and proliferation through a number of downstream effectors; unregulated activation of the PI3K/PTEN/Akt pathway is a prominent feature of many human cancers. Akt is considered an attractive target for cancer therapy by the inhibition of Akt alone or in combination with standard cancer chemotherapeutics. Both preclinical animal studies and clinical trials in humans have validated Akt as an important target of cancer drug discovery. A historical perspective of Akt inhibitors, including PI analogs, ATP-competitive and allosteric Akt inhibitors, along with other inhibitory mechanisms are reviewed in this paper with a focus on issued patents, patent applications and a summary of clinical trial updates since the last review in 2007. A vast diversity of inhibitors of Akt, both small molecule and biologic, have been developed in the past 5 years, with over a dozen in various phases of clinical development, and several displaying efficacy in humans. While it is not yet clear which mechanism of Akt inhibition will be optimal in humans, or which Akt isoforms to inhibit, or whether a small molecule or biologic agent will be best, data to all of these points will be available in the near future.

  20. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level

    Energy Technology Data Exchange (ETDEWEB)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner, E-mail: hwfink@physik.uzh.ch

    2015-12-15

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2 Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. - Highlights: • Structural biology of single proteins. • Radiation damage-free imaging of individual biomolecules. • Holography. • Low-energy electrons. • Coherent diffraction and phase retrieval.

  1. bcl::Cluster : A method for clustering biological molecules coupled with visualization in the Pymol Molecular Graphics System.

    Science.gov (United States)

    Alexander, Nathan; Woetzel, Nils; Meiler, Jens

    2011-02-01

    Clustering algorithms are used as data analysis tools in a wide variety of applications in Biology. Clustering has become especially important in protein structure prediction and virtual high throughput screening methods. In protein structure prediction, clustering is used to structure the conformational space of thousands of protein models. In virtual high throughput screening, databases with millions of drug-like molecules are organized by structural similarity, e.g. common scaffolds. The tree-like dendrogram structure obtained from hierarchical clustering can provide a qualitative overview of the results, which is important for focusing detailed analysis. However, in practice it is difficult to relate specific components of the dendrogram directly back to the objects of which it is comprised and to display all desired information within the two dimensions of the dendrogram. The current work presents a hierarchical agglomerative clustering method termed bcl::Cluster. bcl::Cluster utilizes the Pymol Molecular Graphics System to graphically depict dendrograms in three dimensions. This allows simultaneous display of relevant biological molecules as well as additional information about the clusters and the members comprising them.

  2. The Widespread Prevalence and Functional Significance of Silk-Like Structural Proteins in Metazoan Biological Materials.

    Directory of Open Access Journals (Sweden)

    Carmel McDougall

    Full Text Available In nature, numerous mechanisms have evolved by which organisms fabricate biological structures with an impressive array of physical characteristics. Some examples of metazoan biological materials include the highly elastic byssal threads by which bivalves attach themselves to rocks, biomineralized structures that form the skeletons of various animals, and spider silks that are renowned for their exceptional strength and elasticity. The remarkable properties of silks, which are perhaps the best studied biological materials, are the result of the highly repetitive, modular, and biased amino acid composition of the proteins that compose them. Interestingly, similar levels of modularity/repetitiveness and similar bias in amino acid compositions have been reported in proteins that are components of structural materials in other organisms, however the exact nature and extent of this similarity, and its functional and evolutionary relevance, is unknown. Here, we investigate this similarity and use sequence features common to silks and other known structural proteins to develop a bioinformatics-based method to identify similar proteins from large-scale transcriptome and whole-genome datasets. We show that a large number of proteins identified using this method have roles in biological material formation throughout the animal kingdom. Despite the similarity in sequence characteristics, most of the silk-like structural proteins (SLSPs identified in this study appear to have evolved independently and are restricted to a particular animal lineage. Although the exact function of many of these SLSPs is unknown, the apparent independent evolution of proteins with similar sequence characteristics in divergent lineages suggests that these features are important for the assembly of biological materials. The identification of these characteristics enable the generation of testable hypotheses regarding the mechanisms by which these proteins assemble and direct the

  3. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... and single-molecule levels.We discuss here these advances with reference to two specific redox metalloproteins, the blue single-copper protein Pseudomonas aeruginosa azurin and the single-haem protein Saccharomyces cerevisiae yeast cytochrome c, and a short oligonucleotide. Both proteins can be immobilized...... electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...

  4. Systems biology defines the biological significance of redox-active proteins during cellulose degradation in an aerobic bacterium.

    Science.gov (United States)

    Gardner, Jeffrey G; Crouch, Lucy; Labourel, Aurore; Forsberg, Zarah; Bukhman, Yury V; Vaaje-Kolstad, Gustav; Gilbert, Harry J; Keating, David H

    2014-10-08

    Microbial depolymerization of plant cell walls contributes to global carbon balance and is a critical component of renewable energy. The genomes of lignocellulose degrading microorganisms encode diverse classes of carbohydrate modifying enzymes, although currently there is a paucity of knowledge on the role of these proteins in vivo. We report the comprehensive analysis of the cellulose degradation system in the saprophytic bacterium Cellvibrio japonicus. Gene expression profiling of C. japonicus demonstrated that three of the 12 predicted β-1,4 endoglucanases (cel5A, cel5B, and cel45A) and the sole predicted cellobiohydrolase (cel6A) showed elevated expression during growth on cellulose. Targeted gene disruptions of all 13 predicted cellulase genes showed that only cel5B and cel6A were required for optimal growth on cellulose. Our analysis also identified three additional genes required for cellulose degradation: lpmo10B encodes a lytic polysaccharide monooxygenase (LPMO), while cbp2D and cbp2E encode proteins containing carbohydrate binding modules and predicted cytochrome domains for electron transfer. CjLPMO10B oxidized cellulose and Cbp2D demonstrated spectral properties consistent with redox function. Collectively, this report provides insight into the biological role of LPMOs and redox proteins in cellulose utilization and suggests that C. japonicus utilizes a combination of hydrolytic and oxidative cleavage mechanisms to degrade cellulose. © 2014 John Wiley & Sons Ltd.

  5. Structural Requirements and Biological Significance of Interactions between Peptides and the Major Histocompatibility Complex

    Science.gov (United States)

    Grey, H. M.; Buus, S.; Colon, S.; Miles, C.; Sette, A.

    1989-06-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that allows a few MHC molecules to serve as restriction elements for a large universe of antigens; and (2) what is the relative contribution of determinant selection (i.e. antigen-MHC complex formation) and Tcell repertoire in determining the capacity of an individual to respond to an antigen? By analysing single amino acid substitution analogues of a peptide antigen (Ova 325-335) as well as by analysing the structural similarities between unrelated peptides capable of binding to the same MHC molecule, we have been able to document the very permissive nature of the antigen--MHC interaction. Despite this permissiveness of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity. With respect to the question of the relative role of determinant selection' and 'holes in the T-cell repertoire' in determining immune responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire').

  6. Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex

    DEFF Research Database (Denmark)

    Grey, H M; Buus, S; Colon, S

    1989-01-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions...... that allows a few MHC molecules to serve as restriction elements for a large universe of antigens; and (2) what is the relative contribution of determinant selection (i.e. antigen-MHC complex formation) and T-cell repertoire in determining the capacity of an individual to respond to an antigen? By analysing...

  7. The protolobar structure of the human kidney: Its biologic and clinical significance

    International Nuclear Information System (INIS)

    Inke, G.

    1988-01-01

    This book depicts the uniqueness of each kidney as a result of the interaction of the process of nephronogenesis with the random variability of vascular channels within the bounds of a limited space. The fields of anatomy, developmental biology, comparative morphology, embryology, nephrology, pathology, physiology, radiology, and urologic surgery are treated

  8. Virus-based surface patterning of biological molecules, probes, and inorganic materials.

    Science.gov (United States)

    Ahn, Suji; Jeon, Seongho; Kwak, Eun-A; Kim, Jong-Man; Jaworski, Justyn

    2014-10-01

    An essential requirement for continued technological advancement in many areas of biology, physics, chemistry, and materials science is the growing need to generate custom patterned materials. Building from recent achievements in the site-specific modification of virus for covalent surface tethering, we show in this work that stable 2D virus patterns can be generated in custom geometries over large area glass surfaces to yield templates of biological, biochemical, and inorganic materials in high density. As a nanomaterial building block, filamentous viruses have been extensively used in recent years to produce materials with interesting properties, owing to their ease of genetic and chemical modification. By utilizing un-natural amino acids generated at specific locations on the filamentous fd bacteriophage protein coat, surface immobilization is carried out on APTES patterned glass resulting in precise geometries of covalently linked virus material. This technique facilitated the surface display of a high density of virus that were labeled with biomolecules, fluorescent probes, and gold nanoparticles, thereby opening the possibility of integrating virus as functional components for surface engineering. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Stable organic field-effect transistors for continuous and nondestructive sensing of chemical and biologically relevant molecules in aqueous environment.

    Science.gov (United States)

    Yun, Minseong; Sharma, Asha; Fuentes-Hernandez, Canek; Hwang, Do Kyung; Dindar, Amir; Singh, Sanjeev; Choi, Sangmoo; Kippelen, Bernard

    2014-02-12

    The use of organic field-effect transistors (OFETs) as sensors in aqueous media has gained increased attention for environmental monitoring and medical diagnostics. However, stable operation of OFETs in aqueous media is particularly challenging because of electrolytic hydrolysis of water, high ionic conduction through the analyte, and irreversible damage of organic semiconductors when exposed to water. To date, OFET sensors have shown the capability of label-free sensing of various chemical/biological species, but they could only be used once because their operational stability and lifetime while operating in aqueous environments has been poor, and their response times typically slow. Here, we report on OFETs with unprecedented water stability. These OFETs are suitable for the implementation of reusable chemical/biological sensors because they primarily respond to charged species diluted in an aqueous media by rapidly shifting their threshold voltage. These OFET sensors present stable current baselines and saturated signals which are ideal for detection of low concentration of small or large molecules that alter the pH of an aqueous environment. The overall response of these OFET sensors paves the way for the development of continuous chemical/biological nondestructive sensor applications in aqueous media.

  10. Biological, medicinal and toxicological significance of Eucalyptus leaf essential oil: a review.

    Science.gov (United States)

    Dhakad, Ashok K; Pandey, Vijay V; Beg, Sobia; Rawat, Janhvi M; Singh, Avtar

    2018-02-01

    The genus Eucalyptus L'Heritier comprises about 900 species, of which more than 300 species contain volatile essential oil in their leaves. About 20 species, within these, have a high content of 1,8-cineole (more than 70%), commercially used for the production of essential oils in the pharmaceutical and cosmetic industries. However, Eucalyptus is extensively planted for pulp, plywood and solid wood production, but its leaf aromatic oil has astounding widespread biological activities, including antimicrobial, antiseptic, antioxidant, chemotherapeutic, respiratory and gastrointestinal disorder treatment, wound healing, and insecticidal/insect repellent, herbicidal, acaricidal, nematicidal, and perfumes, soap making and grease remover. In the present review, we have made an attempt to congregate the biological ingredients of leaf essential oil, leaf oil as a natural medicine, and pharmacological and toxicological values of the leaf oil of different Eucalyptus species worldwide. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. A Study to Interpret the Biological Significance of Behavior Associated with 3S Experimental Sonar Exposures

    Science.gov (United States)

    2015-09-30

    use of state-based modelling (e.g. hidden Markov models) to assess how sonar exposure might affect functional behavioral time budgets across 3S...that drives observed behavior (‘motivational state’, Bindra, 1978), such as hunger level. With advances in statistical computing, there is increasing... Behavior Associated with 3S Experimental Sonar Exposures Patrick Miller Sea Mammal Research Unit Scottish Oceans Institute School of Biology

  12. Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics

    Directory of Open Access Journals (Sweden)

    Ping Li

    2017-07-01

    Full Text Available Although initially described as an anti-tumor mediator, tumor necrosis factor-alpha (TNF is generally considered as the master pro-inflammatory cytokine. It plays a crucial role in the pathogenesis of inflammatory diseases, such as rheumatoid arthritis (RA, inflammatory bowel disease, ankylosing spondylitis (AS, and psoriasis. Consequently, anti-TNF therapy has become mainstay treatment for autoimmune diseases. Historically, anti-inflammatory agents were developed before the identification of TNF. Salicylates, the active components of Willow spp., were identified in the mid-19th century for the alleviation of pain, fever, and inflammatory responses. Study of this naturally occurring compound led to the discovery of aspirin, which was followed by the development of non-steroidal anti-inflammatory drugs (NSAIDs due to the chemical advances in the 19th–20th centuries. Initially, the most of NSAIDs were organic acid, but the non-acidic compounds were also identified as NSAIDs. Although effective in the treatment of inflammatory diseases, NSAIDs have some undesirable and adverse effect, such as ulcers, kidney injury, and bleeding in the gastrointestinal tract. In the past two decades, anti-TNF biologics were developed. Drugs belong to this class include soluble TNF receptor 2 fusion protein and anti-TNF antibodies. The introduction of anti-TNF therapeutics has revolutionized the management of autoimmune diseases, such as RA, psoriatic arthritis (PsA, plaque psoriasis (PP, AS, CD and ulcerative colitis (UC. Nevertheless, up to 40% of patients have no response to anti-TNF treatment. Furthermore, this treatment is associated with some adverse effects such as increased risk of infection, and even triggered the de novo development of autoimmune diseases. Such harmful effect of anti-TNF treatment is likely caused by the global inhibition of TNF biological functions. Therefore, specific inhibition of TNF receptor (TNFR1 or TNFR2 may represent a safer and

  13. Electron transfer behaviour of biological macromolecules towards the single-molecule level

    DEFF Research Database (Denmark)

    Zhang, Jingdong; Grubb, Mikala; Hansen, Allan Glargaard

    2003-01-01

    electron transfer (ET) function retained. In situ STM can also address the microscopic mechanisms for electron tunnelling through the biomolecules and offers novel notions such as coherent multi-ET between the substrate and tip via the molecular redox levels. This differs in important respects from...... is combined with state-of-the-art physical electrochemistry with emphasis on single-crystal, atomically planar electrode surfaces, in situ scanning tunnelling microscopy (STM) and other surface techniques. These approaches have brought bioelectrochemistry important steps forward towards the nanoscale...... electrochemical ET at a single metal/electrolyte interface. Similar data for a short oligonucleotide immobilized on Au(111) show that oligonucleotides can be characterized with comparable detail, with novel perspectives for addressing DNA electronic conduction mechanisms and for biological screening towards...

  14. Biological functions of hCG and hCG-related molecules

    Science.gov (United States)

    2010-01-01

    Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle. PMID:20735820

  15. Biological functions of hCG and hCG-related molecules

    Directory of Open Access Journals (Sweden)

    Cole Laurence A

    2010-08-01

    Full Text Available Abstract Background hCG is a term referring to 4 independent molecules, each produced by separate cells and each having completely separate functions. These are hCG produced by villous syncytiotrophoblast cells, hyperglycosylated hCG produced by cytotrophoblast cells, free beta-subunit made by multiple primary non-trophoblastic malignancies, and pituitary hCG made by the gonadotrope cells of the anterior pituitary. Results and discussion hCG has numerous functions. hCG promotes progesterone production by corpus luteal cells; promotes angiogenesis in uterine vasculature; promoted the fusion of cytotrophoblast cell and differentiation to make syncytiotrophoblast cells; causes the blockage of any immune or macrophage action by mother on foreign invading placental cells; causes uterine growth parallel to fetal growth; suppresses any myometrial contractions during the course of pregnancy; causes growth and differentiation of the umbilical cord; signals the endometrium about forthcoming implantation; acts on receptor in mother's brain causing hyperemesis gravidarum, and seemingly promotes growth of fetal organs during pregnancy. Hyperglycosylated hCG functions to promote growth of cytotrophoblast cells and invasion by these cells, as occurs in implantation of pregnancy, and growth and invasion by choriocarcinoma cells. hCG free beta-subunit is produced by numerous non-trophoblastic malignancies of different primaries. The detection of free beta-subunit in these malignancies is generally considered a sign of poor prognosis. The free beta-subunit blocks apoptosis in cancer cells and promotes the growth and malignancy of the cancer. Pituitary hCG is a sulfated variant of hCG produced at low levels during the menstrual cycle. Pituitary hCG seems to mimic luteinizing hormone actions during the menstrual cycle.

  16. Structural and molecular biology of PSP94: Its significance in prostate pathophysiology.

    Science.gov (United States)

    Anklesaria, Jenifer H; Mhatre, Deepa R; Mahale, Smita D

    2018-01-01

    Prostate secretory protein of 94 amino acids (PSP94), primarily found in the prostatic secretion, was originally isolated and purified from human seminal plasma. PSP94 has several putative biological functions and is considered a marker of prostate cancer (PCa). Here, we review the structural-functional relationships of PSP94, address its fungicidal activity and role as an inhibitor of sperm motility and protection from female immune surveillance, and review its role in tumor suppression. We also review the diagnostic assays that are developed for PSP94 for use in the diagnosis of PCa and use of such tests in the differential diagnosis of PCa from benign prostatic hyperplasia (BPH).

  17. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments

    Science.gov (United States)

    Recent technological advances have driven rapid development of DNA-based methods designed to facilitate detection and monitoring of invasive species in aquatic environments. These tools promise to significantly alleviate difficulties associated with traditional monitoring approac...

  18. Holography and coherent diffraction with low-energy electrons: A route towards structural biology at the single molecule level.

    Science.gov (United States)

    Latychevskaia, Tatiana; Longchamp, Jean-Nicolas; Escher, Conrad; Fink, Hans-Werner

    2015-12-01

    The current state of the art in structural biology is led by NMR, X-ray crystallography and TEM investigations. These powerful tools however all rely on averaging over a large ensemble of molecules. Here, we present an alternative concept aiming at structural analysis at the single molecule level. We show that by combining electron holography and coherent diffraction imaging estimations concerning the phase of the scattered wave become needless as the phase information is extracted from the data directly and unambiguously. Performed with low-energy electrons the resolution of this lens-less microscope is just limited by the De Broglie wavelength of the electron wave and the numerical aperture, given by detector geometry. In imaging freestanding graphene, a resolution of 2Å has been achieved revealing the 660.000 unit cells of the graphene sheet from a single data set. Once applied to individual biomolecules the method shall ultimately allow for non-destructive imaging and imports the potential to distinguish between different conformations of proteins with atomic resolution. Copyright © 2015. Published by Elsevier B.V.

  19. How carbo-benzenes fit molecules in their inner core as do biologic ion carriers?

    KAUST Repository

    Turias, Francesc

    2015-09-25

    The present computational study complements experimental efforts to describe and characterize carbo-benzene derivatives as paradigms of aromatic carbo-mers. A long-lasting issue has been the possibility of the π-electron crown of the C18 carbo-benzene ring to fit metals or any chemical agents in its core. A systematic screening of candidate inclusion complexes was carried out by density functional theory calculations. Mayer bond order, aromaticity indices, and energy decomposition analyses complete the understanding of the strength of the host-guest interaction. The change in steric and electronic properties induced by the guest agent is investigated by means of steric maps. Substitution of H atoms at the carbo-benzene periphery by electron-withdrawing or electron-donating groups is shown to have a determining influence on the stability of the inclusion complex ions: while electronegative substituents enhance the recognition of cations, electropositive substituents do the same for anions. The results confirm the experimental failure hitherto to evidence a carbo-benzene complex. Nevertheless, the affinity of carbo-benzene for the potassium cation appears promising for the design of planar hydrocarbon analogues of biologic ion carriers. © 2015 Springer Science+Business Media New York.

  20. The Halogenated Metabolism of Brown Algae (Phaeophyta, Its Biological Importance and Its Environmental Significance

    Directory of Open Access Journals (Sweden)

    Stéphane La Barre

    2010-03-01

    Full Text Available Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  1. The halogenated metabolism of brown algae (Phaeophyta), its biological importance and its environmental significance.

    Science.gov (United States)

    La Barre, Stéphane; Potin, Philippe; Leblanc, Catherine; Delage, Ludovic

    2010-03-31

    Brown algae represent a major component of littoral and sublittoral zones in temperate and subtropical ecosystems. An essential adaptive feature of this independent eukaryotic lineage is the ability to couple oxidative reactions resulting from exposure to sunlight and air with the halogenations of various substrates, thereby addressing various biotic and abiotic stresses i.e., defense against predators, tissue repair, holdfast adhesion, and protection against reactive species generated by oxidative processes. Whereas marine organisms mainly make use of bromine to increase the biological activity of secondary metabolites, some orders of brown algae such as Laminariales have also developed a striking capability to accumulate and to use iodine in physiological adaptations to stress. We review selected aspects of the halogenated metabolism of macrophytic brown algae in the light of the most recent results, which point toward novel functions for iodide accumulation in kelps and the importance of bromination in cell wall modifications and adhesion properties of brown algal propagules. The importance of halogen speciation processes ranges from microbiology to biogeochemistry, through enzymology, cellular biology and ecotoxicology.

  2. Biological significance of complex N-glycans in plants and their impact on plant physiology.

    Science.gov (United States)

    Strasser, Richard

    2014-01-01

    Asparagine (N)-linked protein glycosylation is a ubiquitous co- and post-translational modification which can alter the biological function of proteins and consequently affects the development, growth, and physiology of organisms. Despite an increasing knowledge of N-glycan biosynthesis and processing, we still understand very little about the biological function of individual N-glycan structures in plants. In particular, the N-glycan-processing steps mediated by Golgi-resident enzymes create a structurally diverse set of protein-linked carbohydrate structures. Some of these complex N-glycan modifications like the presence of β1,2-xylose, core α1,3-fucose or the Lewis a-epitope are characteristic for plants and are evolutionary highly conserved. In mammals, complex N-glycans are involved in different cellular processes including molecular recognition and signaling events. In contrast, the complex N-glycan function is still largely unknown in plants. Here, in this short review, I focus on important recent developments and discuss their implications for future research in plant glycobiology and plant biotechnology.

  3. Biological significance of local TGF-β activation in liver diseases

    Directory of Open Access Journals (Sweden)

    Hiromitsu eHayashi

    2012-02-01

    Full Text Available The cytokine transforming growth factor-β (TGF-β plays a pivotal role in a diverse range of cellular responses, including cell proliferation, apoptosis, differentiation, migration, adhesion, angiogenesis, stimulation of extracellular matrix (ECM synthesis, and downregulation of ECM degradation. TGF-β and its receptors are ubiquitously expressed by most cell types and tissues in vivo. In intact adult tissues and organs, TGF-β is secreted in a biologically inactive (latent form associated in a noncovalent complex with the ECM. In response to injury, local latent TGF-β complexes are converted into active TGF-β according to a tissue- and injury type-specific activation mechanism. Such a well and tightly orchestrated regulation in TGF-β activity enables an immediate, highly localized response to type-specific tissue injury. In the pathological process of liver fibrosis, TGF-β plays as a master pro-fibrogenic cytokine in promoting activation and myofibroblastic differentiation of hepatic stellate cells, a central event in liver fibrogenesis. Continuous and/or persistent TGF-β signaling induces sustained production of ECM components and of metalloproteinase synthesis. Therefore, the regulation of locally activated TGF-β levels is increasingly recognized as a therapeutic target for liver fibrogenesis. This review summarizes our present knowledge of the activation mechanisms and bioavailability of latent TGF-β in biological and pathological processes in the liver.

  4. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  5. Biological significance of lysine mono-, di- and trimethylation on histone and non-histone proteins

    International Nuclear Information System (INIS)

    Perez-Burgos, L.

    2006-01-01

    Histones are the proteins that compact DNA into the repeating unit of chromatin known as the nucleosome. The N-termini of histones are subject to a series of post-translational modifications, one of which is methylation. This modification is termed 'epigenetic' because it extends the information encoded in the genome. Lysines can be mono-, di- or tri-methylated at different positions on histones H1, H3 and H4. In order to study the biological role of histone lysine methylation, antibodies were generated against mono-, di- and trimethylated H3-K9 and H3-27. Indeed, different chromatin domains in the mouse nucleus are enriched in distinct forms of histone lysine methylation, such as pericentric heterochromatin and the inactive X chromosome. Interestingly, heterochromatin in Arabidopsis thaliana is enriched in the mono- and di-, but not the trimethylated form of H3-K9. Furthermore, there exists a hierarchy of epigenetic modifications in which H3-K9 trimethylation is found to be upstream of DNA methylation on mouse major satellites. Histone lysine methylation is also involved in gene regulation upon development. One example is the chicken 61538;-globin locus, a region of facultative chromatin that undergoes a loss of di- and trimethylated H3-K27 in mature red blood cells, concomitant with expression of the 61538;-globin genes. SET-domain proteins are enzymes that methylate histones, but some of them are also able to methylate non-histone substrates. In particular, p53 is methylated by Set9 on lysine 372, G9a and Glp-1 on lysine 373 and by Smyd2 on lysine 370. Smyd2 transcript levels are greatly increased upon irradiation and dimethylated p53-370 specifically binds to 53BP1, a protein involved in recognizing DNA double-stranded breaks upon ionizing radiation. These results argue for a novel role of p53-K370 methylation in the biology of DNA damage. In summary, lysine methylation is a post-translational modification that can occur both on histone and non-histone proteins

  6. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration.

    Science.gov (United States)

    Rumman, Mohammad; Dhawan, Jyotsna; Kassem, Moustapha

    2015-10-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim of this review is to provide an update regarding the biological mechanisms of ASC quiescence and their role in tissue regeneration. © 2015 AlphaMed Press.

  7. [Reflection on the Biological Significance of Minimally Invasive Surgery for Lung Cancer].

    Science.gov (United States)

    Luo, Qingquan; Huang, Jia

    2018-03-20

    Minimal invasive surgery with short operation time and enhanced recovery after surgery can truly achieve biological minimal invasiveness. The minimal invasive lung cancer surgery includes several kinds, such as uni-portal video-assisted thoracoscopic surgery (VATS) and multi-portal VATS. Robotic-assisted thoracic surgery (RATS) can be categorized into multi-portal VATS. As a frontier technology of minimal invasive surgical technique, surgical robotic system has been broadly applied in many areas. The average RATS operation time is (91.51±30.80) min among our team, which is much shorter than reported uni-portal VATS operation time. For now, RATS has some drawbacks and is lacking of national practice guidelines, which, we believe, will be solved by technology development and large-scale randomized controlled trials. 
.

  8. On the necessity and biological significance of threshold-free regulon prediction outputs.

    Science.gov (United States)

    Rigali, Sébastien; Nivelle, Renaud; Tocquin, Pierre

    2015-02-01

    The in silico prediction of cis-acting elements in a genome is an efficient way to quickly obtain an overview of the biological processes controlled by a trans-acting factor, and connections between regulatory networks. Several regulon prediction web tools are available, designed to identify DNA motifs predicted to be bound by transcription factors using position weight matrix-based algorithms. In this paper we expose and discuss the conflicting objectives of software creators (bioinformaticians) and software users (biologists), who aim for reliable and exhaustive prediction outputs, respectively. Software makers, concerned with providing tools that minimise the number of false positive hits, often impose a stringent threshold score for a sequence to be included in the list of the putative cis-acting sites. This rigidity eventually results in the identification of strongly reliable but largely straightforward sites, i.e. those associated with genes already anticipated to be targeted by the studied transcription factor. Importantly, this biased identification of strongly bound sequences contrasts with the biological reality where, in many circumstances, a weak DNA-protein interaction is required for the appropriate gene's expression. We show here a series of transcriptionally controlled systems involving weakly bound cis-acting elements that could never have been discovered because of the policy of preventing software users from modifying the screening parameters. Proposing only trustworthy prediction outputs thus prevents biologists from fully utilising their knowledge background and deciding to analyse statistically irrelevant hits that could nonetheless be potentially involved in subtle, unexpected, though essential cis-trans relationships.

  9. Evidence for the possible biological significance of the igf-1 gene alternative splicing in prostate cancer

    Directory of Open Access Journals (Sweden)

    Anastassios ePhilippou

    2013-03-01

    Full Text Available Insulin-like growth factor I (IGF-I has been implicated in the pathogenesis of prostate cancer (PCa, since it plays a key role in cell proliferation, differentiation and apoptosis. The IGF-I actions are mediated mainly via its binding to the type I IGF receptor (IGF-IR, however IGF-I signaling via insulin receptor (IR and hybrid IGF-I/IR is also evident. Different IGF-I mRNA splice variants, namely IGF-IEa, IGF-IEb and IGF-IEc, are expressed in human cells and tissues. These transcripts encode several IGF-I precursor proteins which contain the same bioactive product (mature IGF-I, however, they differ by the length of their signal peptides on the amino-terminal end and the structure of the extension peptides (E-peptides on the carboxy-terminal end. There is an increasing interest in the possible different role of the IGF-I transcripts and their respective non-(matureIGF-I products in the regulation of distinct biological activities. Moreover, there is strong evidence of a differential expression profile of the IGF-I splice variants in normal vs. PCa tissues and PCa cells, implying that the expression pattern of the various IGF-I transcripts and their respective protein products may possess different functions in cancer biology. Herein, the evidence that the IGF-IEc transcript regulates PCa growth via Ec-peptide specific and IGF-IR/IR-independent signaling is discussed.

  10. Synthesis and Biological Evaluation of Novel Hybrid Molecules Containing Purine, Coumarin and Isoxazoline or Isoxazole Moieties

    Science.gov (United States)

    Kallitsakis, Michael G.; Carotti, Angelo; Catto, Marco; Peperidou, Aikaterini; Hadjipavlou-Litina, Dimitra J.; Litinas, Konstantinos E.

    2017-01-01

    Introduction: The 1,3-dipolar cycloaddition reactions of nitrile oxides formed in situ (in the presence of NCS and Et3N) from the oximes of (purin-9-yl)acetaldehyde or (coumarinyloxy)acetaldehyde with allyloxycoumarins or 9-allylpurines, respectively resulted in 3,5-disubstituted isoxazolines. The similar reactions of propargyloxycoumarins or 9-propargylpurines led to 3,5-disubstituted isoxazoles by treatment with PIDA and catalytic amount of TFA. Methods: The new compounds were tested in vitro as antioxidant agents and inhibitors of soybean lipoxygenase LO, AChE and MAO-B. Results: The majority of the compounds showed significant hydroxyl radical scavenging activity. Compounds 4k and 4n presented LO inhibitory activity. Conclusion: Compound 13e presents an antioxidant significant profile combining anti-LO, anti-AChE and anti-MAO-B activities. PMID:29387274

  11. The Reactive Species Interactome : Evolutionary Emergence, Biological Significance, and Opportunities for Redox Metabolomics and Personalized Medicine

    NARCIS (Netherlands)

    Cortese-Krott, Miriam M.; Koning, Anne; Kuhnle, Gunter G. C.; Nagy, Peter; Bianco, Christopher L.; Pasch, Andreas; Wink, David A.; Fukuto, Jon M.; Jackson, Alan A.; van Goor, Harry; Olson, Kenneth R.; Feelisch, Martin

    2017-01-01

    Significance: Oxidative stress is thought to account for aberrant redox homeostasis and contribute to aging and disease. However, more often than not, administration of antioxidants is ineffective, suggesting that our current understanding of the underlying regulatory processes is incomplete. Recent

  12. Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and its Biological Significance

    Science.gov (United States)

    This paper describes variations in the estrogenic potency of effluent from a "model" wastewater treatment plant in Duluth, MN, and explores the significance of these variations relative to sampling approaches for monitoring effluents and their toxicity to fish.

  13. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    Science.gov (United States)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  14. Micrometastatic cancer cells in lymph nodes, bone marrow, and blood: Clinical significance and biologic implications.

    Science.gov (United States)

    Leong, Stanley P L; Tseng, William W

    2014-01-01

    Cancer metastasis may be regarded as a progressive process from its inception in the primary tumor microenvironment to distant sites by way of the lymphovascular system. Although this type of tumor dissemination often occurs in an orderly fashion via the sentinel lymph node (SLN), acting as a possible gateway to the regional lymph nodes, bone marrow, and peripheral blood and ultimately to distant metastatic sites, this is not a general rule as tumor cells may enter the blood and spread to distant sites, bypassing the SLN. Methods of detecting micrometastatic cancer cells in the SLN, bone marrow, and peripheral blood of patients have been established. Patients with cancer cells in their SLN, bone marrow, or peripheral blood have worse clinical outcomes than patients with no evidence of spread to these compartments. The presence of these cells also has important biologic implications for disease progression and the clinician's understanding of the process of cancer metastasis. Further characterization of these micrometastatic cancer cells at each stage and site of metastasis is needed to design novel selective therapies for a more "personalized" treatment. © 2014 American Cancer Society, Inc.

  15. Chemically induced aneuploidy in mammalian cells: mechanisms and biological significance in cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oshimura, M.; Barrett, J.C.

    1986-01-01

    A literature review with over 200 references examines the growing body of evidence from human and animal cancer cytogenetics that aneuploidy is an important chromosome change in carcinogenesis. Evidence from in vitro cell transformation studies supports the idea that aneuploidy has a direct effect on the conversion of a normal cell to a preneoplastic or malignant cell. Induction of an aneuploid state in a preneoplastic or neoplastic cell could have any of the following four biological effects: a change in gene dosage, a change in gene balance, expression of a recessive mutation, or a change in genetic instability (which could secondarily lead to neoplasia). There are a number of possible mechanisms by which chemicals might induce aneuploidy, including effects on microtubules, damage to essential elements for chromosome function reduction in chromosome condensation or pairing, induction of chromosome interchanges, unresolved recombination structures, increased chromosome stickiness, damage to centrioles, impairment of chromosome alignment ionic alterations during mitosis, damage to the nuclear membrane, and a physical disruption of chromosome segregation. Therefore, a number of different targets exist for chemically induced aneuploidy.

  16. 76 FR 4859 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-01-27

    ... DEPARTMENT OF AGRICULTURE Animal and Plant Health Inspection Service [Docket No. APHIS-2010-0028] Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological Control Agent... (Diaphorina citri Kuwayama). The environmental assessment considers the effects of, and alternatives to, the...

  17. An algorithm for finding biologically significant features in microarray data based on a priori manifold learning.

    Directory of Open Access Journals (Sweden)

    Zena M Hira

    Full Text Available Microarray databases are a large source of genetic data, which, upon proper analysis, could enhance our understanding of biology and medicine. Many microarray experiments have been designed to investigate the genetic mechanisms of cancer, and analytical approaches have been applied in order to classify different types of cancer or distinguish between cancerous and non-cancerous tissue. However, microarrays are high-dimensional datasets with high levels of noise and this causes problems when using machine learning methods. A popular approach to this problem is to search for a set of features that will simplify the structure and to some degree remove the noise from the data. The most widely used approach to feature extraction is principal component analysis (PCA which assumes a multivariate Gaussian model of the data. More recently, non-linear methods have been investigated. Among these, manifold learning algorithms, for example Isomap, aim to project the data from a higher dimensional space onto a lower dimension one. We have proposed a priori manifold learning for finding a manifold in which a representative set of microarray data is fused with relevant data taken from the KEGG pathway database. Once the manifold has been constructed the raw microarray data is projected onto it and clustering and classification can take place. In contrast to earlier fusion based methods, the prior knowledge from the KEGG databases is not used in, and does not bias the classification process--it merely acts as an aid to find the best space in which to search the data. In our experiments we have found that using our new manifold method gives better classification results than using either PCA or conventional Isomap.

  18. About the significance of biological factors affecting pregnancy a married couple

    OpenAIRE

    V. V. Yarman; V. V. Mykhailychenko; A. I. Novikov; G. V. Dolgov

    2013-01-01

    A brief review of the literature analysis of the importance and interdependence of the main factors influencing the occurrence of pregnancy as a pair in the treatment of infertility, such as the woman's age, ovarian reserve, the semen of a man and the duration of infertility. The review also presents the data concerning the practical implications of sexual constitution and sexual maturation in men and women in the pubertal period. When evaluating male fertility invariably significant factor i...

  19. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    OpenAIRE

    Dixon, J. L.; Beale, R.; Nightingale, P. D.

    2011-01-01

    Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol betw...

  20. Leaf-specific pathogenesis-related 10 homolog, PgPR-10.3, shows in silico binding affinity with several biologically important molecules

    Directory of Open Access Journals (Sweden)

    Jin Haeng Han

    2015-10-01

    Conclusion: Although ginseng PR-10.3 gene is expressed in all organs of 3-wk-old plantlets, its expression is restricted to leaves in mature 2-yr-old ginseng plants. The putative binding property of PgPR-10.3 with Re is intriguing. Further verification of binding affinity with other biologically important molecules in the large hydrophobic cavity of PgPR-10.3 may provide an insight into the biological features of PR-10 proteins.

  1. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    Directory of Open Access Journals (Sweden)

    J. L. Dixon

    2011-09-01

    Full Text Available Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol between 151–296 nM in parts of the oligotrophic North Atlantic, with corresponding microbial uptake rates between 2–146 nM d−1, suggesting turnover times as low as 1 day (1–25 days in surface waters of the oligotrophic tropical North East Atlantic. Methanol is mainly (≥97% used by microbes for obtaining energy in oligotrophic regions, which contrasts with shelf and coastal areas where between 20–50% can be used for cell growth. Comparisons of microbial methanol oxidation rates with parallel determinations of bacterial leucine uptake suggest that methanol contributes on average 13% to bacterial carbon demand in the central northern Atlantic gyre (maximum of 54%. In addition, the contribution that methanol makes to bacterial carbon demand varies as a power function of chlorophyll a concentrations; suggesting for concentrations <0.2 μg l−1 that methanol can make a significant contribution to bacterial carbon demand. However, our low air to sea methanol flux estimates of 7.2–13 μmol m−2 d−1 suggest that the atmosphere is not a major methanol source. We conclude that there must be a major, as yet unidentified, in situ oceanic methanol source in these latitudes which we suggest is sunlight driven decomposition of organic matter.

  2. Rapid biological oxidation of methanol in the tropical Atlantic: significance as a microbial carbon source

    Science.gov (United States)

    Dixon, J. L.; Beale, R.; Nightingale, P. D.

    2011-09-01

    Methanol is the second most abundant organic gas in the atmosphere after methane, and is ubiquitous in the troposphere. It plays a significant role in atmospheric oxidant chemistry and is biogeochemically active. Large uncertainties exist about whether the oceans are a source or sink of methanol to the atmosphere. Even less is understood about what reactions in seawater determine its concentration, and hence flux across the sea surface interface. We report here concentrations of methanol between 151-296 nM in parts of the oligotrophic North Atlantic, with corresponding microbial uptake rates between 2-146 nM d-1, suggesting turnover times as low as 1 day (1-25 days) in surface waters of the oligotrophic tropical North East Atlantic. Methanol is mainly (≥97%) used by microbes for obtaining energy in oligotrophic regions, which contrasts with shelf and coastal areas where between 20-50% can be used for cell growth. Comparisons of microbial methanol oxidation rates with parallel determinations of bacterial leucine uptake suggest that methanol contributes on average 13% to bacterial carbon demand in the central northern Atlantic gyre (maximum of 54%). In addition, the contribution that methanol makes to bacterial carbon demand varies as a power function of chlorophyll a concentrations; suggesting for concentrations methanol can make a significant contribution to bacterial carbon demand. However, our low air to sea methanol flux estimates of 7.2-13 μmol m-2 d-1 suggest that the atmosphere is not a major methanol source. We conclude that there must be a major, as yet unidentified, in situ oceanic methanol source in these latitudes which we suggest is sunlight driven decomposition of organic matter.

  3. Biologic role of activated leukocyte cell adhesion molecule overexpression in breast cancer cell lines and clinical tumor tissue.

    Science.gov (United States)

    Hein, Sibyll; Müller, Volkmar; Köhler, Nadine; Wikman, Harriet; Krenkel, Sylke; Streichert, Thomas; Schweizer, Michaela; Riethdorf, Sabine; Assmann, Volker; Ihnen, Maike; Beck, Katrin; Issa, Rana; Jänicke, Fritz; Pantel, Klaus; Milde-Langosch, Karin

    2011-09-01

    The activated leukocyte cell adhesion molecule (ALCAM) is overexpressed in many mammary tumors, but controversial results about its role and prognostic impact in breast cancer have been reported. Therefore, we evaluated the biologic effects of ALCAM expression in two breast cancer cell lines and a larger cohort of mammary carcinomas. By stable transfections, MCF7 cells with ALCAM overexpression and MDA-MB231 cells with reduced ALCAM levels were generated and analyzed in functional assays and cDNA microarrays. In addition, an immunohistochemical study on 347 patients with breast cancer with long-term follow-up and analysis of disseminated tumor cells (DTCs) was performed. In both cell lines, high ALCAM expression was associated with reduced cell motility. In addition, ALCAM silencing in MDA-MB231 cells resulted in lower invasive potential, whereas high ALCAM expression was associated with increased apoptosis in both cell lines. Among genes which were differentially expressed in clones with altered ALCAM expression, there was an overlap of 15 genes between both cell lines, among them cathepsin D, keratin 7, gelsolin, and ets2 whose deregulation was validated by western blot analysis. In MDA-MB231 cells, we observed a correlation with VEGF expression which was validated by enzyme-linked immuno sorbent assay (ELISA). Our IHC results on primary breast carcinomas showed that ALCAM expression was associated with an estrogen receptor-positive phenotype. In addition, strong ALCAM immunostaining correlated with nodal involvement and the presence of tumor cells in bone marrow. By Kaplan-Meier analysis, strong ALCAM expression in ductal carcinomas correlated with shorter recurrence-free intervals (P=0.048) and overall survival (OAS, P=0.003). Our results indicate that the biologic role of ALCAM in breast cancer is complex, but overexpression might be relevant for outcome in ductal carcinomas.

  4. Clinicopathological and biological significance of aberrant activation of glycogen synthase kinase-3 in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Fu Y

    2014-06-01

    Full Text Available Yunfeng Fu,1 Xinyu Wang,1 Xiaodong Cheng,1 Feng Ye,2 Xing Xie,1,2 Weiguo Lu1,2 1Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, 2Women's Reproduction and Health Laboratory of Zhejiang Province, Hangzhou, People's Republic of China Background: Glycogen synthase kinase-3 (GSK-3 plays an important role in human cancer. The aim of this study is to evaluate the clinicopathological significance of expression of GSK-3α/β and pGSK-3α/βTyr279/216 in patients with epithelial ovarian cancer and to investigate whether GSK-3 inhibition can influence cell viability and tumor growth of ovarian cancer. Methods: Immunohistochemistry was used to examine expression of GSK-3α/β and pGSK-3α/βTyr279/216 in 71 human epithelial ovarian cancer tissues and correlations between protein expression, and clinicopathological factors were analyzed. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay following exposure of ovarian carcinoma cells to pharmacological inhibitors of GSK-3 or GSK-3 small interfering RNA. In vivo validation of tumor growth inhibition was performed with xenograft mice. Results: The expression levels of GSK-3α/β and pGSK-3α/βTyr279/216 in ovarian cancers were significantly higher than those in benign tumors. High expression of GSK-3α/β was more likely to be found in patients with advanced International Federation of Gynecology and Obstetrics (FIGO stages and high serum cancer antigen 125. Higher expression of pGSK-3α/βTyr279/216 was associated with advanced FIGO stages, residual tumor mass, high serum cancer antigen 125, and poor chemoresponse. Worse overall survival was revealed by Kaplan–Meier survival curves in patients with high expression of GSK-3α/β or pGSK-3α/βTyr279/216. Multivariate analysis indicated that FIGO stage, GSK-3α/β expression, and pGSK-3α/βTyr279/216 expression were independent prognostic factors for overall

  5. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein.

    Directory of Open Access Journals (Sweden)

    Gabriele Giachin

    Full Text Available Humic substances (HS are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of "salting-out" whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of "prion ecology". These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment.

  6. The Expression and Biological Significance of PD-L1 on Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Cheng CHEN

    2009-08-01

    Full Text Available Background and objective Tumor-associated PD-L1 expression was recently shown to promote T-cell apoptosis and proposed as a potential mechanism of immune evasion by tumors. On the basis of the ability of tumor-associated PD-L1 to mediate activated T-cell death, it is likely that manipulation of the PD-L1 pathway at defined time points during the development of the T-cell antitumor immune response can enhance the efficacy of T-cell-based immunotherapy. Here, the levels of expression of PD-L1 on lung cancer cell lines and its role in interaction of CTL and target cells was investigated. Methods Human PBMC derived DCs were loaded with apoptotic tumor cells and stimulated by CD40 mAb (5C11. Tumor specific CTL was generated in vitro by autologous T cells co-cultured with mature DCs. Expression of PD-L1 on lung cancer cell lines H1299 and A549 were analyzed by FCM. JAM assay was used to detect the cytolytic activity of CTL with or without blocking PD-L1 by PD-L1 mAb respectively. The concentrations of IFN-γ in supernatants from distinct groups were analyzed by ELISA. Results Tumor cells-loaded mature DCs could induce the generation of the tumor specific CTL. Expression of PD-L1 was low on A549 cell, but high on H1299 cell. Blockade of PD-L1 on A549 could not improve cytolytic effect of CTL on target cells and IFN-γ production, but fragmentation of H1299 cells and IFN-γ production were significantly enhanced by the combination of PD-L1 mAb and CTL. Conclusion Expression of PD-L1 on lung cancer cell line can decrease the cytolytic effect of CTL on target cells.

  7. Theoretical Analysis of the Relative Significance of Thermodynamic and Kinetic Dispersion in the dc and ac Voltammetry of Surface-Confined Molecules

    KAUST Repository

    Morris, Graham P.

    2015-05-05

    © 2015 American Chemical Society. Commonly, significant discrepancies are reported in theoretical and experimental comparisons of dc voltammograms derived from a monolayer or close to monolayer coverage of redox-active surface-confined molecules. For example, broader-than-predicted voltammetric wave shapes are attributed to the thermodynamic or kinetic dispersion derived from distributions in reversible potentials (E0) and electrode kinetics (k0), respectively. The recent availability of experimentally estimated distributions of E0 and k0 values derived from the analysis of data for small numbers of surface-confined modified azurin metalloprotein molecules now allows more realistic modeling to be undertaken, assuming the same distributions apply under conditions of high surface coverage relevant to voltammetric experiments. In this work, modeling based on conventional and stochastic kinetic theory is considered, and the computationally far more efficient conventional model is shown to be equivalent to the stochastic one when large numbers of molecules are present. Perhaps unexpectedly, when experimentally determined distributions of E0 and k0 are input into the model, thermodynamic dispersion is found to be unimportant and only kinetic dispersion contributes significantly to the broadening of dc voltammograms. Simulations of ac voltammetric experiments lead to the conclusion that the ac method, particularly when the analysis of kinetically very sensitive higher-order harmonics is undertaken, are far more sensitive to kinetic dispersion than the dc method. ac methods are therefore concluded to provide a potentially superior strategy for addressing the inverse problem of determining the k0 distribution that could give rise to the apparent anomalies in surface-confined voltammetry.

  8. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  9. Benchmark reaction rates, the stability of biological molecules in water, and the evolution of catalytic power in enzymes.

    Science.gov (United States)

    Wolfenden, Richard

    2011-01-01

    The rates of enzyme reactions fall within a relatively narrow range. To estimate the rate enhancements produced by enzymes, and their expected affinities for transition state analog inhibitors, it is necessary to measure the rates of the corresponding reactions in water in the absence of a catalyst. This review describes the spontaneous cleavages of C-C, C-H, C-N, C-O, P-O, and S-O bonds in biological molecules, as well as the uncatalyzed reactions that correspond to phosphoryl transfer reactions catalyzed by kinases and to peptidyl transfer in the ribosome. The rates of these reactions, some with half-lives in excess of one million years, span an overall range of 10¹⁹-fold. Moreover, the slowest reactions tend to be most sensitive to temperature, with rates that increase as much as 10⁷-fold when the temperature is raised from 25° to 100°C. That tendency collapses, by many orders of magnitude, the time that would have been required for chemical evolution on a warm earth. If the catalytic effect of primitive enzymes, like that of modern enzymes and many nonenzymatic catalysts, were mainly to reduce a reaction's enthalpy of activation, then the resulting rate enhancement would have increased automatically as the surroundings cooled. By reducing the time required for early chemical evolution in a warm environment, these findings counter the view that not enough time has passed for terrestrial life to have evolved to its present level of complexity.

  10. QUALITY COMPOSITION AND BIOLOGICAL SIGNIFICANCE OF THE BANGLADESHI AND CHINA GINGER (ZINGIBER OFFICINALE ROSC.

    Directory of Open Access Journals (Sweden)

    Sudam Nandi

    2013-04-01

    Full Text Available The essential oil of Zingiber officinale Rosc. was extracted from China and Bangladeshi varieties and yielded 0.21% and 0.23 % by hydro-distillation method on fresh weight basis respectively. Fifteen compounds were identified and quantified by GC-MS. The major constituents of China and Bangladeshi ginger essential oils were zingiberene 38.10 % and 41.49%, β-phellandrene 12.0% and 9.92%, α-citral 11.48% and 9.76 %, α-curcumene 9.22% and 11.58%, camphene 5.94% and 4.60% , β-bisabolene 4.39% and 5.0% respectively. The IC50 (DPPH method values were found 61.18 µg/mL and 56.71 µg/mL with the highest inhibition of 78.49 % and 80.77% and the LC50 values in the brine shrimp lethality cytotoxicity bioassay were found 0.4842 µg/mL and 0.7151 µg/mL in China and Bangladeshi ginger essential oil respectively. Both the essential oils showed significant activities against some gram positive, gram negative bacteria and fungi. The proximate composition of the China and Bangladeshi variety showed the ash (7.12±0.151, 8.15±0.18%, protein (5.47±0.19, 6.60±0.16%, crude fibre (4.32±0.10, 4.61±0.12%, carbohydrate (16..06±0.35, 18.38±0.41 and food energy (70.50±0.89, 81.74±1.01 kcal/100g. respectively. The elemental compositions of the both varieties were found rich in Ca, Mg, Fe, Al, Se, Na and K. These results indicate the quality composition of the two varieties may find interest in spice and culinary industries as well as in medicinal preparation.

  11. Clinical significance of serum levels of immune-associated molecules, uric acid and soluble MHC class I chain-related molecules A and B, as diagnostic tumor markers for pancreatic ductal adenocarcinoma.

    Science.gov (United States)

    Chung, Hye Won; Lim, Jong-Baeck

    2011-09-01

    Immune-associated molecules play important roles in cancer development and progression. The aims of this study were to determine the diagnostic utility of uric acid (UA) and soluble MHC class I chain-related molecules A (sMICA) and B (sMICB) in pancreatic ductal adenocarcinoma (PDAC) compared with those of cancer antigen 19-9 (CA19-9), the most commonly available tumor marker for PDAC. We evaluated serum levels of UA, sMICA and sMICB along the carcinogenic process of PDAC obtained from 148 individuals composed of normal (n = 70), chronic pancreatitis (n = 23) and PDAC (n = 55), and compared them with those of CA19-9. We also evaluated the correlations of these biomarkers with tumor size, resectability or TNM stage, and tested logistic regression to ascertain the potential usability of these markers for the detection of PDAC. We also investigated the correlations among these biomarkers. Serum UA, sMICA and sMICB differed significantly according to groups (Kruskal-Wallis, P cancerous conditions when CA19-9 is inappropriate. In conclusion, serum UA, sMICA and sMICB might be useful screening or differential diagnostic biomarkers for PDAC to complement CA19-9. © 2011 Japanese Cancer Association.

  12. Tracking problems and possible solutions in the quantitative determination of small molecule drugs and metabolites in biological fluids using liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Bakhtiar, Ray; Majumdar, Tapan K

    2007-01-01

    During the last decade, quantification of low molecular weight molecules using liquid chromatography-tandem mass spectrometry in biological fluids has become a common procedure in many preclinical and clinical laboratories. This overview highlights a number of issues involving "small molecule drugs", bioanalytical liquid chromatography-tandem mass spectrometry, which are frequently encountered during assay development. In addition, possible solutions to these issues are proposed with examples in some of the case studies. Topics such as chromatographic peak shape, carry-over, cross-talk, standard curve non-linearity, internal standard selection, matrix effect, and metabolite interference are presented. Since plasma is one of the most widely adopted biological fluid in drug discovery and development, the focus of this discussion will be limited to plasma analysis. This article is not intended to be a comprehensive overview and readers are encouraged to refer to the citations herein.

  13. Irradiation of biological molecules (DNA and RNA bases) by proton impact in the velocity range of the Bragg peak (20-150 keV/amu)

    International Nuclear Information System (INIS)

    Tabet, J.

    2007-11-01

    The aim of this work was to study the ionization of DNA and RNA base molecules by proton impact at energies between 20 and 150 keV/amu. The experiments developed over the course of this project made it possible not only to study the fragmentation of uracil, thymine, adenine, and cytosine, but also to measure absolute cross sections for different ionization processes initiated by proton interactions with these important biological molecules. Firstly, the experimental system enabled the contributions of two key ionization processes to be separated: direct ionization and electron capture. The corresponding mass spectra were measured and analyzed on an event-by-event basis. For uracil, the branching ratios for these two processes were measured as function of the projectile velocity. Secondly, we have developed a system to measure absolute cross sections for the electron capture process. The production rate of neutral atoms compared to protons was measured for the four biological molecules: uracil, cytosine, thymine, and adenine at different vaporization temperatures. This production rate varies as a function of the thickness of the target jet traversed by the protons. Accordingly, a deposit experiment was developed in order to characterize the density of molecules in the targeted gas jets. Theoretical and experimental study of the total effusion and density-profile of the gaseous molecular beams enabled us to deduce the thickness of the target jets traversed by the protons. Thus it was possible to determine absolute cross sections for the ionization of each of the four isolated biological molecules by 80 keV protons impact. To our knowledge, this work provides the first experimental absolute cross sections for DNA and RNA base ionization processes initiated by proton impact in the velocity range corresponding to the Bragg peak. (author)

  14. Prognostic Significance of Activated Leukocyte Cell Adhesion Molecule (ALCAM in Association with Promoter Methylation of the ALCAM Gene in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Young Ju Jeong

    2018-01-01

    Full Text Available Activated leukocyte cell adhesion molecule (ALCAM has been implicated in tumorigenesis. In this study, we studied DNA methylation status of the ALCAM gene using pyrosequencing in breast cancer tissues. We analyzed the association between the methylation status of the ALCAM gene and its expression. Also, the effects of inflammation on the ALCAM gene methylation and its expression were investigated. The ALCAM gene methylation was associated with the ALCAM transcripts in tumor tissues. The methylation status of the ALCAM gene was not significantly different between tumor and normal tissues. The level of ALCAM transcripts was associated with the expression of TNFα, NF-κB p50, IL-4, and intratumoral inflammation. The IHC expression of ALCAM was associated with histologic grade, HER2 overexpression and molecular subtype. The expression of TNFα, NF-κB p50, and IL-4 showed significant association with the clinicopathologic characteristics. In conclusion, the ALCAM gene methylation was related to the level of ALCAM transcripts. Also, the level of ALCAM transcripts was associated with the inflammatory markers in breast cancer. Our results suggest that the methylation of the ALCAM gene contributes to the decreased expression of ALCAM. Also, ALCAM is linked to the inflammatory response in breast cancer.

  15. Clinical significance of the immunostimulatory MHC class I chain-related molecule A and NKG2D receptor on NK cells in pancreatic cancer.

    Science.gov (United States)

    Duan, Xiaohui; Deng, Langmei; Chen, Xiong; Lu, Yebin; Zhang, Qi; Zhang, Kejing; Hu, Yongjun; Zeng, Jie; Sun, Weijia

    2011-06-01

    The aim of this paper was to determine the clinical significance of the MHC class I chain-related molecule A(MICA) and NKG2D receptor on NK cells in pancreatic cancer. We compared MICA expression in malignant (n = 103), inflammatory (n = 28), and normal (n = 17) pancreatic tissues using immunohistochemistry and assessed serum levels of soluble MICA (sMICA) and NKG2D expression on NK cells in patients with pancreatic cancer (n = 103), in patients with chronic pancreatitis (n = 28), and in healthy volunteers (n = 43). Expression of MICA was detected in 89.3% of pancreatic cancer tissues, whereas fewer were expressed in inflammatory and normal pancreatic tissues. The levels of sMICA were frequently elevated in patients with advanced pancreatic cancer. The elevation of sMICA was associated with down-regulated NKG2D expression and impaired activity of NK cells. The successful tumor resection significantly decreased serum levels of sMICA and increased the NKG2D expression; there was an inverse correlation between change in sMICA levels and that in NKG2D expression. MICA expression, preoperative sMICA levels and NKG2D intensity were found to be independent prognostic factors in resected pancreatic cancer. This study supports the clinical significance of release of MICA for the malignant progression of pancreatic cancer. The successful tumor resection for pancreatic cancer may have a beneficial effect on NKG2D-mediated antitumor immunity. Our results also suggest sMICA and NKG2D expression on NK cells may be useful to identify risk patients at time point of diagnosis.

  16. VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody

    Directory of Open Access Journals (Sweden)

    Fushida S

    2013-10-01

    Full Text Available Sachio Fushida, Katsunobu Oyama, Jun Kinoshita, Yasumichi Yagi, Kouichi Okamoto, Hidehiro Tajima, Itasu Ninomiya, Takashi Fujimura, Tetsuo OhtaDepartment of Gastroenterological Surgery, Kanazawa University Hospital, Kanazawa, JapanBackground: In gastric cancer, poor prognosis is associated with peritoneal dissemination, which often accompanies malignant ascites. We searched for a target molecule in peritoneal metastasis and investigated its clinical utility as a biomarker.Methods: Biopsy specimens from both primary lesions and peritoneal metastasis, and if possible, malignant ascites, were obtained from 40 patients with gastric cancer. Vascular endothelial growth factor (VEGF expression was analyzed by immunohistochemical staining and enzyme-linked immunosorbent assay.Results: VEGF expression was seen in 70% of peritoneal samples. Of the 40 patients, 35 had malignant ascites. These 35 patients were divided into two groups: 15 with ascites found beyond the pelvic cavity (large group and 20 whose ascites were within the pelvic cavity (small group. The two groups did not significantly differ by serum VEGF levels, but ascites VEGF levels in the large group were significantly higher than in the small group (P < 0.0001. Serum VEGF and ascites VEGF levels were highly correlated in the large group (r = 0.686. A high ascites VEGF level was found to be a risk factor for survival (P = 0.045. We include a report of a patient with chemoresistant refractory gastric cancer and symptomatic ascites who obtained 8 months of palliation from systemic bevacizumab.Conclusion: Anti-VEGF therapies are promising, and the ascites VEGF level is an important marker in managing patients with gastric cancer and peritoneal metastasis.Keywords: vascular endothelial growth factor, malignant ascites, peritoneal metastasis, gastric cancer, bevacizumab

  17. Systems biology analysis of omeprazole therapy in cirrhosis demonstrates significant shifts in gut microbiota composition and function.

    Science.gov (United States)

    Bajaj, Jasmohan S; Cox, I Jane; Betrapally, Naga S; Heuman, Douglas M; Schubert, Mitchell L; Ratneswaran, Maiyuran; Hylemon, Phillip B; White, Melanie B; Daita, Kalyani; Noble, Nicole A; Sikaroodi, Masoumeh; Williams, Roger; Crossey, Mary M E; Taylor-Robinson, Simon D; Gillevet, Patrick M

    2014-11-15

    Proton pump inhibitors (PPI) have been associated with infectious complications in cirrhosis, but their impact on distal gut microbiota composition and function is unclear. We aimed to evaluate changes in stool microbiota composition and function in patients with cirrhosis and healthy controls after omeprazole therapy. Both 15 compensated cirrhotic patients and 15 age-matched controls underwent serum gastrin measurement, stool microbiota profiling with multitagged pyrosequencing, and urinary metabolic profiling with NMR spectroscopy to assess microbial cometabolites before/after a 14-day course of 40 mg/day omeprazole under constant diet conditions. Results before (pre) and after PPI were compared in both groups, compared with baseline by systems biology techniques. Adherence was >95% without changes in diet or MELD (model for end-stage liver disease) score during the study. Serum gastrin concentrations significantly increased after PPI in cirrhosis (pre 38.3 ± 35.8 vs. 115.6 ± 79.3 pg/ml P microbiota change was seen in both controls and cirrhosis after omeprazole (QIIME P microbiota shift and functional change in the distal gut in patients with compensated cirrhosis that could set the stage for bacterial overgrowth. Copyright © 2014 the American Physiological Society.

  18. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): novel biological insights and development of early treatment strategies

    Science.gov (United States)

    Kristinsson, Sigurdur Y.

    2011-01-01

    Monoclonal gammopathy of unknown significance (MGUS) and smoldering multiple myeloma (SMM) are asymptomatic plasma cell dyscrasias, with a propensity to progress to symptomatic MM. In recent years there have been improvements in risk stratification models (involving molecular markers) of both disorders, which have led to better understanding of the biology and probability of progression of MGUS and SMM. In the context of numerous molecular events and heterogeneous risk of progression, developing individualized risk profiles for patients with MGUS and SMM represents an ongoing challenge that has to be addressed by prospective clinical monitoring and extensive correlative science. In this review we discuss the current standard of care of patients with MGUS and SMM, the use of risk models, including flow cytometry and free-light chain analyses, for predicting risk of progression. Emerging evidence from molecular studies on MGUS and SMM, involving cytogenetics, gene-expression profiling, and microRNA as well as molecular imaging is described. Finally, future directions for improving individualized management of MGUS and SMM patients, as well as the potential for developing early treatment strategies designed to delay and prevent development of MM are discussed. PMID:21441462

  19. Porphyrins from Messel oil shale (Eocene, Germany): Structure elucidation, geochemical and biological significance, and distribution as a function of depth

    Science.gov (United States)

    Ocampo, Rubén; Bauder, Claude; Callot, Henry J.; Albrecht, Pierre

    1992-02-01

    The extraction and isolation procedures of twenty nickel porphyrins (seven alkylporphyrins, thirteen carboxylic acids) from lacustrine Messel shale (Eocene, Germany), as well as the unequivocal structural assignments (obtained using 200 and 400 MHz nuclear magnetic resonance (NMR), nuclear Overhauser effect, mass spectrometry and total or partial synthesis of six reference compounds) are described. Ten porphyrins could be specifically correlated with biological precursors: algal chlorophyll c (4), bacteriochlorophylls d (3) and heme (3), while the remaining ones may arise from several chlorophylls. The structures of these fossil pigments mostly confirm the classical "Treibs scheme," including the origin of some porphyrins from nonchlorophyll sources. They also show that, even in a very immature sediment, deep modifications occur, including, in particular, extensive degradation of chlorophyll E ring. The composition of the porphyrin fractions of Messel oil shale was also studied as a function of depth. A porphyrin acids/alkylporphyrins ratio varying from 0.35 to 24.8 demonstrated that the apparent homogeneity of the shale is not reflected on the molecular scale. This was confirmed when the abundance of the twenty individual porphyrins of known structure was measured along the core. Significant correlations between individual porphyrins were found: fossils of bacteriochlorophylls d, homolog pairs of porphyrins (3-H/3-ethyl), etc.

  20. A Pressure Test to Make 10 Molecules in 90 Days: External Evaluation of Methods to Engineer Biology.

    Science.gov (United States)

    Casini, Arturo; Chang, Fang-Yuan; Eluere, Raissa; King, Andrew M; Young, Eric M; Dudley, Quentin M; Karim, Ashty; Pratt, Katelin; Bristol, Cassandra; Forget, Anthony; Ghodasara, Amar; Warden-Rothman, Robert; Gan, Rui; Cristofaro, Alexander; Borujeni, Amin Espah; Ryu, Min-Hyung; Li, Jian; Kwon, Yong-Chan; Wang, He; Tatsis, Evangelos; Rodriguez-Lopez, Carlos; O'Connor, Sarah; Medema, Marnix H; Fischbach, Michael A; Jewett, Michael C; Voigt, Christopher; Gordon, D Benjamin

    2018-03-28

    Centralized facilities for genetic engineering, or "biofoundries", offer the potential to design organisms to address emerging needs in medicine, agriculture, industry, and defense. The field has seen rapid advances in technology, but it is difficult to gauge current capabilities or identify gaps across projects. To this end, our foundry was assessed via a timed "pressure test", in which 3 months were given to build organisms to produce 10 molecules unknown to us in advance. By applying a diversity of new approaches, we produced the desired molecule or a closely related one for six out of 10 targets during the performance period and made advances toward production of the others as well. Specifically, we increased the titers of 1-hexadecanol, pyrrolnitrin, and pacidamycin D, found novel routes to the enediyne warhead underlying powerful antimicrobials, established a cell-free system for monoterpene production, produced an intermediate toward vincristine biosynthesis, and encoded 7802 individually retrievable pathways to 540 bisindoles in a DNA pool. Pathways to tetrahydrofuran and barbamide were designed and constructed, but toxicity or analytical tools inhibited further progress. In sum, we constructed 1.2 Mb DNA, built 215 strains spanning five species ( Saccharomyces cerevisiae, Escherichia coli, Streptomyces albidoflavus, Streptomyces coelicolor, and Streptomyces albovinaceus), established two cell-free systems, and performed 690 assays developed in-house for the molecules.

  1. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  2. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    cell cycle through mitosis, indicated that Warburg effect had a fundamental biological significance extending to non-malignant tissues. The approach used here could facilitate integration of accumulated cyber knowledge on cancer metabolism into predictive science.

  3. Small molecule probes for cellular death machines.

    Science.gov (United States)

    Li, Ying; Qian, Lihui; Yuan, Junying

    2017-08-01

    The past decade has witnessed a significant expansion of our understanding about the regulated cell death mechanisms beyond apoptosis. The application of chemical biological approaches had played a major role in driving these exciting discoveries. The discovery and use of small molecule probes in cell death research has not only revealed significant insights into the regulatory mechanism of cell death but also provided new drug targets and lead drug candidates for developing therapeutics of human diseases with huge unmet need. Here, we provide an overview of small molecule modulators for necroptosis and ferroptosis, two non-apoptotic cell death mechanisms, and discuss the molecular pathways and relevant pathophysiological mechanisms revealed by the judicial applications of such small molecule probes. We suggest that the development and applications of small molecule probes for non-apoptotic cell death mechanisms provide an outstanding example showcasing the power of chemical biology in exploring novel biological mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The control of partitioning between protein and fat during human starvation: its internal determinants and biological significance.

    Science.gov (United States)

    Dulloo, A G; Jacquet, J

    1999-11-01

    Human subjects vary in the extent to which their body's protein and fat compartments are mobilized for fuel during starvation. Although an inverse association between the initial adiposity and the contribution of protein as fuel during starvation has been known for nearly a century, interest in the quantitative importance and functional significance of the initial percentage fat as a determinant of biological variation in energy-partitioning between protein and fat (and hence in determining the partitioning characteristic of the individual) is relatively recent. The present paper addresses these issues by revisiting the classic Minnesota experiment of semi-starvation and refeeding from a standpoint of system physiology. In a quantitative analysis of the relationship between the initial body composition (ration FAT0: fat-free mass (FFM)0) and the composition of weight loss (ratio delta FAT: delta FFM) in the thirty-two men in the Minnesota study, the arguments are put forward that the fraction of FFM lost when the fat stores reach total depletion is independent of the initial percentage fat, and that this fraction represents the 'dispensable' component of the protein compartment that is compatible with life (i.e. the protein energy-reserve, rp). The concepts are developed that (1) the initial percentage body fat (which reflects the initial ratio FAT0:FFM0) provides a 'memory of partitioning' which dictates the control of partitioning between protein and fat in such a way that both the protein energy-reserve (rp) and the fat energy-reserve (rf) each complete depletion simultaneously, a strategy that would ensure maximum length of survival during long-term food scarcity, and that (2) variability in the relative sizes of these two energy reserves (i.e. in rf:rp) could, in addition to the initial percentage fat, also contribute to human variability in energy-partitioning. The basic assumptions underlying this re-analysis of the Minnesota data, and the concepts that are

  5. Synthetic biology's tall order: Reconstruction of 3D, super resolution images of single molecules in real-time

    CSIR Research Space (South Africa)

    Henriques, R

    2010-08-31

    Full Text Available of Molecular Biology, Am Klopferspitz 18, D-82152 Martinsried, München, Germany; ‡INSERM, ERI12, EA4292, Faculté de Médecine, Université de Picardie Jules Vernes, Amiens, France. Cellular Microbiology (2010) doi:10.1111/j.1462-5822.2010.01438.x © 2010... Blackwell Publishing Ltd cellular microbiology progressive and belated increase in vascular permeability induced by LT is determined by its enzymatic activity (Rolando et al., 2009). Recent studies have unravelled how LT triggers a caspase-dependent cell...

  6. Silica diatom shells tailored with Au nanoparticles enable sensitive analysis of molecules for biological, safety and environment applications

    KAUST Repository

    Onesto, V.

    2018-04-19

    Diatom shells are a natural, theoretically unlimited material composed of silicon dioxide, with regular patterns of pores penetrating through their surface. For their characteristics, diatom shells show promise to be used as low cost, highly efficient drug carriers, sensor devices or other micro-devices. Here, we demonstrate diatom shells functionalized with gold nanoparticles for the harvesting and detection of biological analytes (bovine serum albumin—BSA) and chemical pollutants (mineral oil) in low abundance ranges, for applications in bioengineering, medicine, safety, and pollution monitoring.

  7. A mechanistic approach to link biological effects of radioactive substances from molecules to populations in wildlife species - A mechanistic approach to link biological effects of radionuclides from molecules to populations in wildlife species

    Energy Technology Data Exchange (ETDEWEB)

    Alonzo, Frederic; Parisot, Florian; Plaire, Delphine; Adam-Guillermin, Christelle; Garnier- Laplace, Jacqueline [Institut de Radioprotection et de Surete Nucleaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul- Lez-Durance, 13115 (France)

    2014-07-01

    Understanding how toxic contaminants affect wildlife species at various levels of biological organisation (sub-cellular, histological, physiological, organism, population levels) is a major research goal in both ecotoxicology and radioecology. A mechanistic understanding of the links between the different observed perturbations is necessary to predict consequences for survival, growth and reproduction which are critical for population dynamics. However, time scales at which such links are established in the laboratory are rarely relevant for natural populations. With a small size and short life cycle, the cladoceran micro-crustacean Daphnia magna is a particularly suitable biological model for studying effects of radioactive contaminants over several generations. Multi-generational exposures are much more representative of the environmental context of field populations for which contaminations can last for durations which largely exceed individual longevity and involve exposure of many successive generations. Over the last decade, multi-generational investigations of toxic effects were conducted under controlled conditions in D. magna exposed to various radionuclides including depleted uranium, americium-241 and cesium-137, representing respectively a dominantly chemo-toxic metal, an alpha internal contamination and a gamma external radiation. Results showed in all cases that toxic effects on physiology and life history (survival, body size, fecundity) increased in severity across generations. These observations demonstrated that measured effects in one generation might not be representative of toxicity in the following offspring generations, and ultimately of the population response. Reduction in somatic growth and reproduction induced by uranium were analysed using the mechanistic modelling approach known as DEBtox (model of dynamic energy budget applied to toxicology). Modelling results suggested that uranium primarily affects assimilation. This metabolic mode

  8. Investigating mutation-specific biological activities of small molecules using quantitative structure-activity relationship for epidermal growth factor receptor in cancer.

    Science.gov (United States)

    Anoosha, P; Sakthivel, R; Gromiha, M Michael

    2017-12-01

    Epidermal Growth Factor Receptor (EGFR) is a potential drug target in cancer therapy. Missense mutations play major roles in influencing the protein function, leading to abnormal cell proliferation and tumorigenesis. A number of EGFR inhibitor molecules targeting ATP binding domain were developed for the past two decades. Unfortunately, they become inactive due to resistance caused by new mutations in patients, and previous studies have also reported noticeable differences in inhibitor binding to distinct known driver mutants as well. Hence, there is a high demand for identification of EGFR mutation-specific inhibitors. In our present study, we derived a set of anti-cancer compounds with biological activities against eight typical EGFR known driver mutations and developed quantitative structure-activity relationship (QSAR) models for each separately. The compounds are grouped based on their functional scaffolds, which enhanced the correlation between compound features and respective biological activities. The models for different mutants performed well with a correlation coefficient, (r) in the range of 0.72-0.91 on jack-knife test. Further, we analyzed the selected features in different models and observed that hydrogen bond and aromaticity-related features play important roles in predicting the biological activity of a compound. This analysis is complimented with docking studies, which showed the binding patterns and interactions of ligands with EGFR mutants that could influence their activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules

    Energy Technology Data Exchange (ETDEWEB)

    Atta, Nada F., E-mail: Nada_fah1@yahoo.com [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt); Hamed, Maher M.; Abdel-Mageed, Ali M. [Department of Chemistry, Faculty of Science, University of Cairo, Post Code 12613, Giza (Egypt)

    2010-05-14

    A hybrid sol-gel material was molecularly imprinted with a group of neurotransmitters. Imprinted material is a sol-gel thin film that is spin coated on the surface of a glassy carbon electrode. Imprinted films were characterized electrochemically using cyclic voltammetry (CV) and the encapsulated molecules were extracted from the films and complementary molecular cavities are formed that enable their rebind. The films were tested in their corresponding template solutions for rebinding using square wave voltammetry (SWV). Computational approach for exploring the primary intermolecular forces between templates and hydrolyzed form of the precursor monomer, tetraethylorthosilicate (TEOS), were carried out using Hartree-Fock method (HF). Interaction energy values were computed for each adduct formed between a monomer and a template. Analysis of the optimized conformations of various adducts could explain the mode of interaction between the templates and the monomer units. We found that interaction via the amino group is the common mode among the studied compounds and the results are in good agreement with the electrochemical measurements.

  10. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets.

    Science.gov (United States)

    Periwal, Vinita; Rajappan, Jinuraj K; Jaleel, Abdul Uc; Scaria, Vinod

    2011-11-18

    Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb), affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR) and extensively drug-resistant (XDR) strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes. We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO) on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures. This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

  11. Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets

    Directory of Open Access Journals (Sweden)

    Periwal Vinita

    2011-11-01

    Full Text Available Abstract Background Tuberculosis is a contagious disease caused by Mycobacterium tuberculosis (Mtb, affecting more than two billion people around the globe and is one of the major causes of morbidity and mortality in the developing world. Recent reports suggest that Mtb has been developing resistance to the widely used anti-tubercular drugs resulting in the emergence and spread of multi drug-resistant (MDR and extensively drug-resistant (XDR strains throughout the world. In view of this global epidemic, there is an urgent need to facilitate fast and efficient lead identification methodologies. Target based screening of large compound libraries has been widely used as a fast and efficient approach for lead identification, but is restricted by the knowledge about the target structure. Whole organism screens on the other hand are target-agnostic and have been now widely employed as an alternative for lead identification but they are limited by the time and cost involved in running the screens for large compound libraries. This could be possibly be circumvented by using computational approaches to prioritize molecules for screening programmes. Results We utilized physicochemical properties of compounds to train four supervised classifiers (Naïve Bayes, Random Forest, J48 and SMO on three publicly available bioassay screens of Mtb inhibitors and validated the robustness of the predictive models using various statistical measures. Conclusions This study is a comprehensive analysis of high-throughput bioassay data for anti-tubercular activity and the application of machine learning approaches to create target-agnostic predictive models for anti-tubercular agents.

  12. Preface - From molecules to molecular materials, biological molecular systems and nanostructures: A collection of contributions presented at the XIIIth International Conference on Molecular Spectroscopy

    Science.gov (United States)

    Ratajczak, Henryk; Drozd, Marek; Fausto, Rui

    2016-12-01

    This volume contains a series of selected contributions presented at the XIIIth International Conference on Molecular Spectroscopy (ICMS): "From Molecules to Molecular Materials, Biological Molecular Systems and Nanostructures" held in Wrocław, Poland, 9-12 September 2015, under the auspices of the Mayor of Wrocław and the European Academy of Sciences, Arts and Humanities. Wrocław was chosen not accidentally as venue for the conference. With more than a thousand years of history, Wrocław is the location of one of the oldest universities in Central Europe. Being a place where education and science play major roles in the daily life of its inhabitants, Wrocław is also a privileged center for spectroscopy in Poland.

  13. 75 FR 23221 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2010-05-03

    ... the severity of water hyacinth infestations. Based on its finding of no significant impact, the Animal... significant impact (FONSI) regarding the release of M. scutellaris into the continental United States for use... not have a significant impact on the quality of the human environment. The EA and FONSI may be viewed...

  14. Evolution of Biologics Screening Technologies

    OpenAIRE

    Matthew J. Gardener; Peter Cariuk; Tristan J. Vaughan

    2013-01-01

    Screening for biologics, in particular antibody drugs, has evolved significantly over the last 20 years. Initially, the screening processes and technologies from many years experience with small molecules were adopted and modified to suit the needs of biologics discovery. Since then, antibody drug discovery has matured significantly and is today investing earlier in new technologies that commercial suppliers are now developing specifically to meet the growing needs of large molecule screening...

  15. Harvey murine sarcoma virus p21 ras protein: biological and biochemical significance of the cysteine nearest the carboxy terminus

    DEFF Research Database (Denmark)

    Willumsen, B M; Norris, K; Papageorge, A G

    1984-01-01

    localization. We have now further characterized the post-translational processing of these mutants and have also studied two C-terminal v-rasH point mutants: one encodes serine in place of cysteine-186, the other threonine for valine-187. The Thr-187 mutant was transformation-competent, and its p21 protein...... not undergo the posttranslational processing common to biologically active ras proteins: their electrophoretic migration rate did not change, they remained in the cytosol, and they failed to bind lipid. Since the cell-encoded ras proteins also contain this cysteine, we conclude that this amino acid residue......Previous studies of premature chain termination mutants and in frame deletion mutants of the p21 ras transforming protein encoded by the transforming gene of Harvey murine sarcoma virus (Ha-MuSV) have suggested that the C terminus is required for cellular transformation, lipid binding, and membrane...

  16. Kinetics of reaction of peroxynitrite with selenium- and sulfur-containing compounds: Absolute rate constants and assessment of biological significance.

    Science.gov (United States)

    Storkey, Corin; Pattison, David I; Ignasiak, Marta T; Schiesser, Carl H; Davies, Michael J

    2015-12-01

    Peroxynitrite (the physiological mixture of ONOOH and its anion, ONOO(-)) is a powerful biologically-relevant oxidant capable of oxidizing and damaging a range of important targets including sulfides, thiols, lipids, proteins, carbohydrates and nucleic acids. Excessive production of peroxynitrite is associated with several human pathologies including cardiovascular disease, ischemic-reperfusion injury, circulatory shock, inflammation and neurodegeneration. This study demonstrates that low-molecular-mass selenols (RSeH), selenides (RSeR') and to a lesser extent diselenides (RSeSeR') react with peroxynitrite with high rate constants. Low molecular mass selenols react particularly rapidly with peroxynitrite, with second order rate constants k2 in the range 5.1 × 10(5)-1.9 × 10(6)M(-1)s(-1), and 250-830 fold faster than the corresponding thiols (RSH) and many other endogenous biological targets. Reactions of peroxynitrite with selenides, including selenosugars are approximately 15-fold faster than their sulfur homologs with k2 approximately 2.5 × 10(3)M(-1)s(-1). The rate constants for diselenides and sulfides were slower with k2 0.72-1.3 × 10(3)M(-1)s(-1) and approximately 2.1 × 10(2)M(-1)s(-1) respectively. These studies demonstrate that both endogenous and exogenous selenium-containing compounds may modulate peroxynitrite-mediated damage at sites of acute and chronic inflammation, with this being of particular relevance at extracellular sites where the thiol pool is limited. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: Studies of some biological molecules in the energy range 1 keV-20 MeV

    DEFF Research Database (Denmark)

    Manohara, S.R.; Hanagodimath, S.M.; Gerward, Leif

    2008-01-01

    Effective atomic numbers for photon energy absorption, Z(PEA,eff), and for photon interaction, Z(PI,eff), have been calculated by a direct method in the photon-energy region from 1 keV to 20 MeV for biological molecules, such as fatty acids (lauric, myristic, palmitic, stearic, oleic, linoleic...... dependence of the mass attenuation coefficient, Z(PEA, eff), and the mass energy-absorption coefficient, Z(PI, eff), is shown graphically and in tabular form. Significant differences of 17%-38% between Z(PI, eff) and Z(PEA, eff) occur in the energy region 5-100 keV. The reasons for these differences...

  18. Periradicular Tissue Responses to Biologically Active Molecules or MTA When Applied in Furcal Perforation of Dogs' Teeth

    OpenAIRE

    Zairi, Anna; Lambrianidis, Theodoros; Pantelidou, Ourania; Papadimitriou, Serafim; Tziafas, Dimitrios

    2012-01-01

    The aim of this study was the comparative evaluation of inflammatory reactions and tissue responses to four growth factors, or mineral trioxide aggregate (MTA), or a zinc-oxide-eugenol-based cement (IRM) as controls, when used for the repair of furcal perforations in dogs' teeth. Results showed significantly higher inflammatory cell response in the transforming growth factor ? 1 (TGF ? 1) and zinc-oxide-eugenol-based cement (IRM) groups and higher rates of epithelial proliferation in the TGF ...

  19. Learning significant critical of contents of health education in students of biology of the University Upel , Caracas, Venezuela

    Directory of Open Access Journals (Sweden)

    Ivana Camejo

    2014-12-01

    Full Text Available Research conducted to address deficiencies of student’s conceptual course Health Education (EPS career training teachers of Biology UPEL-IPC. The aim was to encourage meaningful learning content critical of the semester students EpS in 2013-U. framed in the qualitative-interpretive paradigm that responds to a participatory action research (IAP where techniques and instruments (conceptual maps, interview scripts, validated questionnaires were used to record and interpret information at different times of application of the educational intervention research designed considering the principles of Meaningful Learning Critical Moreira. The content was adjusted to national and international trends Health and EPs. The analysis of results allowed to highlight the need to update the program EpS, following agreements in the field of scientific and teaching and training students in Health and EPs. In the educational intervention built from the IAP they participated teachers, students and experts. The results of its application evolution of meanings show differences in their conceptual progressivity and evidence of meaningful learning.

  20. T lymphocytes and iron overload: novel correlations of possible significance to the biology of the immunological system

    Directory of Open Access Journals (Sweden)

    Maria de Sousa

    1992-01-01

    Full Text Available This paper is written in the context of our changing preception of the immunological system as a system with possible biological roles exceding the prevailung view of a system concerned principally with the defense against external pathogens. The view discussed here relates the immunological system inextricably to the metabolism of iron, the circulation of the blood and the resolution of the evolutionary paradox created by oxygen and iron. Indirect evidence for this inextricable relationship between the two systems can be derived from the discrepancy between the theoretical quasi-impossibility of the existence of an iron deficiency state in the adult and the reality of the WHO numbers of people in the world with iron deficiency anemia. With mounting evidence that TNF, IL-1, and T lymphocyte cytokines affect hemopoieisis and iron metabolism it is possible that the reported discrepancy is a reflection of that inextricable interdependence between the two systems in the face of infection. Further direct evidence for a relationship between T cell subset numbers and iron metabolism is presented from the results of a study of T cell populations in patients with hereditary hemochromatosis. The recent finding of a correlation between low CD8+ lymphocite numbers, liver demage associated with HCVpositivity and severity of iron overload in B-thalassemia major patients (umpublished data of RW Grandy; P. Giardina, M. Hilgartner concludes this review.

  1. Biology

    Indian Academy of Sciences (India)

    I am particularly happy that the Academy is bringing out this document by Professor M S. Valiathan on Ayurvedic Biology. It is an effort to place before the scientific community, especially that of India, the unique scientific opportunities that arise out of viewing Ayurveda from the perspective of contemporary science, its tools ...

  2. Influence of chloramine T iodination on the biological and immunological activity or the molecular radius of the human growth hormone molecule

    International Nuclear Information System (INIS)

    Bartolini, P.; Ribela, M.T.

    1986-01-01

    Potential alterations of the somatotropic activity of human growth hormone (hGH) resulting from Chloramine T labelling reaction, iodination up to 2.7 atoms/molecule and indirect radiation effects, have been studied. Three 2X2 factorial assays, performed in hypophysectomized rats, failed to reveal any significant difference (P greater than 0.05) in true growth promoting activity between hGH and (127-I)hGH, even after storing the latter with 125-I. Similar results were obtained applying a sensitive and precise gel filtration technique for Stokes Radius determination and radioimmunoassay

  3. 78 FR 14509 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2013-03-06

    ... Animal and Plant Health Inspection Service Availability of an Environmental Assessment and Finding of No... no significant impact, the Animal and Plant Health Inspection Service has determined that an...: Background The Animal and Plant Health Inspection Service (APHIS) is proposing to issue permits for the...

  4. 76 FR 15935 - Availability of an Environmental Assessment and Finding of No Significant Impact for a Biological...

    Science.gov (United States)

    2011-03-22

    ... (Dioscorea bulbifera). Based on its finding of no significant impact, the Animal and Plant Health Inspection... severity of air potato (Dioscorea bulbifera) infestations. On January 19, 2011, we published in the Federal... the severity of air potato (Dioscorea bulbifera) infestations. The finding, which is based on the EA...

  5. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma

    DEFF Research Database (Denmark)

    Xu-Monette, Zijun Y; Deng, Qipan; Manyam, Ganiraju C

    2016-01-01

    DESIGN: We identified MYC mutations in 750 patients with DLBCL using Sanger sequencing and evaluated the prognostic significance in 602 R-CHOP-treated patients. RESULTS: The frequency of MYC mutations was 33.3% at the DNA level (mutations in either the coding sequence or the untranslated regions) and 16.......1% at the protein level (nonsynonymous mutations). Most of the nonsynonymous mutations correlated with better survival outcomes; in contrast, T58 and F138 mutations (which were associated with MYC rearrangements), as well as several mutations occurred at the 3' untranslated region, correlated with significantly...... xenografts. CONCLUSIONS: Various types of MYC gene mutations are present in DLBCL and show different impact on Myc function and clinical outcomes. Unlike MYC gene translocations and overexpression, most MYC gene mutations may not have a role in driving lymphomagenesis. Clin Cancer Res; 22(14); 3593...

  6. Radiation-induced bystander effect in healthy G{sub 0} human lymphocytes: Biological and clinical significance

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, Paola; Latini, Paolo [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo (Italy); Palitti, Fabrizio, E-mail: palitti@unitus.it [Department of Agrobiology and Agrochemistry, University of Tuscia, Via San Camillo De Lellis, I-01100 Viterbo (Italy)

    2011-08-01

    To study the bystander effects, G{sub 0} human peripheral blood lymphocytes were X-irradiated with 0.1, 0.5 and 3 Gy. After 24 h, cell-free conditioned media from irradiated cultures were transferred to unexposed lymphocytes. Following 48 h of medium transfer, viability, induction of apoptosis, telomere shortening, reactive oxygen species (ROS) levels and micronuclei (after stimulation) were analyzed. A statistically significant decrement in cell viability, concomitant with the loss of mitochondrial membrane potential, telomere shortening, increases in hydrogen peroxide (H{sub 2}O{sub 2}) and superoxide anion (O{sub 2}{sup -}) with depletion of intracellular glutathione (GSH) level, and higher frequencies of micronuclei, were observed in bystander lymphocytes incubated with medium from 0.5 and 3 Gy irradiated samples, compared to lymphocytes unexposed. Furthermore, no statistically significant difference between the response to 0.5 and 3 Gy of irradiation in bystander lymphocytes, was found. However, when lymphocytes were irradiated with 0.1 Gy, no bystander effect with regard to viability, apoptosis, telomere length, and micronuclei was observed, although a high production of ROS level persisted. Radiation in the presence of the radical scavenger dimethyl sulfoxide (DMSO) suppressed oxidative stress induced by 3 Gy of X-rays with the effective elimination of bystander effects, suggesting a correlation between ROS and bystander signal formation in irradiated cells. The data propose that bystander effect might be mostly due to the reactions of radiation induced free radicals on DNA, with the existence of a threshold at which the bystander signal is not operative (0.1 Gy dose of X-rays). Our results may have clinical implications for health risk associated with radiation exposure.

  7. Single molecule insights on conformational selection and induced fit mechanism

    DEFF Research Database (Denmark)

    Hatzakis, Nikos

    2014-01-01

    of unsynchronized molecules, often masking intrinsic dynamic behavior of proteins and biologically significant transient intermediates. Single molecule measurements are emerging as a powerful tool for characterizing protein function. They offer the direct observation and quantification of the activity, abundance...... and lifetime of multiple states and transient intermediates in the energy landscape, that are typically averaged out in non-synchronized ensemble measurements. Here we survey new insights from single molecule studies that advance our understanding of the molecular mechanisms underlying biomolecular recognition....

  8. The significance of biological, environmental, and social risk factors for prostate cancer in a cohort study in Brazil

    Directory of Open Access Journals (Sweden)

    Frederico R. Romero

    2012-12-01

    Full Text Available Purpose To evaluate the significance of several risk factors for prostate cancer in a cohort of Brazilian men. Subjects and methods: Men ≥ 40 years-old participating in a prostate cancer screening program between December 2006 and April 2011 in the city of Curitiba, Brazil, were evaluated to determine the prevalence, relative risk (RR and 95% CI of prostate cancer according to age, race, ethnicity, family history of prostate cancer, educational level, and history of vasectomy, increased blood pressure, diabetes mellitus, and urethritis. Results In 2121 men included in this study, prostate cancer prevalence was 0.6% for men between 40-49 years versus 2.0% (adjusted RR = 2.58, 7.7% (adjusted RR = 5.76, and 8.4% (adjusted RR = 4.88 for men 50-59 years, 60-69 years, and ≥ 70 years, respectively (p 0.05; 6.1% in African descendants, in comparison to 3.0% in non-African descendants (adjusted RR = 3.17, p 0.05; and 4.8% in participants with incomplete elementary school level or lower, compared to 2.2% in men with complete elementary school level or higher education (adjusted RR = 1.85, p > 0.05. Men with/without history of vasectomy, increased blood pressure, diabetes, and urethritis had a prostate cancer prevalence of 0.8%/3.0% (adjusted RR = 0.23, p > 0.05, 3.8%/2.2% (adjusted RR = 1.16, p > 0.05, 3.7%/2.6% (adjusted RR = 1.39, p > 0.05, and 2.6%/2.6% (adjusted RR = 0.99, p > 0.05, respectively. Conclusions Risk factors associated with an increased prevalence of prostate cancer in this cohort included increasing age and African ethnicity.

  9. Patterns of BAP1 protein expression provide insights into prognostic significance and the biology of uveal melanoma.

    Science.gov (United States)

    Farquhar, Neil; Thornton, Sophie; Coupland, Sarah E; Coulson, Judy M; Sacco, Joseph J; Krishna, Yamini; Heimann, Heinrich; Taktak, Azzam; Cebulla, Colleen M; Abdel-Rahman, Mohamed H; Kalirai, Helen

    2018-01-01

    Uveal melanoma (UM) is a rare aggressive intraocular tumour with a propensity for liver metastases, occurring in ∼50% of patients. The tumour suppressor BAP1 is considered to be key in UM progression. Herein, we present the largest study to date investigating cellular expression patterns of BAP1 protein in 165 UMs, correlating these patterns to prognosis. Full clinical, histological, genetic, and follow-up data were available for all patients. BAP1 gene sequencing was performed on a subset of 26 cases. An independent cohort of 14 UMs was examined for comparison. Loss of nuclear BAP1 (nBAP1) protein expression was observed in 54% (88/165) UMs. nBAP1 expression proved to be a significant independent prognostic parameter: it identified two subgroups within monosomy 3 (M3) UM, which are known to have a high risk of metastasis. Strikingly, nBAP1-positiveM3 UMs were associated with prolonged survival compared to nBAP1-negative M3 UMs (Log rank, p  = 0.014). nBAP1 protein loss did not correlate with a BAP1 mutation in 23% (6/26) of the UMs analysed. Cytoplasmic BAP1 protein (cBAP1) expression was also observed in UM: although appearing 'predominantly diffuse' in most nBAP1-negative UM, a distinct 'focal perinuclear' expression pattern - localized immediately adjacent to the cis Golgi - was seen in 31% (18/59). These tumours tended to carry loss-of-function BAP1 mutations. Our study demonstrates loss of nBAP1 expression to be the strongest prognostic marker in UM, confirming its importance in UM progression. Our data suggest that non-genetic mechanisms account for nBAP1 loss in a small number of UMs. In addition, we describe a subset of nBAP1-negative UM, in which BAP1 is sequestered in perinuclear bodies, most likely within Golgi, warranting further mechanistic investigation.

  10. Enantio-specific C(sp3)-H activation catalyzed by ruthenium nanoparticles: application to isotopic labeling of molecules of biological interest

    International Nuclear Information System (INIS)

    Taglang, Celine

    2015-01-01

    Isotopic labeling with deuterium and tritium is extensively used in chemistry, biology and pharmaceutical research. Numerous methods of labeling by isotopic exchange allow high isotopic enrichments but generally require harsh conditions (high temperatures, acidity). As a consequence, a general, regioselective and smooth labeling method that might be applicable to a wide diversity of substrates remains to develop. In the first part of this thesis, we demonstrated that the use of ruthenium nanoparticles, synthesized by Pr. Bruno Chaudret's team (INSA Toulouse), allowed the mild (2 bar of deuterium gas at 55 C), effective and selective H/D exchange reaction of a large variety of nitrogen-containing compounds, such as pyridines, indoles and primary, secondary and tertiary alkyl amines. The usefulness and the efficiency of this novel methodology was demonstrated by the deuteration of eight nitrogen-containing molecules of biological interest without altering their chemical and stereochemical properties. However, the conservation of the original stereochemistry of an activated chiral C-H center remains a major issue. We studied the reactivity of RuNP(at)PVP on different categories of nitrogen-containing substrates (amines, aminoacids and peptides) in water or in organic solvents. Our results showed that C-H activation of chiral carbons C(sp3) took place efficiently, selectively and, in all cases, with total retention of configuration. The wide range of applications of this procedure was demonstrated by the labeling of three chiral amines, fourteen aminoacids, three aromatic amino esters and four peptides. Moreover, our collaboration with Pr. Romuald Poteau's team (INSA Toulouse) led to the identification of two mechanisms by ab initio simulation in agreement with our experimental results: the σ-bond metathesis mechanism and the oxidative addition mechanism. These two mechanisms imply two vicinal ruthenium atoms leading to the formation an original

  11. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods

    Science.gov (United States)

    Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun

    2017-12-01

    Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.

  12. Molecule Matters

    Indian Academy of Sciences (India)

    is a very stable and inert molecule due to the formation of a triple bond between the two atoms. Surpris- ingly isoelectronic molecules are quite reactive making dinitrogen very useful and unique. Dinitrogen (N. 2. ) is such an innocuous molecule that you might not think it worthy of special attention. We take this molecule for.

  13. Molecule nanoweaver

    Science.gov (United States)

    Gerald, II; Rex, E [Brookfield, IL; Klingler, Robert J [Glenview, IL; Rathke, Jerome W [Homer Glen, IL; Diaz, Rocio [Chicago, IL; Vukovic, Lela [Westchester, IL

    2009-03-10

    A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.

  14. Single molecules and nanotechnology

    CERN Document Server

    Vogel, Horst

    2007-01-01

    This book focuses on recent advances in the rapidly evolving field of single molecule research. These advances are of importance for the investigation of biopolymers and cellular biochemical reactions, and are essential to the development of quantitative biology. Written by leading experts in the field, the articles cover a broad range of topics, including: quantum photonics of organic dyes and inorganic nanoparticles their use in detecting properties of single molecules the monitoring of single molecule (enzymatic) reactions single protein (un)folding in nanometer-sized confined volumes the dynamics of molecular interactions in biological cells The book is written for advanced students and scientists who wish to survey the concepts, techniques and results of single molecule research and assess them for their own scientific activities.

  15. Clinical Significance of Myeloid-Related Protein 8/14 as a Predictor for Biological Treatment and Disease Activity in Rheumatoid Arthritis.

    Science.gov (United States)

    Yunchun, Li; Yue, Wang; Jun, Fang Zhong; Qizhu, Su; Liumei, Ding

    2018-01-01

    To investigate the serum level of Myeloid-Related Protein 8/14 complex (MRP8/14) and to predict and monitor the response to biologic treatment in rheumatoid arthritis (RA) patients. Each patient underwent clinical examination and blood sampling for assessment of serum high-sensitivity C-reactive protein (hs-CRP) levels, erythrocyte sedimentation rate (ESR), rheumatoid factors (RF), anti-cyclic citrullinated protein antibodies (anti-CCP), and serum concentrations of MRP8/14 protein complexes (myeloid-related proteins, MRP8/14) were measured at baseline, and weeks 4 and 12 (after initiation of treatment). Serum MRP8/14 protein complex levels correlated with DAS28 and anti-CCP antibody. MRP8/14 protein complex levels decreased significantly after 12 weeks treatment with biological therapy: mono-rhTNFR-Fc active group. rhTNFR-Fc plus methotrexate (MTX) decreased MRP8/14 protein complex levels from 11839±1849 ng/ml to 5423±1130 ng/ml ( p <0.01) a reduction of 54.2% compared with 32.9% in the rhTNFR-Fc group. MRP8/14 protein complex levels were increased in active stage RA patients. MRP8/14 levels were decreased with rhTNFR-Fc treatment, suggesting serum concentrations of MRP8/14 protein complex might be a promising biomarker to predict responses to biological therapy in active RA patients at baseline and could be used to monitor responses to treatment across different mechanisms of action. © 2018 by the Association of Clinical Scientists, Inc.

  16. On the necessity of different statistical treatment for Illumina BeadChip and Affymetrix GeneChip data and its significance for biological interpretation

    Directory of Open Access Journals (Sweden)

    Eisenhaber Frank

    2008-06-01

    Full Text Available Abstract Background The original spotted array technology with competitive hybridization of two experimental samples and measuring relative expression levels is increasingly displaced by more accurate platforms that allow determining absolute expression values for a single sample (for example, Affymetrix GeneChip and Illumina BeadChip. Unfortunately, cross-platform comparisons show a disappointingly low concordance between lists of regulated genes between the latter two platforms. Results Whereas expression values determined with a single Affymetrix GeneChip represent single measurements, the expression results obtained with Illumina BeadChip are essentially statistical means from several dozens of identical probes. In the case of multiple technical replicates, the data require, therefore, different stistical treatment depending on the platform. The key is the computation of the squared standard deviation within replicates in the case of the Illumina data as weighted mean of the square of the standard deviations of the individual experiments. With an Illumina spike experiment, we demonstrate dramatically improved significance of spiked genes over all relevant concentration ranges. The re-evaluation of two published Illumina datasets (membrane type-1 matrix metalloproteinase expression in mammary epithelial cells by Golubkov et al. Cancer Research (2006 66, 10460; spermatogenesis in normal and teratozoospermic men, Platts et al. Human Molecular Genetics (2007 16, 763 significantly identified more biologically relevant genes as transcriptionally regulated targets and, thus, additional biological pathways involved. Conclusion The results in this work show that it is important to process Illumina BeadChip data in a modified statistical procedure and to compute the standard deviation in experiments with technical replicates from the standard errors of individual BeadChips. This change leads also to an improved concordance with Affymetrix Gene

  17. An integrated approach of network-based systems biology, molecular docking, and molecular dynamics approach to unravel the role of existing antiviral molecules against AIDS-associated cancer.

    Science.gov (United States)

    Omer, Ankur; Singh, Poonam

    2017-05-01

    A serious challenge in cancer treatment is to reposition the activity of various already known drug candidates against cancer. There is a need to rewrite and systematically analyze the detailed mechanistic aspect of cellular networks to gain insight into the novel role played by various molecules. Most Human Immunodeficiency Virus infection-associated cancers are caused by oncogenic viruses like Human Papilloma Viruses and Epstein-Bar Virus. As the onset of AIDS-associated cancers marks the severity of AIDS, there might be possible interconnections between the targets and mechanism of both the diseases. We have explored the possibility of certain antiviral compounds to act against major AIDS-associated cancers: Kaposi's Sarcoma, Non-Hodgkin Lymphoma, and Cervical Cancer with the help of systems pharmacology approach that includes screening for targets and molecules through the construction of a series of drug-target and drug-target-diseases network. Two molecules (Calanolide A and Chaetochromin B) and the target "HRAS" were finally screened with the help of molecular docking and molecular dynamics simulation. The results provide novel antiviral molecules against HRAS target to treat AIDS defining cancers and an insight for understanding the pharmacological, therapeutic aspects of similar unexplored molecules against various cancers.

  18. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces ... Author Affiliations. E Arunan1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  19. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Molecule Matters – van der Waals Molecules - History and Some Perspectives on Intermolecular Forces. E Arunan. Feature Article Volume 14 Issue 4 April 2009 pp 346-356 ...

  20. Effects of physiological self-crowding of DNA on shape and biological properties of DNA molecules with various levels of supercoiling

    Science.gov (United States)

    Benedetti, Fabrizio; Japaridze, Aleksandre; Dorier, Julien; Racko, Dusan; Kwapich, Robert; Burnier, Yannis; Dietler, Giovanni; Stasiak, Andrzej

    2015-01-01

    DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA–DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes. PMID:25653164

  1. Marine litter in an EBSA (Ecologically or Biologically Significant Area) of the central Mediterranean Sea: Abundance, composition, impact on benthic species and basis for monitoring entanglement.

    Science.gov (United States)

    Consoli, Pierpaolo; Andaloro, Franco; Altobelli, Chiara; Battaglia, Pietro; Campagnuolo, Silvana; Canese, Simonepietro; Castriota, Luca; Cillari, Tiziana; Falautano, Manuela; Pedà, Cristina; Perzia, Patrizia; Sinopoli, Mauro; Vivona, Pietro; Scotti, Gianfranco; Esposito, Valentina; Galgani, Francois; Romeo, Teresa

    2018-05-01

    Marine litter is commonly observed everywhere in the ocean. In this study, we analyzed 17 km of video footage, collected by a Remotely Operated Vehicle (ROV) at depths ranging between 20 and 220 m, during 19 transects performed on the rocky banks of the Straits of Sicily. Recently, the Contracting Parties of the Convention on Biological Diversity (CBD) recognized this site as an Ecologically or Biologically Significant Area (EBSA). The research aim was to quantify the abundance of marine litter and its impact on benthic fauna. Litter density ranged from 0 items/100 m 2 to 14.02 items/100 m 2 with a mean (±standard error) of 2.13 (±0.84) items/100 m 2 . The observed average density was higher (5.2 items/100 m 2 ) at depths >100 m than at shallower depths (fishing lines contributed to 98.07% of the overall litter density, then representing the dominant source of marine debris. Litter interactions with fauna were frequently observed, with 30% of litter causing "entanglement/coverage" and 15% causing damage to sessile fauna. A total of 16 species showed interaction (entanglement/coverage or damage) with litter items and 12 of these are species of conservation concern according to international directives and agreements (CITES, Berne Convention, Habitat Directive, SPA/BD Protocol, IUCN Red List); we also observed 7 priority habitats of the SPA/BD Protocol. This research will support the implementation of monitoring "Harm" as recommended by the UN Environment/MAP Regional Plan on Marine Litter Management in the Mediterranean, and the Marine Strategy Framework Directive (MSFD). The institution of a SPAMI in the investigated area could represent a good management action for the protection of this hotspot of biodiversity and to achieve a Good Environmental Status (GES) for the marine environment by 2020, under the MSFD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Different design of enzyme-triggered CO-releasing molecules (ET-CORMs reveals quantitative differences in biological activities in terms of toxicity and inflammation

    Directory of Open Access Journals (Sweden)

    E. Stamellou

    2014-01-01

    This study further provides a rational framework for designing acyloxydiene–Fe(CO3 complexes as ET-CORMs with differential CO release and biological activities. We also provide a better understanding of how these complexes affect cell-biology in mechanistic terms.

  3. Atkins' molecules

    CERN Document Server

    Atkins, Peters

    2003-01-01

    Originally published in 2003, this is the second edition of a title that was called 'the most beautiful chemistry book ever written'. In it, we see the molecules responsible for the experiences of our everyday life - including fabrics, drugs, plastics, explosives, detergents, fragrances, tastes, and sex. With engaging prose Peter Atkins gives a non-technical account of an incredible range of aspects of the world around us, showing unexpected connections, and giving an insight into how this amazing world can be understood in terms of the atoms and molecules from which it is built. The second edition includes dozens of extra molecules, graphical presentation, and an even more accessible and enthralling account of the molecules themselves.

  4. Interstellar Molecules

    Science.gov (United States)

    Solomon, Philip M.

    1973-01-01

    Radioastronomy reveals that clouds between the stars, once believed to consist of simple atoms, contain molecules as complex as seven atoms and may be the most massive objects in our Galaxy. (Author/DF)

  5. Findings from NSABP Protocol No. B-04: comparison of radical mastectomy with alternative treatments. II. The clinical and biologic significance of medial-central breast cancers

    International Nuclear Information System (INIS)

    Fisher, B.; Wolmark, N.; Redmond, C.; Deutsch, M.; Fisher, E.R.

    1981-01-01

    Findings from 1665 women with primary breast cancer, treated at 34 NSABP institutions in Canada and the United States, have failed to demonstrate that patients with medial-central tumors had a greater probability of developing distant metastases or dying than did those with lateral tumors despite the greater incidence of internal mammary (IM) node involvement when tumors are medial-central in location. A comparison of patients with similar clinical nodal status and tumor location who were treated either by radical mastectomy (RM) or by total mastectomy plus radiation therapy (TM + RT) failed to indicate that radiation of IM nodes reduced the probability of distant treatment failure (TF) or mortality. When findings from patients having equivalent clinical nodal status and tumor location treated by TM alone or TM + RT were compared, it was found that the addition of RT failed to alter the probability of the occurrence of a distant TF or of death. This was despite the fact that in the nonradiated group two putative sources of further tumor spread, i.e., positive axillary and IM nodes, were left unremoved and untreated. The findings provide further insight into the biologic significance of the positive lymph node and confirm our prior contention that positive regional lymph nodes are indicators of a host-tumor relationship which permits the development of metastases and that they are not important investigators of distant disease

  6. The biological difference between CD13+CD133+ and CD13¬CD133¬liver cancer cells and its clinical significance

    Directory of Open Access Journals (Sweden)

    Shi-long JIN

    2013-09-01

    Full Text Available Objective To compare the biological difference between CD13+CD133+ and CD13-CD133- hepatocellular carcinoma (HCC cells in HuH7 cell line and its clinical significance. Methods The status of proliferation, phase of the cell cycle, tumor formation in vivo, differentiation, and their chemoresistance to 5-FU and pirarubicin of CD13+CD133+ and CD13-CD133-HCC cells were studied to analyze the clinical implication of CD13+CD133+HCC cell subset. Results The proliferation rate of CD13+CD133+HCC cells was significantly higher than that of CD13-CD133-HCC cells. The cell-cycle phase study showed that 78.45% of the CD13+CD133+HCC cells were in the G0/G1 phase, 2.19% in G2/M phase, and 19.36% in S phase, while 62.18% CD13-CD133-HCC cells were in the G0/G1 phase, 11.88% in G2/M phase, and 25.95% in S phase. Limiting dilution analysis of HuH7 cells revealed that 1×103 CD13+CD133+ cells could form the tumor, while 1×105 CD13-CD133- cells did. CD13+CD133+ cells showed chemoresistance to 5-FU and pirarubicin, while other three subsets succumbed to the drugs. Conclusion CD13+CD133+ cancer cells in HuH7 showed the characteristics of cancer stem cells (CSCs, which might contribute to the relapse and metastasis of liver cancer, and they may be the main target for chemotherapy in human liver cancer.

  7. Incorporating biologic measurements (SF2, CFE) into a tumor control probability model increases their prognostic significance: a study in cervical carcinoma treated with radiation therapy

    International Nuclear Information System (INIS)

    Buffa, Francesca Meteora; Davidson, Susan E.; Hunter, Robert D.; Nahum, Alan E.; West, Catharine M.L.

    2001-01-01

    Purpose: To assess whether incorporation of measurements of surviving fraction at 2 Gy (SF 2 ) and colony-forming efficiency (CFE) into a tumor control probability (tcp) model increases their prognostic significance. Methods and Materials: Measurements of SF 2 and CFE were available from a study on carcinoma of the cervix treated with radiation alone. These measurements, as well as tumor volume, dose, and treatment time, were incorporated into a Poisson tcp model (tcp α,ρ ). Regression analysis was performed to assess the prognostic power of tcp α,ρ vs. the use of either tcp models with biologic parameters fixed to best-fit estimates (but incorporating individual dose, volume, and treatment time) or the use of SF 2 and CFE measurements alone. Results: In a univariate regression analysis of 44 patients, tcp α,ρ was a better prognostic factor for both local control and survival (p 2 alone (p=0.009 for local control, p=0.29 for survival) or CFE alone (p=0.015 for local control, p=0.38 for survival). In multivariate analysis, tcp α,ρ emerged as the most important prognostic factor for local control (p α,ρ , CFE was still a significant independent prognostic factor for local control, whereas SF 2 was not. The sensitivities of tcp α,ρ and SF 2 as predictive tests for local control were 87% and 65%, respectively. Specificities were 70% and 77%, respectively. Conclusions: A Poisson tcp model incorporating individual SF 2 , CFE, dose, tumor volume, and treatment time was found to be the best independent prognostic factor for local control and survival in cervical carcinoma patients

  8. The normal limits, subclinical significance, related metabolic derangements and distinct biological effects of body site-specific adiposity in relatively healthy population.

    Directory of Open Access Journals (Sweden)

    Chun-Ho Yun

    Full Text Available BACKGROUND: The accumulation of visceral adipose tissue that occurs with normal aging is associated with increased cardiovascular risks. However, the clinical significance, biological effects, and related cardiometabolic derangements of body-site specific adiposity in a relatively healthy population have not been well characterized. MATERIALS AND METHODS: In this cross-sectional study, we consecutively enrolled 608 asymptomatic subjects (mean age: 47.3 years, 27% female from 2050 subjects undergoing an annual health survey in Taiwan. We measured pericardial (PCF and thoracic peri-aortic (TAT adipose tissue volumes by 16-slice multi-detector computed tomography (MDCT (Aquarius 3D Workstation, TeraRecon, San Mateo, CA, USA and related these to clinical characteristics, body fat composition (Tanita 305 Corporation, Tokyo, Japan, coronary calcium score (CCS, serum insulin, high-sensitivity C-reactive protein (Hs-CRP level and circulating leukocytes count. Metabolic risk was scored by Adult Treatment Panel III guidelines. RESULTS: TAT, PCF, and total body fat composition all increased with aging and higher metabolic scores (all p<0.05. Only TAT, however, was associated with higher circulating leukocyte counts (ß-coef.:0.24, p<0.05, serum insulin (ß-coef.:0.17, p<0.05 and high sensitivity C-reactive protein (ß-coef.:0.24, p<0.05. These relationships persisted after adjustment in multivariable models (all p<0.05. A TAT volume of 8.29 ml yielded the largest area under the receiver operating characteristic curve (AUROC: 0.79, 95%CI: 0.74-0.83 to identify metabolic syndrome. TAT but not PCF correlated with higher coronary calcium score after adjustment for clinical variables (all p<0.05. CONCLUSION: In our study, we observe that age-related body-site specific accumulation of adipose tissue may have distinct biological effects. Compared to other adiposity measures, peri-aortic adiposity is more tightly associated with cardiometabolic risk profiles and

  9. Oil pollution and the significant biological resources of Puget Sound : final report field survey from 16 July 1974 to 01 September 1976 (NODC Accession 7601556)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Biological and chemical data were collected using sediment sampler and other instruments in the PUGET Sound, which is in the Northwest coastal waters of Washington....

  10. The significance of ecology in the development of Verticillium chlamydosporium as a biological control agent against root-knot nematodes (Meloidogyne spp.)

    OpenAIRE

    Leij, de, F.A.A.M.

    1992-01-01

    A thorough understanding of the interactions which occur between nematode parasites and nematode pests and the influence of biotic and abiotic factors on these interactions, is essential in the development of biological control agents for nematodes. The aim of this study was to develop a particular isolate of the nematophagous fungus Verticillium chlamydosporium as a biological control agent for root-knot nematodes. The work has gained insight into some of the ke...

  11. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM)

    Science.gov (United States)

    Wallace, W.G.; Lee, B.-G.; Luoma, S.N.

    2003-01-01

    Many aspects of metal accumulation in aquatic invertebrates (i.e. toxicity, tolerance and trophic transfer) can be understood by examining the subcellular partitioning of accumulated metal. In this paper, we use a compartmentalization approach to interpret the significance of metal, species and size dependence in the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis. Of special interest is the compartmentalization of metal as metal-sensitive fractions (MSF) (i.e. organelles and heat-sensitive proteins, termed 'enzymes' hereafter) and biologically detoxified metal (BDM) (i.e. metallothioneins [MT] and metal-rich granules [MRG]). Clams from San Francisco Bay, CA, were exposed for 14 d to seawater (20??? salinity) containing 3.5 ??g l-1 Cd and 20.5 ??g l-1 Zn, including 109Cd and 65Zn as radiotracers. Uptake was followed by 21 d of depuration. The subcellular partitioning of metal within clams was examined following exposure and loss. P. amurensis accumulated ???22x more Cd and ???2x more Zn than M. balthica. MT played an important role in the storage of Cd in P. amurensis, while organelles were the major site of Zn accumulation. In M. balthica, Cd and Zn partitioned similarly, although the pathway of detoxification was metal-specific (MRG for Cd; MRG and MT for Zn). Upon loss, M. balthica depurated ???40% of Cd with Zn being retained; P. amurensis retained Cd and depurated Zn (???40%). During efflux, Cd and Zn concentrations in the MSF compartment of both clams declined with metal either being lost from the animal or being transferred to the BDM compartment. Subcellular compartmentalization was also size-dependent, with the importance of BDM increasing with clam size; MSF decreased accordingly. We hypothesized that progressive retention of metal as BDM (i.e. MRG) with age may lead to size dependency of metal concentrations often observed in some populations of M. balthica.

  12. Clinical and biological significance of isolated Y chromosome loss in myelodysplastic syndromes and chronic myelomonocytic leukemia. A report from the Spanish MDS Group.

    Science.gov (United States)

    Nomdedeu, Meritxell; Pereira, Arturo; Calvo, Xavier; Colomer, Joan; Sole, Francesc; Arias, Amparo; Gomez, Candida; Luño, Elisa; Cervera, Jose; Arnan, Montserrat; Pomares, Helena; Ramos, Fernando; Oiartzabal, Itziar; Espinet, Blanca; Pedro, Carme; Arrizabalaga, Beatriz; Blanco, María Laura; Tormo, Mar; Hernandez-Rivas, Jesus Maria; Díez-Campelo, María; Ortega, Margarita; Valcárcel, David; Cedena, Maria-Teresa; Collado, Rosa; Grau, Javier; Granada, Isabel; Sanz, Guillermo; Campo, Elias; Esteve, Jordi; Costa, Dolors

    2017-12-01

    Isolate loss of chromosome Y (-Y) in myelodysplastic syndromes (MDS) is associated to a better outcome but it is also well described as an age-related phenomenon. In this study we aimed to analyze the prognostic impact of -Y in the context of the IPSS-R cytogenetic classification, evaluate the clinical significance of the percentage of metaphases with isolated -Y, and test whether finding -Y may predispose to over-diagnose MDS in patients with borderline morphological features. We evaluated 3581 male patients from the Spanish MDS Registry with a diagnosis of MDS or chronic myelomonocytic leukemia (CMML). -Y was identified in 177 patients (4.9%). Compared with the 2246 male patients with normal karyotype, -Y group showed a reduced risk of leukemic transformation that did not translate into a survival advantage. The overall survival and the risk of leukemic transformation were not influenced by the percentage of metaphases with -Y. The -Y group was not enriched in patients with minor morphologic traits of dysplasia, suggesting that the better outcome in the -Y group cannot be explained by enrichment in cases misdiagnosed as MDS. In conclusion, our results support the current recommendation of classifying patients with -Y within the very good risk category of the IPSS-R for MDS and rule out a selection bias as a possible explanation of this better outcome. An analysis of the molecular basis of MDS with isolated -Y would be of interest as it may provide a biological basis of protection against progression to acute leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Adhesion molecules

    CERN Document Server

    Preedy, Victor R

    2016-01-01

    This book covers the structure and classification of adhesion molecules in relation to signaling pathways and gene expression. It discusses immunohistochemical localization, neutrophil migration, and junctional, functional, and inflammatory adhesion molecules in pathologies such as leukocyte decompression sickness and ischemia reperfusion injury. Highlighting the medical applications of current research, chapters cover diabetes, obesity, and metabolic syndrome; hypoxia; kidney disease; smoking, atrial fibrillation, and heart disease, the brain and dementia; and tumor proliferation. Finally, it looks at molecular imaging and bioinformatics, high-throughput technologies, and chemotherapy.

  14. System in biology leading to cell pathology: stable protein-protein interactions after covalent modifications by small molecules or in transgenic cells.

    Science.gov (United States)

    Malina, Halina Z

    2011-01-19

    The physiological processes in the cell are regulated by reversible, electrostatic protein-protein interactions. Apoptosis is such a regulated process, which is critically important in tissue homeostasis and development and leads to complete disintegration of the cell. Pathological apoptosis, a process similar to apoptosis, is associated with aging and infection. The current study shows that pathological apoptosis is a process caused by the covalent interactions between the signaling proteins, and a characteristic of this pathological network is the covalent binding of calmodulin to regulatory sequences. Small molecules able to bind covalently to the amino group of lysine, histidine, arginine, or glutamine modify the regulatory sequences of the proteins. The present study analyzed the interaction of calmodulin with the BH3 sequence of Bax, and the calmodulin-binding sequence of myristoylated alanine-rich C-kinase substrate in the presence of xanthurenic acid in primary retinal epithelium cell cultures and murine epithelial fibroblast cell lines transformed with SV40 (wild type [WT], Bid knockout [Bid-/-], and Bax-/-/Bak-/- double knockout [DKO]). Cell death was observed to be associated with the covalent binding of calmodulin, in parallel, to the regulatory sequences of proteins. Xanthurenic acid is known to activate caspase-3 in primary cell cultures, and the results showed that this activation is also observed in WT and Bid-/- cells, but not in DKO cells. However, DKO cells were not protected against death, but high rates of cell death occurred by detachment. The results showed that small molecules modify the basic amino acids in the regulatory sequences of proteins leading to covalent interactions between the modified sequences (e.g., calmodulin to calmodulin-binding sites). The formation of these polymers (aggregates) leads to an unregulated and, consequently, pathological protein network. The results suggest a mechanism for the involvement of small molecules

  15. Solid-Phase Synthesis for the Construction of Biologically Interesting Molecules and the Total Synthesis of Trioxacarcin DC-45-A2

    DEFF Research Database (Denmark)

    Mikkelsen, Remi Jacob Thomsen

    . Furthermore a route to another key building block was developed featuring a Stille cross-coupling.Synthesis of Poly-fused Heterocycles. In the search for new biologically active compounds a methodology for the synthesis of polyfused heterocycles was investigated. This led to the development and optimization...... of a key aldol condensation/conjugate addition sequence for the synthesis of poly-fused heterocycles....

  16. Negative ions of polyatomic molecules

    International Nuclear Information System (INIS)

    Christophorou, LG.

    1980-01-01

    In this paper general concepts relating to, and recent advances in, the study of negative ions of polyatomic molecules are discussed with emphasis on halocarbons. The topics dealt with in the paper are as follows: basic electron attachment processes, modes of electron capture by molecules, short-lived transient negative ions, dissociative electron attachment to ground-state molecules and to hot molecules (effects of temperature on electron attachment), parent negative ions, effect of density, nature, and state of the medium on electron attachment, electron attachment to electronically excited molecules, the binding of attached electrons to molecules (electron affinity), and the basic and the applied significance of negative-ion studies

  17. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule Matters - Dinitrogen. A G Samuelson J Jabadurai. Volume 16 Issue 12 ... Author Affiliations. A G Samuelson1 J Jabadurai1. Department of Inroganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  18. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Molecule Matters - N-Heterocyclic Carbenes - The Stable Form of R2 C: Anil J Elias. Feature Article Volume 13 Issue 5 May 2008 pp 456-467. Fulltext. Click here to view fulltext PDF. Permanent link:

  19. Molecule Matters

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 9. Molecule Matters - A Chromium Compound with a Quintuple Bond. K C Kumara Swamy. Feature Article Volume 11 Issue 9 September 2006 pp 72-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Electron correlation in molecules

    CERN Document Server

    Wilson, S

    2007-01-01

    Electron correlation effects are of vital significance to the calculation of potential energy curves and surfaces, the study of molecular excitation processes, and in the theory of electron-molecule scattering. This text describes methods for addressing one of theoretical chemistry's central problems, the study of electron correlation effects in molecules.Although the energy associated with electron correlation is a small fraction of the total energy of an atom or molecule, it is of the same order of magnitude as most energies of chemical interest. If the solution of quantum mechanical equatio

  1. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  2. The significance of ecology in the development of Verticillium chlamydosporium as a biological control agent against root-knot nematodes (Meloidogyne spp.)

    NARCIS (Netherlands)

    Leij, de F.A.A.M.

    1992-01-01

    A thorough understanding of the interactions which occur between nematode parasites and nematode pests and the influence of biotic and abiotic factors on these interactions, is essential in the development of biological control agents for nematodes. The aim of this study was to develop a

  3. A Selective Assay to Detect Chitin and Biologically Active Nano-Machineries for Chitin-Biosynthesis with Their Intrinsic Chitin-Synthase Molecules

    Directory of Open Access Journals (Sweden)

    Hildgund Schrempf

    2010-09-01

    Full Text Available A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein, has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.

  4. JAK/STAT signalling--an executable model assembled from molecule-centred modules demonstrating a module-oriented database concept for systems and synthetic biology.

    Science.gov (United States)

    Blätke, Mary Ann; Dittrich, Anna; Rohr, Christian; Heiner, Monika; Schaper, Fred; Marwan, Wolfgang

    2013-06-01

    Mathematical models of molecular networks regulating biological processes in cells or organisms are most frequently designed as sets of ordinary differential equations. Various modularisation methods have been applied to reduce the complexity of models, to analyse their structural properties, to separate biological processes, or to reuse model parts. Taking the JAK/STAT signalling pathway with the extensive combinatorial cross-talk of its components as a case study, we make a natural approach to modularisation by creating one module for each biomolecule. Each module consists of a Petri net and associated metadata and is organised in a database publically accessible through a web interface (). The Petri net describes the reaction mechanism of a given biomolecule and its functional interactions with other components including relevant conformational states. The database is designed to support the curation, documentation, version control, and update of individual modules, and to assist the user in automatically composing complex models from modules. Biomolecule centred modules, associated metadata, and database support together allow the automatic creation of models by considering differential gene expression in given cell types or under certain physiological conditions or states of disease. Modularity also facilitates exploring the consequences of alternative molecular mechanisms by comparative simulation of automatically created models even for users without mathematical skills. Models may be selectively executed as an ODE system, stochastic, or qualitative models or hybrid and exported in the SBML format. The fully automated generation of models of redesigned networks by metadata-guided modification of modules representing biomolecules with mutated function or specificity is proposed.

  5. The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Norman R. Saunders

    2016-03-01

    Full Text Available Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC

  6. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, Jae Woong; Kim, Eun Su; Park, Jung Hyun; Kim, Jin-Hoi

    2015-01-01

    Objective Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells. Methods The successful reduction of graphene oxide (GO) to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO). Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells. Results The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3. Conclusion Our data demonstrate a single, simple green approach for the synthesis of highly water-dispersible functionalized graphene nanosheets, suggesting a possibility of replacing toxic hydrazine by a natural and safe phenolic

  7. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2015-04-01

    Full Text Available Sangiliyandi Gurunathan, Jae Woong Han, Eun Su Kim, Jung Hyun Park, Jin-Hoi Kim Department of Animal Biotechnology, Konkuk University, Seoul, Republic of Korea Objective: Graphene represents a monolayer or a few layers of sp2-bonded carbon atoms with a honeycomb lattice structure. Unique physical, chemical, and biological properties of graphene have attracted great interest in various fields including electronics, energy, material industry, and medicine, where it is used for tissue engineering and scaffolding, drug delivery, and as an antibacterial and anticancer agent. However, graphene cytotoxicity for ovarian cancer cells is still not fully investigated. The objective of this study was to synthesize graphene using a natural polyphenol compound resveratrol and to investigate its toxicity for ovarian cancer cells.Methods: The successful reduction of graphene oxide (GO to graphene was confirmed by UV-vis and Fourier transform infrared spectroscopy. Dynamic light scattering and scanning electron microscopy were employed to evaluate particle size and surface morphology of GO and resveratrol-reduced GO (RES-rGO. Raman spectroscopy was used to determine the removal of oxygen-containing functional groups from GO surface and to ensure the formation of graphene. We also performed a comprehensive analysis of GO and RES-rGO cytotoxicity by examining the morphology, viability, membrane integrity, activation of caspase-3, apoptosis, and alkaline phosphatase activity of ovarian cancer cells.Results: The results also show that resveratrol effectively reduced GO to graphene and the properties of RES-rGO nanosheets were comparable to those of chemically reduced graphene. Biological experiments showed that GO and RES-rGO caused a dose-dependent membrane leakage and oxidative stress in cancer cells, and reduced their viability via apoptosis confirmed by the upregulation of apoptosis executioner caspase-3.Conclusion: Our data demonstrate a single, simple green

  8. Photo fragmentation dynamics of small argon clusters and biological molecular: new tools by trapping and vectorial correlation; Dynamique de photofragmentation de petits agregats d'argon et de molecules biologiques: nouvel outil par piegeage et correlation vectorielle

    Energy Technology Data Exchange (ETDEWEB)

    Lepere, V

    2006-09-15

    The present work concerns the building up of a complex set-up whose aim being the investigation of the photo fragmentation of ionised clusters and biological molecules. This new tool is based on the association of several techniques. Two ion sources are available: clusters produced in a supersonic beam are ionised by 70 eV electrons while ions of biological interest are produced in an 'electro-spray'. Ro-vibrational cooling is achieved in a 'Zajfman' electrostatic ion trap. The lifetime of ions can also be measured using the trap. Two types of lasers are used to excite the ionised species: the femtosecond laser available at the ELYSE facilities and a nanosecond laser. Both lasers have a repetition rate of 1 kHz. The neutral and ionised fragments are detected in coincidence using a sophisticated detection system allowing time and localisation of the various fragments to be determined. With such a tool, I was able to investigate in details the fragmentation dynamics of ionised clusters and bio-molecules. The first experiments deal with the measurement of the lifetime of the Ar{sup 2+} dimer II(1/2)u metastable state. The relative population of this state was also determined. The Ar{sup 2+} and Ar{sup 3+} photo-fragmentation was then studied and electronic transitions responsible for their dissociation identified. The detailed analysis of our data allowed to distinguish the various fragmentation mechanisms. Finally, a preliminary investigation of the protonated tryptamine fragmentation is presented. (author)

  9. Multi-scale calculation and global-fit analysis of hydrodynamic properties of biological macromolecules: determination of the overall conformation of antibody IgG molecules.

    Science.gov (United States)

    Amorós, D; Ortega, A; Harding, S E; García de la Torre, J

    2010-02-01

    We present a scheme, based on existing and newly developed computational tools, for the determination of the overall conformation of biological macromolecules composed by domains or subunits, using from such structural determination easily available solution properties. In a multi-scale approach, atomic-level structures are used to provide simple shapes for the subunits, which are put together in a coarse grained model, with a few parameters that determine the overall shape of the macromolecule. Computer programs, like those in the HYDRO suite that evaluate the properties of either atomic or coarse-grained models. In this paper we present a new scheme for a global fit of multiple properties, implemented in a new computer program, HYDROFIT, which interfaces with the programs of the HYDRO suite to find an optimum, best-fitting structure in a robust but simple way. The determination of the overall structure of the native antibody IgG3, bearing a long hinge, and that of the hingeless mutant m15 is presented to test and confirm the validity of this simple, systematic and efficient scheme.

  10. Low pressure tritiation of molecules

    International Nuclear Information System (INIS)

    Moran, T.F.; Powers, J.C.; Lively, M.O.

    1980-01-01

    A method is described of tritiating sensitive biological molecules by depositing molecules of the substance to be tritiated on a supporting substrate in an evacuated vacuum chamber near, but not in the path of, an electron beam which traverses the chamber, admitting tritium gas into the chamber, and subjecting the tritium to the electron beam. Vibrationally excited tritium gas species are generated which collide and react with the substance thus incorporating tritium atoms into the substance. (U.K.)

  11. Single-molecule nanopore enzymology

    Science.gov (United States)

    Wloka, Carsten; Maglia, Giovanni

    2017-01-01

    Biological nanopores are a class of membrane proteins that open nanoscale water-conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. More recently, proteins and enzymes have started being analysed with nanopores. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here we describe the approaches and challenges in nanopore enzymology. PMID:28630164

  12. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  13. Prebiotic molecules and interstellar grain clumps

    International Nuclear Information System (INIS)

    Hoyle, F.; Wickramasinghe, N.C.

    1977-01-01

    It is stated that interstellar molecules detected by radioastronomical techniques in galactic clouds cover a wide range of types and complexities. Amongst the heaviest recently discovered is cyanodiacetylene. There have also been earlier detections of precursors to the simplest amino-acid, glycine and probably detections of polyoxymethylene polymers and co-polymers. A possible identification of organic molecules of even greater complexity is here discussed, together with implications for the commencement of biological activity. The large departures from thermodynamic equilibrium in the interstellar medium and the co-existence of solid grains, molecules, radicals, ions, and uv photons provide conditions that are ideal for production of 'exotic' molecular species. The effect of clumping of dust grains is discussed. The possible spectral identification of highly complex organic species in the interstellar medium is also discussed and reference is made to a property common to a wide class of such molecules, that is, an absorption band centered at 2,200 A. It is tempting to identify this feature with the well-known 2,200 A band of the interstellar extinction curve. It is thought that it may be tentatively concluded that the data so far obtained could be interpreted as independent new chemical evidence of the existence of composite grain clumps in the interstellar medium and in carbonaceous chondrites, and that these grain clumps probably include a significant mass fraction of highly complex organic pre-biotic molecules that could have led to the start and dispersal of biological activity on the Earth and elsewhere in the Galaxy. Processes of natural selection probably also played an important part, particularly in the production of self-replicable peptide chains. The problem of protection of pre-biotic material against external disruptive agencies, such as u/v light, is also discussed. (U.K.)

  14. The Biological Effectiveness of Silicon Ions is Significantly Higher than Iron Ions for the Induction of Chromosome Damage in Human Lymphocytes

    Science.gov (United States)

    George, Kerry; Hada, Megumi; Cucinotta, F. A.

    2010-01-01

    Chromosome aberrations were measured in human peripheral blood lymphocytes after in vitro exposure to Si-28-ions with energies ranging from 90 to 600 MeV/u, or Fe-56-ions with energies ranging from 200 to 5,000 MeV/u. The LET of the various Fe beams in this study ranged from 145 to 440 keV/micron and the LET Si ions ranged from 48 to 158 keV/micron. Doses delivered were in the 10 to 200 cGy range. Dose response curves for chromosome exchanges in cells at first division after exposure, measured using fluorescence in situ hybridization (FISH) with whole chromosome probes, were fitted with linear or linear-quadratic functions. The relative biological effectiveness (RBE) was estimated from the initial slope of the dose response curve for chromosome damage with respect to gamma-rays. The estimates of RBE(sub max) values for total chromosome exchanges ranged from 4.4+/-0.4 to 31.5+/-2.6 for Fe ions, and 11.8+/-1.0 to 42.2+/-3.3 for Si ions. The highest RBE(sub max) value for Fe ions was obtained with the 600 Mev/u beam and 170 MeV/u beam produced the highest RBE(sub max) value for Si ions. For both ions the RBE(sub max) values increased with LET, reaching a maximum at about 180 keV/micron for Fe and about 100 keV/micron for Si, and decreased with further increase in LET.

  15. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  16. Electron-excited molecule interactions

    International Nuclear Information System (INIS)

    Christophorou, L.G.; Tennessee Univ., Knoxville, TN

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10 6 to 10 7 times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs

  17. Expression and biological-clinical significance of hTR, hTERT and CKS2 in washing fluids of patients with bladder cancer

    Directory of Open Access Journals (Sweden)

    Talesa Vincenzo N

    2010-10-01

    Full Text Available Abstract Background at present, pathogenesis of bladder cancer (BC has not been fully elucidated. Aim of this study is to investigate the role of human telomerase RNA (hTR, human telomerase reverse transcriptase (hTERT and CDC28 protein kinase regulatory subunit 2 (CKS2 in bladder carcinogenesis and their possible clinical significance; Methods the transcript levels of hTR, hTERT and CKS2 were quantified by Real time reverse transcriptase chain reaction in exfoliated cells from bladder washings of 36 patients with BC and 58 controls. The statistical significance of differences between BC bearing patients and control groups, in the general as well as in the stratified analysis (superficial or invasive BC, was assessed by Student's t test. Non parametric Receiver Operating Characteristics analysis (ROC was performed to ascertain the accuracy of study variables to discriminate between BC and controls. The clinical value of concomitant examination of hTR, hTERT and CKS2 was evaluated by logistic regression analysis; Results a significant decrease in hTR and a significant increase in hTERT or CKS2 gene expression were found between BC bearing patients and controls, as well as in the subgroups analysis. The area under the curve (AUC indicated an average discrimination power for the three genes, both in the general and subgroups analysis, when singularly considered. The ability to significantly discriminate between superficial and invasive BC was observed only for hTR transcript levels. A combined model including hTR and CKS2 was the best one in BC diagnosis; Conclusions our results, obtained from a sample set particularly rich of exfoliated cells, provide further molecular evidence on the involvement of hTR, hTERT and CKS2 gene expression in BC carcinogenesis. In particular, while hTERT and CKS2 gene expression seems to have a major involvement in the early stages of the disease, hTR gene expression, seems to be more involved in progression. In

  18. Biological significance of [14C]phenol accumulation in different organs of a murrel, Channa punctatus, and the common carp, Cyprinus carpio

    International Nuclear Information System (INIS)

    Mukherjee, D.; Bhattacharya, S.; Kumar, V.; Moitra, J.

    1990-01-01

    Phenol, a ubiquitous component of industrial effluents, is a common pollutant of water resources and a serious threat to fish. The present work demonstrates that a significant amount of phenol is retained by various tissues of the common carp, Cyprinus carpio, and the snake-headed murrel, Channa punctatus. The rate of [ 14 C]phenol accumulation was higher carp than in the murrel. It is suggested that retention of phenol in the brain and ovary may seriously affect the reproductive potential of the fish

  19. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    Wildenberg, S.M.J.L.; Prevo, B.; Peterman, E.J.G.; Peterman, EJG; Wuite, GJL

    2011-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow

  20. A brief introduction to single-molecule fluorescence methods

    NARCIS (Netherlands)

    van den Wildenberg, Siet M.J.L.; Prevo, Bram; Peterman, Erwin J.G.

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also

  1. Nitric Oxide: The Wonder Molecule

    Indian Academy of Sciences (India)

    Nitric Oxide: The Wonder Molecule. Kushal Chakraborty is a doctoral student at. Department of Life. Sciences and Biology at. Jadavpur University. Presently he is working on the stimulatory effects of various kinds of NSAIDs on different kinds of cells and isolation of that protein from those cells. Keywords. Nitric oxide ...

  2. Nucleic Acids as Information Molecules.

    Science.gov (United States)

    McInerney, Joseph D.

    1996-01-01

    Presents an activity that aims at enabling students to recognize that DNA and RNA are information molecules whose function is to store, copy, and make available the information in biological systems, without feeling overwhelmed by the specialized vocabulary and the minutia of the central dogma. (JRH)

  3. Clinicopathological Significance of MicroRNA-20b Expression in Hepatocellular Carcinoma and Regulation of HIF-1α and VEGF Effect on Cell Biological Behaviour

    Directory of Open Access Journals (Sweden)

    Tong-min Xue

    2015-01-01

    Full Text Available miRNA-20b has been shown to be aberrantly expressed in several tumor types. However, the clinical significance of miRNA-20b in the prognosis of patients with hepatocellular carcinoma (HCC is poorly understood, and the exact role of miRNA-20b in HCC remains unclear. The aim of the present study was to investigate the association of the expression of miR-20b with clinicopathological characteristics and overall survival of HCC patients analyzed by Kaplan-Meier analysis and Cox proportional hazards regression models. Meanwhile, the HIF-1α and VEGF targets of miR-20b have been confirmed. We found not only miR-20b regulation of HIF-1α and VEGF in normal but also regulation of miR-20b in hypoxia. This mechanism would help the tumor cells adapt to the different environments thus promoting the tumor invasion and development. The whole study suggests that miR-20b, HIF-1α, and VEGF serve as a potential therapeutic agent for hepatocellular carcinoma.

  4. Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: a review of the current understanding of epidemiology, biology, risk stratification, and management of myeloma precursor disease.

    Science.gov (United States)

    Agarwal, Amit; Ghobrial, Irene M

    2013-03-01

    The term monoclonal gammopathy of undetermined significance (MGUS) was coined in 1978. The recent advances in our knowledge about MGUS and smoldering multiple myeloma (SMM) have helped us better understand the pathogenesis of myeloma. It seems that myeloma evolves from a precursor state in almost all cases. We do not completely understand the multistep process from the precursor state to myeloma, but studies like whole genome sequencing continue to improve our understanding of this process. The process of transformation may not be linear acquisition of changes, but rather a branched heterogeneous process. Clinical features that are prognostic of rapid transformation have been identified, but no specific molecular markers have been identified. Even with recent advances, multiple myeloma remains an incurable disease in the vast majority, and intervening at the precursor state provides a unique opportunity to alter the natural history of the disease. A limitation is that a vast majority of patients with precursor disease, especially low-risk MGUS, will never progress to myeloma in their lifetime, and treating these patients is not only unnecessary but may be potentially harmful. The challenge is to identify a subset of patients with the precursor state that would definitely progress to myeloma and in whom interventions will have a meaningful impact. As our understanding of the molecular and genetic processes improves, these studies will guide the selection of high-risk patients more appropriately and ultimately direct a tailored management strategy to either delay progression to symptomatic myeloma or even "cure" a person at this premalignant stage. ©2012 AACR.

  5. Cells, targets, and molecules in radiation biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    Cellular damage and repair are discussed with regard to inactivation models, dose-effect curves and cancer research, repair relative to damage accumulation, potentially lethal damage, repair of potentially lethal vs. sublethal damage, cell killing and DNA damage due to nonionizing radiation, and anisotonicity vs. lethality due to nonionizing radiation. Other topics discussed are DNA damage and repair in cells exposed to ionizing radiation, kinetics of repair of single-strand DNA breaks, effects of actinomycin D on x-ray survival curve of hamster cells, misrepair and lethality, and perspective and prospects

  6. Outstanding marine molecules : chemistry, biology, analysis

    OpenAIRE

    Debitus, Cécile; Kornprobst, J.M.

    2014-01-01

    Stalked crinoids were, for a long time, known as fossils found in different quarries, and also from ocean depths since the great expeditions of the eighteenth century. The chemical analyses of fossils and also of living organisms led to the discovery of new bioactive pigments, and also confirmed that the core structures of these pigments had been preserved during the fossilization process. The existence of these quinoid pigments also leads to several interesting questions related to ...

  7. Inference problems in structural biology

    DEFF Research Database (Denmark)

    Olsson, Simon

    The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information...

  8. Inference problems in structural biology

    DEFF Research Database (Denmark)

    Olsson, Simon

    The structure and dynamics of biological molecules are essential for their function. Consequently, a wealth of experimental techniques have been developed to study these features. However, while experiments yield detailed information about geometrical features of molecules, this information is of...

  9. Small molecules: the missing link in the central dogma.

    Science.gov (United States)

    Schreiber, Stuart L

    2005-07-01

    Small molecules have critical roles at all levels of biological complexity and yet remain orphans of the central dogma. Chemical biologists, working with small molecules, expand our understanding of these central elements of life.

  10. The biological significance of brain barrier mechanisms

    DEFF Research Database (Denmark)

    Saunders, Norman R; Habgood, Mark D; Møllgård, Kjeld

    2016-01-01

    that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound...

  11. Chemical and Biological Significance of Naturally Occurring ...

    African Journals Online (AJOL)

    PROF HORSFALL

    This is an open access article distributed under the Creative Commons Attribution Non-Commercial License. (CC-BY-NC), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Received 13 August 2017, received in revised form 22 October 2017, accepted ...

  12. [Biological significance of edible mushrooms in mycoremediation].

    Science.gov (United States)

    Muszyńska, Bożena; Lazur, Jan; Dobosz, Konrad

    2017-01-01

    The importance of fungi in environmental remediation is due both to their ability to biotransformation of xenobiotics and to accumulate heavy metals. These processes depend primarily on the species, while the role of the species or systematic affiliation is less important, as is the strategy of symbiosis, for example: mycorrhiza, parasitism or saprophytism. The main factors controlling the absorption of metals by mushrooms are bioavailability and soil type, while xenobiotics are dependent on soil factors such as cation exchange capacity, pH, or organic matter content. The composition of the substrate is an important factor as there are large differences in the intake of individual substances. The composition, the amount of impurities present, but also the age of the mycelium that may be present in nature for many years or (compared) only for several months under culture conditions. It is a well-known fact that the content of mushroom fruiting bodies is correlated with the emission of pollutants.

  13. Radiation carcinogenesis: Epidemiology and biological significance

    International Nuclear Information System (INIS)

    Boice, J.D.; Fraumeni, J.F.

    1984-01-01

    Epidemiologic studies of populations exposed to radiation have led to the identification of a preventable cause of cancer, but in the long run perhaps the most important contribution of radiation studies will be to provide insights into the basic processes of human carcinogenesis. In this volume, key investigators of major epidemiologic projects summarize their observations to date, including information to help assess the effects of low-level exposures. Experimentalists and theorists emphasize the relevance of laboratory and epidemiologic data in elucidating carcinogenic risks and mechanisms in man. This volume was prepared with several objectives in mind: (a) organize and synthesize knowledge on radiation carcinogenesis through epidemiologic and experimental approaches; (b) illustrate and explore ways of utilizing this information to gain insights into the fundamental mechanisms of cancer development; (c) stimulate the formation of hypotheses suited to experimental or epidemiologic testing, theoretical modeling, and multidisciplinary approaches; and (d) identify recent advances that clarify dose-response relationships and the influence of low-dose exposures, provide leads to carcinogenic mechanisms and host-environmental interactions, and suggest strategies for future research and preventive action

  14. Single Molecule Applications of Quantum Dots

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Elmelund; Jauffred, Liselotte; Brewer, Jonathan R.

    2013-01-01

    Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows:...... experiments held together with the prospects in localization microscopy and single molecule manipulation experiments gave QDs a promising future in single molecule research....

  15. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan ... Author Affiliations. E Arunan1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  17. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan ... Author Affiliations. E Arunan1. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012, India.

  18. Massively Parallel Single-Molecule Manipulation Using Centrifugal Force

    Science.gov (United States)

    Wong, Wesley; Halvorsen, Ken

    2011-03-01

    Precise manipulation of single molecules has led to remarkable insights in physics, chemistry, biology, and medicine. However, two issues that have impeded the widespread adoption of these techniques are equipment cost and the laborious nature of making measurements one molecule at a time. To meet these challenges, we have developed an approach that enables massively parallel single- molecule force measurements using centrifugal force. This approach is realized in the centrifuge force microscope, an instrument in which objects in an orbiting sample are subjected to a calibration-free, macroscopically uniform force- field while their micro-to-nanoscopic motions are observed. We demonstrate high- throughput single-molecule force spectroscopy with this technique by performing thousands of rupture experiments in parallel, characterizing force-dependent unbinding kinetics of an antibody-antigen pair in minutes rather than days. Currently, we are taking steps to integrate high-resolution detection, fluorescence, temperature control and a greater dynamic range in force. With significant benefits in efficiency, cost, simplicity, and versatility, single-molecule centrifugation has the potential to expand single-molecule experimentation to a wider range of researchers and experimental systems.

  19. Quantum interference experiments with complex organic molecules

    International Nuclear Information System (INIS)

    Eibenberger, S. I.

    2015-01-01

    Matter-wave interference with complex particles is a thriving field in experimental quantum physics. The quest for testing the quantum superposition principle with highly complex molecules has motivated the development of the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI). This interferometer has enabled quantum interference with large organic molecules in an unprecedented mass regime. In this doctoral thesis I describe quantum superposition experiments which we were able to successfully realize with molecules of masses beyond 10 000 amu and consisting of more than 800 atoms. The typical de Broglie wavelengths of all particles in this thesis are in the order of 0.3-5 pm. This is significantly smaller than any molecular extension (nanometers) or the delocalization length in our interferometer (hundreds of nanometers). Many vibrational and rotational states are populated since the molecules are thermally highly excited (300-1000 K). And yet, high-contrast quantum interference patterns could be observed. The visibility and position of these matter-wave interference patterns is highly sensitive to external perturbations. This sensitivity has opened the path to extensive studies of the influence of internal molecular properties on the coherence of their associated matter waves. In addition, it enables a new approach to quantum-assisted metrology. Quantum interference imprints a high-contrast nano-structured density pattern onto the molecular beam which allows us to resolve tiny shifts and dephasing of the molecular beam. I describe how KDTL interferometry can be used to investigate a number of different molecular properties. We have studied vibrationally-induced conformational changes of floppy molecules and permanent electric dipole moments using matter-wave deflectometry in an external electric field. We have developed a new method for optical absorption spectroscopy which uses the recoil of the molecules upon absorption of individual photons. This allows us to

  20. Cellular Adhesion and Adhesion Molecules

    OpenAIRE

    SELLER, Zerrin

    2014-01-01

    In recent years, cell adhesion and cell adhesion molecules have been shown to be important for many normal biological processes, including embryonic cell migration, immune system functions and wound healing. It has also been shown that they contribute to the pathogenesis of a large number of common human disorders, such as rheumatoid arthritis and tumor cell metastasis in cancer. In this review, the basic mechanisms of cellular adhesion and the structural and functional features of adhes...

  1. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    RESONANCE. February 2015. GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule ..... Resonance Energy. Transfer (FRET) is an elegant technique to measure the distance between a donor and an acceptor molecule. FRET refers to the.

  2. Molecule of the Month.

    Indian Academy of Sciences (India)

    Molecule of the Month. Corannulene - A Bucky Bowl. H Surya Prakash Rao. The structure, properties and synthesis of a bowl shaped molecule, which resembles a fragment of fullerene, are described here. Chemistry of aromatic molecules has a long history. Many molecules made up of multiple benzene-like rings have ...

  3. Preface: Special Topic on Single-Molecule Biophysics.

    Science.gov (United States)

    Makarov, Dmitrii E; Schuler, Benjamin

    2018-03-28

    Single-molecule measurements are now almost routinely used to study biological systems and processes. The scope of this special topic emphasizes the physics side of single-molecule observations, with the goal of highlighting new developments in physical techniques as well as conceptual insights that single-molecule measurements bring to biophysics. This issue also comprises recent advances in theoretical physical models of single-molecule phenomena, interpretation of single-molecule signals, and fundamental areas of statistical mechanics that are related to single-molecule observations. A particular goal is to illustrate the increasing synergy between theory, simulation, and experiment in single-molecule biophysics.

  4. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Wilson [Univ. of California, Irvine, CA (United States)

    2018-02-03

    Interfacial electron transfer (ET) plays an important role in many chemical and biological processes. Specifically, interfacial ET in TiO2-based systems is important to solar energy technology, catalysis, and environmental remediation technology. However, the microscopic mechanism of interfacial ET is not well understood with regard to atomic surface structure, molecular structure, bonding, orientation, and motion. In this project, we used two complementary methodologies; single-molecule fluorescence spectroscopy, and scanning-tunneling microscopy and spectroscopy (STM and STS) to address this scientific need. The goal of this project was to integrate these techniques and measure the molecular dependence of ET between adsorbed molecules and TiO2 semiconductor surfaces and the ET induced reactions such as the splitting of water. The scanning probe techniques, STM and STS, are capable of providing the highest spatial resolution but not easily time-resolved data. Single-molecule fluorescence spectroscopy is capable of good time resolution but requires further development to match the spatial resolution of the STM. The integrated approach involving Peter Lu at Bowling Green State University (BGSU) and Wilson Ho at the University of California, Irvine (UC Irvine) produced methods for time and spatially resolved chemical imaging of interfacial electron transfer dynamics and photocatalytic reactions. An integral aspect of the joint research was a significant exchange of graduate students to work at the two institutions. This project bridged complementary approaches to investigate a set of common problems by working with the same molecules on a variety of solid surfaces, but using appropriate techniques to probe under ambient (BGSU) and ultrahigh vacuum (UCI) conditions. The molecular level understanding of the fundamental interfacial electron transfer processes obtained in this joint project will be important for developing efficient light harvesting

  5. Spectroscopic (FT-IR, FT-Raman, UV, 1H and 13C NMR) profiling and computational studies on methyl 5-methoxy-1H-indole-2-carboxylate: A potential precursor to biologically active molecules

    Science.gov (United States)

    Almutairi, Maha S.; Xavier, S.; Sathish, M.; Ghabbour, Hazem A.; Sebastian, S.; Periandy, S.; Al-Wabli, Reem I.; Attia, Mohamed I.

    2017-04-01

    Methyl 5-methoxy-1H-indole-2-carboxylate (MMIC) was prepared via esterification of commercially available 5-methoxyindole-2-carboxylic acid. The title molecule MMIC was characterised using FT-IR and FT-Raman in the ranges of 4000-500 and 4000-50 cm-1, respectively. The fundamental modes of the vibrations were assigned and the UV-visible spectrum of the MMIC molecule was recorded in the range of 200-400 nm to explore its electronic nature. The HOMO-LUMO energy distribution was calculated and the bonding and anti-bonding structures of the title molecule were studied and analysed using the natural bond orbital (NBO) approach. The reactivity of the MMIC molecule was also investigated and both the positive and negative centres of the molecule were identified using chemical descriptors and molecular electrostatic potential (MEP) analysis. The chemical shifts of the 1H and 13C NMR spectra were noted and the magnetic field environment of the MMIC molecule are discussed. The non-linear optical (NLO) properties of the title molecule were studied based on its calculated values of polarisability and hyperpolarisability. All computations were obtained by DFT methods using the 6-311++G (d,p) basis set.

  6. Single Molecule Electronics and Devices

    Science.gov (United States)

    Tsutsui, Makusu; Taniguchi, Masateru

    2012-01-01

    The manufacture of integrated circuits with single-molecule building blocks is a goal of molecular electronics. While research in the past has been limited to bulk experiments on self-assembled monolayers, advances in technology have now enabled us to fabricate single-molecule junctions. This has led to significant progress in understanding electron transport in molecular systems at the single-molecule level and the concomitant emergence of new device concepts. Here, we review recent developments in this field. We summarize the methods currently used to form metal-molecule-metal structures and some single-molecule techniques essential for characterizing molecular junctions such as inelastic electron tunnelling spectroscopy. We then highlight several important achievements, including demonstration of single-molecule diodes, transistors, and switches that make use of electrical, photo, and mechanical stimulation to control the electron transport. We also discuss intriguing issues to be addressed further in the future such as heat and thermoelectric transport in an individual molecule. PMID:22969345

  7. A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis.

    Science.gov (United States)

    Geisler, Matt; Kleczkowski, Leszek A; Karpinski, Stanislaw

    2006-02-01

    Short motifs of many cis-regulatory elements (CREs) can be found in the promoters of most Arabidopsis genes, and this raises the question of how their presence can confer specific regulation. We developed a universal algorithm to test the biological significance of CREs by first identifying every Arabidopsis gene with a CRE and then statistically correlating the presence or absence of the element with the gene expression profile on multiple DNA microarrays. This algorithm was successfully verified for previously characterized abscisic acid, ethylene, sucrose and drought responsive CREs in Arabidopsis, showing that the presence of these elements indeed correlates with treatment-specific gene induction. Later, we used standard motif sampling methods to identify 128 putative motifs induced by excess light, reactive oxygen species and sucrose. Our algorithm was able to filter 20 out of 128 novel CREs which significantly correlated with gene induction by either heat, reactive oxygen species and/or sucrose. The position, orientation and sequence specificity of CREs was tested in silicio by analyzing the expression of genes with naturally occurring sequence variations. In three novel CREs the forward orientation correlated with sucrose induction and the reverse orientation with sucrose suppression. The functionality of the predicted novel CREs was experimentally confirmed using Arabidopsis cell-suspension cultures transformed with short promoter fragments or artificial promoters fused with the GUS reporter gene. Our genome-wide analysis opens up new possibilities for in silicio verification of the biological significance of newly discovered CREs, and allows for subsequent selection of such CREs for experimental studies.

  8. Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors.

    Science.gov (United States)

    Buhrlage, Sara J; Bates, Caleb A; Rowe, Steven P; Minter, Aaron R; Brennan, Brian B; Majmudar, Chinmay Y; Wemmer, David E; Al-Hashimi, Hashim; Mapp, Anna K

    2009-05-15

    Small molecules that reconstitute the binding mode(s) of a protein and in doing so elicit a programmed functional response offer considerable advantages in the control of complex biological processes. The development challenges of such molecules are significant, however. Many protein-protein interactions require multiple points of contact over relatively large surface areas. More significantly, several binding modes can be superimposed upon a single sequence within a protein, and a true small molecule replacement must be preprogrammed for such multimodal binding. This is the case for the transcriptional activation domain or TAD of transcriptional activators as these motifs utilize a poorly characterized multipartner binding profile in order to stimulate gene expression. Here we describe a unique class of small molecules that exhibit both function and a binding profile analogous to natural transcriptional activation domains. Of particular note, the small molecules are the first reported to bind to the KIX domain within the CREB binding protein (CBP) at a site that is utilized by natural activators. Further, a comparison of functional and nonfunctional small molecules indicates that an interaction with CBP is a key contributor to transcriptional activity. Taken together, the evidence suggests that the small molecule TADs mimic both the function and mechanism of their natural counterparts and thus present a framework for the broader development of small molecule transcriptional switches.

  9. The status of molecules

    International Nuclear Information System (INIS)

    Barnes, T.

    1994-01-01

    The experimental and theoretical status of hadronic molecules, which are weakly-bound states of two or more hadrons are summarized. A brief history of the subject is given, and a few good candidates are discussed. Some signatures for molecules which may be of interest in the classification of possible molecule states are studied. It is shown that a more general understanding of 2 → 2 hadron-hadron scattering amplitudes will be crucial for molecule searches. A few more recent molecule candidates which are not well established as molecules but satisfy some of the expected signatures are also discussed. (author). 50 refs

  10. The Molecule Cloud - compact visualization of large collections of molecules.

    Science.gov (United States)

    Ertl, Peter; Rohde, Bernhard

    2012-07-06

    Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach "Molecule Cloud". The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large data sets, including PubChem, ChEMBL and ZINC databases using

  11. The Molecule Cloud - compact visualization of large collections of molecules

    Directory of Open Access Journals (Sweden)

    Ertl Peter

    2012-07-01

    Full Text Available Abstract Background Analysis and visualization of large collections of molecules is one of the most frequent challenges cheminformatics experts in pharmaceutical industry are facing. Various sophisticated methods are available to perform this task, including clustering, dimensionality reduction or scaffold frequency analysis. In any case, however, viewing and analyzing large tables with molecular structures is necessary. We present a new visualization technique, providing basic information about the composition of molecular data sets at a single glance. Summary A method is presented here allowing visual representation of the most common structural features of chemical databases in a form of a cloud diagram. The frequency of molecules containing particular substructure is indicated by the size of respective structural image. The method is useful to quickly perceive the most prominent structural features present in the data set. This approach was inspired by popular word cloud diagrams that are used to visualize textual information in a compact form. Therefore we call this approach “Molecule Cloud”. The method also supports visualization of additional information, for example biological activity of molecules containing this scaffold or the protein target class typical for particular scaffolds, by color coding. Detailed description of the algorithm is provided, allowing easy implementation of the method by any cheminformatics toolkit. The layout algorithm is available as open source Java code. Conclusions Visualization of large molecular data sets using the Molecule Cloud approach allows scientists to get information about the composition of molecular databases and their most frequent structural features easily. The method may be used in the areas where analysis of large molecular collections is needed, for example processing of high throughput screening results, virtual screening or compound purchasing. Several example visualizations of large

  12. Single-molecule manipulation and detection.

    Science.gov (United States)

    Zhao, Deyu; Liu, Siyun; Gao, Ying

    2018-01-25

    Compared to conventional ensemble methods, studying macromolecules at single-molecule level can reveal extraordinary clear and even surprising views for a biological reaction. In the past 20 years, single-molecule techniques have been undergoing a very rapid development, and these cutting edge technologies have revolutionized the biological research by facilitating single-molecule manipulation and detection. Here we give a brief review about these advanced techniques, including optical tweezers, magnetic tweezers, atomic force microscopy (AFM), hydrodynamic flow-stretching assay, and single-molecule fluorescence resonance energy transfer (smFRET). We are trying to describe their basic principles and provide a few examples of applications for each technique. This review aims to give a rather introductory survey of single-molecule techniques for audiences with biological or biophysical background. © The Author(s) 2018. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Watching single molecules dance

    Science.gov (United States)

    Mehta, Amit Dinesh

    Molecular motors convert chemical energy, from ATP hydrolysis or ion flow, into mechanical motion. A variety of increasingly precise mechanical probes have been developed to monitor and perturb these motors at the single molecule level. Several outstanding questions can be best approached at the single molecule level. These include: how far does a motor progress per energy quanta consumed? how does its reaction cycle respond to load? how many productive catalytic cycles can it undergo per diffusional encounter with its track? and what is the mechanical stiffness of a single molecule connection? A dual beam optical trap, in conjunction with in vitro ensemble motility assays, has been used to characterize two members of the myosin superfamily: muscle myosin II and chick brain myosin V. Both move the helical polymer actin, but myosin II acts in large ensembles to drive muscle contraction or cytokinesis, while myosin V acts in small numbers to transport vesicles. An optical trapping apparatus was rendered sufficiently precise to identify a myosin working stroke with 1nm or so, barring systematic errors such as those perhaps due to random protein orientations. This and other light microscopic motility assays were used to characterize myosin V: unlike myosin II this vesicle transport protein moves through many increments of travel while remaining strongly bound to a single actin filament. The step size, stall force, and travel distance of myosin V reveal a remarkably efficient motor capable of moving along a helical track for over a micrometer without significantly spiraling around it. Such properties are fully consistent with the putative role of an organelle transport motor, present in small numbers to maintain movement over long ranges relative to cellular size scales. The contrast between myosin II and myosin V resembles that between a human running on the moon and one walking on earth, where the former allows for faster motion when in larger ensembles but for less

  14. Stepwise oscillatory circuits of a DNA molecule.

    Science.gov (United States)

    Xu, Kunming

    2009-08-01

    A DNA molecule is characterized by a stepwise oscillatory circuit where every base pair is a capacitor, every phosphate bridge is an inductance, and every deoxyribose is a charge router. The circuitry accounts for DNA conductivity through both short and long distances in good agreement with experimental evidence that has led to the identification of the so-called super-exchange and multiple-step hopping mechanisms. However, in contrast to the haphazard hopping and super-exchanging events, the circuitry is a well-defined charge transport mechanism reflecting the great reliability of the genetic substance in delivering electrons. Stepwise oscillatory charge transport through a nucleotide sequence that directly modulates the oscillation frequency may have significant biological implications.

  15. Biologic significance of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) as a pivotal regulator of tumor growth through angiogenesis in human uterine cancer.

    Science.gov (United States)

    Sonoda, Kenzo; Miyamoto, Shingo; Yamazaki, Ayano; Kobayashi, Hiroaki; Nakashima, Manabu; Mekada, Eisuke; Wake, Norio

    2007-11-01

    The expression of receptor-binding cancer antigen expressed on SiSo cells (RCAS1) is related significantly to the overall survival of patients with various cancers. RCAS1 reportedly induces apoptotic cell death in peripheral lymphocytes, which may contribute to the escape of tumor cells from immune surveillance. RCAS1 expression also has been related to tumor invasiveness and size in uterine cervical cancer. To clarify whether RCAS1 exacerbates tumor progression, the authors investigated the association between RCAS1 expression and tumor growth potential. The authors constructed small interfering ribonucleic acid (RNA) (siRNA) to target RCAS1. After transfection of siRNA and the RCAS1-encoding gene, growth of tumor cells was assessed in vitro and in vivo. The correlation between RCAS1 expression and angiogenesis was investigated in the transfected cells and in inoculated tumors from nude mice. In addition, the same association was investigated immunohistochemically with tissue samples from patients with uterine cervical cancer. Knockdown of RCAS1 expression by siRNA significantly suppressed the in vivo growth of SiSo and HOUA tumor cells (P cell growth was not affected significantly. Enhanced RCAS1 expression significantly promoted in vivo growth, but not in vitro growth, of tumors derived from COS-7 cells (P = .0039). Introduction of the RCAS1-encoding gene increased expression of vascular endothelial growth factor (VEGF). In uterine cervical cancer, RCAS1 expression was associated significantly with VEGF expression (P = .0407) and with microvessel density (P = .0108). RCAS1 may be a pivotal regulator of tumor growth through angiogenesis. Continued exploration of the biologic function of RCAS1 may allow the development of novel therapeutic strategies for uterine cancer.

  16. CD molecules 2005: human cell differentiation molecules

    Czech Academy of Sciences Publication Activity Database

    Zola, H.; Swart, B.; Nicholson, I.; Aasted, B.; Bensussan, A.; Boumsell, L.; Buckley, C.; Clark, G.; Drbal, Karel; Engel, P.; Hart, D.; Hořejší, Václav; Isacke, C.; Macardle, P.; Malavasi, F.; Mason, D.; Olive, D.; Saalmüller, A.; Schlossman, S.F.; Schwartz-Albiez, R.; Simmons, P.; Tedder, T.F.; Uguccioni, M.; Warren, H.

    2005-01-01

    Roč. 106, č. 9 (2005), s. 3123-3126 ISSN 0006-4971 Institutional research plan: CEZ:AV0Z5052915 Keywords : CD molecules * leukocyte antigen Subject RIV: EC - Immunology Impact factor: 10.131, year: 2005

  17. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  18. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    IAS Admin

    GENERAL ARTICLE. Single-Molecule Spectroscopy. Every Molecule is Different! Kankan Bhattacharyya. Keywords. Single-molecule spectroscopy. (SMS), confocal microscopy,. FCS, sm-FRET, FLIM. 1 High-resolution spectrum re- fers to a spectrum consisting of very sharp lines. The sharp lines clearly display transitions to ...

  19. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Biologic Scaffolds.

    Science.gov (United States)

    Costa, Alessandra; Naranjo, Juan Diego; Londono, Ricardo; Badylak, Stephen F

    2017-09-01

    Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  1. Single Molecule Studies on Dynamics in Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Daniela Täuber

    2013-09-01

    Full Text Available Single molecule (SM methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC. Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  2. Single molecule studies on dynamics in liquid crystals.

    Science.gov (United States)

    Täuber, Daniela; von Borczyskowski, Christian

    2013-09-26

    Single molecule (SM) methods are able to resolve structure related dynamics of guest molecules in liquid crystals (LC). Highly diluted small dye molecules on the one hand explore structure formation and LC dynamics, on the other hand they report about a distortion caused by the guest molecules. The anisotropic structure of LC materials is used to retrieve specific conformation related properties of larger guest molecules like conjugated polymers. This in particular sheds light on organization mechanisms within biological cells, where large molecules are found in nematic LC surroundings. This review gives a short overview related to the application of highly sensitive SM detection schemes in LC.

  3. Single Molecule Biophysics Experiments and Theory

    CERN Document Server

    Komatsuzaki, Tamiki; Takahashi, Satoshi; Yang, Haw; Silbey, Robert J; Rice, Stuart A; Dinner, Aaron R

    2011-01-01

    Discover the experimental and theoretical developments in optical single-molecule spectroscopy that are changing the ways we think about molecules and atoms The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. This latest volume explores the advent of optical single-molecule spectroscopy, and how atomic force microscopy has empowered novel experiments on individual biomolecules, opening up new frontiers in molecular and cell biology and leading to new theoretical approaches

  4. The SwissLipids knowledgebase for lipid biology.

    OpenAIRE

    Aimo, L.; Liechti, R.; Hyka-Nouspikel, N.; Niknejad, A.; Gleizes, A.; Götz, L.; Kuznetsov, D.; David, F.P.; van der Goot, F.G.; Riezman, H.; Bougueleret, L.; Xenarios, I.; Bridge, A.

    2015-01-01

    Motivation: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of ...

  5. Binuclear manganese compounds of potential biological significance. Part 2. Mechanistic study of hydrogen peroxide disproportionation by dimanganese complexes: the two oxygen atoms of the peroxide end up in a dioxo intermediate.

    Science.gov (United States)

    Dubois, Lionel; Caspar, Régis; Jacquamet, Lilian; Petit, Pierre-Emmanuel; Charlot, Marie-France; Baffert, Carole; Collomb, Marie-Noëlle; Deronzier, Alain; Latour, Jean-Marc

    2003-08-11

    The dimanganese(II,II) complexes 1a [Mn(2)(L)(OAc)(2)(CH(3)OH)](ClO(4)) and 1b [Mn(2)(L)(OBz)(2)(H(2)O)](ClO(4)), where HL is the unsymmetrical phenol ligand 2-(bis-(2-pyridylmethyl)aminomethyl)-6-((2-pyridylmethyl)(benzyl)aminomethyl)-4-methylphenol, react with hydrogen peroxide in acetonitrile solution. The disproportionation reaction was monitored by electrospray ionization mass spectrometry (ESI-MS) and EPR and UV-visible spectroscopies. Extensive EPR studies have shown that a species (2) exhibiting a 16-line spectrum at g approximately 2 persists during catalysis. ESI-MS experiments conducted similarly during catalysis associate 2a with a peak at 729 (791 for 2b) corresponding to the formula [Mn(III)Mn(IV)(L)(O)(2)(OAc)](+) ([Mn(III)Mn(IV)(L)(O)(2)(OBz)](+) for 2b). At the end of the reaction, it is partly replaced by a species (3) possessing a broad unfeatured signal at g approximately 2. ESI-MS associates 3a with a peak at 713 (775 for 3b) corresponding to the formula [Mn(II)Mn(III)(L)(O)(OAc)](+) ([Mn(II)Mn(III)(L)(O)(OBz)](+) for 3b). In the presence of H(2)(18)O, these two peaks move to 733 and to 715 indicating the presence of two and one oxo ligands, respectively. When H(2)(18)O(2) is used, 2a and 3a are labeled showing that the oxo ligands come from H(2)O(2). Interestingly, when an equimolar mixture of H(2)O(2) and H(2)(18)O(2) is used, only unlabeled and doubly labeled 2a/b are formed, showing that its two oxo ligands come from the same H(2)O(2) molecule. All these experiments lead to attribute the formula [Mn(III)Mn(IV)(L)(O)(2)(OAc)](+) to 2a and to 3a the formula [Mn(II)Mn(III)(L)(O)(OAc)](+). Freeze-quench/EPR experiments revealed that 2a appears at 500 ms and that another species with a 6-line spectrum is formed transiently at ca. 100 ms. 2a was prepared by reaction of 1a with tert-butyl hydroperoxide as shown by EPR and UV-visible spectroscopies and ESI-MS experiments. Its structure was studied by X-ray absorption experiments which revealed the

  6. Formation of Ultracold Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Cote, Robin [Univ. of Connecticut, Storrs, CT (United States)

    2016-01-28

    Advances in our ability to slow down and cool atoms and molecules to ultracold temperatures have paved the way to a revolution in basic research on molecules. Ultracold molecules are sensitive of very weak interactions, even when separated by large distances, which allow studies of the effect of those interactions on the behavior of molecules. In this program, we have explored ways to form ultracold molecules starting from pairs of atoms that have already reached the ultracold regime. We devised methods that enhance the efficiency of ultracold molecule production, for example by tuning external magnetic fields and using appropriate laser excitations. We also investigates the properties of those ultracold molecules, especially their de-excitation into stable molecules. We studied the possibility of creating new classes of ultra-long range molecules, named macrodimers, thousand times more extended than regular molecules. Again, such objects are possible because ultra low temperatures prevent their breakup by collision. Finally, we carried out calculations on how chemical reactions are affected and modified at ultracold temperatures. Normally, reactions become less effective as the temperature decreases, but at ultracold temperatures, they can become very effective. We studied this counter-intuitive behavior for benchmark chemical reactions involving molecular hydrogen.

  7. The status of molecules

    International Nuclear Information System (INIS)

    Barnes, T.; Oak Ridge National Lab., TN; Tennessee Univ., Knoxville, TN

    1994-06-01

    This report summarizes the experimental and theoretical status of hadronic molecules, which are weakly-bound states of two or more hadrons. We begin with a brief history of the subject and discuss a few good candidates, and then abstract some signatures for molecules which may be of interest in the classification of possible molecule states. Next we argue that a more general understanding of 2 → 2 hadron-hadron scattering amplitudes will be crucial for molecule searches, and discuss some of our recent work in this area. We conclude with a discussion of a few more recent molecule candidates (notably the f o (1710)) which are not well established as molecules but satisfy some of the expected signatures. (Author)

  8. Ultracold Polar Molecules

    Science.gov (United States)

    2016-04-01

    AFRL-AFOSR-UK-TR-2016-0005 Ultracold Polar Molecules Jeremy Hutson UNIVERSITY OF DURHAM Final Report 04/01/2016 DISTRIBUTION A: Distribution approved...DATES COVERED (From - To) 15-Jan-2010 to 14-Jul-2015 4. TITLE AND SUBTITLE Final Report on Grant FA8655-10-1-3033 on Ultracold Polar Molecules 5a...formation of ultracold 87RbCs molecules in their rovibrational ground state by magnetoassociation followed by STIRAP, resulting in 14 papers acknowledging

  9. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    D)> HBr (0.83 D) > HI (0.45 D) [8]. Hence, these molecules can and do induce a dipole moment in the rare gas atoms when the two interact. The induced dipole moment is proportional to the inducing field E and the proportionality constant is the polariz- ability, i.e., μ i. = αE. However, as mentioned above, dispersion.

  10. Cold Rydberg molecules

    Science.gov (United States)

    Raithel, Georg; Zhao, Jianming

    2017-04-01

    Cold atomic systems have opened new frontiers at the interface of atomic and molecular physics. These include research on novel types of Rydberg molecules. Three types of molecules will be reviewed. Long-range, homonuclear Rydberg molecules, first predicted in [1] and observed in [2], are formed via low-energy electron scattering of the Rydberg electron from a ground-state atom within the Rydberg atom's volume. The binding mostly arises from S- and P-wave triplet scattering. We use a Fermi model that includes S-wave and P-wave singlet and triplet scattering, the fine structure coupling of the Rydberg atom and the hyperfine structure coupling of the 5S1/2 atom (in rubidium [3]). The hyperfine structure gives rise to mixed singlet-triplet potentials for both low-L and high-L Rydberg molecules [3]. A classification into Hund's cases [3, 4, 5] will be discussed. The talk further includes results on adiabatic potentials and adiabatic states of Rydberg-Rydberg molecules in Rb and Cs. These molecules, which have even larger bonding length than Rydberg-ground molecules, are formed via electrostatic multipole interactions. The leading interaction term of neutral Rydberg-Rydberg molecules is between two dipoles, while for ionic Rydberg molecules it is between a dipole and a monopole. NSF (PHY-1506093), NNSF of China (61475123).

  11. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  12. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  13. Relative orientation of collagen molecules within a fibril: a homology model for homo sapiens type I collagen.

    Science.gov (United States)

    Collier, Thomas A; Nash, Anthony; Birch, Helen L; de Leeuw, Nora H

    2018-02-15

    Type I collagen is an essential extracellular protein that plays an important structural role in tissues that require high tensile strength. However, owing to the molecule's size, to date no experimental structural data are available for the Homo sapiens species. Therefore, there is a real need to develop a reliable homology model and a method to study the packing of the collagen molecules within the fibril. Through the use of the homology model and implementation of a novel simulation technique, we have ascertained the orientations of the collagen molecules within a fibril, which is currently below the resolution limit of experimental techniques. The longitudinal orientation of collagen molecules within a fibril has a significant effect on the mechanical and biological properties of the fibril, owing to the different amino acid side chains available at the interface between the molecules.

  14. Polyketide stereocontrol: a study in chemical biology

    Directory of Open Access Journals (Sweden)

    Kira J. Weissman

    2017-02-01

    Full Text Available The biosynthesis of reduced polyketides in bacteria by modular polyketide synthases (PKSs proceeds with exquisite stereocontrol. As the stereochemistry is intimately linked to the strong bioactivity of these molecules, the origins of stereochemical control are of significant interest in attempts to create derivatives of these compounds by genetic engineering. In this review, we discuss the current state of knowledge regarding this key aspect of the biosynthetic pathways. Given that much of this information has been obtained using chemical biology tools, work in this area serves as a showcase for the power of this approach to provide answers to fundamental biological questions.

  15. A new approach to predict the biological activity of molecules based on similarity of their interaction fields and the logP and logD values: application to auxins.

    Science.gov (United States)

    Bertosa, Branimir; Kojić-Prodić, Biserka; Wade, Rebecca C; Ramek, Michael; Piperaki, Stavroula; Tsantili-Kakoulidou, Anna; Tomić, Sanja

    2003-01-01

    The activity of a biological compound is dependent both on specific binding to a target receptor and its ADME (Absorption, Distribution, Metabolism, Excretion) properties. A challenge to predict biological activity is to consider both contributions simultaneously in deriving quantitative models. We present a novel approach to derive QSAR models combining similarity analysis of molecular interaction fields (MIFs) with prediction of logP and/or logD. This new classification method is applied to a set of about 100 compounds related to the auxin plant hormone. The classification based on similarity of their interaction fields is more successful for the indole than the phenoxy compounds. The classification of the phenoxy compounds is however improved by taking into account the influence of the logP and/or the logD values on biological activity. With the new combined method, the majority (8 out of 10) of the previously misclassified derivatives of phenoxy acetic acid are classified in accord with their bioassays. The recently determined crystal structure of the auxin-binding protein 1 (ABP1) enabled validation of our approach. The results of docking a few auxin related compounds with different biological activity to ABP1 correlate well with the classification based on similarity of MIFs only. Biological activity is, however, better predicted by a combined similarity of MIFs + logP/logD approach.

  16. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect [v1; ref status: indexed, http://f1000r.es/a0

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-01-01

    progression of cell cycle through mitosis, indicated that Warburg effect had a fundamental biological significance extending to non-malignant tissues. The approach used here could facilitate integration of accumulated cyber knowledge on cancer metabolism into predictive science.

  17. Molecule of the Month

    Indian Academy of Sciences (India)

    Atoms in a molecule generally prefer, particularly among the neighbouring ones, certain optimmn geometrical relationships. These are manifested in specific ranges of bond lengths, bond angles, torsion angles etc. As it always happens, chemists are interested in making molecules where these 'standard relationships' are ...

  18. Molecule of the Month

    Indian Academy of Sciences (India)

    Cyclo bu tadiene (1) has been one of the most popular molecules for experimentalists and theoreticians. This molecule is unstable as . it is antiaromatic ( 4,n electrons in a cyclic array). Even though some highly substituted cyclobutadienes, for example, compound 2 and the Fe(CO)3 complex of cyclobutadiene (3) are ...

  19. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! Kankan Bhattacharyya. General Article Volume 20 Issue 2 February 2015 pp 151-164. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Algebraic theory of molecules

    CERN Document Server

    Iachello, F

    1995-01-01

    1. The Wave Mechanics of Diatomic Molecules. 2. Summary of Elements of Algebraic Theory. 3. Mechanics of Molecules. 4. Three-Body Algebraic Theory. 5. Four-Body Algebraic Theory. 6. Classical Limit and Coordinate Representation. 8. Prologue to the Future. Appendices. Properties of Lie Algebras; Coupling of Algebras; Hamiltonian Parameters

  1. Molecule of the Month.

    Indian Academy of Sciences (India)

    described here. Chemistry of aromatic molecules has a long history. Many molecules made up of multiple benzene-like rings have been isolated or made in the laboratory over the years. These are called polycondensed aromatic hydrocarbons (PAH for short). ... a bowl like symmetric polycyclic aromatic hydrocarbon of the.

  2. Single-Molecule Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 2. Single-Molecule Spectroscopy: Every Molecule is Different! ... Author Affiliations. Kankan Bhattacharyya1. Department of Physical Chemistry, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700 032 India.

  3. Electrons in Molecules

    Indian Academy of Sciences (India)

    “What are electrons doing in molecules?” This is a deceptively simple question that scientists have been trying to answer for more than eighty years. With the advent of quantum mechanics in 1926, it became clear that we must understand the dynamics of electronic motion in atoms, molecules and solids in order to explain ...

  4. ISOLATED MOLECULES IN METALS

    NARCIS (Netherlands)

    1992-01-01

    In this paper, some results obtained on the formation of isolated molecules of composition SnOx in silver and SnFx in copper-are reviewed. Hyperfine interaction and ion beam interaction techniques were used for the identification of these molecules.

  5. Molecule of the Month

    Indian Academy of Sciences (India)

    Nature is an excellent synthetic organic chemist. Using mild reaction conditions and a few elemental combinations, a large variety of complex molecules are made in and around us. The atoms are put together in precise arrangements to enable the molecules to carry out different tasks with remarkable specificity.

  6. Intersystem crossing in complex molecules

    International Nuclear Information System (INIS)

    Pappalardo, R.G.

    1980-01-01

    The general question of singlet-triplet intersystem crossing is addressed in the context of large organic molecules, i.e., ''complex'' molecules capable of self-relaxation in the absence of collisions. Examples of spectral properties of such molecules in the vapor phase are discussed, relying on extensive Russian literature in this area. Formal expressions for the relaxation rate in the electronic excited states are derived on the basis of the formalism of collision theory, and are applied to the specific case of intersystem crossing. The derivation of the ''energy-gap'' law for triplet-singlet conversion in aromatic hydrocarbons is briefly outlined. The steep rise of internal conversion rates as a function of excess excitation energy, and its competition with the intersystem crossing process, are reviewed for the case of naphthalene vapor. A general expression for the spin-orbit interaction Hamiltonian in molecular systems is outlined. Experimental observations on singlet-triplet conversion rates and the factors that can drastically affect such rates are discussed, with emphasis on the ''in- ternal'' and ''external'' heavy-atom effects. Basic relations of ESR spectroscopy and magnetophotoselection are reviewed. Technological implications of the singlet-triplet crossing in complex molecules are discussed in the context of chelate lasers, dye lasers and luminescent displays. Effects related to singlet-triplet crossing, and generally to excited-state energy-transfer in biological systems, are exemplified by the role of aromatic amino-acids in the phosphorescence of proteins, by some recent studies of energy-transfer in models of biomembranes, and by the clustering of triplet-energy donor-acceptor pairs in micelles

  7. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers.

    Science.gov (United States)

    Bian, Juan; Olesik, Susan V

    2017-03-27

    Polyacrylonitrile/Nafion®/carbon nanotube (PAN/Nafion®/CNT) composite nanofibers were prepared using electrospinning. These electrospun nanofibers were studied as possible substrates for surface-assisted laser desorption/ionization (SALDI) and matrix-enhanced surface-assisted laser desorption/ionization time-of-flight mass spectrometry (ME-SALDI/TOF-MS) for the first time in this paper. Electrospinning provides this novel substrate with a uniform morphology and a narrow size distribution, where CNTs were evenly and firmly immobilized on polymeric nanofibers. The results show that PAN/Nafion®/CNT nanofibrous mats are good substrates for the analysis of both small drug molecules and high molecular weight polymers with high sensitivity. Markedly improved reproducibility was observed relative to MALDI. Due to the composite formation between the polymers and the CNTs, no contamination of the carbon nanotubes to the mass spectrometer was observed. Furthermore, electrospun nanofibers used as SALDI substrates greatly extended the duration of ion signals of target analytes compared to the MALDI matrix. The proposed SALDI approach was successfully used to quantify small drug molecules with no interference in the low mass range. The results show that verapamil could be detected with a surface concentration of 220 femtomoles, indicating the high detection sensitivity of this method. Analysis of peptides and proteins with the electrospun composite substrate using matrix assisted-SALDI was improved and a low limit of detection of approximately 6 femtomoles was obtained for IgG. Both SALDI and ME-SALDI analyses displayed high reproducibility with %RSD ≤ 9% for small drug molecules and %RSD ≤ 14% for synthetic polymers and proteins.

  8. Facts on the fragmentation of antigens in presenting cells, on the association of antigen fragments with MHC molecules in cell-free systems, and speculation on the cell biology of antigen processing

    DEFF Research Database (Denmark)

    Werdelin, O; Mouritsen, S; Petersen, B L

    1988-01-01

    The processing of a protein antigen is a multi-step event taking place in antigen-presenting cells. Processing is a prerequisite for the recognition of most antigens by T lymphocytes. The antigen is ingested by endocytosis, transported to an acid cellular compartment and subjected to proteolytic...... fragmentation. Some of the antigen fragments bind to MHC class II molecules and are transported to the surface of the antigen-presenting cell where the actual presentation to T lymphocytes occurs. The nature of the processed antigen, how and where it is derived and subsequently becomes associated with MHC...

  9. Multicolour Single Molecule Imaging in Cells with Near Infra-Red Dyes

    Science.gov (United States)

    Tynan, Christopher J.; Clarke, David T.; Coles, Benjamin C.; Rolfe, Daniel J.; Martin-Fernandez, Marisa L.; Webb, Stephen E. D.

    2012-01-01

    Background The autofluorescence background of biological samples impedes the detection of single molecules when imaging. The most common method of reducing the background is to use evanescent field excitation, which is incompatible with imaging beyond the surface of biological samples. An alternative would be to use probes that can be excited in the near infra-red region of the spectrum, where autofluorescence is low. Such probes could also increase the number of labels that can be imaged in multicolour single molecule microscopes. Despite being widely used in ensemble imaging, there is a currently a shortage of information available for selecting appropriate commercial near infra-red dyes for single molecule work. It is therefore important to characterise available near infra-red dyes relevant to multicolour single molecule imaging. Methodology/Principal Findings A range of commercially available near infra-red dyes compatible with multi-colour imaging was screened to find the brightest and most photostable candidates. Image series of immobilised samples of the brightest dyes (Alexa 700, IRDye 700DX, Alexa 790 and IRDye 800CW) were analysed to obtain the mean intensity of single dye molecules, their photobleaching rates and long period blinking kinetics. Using the optimum dye pair, we have demonstrated for the first time widefield, multi-colour, near infra-red single molecule imaging using a supercontinuum light source in MCF-7 cells. Conclusions/Significance We have demonstrated that near infra-red dyes can be used to avoid autofluorescence background in samples where restricting the illumination volume of visible light fails or is inappropriate. We have also shown that supercontinuum sources are suited to single molecule multicolour imaging throughout the 470–1000 nm range. Our measurements of near infra-red dye properties will enable others to select optimal dyes for single molecule imaging. PMID:22558412

  10. Dynamics of Activated Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, Amy S. [Univ. of Maryland, College Park, MD (United States)

    2016-11-16

    Experimental studies have been performed to investigate the collisional energy transfer processes of gas-phase molecules that contain large amounts of internal energy. Such molecules are prototypes for molecules under high temperature conditions relevant in combustion and information about their energy transfer mechanisms is needed for a detailed understanding and modeling of the chemistry. We use high resolution transient IR absorption spectroscopy to measure the full, nascent product distributions for collisions of small bath molecules that relax highly vibrationally excited pyrazine molecules with E=38000 cm-1 of vibrational energy. To perform these studies, we developed new instrumentation based on modern IR light sources to expand our experimental capabilities to investigate new molecules as collision partners. This final report describes our research in four areas: the characterization of a new transient absorption spectrometer and the results of state-resolved collision studies of pyrazine(E) with HCl, methane and ammonia. Through this research we have gained fundamental new insights into the microscopic details of relatively large complex molecules at high energy as they undergo quenching collisions and redistribute their energy.

  11. Biological Effects of Radiation

    International Nuclear Information System (INIS)

    Jatau, B.D.; Garba, N.N.; Yusuf, A.M.; Yamusa, Y. A.; Musa, Y.

    2013-01-01

    In earlier studies, researchers aimed a single particle at the nucleus of the cell where DNA is located. Eighty percent of the cells shot through the nucleus survived. This contradicts the belief that if radiation slams through the nucleus, the cell will die. But the bad news is that the surviving cells contained mutations. Cells have a great capacity to repair DNA, but they cannot do it perfectly. The damage left behind in these studies from a single particle of alpha radiation doubled the damage that is already there. This proved, beyond a shadow of doubt, those there biological effects occur as a result of exposure to radiation, Radiation is harmful to living tissue because of its ionizing power in matter. This ionization can damage living cells directly, by breaking the chemical bonds of important biological molecules (particularly DNA), or indirectly, by creating chemical radicals from water molecules in the cells, which can then attack the biological molecules chemically. At some extent these molecules are repaired by natural biological processes, however, the effectiveness of this repair depends on the extent of the damage. The interaction of ionizing with the human body, arising either from external sources outside the body or from internal contamination of the body by radioactive materials, leads to the biological effects which may later show up as a clinical symptoms. Basically, this formed the baseline of this research to serve as a yardstick for creating awareness about radiation and its resulting effects.

  12. Lactoferrin binding molecules in human seminal plasma.

    Science.gov (United States)

    Thaler, C J; Vanderpuye, O A; McIntyre, J A; Faulk, W P

    1990-10-01

    During ejaculation, the iron binding protein lactoferrin binds to sperm and forms a major component of sperm-coating antigens. Physicochemical properties of lactoferrin in seminal plasma (SP) and on sperm differ from those of purified lactoferrin. These differences have been attributed to the binding of unknown seminal macromolecules to lactoferrin. We have studied lactoferrin binding molecules in SP. The SP samples were coated onto microtiter plates and tested for binding of biotinylated lactoferrin. SP was found to specifically bind biotinylated lactoferrin. This binding was competitively inhibited by coincubation with unlabeled lactoferrin but was not affected by control incubations done with human IgG or transferrin. Lactoferrin binding molecules in SP were biochemically characterized by using SDS-PAGE and ligand blotting. Biotinylated lactoferrin bound to SP molecules of approximately 120, 60 and 30 kDa. No binding was observed with biotinylated transferrin. The presence of molecules that associate with lactoferrin in SP was further studied by using crossed immunoelectrophoresis. Lactoferrin in SP immunoprecipitated as two peaks, one of which corresponded to purified lactoferrin. These results suggest that some lactoferrin molecules in SP are free and that others are associated with lactoferrin binding molecules. Binding of lactoferrin to lactoferrin binding molecules appears to change its physicochemical properties and thus could influence its biologic activity and its affinity to sperm.

  13. Designing a small molecule erythropoietin mimetic.

    Science.gov (United States)

    Guarnieri, Frank

    2015-01-01

    Erythropoietin (EPO) is a protein made by the kidneys in response to low red blood cell count that is secreted into the bloodstream and binds to a receptor on hematopoietic stem cells in the bone marrow inducing them to become new red blood cells. EPO made with recombinant DNA technology was brought to market in the 1980s to treat anemia caused by kidney disease and cancer chemotherapy. Because EPO infusion was able to replace blood transfusions in many cases, it rapidly became a multibillion dollar per year drug and as the first biologic created with recombinant technology it launched the biotech industry. For many years intense research was focused on creating a small molecule orally available EPO mimetic. The Robert Wood Johnson (RWJ) group seemed to definitively establish that only large peptides with a minimum of 60 residues could replace EPO, as anything less was not a full agonist. An intense study of the published work led me to hypothesize that the size of the mimetic is not the real issue, but the symmetry making and breaking of the EPO receptor induced by the ligand is the key to activating the stem cells. This analysis meant that residues in the binding site of the receptor deemed absolutely essential for ligand binding and activation from mutagenesis experiments, were probably not really that important. My fundamental hypotheses were: (a) the symmetric state of the homodimeric receptor is the most stable state and thus must be the off-state, (b) a highly localized binding site exists at a pivot point where the two halves of the receptor meet, (c) small molecules can be created that have high potency for this site that will be competitive with EPO and thus can displace the protein-protein interaction, (d) small symmetric molecules will stabilize the symmetric off-state of the receptor, and (e) a key asymmetry in the small molecule will stabilize a mirror image asymmetry in the receptor resulting in the stabilization of the on-state and proliferation of

  14. The Effects of the SUN Project on Teacher Knowledge and Self-Efficacy regarding Biological Energy Transfer Are Significant and Long-Lasting: Results of a Randomized Controlled Trial

    Science.gov (United States)

    Batiza, Ann Finney; Gruhl, Mary; Zhang, Bo; Harrington, Tom; Roberts, Marisa; LaFlamme, Donna; Haasch, Mary Anne; Knopp, Jonathan; Vogt, Gina; Goodsell, David; Hagedorn, Eric; Marcey, David; Hoelzer, Mark; Nelson, Dave

    2013-01-01

    Biological energy flow has been notoriously difficult to teach. Our approach to this topic relies on abiotic and biotic examples of the energy released by moving electrons in thermodynamically spontaneous reactions. A series of analogical model-building experiences was supported with common language and representations including manipulatives.…

  15. Quantum dot molecules

    CERN Document Server

    Wu, Jiang

    2014-01-01

    This book reviews recent advances in the exciting and rapidly growing field of quantum dot molecules (QDMs). It offers state-of-the-art coverage of novel techniques and connects fundamental physical properties with device design.

  16. Single molecule microscopy and spectroscopy: concluding remarks.

    Science.gov (United States)

    van Hulst, Niek F

    2015-01-01

    Chemistry is all about molecules: control, synthesis, interaction and reaction of molecules. All too easily on a blackboard, one draws molecules, their structures and dynamics, to create an insightful picture. The dream is to see these molecules in reality. This is exactly what "Single Molecule Detection" provides: a look at molecules in action at ambient conditions; a breakthrough technology in chemistry, physics and biology. Within the realms of the Royal Society of Chemistry, the Faraday Discussion on "Single Molecule Microscopy and Spectroscopy" was a very appropriate topic for presentation, deliberation and debate. Undoubtedly, the Faraday Discussions have a splendid reputation in stimulating scientific debates along the traditions set by Michael Faraday. Interestingly, back in the 1830's, Faraday himself pursued an experiment that led to the idea that atoms in a compound were joined by an electrical component. He placed two opposite electrodes in a solution of water containing a dissolved compound, and observed that one of the elements of the compound accumulated on one electrode, while the other was deposited on the opposite electrode. Although Faraday was deeply opposed to atomism, he had to recognize that electrical forces were responsible for the joining of atoms. Probably a direct view on the atoms or molecules in his experiment would have convinced him. As such, Michael Faraday might have liked the gathering at Burlington House in September 2015 (). Surely, with the questioning eyes of his bust on the 1st floor corridor, the non-believer Michael Faraday has incited each passer-by to enter into discussion and search for deeper answers at the level of single molecules. In these concluding remarks, highlights of the presented papers and discussions are summarized, complemented by a conclusion on future perspectives.

  17. Sources and basic threats of biological safety

    International Nuclear Information System (INIS)

    Nazarova, O.D.

    2010-01-01

    Full text: Biological safety of any state is connected with development of its public protection against biological weapons and opportunity to prevent bio terrorist attacks. That's why in modern social-economic and geo-political conditions, the problem of biological safety strengthening become significant, which is connected with migration process globalization, development of bio-technology and dramatically increased risk of pathogenic germ infections proliferation, which can be used as biological weapon. Despite of undertaken efforts by world community on full prohibition of biological weapon, its proliferation in the world still takes place. Biology revolution during second and third millennium lead to development not only biotechnology but new achievements in medicine, agriculture and other fields of economy, but also created scientific and research preconditions for development of advanced biological means of mass destruction, that make it more attractive for achieving superiority and assigned targets: low developments costs, opportunity to create it by one small laboratory with two-three high qualified specialists bio technologists; tremendous impact effect: one substance gram can contain from one till one hundreds quintillions (10 18 - 10 20 ) active pathogen molecules and in case if they belong to amplificated RNA and DNA, each molecule getting to organism, will multiply and contaminate environment (the last one is its principal difference from chemical weapon); bypass of organism immunological barriers and specific vaccinations; unusual clinic finding, hard diagnosis; weakness of traditional medications and treatment methods; lack of material destruction; opportunity of tight-lipped developments; opportunity of tight-lipped application; opportunity of delayed effect; opportunity of selective influence on specific population (by use of genetic, climatic and cultural specifications of race, nations and nationalities). Above mentioned specifications

  18. Kinematic anharmonicity of internal rotation of molecules

    International Nuclear Information System (INIS)

    Bataev, V.A.; Pupyshev, V.I.; Godunov, I.A.

    2017-01-01

    The methods of analysis the strongly coupled vibrations are proposed for a number of molecules of aromatic and heterocyclic carbonyl (and some others) compounds. The qualitative principles are formulated for molecular systems with a significant kinematic anharmonicity.

  19. A physico-chemical study of some areas of fundamental significance to biophysics

    International Nuclear Information System (INIS)

    McGlynn, S.P.; Kumar, D.

    1992-01-01

    This report discusses the following topics: Radiation signatures; photoelectron spectroscopy of biologically active molecules; laser optogalvanic effect; magnetic circular dichroism; photochemistry of halogenated molecules; and density effects on high-n rydbergs

  20. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  1. Coordination Compounds in Biology

    Indian Academy of Sciences (India)

    Coordination Compounds in Biology equatorial ligand, there are two axial ligands in most B. 12 derivatives. Derivatives of B12. The various derivatives of B. 12 result most commonly from changes in the axial ligands bound to cobalt. Often it is convenient to draw a greatly abbreviated structure for a B. 12 molecule using a ...

  2. Computational structural biology: methods and applications

    National Research Council Canada - National Science Library

    Schwede, Torsten; Peitsch, Manuel Claude

    2008-01-01

    ... sequencing reinforced the observation that structural information is needed to understand the detailed function and mechanism of biological molecules such as enzyme reactions and molecular recognition events. Furthermore, structures are obviously key to the design of molecules with new or improved functions. In this context, computational structural biology...

  3. MOLECULES IN {eta} CARINAE

    Energy Technology Data Exchange (ETDEWEB)

    Loinard, Laurent; Menten, Karl M.; Guesten, Rolf [Max-Planck Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Zapata, Luis A.; Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 3-72, 58090 Morelia, Michoacan (Mexico)

    2012-04-10

    We report the detection toward {eta} Carinae of six new molecules, CO, CN, HCO{sup +}, HCN, HNC, and N{sub 2}H{sup +}, and of two of their less abundant isotopic counterparts, {sup 13}CO and H{sup 13}CN. The line profiles are moderately broad ({approx}100 km s{sup -1}), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO{sup +} do not appear to be underabundant in {eta} Carinae. On the other hand, molecules containing nitrogen or the {sup 13}C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of {eta} Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  4. Photochemistry of interstellar molecules

    Science.gov (United States)

    Stief, L. J.

    1971-01-01

    The photochemistry of two diatomic and eight polyatomic molecules is discussed quantitatively. For an interstellar molecule, the lifetime against photodecomposition depends upon the absorption cross section, the quantum yield or probability of dissociation following photon absorption, and the interstellar radiation field. The constant energy density of Habing is used for the unobserved regions of interstellar radiation field, and the field in obscuring clouds is estimated by combining the constant flux with the observed interstellar extinction curve covering the visible and ultraviolet regions. Lifetimes against photodecomposition in the unobscured regions and as a function of increasing optical thickness in obscuring clouds are calculated for the ten species. The results show that, except for CO, all the molecules have comparable lifetimes of less than one hundred years. Thus they can exist only in dense clouds and can never have been exposed to the unobscured radiation. The calculations further show that the lifetimes in clouds of moderate opacity are of the order of one million years.

  5. MOLECULES IN η CARINAE

    International Nuclear Information System (INIS)

    Loinard, Laurent; Menten, Karl M.; Güsten, Rolf; Zapata, Luis A.; Rodríguez, Luis F.

    2012-01-01

    We report the detection toward η Carinae of six new molecules, CO, CN, HCO + , HCN, HNC, and N 2 H + , and of two of their less abundant isotopic counterparts, 13 CO and H 13 CN. The line profiles are moderately broad (∼100 km s –1 ), indicating that the emission originates in the dense, possibly clumpy, central arcsecond of the Homunculus Nebula. Contrary to previous claims, CO and HCO + do not appear to be underabundant in η Carinae. On the other hand, molecules containing nitrogen or the 13 C isotope of carbon are overabundant by about one order of magnitude. This demonstrates that, together with the dust responsible for the dimming of η Carinae following the Great Eruption, the molecules detected here must have formed in situ out of CNO-processed stellar material.

  6. Hadron Molecules Revisted

    Energy Technology Data Exchange (ETDEWEB)

    Longacre, R. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-10

    Hadron Molecules are particles made out of hadrons that are held together by self interactions. In this report we discuss seven such molecules and their self interactions. The f0(980), a0(980), f1(1400), ΔN(2150) and π1(1400) molecular structure is given. We predict that two more states the $K\\bar{K}K$(1500) and a1(1400) should be found.

  7. Electron Accumulative Molecules.

    Science.gov (United States)

    Buades, Ana B; Sanchez Arderiu, Víctor; Olid-Britos, David; Viñas, Clara; Sillanpää, Reijo; Haukka, Matti; Fontrodona, Xavier; Paradinas, Markos; Ocal, Carmen; Teixidor, Francesc

    2018-02-28

    With the goal to produce molecules with high electron accepting capacity and low reorganization energy upon gaining one or more electrons, a synthesis procedure leading to the formation of a B-N(aromatic) bond in a cluster has been developed. The research was focused on the development of a molecular structure able to accept and release a specific number of electrons without decomposing or change in its structural arrangement. The synthetic procedure consists of a parallel decomposition reaction to generate a reactive electrophile and a synthesis reaction to generate the B-N(aromatic) bond. This procedure has paved the way to produce the metallacarboranylviologen [M(C 2 B 9 H 11 )(C 2 B 9 H 10 )-NC 5 H 4 -C 5 H 4 N-M'(C 2 B 9 H 11 )(C 2 B 9 H 10 )] (M = M' = Co, Fe and M = Co and M' = Fe) and semi(metallacarboranyl)viologen [3,3'-M(8-(NC 5 H 4 -C 5 H 4 N-1,2-C 2 B 9 H 10 )(1',2'-C 2 B 9 H 11 )] (M = Co, Fe) electron cumulative molecules. These molecules are able to accept up to five electrons and to donate one in single electron steps at accessible potentials and in a reversible way. By targeted synthesis and corresponding electrochemical tests each electron transfer (ET) step has been assigned to specific fragments of the molecules. The molecules have been carefully characterized, and the electronic communication between both metal centers (when this situation applies) has been definitely observed through the coplanarity of both pyridine fragments. The structural characteristics of these molecules imply a low reorganization energy that is a necessary requirement for low energy ET processes. This makes them electronically comparable to fullerenes, but on their side, they have a wide range of possible solvents. The ET from one molecule to another has been clearly demonstrated as well as their self-organizing capacity. We consider that these molecules, thanks to their easy synthesis, ET, self-organizing capacity, wide range of solubility, and easy processability, can

  8. Neural Stem Cells Derived by Small Molecules Preserve Vision.

    Science.gov (United States)

    Lu, Bin; Morgans, Catherine W; Girman, Sergey; Luo, Jing; Zhao, Jiagang; Du, Hongjun; Lim, Sioklam; Ding, Sheng; Svendsen, Clive; Zhang, Kang; Wang, Shaomei

    2013-01-01

    The advances in stem cell biology hold a great potential to treat retinal degeneration. Importantly, specific cell types can be generated efficiently with small molecules and maintained stably over numerous passages. Here, we investigated whether neural stem cell (NSC) derived from human embryonic stem cells (hESC) by small molecules can preserve vision following grafting into the Royal College Surgeon (RCS) rats; a model for retinal degeneration. A cell suspension containing 3 × 10 4 NSCs or NSCs labeled with green fluorescent protein (GFP) was injected into the subretinal space or the vitreous cavity of RCS rats at postnatal day (P) 22; animals injected with cell-carry medium and those left untreated were used as controls. The efficacy of treatment was evaluated by testing optokinetic response, recording luminance threshold, and examining retinal histology. NSCs offered significant preservation of both photoreceptors and visual function. The grafted NSCs survived for long term without evidence of tumor formation. Functionally, NSC treated eyes had significantly better visual acuity and lower luminance threshold than controls. Morphologically, photoreceptors and retinal connections were well preserved. There was an increase in expression of cillary neurotrophic factor (CNTF) in Müller cells in the graft-protected retina. This study reveals that NSCs derived from hESC by small molecules can survive and preserve vision for long term following subretinal transplantation in the RCS rats. These cells migrate extensively in the subretinal space and inner retina; there is no evidence of tumor formation or unwanted changes after grafting into the eyes. The NSCs derived from hESC by small molecules can be generated efficiently and provide an unlimited supply of cells for the treatment of some forms of human outer retinal degenerative diseases. The capacity of NSCs migrating into inner retina offers a potential as a vehicle to delivery drugs/factors to treat inner retinal

  9. Small Molecules: Therapeutic Application in Neuropsychiatric and Neurodegenerative Disorders.

    Science.gov (United States)

    Schiavone, Stefania; Trabace, Luigia

    2018-02-13

    In recent years, an increasing number of studies have been published, focusing on the potential therapeutic use of small catalytic agents with strong biological properties. So far, most of these works have only regarded specific clinical fields, such as oncology, infectivology and general pathology, in particular with respect to the treatment of significant inflammatory processes. However, interesting data on possible therapeutic applications of small molecules for the treatment of neuropsychiatric and neurodegenerative illnesses are emerging, especially with respect to the possibility to modulate the cellular redox state. Indeed, a crucial role of redox dysregulation in the pathogenesis of these disorders has been widely demonstrated by both pre-clinical and clinical studies, being the reduction of the total amount of free radicals a promising novel therapeutic approach for these diseases. In this review, we focused our interest on studies published during the last ten years reporting therapeutic potential of small molecules for the treatment of neuropsychiatric and neurodegenerative disorders, also based on the biological efficiency of these compounds in detecting intracellular disturbances induced by increased production of reactive oxygen species.

  10. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  11. Handbook of Single-Molecule Biophysics

    CERN Document Server

    Hinterdorfer, Peter

    2009-01-01

    The last decade has seen the development of a number of novel biophysical methods that allow the manipulation and study of individual biomolecules. The ability to monitor biological processes at this fundamental level of sensitivity has given rise to an improved understanding of the underlying molecular mechanisms. Through the removal of ensemble averaging, distributions and fluctuations of molecular properties can be characterized, transient intermediates identified, and catalytic mechanisms elucidated. By applying forces on biomolecules while monitoring their activity, important information can be obtained on how proteins couple function to structure. The Handbook of Single-Molecule Biophysics provides an introduction to these techniques and presents an extensive discussion of the new biological insights obtained from them. Coverage includes: Experimental techniques to monitor and manipulate individual biomolecules The use of single-molecule techniques in super-resolution and functional imaging Single-molec...

  12. Bioinspired assembly of small molecules in cell milieu.

    Science.gov (United States)

    Wang, Huaimin; Feng, Zhaoqianqi; Xu, Bing

    2017-05-09

    Self-assembly, the autonomous organization of components to form patterns or structures, is a prevalent process in nature at all scales. Particularly, biological systems offer remarkable examples of diverse structures (as well as building blocks) and processes resulting from self-assembly. The exploration of bioinspired assemblies not only allows for mimicking the structures of living systems, but it also leads to functions for applications in different fields that benefit humans. In the last several decades, efforts on understanding and controlling self-assembly of small molecules have produced a large library of candidates for developing the biomedical applications of assemblies of small molecules. Moreover, recent findings in biology have provided new insights on the assemblies of small molecules to modulate essential cellular processes (such as apoptosis). These observations indicate that the self-assembly of small molecules, as multifaceted entities and processes to interact with multiple proteins, can have profound biological impacts on cells. In this review, we illustrate that the generation of assemblies of small molecules in cell milieu with their interactions with multiple cellular proteins for regulating cellular processes can result in primary phenotypes, thus providing a fundamentally new molecular approach for controlling cell behavior. By discussing the correlation between molecular assemblies in nature and the assemblies of small molecules in cell milieu, illustrating the functions of the assemblies of small molecules, and summarizing some guiding principles, we hope this review will stimulate more molecular scientists to explore the bioinspired self-assembly of small molecules in cell milieu.

  13. Novel approaches for single molecule activation and detection

    CERN Document Server

    Benfenati, Fabio; Torre, Vincent

    2014-01-01

    How can we obtain tools able to process and exchange information at the molecular scale In order to do this, it is necessary to activate and detect single molecules under controlled conditions. This book focuses on the generation of biologically-inspired molecular devices. These devices are based on the developments of new photonic tools able to activate and stimulate single molecule machines. Additionally, new light sensitive molecules can be selectively activated by photonic tools. These technological innovations will provide a way to control activation of single light-sensitive molecules, a

  14. Molecule of the Month

    Indian Academy of Sciences (India)

    The electronic absorption spectrum of a molecule often depends on the solvent used. The change in position (and, sometimes, intensity) of the UV/Vis band accompanying a change in the polarity of the medium is called solvatochromism. The phenomenon has its origins in intermolecular solute–solvent interactions, such as ...

  15. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 2. Molecule of the Month Isomers of Benzene - Still Pursuing Dreams. J Chandrasekhar. Feature Article Volume 1 Issue 2 February 1996 pp 80-83. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Molecule of the Month

    Indian Academy of Sciences (India)

    Molecule of the Month. A Dicopper (II) Complex Hydrolyzes the Phosphate Diester Bond! R N Mukherjee is with the Department of. Chemistry at Indian. Institute of Technology,. Kanpur. 1 DNA: Deoxyribonucleic Acid;. RNA: Ribonucleic Acid; HPNP: 2-Hydroxypropyl-p-nitrophenyl phosphate; Phosphodiester: Di- ester of ...

  17. Molecule-based magnets

    Indian Academy of Sciences (India)

    The design of molecule-based magnets has also been extended to the design of poly-functional molecular magnets, such as those exhibiting second-order optical nonlinearity, liquid crystallinity, or chirality simultaneously with long-range magnetic order. Solubility, low density and biocompatibility are attractive features of ...

  18. Molecule of the Month

    Indian Academy of Sciences (India)

    Michael Faraday opened up a new chapter in chemistry when he isolated benzene from the distillate of coal tar. The deceptively simple molecule with the formula C6H6 has triggered many experiments and theoretical proposals. The correct ring struc- ture, shown in 1 (see Figure 1), was assigned by Kekule after his.

  19. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Volume 16 Issue 12 December 2011 pp 1232-1237. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Molecules to Materials

    Indian Academy of Sciences (India)

    coordination polymers and molecular systems in which metal ions serve as the source of the ... cobalt, nickel and gadolinium which are themselves ferromagnetic in their bulk state (Box 1). ... their complexes, organic free and ion radicals and molecules such as 02 and NO are good examples of paramagnetic systems.

  1. Excitons: Molecules in flatland

    Science.gov (United States)

    Yao, Wang

    2015-06-01

    Forming molecules from atoms is commonplace in dense atomic gases. But it now seems that some two-dimensional materials provide a suitable environment for creating complex molecular states from the hydrogen-like electron-hole pairs that form in semiconductors.

  2. Quantum Interference of Molecules

    Indian Academy of Sciences (India)

    IAS Admin

    C60, the third allotropic form of carbon was discovered in 1985 by Kroto and colleagues. These carbon mole- cules have a structure of a truncated icosahedron (see. Figure 5). The truncated icosahedron has 12 pentagon and 20 hexagon rings and has 60 vertices { the shape of a soccer ball. These molecules have been ...

  3. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 5. Molecule of the Month Molecular–Chameleon: Solvatochromism at its Iridescent Best! Photon Rao. Feature Article Volume 2 Issue 5 May 1997 pp 69-72. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Molecules to Materials

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 5. Molecules to Materials Liquid Crystals and Molecular Conductors. T P Radhakrishnan. Series Article Volume 3 Issue 5 May 1998 pp 6-23. Fulltext. Click here to view fulltext PDF. Permanent link:

  5. Atoms, Molecules, and Compounds

    CERN Document Server

    Manning, Phillip

    2007-01-01

    Explores the atoms that govern chemical processes. This book shows how the interactions between simple substances such as salt and water are crucial to life on Earth and how those interactions are predestined by the atoms that make up the molecules.

  6. Atoms, Molecules and Radiation

    Indian Academy of Sciences (India)

    IAS Admin

    A Refresher Course in Applications of Quantum Mechanics to 'Atoms, Molecules and Radiation' will be held at the Indian Academy of Sciences, Bangalore from December 8 to 20. 2014. The Course is primarily aimed at teachers teaching quantum mechanics and/ or atomic and molecular physics at the UG / PG level.

  7. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 9. Molecule of the Month Adamantane - A Plastic Piece of Diamond. J Chandrasekhar. Feature Article Volume 1 Issue 9 September 1996 pp 66-71. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Molecule of the Month

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 12. Molecule of the Month - A Stable Dibismuthene - A Compound with a Bi-Bi Double Bond. V Chandrasekhar. Volume 16 ... Author Affiliations. V Chandrasekhar1. Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, India.

  9. How to measure load-dependent kinetics of individual motor molecules without a force clamp

    DEFF Research Database (Denmark)

    Sung, J.; Mortensen, Kim; Spudich, J.A.

    2017-01-01

    Single-molecule force spectroscopy techniques, including optical trapping, magnetic trapping, and atomic force microscopy, have provided unprecedented opportunities to understand biological processes at the smallest biological length scales. For example, they have been used to elucidate the molec...

  10. Isatin, a versatile molecule: studies in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Barbara, E-mail: barbara.iq@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil)

    2013-05-15

    Isatin is a small, versatile and widely applicable pharmacological molecule. These characteristics make isatin and its derivatives attractive to many research groups as resources for chemical and pharmacological studies. Although it has a relatively simple structure, isatin is a useful chemical scaffold for a variety of chemical transformations. This article discusses several studies performed by Brazilian groups, including investigations of its structural changes, biological assay designs and new methods for the synthesis of isatin. (author)

  11. OMG: Open Molecule Generator.

    Science.gov (United States)

    Peironcely, Julio E; Rojas-Chertó, Miguel; Fichera, Davide; Reijmers, Theo; Coulier, Leon; Faulon, Jean-Loup; Hankemeier, Thomas

    2012-09-17

    Computer Assisted Structure Elucidation has been used for decades to discover the chemical structure of unknown compounds. In this work we introduce the first open source structure generator, Open Molecule Generator (OMG), which for a given elemental composition produces all non-isomorphic chemical structures that match that elemental composition. Furthermore, this structure generator can accept as additional input one or multiple non-overlapping prescribed substructures to drastically reduce the number of possible chemical structures. Being open source allows for customization and future extension of its functionality. OMG relies on a modified version of the Canonical Augmentation Path, which grows intermediate chemical structures by adding bonds and checks that at each step only unique molecules are produced. In order to benchmark the tool, we generated chemical structures for the elemental formulas and substructures of different metabolites and compared the results with a commercially available structure generator. The results obtained, i.e. the number of molecules generated, were identical for elemental compositions having only C, O and H. For elemental compositions containing C, O, H, N, P and S, OMG produces all the chemically valid molecules while the other generator produces more, yet chemically impossible, molecules. The chemical completeness of the OMG results comes at the expense of being slower than the commercial generator. In addition to being open source, OMG clearly showed the added value of constraining the solution space by using multiple prescribed substructures as input. We expect this structure generator to be useful in many fields, but to be especially of great importance for metabolomics, where identifying unknown metabolites is still a major bottleneck.

  12. Tumor significant dose

    International Nuclear Information System (INIS)

    Supe, S.J.; Nagalaxmi, K.V.; Meenakshi, L.

    1983-01-01

    In the practice of radiotherapy, various concepts like NSD, CRE, TDF, and BIR are being used to evaluate the biological effectiveness of the treatment schedules on the normal tissues. This has been accepted as the tolerance of the normal tissue is the limiting factor in the treatment of cancers. At present when various schedules are tried, attention is therefore paid to the biological damage of the normal tissues only and it is expected that the damage to the cancerous tissues would be extensive enough to control the cancer. Attempt is made in the present work to evaluate the concent of tumor significant dose (TSD) which will represent the damage to the cancerous tissue. Strandquist in the analysis of a large number of cases of squamous cell carcinoma found that for the 5 fraction/week treatment, the total dose required to bring about the same damage for the cancerous tissue is proportional to T/sup -0.22/, where T is the overall time over which the dose is delivered. Using this finding the TSD was defined as DxN/sup -p/xT/sup -q/, where D is the total dose, N the number of fractions, T the overall time p and q are the exponents to be suitably chosen. The values of p and q are adjusted such that p+q< or =0.24, and p varies from 0.0 to 0.24 and q varies from 0.0 to 0.22. Cases of cancer of cervix uteri treated between 1978 and 1980 in the V. N. Cancer Centre, Kuppuswamy Naidu Memorial Hospital, Coimbatore, India were analyzed on the basis of these formulations. These data, coupled with the clinical experience, were used for choice of a formula for the TSD. Further, the dose schedules used in the British Institute of Radiology fraction- ation studies were also used to propose that the tumor significant dose is represented by DxN/sup -0.18/xT/sup -0.06/

  13. Toward Generalization of Iterative Small Molecule Synthesis.

    Science.gov (United States)

    Lehmann, Jonathan W; Blair, Daniel J; Burke, Martin D

    2018-02-01

    Small molecules have extensive untapped potential to benefit society, but access to this potential is too often restricted by limitations inherent to the customized approach currently used to synthesize this class of chemical matter. In contrast, the "building block approach", i.e., generalized iterative assembly of interchangeable parts, has now proven to be a highly efficient and flexible way to construct things ranging all the way from skyscrapers to macromolecules to artificial intelligence algorithms. The structural redundancy found in many small molecules suggests that they possess a similar capacity for generalized building block-based construction. It is also encouraging that many customized iterative synthesis methods have been developed that improve access to specific classes of small molecules. There has also been substantial recent progress toward the iterative assembly of many different types of small molecules, including complex natural products, pharmaceuticals, biological probes, and materials, using common building blocks and coupling chemistry. Collectively, these advances suggest that a generalized building block approach for small molecule synthesis may be within reach.

  14. Single-Molecule Nanomagnets

    Science.gov (United States)

    Friedman, Jonathan R.; Sarachik, Myriam P.

    2010-04-01

    Single-molecule magnets straddle the classical and quantum mechanical worlds, displaying many fascinating phenomena. They may have important technological applications in information storage and quantum computation. We review the physical properties of two prototypical molecular nanomagnets, Mn12-acetate and Fe8: Each behaves as a rigid, spin-10 object and exhibits tunneling between up and down directions. As temperature is lowered, the spin-reversal process evolves from thermal activation to pure quantum tunneling. At low temperatures, magnetic avalanches occur in which the magnetization of an entire sample rapidly reverses. We discuss the important role that symmetry-breaking fields play in driving tunneling and in producing Berry-phase interference. Recent experimental advances indicate that quantum coherence can be maintained on timescales sufficient to allow a meaningful number of quantum computing operations to be performed. Efforts are under way to create monolayers and to address and manipulate individual molecules.

  15. Atoms, molecules & elements

    CERN Document Server

    Graybill, George

    2007-01-01

    Young scientists will be thrilled to explore the invisible world of atoms, molecules and elements. Our resource provides ready-to-use information and activities for remedial students using simplified language and vocabulary. Students will label each part of the atom, learn what compounds are, and explore the patterns in the periodic table of elements to find calcium (Ca), chlorine (Cl), and helium (He) through hands-on activities.

  16. Photonic Molecule Lasers Revisited

    Science.gov (United States)

    Gagnon, Denis; Dumont, Joey; Déziel, Jean-Luc; Dubé, Louis J.

    2014-05-01

    Photonic molecules (PMs) formed by coupling two or more optical resonators are ideal candidates for the fabrication of integrated microlasers, photonic molecule lasers. Whereas most calculations on PM lasers have been based on cold-cavity (passive) modes, i.e. quasi-bound states, a recently formulated steady-state ab initio laser theory (SALT) offers the possibility to take into account the spectral properties of the underlying gain transition, its position and linewidth, as well as incorporating an arbitrary pump profile. We will combine two theoretical approaches to characterize the lasing properties of PM lasers: for two-dimensional systems, the generalized Lorenz-Mie theory will obtain the resonant modes of the coupled molecules in an active medium described by SALT. Not only is then the theoretical description more complete, the use of an active medium provides additional parameters to control, engineer and harness the lasing properties of PM lasers for ultra-low threshold and directional single-mode emission. We will extend our recent study and present new results for a number of promising geometries. The authors acknowledge financial support from NSERC (Canada) and the CERC in Photonic Innovations of Y. Messaddeq.

  17. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  18. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1953-1970: Description of individual studies, data files, codes, and summaries of significant findings

    International Nuclear Information System (INIS)

    Grahn, D.; Fox, C.; Wright, B.J.; Carnes, B.A.

    1994-05-01

    Between 1953 and 1970, studies on the long-term effects of external x-ray and γ irradiation on inbred and hybrid mouse stocks were carried out at the Biological and Medical Research Division, Argonne National Laboratory. The results of these studies, plus the mating, litter, and pre-experimental stock records, were routinely coded on IBM cards for statistical analysis and record maintenance. Also retained were the survival data from studies performed in the period 1943-1953 at the National Cancer Institute, National Institutes of Health, Bethesda, Maryland. The card-image data files have been corrected where necessary and refiled on hard disks for long-term storage and ease of accessibility. In this report, the individual studies and data files are described, and pertinent factors regarding caging, husbandry, radiation procedures, choice of animals, and other logistical details are summarized. Some of the findings are also presented. Descriptions of the different mouse stocks and hybrids are included in an appendix; more than three dozen stocks were involved in these studies. Two other appendices detail the data files in their original card-image format and the numerical codes used to describe the animal's exit from an experiment and, for some studies, any associated pathologic findings. Tabular summaries of sample sizes, dose levels, and other variables are also given to assist investigators in their selection of data for analysis. The archive is open to any investigator with legitimate interests and a willingness to collaborate and acknowledge the source of the data and to recognize appropriate conditions or caveats

  19. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1953-1970: Description of individual studies, data files, codes, and summaries of significant findings

    Energy Technology Data Exchange (ETDEWEB)

    Grahn, D.; Fox, C.; Wright, B.J.; Carnes, B.A.

    1994-05-01

    Between 1953 and 1970, studies on the long-term effects of external x-ray and {gamma} irradiation on inbred and hybrid mouse stocks were carried out at the Biological and Medical Research Division, Argonne National Laboratory. The results of these studies, plus the mating, litter, and pre-experimental stock records, were routinely coded on IBM cards for statistical analysis and record maintenance. Also retained were the survival data from studies performed in the period 1943-1953 at the National Cancer Institute, National Institutes of Health, Bethesda, Maryland. The card-image data files have been corrected where necessary and refiled on hard disks for long-term storage and ease of accessibility. In this report, the individual studies and data files are described, and pertinent factors regarding caging, husbandry, radiation procedures, choice of animals, and other logistical details are summarized. Some of the findings are also presented. Descriptions of the different mouse stocks and hybrids are included in an appendix; more than three dozen stocks were involved in these studies. Two other appendices detail the data files in their original card-image format and the numerical codes used to describe the animal`s exit from an experiment and, for some studies, any associated pathologic findings. Tabular summaries of sample sizes, dose levels, and other variables are also given to assist investigators in their selection of data for analysis. The archive is open to any investigator with legitimate interests and a willingness to collaborate and acknowledge the source of the data and to recognize appropriate conditions or caveats.

  20. A novel theory: biological processes mostly involve two types of mediators, namely general and specific mediators Endogenous small radicals such as superoxide and nitric oxide may play a role of general mediator in biological processes.

    Science.gov (United States)

    Mo, Jian

    2005-01-01

    A great number of papers have shown that free radicals as well as bioactive molecules can play a role of mediator in a wide spectrum of biological processes, but the biological actions and chemical reactivity of the free radicals are quite different from that of the bioactive molecules, and that a wide variety of bioactive molecules can be easily modified by free radicals due to having functional groups sensitive to redox, and the significance of the interaction between the free radicals and the bioactive molecules in biological processes has been confirmed by the results of some in vitro and in vivo studies. Based on these evidence, this article presented a novel theory about the mediators of biological processes. The essentials of the theory are: (a) mediators of biological processes can be classified into general and specific mediators; the general mediators include two types of free radicals, namely superoxide and nitric oxide; the specific mediators include a wide variety of bioactive molecules, such as specific enzymes, transcription factors, cytokines and eicosanoids; (b) a general mediator can modify almost any class of the biomolecules, and thus play a role of mediator in nearly every biological process via diverse mechanisms; a specific mediator always acts selectively on certain classes of the biomolecules, and may play a role of mediator in different biological processes via a same mechanism; (c) biological processes are mostly controlled by networks of their mediators, so the free radicals can regulate the last consequence of a biological process by modifying some types of the bioactive molecules, or in cooperation with these bioactive molecules; the biological actions of superoxide and nitric oxide may be synergistic or antagonistic. According to this theory, keeping the integrity of these networks and the balance between the free radicals and the bioactive molecules as well as the balance between the free radicals and the free radical scavengers

  1. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    International Nuclear Information System (INIS)

    Stern, Stephan

    2013-12-01

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  2. Controlled molecules for X-ray diffraction experiments at free-electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Stephan

    2013-12-15

    X-ray diffractive imaging is at the very heart of materials science and has been utilized for decades to solve unknown molecular structures. Nowadays, it serves as the key method of structural biology to solve molecular structures of large biological molecules comprising several thousand or even millions of atoms. However, X-ray diffraction from isolated molecules is very weak. Therefore, the regular and periodic arrangement of a huge number of identical copies of a certain molecule of interest within a crystal lattice has been a necessary condition in order to exploit Bragg diffraction of X-rays. This results in a huge increase in scattered signal and a strongly improved signal-to-noise ratio compared to diffraction from non-crystalline samples. The major bottleneck of structural biology is that many of biologically interesting molecules refuse to form crystals of sufficient size to be used at synchrotron X-ray lightsources. However, novel X-ray free-electron lasers (XFELs), which became operational very recently, promise to address this issue. X-ray pulses provided by XFELs are many orders of magnitude more intense than X-ray pulses from a synchrotron source and at the same time as short as only several tens of femtoseconds. Combined with wavelengths in the nm-pm range, XFELs are well-suited to study ultrafast atomic and molecular dynamics. Additionally, the ultrashort pulses can be utilized to circumvent the damage threshold which set a limit to the incident intensity in X-ray diffraction experiments before. At XFELs, though eventually destroying the investigated sample, no significant sample deterioration happens on the ultrashort timescale of the XFEL pulse and the measured diffraction pattern is due to an (almost) unharmed sample. In the framework of this thesis, the approach of utilizing the highly intense XFEL pulses for X-ray diffraction of weakly-scattering non-crystalline samples was taken to the limit of small isolated molecules. X-ray diffraction was

  3. Small molecule annotation for the Protein Data Bank.

    Science.gov (United States)

    Sen, Sanchayita; Young, Jasmine; Berrisford, John M; Chen, Minyu; Conroy, Matthew J; Dutta, Shuchismita; Di Costanzo, Luigi; Gao, Guanghua; Ghosh, Sutapa; Hudson, Brian P; Igarashi, Reiko; Kengaku, Yumiko; Liang, Yuhe; Peisach, Ezra; Persikova, Irina; Mukhopadhyay, Abhik; Narayanan, Buvaneswari Coimbatore; Sahni, Gaurav; Sato, Junko; Sekharan, Monica; Shao, Chenghua; Tan, Lihua; Zhuravleva, Marina A

    2014-01-01

    The Protein Data Bank (PDB) is the single global repository for three-dimensional structures of biological macromolecules and their complexes, and its more than 100,000 structures contain more than 20,000 distinct ligands or small molecules bound to proteins and nucleic acids. Information about these small molecules and their interactions with proteins and nucleic acids is crucial for our understanding of biochemical processes and vital for structure-based drug design. Small molecules present in a deposited structure may be attached to a polymer or may occur as a separate, non-covalently linked ligand. During curation of a newly deposited structure by wwPDB annotation staff, each molecule is cross-referenced to the PDB Chemical Component Dictionary (CCD). If the molecule is new to the PDB, a dictionary description is created for it. The information about all small molecule components found in the PDB is distributed via the ftp archive as an external reference file. Small molecule annotation in the PDB also includes information about ligand-binding sites and about covalent and other linkages between ligands and macromolecules. During the remediation of the peptide-like antibiotics and inhibitors present in the PDB archive in 2011, it became clear that additional annotation was required for consistent representation of these molecules, which are quite often composed of several sequential subcomponents including modified amino acids and other chemical groups. The connectivity information of the modified amino acids is necessary for correct representation of these biologically interesting molecules. The combined information is made available via a new resource called the Biologically Interesting molecules Reference Dictionary, which is complementary to the CCD and is now routinely used for annotation of peptide-like antibiotics and inhibitors. © The Author(s) 2014. Published by Oxford University Press.

  4. Nutritional Systems Biology

    DEFF Research Database (Denmark)

    Jensen, Kasper

    and network biology has the potential to increase our understanding of how small molecules affect metabolic pathways and homeostasis, how this perturbation changes at the disease state, and to what extent individual genotypes contribute to this. A fruitful strategy in approaching and exploring the field...... biology research. The paper also shows as a proof-of-concept that a systems biology approach to diet is meaningful and demonstrates some basic principles on how to work with diet systematic. The second chapter of this thesis we developed the resource NutriChem v1.0. A foodchemical database linking...... sites of diet on the disease pathway. We propose a framework for interrogating the critical targets in colon cancer process and identifying plant-based dietary interventions as important modifiers using a systems chemical biology approach. The fifth chapter of the thesis is on discovering of novel anti...

  5. Digital biology and chemistry.

    Science.gov (United States)

    Witters, Daan; Sun, Bing; Begolo, Stefano; Rodriguez-Manzano, Jesus; Robles, Whitney; Ismagilov, Rustem F

    2014-09-07

    This account examines developments in "digital" biology and chemistry within the context of microfluidics, from a personal perspective. Using microfluidics as a frame of reference, we identify two areas of research within digital biology and chemistry that are of special interest: (i) the study of systems that switch between discrete states in response to changes in chemical concentration of signals, and (ii) the study of single biological entities such as molecules or cells. In particular, microfluidics accelerates analysis of switching systems (i.e., those that exhibit a sharp change in output over a narrow range of input) by enabling monitoring of multiple reactions in parallel over a range of concentrations of signals. Conversely, such switching systems can be used to create new kinds of microfluidic detection systems that provide "analog-to-digital" signal conversion and logic. Microfluidic compartmentalization technologies for studying and isolating single entities can be used to reconstruct and understand cellular processes, study interactions between single biological entities, and examine the intrinsic heterogeneity of populations of molecules, cells, or organisms. Furthermore, compartmentalization of single cells or molecules in "digital" microfluidic experiments can induce switching in a range of reaction systems to enable sensitive detection of cells or biomolecules, such as with digital ELISA or digital PCR. This "digitizing" offers advantages in terms of robustness, assay design, and simplicity because quantitative information can be obtained with qualitative measurements. While digital formats have been shown to improve the robustness of existing chemistries, we anticipate that in the future they will enable new chemistries to be used for quantitative measurements, and that digital biology and chemistry will continue to provide further opportunities for measuring biomolecules, understanding natural systems more deeply, and advancing molecular and

  6. Combining supramolecular chemistry with biology.

    Science.gov (United States)

    Uhlenheuer, Dana A; Petkau, Katja; Brunsveld, Luc

    2010-08-01

    Supramolecular chemistry has primarily found its inspiration in biological molecules, such as proteins and lipids, and their interactions. Currently the supramolecular assembly of designed compounds can be controlled to great extent. This provides the opportunity to combine these synthetic supramolecular elements with biomolecules for the study of biological phenomena. This tutorial review focuses on the possibilities of the marriage of synthetic supramolecular architectures and biological systems. It highlights that synthetic supramolecular elements are for example ideal platforms for the recognition and modulation of proteins and cells. The unique features of synthetic supramolecular systems with control over size, shape, valency, and interaction strength allow the generation of structures fitting the demands to approach the biological problems at hand. Supramolecular chemistry has come full circle, studying the biology and its molecules which initially inspired its conception.

  7. Applications of thermal neutron scattering in biology, biochemistry and biophysics

    International Nuclear Information System (INIS)

    Worcester, D.L.

    1977-01-01

    Biological applications of thermal neutron scattering have increased rapidly in recent years. The following categories of biological research with thermal neutron scattering are presently identified: crystallography of biological molecules; neutron small-angle scattering of biological molecules in solution (these studies have already included numerous measurements of proteins, lippoproteins, viruses, ribosomal subunits and chromatin subunit particles); neutron small-angle diffraction and scattering from biological membranes and membrane components; and neutron quasielastic and inelastic scattering studies of the dynamic properties of biological molecules and materials. (author)

  8. Neutron structural biology

    Energy Technology Data Exchange (ETDEWEB)

    Niimura, Nobuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Neutron diffraction provides an experimental method of directly locating hydrogen atoms in protein which play important roles in physiological functions. However, there are relatively few examples of neutron crystallography in biology since it takes a lot of time to collect a sufficient number of Bragg reflections due to the low flux of neutrons illuminating the sample. In order to overcome the flux problem, we have successfully developed the neutron IP, where the neutron converter, {sup 6}Li or Gd, was mixed with a photostimulated luminescence material on flexible plastic support. Neutron Laue diffraction 2A data from tetragonal lysozyme were collected for 10 days with neutron imaging plates, and 960 hydrogen atoms in the molecule and 157 bound water molecules were identified. These results explain the proposed hydrolysis mechanism of the sugar by the lysozyme molecule and that lysozyme is less active at pH7.0. (author)

  9. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1)

    Science.gov (United States)

    2015-01-01

    Activator protein 1 (AP-1) is a pivotal transcription factor that regulates a wide range of cellular processes including proliferation, apoptosis, differentiation, survival, cell migration, and transformation. Accumulating evidence supports that AP-1 plays an important role in several severe disorders including cancer, fibrosis, and organ injury, as well as inflammatory disorders such as asthma, psoriasis, and rheumatoid arthritis. AP-1 has emerged as an actively pursued drug discovery target over the past decade. Excitingly, a selective AP-1 inhibitor T-5224 (51) has been investigated in phase II human clinical trials. Nevertheless, no effective AP-1 inhibitors have yet been approved for clinical use. Despite significant advances achieved in understanding AP-1 biology and function, as well as the identification of small molecules modulating AP-1 associated signaling pathways, medicinal chemistry efforts remain an urgent need to yield selective and efficacious AP-1 inhibitors as a viable therapeutic strategy for human diseases. PMID:24831826

  10. Neutron structural biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1999-01-01

    Neutron structural biology will be one of the most important fields in the life sciences which will interest human beings in the 21st century because neutrons can provide not only the position of hydrogen atoms in biological macromolecules but also the dynamic molecular motion of hydrogen atoms and water molecules. However, there are only a few examples experimentally determined at present because of the lack of neutron source intensity. Next generation neutron source scheduled in JAERI (Performance of which is 100 times better than that of JRR-3M) opens the life science of the 21st century. (author)

  11. Organic chemistry and biology of the interstellar medium

    Science.gov (United States)

    Sagan, C.

    1973-01-01

    Interstellar organic chemistry is discussed as the field of study emerging from the discovery of microwave lines of formaldehyde and of hydrogen cyanide in the interstellar medium. The reliability of molecular identifications and comparisons of interstellar and cometary compounds are considered, along with the degradational origin of simple organics. It is pointed out that the contribution of interstellar organic chemistry to problems in biology is not substantive but analogical. The interstellar medium reveals the operation of chemical processes which, on earth and perhaps on vast numbers of planets throughout the universe, led to the origin of life, but the actual molecules of the interstellar medium are unlikely to play any significant biological role.

  12. Ultra-cold molecule production

    International Nuclear Information System (INIS)

    Ramirez-Serrano, Jamie; Chandler, David W.; Strecker, Kevin; Rahn, Larry A.

    2005-01-01

    The production of Ultra-cold molecules is a goal of many laboratories through out the world. Here we are pursuing a unique technique that utilizes the kinematics of atomic and molecular collisions to achieve the goal of producing substantial numbers of sub Kelvin molecules confined in a trap. Here a trap is defined as an apparatus that spatially localizes, in a known location in the laboratory, a sample of molecules whose temperature is below one degree absolute Kelvin. Further, the storage time for the molecules must be sufficient to measure and possibly further cool the molecules. We utilize a technique unique to Sandia to form cold molecules from near mass degenerate collisions between atoms and molecules. This report describes the progress we have made using this novel technique and the further progress towards trapping molecules we have cooled

  13. Part I. Evaluation of thermodynamic and kinetic parameters for electron transfer and following chemical reaction from a global analysis of current-potential-time data. Part II. Electro-catalytic detection in high-performance liquid chromatography of vitamin B[sub 12] and other molecules of biological and environmental interest

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V.T.

    1992-01-01

    Simultaneous evaluation of electron transfer rate constant, k[sup 0], following chemical reaction rate constant, k[sub f], electron transfer coefficient, [alpha] and standard potential, E[sup 0][prime] for an electrochemical reaction following the EC mechanism is described. A mathematical model for the current response to a potential step is developed, starting with the Butler-Volmer equation for electrode kinetics and concentration expressions for the redox couple. The resulting integral equations are solved numerically via the Step Function method. Current-potential and current-time curves are simulated and tested under limiting conditions. The four parameters of the system are evaluated by fitting simulated current-voltage-time (i-E-t) surface to the theoretical equation. The method is applied to study an important biological molecule, viz., methyl cobalamin, in DMSO. Included in the discussion part is the use of kinetic zone diagrams to depict chronoamperometric current response as a function of dimensionless rate constants for the EC reaction scheme. This compact display of the influence of the two rate constants on current in all time windows can be used to select the best data for analysis. Theoretical limits of measurable rate constants can be estimated from the zone diagram. The development of a dropping mercury electrode detector for High Performance Liquid Chromatography (HPLC) and its application to analysis of B[sub 12] and other vitamins is described. This EC detector is able to achieve high levels of sensitivity by exploiting the catalytic hydrogen evolution undergone by many nitrogenous organic molecules. Vitamin B[sub 12], thiamine, riboflavin and niacinamide were analyzed individually and in mixtures on reverse phase C18 column. Preliminary results from the analysis of commercial multivitamin preparations are also discussed.

  14. Biological radioprotector

    International Nuclear Information System (INIS)

    Stefanescu, Ioan; Titescu, Gheorghe; Tamaian, Radu; Haulica, Ion; Bild, Walther

    2002-01-01

    According to the patent description, the biological radioprotector is deuterium depleted water, DDW, produced by vacuum distillation with an isotopic content lower than natural value. It appears as such or in a mixture with natural water and carbon dioxide. It can be used for preventing and reducing the ionizing radiation effects upon humans or animal organisms, exposed therapeutically, professionally or accidentally to radiation. The most significant advantage of using DDW as biological radioprotector results from its way of administration. Indeed no one of the radioprotectors currently used today can be orally administrated, what reduces the patients' compliance to prophylactic administrations. The biological radioprotector is an unnoxious product obtained from natural water, which can be administrated as food additive instead of drinking water. Dose modification factor is according to initial estimates around 1.9, what is a remarkable feature when one takes into account that the product is toxicity-free and side effect-free and can be administrated prophylactically as a food additive. A net radioprotective action of the deuterium depletion was evidenced experimentally in laboratory animals (rats) hydrated with DDW of 30 ppm D/(D+H) concentration as compared with normally hydrated control animals. Knowing the effects of irradiation and mechanisms of the acute radiation disease as well as the effects of administration of radiomimetic chemicals upon cellular lines of fast cell division, it appears that the effects of administrating DDW result from stimulation of the immunity system. In conclusion, the biological radioprotector DDW presents the following advantages: - it is obtained from natural products without toxicity; - it is easy to be administrated as a food additive, replacing the drinking water; - besides radioprotective effects, the product has also immunostimulative and antitumoral effects

  15. Chemical annotation of small and peptide-like molecules at the Protein Data Bank

    Science.gov (United States)

    Young, Jasmine Y.; Feng, Zukang; Dimitropoulos, Dimitris; Sala, Raul; Westbrook, John; Zhuravleva, Marina; Shao, Chenghua; Quesada, Martha; Peisach, Ezra; Berman, Helen M.

    2013-01-01

    Over the past decade, the number of polymers and their complexes with small molecules in the Protein Data Bank archive (PDB) has continued to increase significantly. To support scientific advancements and ensure the best quality and completeness of the data files over the next 10 years and beyond, the Worldwide PDB partnership that manages the PDB archive is developing a new deposition and annotation system. This system focuses on efficient data capture across all supported experimental methods. The new deposition and annotation system is composed of four major modules that together support all of the processing requirements for a PDB entry. In this article, we describe one such module called the Chemical Component Annotation Tool. This tool uses information from both the Chemical Component Dictionary and Biologically Interesting molecule Reference Dictionary to aid in annotation. Benchmark studies have shown that the Chemical Component Annotation Tool provides significant improvements in processing efficiency and data quality. Database URL: http://wwpdb.org PMID:24291661

  16. Playing with molecules.

    Science.gov (United States)

    Toon, Adam

    2011-12-01

    Recent philosophy of science has seen a number of attempts to understand scientific models by looking to theories of fiction. In previous work, I have offered an account of models that draws on Kendall Walton's 'make-believe' theory of art. According to this account, models function as 'props' in games of make-believe, like children's dolls or toy trucks. In this paper, I assess the make-believe view through an empirical study of molecular models. I suggest that the view gains support when we look at the way that these models are used and the attitude that users take towards them. Users' interaction with molecular models suggests that they do imagine the models to be molecules, in much the same way that children imagine a doll to be a baby. Furthermore, I argue, users of molecular models imagine themselves viewing and manipulating molecules, just as children playing with a doll might imagine themselves looking at a baby or feeding it. Recognising this 'participation' in modelling, I suggest, points towards a new account of how models are used to learn about the world, and helps us to understand the value that scientists sometimes place on three-dimensional, physical models over other forms of representation.

  17. Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks.

    Science.gov (United States)

    Segler, Marwin H S; Kogej, Thierry; Tyrchan, Christian; Waller, Mark P

    2018-01-24

    In de novo drug design, computational strategies are used to generate novel molecules with good affinity to the desired biological target. In this work, we show that recurrent neural networks can be trained as generative models for molecular structures, similar to statistical language models in natural language processing. We demonstrate that the properties of the generated molecules correlate very well with the properties of the molecules used to train the model. In order to enrich libraries with molecules active toward a given biological target, we propose to fine-tune the model with small sets of molecules, which are known to be active against that target. Against Staphylococcus aureus , the model reproduced 14% of 6051 hold-out test molecules that medicinal chemists designed, whereas against Plasmodium falciparum (Malaria), it reproduced 28% of 1240 test molecules. When coupled with a scoring function, our model can perform the complete de novo drug design cycle to generate large sets of novel molecules for drug discovery.

  18. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules.

    Science.gov (United States)

    van Hateren, Andy; Anderson, Malcolm; Bailey, Alistair; Werner, Jörn M; Skipp, Paul; Elliott, Tim

    2017-12-08

    Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated β 2 -microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection. © 2017 by The American Society for

  19. Passing Current through Touching Molecules

    DEFF Research Database (Denmark)

    Schull, G.; Frederiksen, Thomas; Brandbyge, Mads

    2009-01-01

    The charge flow from a single C-60 molecule to another one has been probed. The conformation and electronic states of both molecules on the contacting electrodes have been characterized using a cryogenic scanning tunneling microscope. While the contact conductance of a single molecule between two...

  20. Molecules Best Paper Award 2013.

    Science.gov (United States)

    McPhee, Derek J

    2013-02-05

    Molecules has started to institute a "Best Paper" award to recognize the most outstanding papers in the area of natural products, medicinal chemistry and molecular diversity published in Molecules. We are pleased to announce the second "Molecules Best Paper Award" for 2013.

  1. Synthetic and systems biology for microbial production of commodity chemicals.

    Science.gov (United States)

    Chubukov, Victor; Mukhopadhyay, Aindrila; Petzold, Christopher J; Keasling, Jay D; Martín, Héctor García

    2016-01-01

    The combination of synthetic and systems biology is a powerful framework to study fundamental questions in biology and produce chemicals of immediate practical application such as biofuels, polymers, or therapeutics. However, we cannot yet engineer biological systems as easily and precisely as we engineer physical systems. In this review, we describe the path from the choice of target molecule to scaling production up to commercial volumes. We present and explain some of the current challenges and gaps in our knowledge that must be overcome in order to bring our bioengineering capabilities to the level of other engineering disciplines. Challenges start at molecule selection, where a difficult balance between economic potential and biological feasibility must be struck. Pathway design and construction have recently been revolutionized by next-generation sequencing and exponentially improving DNA synthesis capabilities. Although pathway optimization can be significantly aided by enzyme expression characterization through proteomics, choosing optimal relative protein expression levels for maximum production is still the subject of heuristic, non-systematic approaches. Toxic metabolic intermediates and proteins can significantly affect production, and dynamic pathway regulation emerges as a powerful but yet immature tool to prevent it. Host engineering arises as a much needed complement to pathway engineering for high bioproduct yields; and systems biology approaches such as stoichiometric modeling or growth coupling strategies are required. A final, and often underestimated, challenge is the successful scale up of processes to commercial volumes. Sustained efforts in improving reproducibility and predictability are needed for further development of bioengineering.

  2. Psmir: a database of potential associations between small molecules and miRNAs.

    Science.gov (United States)

    Meng, Fanlin; Wang, Jing; Dai, Enyu; Yang, Feng; Chen, Xiaowen; Wang, Shuyuan; Yu, Xuexin; Liu, Dianming; Jiang, Wei

    2016-01-13

    miRNAs are key post-transcriptional regulators of many essential biological processes, and their dysregulation has been validated in almost all human cancers. Restoring aberrantly expressed miRNAs might be a novel therapeutics. Recently, many studies have demonstrated that small molecular compounds can affect miRNA expression. Thus, prediction of associations between small molecules and miRNAs is important for investigation of miRNA-targeted drugs. Here, we analyzed 39 miRNA-perturbed gene expression profiles, and then calculated the similarity of transcription responses between miRNA perturbation and drug treatment to predict drug-miRNA associations. At the significance level of 0.05, we obtained 6501 candidate associations between 1295 small molecules and 25 miRNAs, which included 624 FDA approved drugs. Finally, we constructed the Psmir database to store all potential associations and the related materials. In a word, Psmir served as a valuable resource for dissecting the biological significance in small molecules' effects on miRNA expression, which will facilitate developing novel potential therapeutic targets or treatments for human cancers. Psmir is supported by all major browsers, and is freely available at http://www.bio-bigdata.com/Psmir/.

  3. Decelerating and Trapping Large Polar Molecules.

    Science.gov (United States)

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Digital-to-biological converter for on-demand production of biologics.

    Science.gov (United States)

    Boles, Kent S; Kannan, Krishna; Gill, John; Felderman, Martina; Gouvis, Heather; Hubby, Bolyn; Kamrud, Kurt I; Venter, J Craig; Gibson, Daniel G

    2017-07-01

    Manufacturing processes for biological molecules in the research laboratory have failed to keep pace with the rapid advances in automization and parellelization. We report the development of a digital-to-biological converter for fully automated, versatile and demand-based production of functional biologics starting from DNA sequence information. Specifically, DNA templates, RNA molecules, proteins and viral particles were produced in an automated fashion from digitally transmitted DNA sequences without human intervention.

  5. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    Systems biology seeks to study biological systems as a whole, contrary to the reductionist approach that has dominated biology. Such a view of biological systems emanating from strong foundations of molecular level understanding of the individual components in terms of their form, function and interactions is promising to ...

  6. Molecules in the Spotlight

    Energy Technology Data Exchange (ETDEWEB)

    Cryan, James

    2010-01-26

    SLAC has just unveiled the world's first X-ray laser, the LCLS. This machine produces pulses of X-rays that are ten billion times brighter than those from conventional sources. One of the goals of this machine is to make movies of chemical reactions, including reactions necessary for life and reactions that might power new energy technologies. This public lecture will show the first results from the LCLS. As a first target, we have chosen nitrogen gas, the main component of the air we breathe. Using the unprecedented power of the LCLS X-rays as a blasting torch, we have created new forms of this molecule and with unique electronic arrangements. Please share with us the first insights from this new technology.

  7. Lanthanide single molecule magnets

    CERN Document Server

    Tang, Jinkui

    2015-01-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs, and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures – an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and...

  8. Lanthanide single molecule magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jinkui; Zhang, Peng [Chinese Academy of Sciences, Changchun (China). Changchun Inst. of Applied Chemistry

    2015-10-01

    This book begins by providing basic information on single-molecule magnets (SMMs), covering the magnetism of lanthanide, the characterization and relaxation dynamics of SMMs and advanced means of studying lanthanide SMMs. It then systematically introduces lanthanide SMMs ranging from mononuclear and dinuclear to polynuclear complexes, classifying them and highlighting those SMMs with high barrier and blocking temperatures - an approach that provides some very valuable indicators for the structural features needed to optimize the contribution of an Ising type spin to a molecular magnet. The final chapter presents some of the newest developments in the lanthanide SMM field, such as the design of multifunctional and stimuli-responsive magnetic materials as well as the anchoring and organization of the SMMs on surfaces. In addition, the crystal structure and magnetic data are clearly presented with a wealth of illustrations in each chapter, helping newcomers and experts alike to better grasp ongoing trends and explore new directions.

  9. Repression ofSalmonellahost cell invasion by aromatic small molecules from the human fecal metabolome.

    Science.gov (United States)

    Peixoto, Rafael J M; Alves, Eduardo S; Wang, Melody; Ferreira, Rosana B R; Granato, Alessandra; Han, Jun; Gill, Hira; Jacobson, Kevan; Lobo, Leandro A; Domingues, Regina M C P; Borchers, Christoph H; Davies, Julian E; Finlay, B Brett; Antunes, L Caetano M

    2017-07-28

    The human microbiome is a collection of microorganisms that inhabit every surface of the body that is exposed to the environment, generally coexisting peacefully with their host. These microbes have important functions such as the production of vitamins, maturation of the immune system and protection against pathogens. We have previously shown that a small-molecule extract from the human fecal microbiome has a strong repressive effect on Salmonella enterica serovar Typhimurium host cell invasion by modulating the expression of genes involved in this process. Here, we describe the characterization of this biological activity. Using a series of purification methods, we obtained fractions with biological activity and characterized them by mass spectrometry. These experiments revealed an abundance of aromatic compounds in the bioactive fraction. Selected compounds were obtained from commercial sources and tested with respect to their ability to repress the expression of hilA , the gene encoding the master regulator of invasion genes in Salmonella We found that the aromatic compound 3,4-dimethylbenzoic acid acts as a strong inhibitor of hilA expression as well as invasion of cultured host cells by Salmonella Future studies should reveal the molecular details of this phenomenon, such as the signaling cascades involved in sensing this bioactive molecule. Importance Microbes constantly sense and adapt to their environment. Often, this is achieved through the production and sensing of small extracellular molecules. The human body is colonized by complex communities of microbes, and, given their biological and chemical diversity, these ecosystems represent a platform where the production and sensing of molecules occurs. In previous work, we showed that small molecules produced by microbes from the human gut can significantly impair the virulence of the enteric pathogen Salmonella enterica Here, we describe a specific compound from the human gut that produces this same effect

  10. Single-Molecule Interfacial Electron Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lu, H. Peter [Bowling Green State Univ., Bowling Green, OH (United States). Dept. of Chemistry and Center for Photochemical Sciences

    2017-11-28

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static and dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO2 nanoparticle surfaces by using ultrafast single-molecule

  11. Magnetic field modification of ultracold molecule-molecule collisions

    International Nuclear Information System (INIS)

    Tscherbul, T V; Suleimanov, Yu V; Aquilanti, V; Krems, R V

    2009-01-01

    We present an accurate quantum mechanical study of molecule-molecule collisions in the presence of a magnetic field. The work focuses on the analysis of elastic scattering and spin relaxation in collisions of O 2 ( 3 Σ g - ) molecules at cold (∼0.1 K) and ultracold (∼10 -6 K) temperatures. Our calculations show that magnetic spin relaxation in molecule-molecule collisions is extremely efficient except at magnetic fields below 1 mT. The rate constant for spin relaxation at T=0.1 K and a magnetic field of 0.1 T is found to be as large as 6.1x10 -11 cm -3 s -1 . The magnetic field dependence of elastic and inelastic scattering cross sections at ultracold temperatures is dominated by a manifold of Feshbach resonances with the density of ∼100 resonances per Tesla for collisions of molecules in the absolute ground state. This suggests that the scattering length of ultracold molecules in the absolute ground state can be effectively tuned in a very wide range of magnetic fields. Our calculations demonstrate that the number and properties of the magnetic Feshbach resonances are dramatically different for molecules in the absolute ground and excited spin states. The density of Feshbach resonances for molecule-molecule scattering in the low-field-seeking Zeeman state is reduced by a factor of 10.

  12. Control Strategy for Small Molecule Impurities in Antibody-Drug Conjugates.

    Science.gov (United States)

    Gong, Hai H; Ihle, Nathan; Jones, Michael T; Kelly, Kathleen; Kott, Laila; Raglione, Thomas; Whitlock, Scott; Zhang, Qunying; Zheng, Jie

    2018-04-01

    Antibody-drug conjugates (ADCs) are an emerging class of biopharmaceuticals. As such, there are no specific guidelines addressing impurity limits and qualification requirements. The current ICH guidelines on impurities, Q3A (Impurities in New Drug Substances), Q3B (Impurities in New Drug Products), and Q6B (Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products) do not adequately address how to assess small molecule impurities in ADCs. The International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) formed an impurities working group (IWG) to discuss this issue. This white paper presents a strategy for evaluating the impact of small molecule impurities in ADCs. This strategy suggests a science-based approach that can be applied to the design of control systems for ADC therapeutics. The key principles that form the basis for this strategy include the significant difference in molecular weights between small molecule impurities and the ADC, the conjugation potential of the small molecule impurities, and the typical dosing concentrations and dosing schedule. The result is that exposure to small impurities in ADCs is so low as to often pose little or no significant safety risk.

  13. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  14. Regularities in positronium formation for atoms and molecules

    International Nuclear Information System (INIS)

    Machacek, J R; Buckman, S J; Sullivan, J P; Blanco, F; Garcia, G

    2016-01-01

    In an effort to aid the modelling of positron and positronium (Ps) transport in biological media we have compiled recent experimental results for the total Ps formation in positron scattering from atoms and molecules. A simple function was found to adequately describe the total Ps formation cross section for both atoms and molecules. The parameters of this function describe the magnitude and shape of the Ps formation cross section and are compared to physical characteristics of the target atoms and molecules. A general trend in the magnitude of the total Ps formation cross section is observed as a function of the target atom/molecule dipole polarisability. The functional form may enable quick estimation of the Ps cross section for molecules for which experimental measurements or theoretical estimates do not exist. (paper)

  15. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  16. Single Molecule Fluorescence: from Physical Fascination to Biological Relevance

    NARCIS (Netherlands)

    Segers-Nolten, Gezina M.J.

    2003-01-01

    Confocal fluorescence microscopy is particularly well-known from the beautiful images that have been obtained with this technique from cells. Several cellular components could be nicely visualized simultaneously by staining them with different fluorophores. Not only for ensemble applications but

  17. Foreword Stress biology – from molecules to populations and ...

    Indian Academy of Sciences (India)

    Unknown

    All living systems are under continuous stress of one kind or the other because of the dynamic nature of the biotic and abiotic environments in which they live. In a way, the essence ... Obviously an integration of approaches would permit a better appreciation of the issues involved and thus provide better definitions for more ...

  18. The importance of correct tautomeric structures for biological molecules

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Mortensen, John; Kamounah, Fadhil S.

    2015-01-01

    The structures of usnic acid and tetracycline are determined using deuterium isotope effects on 13C chemical shifts in a water environment. In case of usnic acid this is achieved by synthesizing a more water soluble usnic acid with a PEG linker. In the usnic acid case an enolic b-triketone (C-1, C...

  19. Stabilization of protein-protein interaction complexes through small molecules.

    Science.gov (United States)

    Zarzycka, Barbara; Kuenemann, Mélaine A; Miteva, Maria A; Nicolaes, Gerry A F; Vriend, Gert; Sperandio, Olivier

    2016-01-01

    Most of the small molecules that have been identified thus far to modulate protein-protein interactions (PPIs) are inhibitors. Another promising way to interfere with PPI-associated biological processes is to promote PPI stabilization. Even though PPI stabilizers are still scarce, stabilization of PPIs by small molecules is gaining momentum and offers new pharmacological options. Therefore, we have performed a literature survey of PPI stabilization using small molecules. From this, we propose a classification of PPI stabilizers based on their binding mode and the architecture of the complex to facilitate the structure-based design of stabilizers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Electron Scattering From Atoms, Molecules, Nuclei, and Bulk Matter

    CERN Document Server

    Whelan, Colm T

    2005-01-01

    Topics that are covered include electron scattering in the scanning TEM; basic theory of inelastic electron imaging; study of confined atoms by electron excitation; helium bubbles created in extreme pressure with application to nuclear safety; lithium ion implantation; electron and positron scattering from clusters; electron scattering from physi- and chemi-absorbed molecules on surfaces; coincidence studies; electron scattering from biological molecules; electron spectroscopy as a tool for environmental science; electron scattering in the presence of intense fields; electron scattering from astrophysical molecules; electon interatctions an detection of x-ray radiation.

  1. Nonadiabatic calculations on hydrogen molecule

    Science.gov (United States)

    Komasa, Jacek; Pachucki, Krzysztof

    Since its infancy quantum mechanics has treated hydrogen molecule as a test bed. Contemporary spectroscopy is able to supply the dissociation energy (D0) of H2 with the accuracy of 3 . 7 .10-4cm-1 , while current theoretical predictions are 10-3cm-1 in error. Both the uncertainties are already smaller than the quantum electrodynamic (QED) effects contributing to D0, which poses a particular challenge to theoreticians. Undoubtedly, in order to increase the predictive power of theory one has to not only account for the multitude of the tiny relativistic and QED effects but, especially, significantly increase precision of the largest component of D0--the nonrelativistic contribution. We approach the problem of solving the Schroedinger equation, equipped with new methodology, with the target precision of D0 set at the level of 10-7cm-1 .

  2. A Brief Introduction to Single-Molecule Fluorescence Methods.

    Science.gov (United States)

    van den Wildenberg, Siet M J L; Prevo, Bram; Peterman, Erwin J G

    2018-01-01

    One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which will be the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches will be addressed, we will first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we will review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We will end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, single-molecule localization super-resolution microscopy, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

  3. Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules.

    Science.gov (United States)

    Pavlov, Anton M; Gabriel, Samantha A; Sukhorukov, Gleb B; Gould, David J

    2015-06-07

    Despite our increasing knowledge of cell biology and the recognition of an increasing repertoire of druggable intracellular therapeutic targets, there remain a limited number of approaches to deliver bioactive molecules to cells and even fewer that enable targeted delivery. Layer-by-layer (LbL) microcapsules are assembled using alternate layers of oppositely charged molecules and are potential cell delivery vehicles for applications in nanomedicine. There are a wide variety of charged molecules that can be included in the microcapsule structure including metal nanoparticles that introduce physical attributes. Delivery of bioactive molecules to cells with LbL microcapsules has recently been demonstrated, so in this study we explore the delivery of bioactive molecules (luciferase enzyme and plasmid DNA) to cells using biodegradable microcapsules containing a layer of magnetite nanoparticles. Interestingly, significantly improved intracellular luciferase enzyme activity (25 fold) and increased transfection efficiency with plasmid DNA (3.4 fold) was observed with magnetic microcapsules. The use of a neodymium magnet enabled efficient targeting of magnetic microcapsules which further improved the delivery efficiency of the cargoes as a consequence of increased microcapsule concentration at the magnetic site. Microcapsules were well tolerated by cells in these experiments and only displayed signs of toxicity at a capsule : cell ratio of 100 : 1 and with extended exposure. These studies illustrate how multi-functionalization of LbL microcapsules can improve and target delivery of bioactive molecules to cells.

  4. Improved and targeted delivery of bioactive molecules to cells with magnetic layer-by-layer assembled microcapsules

    Science.gov (United States)

    Pavlov, Anton M.; Gabriel, Samantha A.; Sukhorukov, Gleb B.; Gould, David J.

    2015-05-01

    Despite our increasing knowledge of cell biology and the recognition of an increasing repertoire of druggable intracellular therapeutic targets, there remain a limited number of approaches to deliver bioactive molecules to cells and even fewer that enable targeted delivery. Layer-by-layer (LbL) microcapsules are assembled using alternate layers of oppositely charged molecules and are potential cell delivery vehicles for applications in nanomedicine. There are a wide variety of charged molecules that can be included in the microcapsule structure including metal nanoparticles that introduce physical attributes. Delivery of bioactive molecules to cells with LbL microcapsules has recently been demonstrated, so in this study we explore the delivery of bioactive molecules (luciferase enzyme and plasmid DNA) to cells using biodegradable microcapsules containing a layer of magnetite nanoparticles. Interestingly, significantly improved intracellular luciferase enzyme activity (25 fold) and increased transfection efficiency with plasmid DNA (3.4 fold) was observed with magnetic microcapsules. The use of a neodymium magnet enabled efficient targeting of magnetic microcapsules which further improved the delivery efficiency of the cargoes as a consequence of increased microcapsule concentration at the magnetic site. Microcapsules were well tolerated by cells in these experiments and only displayed signs of toxicity at a capsule : cell ratio of 100 : 1 and with extended exposure. These studies illustrate how multi-functionalization of LbL microcapsules can improve and target delivery of bioactive molecules to cells.

  5. Geranyl diphosphate synthase molecules, and nucleic acid molecules encoding same

    Science.gov (United States)

    Croteau, Rodney Bruce [Pullman, WA; Burke, Charles Cullen [Moscow, ID

    2008-06-24

    In one aspect, the present invention provides isolated nucleic acid molecules that each encode a geranyl diphosphate synthase protein, wherein each isolated nucleic acid molecule hybridizes to a nucleic acid molecule consisting of the sequence set forth in SEQ ID NO:1 under conditions of 5.times.SSC at 45.degree. C. for one hour. The present invention also provides isolated geranyl diphosphate synthase proteins, and methods for altering the level of expression of geranyl diphosphate synthase protein in a host cell.

  6. Sample preparation in biological mass spectrometry

    CERN Document Server

    Ivanov, Alexander R

    2011-01-01

    The aim of this book is to provide the researcher with important sample preparation strategies in a wide variety of analyte molecules, specimens, methods, and biological applications requiring mass spectrometric analysis as a detection end-point.

  7. Biological activities of substituted trichostatic acid derivatives

    Indian Academy of Sciences (India)

    Administrator

    , although weaker zinc ligands than the hydroxamic acids, generally lead to bioactive molecules and pos- sess higher stability in biological environments. In this respect we prepared both hydroxamic acids and benzamide versions of the target ...

  8. Marine Carotenoids: Biological Functions and Commercial Applications

    NARCIS (Netherlands)

    Vilchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M.

    2011-01-01

    Carotenoids are the most common pigments in nature and are synthesized by all photosynthetic organisms and fungi. Carotenoids are considered key molecules for life. Light capture, photosynthesis photoprotection, excess light dissipation and quenching of singlet oxygen are among key biological

  9. Biological computation

    CERN Document Server

    Lamm, Ehud

    2011-01-01

    Introduction and Biological BackgroundBiological ComputationThe Influence of Biology on Mathematics-Historical ExamplesBiological IntroductionModels and Simulations Cellular Automata Biological BackgroundThe Game of Life General Definition of Cellular Automata One-Dimensional AutomataExamples of Cellular AutomataComparison with a Continuous Mathematical Model Computational UniversalitySelf-Replication Pseudo Code Evolutionary ComputationEvolutionary Biology and Evolutionary ComputationGenetic AlgorithmsExample ApplicationsAnalysis of the Behavior of Genetic AlgorithmsLamarckian Evolution Genet

  10. Biological, ecological and agronomic significance of plant phenolic ...

    African Journals Online (AJOL)

    SERVER

    2007-06-18

    Jun 18, 2007 ... germination, growth and other plant functions (White- head, 1964; Baskin et al., 1967; Einhellig, 1986; ... Seed exudates from white clover identified as biochanin. A, chrysin and formononetin also promoted ..... Baskin JM, Ludlow CJ, Harris TM, Wolf FT (1967). Psoralen, an inhibitor in the seed of Psoralea ...

  11. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S; Wang, Y; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ?entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  12. The biological significance of evolution in autoimmune phenomena.

    Science.gov (United States)

    Cañas, Carlos A; Cañas, Felipe

    2012-01-01

    It is an inherent part of living to be in constant modification, which are due to answers resulting from environmental changes. The different systems make adaptations based on natural selection. With respect to the immune system of mammals, these changes have a lot to do with the interactions that occur continuously with other living species, especially microorganisms. The immune system is primarily designed to defend from germs and this response triggers inflammatory reactions which must be regulated in order not to generate damage to healthy tissue. The regulatory processes were added over time to prevent such damage. Through evolution the species have stored "an immunological experience," which provides information that is important for developing effective responses in the future. The human species, which is at a high level of evolutionary immunological accumulation, have multiple immune defense strategies which, in turn, are highly regulated. Imbalances in these can result in autoimmunity."There is nothing permanent except change."(Heraclitus).

  13. Chemical and biological significance of naturally occurring additives ...

    African Journals Online (AJOL)

    The potassium ester (C11H23COO-K+) commonly known as African black soap was prepared by the action of palm kernel oil on cocoa pods. This was divided into four portions. Sample A contained the African Black soap without any modification, sample B was black soap modified with honey, sample C and sample D were ...

  14. Biological Significance of Seed Oil and Polyphenolic of Olea europaea

    OpenAIRE

    Mohammad Asif

    2013-01-01

    The olive tree Olea europaea have beneficial properties. Mainly used parts of the olive tree are fruits and seeds. Seeds oil of olive is used as a major component of the “diet.” Chief active components of olive oil include oleic acid, a monounsaturated fatty acid, polyphenolics and squalene. These main phenolic components are hydroxytyrosol, tyrosol, and oleuropein, which occur in highest amounts in virgin olive oil and have antioxidant properties. Olive oil has shown activity in against canc...

  15. Reply to Veresoglou: Overdependence on "significance" testing in biology

    Czech Academy of Sciences Publication Activity Database

    Crowther, T. W.; Thomas, S.M.; Maynard, D.S.; Baldrian, Petr; Covey, K.; Frey, S. D.; van Diepen, L. T. A.; Bradford, M.A.

    2015-01-01

    Roč. 112, č. 37 (2015), "E5114"-"E5114" ISSN 0027-8424 Institutional support: RVO:61388971 Keywords : climate change * soil carbon Subject RIV: EE - Microbiology, Virology Impact factor: 9.423, year: 2015

  16. The Biological and Clinical Significance of Androgen Receptor Variants

    Science.gov (United States)

    2014-04-01

    distributed under the terms of the Creative Commons Attribution Lrcense (httpJ/creativecommons org/licenses/by/2 0), which permits unrestricted use...Beuschlein F, WolfE, Hoeflich A: Growth analysis of the mouse adrenal gland from weaning to adulthood : time- and gender-dependent alterations of cell size

  17. Single molecule tracking

    Science.gov (United States)

    Shera, E. Brooks

    1988-01-01

    A detection system is provided for identifying individual particles or molecules having characteristic emission in a flow train of the particles in a flow cell. A position sensitive sensor is located adjacent the flow cell in a position effective to detect the emissions from the particles within the flow cell and to assign spatial and temporal coordinates for the detected emissions. A computer is then enabled to predict spatial and temporal coordinates for the particle in the flow train as a function of a first detected emission. Comparison hardware or software then compares subsequent detected spatial and temporal coordinates with the predicted spatial and temporal coordinates to determine whether subsequently detected emissions originate from a particle in the train of particles. In one embodiment, the particles include fluorescent dyes which are excited to fluoresce a spectrum characteristic of the particular particle. Photones are emitted adjacent at least one microchannel plate sensor to enable spatial and temporal coordinates to be assigned. The effect of comparing detected coordinates with predicted coordinates is to define a moving sample volume which effectively precludes the effects of background emissions.

  18. Olefin Metathesis for Chemical Biology

    OpenAIRE

    Binder, Joseph B; Raines, Ronald T

    2008-01-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-openi...

  19. The aesthetics of chemical biology.

    Science.gov (United States)

    Parsons, Glenn

    2012-12-01

    Scientists and philosophers have long reflected on the place of aesthetics in science. In this essay, I review these discussions, identifying work of relevance to chemistry and, in particular, to the field of chemical biology. Topics discussed include the role of aesthetics in scientific theory choice, the aesthetics of molecular images, the beauty-making features of molecules, and the relation between the aesthetics of chemical biology and the aesthetics of industrial design. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Evolutionary game theory: molecules as players.

    Science.gov (United States)

    Bohl, Katrin; Hummert, Sabine; Werner, Sarah; Basanta, David; Deutsch, Andreas; Schuster, Stefan; Theissen, Günter; Schroeter, Anja

    2014-12-01

    In this and an accompanying paper we review the use of game theoretical concepts in cell biology and molecular biology. This review focuses on the subcellular level by considering viruses, genes, and molecules as players. We discuss in which way catalytic RNA can be treated by game theory. Moreover, genes can compete for success in replication and can have different strategies in interactions with other genetic elements. Also transposable elements, or "jumping genes", can act as players because they usually bear different traits or strategies. Viruses compete in the case of co-infecting a host cell. Proteins interact in a game theoretical sense when forming heterodimers. Finally, we describe how the Shapley value can be applied to enzymes in metabolic pathways. We show that game theory can be successfully applied to describe and analyse scenarios at the molecular level resulting in counterintuitive conclusions.

  1. Explicit Consideration of Water Molecules to Study Vibrational Circular DICHROÎSM of Monosaccharide's

    Science.gov (United States)

    Moussi, Sofiane; Ouamerali, Ourida

    2014-06-01

    Carbohydrates have multiples roles in biological systems. It has been found that the glycoside bond is fundamentally important in many aspects of chemistry and biology and forms the basis of carbohydrate chemistry. That means the stereochemical information, namely, glycosidic linkages α or β, gives an significant features of the carbohydrate glycosidation position of the glycosylic acceptor. For these reasons, much effort was made for the synthesis and analysis of the glycoside bond. Vibrational circular dichroism VCD has some advantages over conventional electronic circular dichroism (ECD) due to the applicability to all organic molecules and the reliability of ab initio quantum calculation. However, for a molecule with many chiral centers such as carbohydrates, determination of the absolute configuration tends to be difficult because the information from each stereochemical center is mixed and averaged over the spectrum. In the CH stretching region, only two VCD studies on carbohydrates have been reported and spectra--structure correlation, as determined for the glycoside band, remains to be investigated. T. Taniguchi and collaborators report that methyl glycosides exhibit a characteristic VCD peak, the sign of which solely reflects the C-1 absolute configuration. This work is a theoretical contribution to study the behaviour of VCD spectrum's of the monosaccharides when the water molecules are taken explicitly. This study is focused on six different monosaccharides in theirs absolute configuration R and S. We used the method of density functional theory DFT by means of the B3LYP hybrid functional and 6-31G * basis set.

  2. Theoretical Investigations Regarding Single Molecules

    DEFF Research Database (Denmark)

    Pedersen, Kim Georg Lind

    Neoclassical Valence Bond Theory, Quantum Transport, Quantum Interference, Kondo Effect, and Electron Pumping. Trap a single organic molecule between two electrodes and apply a bias voltage across this "molecular junction". When electrons pass through the molecule, the different electron paths can...... interfere destructively or constructively. Destructive interference effects in electron transport could potentially improve thermo-electrics, organic logic circuits and energy harvesting. We have investigated destructive interference in off-resonant transport through organic molecules, and have found a set...

  3. Physics and the origins of molecular biology

    Indian Academy of Sciences (India)

    They thought that future studies of the gene might reveal new principles or paradoxes, ... of molecules, or as a living organism; you could make obser- vations that tell you where the molecules are, or you could ... nal influence on future biology (Timofeeff-Ressovsky et al. 1935). Genetics had demonstrated that genes are ...

  4. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics

    Science.gov (United States)

    Parra, R. Gonzalo; Schafer, Nicholas P.; Radusky, Leandro G.; Tsai, Min-Yeh; Guzovsky, A. Brenda; Wolynes, Peter G.; Ferreiro, Diego U.

    2016-01-01

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins’ biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. PMID:27131359

  5. Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now with electrostatics.

    Science.gov (United States)

    Parra, R Gonzalo; Schafer, Nicholas P; Radusky, Leandro G; Tsai, Min-Yeh; Guzovsky, A Brenda; Wolynes, Peter G; Ferreiro, Diego U

    2016-07-08

    The protein frustratometer is an energy landscape theory-inspired algorithm that aims at localizing and quantifying the energetic frustration present in protein molecules. Frustration is a useful concept for analyzing proteins' biological behavior. It compares the energy distributions of the native state with respect to structural decoys. The network of minimally frustrated interactions encompasses the folding core of the molecule. Sites of high local frustration often correlate with functional regions such as binding sites and regions involved in allosteric transitions. We present here an upgraded version of a webserver that measures local frustration. The new implementation that allows the inclusion of electrostatic energy terms, important to the interactions with nucleic acids, is significantly faster than the previous version enabling the analysis of large macromolecular complexes within a user-friendly interface. The webserver is freely available at URL: http://frustratometer.qb.fcen.uba.ar. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Labelled molecules, modern research implements

    International Nuclear Information System (INIS)

    Pichat, L.; Langourieux, Y.

    1974-01-01

    Details of the synthesis of carbon 14- and tritium-labelled molecules are examined. Although the methods used are those of classical organic chemistry the preparation of carbon 14-labelled molecules differs in some respects, most noticeably in the use of 14 CO 2 which requires very special handling techniques. For the tritium labelling of organic molecules the methods are somewhat different, very often involving exchange reactions. The following are described in turn: the so-called Wilzbach exchange method; exchange by catalysis in solution; catalytic hydrogenation with tritium; reductions with borotritides. Some applications of labelled molecules in organic chemistry, biochemistry and pharmacology are listed [fr

  7. Biofuels: from microbes to molecules

    National Research Council Canada - National Science Library

    Lu, Xuefeng

    2014-01-01

    .... The production of different biofuel molecules including hydrogen, methane, ethanol, butanol, higher chain alcohols, isoprenoids and fatty acid derivatives, from genetically engineered microbes...

  8. Aromatic molecules as spintronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, J. H., E-mail: judith.ojeda@uptc.edu.co [Instituto de Alta investigación, Universidad de Tarapacá, Casilla 7D Arica (Chile); Grupo de Física de Materiales, Universidad Pedagógica y Tecnológica de Colombia, Tunja (Colombia); Orellana, P. A. [Departamento de Física, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso (Chile); Laroze, D. [Instituto de Alta investigación, Universidad de Tarapacá, Casilla 7D Arica (Chile)

    2014-03-14

    In this paper, we study the spin-dependent electron transport through aromatic molecular chains attached to two semi-infinite leads. We model this system taking into account different geometrical configurations which are all characterized by a tight binding Hamiltonian. Based on the Green's function approach with a Landauer formalism, we find spin-dependent transport in short aromatic molecules by applying external magnetic fields. Additionally, we find that the magnetoresistance of aromatic molecules can reach different values, which are dependent on the variations in the applied magnetic field, length of the molecules, and the interactions between the contacts and the aromatic molecule.

  9. Biological effects

    International Nuclear Information System (INIS)

    Trott, K.R.

    1973-01-01

    Following an introduction into the field of cellular radiation effect considering the most important experimental results, the biological significance of the colony formation ability is brought out. The inactivation concept of stem cells does not only prove to be good, according to the present results, in the interpretation of the pathogenesis of acute radiation effects on moult tissue, it also enables chronicle radiation injuries to be interpreted through changes in the fibrous part of the organs. Radiation therapy of tumours can also be explained to a large extent by the radiation effect on the unlimited reproductiveness of tumour cells. The more or less similar dose effect curves for healthy and tumour tissue in practice lead to intermittent irradiation. The dependence of the intermittent doses and intervals on factors such as Elkind recovery, synchronisation, redistribution, reoxygenation, repopulation and regeneration are reviewed. (ORU/LH) [de

  10. Attraction between DNA molecules mediated by multivalent ions

    OpenAIRE

    Allahyarov, E.; Gompper, G.; Löwen, H.

    2004-01-01

    The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counterion and salt ions and different salt concentrations. Computer simulations of the primitive model are used and the shape of the DNA molecules is accurately modeled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. T...

  11. Opportunities and challenges in biological lignin valorization

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.; Salvachúa, Davinia; Vardon, Derek R.

    2016-12-01

    Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via ‘upper pathways’ into central intermediates, which can then be funneled through ‘lower pathways’ into central carbon metabolism in a process we dubbed ‘biological funneling’. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme–microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.

  12. CD9-positive microvesicles mediate the transfer of molecules to Bovine Spermatozoa during epididymal maturation.

    Science.gov (United States)

    Caballero, Julieta N; Frenette, Gilles; Belleannée, Clémence; Sullivan, Robert

    2013-01-01

    Acquisition of fertilization ability by spermatozoa during epididymal transit occurs in part by the transfer of molecules from membranous vesicles called epididymosomes. Epididymosomes are heterogeneous in terms of both size and molecular composition. Exosomes and other related small membranous vesicles (30-120 nm) containing tetraspanin proteins on their surface are found in many biological fluids. In this study, we demonstrate that these vesicles are present in bovine cauda epididymal fluid as a subpopulation of epididymosomes. They contain tetraspanin CD9 in addition to other proteins involved in sperm maturation such as P25b, GliPr1L1, and MIF. In order to study the mechanism of protein transfer to sperm, DilC12-labeled unfractionated epididymosomes or CD9-positive microvesicles were coincubated with epididymal spermatozoa, and their transfer was evaluated by flow cytometry. CD9-positive microvesicles from epididymal fluid specifically transferred molecules to spermatozoa, whereas those prepared from blood were unable to do so. The CD9-positive microvesicles transferred molecules to the same sperm regions (acrosome and midpiece) as epididymosomes, with the same kinetics; however, the molecules were preferentially transferred to live sperm and, in contrast to epididymosomes, Zn(2+) did not demonstrate potentiated transfer. Tetraspanin CD9 was associated with other proteins on the membrane surface of CD9-positive microvesicles according to coimmunoprecipitation experiments. CD26 cooperated with CD9 in the molecular transfer to sperm since the amount of molecules transferred was significantly reduced in the presence of specific antibodies. In conclusion, CD9-positive microvesicles are present in bovine cauda epididymal fluid and transfer molecules to live maturing sperm in a tissue-specific manner that involves CD9 and CD26.

  13. Single-molecule tracking in living cells using single quantum dot applications.

    Science.gov (United States)

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes.

  14. Small molecules targeting heterotrimeric G proteins.

    Science.gov (United States)

    Ayoub, Mohammed Akli

    2018-05-05

    G protein-coupled receptors (GPCRs) represent the largest family of cell surface receptors regulating many human and animal physiological functions. Their implication in human pathophysiology is obvious with almost 30-40% medical drugs commercialized today directly targeting GPCRs as molecular entities. However, upon ligand binding GPCRs signal inside the cell through many key signaling, adaptor and regulatory proteins, including various classes of heterotrimeric G proteins. Therefore, G proteins are considered interesting targets for the development of pharmacological tools that are able to modulate their interaction with the receptors, as well as their activation/deactivation processes. In this review, old attempts and recent advances in the development of small molecules that directly target G proteins will be described with an emphasis on their utilization as pharmacological tools to dissect the mechanisms of activation of GPCR-G protein complexes. These molecules constitute a further asset for research in the "hot" areas of GPCR biology, areas such as multiple G protein coupling/signaling, GPCR-G protein preassembly, and GPCR functional selectivity or bias. Moreover, this review gives a particular focus on studies in vitro and in vivo supporting the potential applications of such small molecules in various GPCR/G protein-related diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. EDITORIAL: Physical Biology

    Science.gov (United States)

    Roscoe, Jane

    2004-06-01

    Physical Biology is a new peer-reviewed publication from Institute of Physics Publishing. Launched in 2004, the journal will foster the integration of biology with the traditionally more quantitative fields of physics, chemistry, computer science and other math-based disciplines. Its primary aim is to further the understanding of biological systems at all levels of complexity, ranging from the role of structure and dynamics of a single molecule to cellular networks and organisms. The journal encourages the development of a new biology-driven physics based on the extraordinary and increasingly rich data arising in biology, and provides research directions for those involved in the creation of novel bio-engineered systems. Physical Biology will publish a stimulating combination of full length research articles, communications, perspectives, reviews and tutorials from a wide range of disciplines covering topics such as: Single-molecule studies and nanobiotechnology Molecular interactions and protein folding Charge transfer and photobiology Ion channels; structure, function and ion regulation Molecular motors and force generation Subcellular processes Biological networks and neural systems Modeling aspects of molecular and cell biology Cell-cell signaling and interaction Biological patterns and development Evolutionary processes Novel tools and methods in physical biology Experts in the areas encompassed by the journal's scope have been appointed to the Editorial Scientific Committee and the composition of the Committee will be updated regularly to reflect the developments in this new and exciting field. Physical Biology is free online to everyone in 2004; you are invited to take advantage of this offer by visiting the journal homepage at http://physbio.iop.org This special print edition of Physical Biology is a combination of issues 1 and 2 of this electronic-only journal and it brings together an impressive range of articles in the fields covered, including a popular

  16. Coordination Compounds in Biology R

    Indian Academy of Sciences (India)

    naturally occurring organometallic compound found in biology. An intriguing aspect of vitamin Bl2 is the great stability of the metal-carbon bond. A great deal of new and interesting inorganic chemistry has been uncoveredwhlle studying systems pertinent to BI2• In this article some salient features of this unique molecule (B.

  17. Investigation of polyelectrolyte desorption by single molecule force spectroscopy

    International Nuclear Information System (INIS)

    Friedsam, C; Seitz, M; Gaub, H E

    2004-01-01

    Single molecule force spectroscopy has evolved into a powerful method for the investigation of intra- and intermolecular interactions at the level of individual molecules. Many examples, including the investigation of the dynamic properties of complex biological systems as well as the properties of covalent bonds or intermolecular transitions within individual polymers, are reported in the literature. The technique has recently been extended to the systematic investigation of desorption processes of individual polyelectrolyte molecules adsorbed on generic surfaces. The stable covalent attachment of polyelectrolyte molecules to the AFM-tip provides the possibility of performing long-term measurements with the same set of molecules and therefore allows the in situ observation of the impact of environmental changes on the adsorption behaviour of individual molecules. Different types of interactions, e.g. electrostatic or hydrophobic interactions, that determine the adsorption process could be identified and characterized. The experiments provided valuable details that help to understand the nature and the properties of non-covalent interactions, which is helpful with regard to biological systems as well as for technical applications. Apart from this, desorption experiments can be utilized to characterize the properties of surfaces or polymer coatings. Therefore they represent a versatile tool that can be further developed in terms of various aspects

  18. Chemical genetics: a small molecule approach to neurobiology.

    Science.gov (United States)

    Koh, Brian; Crews, Craig M

    2002-11-14

    Chemical genetics, or the specific modulation of cellular systems by small molecules, has complemented classical genetic analysis throughout the history of neurobiology. We outline several of its contributions to the understanding of ion channel biology, heat and cold signal transduction, sleep and diurnal rhythm regulation, effects of immunophilin ligands, and cell surface oligosaccharides with respect to neurobiology.

  19. Single-molecule microscopy using silicone oil immersion objective lenses

    NARCIS (Netherlands)

    Hink, M.

    2012-01-01

    Microscopy techniques capable of detecting individual molecules and providing quantitative data have the potential to offer great biological insight; however, such approaches require the efficient capture of light. Here, Mark Hink explains how the use of new silicone oil immersion objective lenses

  20. Flexibility and conformational change of IgG molecule

    International Nuclear Information System (INIS)

    Alpert, Y.; Ostanevich, Yu.M.

    1982-12-01

    The dynamic behaviour of pig anti-Dnp-immunoglobulin (IgG) investigated by the neutron spin echo technique gave evidence of internal motion of a biological macromolecule. It is suggested that this motion belongs to the wobbling of the Fab parts of the investigated IgG molecule around its so called hinge region. (author)